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Abstract

Chapter 1 develops a non-parametric methodology for identifying contract optimality in the
presence of moral hazard. Following the first order approach, a standard method of computing
optimal contracts, the paper first proves two theoretical properties of the solutions to the moral
hazard problem. First, we show that the profit loss (relative to the optimal contract) for given
effort level has a unique lower bound. The second property is an equivalence between the first
order condition (Mirrlees-Holmstrom Condition) and the Cramer-Rao Lower Bound (CRLB).
These two properties provide the foundations for (1) identifying optimality, and (2) performing
statistical inference on the agent's primitives based on an observed sequence of pairs of outputs
and payments. The paper shows that under some weak conditions, contract optimality is
identified, as long as the output generating process is additive in effort and noise. Identification
does not require the agent's effort to be observed by the principal or the econometrician, and
requires no knowledge of (1) the details of the contract, (2) the agent's cost of effort, (3) the
agent's monetary utility, or (4) the distribution of output. Based on the approach proposed in
this paper, we test contract optimality for a piece-rate contract, and estimate bounds on the
profit loss for cotton weavers in Zhejiang Province, China.

Chapter 2 develops a new method to justify the validity of the first order approach (FOA).
We first prove that checking the validity amounts to checking the existence of a fixed point
of the agent's best reponse against a Mirrlees-Holmstrom (MH) class contract offered by the
principal, given some specifications of complemetary conditions. The main advantage of the
current approach is the relaxation of the global concavity of agent utility. We show that under
a set of mild conditions, the fixed point approach is applicable and the solution to the principal-
agent problem exists. In particular, if the log likelihood ratio is monotonically increasing in
output but decreasing in effort, the best response correspondence agrainst a MK contract has
and only has one unique fixed point. Our approach unifies Jewitt's (1988) and Rogerson's (1985)
proofs of validity of FOA, and provides a general method to judge validity of FOA. Based on
the fixed-point approach, with some additional specifications, we restore Jewitt's (1988) results
to situations where the distribution is not convex and the log likelihood ratio is not bounded
from below (e.g., normal distribution), or there exists a limited liability constraint.

Furthermore, we generalize our results to a situation where the agent's utility is non-

separable. In this fairly general environment, we prove a necessary and sufficient condition

for the FOA to be valid, which provides an important method to identify the validity of FOA
and compute the solution of the original problem. Finally, we provide a necessary and sufficient



condition for a general non-linear bi-level optimization problem to be solvable based on FOA,
without a convex constrained set.

Chapter 3 constructs a concrete mechanism/auction to explore the consequence of imposing
the ex post participation constraint. The main findings are:

(1) In private good cases (symmetric or asymmetric), we can obtain ex post first best, ex

post budget balance, at least interim incentive compatibility and ex post individual rationality

(we call it ex post social effiicency), whenever the VCG mechanism runs expected surplus. And
the mechanism generating an ex post monotonic payoff is generically unique (up to an ex ante

side-pay). In addition, compared with standard auctions, our mechanism generates a risk-free

revenue to the seller and ex post invidually rational payoff to the bidders.
(2) In a general preference case with externality, we show there exists an ex post socially

efficient mechanism when the number of participants is sufficiently small (n = 2). And the

choice of mechanism depends on whether the quantity is endogeneous or not.

(3) As an implication, we provide a general discussion on how divisibility, endowment dis-

tribution and preference affect the possibility of trade. For the negative result, we show a set of

conditions for non-existence of an ex post socially efficient trade, such as either utility is linear
or the lowest type agent's utility is independent of his endowment, which can be regarded as

stronger version of no-trade theorem (Myerson-Satterthwaite, 1983). This proposition implies

non-existence of an ex post socially efficient partner dissolving mechanism. For the positive

side, we provide a sufficient condition for existence of ex post socially efficient trade mechanism

and show an explicit example.
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Chapter 1

Identifying Contract Optimality

Non-parametrically with Moral

Hazard: First Order Approach and

Statistical Inference



1.1 Introduction

This paper explores statistical inference in moral hazard problems. In a principal-agent context

with moral hazard, the principal needs to design an incentive scheme to implement a certain

level of effort despite the fact that the agent's effort is unobservable (Mirrlees, 1971; Holmstrom,

1979; Grossman and Hart, 1983, among others). Recently, there has been increased interest in

searching for testable empirical implications of contract theory (see Chiappori and Salanie, 2003,

for a survey). However, there is still a gap between direct implications of theory and existing

empirical strategies. In particular, empirical data' often lacks seemingly relevant information

such as (1) the details of the payment schedule, (2) the agent's monetary utility, (3) the agent's

cost of effort, or (4) the distribution of output, which hinders the ability to identify the primitives

of the model or the contract optimality. As a result, a host of structural assumptions are

employed to analyze a particular class (linear) of contracts and optimality is typically assumed2

In this paper, we provide a methodology for doing statistical inference without restricting

ourselves to linear contracts, without relying on instrument variables, and with relatively weaker

assumptions. More precisely, we address the following questions:

* (Q1) Suppose a researcher observes a sequence of output and payment data. Does there

exist any possibility to rationalize the data such that the underlying contract is optimal?3

1For example, Paarsch and Shearer (1999, 2000) and Shearer (1998) evaluate the efficiency of piece rate
contracts, Ackerberg and Botticini (1999, 2003) address matching of sharecropping contracts, and there is a
large body of literature trying to estimate the effectiveness of CEO compensation (Murphy, 1999 for a survey).

