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Abstract

Permutation source codes are a class of structured vector quantizers with a computa-
tionally-simple encoding procedure. In this thesis, we provide two extensions that
preserve the computational simplicity but yield improved operational rate-distortion
performance. In the first approach, the new class of vector quantizers has a codebook
comprising several permutation codes as subcodes. Methods for designing good code
parameters are given. One method depends on optimizing the rate allocation in a
shape-gain vector quantizer with gain-dependent wrapped spherical shape codebook.

In the second approach, we introduce frame permutation quantization (FPQ),
a new vector quantization technique using finite frames. In FPQ, a vector is en-
coded using a permutation source code to quantize its frame expansion. This means
that the encoding is a partial ordering of the frame expansion coefficients. Com-
pared to ordinary permutation source coding, FPQ produces a greater number of
possible quantization rates and a higher maximum rate. Various representations for
the partitions induced by FPQ are presented and reconstruction algorithms based
on linear programming and quadratic programming are derived. Reconstruction us-
ing the canonical dual frame is also studied, and several results relate properties
of the analysis frame to whether linear reconstruction techniques provide consistent
reconstructions. Simulations for uniform and Gaussian sources show performance im-

provements over entropy-constrained scalar quantization for certain combinations of
vector dimension and coding rate.
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Chapter 1

Introduction

Quantization (or analog data compression) plays an increasingly important role in

the transmission and storage of analog data, due to the limited capacity of available

channels and storage media. The simplest form of quantization is the fixed-rate scalar

quantization (FSQ), in which the real line is partitioned into a fixed number of inter-

vals, each mapped into a corresponding representation point such that the expected

distortion is minimized. It is well-known that entropy-constrained scalar quantiza-

tion (ECSQ)-where the distortion is minimized subject to the entropy of the output

rate--significantly outperforms the FSQ within 1.53 dB of the rate-distortion limit,

with respect to mean-squared-error fidelity criterion [3]. However, the major disad-

vantage of entropy-coded quantizers is that their variable output rates cause synchro-

nization problems. Along with tackling the buffer overflow problems [4], various fixed-

rate coding techniques have been developed to attain the ECSQ performance [5-7].

These coding schemes, however, considerably increase the encoding complexity.

The elegant but uncommon technique of permutation source coding (PSC)-which

places all codewords on a single sphere-has asymptotic performance as good as

ECSQ while enabling a simple encoding. On the other hand, because of the "sphere

hardening" effect, the performance in coding a memoryless Gaussian source can ap-

proach the rate-distortion bound even with the added constraint of placing all code-

words on a single sphere. This well-known gap, along with the knowledge that the per-

formance of PSCs does not improve monotonically with increasing vector length [8],



motivates the first part of this thesis.

We propose a generalization of PSCs whereby codewords are the distinct permu-

tations of more than one initial codeword. While adding very little to the encoding

complexity, this makes the codebook of the vector quantizer lie in the union of con-

centric spheres rather than in a single sphere. Our use of multiple spheres is similar to

the wrapped spherical shape-gain vector quantization of Hamkins and Zeger [9]; one

of our results, which may be of independent of interest, is an optimal rate allocation

for that technique. Our use of permutations could be replaced by the action of other

groups to obtain further generalizations [10].

Optimization of PSCs contains a difficult integer partition design problem. Our

generalization makes the design problem more difficult, and our primary focus is on

methods for reducing the design complexity. We demonstrate the effectiveness of

these methods and improvements over ordinary PSCs through simulations.

The second part of this work incorporates PSCs with redundant representations

obtained with frames, which are playing an ever-expanding role in signal processing

due to design flexibility and other desirable properties [11, 12]. One such favorable

property is robustness to additive noise [13]. This robustness, carried over to quantiza-

tion noise (without regard to whether it is random or signal-independent), explains the

success of both ordinary oversampled analog-to-digital conversion (ADC) and E-A

ADC with the canonical linear reconstruction. But the combination of frame expan-

sions with scalar quantization is considerably more interesting and intricate because

boundedness of quantization noise can be exploited in reconstruction [14-22] and

frames and quantizdrs can be designed jointly to obtain favorable performance [23].

This thesis introduces a new use of finite frames in vector quantization: frame

permutation quantization (FPQ). In FPQ, permutation source coding is applied to a

frame expansion of a vector. This means that the vector is represented by a partial

ordering of the frame coefficients (Variant I) or by signs of the frame coefficients that

are larger than some threshold along with a partial ordering of the absolute values

of the significant coefficients (Variant II). FPQ provides a space partitioning that

can be combined with additional signal constraints or prior knowledge to generate a



variety of vector quantizers. A simulation-based investigation that uses a probabilistic

source model shows that FPQ outperforms PSC for certain combinations of signal

dimensions and coding rates. In particular, improving upon PSC at low rates provides

quantizers that perform better than entropy-coded scalar quantization (ECSQ) in

certain cases [8]. Beyond the explication of the basic ideas in FPQ, the focus of

this thesis is on how-in analogy to works cited above-there are several decoding

procedures that can sensibly be used with the encoding of FPQ. One is to use the

ordinary decoding in PSC for the frame coefficients followed by linear synthesis with

the canonical dual; from the perspective of frame theory, this is the natural way

to reconstruct. Taking a geometric approach based on consistency yields instead

optimization-based algorithms. We develop both views and find conditions on the

frame used in FPQ that relate to whether the canonical reconstruction is consistent.

1.1 Outline and Contributions

Chapter 2: Background

The chapter provides the requisite background by reviewing source coding prelimi-

naries, especially spherical codes and PSCs, and fundamentals of frame theory. Sec-

tion 2.1 first discusses spherical codes for memoryless Gaussian sources and the "hard-

ening effect," then turns in to formal definitions of two variants of PSCs. Also, optimal

encoding algorithms for PSCs are given, and optimization of the initial codeword is

discussed. Section 2.2 reviews different types of frames and their relationship from

the perspective of equivalence class. Our contributions in this chapter are derivations

of the relationship between modulated harmonic tight frames and zero-sum frames,

and the characterization of real equiangular tight frames in the codimension-1 case.

Proof of the main result is deferred to Appendix 2.A.



Chapter 3: Concentric Permutation Source Codes

This chapter introduces PSCs with multiple initial codewords and discusses the diffi-

culty of their optimization. One simplification that reduces the design complexity-

the use of a single common integer partition for all initial codewords-is discussed in

Section 3.3. The use of a common integer partition obviates the issue of allocating

rate amongst concentric spheres of codewords. Section 3.4 returns to the general

case, with integer partitions that are not necessarily equal. We develop fixed- and

variable-rate generalizations of the wrapped spherical gain-shape vector quantization

of Hamkins and Zeger [9] for the purpose of guiding the rate allocation problem.

These results may be of independent interest.

Chapter 4: Permutation Frame Quantization

The chapter is organized as follows: Before formal introduction to the combination

of frame expansions and PSCs, Section 4.1 provides a preview of the geometry of

FPQ. This serves both to contrast with ordinary scalar-quantized frame expansions

and to see the effect of frame redundancy. Section 4.2 reviews vector quantization

and PSCs from the perspective of decoding. Section 4.3 discusses scalar-quantized

frame expansions with focus on linear-program-based reconstruction algorithm which

can be extended to FPQ. Section 4.4 formally defines FPQ, emphasizing constraints

that are implied by the representation and hence must be satisfied for consistent

reconstruction. The results on choices of frames in FPQ appear in Section 4.5. These

are necessary and sufficient conditions on frames for linear reconstructions to be

consistent. Section 4.6 provides simulation results that demonstrate improvement in

operational rate-distortion compared to ordinary PSC. Proofs of the main results

are given in Appendices 4.A and 4.B. Preliminary results on FPQ were mentioned

briefly in [24].
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Chapter 5: Closing Remarks

The final chapter recapitulates the main results of the thesis and provides suggestions

for future work.
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Chapter 2

Background

2.1 Source Coding Preliminaries

Let X E RI be a random vector with independent components. We wish to ap-

proximate X with a codeword X drawn from a finite codebook C. We want small

per-component mean-squared error (MSE) distortion D = n-1 E[ IX - X I~2] when the

approximation X is represented with nR bits. In the absence of entropy coding, this

means the codebook has size 2n R . For a given codebook, the distortion is minimized

when X is chosen to be the codeword closest to X.

2.1.1 Spherical Codes

In a spherical source code, all codewords lie on a single sphere in R'. Nearest-neighbor

encoding with such a codebook partitions RIn into 2nR cells that are infinite polygonal

cones with apexes at the origin. In other words, the representations of X and aX are

the same for any scalar a > 0. Thus a spherical code essentially ignores II XI, placing

all codewords at a single radius. The logical code radius is E [lxl] .

Let us assume that X E IR is now i.i.d. Nf(0, o-2). Sakrison [25] first analyzed the

performance of spherical codes for memoryless Gaussian sources. Following [9, 25],

using the code radius



E[xJ] -21/2,ro-2  (2.1)

] (n/2,1/2) -/21

the distortion can be decomposed as

D= E X E[ X] -X] + -var(IIXI).
n |Xi n

The first term is the distortion between the projection of X to the code sphere and its

representation on the sphere, and the second term is the distortion incurred from the

projection. The second term vanishes as n increases even though no bits are spent

to convey the length of X. Placing codewords uniformly at random on the sphere

controls the first term sufficiently for achieving the rate-distortion bound as n -+ oo.

2.1.2 Permutation Source Codes

In a permutation source code (PSC), all the codewords are related by permutation and

thus have equal length. So PSCs are spherical codes. Permutation source codes were

originally introduced as channel codes by Slepian [26], and then applied to a specific

source coding problem, through the source encoding-channel decoding duality, by

Dunn [27]. Berger et al. [28-30] developed PSCs in much more generality.

Variant I: Let Il > 22> ... > A K be K ordered real numbers, and let ni, n2,... , nK

be positive integers with sum equal to n (an integer partition of n). The initial code-

word of the codebook C has the form

finit = (I, -- ,-, Al , A2, A2 A.K. i AK), (2.2)

where each pi appears ni times. The codebook is the set of all distinct permutations

of Xinit. The number of codewords in C is thus given by the multinomial coefficient

n!
LI = . (2.3a)

n1! n2! .. nK!

Variant II: Here codewords are related through permutations and sign changes.



Algorithm 2.1 Variant I Encoding Algorithm

1. Replace the nl largest components of X with k1.

2. Replace the n2 next largest components of X with /L2.

K. Replace the nK smallest components of X with K.-

Algorithm 2.2 Variant II Encoding Algorithm

1. Replace the ni components of X largest in absolute value by either +Y1 or
-p 1, the sign chosen to agree with that of the component it replaces.

2. Replace the n2 components of X next largest in absolute value by either +Y2

or -A2, the sign chosen to agree with that of the component it replaces.

K. Replace the nK components of X smallest in absolute value by either +K
or -LK, the sign chosen to agree with that of the component it replaces.

Let 1 > P2 > .> LK > 0 be nonnegative real numbers, and let (ni, n2,- .. , K)

be an integer partition of n. The initial codeword has the same form as in (2.2), and

the codebook now consists of all distinct permutations of iinit with each possible sign

for each nonzero component. The number of codewords in C is thus given by

(2.3b)LII = 2h ' &
nl! n2 " ... nK!'

where h = n if AK > 0 and h = n - nK if/K = 0.

The permutation structure of the codebook enables low-complexity nearest-neighbor

encoding procedures for both Variants I and II PSCs [28], which are given in Algo-

rithm 2.1 and Algorithm 2.2, respectively.

It is important to note that the complexity of sorting is O(n log n) operations, so

the encoding complexity is much lower than with an unstructured source code and



only O(log n) times higher than scalar quantization.

The following theorem [28, Thm. 1] formalizes the optimal encoding algorithms

for PSCs, and for a general distortion measure.

Theorem 2.1 ( [28]). Consider a block distortion measure of the form

d(, = g f ( - ) , (2.4)

where x = (x, ... , x), = (X1i ,... , ), g() is nondecreasing, and f(.) is nonneg-

ative, nondecreasing, and convex for positive arguments. Then optimum encoding of

Variant I and Variant II PSCs is accomplished by Algorithm 2.1 and Algorithm 2.2,

respectively.

Proof. See [28, Appendix 1]. O

In this thesis, we only consider the popular mean-squared error (MSE) as the

distortion measure, and restrict the sources to be independent and identically dis-

tributed (i.i.d.). For i.i.d. sources, each codeword is chosen with equal probability.

