
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
European Laboratory for Particle Physics

CERN Geneva, February 2008
CH - 1211 Geneva 23
Switzerland

Geneva, Date

Large Hadron Collider Project LHC Project Report 1055

Digital Generation of Noise-Signals with Arbitrary Constant or Time-Varying Spectra
(A noise generation software package and its application)

Joachim Tückmantel

Abstract

Artificial creation of arbitrary noise signals is used in accelerator physics to reproduce a measured
perturbation spectrum for simulations but also to generate real-time shaped noise spectra for controlled
emittance blow-up giving tailored properties to the final bunch shape. It is demonstrated here how one can
produce numerically what is, for all practical purposes, an unlimited quantity of non-periodic noise data
having any predefined spectral density. This spectral density may be constant or varying with time. The noise
output never repeats and has excellent statistical properties, important for very long-term applications. It is
difficult to obtain such flexibility and spectral cleanliness using analogue techniques. This algorithm was
applied both in computer simulations of bunch behaviour in the presence of RF noise in the PS, SPS and LHC
and also to generate real-time noise, tracking the synchrotron frequency change during the energy ramp of the
SPS and producing controlled longitudinal emittance blow-up. This successful experience indicates that this
method can also be applied in the LHC.

CERN AB-RF, joachim.tuckmantel@cern.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44192134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

1. Introduction

Noise in the components of an accelerator (e.g. magnets, RF) generally can cause emittance
blow-up. Computer simulations to study the implications have to faithfully reproduce the measured
noise spectrum. In another context artificially introduced noise can be applied to create a desired
emittance blow-up. Here, often, a noise spectrum shaped to provide a given function – e.g. triangular
or flat within a given frequency range – is desired to get a particular shape of the blown-up bunches.
This noise has to be produced first for the computer studies but secondly identically for the truly
injected artificial noise in real-time. A further problem arises if the blow-up should take place while
the beam-controlling elements slowly change in a controlled way, for example during acceleration or
when the RF voltage changes. To be efficient the noise spectrum has to follow the corresponding
change of the synchrotron frequencies in position (shift) and width (scale).

The first digital noise-generation of arbitrary spectral shape was designed by the author to
simulate longitudinal emittance blow-up due to time-constant RF noise, especially for long LHC
coasts requiring a very long non-periodic noise data string of high statistical quality: required are one
value per machine turn, i.e. about 109 values for a 24 h coast in LHC. It is an integral part of the
simulation program ‘NoisySync’[1] including also the generation of monochromatic lines.

In parallel, ways to produce a controlled blow-up of the longitudinal emittance in the SPS and
later in the LHC (by a factor 2.5) were looked for. The blow-up in the SPS has to be done during
acceleration where the synchrotron frequency changes and so the excitation frequencies have to
follow. To roughly realize this for the first tests with minimum effort the noise source of an (outdated)
dynamic system analyzer was used to create a flat noise spectrum between 0 Hz and a nominal upper
frequency, ΔFnom, chosen in coarse steps on the instrument and adjusted normally to just cover the
synchrotron frequency spread within the bunch. However the spectrum showed long tails extending
above ΔFnom. This basic spectrum was mixed in an analogue multiplier with a (monochromatic) carrier
at F0, the nominal output being the same spectrum between F0 and fup=F0+ΔFnom but having also a
mirror image between flow=F0–ΔFmax and F0. Furthermore the tails show up above fup and below flow as
a mirror image. (Fig. 1)

ΔFnom0

tail

basic noise spectrum

F0

+tail–tail

F0-ΔFnom

up-mixed noise spectrum

F0+ΔFnom

0 F0

carrier (LO)

Fig. 1: The first band-limited noise generation to blow up bunches realized in hardware: mixing of the basic
noise spectrum between 0 and ΔFnom – having undesired tails – with a carrier at F0

F0 was changed as a function of time during the cycle i.e. all noise frequencies were shifted by
the same amount. In MD sessions using the SPS as an LHC test-bed the blow-up was initially rapid
but later levelled off [2] and was always at the limit between beam loss and insufficient blow-up for
the desired effect.

Then a laboratory test was done. The noise-generation part of the simulation program was
isolated, provided with an on-screen user interface and made an independent program. It accepts a
trapezoidal definition of the noise spectrum – in practice sufficient to define all desirable shapes – and
outputs a string of corresponding noise data. These are read into an arbitrary wave generator (AWG)
and played back (at a 10 kHz rate) from there. The measured spectrum (on a HP 3562A) showed
exactly the expected shape without any tails or side-lobes. This gave enough confidence to create a
LabView© user-interface for the SPS [3], collecting the user parameters, calling the generator

2

program and uploading the (60,000) noise data onto an AWG. Triggering the AWG then gives a real
time noise signal (of 6 seconds duration, determined by a ‘linear gate’) with the desired spectrum.

For a stable noise spectrum the noise generation program can directly define the ‘shifted’
spectrum between flow (≠0) and fup, avoiding the up-mixing and the undesired creation of the mirrored
spectral part. But to ‘slide’ and/or ‘scale’ the noise, mixing and the inherent mirror spectrum is
unavoidable for an initial constant spectrum.

In the meantime the possibilities given by simulated blow-ups using fixed spectra were about
exhausted. Hence variable spectra, ‘brushing’ through the bunch in coast and/or more precisely
following the synchrotron frequency changes during acceleration – not only shifting a constant
spectrum but also scaling its width – became desirable, implying that the same noise could be
generated later in real-time. The noise-generation programme was therefore upgraded to provide this
facility and this ‘noise package’ (with small adaptations) is now applied for simulation purposes in
“NoisySync” and also in real time noise generation for the SPS. To use it in the latter way the
LabView interface has also been upgraded to produce variable spectra. To describe the functional
dependencies for the SPS case it is sufficient to use two contiguous straight lines describing the upper
frequency bound and two contiguous straight lines describing the lower, i.e. 3 data pairs (f Low, fUp) at
t=0, t=tend and one between are sufficient (see also example in Fig. 6).

In LHC a similar method can be applied but can have better parameterization due to the much
longer blow-up time available and also should have specific hardware calculating and generating
(DAC) the noise signal in ‘parallel’, thus avoiding the lengthy upload time and an expensive AWG.
Also feedback from measured synchrotron frequencies might be used to slightly correct the emitted
noise data in real-time if the beam reacts slightly differently than anticipated.