2 One exception is Paarsch and Shearer (1999, 2000), who use as an instrument information about outside
reservation utility (minimum wage law) to estimate a lower bound on the profit loss from utilizing a strict piece
rate compensation scheme instead of a more flexible linear contract (with a potentially non-zero intercept). Haley
(2003) follows Paarsch and Shearer's approach to estimate the elasticity of the tree logger's response of to piece
rates.

3 Q1 can be rephrased as follows: with the presence of moral hazard, what are the restrictions (identification
conditions) on the sequence of data {(xi, wi)} = we can test if (and only if) the data are generated by an optimal
contract, without knowing agent's utility, cost of effort, production function, or contractual form? An analogue of
this question in neoclassical microeconomics seems to be the test of the generalized axiom of revealed preference
(GARP), where economists ask what the identification condition is if a quantity-price bundle {(qj,p)})=l is
generated by GARP of a certain individual. However, the question regarding optimal contract is much more
difficult. Besides unobservability of utility and cost of effort, there are at least several other important differences:
(1) the action of the agent also is unobservable due to moral hazard (in GARP, action qi is observable); (2) the
outside economist may only observe wage wi, rather than the functional form of contract si(xi) that the agent
faces (in GARP, pi is observed); (3) the researchers's purpose is not to test the agent's individual decision, but to
test how the contract optimally incorporates the agent's best response. These difficulties make test of contract
optimality a challenging issue.

1 ___~~_~~~__T__~iii~_~i____~~~__l_~l___i_ :



* (Q2) In the case where we can reject optimality, can we bound the profit loss of the

suboptimal contract compared with the unobserved optimal counterfactual?

* (Q3) Are the primitives identified (and under what conditions)?

* (Q4) If there is profit loss, can we identify the mechanism leading to that loss?

These questions are of both theoretical and practical interest in many fields where designing

incentive schemes plays a crucial role, such as labor economics, corporate finance4 , income

taxation, social insurance and health care (see the survey by Chiappori and Salanie, 2003). In

this paper we develop a unified framework to address these issues5

The general framework is based on the first order approach (FOA) to solving for the optimal

contract (Mirrlees, 1971; Holmstrom, 1979; Rogerson, 1985, Jewitt, 1988, among others). In

this paper, we first establish a linkage between the first order approach and the Cramer-Rao

Lower Bound, allowing us to design a test for the optimality of a contract under some regularity

conditions. If optimality is not rejected, we then establish uniqueness of the solution, which

allows us to back out parameters of the underlying model, allowing us to carry out statistical

inference.

This paper demonstrates that given only data on output and compensation, the econome-

trician can say whether or not the contract offered to the agent is optimal, without making any

parametric assumptions about the utility of money and the disutility of effort, or the distrib-

ution of output. Additionally, we can non-parametrically identify the score function of effort

(up to a multiplicative scalar) and the agent's inverse marginal utility (up to an affine transfor-

mation) under the null hypothesis that the contract is optimal. This allows us to put a lower

bound on the profit loss of using a suboptimal contract. The above results hold if (1) the out-

put is generated by a single agent facing the same (potential stochastic) contract and choosing

the same level of effort across observations, (2) output is additively separable in effort and an

i.i.d. error term, and (3) the agent's utility is separable in money and disutility of effort. As

4 In corparate finance, CEO compensation is a key question; however, a method to identify the optimality

itself is still absent (see Prendergast, 1999; Murphy, 1999 for the survey).
5Building off this framework, in a separate paper, we address co-existence of moral hazard and adverse

selection (Ke, 2008).



a demonstratration of our approach, we apply our techniques to examine a piece rate contract

from a textile firm in Zhejiang Province, China.

This paper is organized as follows: in Part 2, we characterize the moral hazard problem and

its solution using FOA, list the regularity conditions and derive the uniqueness of the optimal

contract and the equivalence theorem. In Part 3, we develop a parametric testing procedure

when the monetary utility and score function are parameterized by unknown parameters, and

we also provide a Monte-Carlo simulation for a baseline model. In Part 4, we develop a non-

parametric testing procedure when both the monetary utility and score functions are unknown.

In Part 5, we extend the results to a heterogeneous data generating process. In Part 6, we

provide an empirical example, using piece-rate data collected from Zhejiang Province, China.

In Part 7, we conclude and discuss future research. Technical proofs are provided in the Ap-

pendices.

