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Outline

•• Conversion system architectures for DPSConversion system architectures for DPS
–– Unregulated Intermediate Bus Converters Unregulated Intermediate Bus Converters 

(IBC)(IBC)
–– Regulated Intermediate Bus Converters Regulated Intermediate Bus Converters 

•• Isolated Point of Load converters (Isolated Point of Load converters (POLsPOLs))
•• Non isolated POL: buck interleavedNon isolated POL: buck interleaved
•• Digital control for highDigital control for high--frequency power frequency power 

conversion in Distributed Power Systems: conversion in Distributed Power Systems: 
current research activity at the University of current research activity at the University of 
PadovaPadova
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•• Very complex Power Management Architectures in Very complex Power Management Architectures in 
Computing & Networking SystemsComputing & Networking Systems
–– Many low voltage, high current and  tightly regulated Many low voltage, high current and  tightly regulated 

voltage sourcesvoltage sources
–– Accurate management for sequencing, tracking and Accurate management for sequencing, tracking and 

fault managementfault management
–– High Power density needed for real estate saving and High Power density needed for real estate saving and 

Thermal management issuesThermal management issues
–– Low cost always mandatory in high volume applicationsLow cost always mandatory in high volume applications

Power Distribution Problem
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Distributed Power Architectures
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AC-DC Front End

•• EMI filterEMI filter for attenuate high-frequency noise (both 
conducted and radiated) produced by the switching 
converters

•• HighHigh--PowerPower--FactorFactor (HPF) rectifier for low-frequency 
harmonic standard compliance

•• Isolated DC/DCIsolated DC/DC converter for electrical isolation 
with the main and voltage scaling

EMI 
FILTER

HPF
RECTIFIER

ISOLATED 
DC/DC
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HPF Rectifier

•• Boost converter in Boost converter in 
CCMCCM

•• Average current Average current 
modemode

•• High power factorHigh power factor
•• Output voltage Output voltage 

higher than peak higher than peak 
input voltageinput voltage

•• Dedicated control Dedicated control 
IC availableIC available
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Isolated DC/DC

•• PhasePhase--shift modulated Fullshift modulated Full--bridge converterbridge converter
•• Soft switching operation exploiting the transformer Soft switching operation exploiting the transformer 

leakage inductanceleakage inductance

ISOLATED 
DC/DC

DC: 400V DC: 48V
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Narrow Input IBCs
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Example of Unregulated IBC

Fixed 50% dutyFixed 50% duty--cycle:cycle:
1.1. Soft switching Soft switching 
2.2. Small output inductorSmall output inductor
3.3. Synchronous rectification Synchronous rectification 

Open-loop operation

FullFull--bridge, halfbridge, half--bridgebridge
or pushor push--pull primary pull primary 

stagestage

IBC

SR2SR2SR2SR2
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Wide Input IBCs
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Example of Regulated IBC

•• ActiveActive--clamped for soft switchingclamped for soft switching
•• Synchronous rectification Synchronous rectification 
•• Large output inductorLarge output inductor
•• High voltage rating device (60V) for SR High voltage rating device (60V) for SR 
•• Switching frequency of the stateSwitching frequency of the state--ofof--art: ~300KHzart: ~300KHz
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Isolated POLs
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Example of Isolated POL

•• Half bridge with current Half bridge with current doublerdoubler
•• Synchronous rectificationSynchronous rectification
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D1=“off”
D2=“on”
DD11==““offoff””
DD22==““onon””

D1=“on”
D2=“on”
DD11==““onon””
DD22==““onon””

D1=“on”
D2=“off”
DD11==““onon””
DD22==““offoff””

Current Doubler

•• No centerNo center--tapped windingstapped windings
•• Current ripple cancellationCurrent ripple cancellation
•• SplittedSplitted load current load current 

between the two inductorsbetween the two inductorsdTdTss00000000
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Non Isolated Point Of Load Converters

• Voltage Regulator Modules (VRMs)
– Power trend
– Interleaved buck converters
– Current sharing
– Adaptive voltage positioning
– Digital control for high-frequency power 

conversion in Distributed Power Systems: 
current research activity at the University of 
Padova

POL
1.5V12V
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•• Low supply voltageLow supply voltage
•• Small tolerance bandSmall tolerance band
•• High load currentHigh load current
•• High current slew High current slew 
raterate

•• Resistive output Resistive output 
impedanceimpedance

VRM Intel Specifications
SpecsSpecs VRD 10.x VRD 10.x forfor IntelIntel P4 P4 PrescottPrescott
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Outline

• Voltage Regulation Modules (VRM)
– Power trend
– Interleaved buck converters
– Current sharing
– Adaptive voltage positioning
– Digital control for high-frequency power 

conversion in Distributed Power Systems: 
current research activity at the University of 
Padova