In the above procedure the time-variation of the spectrum is limited to the scaling and shift of a
given arbitrary, but fixed, spectral shape, the shift and scale magnitudes being defined by arbitrary
functions. This degree of freedom seems sufficient for all needs and no further efforts were made in
this direction. However, by slowly merging various spectra having different spectral shapes while
conserving the statistical average value, practically any arbitrary case could be constructed if required
one day.

2. Noise with Arbitrary Stable Spectral Density

2.1 Generating a Finite Noise Data Set with Constant Arbitrary Spectral Density

The standard method to create ‘coloured’ noise in hardware is to filter white noise (from an
appropriate source) with a suitable filter. The complexity of the filter and its parameters depends on
the spectral shape and the required spectral cleanliness. Smooth change to the output spectral density
in real-time is then in general a major task.

One might adapt this method to a digital version by applying a digital filter but this does not
allow defining easily any spectral density without complicated parameter calculations and tuning.
Therefore we use another implementation – with only finite length non-periodic data output in a first
step – which consists of transforming a time-domain white noise data string of finite length N by
Fourier transform into the frequency domain, multiplying the spectral amplitudes by the desired
relative amplitude ρ(f) and then transforming back into time-domain.

White noise can be produced numerically by creating sequential numbers {Gk} that are mutually
statistically independent and have a zero balanced Gaussian probability distribution. It is well known
(see Appendix B) that such a sequence with standard deviation σ =1 can be created from 2N standard
random numbers {randm}, having equidistribution in]0,1[, by using

€

Gk = cos(2π ⋅rand2k) ⋅ −2 ⋅ ln(rand2k +1)

For reasons that become clear later (avoiding mirror spectra when mixing) we want to distinguish
between positive and negative noise frequencies, hence we use a complex noise description from

3

which at the end only the real part will be used. Therefore we apply the corresponding complex
description {gk} with Gk=Re[gk]

€

gk = exp(2π ⋅ i ⋅rand2k) ⋅ −2 ⋅ ln(rand2k +1) = cos(2π ⋅rand2k) + i ⋅sin(2π ⋅rand2k)[] ⋅ −2 ⋅ ln(rand2k +1)

We Fourier transform this string of N complex data into the frequency domain, multiply the
amplitudes by the real (absolute) amplitude distribution function ρ(f) (proportional to the square-root
of the desired spectral noise density) and transform back into the time domain to get the set {rk} with
the real part Re[rk]=Rk. Evidently for constant ρ=1 one gets back the initial white noise.

This set has an average expectation value <rk> of zero (both real and imaginary part). Only the
real parts Rk=Re(rk) of the complex data set {rk} of magnitude N is used as noise data set { Rk }; it has
the desired spectral density. We assume for the following that {Rk} has been scaled to an rms value of
unity (in fact {rk} including the imaginary part is scaled by this factor), hence we have

€

< Rk > = 0 and

€

< Rk
2 > = 1

The result has a finite length N but can be used as the basis for an improved method.

2.2 Creating a Quasi-Infinite1 Number of Non-Periodic Noise Data

The real data set {Rk} created above has a finite length N. From practical considerations (CPU
time per data increasing as approximately log2(N) but more critically memory limitation) N is limited.
{Rk} is periodic over its full length hence re-using it from the beginning would show no discontinuity
but would result in periodic noise output, to be avoided in our context. Switching to a new set created
from new random numbers will create in general a discontinuity, equivalent to a delta-pulse, which
will appear as an undesired signal at all frequencies. To avoid this effect, we always use in parallel two
statistically independent finite sets {rk} and {sk} of identical length N and spectral density. One can
now merge {rk} and {sk} while keeping the statistical properties unchanged. For any given angle ψ we
use cos(ψ) and sin(ψ) to define the complex variable

€

uk = rk ⋅cos(ψ) + sk ⋅sin(ψ)

and for the real parts

€

U k = Rk ⋅cos(ψ) + Sk ⋅sin(ψ)

From <Rk> = <Sk> = 0 it is evident that

€

<Uk > = < Rk ⋅ cos(ψ) + Sk ⋅ sin(ψ) > = < Rk > ⋅cos(ψ) + < Sk > ⋅sin(ψ) > = 0

i.e. also {Uk} is zero-balanced. Since {Rk} and {Sk} are statistically independent, zero-balanced and
both have the rms value 1, one has

€

< U k
2 > = < Rk

2 > ⋅cos2(ψ) + < Sk
2 > ⋅sin2(ψ) + 2cos(ψ) ⋅sin(ψ)⋅< Rk ⋅Sk > = 1

The sets {Rk} and {Sk} both have the given design noise power p(f)δf in the frequency range [f, f+δf],
i.e. the expectation values of the squares of the filtered signal between f and f+δf – having the noise
sets

€

< ˆ R k
2 | [f , f +δf] > and

€

< ˆ S k
2 | [f , f +δf] > are

€

< ˆ R k
2 | [f , f +δf] > = < ˆ S k

2 | [f , f +δf] > = p(f) δf

The filtered sets are also statistically independent and zero balanced, hence one obtains for any f

€

< ˆ U k
2 | [f , f +δf] > = < ˆ R k

2 | [f , f +δf] > ⋅cos2(ψ) + < ˆ S k
2 | [f , f +δf] > ⋅sin2(ψ) +

 < ˆ R k | [f , f +δf] ⋅ ˆ S k | [f , f +δf] > sin(ψ) cos(ψ) = p(f) ⋅df

1 It can easily be proven that there cannot be a truly infinite non-periodic data set with a finite number of bits but
the periodicity length here is many orders of magnitude longer than the number of revolutions of all particles in
all synchrotrons for the age of the universe, hence it is practically infinite.

4

The (unfiltered) set {Uk} therefore has the same spectral density as {Rk} and {Sk}, i.e. is an equivalent
set.

The same chain of arguments holds for the imaginary parts of {rk}, {sk} and {uk}, and so one
can use the complex variables r, s and u during the transformations taking the real part at the end.