1.2 Characterization, Equivalence Theorem and Uniqueness of

Lower Bound

1.2.1 Characterization of moral hazard (first order approach)

In a standard moral hazard problem setting (Holmstrom, 1979), there are a principal and an

agent, whose monetary utility functions are v(.) E V and u(.) E U, respectively. The agent's

output X is randomly distributed over region X CR, with probability density function (p.d.f.)

f(x, a), given the agent's effort a E A C R+, where A is an open interval. We assume the support

X does not depend on the effort level a and p.d.f. f(x, a) is continuous and differentiable in

a up to some appropriate order. The agent's effort is unobserved by the principal, and the

principal makes a take-it-or-leave-it contract s(x) E S with S being a measurable functional

space. Assume that the disutility of effort c(a) is separable from the monetary utility. The

principal solves the following optimization problem:

(P1) max v(x - s(x))f(x, a)dx
{a, ( 1 )}



subject to the following individual rationality (IR) and incentive compatibility (IC) constraints

for the agent,

I [u(s(x)) - c(a)]f (x, a)dx > U (IR)

[u(s(x)) - c(a)]f(x, a)dx > /[u(s(x)) - c()]f (x, i)dx, Va, aE AU {0}, (IC)

where U is the outside reservation utility, and the choice set A U {0} implies that a = 0 could

be a default choice by the agent.

In theory, because the IC constraint listed above is an infinitely dimensional constraint,

under some conditions, we can use the first order condition of IC instead, which is called the

first order approach (FOA). The validity of FOA is an important theoretical issue (Mirrlees,

1974; Rogerson, 1985; and Jewitt, 1988 among others), but the discussion of it is beyond the

scope of this paper (See Ke (2008) for more discussion). Instead, we try to enable the use of

empirical data to answer whether FOA is valid based on the procedures to be developed later.

Here we make the following regularity assumptions:

Al: Agent is risk averse and the principal is risk neutral;

A2: disutility of effort is increasing and weakly convex in effort a, namely, c'(a) > 0, and

c"(a) > 0;

A3: expected output is increasing and weakly concave in effort a, namely, (i) 9EX > 0

and EX < oo00 any a < oo00, and (ii) 'EX 0;

A4: the score is well-defined everywhere, namely - log f(x, a) > -oo for any x E X;

A41: or the payment is uniformly bounded from below, namely, s(x) > s > -oo for any

x E X.

Al is conventional but not a necessary condition. What is necessary is - + (- () > 0,

which means that the principal can be risk averse or risk taking. A2 and A3 are standard and

particularly, A3-i implies the identifiability of the distribution function, that is, EX increasing

in a implies f(x, a) # f(x, a') for all a # a'. A4 may be the most restrictive one, precluding

the most familiar normal distribution. But A4 can be dropped if limited liability constraint

A4/ holds. The economic intuition behind A4 or A4' is that the principal cannot punish the

agent by a negative infinite fine, even if the agent's performance is bad. Interestingly, A4' can

bring some more information about the identification of the contract optimality, which will be



discussed later in a real example (piece rate contract).

For convenience, we define the following regularity conditions.

Definition 1.1: A moral hazard problem is regular, if Al, A2, A3 and A4 or A' are met.

If moral hazard is regular6 and the first order approach is valid, then the following conditions

are listed (Holmstrom, 1979):

v'(x - s(x)) + fa(x, a)
'(s(x)) f(x, a)

u (s(x)) fa(x, a)dx - c'(a) 0 (1.2)

v(x - s(x)) fa(x, a)dx + u(s(x)) faa(x, a)dx - c"(a)) = 0 (1.3)

[u(s(x)) - c(a)]f (x, a)dx > U. (IR)

And we have the second order condition as:

u(s(x)) fa(X, a)dx - c"(a) <0. (1.4)

Equation (1) is the first order condition with respect to contractual form s(x), which is

pointwise. Equation (2) is the local IC constraint stating that the unobserved action a should

be of the agent's best interest and this constraint will be global if the concavity constraint (4) is

met. Equation (3) is the adjoint condition for the action a to be implemented. At the optimal

point, the local IC constraint (2) and IR constraint will be binding, and thus the system is

solvable if all parameters (v, u, c, f, U) are known. We denote the solution to the problem (P1)

as V(v,u,c, f, U).

The advantage of the above characterization is its theoretical generality, despite the re-

striction of the validity of FOA. However, usually, it is not easy to have an explicit solution.

Therefore, at the first glance, a comparative statics seem almost unavailable, which may be

the primary reason that the above approach is seldom used to analyze the contract in practice.

So far, there has been little empirical research directly based on the above theoretical setting.

6 We are aware that conditions A1-A4' are not sufficient to guarantee the validity of FOA, so we assume it is

valid for a moment and then ask whether the real data can justify the validity of FOA.



We come up with an idea to take advantage of the generality of the above approach, in the

sense that we can test optimality and bound profit loss without complete knowledge of the

agent's utility, cost of effort or even the production function. So we first prove the uniqueness

of the lower bound of profit loss, and second build an equivalence theorem between contract

optimality and the Cramer-Rao Lower Bound (CRLB) theorem.