Consequently, there is no need for entropy coding and the per-letter rate is simply

R = n - 1 log L. (2.5)

Let 1 > 2 > ... > denote the order statistics of random vector X = (X1,..., Xn),

and 7 > 72 > ._ *. 7n denote the order statistics of random vector IXI (IX1 ,..., IXI).
With these notations, for a given initial codeword Jinit, the per-letter distortion of

optimally encoded Variant I and Variant II PSCs are respectively given by

D, = n- E ([-i - )2 (2.6)

and

DI = n- 1E Z(17 /ie )2 , (2.7)

'Because of the convention of pi > pji+, it is natural to index the order statistics in descending
order as shown, which is opposite to the ascending convention in the order statistics literature [31].

~-- - -- r -;- -- ----- -- -- - -- -- - ;------~~ ;;-ii~~~;i~r;-; ;:;;



where Zis are the groups of indices generated by the integer partition, i.e.,

S= .{1,2,.. .,n}, (2.8)

in +1..., nm i > 2. (2.9)
m=l m=l

Given an integer partition (ni, n 2 ,..., nK), minimization of DI or DnI can be done

separately for each pi, yielding optimal values

rVi = n E [], for Variant I, (2.10)

and

1i = ni 1 E [rl] , for Variant II. (2.11)

Overall minimization of DI or DII over the choice of K, {ni}Kl1, and {~}iil1 subject

to a rate constraint is difficult because of the integer constraint of the partition.

The analysis of [29] shows that as n grows large, the integer partition can be

designed to give performance equal to optimal entropy-constrained scalar quantization

(ECSQ) of X. As discussed in the introduction, it could be deemed disappointing

that this vector quantizer performs only as well as the best scalar quantizer. However,

it should be noted that the PSC is producing fixed-rate output and hence avoiding the

possibility of buffer overflow associated with entropy coding highly nonequiprobable

outputs of a quantizer [32].

Heuristically, it seems that for large block lengths, PSCs suffer because there are

too many permutations (n- log 2 n! grows) and the vanishing fraction that are chosen

to meet a rate constraint do not form a good code. The technique we introduce is for

moderate values of n, for which the second term of (2.1) is not negligible; thus, it is

not adequate to place all codewords on a single sphere.



2.2 Frame Definitions and Classifications

The theory of finite-dimensional frames is often developed for a Hilbert space CN of

complex vectors. In this thesis, we use frame expansions only for quantization using

PSCs, which rely on order relations of real numbers. Therefore we limit ourselves to

real finite frames. We maintain the Hermitian transpose notation * where a transpose

would suffice because this makes several expressions have familiar appearances.

The Hilbert space of interest is RN equipped with the standard inner product (dot

product),
N

(x, y) = xTy = E xkyk,
k=1

for x = [x, x 2  XN]T E IRN and y = [y1, Y2, ... , YN] T E I N . The norm of a vector

x is naturally induced from the inner product,

Definition 2.2 ( [13]). A set of N-dimensional vectors, ( = M{k'L1 c IRN, is called

a frame if there exist a lower frame bound, A > 0, and an upper frame bound, B < 00,

such that
M

Allj112 < L (X, Ok)12 < B X112, for all E RN (2.12a)
k=l

The matrix F E IRMxN with kth row equal to 0* is called the analysis frame operator.

F and (4 will be used interchangeably to refer to a frame. Equivalent to (2.12a) in

matrix form is

AIN < F*F < BIN, (2.12b)

where IN is the N x N identity matrix.

The lower bound in (2.12) implies that 1 spans RN; thus a frame must have

M ;> N. It is therefore reasonable to call the ratio r = M/N the redundancy of the

frame. A frame is called a tight frame (TF) if the frame bounds can be chosen to

be equal. A frame is an equal-norm frame (ENF) if all of its vectors have the same

norm. If an ENF is normalized to have all vectors of unit norm, we call it a unit-norm

--:i



frame (UNF) (or sometimes normalized frame or uniform frame). For a unit-norm

frame, it is easy to verify that A < r < B. Thus, a unit-norm tight frame (UNTF)

must satisfy A = r = B and

F*F = rIN. (2.13)

Naimark's theorem [33] provides an efficient way to characterize the class of equal-

norm tight frames (ENTFs): a set of vectors is an ENTF if and only if it is the

orthogonal projection (up to a scale factor) of an orthonormal basis of an ambient

Hilbert space on to some subspace. 2 As a consequence, deleting the last (M - N)

columns of the (normalized) discrete Fourier Transform (DFT) matrix in CMXM yields

a particular subclass of UNTF called (complex) harmonic tight frames (HTFs). One

can adapt this derivation to construct real HTFs [34], which are always UNTFs, as

follows.

Definition 2.3. The real harmonic tight frame of M vectors in IRN is defined for

even N by

S k 3k (N - 1)kr
= cos -cos . cos

M' Mf M

and for odd N by

S12 2kr 4kwr (N - 1)kT
1 cos-, cos ,..., cos
+ N ' M ' Al '' l

2kwr 4k7 (N - 1)k7r2
sin , sin sin (2.14b)

where k = 0, 1,..., Al - 1. The modulated harmonic tight frames are defined by

k = 7Y(1)k k, for k 1,2, . . .,M, (2.15)

where y = 1 or y = -1 (fixed for all k).

2The theorem holds for a general separable Hilbert space of possibly infinite dimension.



HTFs can be viewed as the result of a group of orthogonal operators acting on

one generating vector [12]. This property has been generalized in [35,36] under the

name geometrically uniform frames (GUFs). Note that a GUF is a special case of

a group code as developed by Slepian [10, 26]. An interesting connection between

PSCs and GUFs is that under certain conditions, a PSC codebook is a GUF with

generating vector xinit and the generating group action provided by all permutation

matrices [37].

Classification of frames is often up to some unitary equivalence. Holmes and

Paulsen [38] proposed several types of equivalence relations between frames. In par-

ticular, for two frames in R N, I = {)k}i/=1 and I = N{O}Ei, we say and T

are

(i) type I equivalent if there is an orthogonal matrix U such that /k = Uk for all

k;

(ii) type II equivalent if there is an permutation o(.) on {1, 2,..., M} such that

Ok = 0,(k) for all k; and

(iii) type III equivalent if there is a sign function in k, J(k) = ±1 such that Ok =

6(k) k for all k.

Two frames are called equivalent if they are equivalent according to one of the three

types of equivalence relations above. It is important to note that for M = N + 1

there is exactly one equivalence class of UNTFs [34, Thm. 2.6]. Since HTFs are always

UNTFs, the following property follows directly from [34, Thm. 2.6].

Proposition 2.4. Assume that M = N + , and 4 = {5k}'1 c RN is the real HTF.

Then every UNTF I = {~kk}lI can be written as

/k = 6(k)UO,(k), for k = 1, 2,..., M, (2.16)

where 6(k) = ±1 is some sign function in k, U is some orthogonal matrix, and a(.)

is some permutation on the index set {1, 2, ... , M}.



Another important subclass of UNTFs is defined as follows:

Definition 2.5 ( [39, 40]). A UNTF I = {k}ik= C RN is called an equiangular

tight frame (ETF) if there exists a constant a such that I(ge, qk I = a for all 1 < f <

k < M.

ETFs are sometimes called optimal Grassmannian frames or 2-uniform frames.

They prove to have rich application in communications, coding theory, and sparse

approximation [38,39,41]. For a general pair (M, N), the existence and constructions

of such frames is not fully understood. Partial answers can be found in [40, 42, 43].

In our analysis of FPQ, we will find that restricted ETFs-where the absolute

value constraint can be removed from Definition 2.5-play a special role. In matrix

view, a restricted ETF satisfies F*F = rIN and FF* = (1 - a)IM + aJM, where JM

is the all-is matrix of size M x M. The following proposition specifies the restricted

ETFs for the codimension-1 case.

Proposition 2.6. For M = N + 1, the family of all restricted ETFs is constituted

by the Type I and Type II equivalents of modulated HTFs.

Proof. See Appendix 2.A. O

The following property of modulated HTFs in the M = N + 1 case will be very

useful.

Proposition 2.7. If M = N+F then a modulated harmonic tight frame is a zero-sum

frame, i.e., each column of the analysis frame operator F sums to zero.

Proof. We only consider the case when N is even; the N odd case is similar. For each

{1,..., N}, let 0' denote the gth component of vector Ok and let S = EM 1

denote the sum of the entries in column f of matrix F.



For 1 < f < N/2, using Euler's formula, we have

2 M-1 (2- 1)krst, = E (-1)k coS
k=

M-1

C E 
jk r 

[
e j(2

t
-l )k

7
/
1
M + -

j(21-1)k-r/M

k=O
M-1 M-1

= 6jr((2e-1)/M+1)k + E e-jr((2-1)/+l1)k

k=O k=O

1 - ej r ( 2 +M - 1 )
1 - e-jr(2£+M-1)

1 - e
j

((2
-

1)/M1 +1) 1 - j r
((2

-
1)/M

+
1)

= 0,

where (2.17) follows form the fact that 2 + M - 1 = 2 + N is an even integer.

For N/2

proved.

< < N, we can show that Sj = 0 similarly, and so the proposition

2.17)



Appendix

2.A Proof of Proposition 2.6

In order to prove Proposition 2.6, we need the following lemmas.

Lemma 2.8. Assume that M = N + 1 and let W = e j 2
,/M. Then for all a E R we

have
N/2 )/ ) - Wa/2

Wa(2i-1)/2 = (if N is even;
W - 1i=1

(N-1)/2

Wi=
i= 1

(-1)a - Wa

W -1
if N is odd.

Proof. By noting that WM/2 = -1, we have the following computations.

N even:

N/
2  

wa(N+2)/2 _ a
= W-/2 . Wai = W-a/2 Wa -

Wa - 1 Wa - 1

Wa(N+1)/2 
- Wa (WAI/2) a W_ a 1) - Wa

Wa - 1 We - 1 Wa - 1

Lemma 2.9. For M = N+1, the HTF = { k}lkM= satisfies (Ok, Oe) = (-1) k-+1/N,

for all 1 < k < f < M.

Proof Consider two following cases.

N even: Using Euler's formula, for k = 0, 1, ... , M - 1, 0*+1 can be rewritten as

Wk +W-k

Wk - 1/
2j

W3k + W-3k

-' 2

V-k W3k _ W-3k

' 2j

W(N-1)k + W-(N-1)k

, ...

w(N-1)k W-(N-1)k

2j J

and

N/2

SWc(2i-1)/2
i-i

N odd:

(N-1)/2

Wa i =

i=1



For 1 < k < £ < M, let a = k - f. After some algebraic manipulations we can obtain

N. (¢k, ) =

N/2 N/2

E W(k-)(2i-1)/2 + E W ( - k )(2i - 1) / 2

(-1)a - Wa/2  (_1)-a _ W-a/2

Wa - 1 W - a - 1

(-1)aW
-

a
/ 2 -1 (- )-W

a / 2 - 1

Wa/2 _ W-a/2 Wa/2 _ W-a/2

S(-1) _ + 1

(2.18)

where (2.18) is obtained using Lemma 2.8.

N odd: Similarly, for 1 < k < e < M and ca = k - e, we have

(N-1)/2 (N-1)/2

= 1+ W(k- )i + W(-k)i
i=1 i=1

(-1)a - WC (-1)- - W -

= 1+ +
Wa - 1 W - - 1

+ (-1)aW-a/2 - Wa/2 (-_)aWa/2 _ W-a/2

Wa/2 _ W-ar/2 Wa/2 _ W-a/2

= 1- (-1) - 1

= (-1) a +l

(2.19)

where (2.19) is due to Lemma 2.8.

Proposition 2.6. For a modulated HTF T = { k =1, as defined in Definition 2.3, for

all 1 <k <t < M we have

(Ok, Ot) : <_(-_j)kk, (- 1%>

= 2(-l)k+e(l)k-t+1/N

= (-1)k+i(-1)k-+1/N

(2.20)

(2.21)

(2.22)= -1/N,

where (2.20) is due to Lemma 2.9, and (2.21) is true because y = 1 for all 1 <

k < £ < M. Since the inner product is preserved through an orthogonal mapping,

N. ( k, £e)



(2.22) is true for Type I and/or Type II equivalences of modulated HTFs as well. The

tightness and unit-norm of the HTF are obviously preserved for Type I and/or Type II

equivalences. Therefore, the modulated HTFs and their equivalences of Type I and/or

Type II are all restricted ETFs.

Conversely, from Proposition 2.4, every restricted ETF I = c{a}{ , can be rep-

resented up to Type I and Type II equivalences as follows:

Ok = 6 (k) k, for all 1 < k < M,

where 6(k) = +1 is some sign function on k. Thus, the constraint (k, V/e) = a for

some constant a of a restricted ETF is equivalent to

aN = N6(k)6() - (k, Of)

= s(k)6(e)(-1)k- e+ 1, for all 1 < k < t < M.