We consider now an angle ψ that changes with time with the slowest possible constant speed,
i.e. from 0 to 2" while all N available data are used, i.e. ψk=2"k/N, k=0 to N-1. This will create a
minimal and also smooth perturbation to the spectrum of {uk} with the lowest possible frequency
corresponding to the lowest present frequency. At the instant ψ=2" one has uk=rk independent of sk,
hence at this instant one can switch to a new independent set {sk} without discontinuity. Similarly at
ψ=3"/2 uk=sk independent of rk, and one can switch to a new independent {rk}.

While this method of array switching excludes any discontinuity for the function values
themselves, there is no guarantee for derivatives. However, around the array-switching time the
weighting functions of the switched set sin(ψ) or cos(ψ) are very small so that the discontinuities of
derivatives in the weighted sum of rk and sk are not precisely zero but at least very small. Furthermore
the output data (see later) can be obtained by 6-point interpolation smoothing the transition over ±3
data.

One might have thought of letting ψ move at half the speed from 0 to " only; this would also
allow switching the sets at ψ=" and ψ="/2. However, the full turn from 0 to 2" creates only a single
very low frequency modulation whilst this solution would correspond to a weight/modulation function
|sin(ψ)| and generate higher harmonics at multiples of this lowest frequency. Therefore the first
solution is preferred.

Practically the sets {rk} and {sk} are used starting at k=0 to build the corresponding u0 up to
u3N/4-1 (N has to be a multiple of 4). Before r3N/4 and s3N/4 are used, {rk} is replaced completely by a
new, independent, set, {sk} remains as it is. Once rN-1 and sN-1 are used, {sk} is completely replaced
while {rk} remains as it is and k is reset to zero. This guarantees the output of a quasi-infinite non-
periodic series of noise data uk with the desired (constant) spectral density {Uk} based on a chain of
sets of finite length N. Of the first applied set {rk} the fourth quarter of the data are not used but this is
not a serious waste.

Advancing ψ and creating new arrays, as well as updating constants and indices, is done
automatically without user intervention.

2.3 Absolute Amplitude Normalization

Noise spectra are expressed in absolute terms by their local noise ‘power’ density at the
frequency f, hence if the signal is measured in the abstract unit X (e.g. [º] or [s] for RF phase noise,
[V] for RF amplitude noise), it is <X2>/Hz. It also might be expressed by its square root, Xrms/√Hz. In
practice one can measure it by filtering the frequency range between [f, f+δf], and determining
√<X2>=Xrms of the remaining signal. The local noise power density around f is then X2

rms/δf, using a
small but finite δf; mathematically one uses the limit as δf→0. The noise signal here has as yet no
units (they will be inserted later by the user), hence the local noise ‘power’ density is expressed in
[1/Hz].

A priori nothing is known about the shape and range of spectra that have to be produced, hence
one cannot use the local noise ‘power’ in [1/Hz] at a certain frequency for calibration. The only
reasonable absolute amplitude definition is done by fixing the total rms-value of the whole signal over
all frequencies. The software package is made such that the user prescribes the rms value U0 of the
total spectrum and the output signal then has a total noise ‘power’ Ptot=U0

2, i.e. U0=Urms,tot.

Any local ‘power’ density p(f) can then be calculated for the user-defined relative rms-
amplitude distribution function2 ρ(f) – proportional to the square-root of p(f) – and total calibration
factor Urms,tot =U0 , by

2 generic name ’RelShape()’ in the program

5

€

p(f) = U0
2 ⋅

ρ2(f)

ρ2(′ f) d ′ f
0

+∞

∫

U 2

Hz

while respecting the calibration relation

€

Ptot = p(′ f) d ′ f
0

+∞

∫ = U0
2

An equivalent form is

€

p(f) = U0 ⋅
ρ(f)

ρ2(′ f)d ′ f
0

+∞

∫

U

Hz

2.4 Remarks on the Usable Range of the Spectral Density Definition

In our case the noise data are observed by the bunch stroboscopically (e.g. when the particle
passes the ‘noisy’ cavity) with the time tick3 T=1/fClock. This means that an observing analyzer in the
range 0 ≤ f ≤ fClock detects the same spectrum as an analyzer observing in the range m·fClock ≤ f ≤
(m+1)·fClock for any integer m, positive or negative. Therefore a spectral definition in 0≤f≤ fClock

already defines the spectrum seen by the particles ‘up to infinity’.

Only the real part of the complex calculated data will be used as noise converted to e.g. phase or
voltage. This means that the complex contributions exp(2"if·t) and exp(–2"if·t) both generate the same
(observed) real value cos(2"f·t) and are hence indistinguishable to the observer. But any frequency f
might be shifted, indistinguishably, to f+m·fClock for any integer m. Doing this with m=-1 for
exp(–2"if·t) we get the two identical contributions from exp(2"if) and exp(2"i(fClock-f)), see Fig. 2.

Fig. 2: Movement of a complex vector in the complex plane (real=x, imaginary=y) with frequency f; positive
frequencies advance counter-clockwise. Observed is the real part (projection on x-axis, green dashed lines) in

stroboscopic mode with the rate fClock. If f = fClock the vector makes one full turn per step. At left a ‘low’ positive
frequency with f1< fClock/2 (red counter-clockwise arcs) is shown. At right a ‘high’ positive frequency f2= fClock–f1

> fClock/2 (red counter-clockwise arcs) and “high” negative frequency with f=-f1 (blue clockwise arcs) are shown.
All three have the same series of real parts (projection on the x-axis, green dashed lines) and are therefore

indistinguishable for the particle passing a cavity once per machine turn, fRev=fClock. Evidently all these
frequencies ± any multiple of fClock appear indistinguishable from those shown.

This means also that all lines in 0≤ f ≤fClock have a symmetric ‘twin’ with respect to fClock/2, as
also shown in Fig. 3 with the basic rectangular spectrum in 2-4 kHz and its twin in 6-8 kHz. It is only
necessary to define the spectral density for the range f=0 to f = fClock/2, all other parts of the (real)
spectrum are then uniquely defined. Therefore one should pay attention so that the upper frequency
band limit – called fup – of any such band (especially for variable noise) never passes above fClock/2.

3 For simulations T has to be identical to Trev; to create real-time noise it has to be much smaller than 1/fnoise,max to
avoid granularity of the digital output.