1.2.2 Unique Lower Bound of Profit Loss

For convenience, hereafter, let,(" = h(.) (according to Al, = h(.)) and l(x, a)

Slog f(x, a) = (xa) Throughout this paper, we will put hat to the observed variables

versus their counterfacutals. This subsection deals with some important properties of moral

hazard problem (P1) with infinite data. Then we will move to the finite data case in later

sections. Before proceeding, we define a concept of optimality. Similarly to Grossman-Hart

(1983), the moral hazard problem in our characterization can be decomposed into a two-step

optimization procedure (Kim, 1995). The first step is to find a minimum expected payment

scheme s* (x) implementing a given effort level a given IC and IR constraint binding. This type

of optimality is defined formally as follows.

Definition 1.2: A contract w = s*(x) is called the conditional constrained optimum (CCO),

if and only if there is no other incentive compatible contract 9(x) =/ s*(x) with positive prob-

ability such that (i) f(x - s*(x))f(x, a)dx < f(x - 9(x))f(x, a)dx given the same effort level

a being implemented, and (ii) the agent has the same utility fu(s*(x))f(x,a)dx - c(a) =

f u(9(x))f(x, a)dx - c(a).

With infinite data, conceptually, we can back out s(x) by observing output and payment

(or at least the distribution of w conditional on x), and we also are able to back out f(x, a).

We ask whether with infinite data, we can find utility (u(.), c(.)) such that observed contract is

optimal. We call the data "rationalizable", which is defined as follows.

Definition 1.3: An observed output payment pair (x,w) is rationalizable if there exists any

utility function (u, c) satisfying regularity condition in definition 1 such that w = s*(x) is the

optimal contract consistent with (u, c) and implements p.d.f. of x.

Difficulty arises because the optimality itself can not be observed directly, so to check

whether data is rationalizable, we have to check the first order conditions. The important



property is that, if the data satisfies condition (1), say, 9(x) satisfying h(g(x)) = A + 'lal(x, a)

for given h(.) and la(x, a) then the following theorem shows that 9(x) is the unique conditional

constrained optimal contract, regardless of whether the validity of the first order approach.

Theorem 1 Theorem 1.1: If moral hazard problem is regular, then when (infinite) data (x, w)

satisfy the first order condition (1), then w is the unique conditional constraint optimal contract

implementing the effort a, i.e. p.d.f. f(x, a).

Proof. Step 1: Identifiability of effort.

By assumption A3, effort f(x, a) is identifiable, i.e., with infinite data, f[log f(x, a) -

log f(x, &)]f(x, &)dx = 0 if and only if = a with probability 1. Therefore, we know observed

output is generated by effort a.

Step 2: Effort is a fixed point of the agent's best response correspondence

We know the contract w satisfies first order condition (1), so a is a fixed point, i.e., a E

arg max f u(w)f(x, a)dx - c(a). Therefore, w will be the cheapest contract to implement a. We

prove it by contradiction as follows (see chapter 2 for more discussions).

Note that the local IC constraint (2) is the necessary condition for agent's best response.

Therefore, suppose there is an optimal contract w* implementing the same effort level a, and

keeping the agent's utility the same as U, too, we have

Su(w*)l(x, a)f(x, a)dx -c'(a) = 0 = u(r(q))la(x,a)f(x, a)dx -c'(a)

and u(w*)f(x,a)dx - c(a) = U = u(r(q))f(x,a)dx - c(a).

By these two equalities, we have,

q[u(r(q)) - u(w*))]f(x, a)dx = 0, (1.5)

where q(x) = A + Ala(x, a), r(.) = h-l(.). The profit difference under contract w* and r(q) is



follows:

AI = (x -w*)f(x, a)dx - J(x - r(q))f(x, a)dx

= (x - w*)f(x, a)dx + [ u(w*)la(x, a)f(x, a)dx - c'(a)] + A[J u(w*)f(x, a)dx - c(a) -U]

{ (x - r(q))f (x, a)dx + p[J u(r(q))1a(x, a)f (x, a)dx - c'(a)] + A[ u(r(q))f (x, a)dx - c(a) -

= {r(q) - qu(r(q)) - [w* - qu(w*)]} f(x, a)dx - J q[u(r(q)) - u(w*))]f(x, a)dx

= {r(q) - qu(r(q)) - [w*- qu(w*)]} f (x, a)dx.

Note that r(q) is the unique pointwise minimizer of function s - qu(s) when q > 0, and r(q) = s

when q < 0. Therefore, AIIn < 0 when there is positive probability w* 0 r(q), a contradiction

with AII > 0. Q.E.D. m

The key point of the above theorem is that we need not check the validity of the first order

approach, which has received many concerns. The reason for us to overcome this issue is due to

the identifiabity of distribution f(x, a) based on assumption A3, which implies that observed

output data is generated by the agent's true best response, rather than just the solution to the

local IC constraint (2). Based on this fact, and local IC constraint (2) holding as a necessary

condition, we can prove that there does not exist any contract cheaper than the current one,

say, w, to implement effort a as we identified through output x.