Therefore, 6 (k)6(t)(-1)k- is constant for all 1 < k < f < M. If we fix k and vary £,

it is clear that the sign of 6(t) must be alternatingly changed. Thus, I is one of the

two HTFs specified in the proposition, completing the proof. O





Chapter 3

Concentric Permutation Source

Codes

In this chapter, we generalize ordinary PSCs by allowing multiple initial codewords.

The resulting codebook is contained in a set of concentric spheres. We assume through

out the chapter that components of the source vector X are i.i.d. N(O, a2)

3.1 Basic Construction

Let J be a positive integer. We will define a concentric permutation source code

(CPSC) with J initial codewords. This is equivalent to having a codebook that is the

union of J PSCs. Each notation from Section 2.1.2 is extended with a superscript

or subscript j E {1, 2,..., J} that indexes the constituent PSCs. Thus, Cj is the

subcodebook of full codebook C = Uj- C consisting of all lj distinct permutations

of initial vector

Jnit --= (A l ', ..''', JK j, ''' JP )(3 .1)

where each pi appears nq times, pJ > p2 > .. > jK (all of which are nonnegative

for Variant II case), and E n = n. Also, {fI }= are sets of indices generated by

the jth integer partition.

Proposition 3.1. Nearest-neighbor encoding of X with codebook C can be accom-



plished with the following procedure:

1. For each j, find Xj E Cj whose components have the same order as X.

2. Encode X with Xi, the nearest codeword amongst {Xj}l=1.

Proof. Suppose X' E C is an arbitrary codeword. Since C = UL C, there must exist

jo E {1, 2,..., J} such that X' E Cj,. We have

E[iX-XI] E [iX-Xo|I] (3.2)

< E[ lX - X'lj], (3.3)

where (3.2) follows from the second step of the algorithm, and (3.3) follows from the

first step and the optimality of the encoding for ordinary PSCs. Thus, the encoding

algorithm above is optimal. DO

The first step of the algorithm requires O(n log n) + O(Jn) operations (sorting

components of X and reordering each init according to the index matrix obtained

from the sorting); the second step requires O(Jn) operations. The total complexity

of encoding is therefore O(n log n), provided that we keep J = O(log n). In fact, in

this rough accounting, the encoding with J - O(log n) is as cheap as the encoding

for ordinary PSCs.

For i.i.d. sources, codewords within a subcodebook are approximately equally

likely to be chosen, but codewords in different subcodebooks may have very different

probabilities. Using entropy coding yields

R H ({pj}I -) + i pj log Aj , (3.4)

where H(-) denotes the entropy of a distribution, pj is the probability of choosing

subcodebook Cj, and Mj is the number of codewords in Cj. Without entropy coding,

the rate is

R = log M) . (3.5)n



The per-letter distortion for Variant I codes is now given by

D = E min X - X 2

= E min -- ji:1 (E-i ) (3.6)

where (3.6) is obtained by rearranging the components of X and Xj in descending

order. The distortion for Variant II codes has the same form as (3.6) with {(e}

replaced by {(rl}.

Vector permutation codes are another generalization of PSCs with improved per-

formance [44]. The encoding procedure, however, requires solving the assignment

problem in combinatorial optimization [45] and has complexity O(n 2 /n log n).

3.2 Optimization

In general, finding the best ordinary PSC requires an exhaustive search over all integer

partitions of n. (Assuming a precomputation of all the order statistic means, the

computation of the distortion for a given integer partition through either (2.6) or

(2.7) is simple [28].) The search space can be reduced for certain distributions of X

using [28, Thm. 3], but seeking the optimal code still quickly becomes intractable as

n increases.

Our generalization makes the design problem considerably more difficult. Not

only do we need J integer partitions, but the distortion for a given integer partition

is not as easy to compute. Because of the minimization over j in (3.6), we lack a

simple expression for the distortion in terms of the integer partition and the order

statistic means. The relevant means are of conditional order statistics, conditioned

on which subcodebook is selected; this depends on all J integer partitions.

In the remainder of this chapter, we consider two ways to reduce the design com-

plexity. In Section 3.3, we fix all subcodebooks to have a common integer partition.

Along with reducing the design space, this restriction induces a structure in the full



codebook that enables the joint design of {(}J- for any i. In Section 3.4, we take

a brief detour into the optimal rate allocations in a wrapped spherical shape-gain

vector quantizer with gain-dependent shape codebook. We use these rate allocations

to pick the sizes of subcodebooks {Cj}j l.

The simplifications presented here still leave high design complexity for large n.

Thus, some simulations use complexity-reducing heuristics including our conjecture

that an analogue to [28, Thm. 3] holds. Since our designs are not provably optimal,

the improvements from allowing multiple initial codewords could be somewhat larger

than we demonstrate.

3.3 Design with Common Integer Partition

In this section, let us assume that the J integer partitions are equal, i.e., the n3is have

no dependence on j. The sizes of the subcodebooks are also equal, and dropping

unnecessary sub- and superscripts we write the common integer partition as {nilfK-1

and the size of a single subcodebook as M.

3.3.1 Common Integer Partitions Give Common Conic Par-

titions

The Voronoi regions of the code now have a special geometric structure. Recall

that any spherical code partitions IR into infinite polygonal cones. Having a com-

mon integer partition implies that each subcodebook induces the same conic Voronoi

structure on Rn . The full code divides each of the M cones into J Voronoi regions.

The following theorem precisely maps this to a vector quantization problem.

Theorem 3.2. For common integer partition {ni, n2,..., nK}, the initial codewords

{(pJ,., ..S,.--, K,.., I K) }1 =1 of Variant I CPSCs are optimal if and only if {pl,..., p }

are J optimal representation points of the vector quantization of ( E RK, where

(Vn1 .rl, fn-2 , \/-K K -j J
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Proof. Rewrite the distortion

K 2
nD = E min (( - pi)

1<j!_J i=1 tEZi

= E min 1 (,)2 - 2p e + ni(])2

- i=1 \eEI eel,

= 1 e1-i

= E [min- II + F [llX ]
1-E[lj> i=1 J1. )2

i=1 V/ i)(

(3.7)

Since the second and third terms of (3.7) do not depend on {finit}j= , minimizing D

is equivalent to minimizing the first term of (3.7). By definition of a K-dimensional

VQ, that term is minimized if and only if {p, ... , JI'} are optimal representation

points of the J-point VQ of random vector (, completing the proof. O

Theorem 3.2 can be trivially extended for Variant II codes by simply replacing

{Ee} with {r}. For any fixed integer partition, it is straightforward to implement

the J-point VQ design inspired by Theorem 3.2. Figure 3-1 illustrates the design of

initial codewords for a given integer partition. Figure 3-2 compares the performance

of an ordinary Variant I PSC (J = 1) with CPSCs with J = 3 initial vectors. For a

given integer partition, the distortion of the optimal ordinary PSC is computed using

(2.10) and variances of the order statistics (see [28, Eq. (13)]), whereas that of the

optimal CPSC is estimated empirically from 500 000 samples generated according to

the A(0, 1) distribution.



Figure 3-1: Block diagram for initial codewords design using Theorem 3.2. The inputs
of the VQ box are K random variables and the outputs are J vectors, each of which
has K components grouped within a dashed box.

I
Rate

Figure 3-2: Operational rate-distortion performance for fixed-rate coding of i.i.d.
Af(0, 1) source with block length n - 7. Ordinary Variant I PSCs (J = 1) are
compared with CPSCs with J = 3. Codes with common integer partitions are de-
signed according to Theorem 3.2. Codes with different integer partitions are designed
with heuristic selection of integer partitions and Algorithm 3.1. For clarity, amongst
approximately-equal rates, only operational points with the lowest distortion are plot-
ted.

I I ~ ;... ........ .............. ;; ~



3.3.2 Optimization of Integer Partition

Although the optimization of integer partitions is not easy even for PSCs, for a

certain class of distributions, there is a necessary condition for the optimal integer

partition [28, Thm. 3]. The following conjecture is an analogy of that condition.

Conjecture 3.3. Suppose that J > 1 and that E[rIj] is a convex function of j, i.e.

E [r~+2 - 2E[ [j+l] + E [T1] 0, 1 < j < n - 2. (3.8)

Then the optimum ni for Variant II codes with .J initial codewords increases mono-

tonically with i.

The conjecture is true if one can show that the distortion associated with the

integer partition {ni, ... . rim, nm+,... , nK}, where n, > n,+1, can be decreased by

reversing the roles of nm and n,+,1 As a plausibility argument for the conjecture, we

will show that the reversing is possible for an additional constraint imposed on the

codewords. Before stating a weaker proposition, we want to note that the convexity of

E[,qj] implies the nonnegativity of the expected value of the following random variable

[28, Thm. 31:
SL+r 2 L+q 1 L+q+r

a 2 - 77 t , (3.9)
r L+1 q- r L+r+l " L+q

where L = n, + n2 + ... rim-1. On the other hand, E[(] can be written as the

difference of two nonnegative terms,

SE[( I > 0]

and

_ a-E[ I < 0].

Since E[(] > 0, it is clear that (4 -_. Therefore, the following set is non-empty

minj(lL~m- Ji -I'}

Q st. min m -m+X) 1. (3.10)
ij maxj (pjm - p'+1) Z+

35



With the notations above, we are now ready to state the proposition.

Proposition 3.4. Suppose that J > 1 and E[,r] is a convex function of j. If nm >

nm+l for some m, and the constraint ,m given in (3.10) is imposed on the codewords,

then the distortion associated with the partition {ni,..., n,, n,, ,... , nK } can be

decreased by reversing the roles of nm and nm+1.

Proof. See Appendix 3.A. ED

A straightforward extension of Conjecture 3.3 for Variant I codes is the following

Conjecture 3.5. Suppose that J > 1, and that E[j] is convex over S 1 L {1, 2,..., [K/2J }

and concave over S2 - { [K/2J +1, [K/2J +2, ... , K}. Then the optimum ni for Vari-

ant I codes with J initial codewords increases monotonically with i E S1 and decreases

monotonically with i E S 2 .

It is important to emphasize that the convexity of E[rlj] and E[j] required in

the conjectures above is a fairly broad condition satisfied by a certain class of distri-

butions, including Gaussian ones [28, Thm. 4-5]. We will later restrict the integer

partitions, while doing simulations for Variant I codes and Gaussian sources, to satisfy

Conjecture 3.5.

3.4 Design with Different Integer Partitions

Suppose now that the integer partitions of subcodebooks can be different. The

Voronoi partitioning of R1 is much more complicated, lacking the separability dis-

cussed in the previous section.' Furthermore, the apparent design complexity for the

integer partitions is increased greatly to equal the number of integer partitions raised

to the Jth power, namely 2 J(n-1)

In this section we first outline an algorithm for local optimization of initial vectors

with all the integer partitions fixed. Then we address a portion of the integer partition

'For a related two-dimensional visualization, compare [46, Fig. 3] against [46, Figs. 7-13].



design problem which is the sizing of the subcodebooks. For this, we extend the high-

resolution analysis of [9]. For brevity, we limit our discussion to Variant I PSCs;

Variant II could be generalized similarly.

3.4.1 Local Optimization of Initial Vectors

Given J initial codewords {nitj}= 1l, for each 1 < j < J, let R C R" denote the

quantization region corresponding to codeword xinit, and let E3 [.] denote the expec-

tation conditioned on X E Rj. By extension of an argument in [28], the distortion

conditioned on X E Rj is minimized with

S= - Ej [e], 1< i < Kj. (3.11)
fli E ,

Denote the resulting distortion Dj. Since the total distortion is determined by

J

D = Pr(X e RJ)Dj,
j=1

it is minimized if Dj is minimized for all 1 < j < J.

From the above analysis, a Lloyd algorithm can be developed to design initial

codewords as given in Algorithm 3.1. This algorithm was used to produce the operat-

ing points shown in Figure 3-2 for CPSCs with different integer partitions in which the

distortion of a locally optimal code was computed empirically from 500 000 samples

generated according to A.(0, 1) distribution. We can see through the figure that com-

mon integer partitions can produce almost the same distortion as possibly-different

integer partitions for the same rate. However, allowing the integer partitions to be

different yields many more rates.

3.4.2 Wrapped Spherical Shape-Gain Vector Quantization

Hamkins and Zeger [9] introduced a type of spherical code for Rn where a lattice in

R"-1 is "wrapped" around the code sphere. They applied the wrapped spherical code



Algorithm 3.1 Lloyd Algorithm for Initial Codeword Optimization from Given In-
teger Partition

1. Choose an arbitrary initial set of J representation vectors V hnit ... it-

2. For each j, determine the corresponding quantization region Rj.

3. For each j, nit is set to the new value given by (3.11).

4. Repeat steps 2 and 3 until further improvement in MSE is negligible.

(WSC) to the shape component in a shape-gain vector quantizer.