6

The program does not check this condition and if it occurs, the resulting output spectrum is not as
expected but depends on random factors.

In this spirit the definition of perfect white noise is done by setting the noise band from flow=0 to
fup=fClock/2 (not fClock !) and the spectral absolute amplitude function (RelShape, see later) has to
give any constant non-zero value for the full definition range from 0 to 1.

Fig. 4 shows examples of chosen spectra and their ‘measurement’ displayed in 0 ≤ f ≤fClock/2; this
avoids showing the upper mirror spectrum as is done in Fig. 3.

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/√Hz 20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 10.000 kHzBand [2.0- 4.0] kHz {460800 T} {46.1 [s] rmsT= 1.034 rmsF*√fB= 1.027}

Fig. 3: Numerically created signal with rectangular noise spectrum with sharp limits, display 0 – 10 kHz = fClock.
This display range shows the direct spectrum in the band from 2 to 4 kHz but also the always-present mirror
spectrum (10-4=6 kHz to 10-2=8 kHz). The ‘measurement’ is done with a ‘software digital signal analyzer’

(incorporated in the simulation program [1] for checks) in exp-average mode. Each new spectrum is created by
collecting 1024 new time-domain data and executing an FFT for 1024 = 210 data. Green: linear amplitude scale,
blue: logarithmic power scale (10 dB/div); the latter trace shows that there are no spurious side-lobes at all, even

at high resolution.

2.5 The Pseudo-Random Generator(s)

Nowadays all computer operating systems supply a pseudo-random generator. These are
certainly good enough to roll dice or distribute cards in games of chance on a PC but the statistical
quality in long runs and especially freedom from sequential correlations is not guaranteed a priori. To
be sure we exclusively rely on probably the best pseudo-random generator presently available for this
purpose – not for cryptography – the ‘Mersenne Twister’ in its implementation MT19937 [4]. The
period length is larger than 106000 (219937–1 to be precise), but most important is the fact that a 623-
dimensional equidistribution property is assured [4]. This means that at least any 623 sequential data
are free of correlations4. As a comparison, the often-used linear-congruential pseudo-random
generators do not have this property at all, a very serious flaw in the context of long simulations,
especially if one ‘event’ (here the final position of the particle in phase space) depends on a sequential
chain of random-calls (here the different noise-kicks). By avoiding multiplication and especially
division MT19937 is even faster than most (lower quality) competitors.

The author of this paper has made a few small modifications in his implementation(s). First, the
seed can be chosen either by (user defined) fixed data, allowing the same pseudo-random sequence for
each new run to be repeated – important for debugging – or by a computer clock generated seed,
different for each new run, important to study the scatter of the simulation results.

4 in the 32 bit implementation [4] as used here

7

In the simulation the placing of the macro-particles in phase-space – rendering a pre-defined J or z
distribution within statistical scatter – also needs a pseudo-random generator. For this purpose a
second, completely independent implementation of MT199375 with different function names was
added. This allows one to study the statistical scatter using different noise sets for the same bunch or
vice-versa.

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/√Hz 20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [2.0- 4.0] kHz {460800 T} {46.1 [s] rmsT= 1.034 rmsF*√fB= 1.027}

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/√Hz 20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [2.0- 4.0] kHz {460800 T} {46.1 [s] rmsT= 1.046 rmsF*√fB= 1.036}

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/√Hz 20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [2.0- 4.0] kHz {460800 T} {46.1 [s] rmsT= 1.069 rmsF*√fB= 1.075}

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/√Hz 20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [2.0- 4.0] kHz {460800 T} {46.1 [s] rmsT= 1.11 rmsF*√fB= 1.116}

Fig. 4: Examples of numerically created signals with arbitrary (constant) noise spectra, all in a noise band from 2
to 4 kHz, display range of 0 – 5 kHz = fClock/2, clipping the upper mirror image spectrum, otherwise as Fig. 3.
(top–left): rectangular as Fig 3, (top–right) trapezoidal, 25% rise and fall, 50% flat-top, (bottom–left): rising

triangular as used in the SPS blow-up, (bottom–right) cos2 shaped.

2.6 The Applied Fast Fourier Transform

The FFT is generally understood to imply a number of data/channels that is a power of 2. This
enforces a choice for the possible data length that may be somewhat coarse, especially for large
powers of 2. The initial idea of the FFT can be generalized if the total number N of data/channels can
be broken up as the product of factors which are as low as possible - the best would be prime factors.
In the worst case N itself is prime leading to a classical ‘slow’ Fourier transform. A suitable function

PrimeFFT(iprim, nPrim, fr, fi, gr, gi)

existed in the author’s software archive6. The ‘nPrim’ factors making up N are stored in the array
‘iprim’; factors km enter as m times the entry k. fr, fi and gr, gi are arrays holding the real and imaginary
part of the input (f) and output (g) arrays. A function that tries to split any N into (small) prime factors
(below a given search limit) also exists; in the present program N may be automatically slightly
increased to get a better splitting into smaller factors leading to faster execution despite the larger N.

5 probably an overkill for, say, 104–106 macro-particles, but MT19937 is also very fast

6 Developed for other but similar application

8

3. Variable Noise

3.1 Motivation

Cycle Display: turn 0 to 433800 (10.00 [s]) Noise Profile [f=y,a=x] <A0>=20.000 [ps]

E[0.0,500.0] Vhh[0.00,8.00] fN[60,560],fs0@J=[0 , 0.5]/6 a[0.00,1.20] ψ,ϕ0[-30.00,70.00] BuS[0.40,2.90]

Fig. 5: Graphic7 produced by ‘NoisySync’ [1] for a 10 s fraction of an SPS cycle starting with the last injection,
here t=0. Shown are E0 (magenta) 0–500 GeV, V200 (red), V800 (light red) both 0–8 MV and bucket size (dark
green) 0.4–2.9eVs. [In reality the magnetic field on the flat-top is ramped down earlier (after ejection of the

beam), in the present plot it is kept high for simplicity] The six lines having an upwards bump at the left
represent the synchrotron frequencies [range 60 Hz - 560 Hz] of (unperturbed) particles corresponding to phase-
space variables J=0 to 0.5 eVs, in steps of 0.1 eVs; the top line (dark blue) corresponds to fs0 with J=0. The grey

strip depicts the foreseen excitation noise band but the noise is only switched on between t=4 s and t=7 s – as
indicated by the lilac rectangular relative amplitude function. The noise band frequency limits follow those of

particles at J=0 eVs (upper) and J=0.5 eVs (lower) to blow up the bunch to a limit of about 0.5 eVs with
correspondingly reduced central population. In this example the function determining the band limits are simply

two joined straight lines – obviously sufficient – but any, more sophisticated, smooth function could be used.
The triangular noise profile is drawn in inverted coordinates with freq→y and amp→x (light green), to match the

orientation of the depicted grey noise band (arbitrary units); strongest excitation on top for J=0 eVs (bunch
centre) falling to zero excitation at J=0.5 eVs.