The above theorem is useful for inference. To rationalize the data, we only need to check

whether data fit the first order condition (1). If condition (1) holds, then we can conclude that

the contract is optimal given utility function u(.) regardless of the validity of FOA. And if we

find A > 0 and , > 0, then the IR constraint and IC contraint should be binding at optimum

point.

Given theorem 1, we can deal with the second question, that is whether there exists contract

s(x) : s(x) implementing a and the agent's utility is the same as U, given utility (u(.), c(.))

and effort a being implemented by a contract s(x). If a is implemented by an optimal contract

s(x), there does not exist another optimal contract s(x) to implement a as well (otherwise, it

will be a contridiction with optimality of s(x) by theorem 1). But it is less obvious whether

there exists a sub-optimal contract (x) to implement the same effort a. Particularly, we are



interested in a certain class of contract, which is called Mirrlees-Holmstrom contract class.

Definition 1.4: The MH class is all contract collections such that

7C = {s(x) ES : s(x) = fi,-l( ), i E 1, f E -, a E A, , E R }
A + Ala (x, a)

A contract belonging to the MH contract class is indexed by inverse utility function i',

distribution function f(x, a), and three positive scalar parameters, a, A and A. The key compo-

nent of this class of contract is the score function la(x, a), which can be identified using output

data under a very weak condition. For any contract within the feasible class, there exists cer-

tain utility function 2L(.) such that under this contract, a will be implemented. The following

proposition shows that there only exists a unique utility function (u(.), c(.)) rationalizing the

contract (x) provided score function la(x, a).

Proposition 1.1: If moral hazard problem (PI) is regular and FOA is valid, given s(x) and

la(x, a), there only exists a unique utility function (u(.), c(.)) rationalizing s(x) and keeping the

agent the same utility U. (See Appendix Al)

The idea of proof of proposition 1 is similar to that of theorem 1. Suppose there is another

contract 9(x) = i() implementing the same effort level a, and keeping the agent's utility the

same as U, too, we claim if the above equality holds, then h(.) = h(.), A = A and [t = ,

i.e., 9(x) = s(x). The intuition is that for any two contracts from the feasible class, if they

implement the same effort, and assign the same utility U to the agent, then when one of them

is optimal, another must be optimal too.

If a contract is optimal, the lower bound of profit loss should be zero. So theorem 1 and

proposition 1 can be used to make an inference about the lower bound of the profit loss and the

identification of utility as we will see later. Note that the monetary utility u(s) and the disutility

of effort c(a) are unobserved by the outside econometrician. The above theorem means that if

we find a parameter (i2, a) such that (6), (9) and (10) are satisfied based on data (xi, wi)n 1 ,

then we can not find any other utility (u, c) to rationalize the data. So keeping the agent's

utility unchanged, the underlying contract which generates {wi}Il is the best contract we can

find.



1.2.3 Equivalence of FOC and Cramer-Rao Lower Bound theorem

We suppose a sequence of data {xi, wi l1 has been observed, where xi comes from p.d.f.

f(x, a) given a, and wi is the amount of payment generated by an unknown contract, either

deterministic or stochastic. For notational convenience, we follow the convention of using

subscript i to denote the i-th observation of a random sample, and use E to denote the empirical

analogue of expectation E, i.e. Exi = - =1 xi. Under the environment of moral hazard, the

variation of xi comes from the exogenous randomization due to either the principal's imperfect

measurement of effort or any uncontrollable random effect during production process, even

though the effort as a parameter may be invariant. And xi will drive the variation of wi

through some unknown functional relationship s(xi) and perhaps some other random factors

like entry error or measurement error. For each pair (xi, wi), the first order condition (1) can

be written as follows 7 :

h(wi) = plla(xi,a) + A (1.6)

The task is to identify whether or not the underlying contract wi = s(xi) is optimal. The

following theorem shows an equivalent representation between the first order condition (1) and

the Cramer-Rao Lower Bound.

Theorem 1.2: Assuming data set is i.i.d., then n > h(wi) is the best unbiased estimate of
A (Var[ > E h(wi)] attains CRLB), i.e.

Cov(h(wj), la(xi,a))
p-a = 1, (1.7)S /Var(h(w))E[la (x,a)2  (1.7)

if and only if the first order condition (1) holds with probability 1 associated with tL > 0.

Proof. Since data set is i.i.d., Var(! E h(wi)) = Var(h(wi)), we deal with h(wi).

If part:

In general, suppose T(a) is a continuous function of the parameter a, then the Cramer-Rao

7 In this formula, xi is not the only random variable. wi can be generated by any unknown stochastic process
too. The only restriction on wi is that we assume what the researcher observed is the one that the agent has
received. If we assume there is error in documentation, like wi = w* + Ei and c .AF(0, a 2 ), our approach is still
applicable in the sense that testing h(wf) = pla(xi,a) + A by testing h(wi) - -1 (Wi)2 = tl(i,a)+ A. Another

possibility is to introduce zero-mean and zero-correlated-to-effort noise Ex[E,E/xil = 0 and aE,[E /] _ 0,aawhose variance asymptotically converges to zero.
whose variance asymptotically converges to zero.



