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Outline ﬁ

+ Conversion system architectures for DPS
- Unregulated Intermediate Bus Converters
(IBC)
- Regulated Intermediate Bus Converters
+ Isolated Point of Load converters (POLs)
* Non isolated POL: buck interleaved

- Digital control for high-frequency power
conversion in Distributed Power Systems:
current research activity at the University of
Padova
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Power Distribution Problem @@}

+ Very complex Power Management Architectures in
Computing & Networking Systems

- Many low voltage, high current and tightly regulated
voltage sources

- Accurate management for sequencing, tracking and
fault management

- High Power density needed for real estate saving and
Thermal management issues

- Low cost always mandatory in high volume applications

TWEPP 2007, Prague 4

Distributed Power Architectures m

Main bus  |ntermediate
voltage  pys voltage

IBC = Intermediate Bus Converter
POL = Point Of Load converter
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AC-DC Front End O
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+ EMI filter for attenuate high-frequency noise (both
conducted and radiated) produced by the switching
converters

+ High-Power-Factor (HPF) rectifier for low-frequency
harmonic standard compliance

+ Isolated DC/DC converter for electrical isolation
with the main and voltage scaling
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+ Boost converter in
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High power factor
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Dedicated control
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+ Phase-shift modulated Full-bridge converter

+ Soft switching operation exploiting the transformer
leakage inductance

l

1
S

TWEPP 2007, Prague

Ay,
5
X
e

§
L)
A

Narrow Input IBCs

o

IBC
Tightly regulated Intermediate o;' °_|
bus voltage bus voltage )
Rl0)
SZ
=i oS,
N Fixed 50% duty-cycle:
Full-bridge, half-bridge 1. Soft switching
' or push-pull primary 2. Small output |ndut.:t.or )
Unregulated stage 3. Synchronous rectification
Intermediate Bus
Converter
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High bus voltage
variation
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+ Active-clamped for soft switching

+ Synchronous rectification

« Large output inductor

« High voltage rating device (60V) for SR

« Switching frequency of the state-of-art: ~300KHz
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& Isolated POLs ﬂ

No intermediate bus voltage

High bus voltage
variation

) Example of Isolated POL ﬂ
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* Half bridge with current doubler
+ Synchronous rectification
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%, Single-Phase Synchronous Buck Converter 0

High load current requires the use of parallel
power MOSFETs or parallel power converters

> }j L
+ | T l
Yy T O—IHHEESL &

v

Parallel device approach is not convenient
since interleaved operation reduces output and input ripple
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+ Reduced current level per phase
+ Reduced output current ripple

+ Reduced input current ripple

+ Increased bandwidth (F.=N F,,)
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Multi-Phase Interleaved Converters ﬁ
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Voltage Regulation Modules (VRM)

- Power trend

- Interleaved buck converters

- Current sharing

- Adaptive voltage positioning

Digital control for high-frequency power conversion
in Distributed Power Systems: current research
activity at the University of Padova
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%‘ Current Sharing in Parallel Channels w

e
R1 L iLtot
A =
3y i J: .
5: CLuy, k-channel resistance
R L - -
Skl L R R R (R
8, [ e i . .
579 Mosfet Ry, inductor Tra;e resistance
resistance  (PCB layout)
Dc inductor current mismatch:
( R2%, -R:5, i
G 8, —d. 2(6,-8 R
A|L=|L,—|L2=2ugF{1 R2 (F{1R ) : Ll R _=load
SHEECE R B (. resistance
R,+R, R_
+ Unmatched duty cycle
+ Unmatched channel resistance
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Current Sharing in Parallel Channels

Even small mismatches of duty-cycle or of channel
resistance generate serious current sharing issues

Example with unmatched duty-cycles:

Vi=12V, R=R,=10mQ, I =40A, two channels

[A]

1 ——

+ Voltage Regulation Modules (VRM)

- Power trend

- Interleaved buck converters

- Current sharing

- Adaptive voltage positioning

- Digital control for high-frequency power
conversion in Distributed Power Systems:
current research activity at the University of
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. Padova
Duty-cycle difference (5,-8,) [%]
- Similar results for small unmatched channel resistances
(spread of MOSFET R, difference on PCB layout, etc..)
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Specs VRD 10.x for Intel P4 Prescott
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+ Adaptive voltage positioning (AVP) is required by VRM
specs
+ AVP is very effective on reducing VRM output caps:
- For given output caps, output voltage variation is halved
- For a given output voltage tolerance, output caps are halved
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a8 Adaptive Voltage Positioning m