For our application we do not need any imaginable time dependence for the spectrum. It is
sufficient that the initially designed spectral density, targeted onto a certain range of synchrotron
frequencies with certain excitation amplitudes, can follow the frequency changes during the controlled
slow machine changes such as acceleration. To do so it is sufficient that this spectrum follows the
synchrotron frequencies of the particles, i.e. the higher end fup follows the frequency of the central
particle fs0 (according J0=0) and the lower end flow follows the frequency of an unperturbed particle
encircling a certain emittance area J1 in phase space, the intermediate frequencies in-between being
scaled and shifted linearly with the end frequencies. This is illustrated in Fig. 5, (a part of) the SPS
cycle with changing nominal machine momentum (bending field), main RF voltage at 200 MHz and a
higher harmonic Landau system voltage at 800 MHz in bunch shortening mode. During the noise
excitation the basic triangular noise profile – highest excitation at the bunch centre with J=0 and f=fs0 –
is shifted and scaled (grey band) to keep excitation optimum. A practical execution for the SPS is

7 The graphics output of ‘NoisySync’ only works on a Macintosh (OS X with PowerPC CPU) while the pure
number-crunching part should work (almost) immediately under other systems by setting the pseudo-instruction
#MACXXXX to undefined, thus excluding the MAC specific system calls.

9

sketched in Fig. 6. It seems evident that such scaling and shifting using arbitrary functions is sufficient
for our purpose.

t0=0

t=t1

t=t2

t

f

t>t 2

|Afreq|

|Afreq|

|Afreq|

t0=0

t=t1

t=t2

t

f

t>t 2

|Afreq|

|Afreq|

|Afreq|

Fig. 6: Illustration of a variable spectrum with time running from bottom to top. The frequency limiting functions
are both described by two adjacent straight lines (as applied in the SPS noise generator). Since, in this example,

the spectrum contracts in width, the amplitude increases as the square root of the same factor (see below) to
conserve the total noise ‘power’. (left) trapezoidal basic spectrum; (right) triangular basic spectrum.

In principle it is of no importance if one first scales and then shifts the basic spectrum or vice versa.
However for numerical reasons the first alternative is considerably better. As shown later,
interpolation of the time-domain signal has to be applied for frequency scaling. Interpolation is much
more precise if the function has only ‘slow’ variations as in the initial spectrum. The up-mixed signal
is in general much ‘faster’ and needs much more careful interpolation to avoid spurious side-lobes in
the output spectrum.

3.2 Frequency Scaling of the Basic Noise Signal

When music is recorded (analogue, not digital) on a gramophone record or magnetic tape and is
played back faster or slower compared to the design speed, all frequencies appear scaled by the same
ratio. The same effect is used here (in numerical realisation) to scale the basic frequency range. The
basic spectrum is set up as if it would be used between 0 to fClock, hence to respect f ≤ fClock/2 (see
above) the frequency-scaling factor is ≤1/2. The interpolation precision (see later) increases for lower
scaling factors since intervals between data points get smaller.

The ‘infinite’ string of time-domain signal created above does not come as a smooth function
but only in regularly distributed points, making good interpolation – except for very slow waves with
f<<fClock – impossible. To increase the number of points for interpolation we increase the number of
channels in the Fourier transformation. As depicted in Fig. 7 instead of starting with a frequency-
domain signal of nSource channels (sources), we create a spectral representation with nSource·nPnt channels,
nPnt being an integer, e.g. 8. Only the lowest channels, 0 to (nSource-1), are defined with non-zero
amplitude as used in the previous section, all other channels, nSource to nSource·nPnt, have zero amplitude.
In this way a (fast) Fourier transformation results in a time-domain signal with the highest frequency
components being sampled by nPnt points per oscillation and the lower frequencies with
proportionately more points. This allows interpolation at all frequencies up to the highest present with
very good precision. The design play-back rate is fClock but if we would take one data per clock-tick
now, the generated frequency would be nPnt times lower than before, i.e. the ‘sampling time step’
corresponding to the frequency fClock is nPnt times as wide as before. Evidently a step-width of nPnt/2
would produce the highest frequency signal at fClock/2. This is easily executed for even nPnt with integer

10

nPnt/2. However, now there are sufficient data points present to interpolate (6 point polynomial)
smoothly between the regularly spaced data points and it is easy to define any non integer step-width
as e.g. 0.168·nPnt (see e.g. Fig. 8), creating a signal with the lowest frequency at zero and the highest
spectral frequency Δf=0.168·fClock.

f

A ---- FFT ---->

freq.-domain

f

A

A = 0

---- FFT ---->

freq.-domain

time-domain, ndata=npnt

time-domain, ndata=4*npnt

Fig. 7: FFT of nSource amplitudes. (Top): standard transformation with (left) nSource channels and (right) their FFT
into time domain with nSorce channels/data points. Bottom: (left) with a factor nPnt (4 in this sketch) enlarged

number of channels to nPnt· nSource by adding the top (nPnt-1)· nSource channels with zero amplitudes and (right) the
resulting FFT with nPnt· nSource data, hence nPnt times the density of points in time-domain. This allows precise

interpolation for any arbitrary time-step (in reality nPnt=8 is used).

Fig. 8: Smoothly interpolated steps in ‘time’ domain of the data delivered by the FFT in Fig. 7. Left: sampling
(interpolating) by step-width of (top–left) e.g. ‘0.336’ and (bottom–left) with half the previous step-width, i.e.
‘0.168’. Right: Invariant playback with one data per clock-tick 1/fClock with (top–right) twice the frequency,

0.336·fClock, as (bottom–right) 0.168·fClock.