Lower Bound of any unbiased estimator of 7(a) is I (i,a) ]2  According to this definition,
E)la'(a)2  a)]

we want to show Var(h(wi)) -E[la(x,)] 2 first. Note that El(x,a) = 0, so ; h(w) is an

unbiased estimator of A, i.e., Eh(wi) = A. Meanwhile, since the support does not depend on

effort, we have

A'(a) = Eh(w) = Cov(h(wi), la(xi,a)) = E[h(wi)la(xi,a)]
Oa

and Var (la(xi,a)) = E[l(xi,a)]2 . From the Cauchy-Schwarz Inequality,

[Cov(X, y)] 2
V (X) Var (Y)

we have,
(E[h(wi)1a(xi,a)])2

Var(h(w)) E[(xa)]2(1.8)

When the first order condition holds with probability 1, E[h (wi) lE(xi,a)] = IE[l(x,a)]2 , we

have (]E[h(wj)(ia)])2 - 12 E[la(x,a)]2 and

Var(h(wi)) = Var(A + lda(xi,a)) = y 2 E[la(xia)]2

This means that in inequality (8), the right hand side is equal to the left hand side. Second, it

is straightforward that when [ > 0, we have p C_ ov(h(wi),1(x,a)) = 1. This completes the
S\/Var(h(wj))E[1,(xa)]2

if part.

Only if part:

p = 1 implies Var(h(wi)) attaining CRLB, i.e. Var(h(wi))= - (h(wi)(,a))2 which is

true with probability 1 if and only if h(wi) = A+Bla(xl, a). It turns out A = IEh(wi) = A, since

Ela(xi,a) O0, Var(h(wi)) = B2 E[la(xi,a)]2 and E[h (wi) la(xi,a)] = BE[1l(xi,a)]2 . Finally, by

the statement of the theorem, the square root of Var(h(wi)) should be non-negative, which

means B = f > 0. Q.E.D. *

The above theorem means if data are generated by an optimal contract, then the variation

of score should be able to explain variation of compensation completely. We need not know

how wi is generated, we only need to check the relationship between xi and wi.

The equivalence indicated by theorem 2 also allows us to link economic theory to statistic

-' :"i'-l""'-l 'c~-L--"~"ii~~~;i L;~i*r



inference to recast a new interpretation of contract optimality. It is well known (Holmstrom,

1979; Milgrom, 1981; Holmstrom and Hart, 1987) that the shape of the incentive scheme

will depend on the likelihood ratio (or score function) through which the principal can learn

about the effort being exerted. A typical well-known insight is that monotone likelihood ratio

property (MLRP) implies monotonicity of wage scheme. However, these explanations have

not been tested by any real data yet. Based on the above theorem, correspondence between

contract optimality and statistical inference can be thought as follows: If an incentive scheme is

optimal, then the average marginal incentive cost, say -E h(wi), should be the best unbiased

estimator of the shadow price of the agent's participation constraint, say, A. In other words,

the optimality means that - T h(wi) should contain all information that is useful to estimate

the shadow price of the agent's participation of contract.

Meanwhile, the above theorem is also useful for hypothesis testing. First of all, theorem 2

leads to an information matrix type of testing principle (White, 1982) that one can apply to

test contract optimality. Note that CRLB is the lower bound of the variance of all unbiased es-

timators, therefore, theorem 2 builds a bridge between contract theory and statistical inference.

To test and identify the agency theory model is then to test and identify whether the marginal

incentive cost h(wi) is perfect linearly correlated to the score function la(xi, a). Meanwhile,

for equality (6), note that neither nominator nor denominator depends on cost function c(a),

shadow prices A and t; this means we can test the equality (6) without knowing c(a), A and

it. The inference therefore is made by testing whether the correlation coefficient between h(wi)

and la(xi,a) is significantly close to 18.

Besides equation (1), there are some issues worth noting. Firstly, the existence of an optimal

contract requires p > 0, or equivalently, the Cov(h(wi), la(xi,a)) to be positive. As Jewitt (1988)

shows, p > 0 comes from condition (2), which can be regarded as the agent's best response to

the contract. The justification of condition (2) is fairly weak, namely, the agent's action space

A is compact. And when IC constraint holds, (2) is legitimate, without assuming first order

stochastic dominance. Since we do not know the cost function, we can not justify p > 0 by

8In empirical research, h(w) and l,(xi,a) might not be completely known. But as we will see in the next

section, there still exist some statistical procedures to estimate p, and test p = 1.



solving (P1). But to justify y > 0, it suffices to test that

M Ju(w)fa(xa)dx > 0 (1.9)

Secondly, the second order condition (4) is sufficient IC constraint to be necessary (FOA

valid at least locally). For c"(a) > 0, we want the following inequality to hold:

K - J u(w)f a(x, a)dx > 0. (1.10)

Our goal is to use the data to test (6), (9) and (10). The next section will start to deal with

these issues.