+ AVP is realized by VRM resistive output impedance
Number of parallel electrolytic caps is determined by
condition: ESR = Ryyop

Load step variations
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+ Closed-loop control on v, =V, *Ropronp Iy

+ PI design so as to impose controller bandwidth
@,=1/(ESR- C) (theoretically no need for high-
performance controller)
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+ Closed-loop control on ViV Roroop Iy
+ PI design so as to impose controller bandwidth
®.=1/(ESR-C)
* Use of an additional R,-C, to limit precisely
controller bandwidth
34
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£ AVP with Ceramic Capacitors m

TWEPP 2007, Prague 35

SN,
e AVP with Ceramic Capacitors m

g

g

+ The higher the control bandwidth, the lower the
output capacitor requirement: €>1/(®.*Rgroop)
+ Need for high-performance controller
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Outline m

+ Conversion system architectures for DPS
- Unregulated Intermediate Bus Converters
(IBC)
- Regulated Intermediate Bus Converters
+ Isolated Point of Load converters (POLs)
* Non isolated POL: buck interleaved
Digital control for high-frequency power
conversion in Distributed Power Systems:

current research activity at the University of
Padova
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%  Power Distribution Problem @@}

o

+ Very complex Power Management Architectures in
Computing & Networking Systems

- Many low voltage, high current and tightly regulated
voltage sources

- Accurate management for sequencing, tracking and
fault management

- High Power density needed for real estate saving and
Thermal management issues

- Low cost always mandatory in high volume applications
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Distributed Power Architectures m

Main bus  ntermediate
voltage  pys voltage

IBC = Intermediate Bus Converter
POL = Point Of Load converter
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AC-DC Front End %
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EMI HPF ISOLATED
FILTER RECTIFIER DC/DC

+ EMLI filter for attenuate high-frequency noise (both
conducted and radiated) produced by the switching
converters

+ High-Power-Factor (HPF) rectifier for low-frequency
harmonic standard compliance

+ Isolated DC/DC converter for electrical isolation
with the main and voltage scaling
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Digital Control ﬂ

- Technology independent design
(Hardware Description Language - HDL)

- Lower Time to market (faster
design process)

+ Intellectual Property - IP

+ Easy scaling with advances in
fabrication technologies

Better resources
employment

vhdl
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Critical Issues of Digital Control

O

+  Lack of experienced people in digital desigh and power electronics

+ Lack of understanding and research on how to realize simple
digital IC which comply with the cost/complexity constraints of
computing/telecom applications

- Specific dedicated digital or mixed-signal ICs are needed (no

discrete uC or DSP)

+ Quantization effects (limit cycles) and control delays (bandwidth

limitation) has to be considered

+ Conversion solutions and digital complexity
- High resolution DPWM
- High resolution AD and DA converters

!

Need of simple-mixed signal control architectures
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Research Activities in Digital Control m

+ Investigating the digital advantage
- Auto-tuning systems
- Complex power management

+ Solving the digital trouble
- Mixed signal control architectures
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%? Mixed-Signal Voltage-Mode Control

®

IC controller Features:
Digital control  Analog interface

v Simple analog
Hionc> interface (low-
Sychronous/ resolution DAC +
Asychronous
sontrol comparator)
(VHDL) v No need for ADC
and DPWM
) v No quantization
i q
o, @ effects

] v High dynamic
S| performance
MEEE NI

Dc-dc converters
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Experimental Results

Load step variation
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*ﬁf Auto-Tuning System %

Objective:

+ Investigation of PID autotuning techniques for
digitally controlled voltage-mode synchronous
buck converters

* Features:
v'Closed-loop operation during autotuning
v'Direct autotuning based on specified
dynamic requirement without transfer
function identification
v Simple algorithm

O

) Experimental Results
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*%, Experimental Results *HE; Power Line Communication

Load step variation after autotuning
(f.=13kHz, m,=60°)
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Distributed dc-dc converters sharing the same voltage bus
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;%? 16-Phases Interleaved Buck Converter %

High number of phases enables higher switching
frequencies and lower L

The requirement for precise timing and automatic
current sharing call for digital control

Prototype

- 16 Phases Buck converter

1.56 MHz Switching Frequency (each channel)

~25 MHz Sampling Frequency

- V,=3V

Vour =1V, I,,=8A
Qanc = 16 mV

- L=300nH

Cout= 30 pF

Project in which our Ph.D student (Daniele Trevisan) was involved during his visit at
COPEC (Colorado Power Electronics Center) - Boulder
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‘ %'i)igi*ral Control for 16-Phases Buck Converte
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Power Stages h
(upper 8 phases)

Sensing
Circuitry
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