To be on the safe side we apply nPnt=8 so that the highest created frequency has enough
interpolation points per oscillation to give very good interpolation results. In fact, on Fig. 3 it can be
seen that even in logarithmic display – effectively magnifying small signal levels – side-lobes or
perturbing lines do not show up at all.

In practice this means that the FFT has to be done over a range nPnt (8) times longer than for the
simple fixed noise initially envisaged. But even for large number of points the FFT is very fast.

At the end of this step one gets an ‘infinite’ stream of time-domain data – the sliding merger of
two arrays of nSource·nPnt data {rk} and {sk} resulting in {uk} as shown above is always applied to get an
quasi unlimited stream – now having a spectrum of pre-defined shape between 0 and the chosen Δf, by
using the step width Δf/fClock·nPnt. Since we want to up-mix this signal without creating mirrored lobes
we have to retain only positive frequencies. To do so we preserve not only the real but also the

11

imaginary part of the interpolated time-domain signal, i.e. we keep a complex valued oscillation for
the time being.

3.3 Frequency Shift of the Scaled Noise Signal

Shifting a spectrum can be done by mixing the time-domain signal with a local oscillator (LO).
In a hardware implementation with a standard mixer/multiplier upper and lower sidebands appear, i.e.
not only an upper spectrum just above the LO frequency appears but also its mirror image just below
LO, the initial spectrum starting at zero. This effect was a limitation in the initial hardware-based set-
up. By numerical treatment it is easy to create the signals not as real but as complex numbers (see
above) with positive frequencies exclusively. When the LO signal is also defined as complex with a
(unique) positive frequency, mixing/multiplication produces no negative frequencies and there are no
side-lobes. The resulting output time-domain signal has a clean spectrum without mirror images or
spurious residuals just below the LO frequency. It is evident that for our case the LO frequency should
correspond to the lower band end frequency flow, shifting the initial spectrum from [0, Δf] to [flow,
flow+Δf] = [flow, fup].

Practically a complex number e with unity absolute value represents the LO status variable.
Since one noise data has to be produced for each clock tick Tclock, this complex status variable turns in
the complex plane at each clock tick as

€

ek ⋅ exp 2π ⋅ i ⋅ f low,k ⋅TClock() → ek +1

with the (possibly varying) lower band limit frequency flow,k at the ‘instant’ k. Evidently the absolute
value of e is conserved. The complex time domain signal sscsh,k, scaled and shifted, is then the complex
product

€

sscsh,k = ek ⋅ ssc,k

where ssc,k is the scaled signal as obtained in the last section. The noise value nout,k really used is then
the real part of sscsh,k. (The imaginary part would also work. However both should not be used as they
are correlated).

€

nout,k = Re sscsh,k[]

To avoid that the absolute value of e diverges numerically from unity during the many steps, it
is re-normalized ‘from time to time’.

Fig. 6 shows an example of variable noise with scaling and shifting where the functions for fup

and flow are defined by two consecutive straight lines each sufficient for the frequency variation
encountered in the SPS.

3.4 Amplitude Normalization of the Variable Noise Signal

Evidently the frequency shift of a given spectrum does not change the value of the local ‘noise-
power’ in [1/Hz], only the corresponding frequency-location is shifted. But when a spectrum is scaled
by a frequency factor of e.g. 1/4 in width, the local noise ‘power’ increases by a factor √4=2, the total
‘noise-power’ remaining constant. This relation might be desired or not, in any case it is not modified.
If the user wants to keep the local power constant – or changing by some other law – the relative
amplitude function can be updated by SetBandRelAmp(arel) or together with the frequencies
as well by SetBandPosAndRelAmp(, , arel) (for more details see Appendix).

4. Monochromatic Sharp Lines

Perturbations to the beam often arise from induced signals in the RF at the power grid frequency
and its multiples, e.g. those generated in power converters. Describing such lines by a ‘smooth’
spectrum is clumsy and not very precise. Therefore isolated monochromatic lines with an arbitrarily
sharp frequency f(m), amplitude a(m) and start phase ψ(m) for line m can be defined. The lines are created

12

precisely at the desired frequency using a complex status variable as shown for the local oscillator
signal in section 3.3., hence for line m with the frequency f(m)(t)

€

ek
(m) ⋅ exp 2π ⋅ i ⋅ f k

(m) ⋅TClock() → ek +1
(m) starting with

€

e0
(m) = exp i ⋅ψ (m)()

These lines may be absent (no initialization, e.g. Fig. 3), uniquely present without smooth noise
(no smooth noise initialization, Fig. 9a) or with both lines and noise superimposed (both initialized,
Fig 9b). Output nk at step k is the real part of the sum of all initialized lines, i.e.

€

nk = Re a(m) ⋅ ek
(m)

lines

∑

Sometimes sharp noise lines are part of a variable smooth noise spectrum or one wants to
simulate a line ‘brushing’ through a bunch. Therefore a Boolean variable exists for each individual
line telling whether the line slides with the spectrum (true, applying the same frequency scaling law as
for the smooth noise, i.e. lines keep their position with respect to the varying smooth noise) or remains
fixed at its frequency (false).

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/√Hz 20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [1.5- 2.5] kHz {819200 T} {81.9 [s] rmsT= 0.3948 rmsF*√fB= 0.3848}

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/√Hz 20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [1.5- 2.5] kHz {819200 T} {81.9 [s] rmsT= 1.155 rmsF*√fB= 1.087}

Fig. 9: (a, left): two lines without smooth noise; (b, right) two lines sliding with the smooth noise spectrum.

5. Conclusions

The generation of noise signals with arbitrary spectral density was successfully achieved and
applied in simulations for the PS, SPS and LHC. The monochromatic line option was applied to check
the influence of the induced signals at 50 Hz multiples of the power-grid as measured on the cavity RF
phase in LHC [5].

For the SPS as LHC test-bed the initial simple hardware set-up with large tails and mirror
spectrum was successfully replaced by the digital approach described above. This has no mirror-
spectrum and is spectrally very clean. Also modifications to the spectral parameters could be easily
done by simply changing some numbers on a graphical user-interface (GUI).