1.3 Identification When Monetary Utility and Score Function

Is Parameterized by Unknowns Parameters

This section uses parametric technique. We assume that all observations are homogeneous,

generated by the same contract, cost function, utility, and production function, based on the

same effort. In terms of statistics, this means that output {xzi} 1 is i.i.d. drawn from p.d.f.

f(x, a) for a fixed unknown effort a. The variation in output xi here only comes from the

random factor during the production process. Wage wi varies in response to output xi and

possibly to other unobserved factors. We will relax homogeneity assumption in section 6,

allowing heterogeneity in the data generating process. And through out this paper, we assume

that the cost function c(a) and the outside reservation U are unknown 9, but the restriction

on output distribution and monetary utility will be relaxed step by step. In this section, we

assume p.d.f. f(x, a) is unknown but the score function can be parameterized. We provide a

base line model first, and extensions followed.

9Unknown means we do not know the functional form except for some qualitive properties like concav-

ity/convexity, increasing/decreasing, etc.



1.3.1 Benchmark: Known Monetary Utility and A Sufficient Statistic of

Effort

In the benchmark case, we assume the agent's monetary utility is completely known, and the

production function unknown but there exists a sufficient statistic for the effort. To understand

the implication of the sufficient statistic, we can decompose the p.d.f. of output as follows:

f a) (xa)v(x(1.11)
f ew(x,a)v(x)dx'

where the real valued function v(x) > 0, and v(x) and w(x, a) such that f ew(xa)v(x)dx < 00.

When a sufficient statistic for the effort level a exists, w(x, a) = wl(x)w2 (a) with wl(x) being

known though w2(a) and v(x) remain unknown. In this case, by the factorization theorem,

E~ w1 wl(x) contains all information about effort a. An useful example of sufficient statistic

is that wl(x) = x, which represents the exponential family according to Brown (1986).

We also assume the information quantity exists:

A5: Variance of the score is finite, namely, Z - Ela(xi, a) 2 < oo for a < co.

A5 is fairly general, and employed throughout this paper.

Test for the Optimality

We can run a three-step procedure.

(1) Estimate the score function la(x, a).

When w(x, a) = wl(x)w2(a), from (11), we have,

la(x, a) = w2 (a)[[w, (x) - Ew 1 (x)]

Since a is a parameter of f(x, a), likelihood equality implies that Ela(x, a) = 0. Therefore,

the effort level a can be determined by moment condition T(a) = Ewl(x) since Ewi(x) is a

monotonically increasing function of a. The moment estimator of T is,

- 1n

T _ -wi=l().
n



Note T = - l wi(x) is a consistent estimator of Ewl(x) 1 , so that la(X, a) can be estimated

consistently up to a scalar parameter w'2(a). Since w'2(a) does not affect the asymptotic z-value

of estimator la(x, e), we normalize w'2(a) as Var(wi(x)) in the following context. Accordingly,

the asymptotic distribution of T is,

Vn(T - T) -__d (O, Var(wi(xi))).

And for each fixed x, we have,

v (la (X, a) - la (x, a)) ->d V(0, Z - 1 )

where Z = E12 is information quantity, and nZ = 1  la( )2

The asymptotic distribution of 2 follows,

is its consistent estimator.

Vf-(Z - Z) _._d rf (O, Var(12(xi, a)) + 4Z 1 [Ela(xi, a)laT(xi, a)] 2 ) = .A(O, Var(12(xi, a))).

where laT(xi, a) = o'a(xi, a) (hereafter, we use a subscript to denote partial derivative,

throughout this analysis).

(2) Test significance of moral hazard and the second order condition.

Let .1 EnLet = n i= u(wi)la(Xi, e), by the continuous mapping theorem,

V(^ - M) _-d Kf(O, nAVar(f))

with nAVar(Mfk) = Var(u(wi)la(xi)) + Z-1 [E(U(wi)laT(Xi))]2 .

To test the second order condition, we need to know the object

k= U u(wi) [laa(Xi, a) +_12(xi, &)],
i=1

where 12(x,, a) is estimated, but laa(xi, a) = -El - (a) contains one unknown parameterw\(a) a c i n k p m

10If the production functional form f(x, a) is known, we are able to estimate the unobservable effort a by a
standard econometric process, like maximum likelihood estimate (MLE) or generalized moment method (GMM).
There are many methods to estimate a. The conditions for MLE consistency and asymptotic normality have
been well-studied in the statistical literature (See Casella and Berger, 2002 Chapter 10 for the discussion).



Sthat can not be estimated parametrically. To circumvent this barrier, we derive a sufficientW(a)

condition for K > 0. Note that if Exi is concave in a, then, the sufficient condition for K > 0

is
EXi(12 - Z)a Z)M > Eu(w)(12 - Z).