We generalize this construction to allow the size of the shape codebook to depend

on the gain. Along this line of thinking, Hamkins [47, pp. 102-104] provided an

algorithm to optimize the number of codewords on each sphere. However, neither

analytic nor experimental improvement was demonstrated. In contrast, our approach

based on high-resolution optimization gives an explicit expression for the improvement

in signal-to-noise ratio (SNR). While our results may be of independent interest, our

present purpose is to guide the selection of { Mj }J_ in CPSCs.

A shape-gain vector quantizer (VQ) decomposes a source vector X into a gain

g = IIXII and a shape S= X/g, which are quantized to . and S, respectively, and the

approximation is X = S. We optimize here a wrapped spherical VQ with gain-

dependent shape codebook. The gain codebook, { 1, g 2, - - - J}, is optimized for the

gain pdf, e.g., using the scalar Lloyd-Max algorithm [48,49]. For each gain codeword

j, a shape subcodebook is generated by wrapping the sphere packing A c R n - 1 on

to Q , the unit sphere in IR". The same A is used for each j, but the density (or

scaling) of the packing may vary with j. Thus the normalized second moment G(A)

applies for each j while minimum distance dX depends on the quantized gain .j. We

denote such sphere packing as (A, diA).

_ ii_*_;l_ j~^jljiii_/_ .._._ . -iiiii.-.iii iii-~~ ii~.ll--IFI-~l~~ii.:



The per-letter MSE distortion will be

D = E X g' | 2

1 2

-- E [X-SIj +-E[(X--gS)(gS-gS)jn n

1n

= X -S2 + -E S - 2n n

- Dg + Ds,

where the omitted cross term is zero due to the independence of g and g from S [9].

The gain distortion, D, is given by

Dg 1 (r - (r)) 2 fg(r) dr,
n o

where g(.) is the quantized gain and fg(-) is the pdf of g.

Conditioned on the gain codeword j chosen, the shape S is distributed uniformly

on Qn, which has surface area S, = 2-r/ 2/F(n/2). Thus, as shown in [9], for asymp-

totically high shape rate Rs, the conditional distortion E [|S - S2 I j] is equal to

the distortion of the lattice quantizer with codebook (A, dJA) for a uniform source in

Rn - 1. Thus,

E [S - S12 ,4] = (n- I)G(A)V(A) 2/(n - 1 ), (3.12)

where Vj(A) is the volume of a Voronoi region of the (n - 1)-dimensional lattice

(A, di). Therefore, for a given gain codebook {g,g2, -- , J}, the shape distortion



D, can be approximated by

D[ E I s- S |2]

1 J
= - p [E S - |2 = (3.13)

n j=1

1 J
- (n - 1)G(A)V(A) 2/(n-1) (3.14)j=1

1 J
- 1pj ((n - 1)G(A) (Sj/M )2/ (n- 1) (3.15)

1 

j

1

n G(A)S /( p /(-)
j=1

J -2

C. EPj2j j , (3.16)
j=1

where pj in (3.13) is the probability of §j being chosen; (3.14) follows from (3.12); Mj

in (3.15) is the number of codewords in the shape subcodebook associated with 9;

(3.15) follows from the high-rate assumption and neglecting the overlapping regions;

and in (3.16),

C n- 1 G(A) (2rn/2/r(n/2))2/(n-1) (3.17)

3.4.3 Rate Allocations

The optimal rate allocation for high-resolution approximation to WSC given below

will be used as the rate allocation across subcodebooks in our CPSCs. Before stating

the theorem, we need the following lemma.

Lemma 3.6. If there exist constants C and Cg such that

lim D, . 2 2(n/(n-1))R, = C (3.18)
Rs--oo

and

lim Dg . 2 2nRg = Cg, (3.19)
Rg9 oo

-'--~-~-~-~Y91-~--'i~*l~-* --- '~-~ii--l iil--;l-~'~L--"L-"y;i~~r~rl------ rn ii;--xrl _;~i~~iii~ri(iTi~ii~;;;~ -li:;ir~ --~~~;~~-i; ; I:i--i-;---r----: ; -



then if R = R, + R, is fixed, the minimum of D = Ds + Dg satisfies

lim D22R= _ 1/n1-1/n (3.20)
R-oo (n-, 1)1-1/n

and is achieved by R, = R* and Rg = Rg, where

(n 1 1 I

R* = [R+ log( 1 )1 (3.21)
S ) n 2n C n-I n

R* = R n -log ( s. (3.22)
S n 2n C n-1

Proof. See [9, Thm. 1]. O

Theorem 3.7. Let X E I R be an i.i.d. A/(0, oa2 ) vector, and let A be a lattice in RI- 1

with normalized second moment G(A). Suppose X is quantized by an n-dimensional

shape-gain VQ at rate R = R, + R, with gain-dependent shape codebook constructed

from A with different minimum distances. Also, assume that a variable-rate coding

follows the quantization. Then, the asymptotic decay of the minimum mean-squared

error D is given by

lim D22R= n /n 1- 1  (3.23)
R--*o ( - 1)1-1/n g

and is achieved by Rs = R and Rq = R, where R s and Rg = R* are given in (3.21)

and (3.22),

C = n - 1G(A) 27rn/2/F(n/2 ) 22e(n/2)/(

3n/2r3(n+2
Cg = 2 . 6

C ~ 8nF(n/2) '

and (.) is the digamma function.

Proof. We first minimize D, for a given gain codebook {g }=:1. From (3.17), ignoring



the constant C, we must perform the minimization

J

min p 2/(1-n)
Sj=1

J

subject to pj log Mj = nR,. (3.24)

Using a Lagrange multiplier to get an unconstrained problem, we obtain the objective

function

(3.25)f = pj M2/ (1- n ) - A pj log Mj.
j=1 j=1

Neglecting the integer constraint, we can take the partial derivatives

af 2 _p2Mn+l)/(-n) - ApM 1, 1 < j J.
8Mj 1 - n 3 j

Setting =0 1 < j < J, yields

M = [A(1 - n)/(2?)] (1-n)/2

Substituting into the constraint (3.24), we get

Epj log [A(1 -
j=1

[A(1 - n)/2]
( 1 - n ) / 2

n)/(2g )]
(1-n)/2

(3.26)

(3.27)

= nR,.

= 2 nR-(n-1)E[og ]

Therefore, it follows from (3.27) that the optimal size for jth shape subcodebook for

a given gain codebook is

l <j J.

Thus,

=2nR,-(n-l) EflPk loggk

2n~ _n l k

M -= - 2nR*-(n-1)E[log],3 1.2 (3.28)



The resulting shape distortion is

D, 2 C~]pgy-2nR*-(n-1)E[log ] 2/(1-n)

j=1
= . 2 2E[1og] • 2

- 2 (n / (n - 1 ) ) R 
,

where C is the same constant as specified in (3.17). Hence,

lim Ds • 2 2(n/(n-1))R*
R--o

= C- lim 2 2E[1g ]

= C. 2 2E[logg]

= C . 2r2e 
( n / 2 )

= Cs,

where (3.29) follows from the high-rate assumption; and (3.30) follows from computing

the expectation E[logg]. On the other hand, it is shown in [9, Thm. 1] that

(3.32)lim D • 2 2n(R- R * ) lim Dg • 2 2nR* = Cg
R-oo R-oo

The limits (3.31) and (3.32) now allow us to apply Lemma 3.6 to obtain the desired

result. D

Through this theorem we can verify the rate-distortion improvement as compared

to independent shape-gain encoding by comparing Cg and C, in the distortion for-

mula to the analogous quantities in [9, Thm. 1]. Cg remains the same whereas Cs,

which plays a more significant role in the distortion formula, is scaled by a factor of

2e (n/2)/n < 1. In particular, the improvement in signal-to-quantization noise ratio

achieved by the WSC with gain-dependent shape codebook is given by

ASNR (in dB) = -10(1 - 1/n) loglo(2e¢(n/ 2)/n).

(3.29)

(3.30)

(3.31)

(3.33)
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Figure 3-3: Improvement in signal-to-quantization noise ratio of WSC with gain-
dependent shape quantizer specified in (3.33), as compared to the asymptotic rate-
distortion performance given in [9, Thm. 1]

From the theory of the Gamma function [50, Eq. 29], we know that, for s E C,

lim [,(s) - In(s)] = 0.
181-00

It follows that [4(n/2) - ln(n/2)] -+ 0, and thus ASNR(n) --+ 0, as n --+ co; this is not

surprising because of the "sphere hardening" effect. This improvement is plotted in

Figure 3-3 as a function of block length n in the range between 5 and 50.

A similar optimal rate allocation is possible for fixed-rate coding.

Theorem 3.8. Let X E Rn be an i.i.d. A'(0, o2) vector, and let A be a lattice in R-1

with normalized second moment G(A). Suppose X is quantized by an n-dimensional

shape-gain VQ at rate R with gain-dependent shape codebook constructed from A with

different minimum distances. Also, assume that J gain codewords are used and that

a fixed-rate coding follows the quantization. Then, the optimal number of codewords

in each subcodebook is

p 2 nR 
(n - 1 ) / (n + l )

M3 = 2"? 1 < J, (3.34)J1 (pk 2)(n-l)/(n+l) Ik=1 k

~ ~~ ; ; ~ ------ ~;;.. .. ........... .. .......--- ~-



where { 1, 2, -*, J} is the optimal gain codebook. The resulting asymptotic decay of

the shape distortion D, is given by

lim Ds2 2(n/(n - 1 ))R = C.
R-oo

J n-1

pj 1)
Lj=1

where pj is probability of gj being chosen and C is the same constant as given in

(3. 17).

Proof. For a given gain codebook {gj }j=, the optimal subcodebook sizes are given

by the optimization

min Ep j2 M 2 / (l - n )

M1,...,Mi j= 1

J

subject to Mj = 2n
j=1

Similarly to the variable-rate case, we can use a Lagrange multiplier to obtain an

unconstrained optimization with the objective function

h p M2/(-n) - A .
j=1 j=1

(3.37)

Again, assuming high rate, we can ignore the integer constraints on Mj to take partial

derivatives. Setting them equal to zero, one can obtain

Mj = [A( - n)/(2pj)] (1
- n)/(n+1) (3.38)

Substituting into the constraint (3.36) yields

S[(1- 2p (1- n
)/( n + 1) nR

[A(1 - n)/(2pj?) = 2"

Hence,
- (1-n)/(n+l)

2pk k

(3.36)

n+1
n-I

(3.35)

A(n-1)/(n+l) = 2-nR (3.39)



Combining (3.39) and (3.38) gives us

Mj = A(1-n)/(n+1) (1- n (3.40)

= 2 nR (pj2)(n-1)/(n+1)=i 2 1 < j < J. (3.41)EJ ( 2)
(n - 1 ) / ( n + l )  - -

With the high-rate assumption, the resulting shape distortion will be

J
D = C. pj j M 2/(1-n)

j=1

J [ 2nR(p. )(n-1)/(n+1) 2/(1-n)

y= CLp k=1 k ) (n - 1) / (n+ 1)

J .n-1
= C 2 -2(n/(n-1))R j)(n-fl1)/(na+1) (3.42)

where C = n- G(A) (27n/2/F(n/2))2/(n-1), completing the proof. O

Figure 3-4 illustrates the resulting performance as a function of the rate for several

values of J. As expected, for a fixed block size n, higher rates require higher values

of J (more concentric spheres) to attain good performance, and the best performance

is improved by increasing the maximum value for J.

3.4.4 Using WSC Rate Allocation for CPSCs

In this section we use the optimal rate allocations for WSC to guide the design of

CPSCs at a given rate. The rate allocations are used to set target sizes for each sub-

codebook. Then for each subcodebook Cj, a partition meeting the constraint on Mj is

selected (using heuristics inspired by Conjecture 3.5). Algorithm 3.1 of Section 3.4.1

is then used for those partitions to compute the actual rate and distortion.

For the variable-rate case, Theorem 3.7 provides the key rate allocation step in the

design procedure given in Algorithm 3.2. Similarly, Theorem 3.8 leads to the design

procedure for the fixed-rate case given in Algorithm 3.3. Each case requires as input
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Figure 3-4: High-resolution approximation of the rate-distortion performance of WSC

with gain-dependent shape codebooks and fixed-rate coding for an i.i.d. .A(0, 1) source

with block length n = 25.

Algorithm 3.2 Design Algorithm for Variable-Rate Case

1. Compute R* and R* from (3.21) and (3.22), respectively.

2. For 1 < j < J, compute Mj from (3.28).

3. For 1 < j < J, search through all possible integer partitions of n that satisfy

Conjecture 3.5, choosing the one that produces the number of codewords

closest to Mj.

4. Run Algorithm 3.1 for the J partitions chosen in step 4 to generate the initial

codewords and to compute the actual rate and distortion.

not only the rate R but also the number of initial codewords J.