This successful test leads us to hope that a similar technique can be used in the LHC for the
longitudinal blow-up required between injection and top energy to avoid large intra beam scattering in
coast. The implementation would then run on a single computer in conjunction with a fast DAC – to
avoid the slow uploading and the cost of an AWG – that would ‘in parallel’ calculate chunks of noise
data and send them in analogue form to the main RF system phase loop.

13

Appendix A: Some Practical Considerations

A.1 Smooth Noise Spectra

The basic spectral amplitude shape distribution ρ(x) (proportional to the square root of the
spectral density) is defined once and for all by a generic (double) function RelShape(x), with the
normalized frequency co-ordinate 0 ≤ x ≤ 1. In the application later ‘0’ is always scaled and shifted to
the actual flow, ‘1’ to the actual fup. The function used is relative, i.e. absolute scaling of RelShape is
of no importance; the true user function can have any (other) name.

Before using the noise-package, an initialisation call to define all fixed parameters has to be
placed to the void function

InitializeNoise(fClock,rms,RelShape,nSourceMin,nPntMin,iRand).

Here “fClock” is the intended play-back clock rate [Hz] giving the correct absolute frequency
calibration, “rms” the rms expectation-value of the output signal (for variable relative amplitude 1),
“RelShape” the function pointer to the spectral amplitude shape function and “nSource,Min“ the
minimum number of elementary noise sources in a basic data set which the set-up procedure may
slightly increase to speed up later execution. The number of elementary noise sources should be large
enough – i.e. tight enough – so that they cannot be clearly resolved within the ‘running time’ of the
data set. “nPnt,Min“ is the minimum number of interpolation points for the fastest elementary oscillator
(at least 8 recommended, prime numbers to be avoided).

 The variable “iRand” is a (long) random seed value and flag at the same time. If it is negative
then a different, automatically generated, computer clock seed is applied at each run, forcing a
different random set each time. If it is larger/equal to zero then the input data iRand is directly used to
create the seed, hence always the same random data are created.

InitializeNoise also allocates the needed memory and keeps track of it. This function can
hence be called many times, even for different parameters, and the memory is adjusted
correspondingly. To restart with the same conditions, RestartNoise() is easier to use. If a fixed
seed was chosen at initialisation, exactly the same noise as before is reproduced (e.g. to apply the same
noise to different applications), otherwise a new computer clock generated seed defines the following
noise output.

Just after set-up, the three ‘spectral parameters’ flow, fup and arel have to be defined at least once
by a function call to SetBandPosAndRelAmp(flow,fup,arel). From then on any call to the
(double) function NextVNoise() delivers the next noise data with the actually valid spectral
parameters. To avoid running with different software (or extensive switching) we only keep the most
versatile version, i.e. the one with variable noise capability, and use it also for stable noise spectra,
leaving flow, fup and arel as initially defined. The overhead compared to an ‘only fixed noise’
version is very small and e.g. does not hinder real-time noise creation with high fClock.

To modify the spectral settings, SetBandPosAndRelAmp(flow,fup,arel),
SetBandPos(flow,fup) or SetBandRelAmp(arel) can be called for each change of
parameter(s). For a continuous change it is easier to call directly one of the overloaded8 instances of
NextVNoise(): NextVNoise(flow,fup) or NextVNoise(flow,fup,ramp).

It is up to the user to construct functions such as flow=GetFlow(turn) to define the
spectral parameters as a function of turn (or time) if this is required (variable spectrum). In his
simulation program NoisySync the author has data pairs for each turn-number and e.g. flow stored in a
C-structure. There is also a function that linearly interpolates between these (not necessarily regularly
spaced) data points. Standard SPS files with e.g. V200 as a function of cycle time [ms] can be read in as
they exist and are then transferred onto an appropriate C-structure for use by the linear interpolation
function.

8 a function is called overloaded when it has for the same name different versions distinguished by differing
number or type of arguments.

14

Using NoisySync the synchrotron frequencies of the different particles can also be plotted
and/or written in text form to determine flow and fup for changing cycle data, such as V200. These data
can then be stored in a C-structure and are directly used for the simulation.

A.2 Monochromatic Sharp Lines

By calling the following set-up function monochromatic lines are initialized:

InitializeGenMonoLines(nMono,doSlide,freq,amp,psiDeg)

“nMono” is the total number of lines. The other arguments are arrays (pointers) with one entry per line
each: “freq” [Hz], “amp” [1] the absolute amplitude, “psiDeg” [º] the starting angle (all double).
“doSlide” is a Boolean flag determining if the line should stay constant in frequency even when the
smooth part moves (false) or should slide as if it would be part of the smooth noise (true). The
initialization function also allocates memory and can be called many times with differing parameters;
memory and constants are reset each call. To restart with the same conditions, a call for
RestartGenMonoLines() is sufficient.

The total signal-level from all lines is calculated in a call to NextMonoLines(), a double
function. Frequencies and amplitudes of lines declared fixed, i.e. which do not slide with the smooth
range, can also be displaced or allowed to slide manually independent of the smooth spectrum’s
sliding.

A single line, number “iLine” (counting starts at 0!), can be changed in frequency by
ChangeMonoLineFreq(iLine,newF) or in amplitude by calling the function
ChangeMonoLineAmp(iLine, newA). All lines can be changed together using one call, faster
than several individual line calls, by C h a n g e M o n o L i n e F r e q (n e w F s) and
ChangeMonoLineAmp(newAs) where “newFs” and “newAs” are arrays containing “nMono”
entries with the new settings (overloaded functions).

Appendix B: Transformation of random number sets

px(x)

x

r

pr(r)=1

x1 x2

0 1r’

x’

Fig. B1: Two linked probability density functions px(x) and pr(r).

To create a sequence of random numbers xk with an arbitrarily chosen density distribution px(x) in
[x1,x2] (including ±∞) based on another sequence rk with the known distribution pr(r), is a common
problem in simulations, i.e. a non-unique corresponding transformation xk=F(rk) is to be searched for.
Generally pr(r) is the standard equidistribution in [0,1] with pr(r)=1; we will treat only this special case
here, but the generalization is straightforward.