30



19TWEPP 2007, Prague

Single-Phase Synchronous Buck Converter

•• High load current requires  the use of  parallel High load current requires  the use of  parallel 
power power MOSFETsMOSFETs or parallel power convertersor parallel power converters

Parallel device approach is not convenient Parallel device approach is not convenient 
since interleaved operation reduces output and input ripplesince interleaved operation reduces output and input ripple
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Multiphase Interleaved Buck Converters
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•• Reduced current level per phaseReduced current level per phase
•• Reduced output current ripple Reduced output current ripple 
•• Reduced input current rippleReduced input current ripple
•• Increased bandwidth (Increased bandwidth (FFeqeq=N =N FFswsw))
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Ripple reduction 
on output filter
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D=0.5 for the best cancellation effect 

Two
phases

Four
phases

D=0.25, 0.5, 0.75  for the best cancellation effect 
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Outline

• Voltage Regulation Modules (VRM)
– Power trend
– Interleaved buck converters
– Current sharing
– Adaptive voltage positioning

• Digital control for high-frequency power conversion 
in Distributed Power Systems: current research 
activity at the University of Padova
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Current Sharing in Parallel ChannelsCurrent Sharing in Parallel Channels

• Unmatched duty cycle
• Unmatched channel resistance

MosfetMosfet RRdsondson inductor inductor 
resistanceresistance

trace resistancetrace resistance
(PCB layout)(PCB layout)

Rk = Rdsonk +  RLk +  RPCBk

kk--channel resistancechannel resistance
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Dc inductor current mismatch:Dc inductor current mismatch:

RL = load 
resistance
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• Even small mismatches of duty-cycle or of channel 
resistance generate serious current sharing issues

• Example with unmatched duty-cycles:

• Similar  results for small unmatched channel resistances 
(spread of MOSFET Rdson, difference on PCB layout, etc..) 

Current Sharing in Parallel ChannelsCurrent Sharing in Parallel Channels
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Outline

• Voltage Regulation Modules (VRM)
– Power trend
– Interleaved buck converters
– Current sharing
– Adaptive voltage positioning
– Digital control for high-frequency power 

conversion in Distributed Power Systems: 
current research activity at the University of 
Padova
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Specs VRD 10.x for Intel P4 Prescott Resistive output 
impedance

⋅TYP,out DROOP loadV = VID - TOB - R I

VRM Intel Specifications

““Droop FunctionDroop Function”” or or ““Adaptive Adaptive 
Voltage PositioningVoltage Positioning””
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Adaptive Voltage Positioning
•• Adaptive voltage positioning (AVP) is required by VRM Adaptive voltage positioning (AVP) is required by VRM 

specsspecs
•• AVP is very effective on reducing VRM output caps:AVP is very effective on reducing VRM output caps:

–– For given output caps, output voltage variation is halvedFor given output caps, output voltage variation is halved
–– For a given output voltage tolerance, output caps are halvedFor a given output voltage tolerance, output caps are halved

Ref [5,7,8]

io

Vmax

Vmin
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AVP

C

Vmax

Vmin
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32



31TWEPP 2007, Prague

∆V = ESR · ∆IOUT

Load step variations

Output voltageOutput voltage
with Droop Functionwith Droop Function

∆V = ESR · ∆IOUT

without Droop Functionwithout Droop Function
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•• AVP is realized by VRM resistive output impedanceAVP is realized by VRM resistive output impedance
• Number of parallel electrolytic caps is determined by 

condition: ESR = Rdroop
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• Closed-loop control on vT =vo+Rdroop·iL
• PI design so as to impose controller bandwidth 

ωωωωc=1/(ESR·C) (theoretically no need for high-
performance controller)
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• Closed-loop control on vT=vo+Rdroop·iL
• PI design so as to impose controller bandwidth 

ωωωωc=1/(ESR·C)
• Use of an additional Rp-Cp to limit precisely

controller bandwidth

Cp

Rp
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• Need for high-performance controller
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Outline

•• Conversion system architectures for DPSConversion system architectures for DPS
–– Unregulated Intermediate Bus Converters Unregulated Intermediate Bus Converters 

(IBC)(IBC)
–– Regulated Intermediate Bus Converters Regulated Intermediate Bus Converters 

•• Isolated Point of Load converters (Isolated Point of Load converters (POLsPOLs))
•• Non isolated POL: buck interleavedNon isolated POL: buck interleaved
•• Digital control for highDigital control for high--frequency power frequency power 

conversion in Distributed Power Systems: conversion in Distributed Power Systems: 
current research activity at the University of current research activity at the University of 
PadovaPadova
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•• Very complex Power Management Architectures in Very complex Power Management Architectures in 
Computing & Networking SystemsComputing & Networking Systems
–– Many low voltage, high current and  tightly regulated Many low voltage, high current and  tightly regulated 

voltage sourcesvoltage sources
–– Accurate management for sequencing, tracking and Accurate management for sequencing, tracking and 

fault managementfault management
–– High Power density needed for real estate saving and High Power density needed for real estate saving and 