Results for the fixed-rate case are plotted in Figure 3-5. This demonstrates that

using the rate allocation of WSC with gain-dependent shape codebook actually yields

good CPSCs for most of the rates. Figure 3-6 demonstrates the improvement that

comes with allowing more initial codewords. The distortion is again computed em-

pirically from Gaussian samples. It has a qualitative similarity with Figure 3-4.



1
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Figure 3-5: Operational rate-distortion performance of fixed-rate CPSCs designed
with integer partitions guided by the WSC rate allocation and Algorithm 3.1, in
comparison with codes designed with exhaustive search over a heuristic subset of
integer partitions. Computation uses i.i.d. AF(O, 1) source, n = 7, and J = 3.

0 0.5 1 1.5 2 2.5 3 3.5
Rate

Figure 3-6: Operational rate-distortion performance for fixed-rate coding of i.i.d.
AF(0, 1) source with block length n = 25. CPSCs with different integer partitions
are designed using rate allocations from Theorem 3.8 and initial codewords locally
optimized by Algorithm 3.1. The rate allocation computation assumes G(A 24)
0.065771 [51, p. 61].
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Algorithm 3.3 Design Algorithm for Fixed-Rate Case

1. Use the scalar Lloyd-Max algorithm to optimize J gain codewords.

2. For 1 < j < J, compute Mj from (3.34)

3. Repeat steps 3 and 4 of Algorithm 3.2.

Appendix

3.A Proof of Proposition 3.4

Proof. Consider a new integer partition {n, n2 ,.. *, n'} obtained by swapping nm

and nm+, i.e.,

ni

ni 1
nm+l

n.

i f m or m + 1

i = + 1

Let {1f } denote groups of indices generated by partition {n }. Suppose that D is the

optimal distortion associated with {ni},

D = E min
n li <jJ

(-i)2]2 (3.44)
K

EE
i=1 fEli

where {pJ} is the optimum of the minimization of the right side over 2m. Consider

a suboptimal distortion D' associated with {n },

K 

(

D' = IE min %
n 1<j5_J i=1 £6l

)2] (3.45)

where {f } is constructed from {pi } as follows, for each j,

i 7 m or m- + 1

2nm +( nm-l-nm)/tm+1S nm+nm+l1

rn -lm+l

= (3.46)

i =m+l.

(3.43)



Note that, for the above construction, we have

-Am - Im+1 = -m - Am+, Vj E {1,2,...,J}.

Therefore { } also satisfies Qm, and so forms a valid codebook corresponding to

partition {n}. Thus, it will be sufficient if we can show that D > D'. On the other

hand, it is easy to verify that, for all j,

?m +l( 1i ) 2 + n(nm+i) 2
m na m) 2 + nm+1(m<+1) 2 .

Hence,
K

i=1

K

i= 2 ,
i= 1

(3.48)

Now consider the difference between D and D'

A = n(D - D')

2_ K

- )- min 1 (e
i= 1 £E4

> E min (ni(2)2 -2a
(Ki=1 le

77)

K(
Ii---

- }j2 ,
L+r+q

+ m+=l + r
£=L+r+l

L+q L+q+r

t=L+1 e=L+q+lI1

where to obtain (3.49), we used the fact that min{f - g} min f - ming, for

arbitrary functions f, g; (3.50) follows from (3.48) in which q = nm, r = nm+l, and

L = nl + n2 + "-- + rm-1. Now using the formulae of j4 and im+1
j in (3.46), we

(3.47)

- )2

L+r

E=L+1

= 2E min {P

(3.49)

(3.50)

K

=E minE E (
i=1 tE6-



obtain

A > 2E min (q - r)(1jm - plm+1) Lr

q + r q=L+

2r(Pm - 1m+j) L+r+q

q+r t=L+r+1

(q - t M+) ( L+q+r1)

2r(q - r)E [min (3.52)
+ q + r M

2r(q - r) ~mn - +j  - +

q+rq-r [ + .rin { zj I~m- +l) I -m - maxijLm -Iim+l })]

> 0, (3.53)

where ( in (3.52) is the random variable specified in (3.9), and (3.53) follows from

constraint Q and that q > r. The nonnegativity of A has proved the proposition. O





Chapter 4

Frame Permutation Quantization

This chapter presents the second approach of the thesis in which ordinary PSCs are

used to quantize the coefficients of frame expansions of the source vector. Throughout

this chapter, we just use small letters to denote random vectors, since most of the

analysis focuses on their point-wise samples. Notations for ordinary PSCs given in

Chapter 2 still apply for different dimensions, N and M, other than n.

4.1 Preview through R2 Geometry

Consider the quantization of x E RN, where we restrict attention to N = 2 in this

section but later allow any finite N. The uniform scalar quantization of x partitions

R N in a trivial way, as shown in Fig. 4-1(a). (An arbitrary segment of the plane is

shown.) If over a domain of interest each component is divided into K intervals, a

partition with KN cells is obtained.

A way to increase the number of partition cells without increasing the scalar

quantization resolution is to use a frame expansion. A conventional quantized frame

expansion is obtained by scalar quantization of y = Fx, where F E RxN with

M > N. Keeping the resolution K fixed, the partition now has K" cells. An

example with Al = 8 is shown in Fig. 4-1(d). Each frame element pk (transpose of

row of F) induces a hyperplane wave partition [52]: a partition formed by equally-

spaced (N - 1)-dimensional hyperplanes normal to pk. The overall partition has M



(a) Scalar quantization

(b) Permutation source code (Var. I)

(c) Permutation source code (Var. II)

(d) Scalar-quantized frame expansion

(e) Frame permutation quantizer (Var. I)

(f) Frame permutation quantizer (Var. II)

Figure 4-1: Partition diagrams for x E R2. (a) Scalar quantization. (b) Permutation
source code, Variant I. (c) Permutation source code, Variant II. (Both permutation
source codes have nl = n2 1.) (d) Scalar-quantized frame expansion with M = 6
coefficients (real harmonic tight frame). (e) Frame permutation quantizer, Variant I.
(f) Frame permutation quantizer, Variant II. (Both frame permutation quantizers
have M = 6, m1 = m 2= m 6 = 1, and the same random frame.)
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hyperplane waves and is spatially uniform. A spatial shift invariance can be ensured

formally by the use of subtractively dithered quantizers [53].

A Variant I PSC represents x just by which permutation of the components of

x puts the components in descending order. In other words, only whether xl > z 2

or whether x2 > x1 is specified.1 The resulting partition is shown in Fig. 4-1(b).

A Variant II PSC specifies (at most) the signs of the components of x, and x2 and

whether jxll > Z21 or IX21 > x11. The corresponding partitioning of the plane is

shown in Fig. 4-1(c), with the vertical line coming from the sign of xl, the horizontal

line coming from the sign of X2, and the diagonal lines from cxI I 2 -

While low-dimensional diagrams are often inadequate in explaining PSC, several

key properties are illustrated. The partition cells are (unbounded) convex cones,

giving special significance to the origin and a lack of spatial shift invariance. The

unboundedness of cells implies that some additional knowledge, such as a bound on

Ilx|| or a probabilistic distribution on x, is needed to compute good estimates. At

first this may seem extremely different from ordinary scalar quantization or scalar-

quantized frame expansions, but those techniques also require some prior knowledge

to allow the quantizer outputs to be represented with finite numbers of bits. We also

see that the dimension N determines the maximum number of cells (N! for Variant I

and 2NN! for Variant II); there is no parameter analogous to scalar quantization step

size that allows arbitrary control of the resolution.

To get a finer partition without changing the dimension N, we can again employ

a frame expansion. With y = Fx as before, PSC of y gives more relative orderings

with which to represent x. If pj and Pk are frame elements (transposes of rows of

F) then (x, pj) < (cx, Ok) is (X, pj - .pk) Z 0 by linearity of the inner product, so

every pair of frame elements can give a condition on x. An example of a partition

obtained with Variant I and M = 6 is shown in Fig. 4-1(e). There are many more

cells than in Fig. 4-1(b). Similarly, Fig. 4-1(f) shows a Variant II example. The cells

are still (unbounded) convex cones. If additional information such as IxCIl or an affine

IThe boundary case of xl = x2 can be handled arbitrarily in practice and safely ignored in the
analysis.



subspace constraint (not passing through the origin) is known, x can be specified

arbitrarily closely by increasing M.

4.2 Vector Quantization and PSCs Revisited

Recall that a vector quantizer is a mapping from an input x C R to a codeword &

from a finite codebook C. Without loss of generality, a vector quantizer can be seen

as a composition of an encoder

R' -+ I

and a decoder

S: -- R',

where I is a finite index set. The encoder partitions Rn into III regions or cells

{fa-(i))}iz, and the decoder assigns a reproduction value to each cell. Examples of

partitions are given in Fig. 4-1. For the quantizer to output R bits per component,

we have III = 2"

For any codebook (i.e., any P), the encoder a that minimizes jlx - @I2 maps x

to the nearest element of the codebook. The partition is thus composed of convex

cells. Since the cells are convex, reproduction values are optimally within the cor-

responding cells-whether to minimize expected distortion, maximum distortion, or

any other reasonable cost function. To minimize maximum distortion, reproduction

values should be at centers of cells; to minimize expected distortion, they should be at

centroids of cells. Reproduction values being within corresponding cells is formalized

as consistency:

Definition 4.1. The reconstruction & =- (a(x)) is called a consistent reconstruction

of x when a(x) = c(,) (or equivalently O(ce(A)) = 2). The decoder / is called

consistent when /(a(x)) is a consistent reconstruction of x for all x.

In practice, the pair (a, 3) usually does not minimize any desired distortion cri-

terion for a given codebook size because the optimal mappings are hard to design



and hard to implement [3]. The mappings are commonly designed subject to certain

structural constraints, and /3 may not even be consistent for ac [14, 16].

For both historical reasons and to match the conventional approach to vector

quantization, PSCs were defined in terms of a codebook structure, and the codebook

structure led to an encoding procedure. Note that we may now examine the partitions

induced by PSCs separately from the particular codebooks for which they are nearest-

neighbor partitions.

The partition induced by a Variant I PSC is completely determined by the integer

partition (ni, n 2,..., nK). Specifically, the encoding mapping can index the permu-

tation P that places the n, largest components of x in the first nl positions (without

changing the order within those nl components), the n2 next-largest components of

x in the next n2 positions, and so on; the pus are actually immaterial. This encoding

is placing all source vectors x such that Px is n-descending in the same partition cell,

defined as follows.

Definition 4.2. Given an ordered integer partition n = (ni, n2, ... , nK) of N, a

vector in RN is called n-descending if its ni largest entries are in the first nl positions,

its n2 next-largest components are in the next n2 positions, etc.

The property of being n-descending is to be descending up the arbitrariness spec-

ified by the integer partition n.

Because this is nearest-neighbor encoding for some codebook, the partition cells

must be convex. Furthermore, multiplying x by any nonnegative scalar does not affect

the encoding, so the cells are convex cones. (This was discussed and illustrated in

Section 4.1.) We develop a convenient representation for the partition in Section 4.4.

The situation is only slightly more complicated for Variant II PSCs. The partition

is determined by the integer partition (ni, n2 , ... , nK) and whether or not the signs

of the smallest-magnitude components should be encoded (whether K = 0, in the

codebook-centric view).

The PSC literature has mostly emphasized the design of PSCs for sources with

i.i.d. components. But as developed in Section 4.4, the simple structured encoding of
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Figure 4-2: Block diagram of reconstruction from quantized frame expansion.

PSCs could be combined with unconventional decoding techniques for other sources.

The possible suitability of PSCs for sources with unknown or time varying statistics

had been previously observed [28].

4.3 Reconstruction from Frame Expansions

A central use of frames is to formalize the reconstruction of x E ]RN from the frame

expansion yk (x, Ck), k = 1, 2, ... , M, or estimation of x from degraded versions of

the frame expansion. Using the analysis frame operator we have y = Fx, and (2.12)

implies the existence of at least one linear synthesis operator G such that GF = IN.

A frame with analysis frame operator G* is then said to be dual to D.

The frame condition (2.12) also implies that F*F is invertible, so the Moore-

Penrose inverse (pseudo-inverse) of the frame operator

Ft = (F*F)-F*

exists and is a valid synthesis operator. Using the pseudo-inverse for reconstruc-

tion has several important properties including an optimality for mean-squared error

(MSE) under assumptions of uncorrelated zero-mean additive noise and linear syn-

thesis [13, Sect. 3.2]. This follows from the fact that FFt is an orthogonal projection

from RI" onto the subspace F(RN), the range of F. Because of this special role, re-

construction using Ft is called canonical reconstruction and the corresponding frame

is called the canonical dual. In this thesis, we use the term linear reconstruction for

reconstruction using an arbitrary linear operator.