15

The number of events with rk≤r’ has to be identical to the number of events with xk ≤ x’=F(r’), i.e.
one has (see also Fig. B1)

€

H (′ x) = px (x) dx
x1

′ x

∫ = pr (r) dr
r1

′ r

∫ = ′ r − r1 = ′ r .

Since probability densities are always larger/equal to zero, H is monotonic and can hence be inverted9

and one concludes immediately that F is the inverse function of H, i.e.

€

F(r) = H −1(r) ⇒ xk = H −1(rk)

In principal this method always works but if H(x), the integral over px(x), or its inversion are not
simple, necessary for fast execution, other methods might be more efficient. This is the case for a
Gaussian probability distribution for unit σ with px(x) proportional to exp(-x2/2). But there exists
another algorithm10, inspired from the determination of the definite integral over the Gaussian function
from -∞ to +∞: the square of the desired integral is expressed by a 2-dimensional integral that can be
transformed to polar co-ordinates with ‘easy’ integrals.

In fact, let us imagine that we can generate a 2-dimensional probability density distribution in
0 ≤ ϕ ≤ 2" and 0 ≤ ρ < ∞ as

(B1)

€

pρ,ϕ (ρ,ϕ) ⋅dρ ⋅dϕ ∝ ρ ⋅exp(−ρ2 / 2) ⋅dρ ⋅dϕ

This distribution in polar co-ordinates can also be expressed in Cartesian co-ordinates by

€

x = ρ ⋅cos(ϕ); y = ρ ⋅sin(ϕ); dx ⋅dy = ρ ⋅dρ ⋅dϕ
yielding

€

px, y(x, y) ⋅dx ⋅dy ∝ exp(−(x2 + y2) / 2) ⋅dx ⋅dy = exp(−x2 / 2) ⋅exp(−y2 / 2) ⋅dx ⋅dy

Now one need only look for the distribution in x with y becoming irrelevant, i.e. one has to integrate
over the whole range of y yielding the desired relation

€

px (x) ⋅ dx = dx ⋅ px, y(x, y) ⋅ dy
−∞

+∞

∫ ∝ dx ⋅exp(−x2 / 2) ⋅ exp(−y2 / 2) ⋅ dy
−∞

+∞

∫ ∝ dx ⋅exp(−x2 / 2)

i.e. once the 2-dimensional distribution (B1) can be generated, the Gaussian distribution px(x) can be
obtained by neglecting y and only considering x. Evidently (B1) as a 2-dimensional distribution needs
two statistically independent random numbers ra and rb per data x.

To obtain data distributed as (B1) one can use the standard method described above. One splits
(B1) into two independent factors pϕ(ϕ)dϕ and pρ(ρ)dρ and applies the method for each of them, i.e.

€

pϕ (ϕ) ⋅dϕ ∝ 1 ⋅dϕ

€

pρ (ρ) ⋅dρ ∝ ρ ⋅exp(−ρ2 / 2) ⋅dρ

The absolute normalization constants have to be determined by the condition that the total probability
for any event – i.e. the integrals over pρ(ρ) and pϕ(ϕ) for the corresponding whole range – has to be
one. This yields finally

€

pϕ (ϕ) ⋅ dϕ = dϕ /(2π) ⇒ Hϕ (′ ϕ) = dϕ /(2π)
0

′ ϕ

∫ = ′ ϕ /(2π)

€

pρ (ρ) ⋅dρ = ρ ⋅exp(−ρ2 / 2) ⋅dρ ⇒ Hρ (′ ρ) = ρ ⋅exp(−ρ2 / 2) ⋅ dρ
0

′ ρ

∫ = 1− exp(− ′ ρ 2 / 2)

Inverting H yields F with

€

ϕ k = 2π ⋅ra,k and

€

ρk = −2 ⋅ ln(1− ′ r b,k) → −2 ⋅ ln(rb,k)

In the latter expression we can write rb,k instead of 1-r’b,k when considering that for a random equi-
distribution r’ in [0,1], r=1-r’ is also an equivalent random distribution with the same specifications.
This means then for x (and y) in Cartesian co-ordinates

€

xk = cos(2π r2k) −2 ⋅ ln(r2k +1) ;

€

yk = sin(2π r2k) −2 ⋅ ln(r2k +1)

9 at least piecewise for regions where px>0; macroscopic regions px=0 lead to a discontinuous inverse H-1

10 also fast approximations for the inverted Gauss integral are applied.

16

where we have assumed, as is usually done, that ra=r2k and rb=r2k+1 are two sequential calls for the
same standard pseudo-ransom generator; evidently the latter has to produce statistically independent
sequences, hence should be a high-quality generator such as the Mersenne Twister [4].

Here x and y both have Gaussian distributions, hence both sequences might be used. However, one
should not be tempted (for efficiency reasons) to use both as two Gaussian variables as they are
correlated, one series has to be ‘thrown away’.

For primary complex noise, as used in this paper, x and y are just the real and imaginary part for
further transformations and the final real part is the true output.

To avoid numerical problems in the logarithm if r would become (very close to) zero, one should
replace

€

−2 ⋅ ln(r) → −2 ⋅ ln(ε + (1−ε) ⋅r)

with a well-chosen very small constant ε

Acknowledgement
The author would like to thank Elena Shaposhnikova, Trevor Linnecar and Thomas Bohl for helpful
discussions and the latter for supplying the SPS cycle data as (E, V200, V800) as well as Urs Wehrle for
his contributions to the AWG tests and the LabView® interface.

References

[1] J. Tückmantel, ‘NoisySync’, a simulation program for RF noise in synchrotrons, CERN,
unpublished

[2] T. Bohl et al., Controlled Longitudinal Emittance Blow-up in the SPS as LHC Test-Bed and
Injector, CERN AB-Note-2003-84 MD

[3] Urs Wehrle et al., priv. Comm.

[4] Makoto Matsumoto and Takuji Nishimura, Copyright (C) 1997 - 2002, all rights reserved.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

email: m-mat @ math.sci.hiroshima-u.ac.jp (remove ‘anti-spam’ space)

[5] J. Tückmantel, Simulation of LHC Bunches under Influence of 50-Hz-multiple Lines on the Cavity
Field, LHC Project Note-404 (2007)