Thermal management issuesThermal management issues
–– Low cost always mandatory in high volume applicationsLow cost always mandatory in high volume applications

Power Distribution Problem
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AC-DC Front End

•• EMI filterEMI filter for attenuate high-frequency noise (both 
conducted and radiated) produced by the switching 
converters

•• HighHigh--PowerPower--FactorFactor (HPF) rectifier for low-frequency 
harmonic standard compliance

•• Isolated DC/DCIsolated DC/DC converter for electrical isolation 
with the main and voltage scaling

EMI 
FILTER

HPF
RECTIFIER

ISOLATED 
DC/DC
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Digital Control

– Technology independent design 
(Hardware Description Language - HDL)

Better resources 
employment

vhdl

• Lower Time to market (faster 
design process)

• Intellectual Property - IP
• Easy scaling with advances in        

fabrication technologies
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Critical Issues of Digital Control

•• Lack of Lack of experienced peopleexperienced people in digital design and power electronicsin digital design and power electronics
•• Lack of Lack of understandingunderstanding and research on how to realize simple and research on how to realize simple 

digital IC which comply with the cost/complexity constraints of digital IC which comply with the cost/complexity constraints of 
computing/telecom applicationscomputing/telecom applications
–– Specific dedicated digital or mixedSpecific dedicated digital or mixed--signal ICs are needed (no signal ICs are needed (no 

discrete discrete uCuC or DSP)or DSP)
•• Quantization effects (limit cycles) and control delays (bandwidtQuantization effects (limit cycles) and control delays (bandwidth h 

limitation) has to be consideredlimitation) has to be considered
•• Conversion solutions and digital complexityConversion solutions and digital complexity

–– High resolution DPWMHigh resolution DPWM
–– High resolution AD and DA convertersHigh resolution AD and DA converters

Need of simpleNeed of simple--mixed signal control architecturesmixed signal control architectures
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Research Activities in Digital Control

•• Investigating the digital advantageInvestigating the digital advantage
–– AutoAuto--tuning systemstuning systems
–– Complex power managementComplex power management

•• Solving the digital troubleSolving the digital trouble
–– Mixed signal control architecturesMixed signal control architectures
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Features:
� Simple analog 

interface (low-
resolution DAC + 
comparator)

� No need for ADC 
and DPWM

� No quantization 
effects

� High dynamic 
performance
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Load step variationLoad step variation
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So

Experimental Results

time: 10 time: 10 µµsecsec/div/div
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•• Investigation of Investigation of PID PID autotuningautotuning techniquestechniques for for 
digitally controlled voltagedigitally controlled voltage--mode synchronous mode synchronous 
buck convertersbuck converters

•• FeaturesFeatures::
��ClosedClosed--loop operation during loop operation during autotuningautotuning
��Direct Direct autotuningautotuning based on specified based on specified 
dynamic requirement dynamic requirement without transfer without transfer 
function identificationfunction identification
��Simple algorithmSimple algorithm

Auto-Tuning System

Objective:Objective:
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Experimental Results

Resonant 
frequency 
evaluation Iterative tuning

fZ2
1 fZ2

2 fZ2
3 fZ2
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Experimental Results
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Power Line Communication

DC-DC converterCommunication is 
made using the dc 
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Distributed dcDistributed dc--dc converters sharing the same voltage busdc converters sharing the same voltage bus
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16-Phases Interleaved Buck Converter

•• High number of phases enables higher switching High number of phases enables higher switching 
frequencies and lower Lfrequencies and lower L

•• The requirement for precise timing and automatic The requirement for precise timing and automatic 
current sharing call for digital controlcurrent sharing call for digital control

•• PrototypePrototype
–– 16 Phases Buck converter16 Phases Buck converter
–– 1.56 MHz Switching Frequency (each channel)1.56 MHz Switching Frequency (each channel)
–– ≈≈25 MHz Sampling Frequency25 MHz Sampling Frequency
–– VVin in = 3 V= 3 V
–– VVoutout = 1 V, = 1 V, IIoutout=8A=8A
–– qqADCADC = 16 mV= 16 mV
–– L = 300 L = 300 nHnH
–– CCoutout = 30 = 30 µµFF

Project in which our Ph.D student (Daniele Trevisan) was involved during his visit at 
COPEC (Colorado Power Electronics Center) - Boulder
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Power Stages
(upper 8 phases)

Sensing
Circuitry

Load Circuit

Digital Control for 16-Phases Buck Converter
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