When y is quantized to Q (see Figure 4-2), it is possible for the quantization

noise 9 - y to have mean zero and uncorrelated components; this occurs with sub-

tractive dithered quantization [53] or under certain asymptotics [54]. In this case,

_ l_~_s~X~I~ II



the optimality of canonical reconstruction holds. However, it should be noted that

even with these restrictions, canonical reconstruction is optimal only amongst linear

reconstructions.

When nonlinear reconstruction is allowed, quantization noise may behave funda-

mentally differently than other additive noise. The key is that a quantized value gives

hard constraints that can be exploited in reconstruction. For example, suppose that y

is obtained from y by rounding each element to the nearest multiple of a quantization

step size A. Then knowledge of 0m is equivalent to knowing

Yk1E [yk ,:k +IA]. (4.1)

Geometrically, (x, Ok) -= k - 'A and (x, k) - k + 'A are hyperplanes perpendicular

to Ck, and (4.1) expresses that x must lie between these hyperplanes; this may be

visualized as one pair of parallel lines in Fig. 4-1(d). Using the upper and lower

bounds on all M components of y, the constraints on x imposed by ' are readily

expressed as [16]

x 2 (4.2)
-F 'Y -Y

where the inequalities are elementwise. For example, all 2M constraints specify a

single cell in Fig. 4-1(d). This formulation inspires Algorithm 4.1, which is a modifi-

cation of [16, Table I] using the principle of maximizing slackness of inequalities that

was also implemented in [18]. We will find analogues to (4.2) and Algorithm 4.1 for

FPQ.

4.4 Frame Permutation Quantization

With background material on permutation source codes and finite frames in place,

we are now prepared to formally introduce frame permutation quantization. FPQ is

simply PSC applied to a frame expansion.



Algorithm 4.1 Consistent Reconstruction from Scalar-Quantized Frame Expansion

Inputs: Analysis frame operator F, quantization step size A, and quantized
frame expansion y

Output: Estimate & consistent with 9 and as far from the partition boundaries
as possible

1 Let A= F lMx and b "
F lmxl -Y

(Consistency as in (4.2) is expressed as A [ < b.)

2. Let c ONx]
-1 .

3. Use a linear programming method to minmiize cT [ subject to

A [ < b. Return the first N components of the minimizer as 2.

4.4.1 Encoder Definition

Definition 4.3. A frame permutation quantizer with analysis frame F C IRM xN

integer partition m = (ml, m 2 ,..., MK) and initial codeword Yinit associated with m

encodes x e RN by applying a permutation source code with integer partition m and

initial codeword init to Fx.

We sometimes use the triple (F, m, 9init) to refer to such an FPQ. The two variants

of PSCs yield two variants of FPQ.

For Variant I, the result of the encoding can be expressed as a permutation P

from the permutation matrices of size M. The permutation is such that PFx is

m-descending. For uniqueness in the representation P chosen from the set of permu-

tation matrices, we can specify that the first m components of Py are kept in the

same order as they appeared in y, the next m 2 components of Py are kept in the

same order as they appeared in y, etc. Then P is in a subset G(m) of the A x M

permutation matrices and

(m)|= (4.3)
mi! M62! ... K!

60



For Variant II, we will sidestep the differences between the AK = 0 and PK # 0

cases in Section 2.1.2 by specifying that the signs of the mK smallest-magnitude

components of Fx are not encoded and mK = 0 is allowed. Now the result of encoding

can be expressed similarly as P E g(m) along with a diagonal matrix V with ±1 on

its diagonal. These matrices are selected such that the elementwise absolute values

of VPFx are m-descending and also the first M - mK entries of VPFx are positive.

The last mK diagonal entries of V do not affect the encoding and are set to +1. Thus

V is in a subset Q(m) of the M x M sign-changing matrices and

cQ(m) = 2M -
mK

.  (4.4)

The sizes of the sets g(m) and g(m) x Q(m) are analogous to the codebook sizes

in (2.3), and the per-component rates of FPQ are thus defined as

RI = N - 1 log 2  , for Variant I, (4.5a)
mI ! m2 ... M rK!'

and

RII = N -  M - mK + log 2  ! m for Variant II. (4.5b)
ml! M2". n!! )

4.4.2 Expressing Consistency Constraints

Suppose FPQ encoding of x E IR' with frame F E R M xN, integer partition m =

(ml, m 2 ,..., inK), and initial codeword init associated with m results in permutation

P E G(m) (and, in the case of Variant II, V E Q(m)) as described in Section 4.4.1.

We would like to express constraints on x that are specified by (F, m, 'init, P) (or

(F, m, init, P, V)). This will provide an explanation of the partitions induced by

FPQ and lead to reconstruction algorithms in Section 4.4.3.

Knowing that a vector is m-descending is a specification of many inequalities.

Recall the definitions of the index sets generated by an integer partition given in

(2.8) and (2.9), and use the same notation with nks replaced by inks. Then z being



m-descending implies that for any i < j,

zk 2 Zt for every k E Ii and £ E Ij.

By transitivity, considering every i < j gives redundant inequalities. Taking only

j = i + 1, we obtain a full description

zk _ ze for every k E $i and f E Zi+1 with i = 1, 2,..., K - 1. (4.6)

For one fixed (i, £) pair, (4.6) gives Ii = mi inequalities, one for each k E Ii.

These inequalities can be gathered into an elementwise matrix inequality as

Imi omix(M-Ali)

where Mk = mi+ 2 + + nk, or D m)z 2 0 x1 where

D(m [= OxM_
i,t I 0mix Mi_

is an mi x M differencing matrix.

mimni+ x Al matrix

-Imix1 OmixM-t ] (4.7a)

Allowing £ to vary across Zi+l, we define the

D m) (4.7b)

L DiM +m+, J
and express all of (4.6) for one fixed i as D}m)z > Om~mi+x 1

Continuing our recursion, it only remains .to gather the inequalities (4.6) across

[ Omix~_i Omrx(M-t) ] Z' [ Omixv-i) IMjX1

Imi OmixV_-Mi_1)



iE{1, 2,..., K- 1}. Let

D(m )

D(m) m) (4.7c)

D(m)

K-1

which has
K-1

L(m) = mimi+1 (4.8)
i=-i

rows. The property of z being m-descending can be expressed as D(m)z > OL(m)xM.

The following example illustrates the form of D(m):

1 0 -1 0 0 0 0

0 1 -1 0 0 0 0

1 0 0 -1 0 0 0

0 1 0 -1 0 0 0

1 0 0 0 -1 0 0

0 1 0 0 -1 0 0

0 0 1 0 0 -1 0

0 0 0 1 0 -1 0

0 0 0 0 1 -1 0

0 0 1 0 0 0 -1

0 0 0 1 0 0 -1

0 0 0 0 1 0 -1

Notice the important property that each row of D(m) has one 1 entry and one -1

entry with the remaining entries 0. This will be exploited in Section 4.5.

Now we can apply these representations to FPQ.

Variant I: In this case, we know PFx is rm-descending. Consistency is thus simply

expressed as

D(m)PFx > 0. (4.9)



Variant II: The second variant has an m-descending property after V has made the

signs of the significant frame coefficients (all but last mK) positive: D(m)VPFx > 0.

In addition, we have the nonnegativity of all of the first M - mK sorted and sign-

changed coefficients. To specify

[M-mK 0 (M-mK)XmK VPFx > 0 (M-mK)l

is redundant with what is expressed with the m-descending property. The added

constraints can be applied only to the entries of VPFx with indexes in ZK-1 because

all the earlier entries are already ensured to be larger. We thus express consistency

as

D(m)

4.4.3 Consistent Reconstruction Algorithms

The constraints (4.9) and (4.10) both specify unbounded sets, as discussed previously

and illustrated in Fig. 4-1(e) and (f). To able to decode FPQs in analogy to Al-

gorithm 4.1, we require some additional constraints. We develop two examples: a

source x bounded to [-!, !]N (e.g., having an i.i.d. uniform distribution over [- , 1])

or having an i.i.d. standard Gaussian distribution. For the remainder of this section,

we consider only Variant I because adjusting for Variant II using (4.10) is easy.

Source Bounded to [-, ]N

To impose (4.9) along with x E [-, !]N is trivial because x E [-, ]N is decompos-

able into 2N inequality constraints:

IN 1 1Nxl

-IN - 2 -1Nxl
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Algorithm 4.2 Reconstruction of Source on [-, ]N for Variant I Frame Permuta-

tion Quantization

Analysis frame operator F, integer partition m, and FPQ encoding P

Estimate : consistent with (F, mi, P) and as far from the partition

boundaries as possible

-D(m)PF 1L(m)x OL(m)x

1. Let A = -I 1Nxl and b = [ 1 2N1
IN 1Nx1

where D(m) is defined in (4.7) and L(m) is defined in (4.8).

(Consistency with (4.9) and x E [- , 1]N is expressed as A [ x < b.)

2. Let c= ONx
- 1 

.

3. Use a linear programming method to minimize cT 6 subject to

A [x < b. Return the first N components of the minimizer as x.

A linear programming formulation will return some corner of the consistent set, de-

pending on the choice of cost function. The unknown vector x can be augmented with

a variable 6 which represents the slackness of the inequality constraint with the least

slack. Maximizing 6 moves the solution away from the boundary of the consistent set

(partition cell) as much as possible. Reconstruction using this principle is outlined in

Algorithm 4.2.

If the source x is random and the distribution p(x) is known, then one could

optimize some criterion explicitly. For example, one could maximize p(x) over the

consistent set or compute the centroid of the consistent set with respect to p(x). This

would improve upon reconstructions computed with Algorithm 4.2 but presumably

increase complexity greatly.

Source with i.i.d. Standard Gaussian Distribution

Suppose x has i.i.d. Gaussian components with mean zero and unit variance. Since

the source support is unbounded, something beyond consistency must be used in

reconstruction. Here we use a quadratic program to find a good bounded, consistent

Inputs:
Output:



estimate and combine this with the average value of I x .

The problem with using (4.9) combined with maximization of minimum slackness

alone (without any additional boundedness constraints) is that for any purported

solution, multiplying by a scalar larger than 1 will increase the slackness of all the

constraints. Thus, any solution technique will naturally and correctly have flJ | - 00o.

Actually, because the partition cells are convex cones, we should not hope to recover

the radial component of x from the partition. Instead, we should only hope to recover

a good estimate of x/i x .

It estimates the angular component x/ x|| from the partition, it would be conve-

nient to maximize minimum slackness while also imposing a constraint of I = 1.

Unfortunately, this is a nonconvex constraint. It can be replaced by I I 1 because

slackness is proportional to |j . This suggests the optimization

maximize 6 subject to jIxfI < 1 and D(m)PFx > 6 1L(m)xl.

Denoting the x at the optimum by lang, we still need to choose the radial component,

or length, of 2.

For the N(0, IN) source, the mean length is [25]

E[| x||] = - N - 1/2.
E[xI f(N/2, 1/2) N-1/2

We can combine this with ang to obtain a reconstruction x.

We use a slightly different formulation to have a quadratic program in standard

form. We combine the radial component constraint with the goal of maximizing

slackness to obtain

minimize IxTx - A6 subject to -D(m)PFx -61lL(m)xl,

where A trades of slackness against the radial component of x. Since the radial

component will be replaced with its expectation, the choice of A is immaterial; it is

set to 1 in Algorithm 4.3.



Algorithm 4.3 Reconstruction of .A(O, IN) Source for Variant I Frame Permutation
Quantization

Analysis frame operator F, integer partition m, and FPQ encoding P
Estimate . consistent with (F, m, P) and as far from the partition
boundaries as possible while keeping , = E[IxIl]

1. Let A = D(m)PF 1L(m)xl ] and b = OL(m)xl,

where D m) is defined in (4.7) and L(m) is defined in (4.8).

(Consistency with (4.9) is expressed as A []< b.)

2. Let c = ONx-1 and H = 0 ON x

3. Use a quadratic programming method to minimize

S H X+ cT x subject to A x b.

Denote the first N components of the minimizer as :ang.
4. Return (v2-//3(N/2, 1/2)) iang.

4.5 Conditions on the Choice of Frame

In this section, we provide necessary and sufficient conditions so that a linear recon-

struction is also consistent. We first consider a general linear reconstruction, : = Ry,

where R is some N x M matrix and y is a decoding of the PSC of y. We then restrict

attention to canonical reconstruction, where R = Ft. For each case, we describe all

possible choices of a "good" frame F, in the sense of the consistency of the linear

reconstruction.

4.5.1 Arbitrary Linear Reconstruction

We begin by introducing some useful terminology.

Definition 4.4. A matrix is called column-constant when each column of the matrix

is a constant. The set of all M x M column-constant matrices is denoted J.

We now give our main results for arbitrary linear reconstruction combined with

FPQ decoding of an estimate of y.

Inputs:
Output:



Theorem 4.5. Suppose A = FR = alM + J for some a > 0 and J E J. Then

the linear reconstruction = R9 is consistent with Variant I FPQ encoding using

frame F, an arbitrary integer partition and an arbitrary Variant I initial codeword

associated with it.

Proof. We start the proof by pointing out two special properties of any matrix J E J:

(P1) PJP-1 E 3 for any permutation matrix P; and

(P2) D(m)J = OL(m)xl for any integer partition m.

(P1) follows from the fact that neither left multiplying by P nor right multiplying

by P-1 disturbs column-constancy. (P2) is true because each row of D(' ) has zero

entries except for one 1 and one -1.

Suppose m = (mi, 2 ,., . K) is an arbitrary integer partition of M and 9init

is an arbitrary Variant I initial codeword associated with m. Let P be the Variant

I FPQ encoding of x using (F, m, ginit). We would like to check that - = R9 is

consistent with the encoding P. This is verified through the following computation:

D(m)PFi = D(m)PFR9

= D(m)PFRP-l init

= D(m)PAP-l1init

= D(m)P (aIM ± J) P-19init

= a D(m) 9init - D(m) jinit

= a D(m) 9init

for some J E j

2 OL(m)xl,

where (4.11) uses the conventional decoding of a PSC; (4.12) follows from the hy-

pothesis of the theorem on A; (4.13) follows from (P1); (4.14) follows from (P2); and

(4.15) follows from the definition of Variant I initial codewords associated with m,

and the nonnegativity of a. This completes the proof. O

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

- -------- -------- -



The key point of the proof of Theorem 4.5 is showing that the inequality

D(m)PAP-l^init > 0, (4.16)

where A = FR, holds for every integer partition rm and every initial codeword ,init

associated with it. It turns out that the form of matrix A given in Theorem 4.5 is

the unique form that guarantees that (4.16) holds for every pair (m, init). In other

words, the condition on A that is sufficient for every integer partition mn and every

initial codeword init associated with it is also a necessary for consistency for every

pair (m, Pinit).

Theorem 4.6. Consider Variant I FPQ using frame F with M > 3. If linear recon-

struction .i = Ry is consistent with every integer partition and every Variant I initial

codeword associated with it, then matrix A = FR must be of the form aIM + J, where

a > O and J C J.

Proof. See Section 4.A. O

Similar necessary and sufficient conditions can be derived for linear reconstruction

of Variant II FPQs. Since the partition cell associated with a codeword of a Variant

II FPQ is much smaller than that of the corresponding Variant I FPQ, we expect the

condition for a linear reconstruction to be consistent to be more restrictive than that

given in Theorem 4.5 and Theorem 4.6. The following two theorems show that this

is indeed the case.

Theorem 4.7. Suppose A = FR = al, for some a > 0 and M = N. Then the linear

reconstruction = R9 is consistent with Variant II FPQ encoding using frame F,

an arbitrary integer partition, and an arbitrary Variant II initial codeword associated

with it.

Proof. Suppose that m = (ml, m2,..., inK) is an arbitrary integer partition of M,

and ginit is an arbitrary Variant II initial codeword associated with it. Let (P, V) be

the Variant II FPQ encoding of x using (F, m, 9init). We would like to check that



x = Rq is consistent with the encoding (P, V). This is verified through the following

computation:

D(m)VPFJ = D(m)VPFR

= D(m)VPFRP-1V-l1init (4.17)

= n(m)VPAP-1V-linit

= D(m)VPaIMP-1 V-1 init (4.18)

- a 5(m) Yinit

> OL(m)xl, (4.19)

where (4.17) uses the conventional decoding of a PSC; (4.18) follows from the hy-

pothesis of the theorem on A; and (4.19) follows from the definition Variant II ini-

tial codewords associated with m, and the nonnegativity of a. This completes the

proof. O

Theorem 4.8. Consider Variant II FPQ using frame F with M > 3. If linear

reconstruction & = Rq is consistent with every integer partition and every Variant II

initial codeword associated with it, then matrix A = FR must be of the form afAl,

where a > 0 and M = N.

Proof. See Section 4.B. O

The two theorems above show that, if we insist on linear consistent reconstructions

for Variant II FPQs, the frame must degenerate into a basis. For nonlinear consistent

reconstructions, we could use algorithms analogous to those presented in Section 4.4.3

for an arbitrary frame that is not necessarily a basis.

4.5.2 Canonical Reconstruction

We now restrict the linear reconstruction to use the canonical dual; i.e., R is restricted

to be the pseudo-inverse Ft = (F*F)-1F*. The following corollary characterizes the

non-trivial frames for which canonical reconstructions are consistent.

---- -------



Corollary 4.9. Consider Variant I FPQ using frame F with M > N and M > 3.

For canonical reconstruction to be consistent with every integer partition and every

Variant I initial codeword associated with it, it is necessary and sufficient to have

M = N + 1 and A = FF t = IM - ' JM, where JM is the M x M all-Is matrix.

Proof. Sufficiency follows immediately from Theorem 4.5. The necessary condition of

Theorem 4.6 leaves some flexibility in the choice of F that we must eliminate using

R = Ft.

From Theorem 4.6, it is necessary to have A = FFt = aIm + J for some a > 0

and J E J. Now, by noting that A is an orthogonal projection operator, we can

impose the self-adjointness on matrix A to get

alM + J = (alI + J)* = aIM + J*. (4.20)

Thus, J = J*, and it follows that J = bJM, for some constant b. On the other hand,

the idempotence of A gives

alM +bJM = (alM + bJM) 2

= a2IM + (2ab + b2 M)JM. (4.21)

Since M > N, b must be different from zero. Equating the two sides of (4.21) yields

a = 1 and b = -1/Al. Hence,

1
A = IM - I JM. (4.22)

From (4.22), note that tr(A) = M - 1. But also,

tr(A) = tr (F(F*F)-1F*) = tr ((F*F)F*F) = tr(IN) = N.

Thus M = N + 1. O

We continue to add more constraints to frame F. Tightness and equal-norm are

amongst common requirements in frame design [11]. By imposing tightness and unit



norm on our analysis frame, we can progress a bit further from Corollary 4.9 to derive

the form of FF*.

Corollary 4.10. Consider Variant I FPQ using unit-norm tight frame F with Al >

N and M > 3. For canonical reconstruction to be consistent for every integer partition

and every Variant I initial codeword associated with it, it is necessary and sufficient

to have Al = N + 1 and

1 1 . 1N N

I 1 1
FF* = N (4.23)

1 1 1
N N

Proof. Corollary 4.9 asserts that M = N + 1 and

N 1 1
M M M

1 N 1

F(F*F)-IF* = M (4.24)

1 1 N
M M M

On the other hand, the tightness of a unit-norm frame F implies

N
(F*F)- =  IN. (4.25)

M

Combining (4.24) with (4.25), we get (4.23). O

Recall that a UNTF that satisfies (4.23) is a restricted ETF. Therefore Corol-

lary 4.10 together with Proposition 2.6 gives us a complete characterization of UNTFs

that are "good" in the sense of canonical reconstruction being consistent.

Corollary 4.11. Consider Variant I FPQ using unit-norm tight frame F with M >

N and M > 3. For canonical reconstruction to be consistent for every integer partition

and every Variant I initial codeword associated with it, it is necessary and sufficient

for F to be the modulated HTFs or their Type I or Type II equivalents.



4.6 Simulations

In this section, we provide simulations to demonstrate some properties of FPQ and

to demonstrate that FPQ can give attractive performance for certain combinations of

signal dimension and rate. All FPQ simulations use modulated harmonic tight frames

and are based on implementations of Algorithms 4.2 and 4.3 using MATLAB, with

linear programming and quadratic programming provided by the Optimization Tool-

box. For every data point shown, the distortion represents a sample mean estimate of

N-'E[Ix-|ll 2 ] over at least 106 trials. Testing was done with exhaustive enumeration

of the relevant integer partitions. This makes the complexity of simulation high, and

thus experiments are only shown for small N and M. Recall the encoding complexity

of FPQ is low, O(M log M) operations. The decoding complexity is polynomial in

M for either of the algorithms presented explicitly, and in some applications it could

be worthwhile to precompute the entire codebook at the decoder. Thus much larger

values of N and M than used here may be practical.

4.6.1 Basic Experiments

Uniform source. Let x have i.i.d. components uniformly distributed on [-i, g]. Al-

gorithm 4.2 is clearly well-suited to this source since the support of x is properly

specified and reconstructions near the centers of cells is nearly optimal. Fig. 4-3

summarizes the performance of Variant I FPQ for several frames and an enormous

number of integer partitions. Also shown are the performances of ordinary PSC and

entropy-constrained scalar quantization.

Using F = IN makes FPQ reduce to ordinary PSC. We see that, consistent

with results in [8], PSC is sometimes better than ECSQ. Next notice that FPQ is

not identical to PSC when F is square but not the identity matrix. The modulated

harmonic frame with M = N provides an orthogonal matrix F. The set of rates

obtained with Al = N is the same as PSC, but since the source is not rotationally-

invariant, the partitions and hence distortions are not the same; the distortion is

sometimes better and sometime worse. Increasing M gives more operating points-
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Figure 4-3: Performance of Variant I FPQ on an i.i.d. uniform([-!, 1]) source using
modulated harmonic tight frames ranging in size from N to 7. Also shown are the
performances of ordinary PSC (equivalent to FPQ with frame F = IN), and entropy-
constrained scalar quantization.

some of which are attractive-and a higher maximum rate. In particular, for both

N = 4 and N = 5, it seems that M = N + 1 gives several operating points better

than those obtainable with larger or smaller values of M.

Gaussian source. Let x have the K/(O, IN) distribution. Algorithm 4.3 is designed

precisely for this source. Fig. 4-4 summarizes the performance of Variant I FPQ with

decoding using Algorithm 4.3. Also shown are the performance of entropy-constrained

scalar quantization and the distortion-rate bound.

We have not provided an explicit comparison to ordinary PSC because, due to

rotational-invariance of the Gaussian source, FPQ with any orthonormal basis as the

frame is identical to PSC. (The modulated harmonic tight frame with M = N is an

orthonormal basis.) The trends are similar to those for the uniform source: PSC and

FPQ are sometimes better than ECSQ; increasing M gives more operating points and

a higher maximum rate; and M = N + 1 seems especially attractive.

4.6.2 Variable-Rate Experiments and Discussion

We have posed FPQ as a fixed-rate coding technique. As mentioned in Section 2.1.2,

symmetries will often make the outputs of a PSC equally likely, making variable-rate

........... ........................
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Figure 4-4: Performance of Variant I FPQ on an i.i.d. Kf(O, 1) using modulated har-
monic tight frames ranging in size from N to 7. Performance of PSC is not shown

because it is equivalent to FPQ with M = N for this source. Also plotted are the per-

formance of entropy-constrained scalar quantization and the distortion-rate bound.

coding superfluous. This does not necessarily carry over to FPQ.

In Variant I FPQ with modulated HTFs, when AlM > N + 1 the codewords are not

only nonequiprobable, some cannot even occur. To see an example of this, consider

the case of (N, M) = (2, 4). Then

1 0

F= -p where p = 1/v.

0 1

p -p

If we choose the integer partition m = (2, 2), we might expect six distinct codewords

that are equiprobable for a rotationally-invariant source. The permutation matrices

consistent with this integer partition are

0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 00 1 0 0 0

0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0100 0 0 1 0

1 0 0 0 0 1 0 0 0 0 0 1 01 0 0 0 0 1 0 0 0 0 1

0 1 0 0 0 0 0 1 0 1 0 00 0001 0 1 0 0

Ir a rr



The first and fifth of these occur with probability zero because the corresponding

partition cells have zero volume. Let us verify this for the fifth permutation matrix

(P = 14). By forming D((2,2)) 4F, we see that the fifth cell is described by

1 -1 0

-p -1- p xl 0-pj . (4.26)
1 - p p x2 0

-2p 0 0

This has no nonzero solutions. (Subtracting the second and third inequalities from

the first gives 2p x, > 0, which combines with the fourth inequality to give xz = 0.

With x, = 0, the first and third inequalities combine to give x 2 = 0.)

While further investigation of the joint design of the integer partition m and

frame F-or of the product D(m)PF as P varies over the partitions induced by

m-is merited, it is beyond the scope of this thesis. Instead, we have extended our

experiments with uniform source to show the potential benefit of using entropy coding

to exploit the lack of equiprobable codewords.

Fig. 4-5 summarizes experiments similar to those reported in Figs. 4-3 and 4-4.

Each curve in this figure shows, for any given rate R on the horizontal axis, the lowest

distortion can be achieved at any rate not exceeding R. The source x E IR4 has i.i.d.

components uniformly distributed on [- , ], and Variant I FPQ with modulated

harmonic tight frames of sizes M = 6 and 7 were used. Performance with rate

measured only by (4.3) as before is labeled fixed rate. The codewords are highly

nonequiprobable at all but the lowest rates. To demonstrate this, we alternatively

measure rate by the empirical output entropy and label the performance variable

rate. Clearly, the rate is significantly reduced by entropy coding at all but the lowest

rates.

-----~--i~;l ~;-~;I~-- --- -;-- -- ~---i
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Figure 4-5: Performance of Variant I FPQ for fixed- and variable-rate coding of an

i.i.d. uniform([- , 1]) source with N = 4 using modulated harmonic tight frames of

sizes 6 and 7. Also plotted is the performance of entropy-constrained scalar quanti-

zation.

Appendices

4.A Proof of Theorem 4.6

The following lemmas are all stated for Variant II

what stronger than what we need for the proof of

initial codeword is automatically a Variant I initial

will be reused to prove Theorem 4.8 later on.

initial codewords. They are some-

Theorem 4.6 because a Variant II

codeword. However, these lemmas

For convenience, if {i 1,... ik} is a subset of {1, 2,..., M} and a is a permutation

on that subset, we simply write

P = i1
U1

i 2

0(i2)

if Py maps yi, to Y,(i), 1 < f < k, and fixes all the other components of vector y.

.... ... ... .... ... ... .... ... ... .... ... ... ...

'' ik• ri)



This notation with round brackets should not be confused with a matrix in which we

always use square brackets.

Proofs of the lemmas rely heavily on the key observation that the operator P(-) P- 1

first permutes the columns of the original matrix, then permutes the rows of the re-

sulting matrix by the same manner.

Lemma 4.12. Assume that M > 3. If the entries of matrix A satisfy ak,1 5# at,1 for

some 1 < k < £, then there exists a pair (P, 9init), where P is a permutation matrix

and 9init is a Variant II initial codeword associated with some integer partition, such

that the inequality (4.16) is violated.

Proof. Consider the two following cases.

Case 1: If ak,1 < ae,t, choose P = IM, and 9init = (ul, /2,. .-,,M). Consider the

following difference:

Ak, ((akJ)j, 9init) - ((a,j)j, init)
M M

=E akJM/- E aj 3/j
j=1 j=1

- (ak,1 - at,1)pl + ( ak,j-tJ - E ajj)
=2 j=2

Fix /12 > /3 > ... > pM > 0 and let pl go to +oo. Since ak,1 < ae,, Ak,e will go to

-o. Thus, there exist pl > A2 > ' > pM > 0 such that Ak,e < 0. On the other

hand, for m = (1, 1,..., 1), inequality (4.16) requires that Ak,e > 0 for all k < f.

Therefore the chosen pair violates inequality (4.16).

Case 2: If ak,1 > ae,1, choose P = ). Since k, 74 1, the entries of matrix
fk

A' = PA P-1 will satisfy that a'k, 1 < a, 1 . We return to the first case, completing the

proof. O

Lemma 4.13. Assume that M > 3. If the entries of matrix A satisfy ak,j 7 ae,j,

for any pairwise distinct triple (k, j, £), then there exists a pair (P, 'Qinit), where P is

a permutation matrix and Qinit is a Variant II initial codeword associated with some

integer partition, such that the inequality (4.16) is violated.



Proof. We first show that there exists some permutation matrix P1 such that A =

P1 A P-1 satisfies the hypothesis of Lemma 4.12. Indeed, consider the following cases:

1. If j = 1, it is obvious to choose P1 = IM.

2. If j > 1 and k > 1, choosing Pi = yields k,1 = ak,j al,j = a l,,

since k, f ' {1,j}.

3. If j > 1 and k = 1, choosing P1  ( yields 5j,1 = ak,j al,j = 1,1,
j1

since k = 1, and f ( {1, j}. Note that in this case, j / 1, and so A satisfies the

hypothesis of Lemma 4.12.

Now with P1 chosen as above, according to Lemma 4.12 there exits a pair (P2, Yinit),

where P is a permutation matrix and 'init is a Variant II initial codeword associated

with some integer partition, such that

0o D(m) p2 p-1 init

= D(m)P 2 (P1 A P-) P - init

= D(m)PA P- 1 Dinit,

where P A P2P1. Since the product of any two permutation matrices is also a

permutation matrix, the pair (P, 9init) violates the inequality (4.16). ED

Lemma 4.14. Suppose that A is a diagonal matrix. Then the inequality (4.16) holds

for every integer partition and every Variant II initial codeword associated with it,

only if A is equal to the identity matrix scaled by a nonnegative factor.

Proof. We first show that there exists some permutation matrix P1 such that A =

P1 A P -1 satisfies the hypothesis of Lemma 4.12. Indeed, consider the following cases:

1. If j = 1, it is obvious to choose P1 = IM.

2. If j > 1 and k > 1, choosing P = ( yields ik,1 = ak,j a1,j = al,1,

since k, f ( {1, j}.



3. If j > 1 and k = 1, choosing Pi = yields aj,1 = ak,j : aj = a1,1 ,

since k = 1, and £ ' {1, j}. Note that in this case, j -4 1, and so A satisfies the

hypothesis of Lemma 4.12.

Now with P1 chosen as above, according to Lemma 4.12 there exits a pair (P2 , init),

where P is a permutation matrix and Yinit is a Variant II initial codeword associated

with some integer partition, such that

0 D(m) P2 A P-i init

= D(m)P2 (P1 A P-1) P2- 1init

= D(m)PA P- init,

where P P2P1 . Since the product of any two permutation matrices is also a

permutation matrix, the pair (P, jinit) violates the inequality (4.16). O

Lemma 4.15. Suppose that A is a diagonal matrix. Then the inequality (4.16) holds

for every integer partition and every Variant II initial codeword associated with it,

only if A is equal to the identity matrix scaled by a nonnegative factor.

Proof. Suppose that A = diag(ai, a 2 ,..., aM). We first show that ai > 0 for every i

by contradiction.

If a, < 0, we can choose P = IM and /t > P2 > '" > -M 0, where pl is large

enough relative to A2, " , PM tO violate inequality (4.16).

If aj < 0 for some 1 < j < M, using P = yields a' = aj < 0, where

a' is the first entry on the diagonal of matrix A' a PA P-1 .Repeating the previous

argument, we get the contradiction.

Now we show that if ak = ae for some 1 <k < < k < < M, there exists a pair (P, 9init),

where P is a permutation matrix and 9init is a Variant II initial codeword associated

with some integer partition, such that inequality (4.16) is violated.

Case 1: if ak < at, choose P = IM and consider ginit = (/1, 2t2,... , 1M), where



p = tk - E for some positive E. Choose Uk such that

k > a > 0. (4.27)
ae - ak

On the other hand, we can choose F small enough so that pe is positive as well. The

other components can therefore be chosen to make 9init a Variant II initial codeword

associated with integer partition m = (1, 1,..., 1). For the above choice of Lk we can

easily check that Ak,f = ak/ik - aipe < 0, violating inequality (4.16).

Case 2: if ak > ae, choosing P = yields
£ k

PA P-1 = diag(al, a2., a ., ak, ... I, aM).

We return to case 1, completing the proof. O

Theorem 4.6. First note that a Variant II initial codeword is always a Variant I initial

codeword, therefore, Lemmas 4.12, 4.13, and 4.15 also apply for Variant I initial

codewords. From Lemma 4.13, all entries on each column of matrix A are constant

except for the one that lies on the diagonal. Thus, A can be written as A = I + J,

where I = diag(a, a 2 , . . . , aM), and

bi b2 ... bm

bl b2 .."' bM

b1 b2 ... bM

Recall that from properties (P1) and (P2) of J we have

D(m)pJP- 1 = 0, for any m.

Hence,

D(m)PIP- 1 init > 0, for any m and any init- (4.28)



From (4.28) and Lemma 4.15, we can deduce that I = aIM, for some nonnegative

constant a. D

4.B Proof of Theorem 4.8

In order for R to produce consistent reconstructions, we need the following inequality

(noting that V = V - 1 for any V E Q(m)):

D(m)VPA P-1V init 0, for any V E Q(m) and P E g(m), (4.29)

where A = FR. We first fix the sign-changing matrix V to be the identity matrix

IM. Then the first L(m) rows of (4.29) exactly form the inequality (4.16). Since

Lemmas 4.12, 4.13, and 4.15 are stated for Variant II initial codewords, it follows

from Theorem 4.6 that A must be of the form aIm + J, where a > 0 and J E J.

Substituting in to (4.29), we obtain

a!(m) #init + j(m)VpJP-1 Vinit > 0, (4.30)

Now we show that J = 0 by contradiction. Indeed, suppose all entries in column i of

J are b, for 1 < i < M. Consider the following cases:

1. If the first column of J is negative, choose V = P = IM and 9init = (IPl, 2, ... , M)

associated with partition m = (1, 1,..., 1). Consider the last row of inequality

(4.30):
M

bil + apM-1 + E bipi > 0. (4.31)
i=2

Since M > 3, M -1 1. Therefore the scale associated with pl in the left hand

side of inequality (4.31) is bi < 0. Hence, choosing pul large enough certainly

breaks inequality (4.31), and therefore violates inequality (4.30).

2. If the first column of J is positive, choosing P = IM, V = diag(-1, 1, 1,..., 1)

makes the first entry of the (M - 1)th row of matrix VPJP-'V negative (note

that 3M - 1 4 1 and the operator V(.)V first changes the signs of columns of



the original matrix and then changes the signs of rows of the resulting matrix

by the same manner.) Repeating the argument in the first case we can break

the last row of inequality (4.30) by appropriate choice of 9init.

3. If column f of J, 1 < £ < M is different from zero, choosing P=

leads us to either case 1 or case 2.

Hence,

A = FR = aIM. (4.32)

Equality (4.32) states that the row vectors of F and the column vectors of R forms

a biorthogonal basis pair of R N within a nonnegative scale factor. Since the number

of vectors in each basis can not exceed the dimension of the space, we can deduce

Al < N. On the other hand, M > N because F is a frame. Thus, M = N.





Chapter 5

Closing Remarks

In this work, we have proposed two generalizations of permutation source codes which

improve rate-distortion performance while adding very little to encoding complexity.

The first generalization, CPSCs, while allowing multiple initial codewords, consider-

ably increases the design complexity. The second generalization, FPQ-in which we

combine PSCs with overcomplete representations in a unique coding scheme--arouses

reconstruction and frame design problems simultaneously.

Two methods are introduced in the first part of the thesis to reduce the de-

sign complexity of CSPCs: restricting the subcodebooks to share a common integer

partition and allocating rates across subcodebooks using high-resolution analysis of

wrapped spherical codes. For the common integer partition, we have mapped the

initial vectors design problem to a vector quantization problem. In order to restrict

the searching space of integer partitions, we also attempt to extend a necessary con-

dition for optimal integer partitions of ordinary PSCs to those of concentric PSCs,

by proving a weaker proposition with a constraint imposed on the initial codewords.

This constraint is somewhat strange, but removing it from the proposition is not

easy and requires further work. When the integer partitions are different, for the

purpose of guiding PSC rate allocation, we derive fixed- and variable-rate allocations

of wrapped spherical codes for memoryless Gaussian source under the assumption of

high-resolution. Proving effectiveness of these two heuristic methods, however, is a

remaining challenge.



To cope with the issues of FPQ, we exploit canonical reconstructions, as well as

consistent reconstructions in the second part of the thesis. Resembling the recon-

struction methods for scalar-quantized frame expansions, we provide linear-program-

based and quadratic-program-based algorithms to achieve consistent reconstructions

for different source distributions. For the frame design problem, we derive a variety

of necessary and sufficient conditions on the frames for linear reconstructions in gen-

eral, and canonical reconstructions in particular, to be consistent. It is because we

want to combine advantages of both linear reconstruction, which has low complexity,

and consistent reconstruction, which yields better performance. This idea again fol-

lows strictly the philosophy of the overall thesis, "low complexity while still attaining

good performance." Along the way of describing "good" frames for the combination

of canonical and consistent reconstructions, a complete characterization of real re-

stricted equiangular tight frames in the codimension-1 case is given, in the relation

with the popular harmonic tight frames. This result might be of independent interest.

Although simulations have demonstrated the efficiency of the proposed reconstruction

methods and choices of frames, we do not know what frames are "good" when dealing

with the two types of reconstructions, linear and consistent, separately. Another issue

this work has completely ignored is the joint design of integer partitions and frames.

These gaps can be explored in future work. Also, a naive idea of combining CPSCs

and FPQ may yield better performance and is worth trying.
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