Exila

Let a - Exi(1 - Z)M- Eu(wi)(2 - Z)Exila, thus IC can be estimated by C =Exi(l- Z)M-

Eu(w,)(t - Z)ExZl a whose asymptotic distribution is

v/-(K - IC) -td Nf(O, nAVar(k))

where

nAVar(IC) Var{x(l1 - Z)M + ulaExi(l1 - Z) - u(12 - Z)EXila - XilaEu(wi)(12 - Z)}

+Z-1 {2ExillaTrM + Ei(1 - Z)MT - 2Eu(i)lalaTrEXila - Eu(w)(l - Z)Ezilar}2

Using the sample analogue of AVar(M) and AVar(IC), we can test the hypotheses (one-sided):

and

HOK : K(a) > 0.

(3) Test equation (6), contract optimality.

Let
E[1 h(wi) - Eh(wi)]2,

i=1

and

J = E(h(wi) - Eh(wi))la(xi, &)

be the sample analogue of Var(h(wi) and Cov(h(wi), la(xi, a)) respectively, and let

J

(1.12)

(1.13)

(1.14)

HoM : M(a) > 0



be the estimator of correlation coefficient between h(wi) and la(xi, a). If P significantly ap-

proaches 1, if and only if the first order condition holds. We assume moments of h(wi) and

1a(xi, a) exist up to some appropriate order (typically the fourth moments exist Eh 4 < 00 and

E14 < 00). We have the following proposition.

Proposition 1.2: To test the first order condition (1), is to test -p 1, where P(T) =

J(T) has the following asymptotic distribution:

(i) if p < 1,

I J J
(() - p(T)) -+d [0, 4 Var(2(h - A)la - (h - A)2 -- )]

(For convenience, in the final expression of asymptotic objects, we suppress the arguments w

or x if there is no confusion).

(ii) If p = 1, under the null hypothesis:

2n(1 - P(T)) - i.

Proof. (See Appendix A2) *

We can either use the sample analogues or bootstrap to estimate nAVar(p).

Estimate the profits loss and agency costs

We can also estimate the loss of efficiency due to misspecification of the contract according to

definition 2. In the benchmark case, since utility is known, we can have a consistent estimator

of the profit loss, in comparison with the CCO.

Proposition 1.3: Compared with the CCO, (i) the profit loss of the observed contract is

estimated by

Alh = E[x2-(s(x)]- E[x - W ] = -~1w- ] *h1 ) + i- la(Xi, )1

where , is the consistent estimator of the effort a, and (A*, /-, s*(xi)) solves the following



h- [A* + la*(xi, )]

Eu(s^ (xi))1(xi, a)

and Eu(s (xi))

s* (xi) for almost every xi,

= Eu(i)la(xi, &),

= Eu(w );

(ii) the asymptotic distribution of Al is,

V/.(AT - AH) ~ d.( 0 , nAVar(AH)) if All = Ewi - Es*(x) > 0,

or d if AH = 0;
AVar(AII)

(iii) the validity of FOC at s*(x) is justified by

asymptotic distributions:

Vr(M *() - M*(a))

and /V/(K*(&) - K*(a))

testing (9) and (10) based on the following

dg(o, nAVar(M*(a)))

nAVar(K* ()))

where,

M*(et) = Eu(s* (xi))la(xi, 6)

and

K*( () = -Eu(*(xi))[2(Zi, a) + laa(Xi, a)].

(Proof and the expression of asymptotic variances are in Appendix A3)

Using the sample analogues, we can have form nAVar(AH) as the consistent estimator of

nAVar(AH). Thus the profit loss can be estimated 1 .

Additionally, based on the above derivation, we are also able to estimate the agency cost

AC, which is the distance between the first best contract and the second best contract, given

1 1We can not test K*(&) > 0 directly, but we can test it based on C*(h) > 0.

equations



the same utility and the same effort a being implemented. The theoretical expression of AC is,

AC - s* (x)f(x, a)dx - w fb

where wfb solves u(wfb) -= f u(s*(x))f(x, a)dx and s*(x) is the second best contract. Mean-

while, it is not difficult to have an estimator of the profit distance between observed data and

the potential first best contract, which represents the total profit loss due to misspecification

of the optimal contract and the agency cost.

Corollary 1.1: Conditional on the effort level a, (i) the agency cost is estimated by

AC = Is^* (x) -' wfb,

where s*(x) is estimated CCO and svfb solves utfb)--C(a) = EU(wi)-c(a), and the asymptotic

distribution of AC is

V'i(AC - AC) _td N(0, nAVar(AC)).

(ii) The total profit loss compared with the potential first best contract is

TL = wi - u- 1  u(wi)) ,

and the asymptotic distribution of TL is

n_(TL - TL) d Af(0, nAVar(TL)),

where TL = f wf(x, a)dx - u- 1 (f u(w)f(x, a)dx). (Proof see Appendix A4)

It should be noted that - E w, - wfb is the distance to the conditional first best contract,

given the effort level a. It is difficult to obtain the unconditional profit loss since alternatives of

effort level remain unknown based on a single sequence of data. Despite this difficulty, we can

partially identify whether the output is higher or lower than the unconditional optimal effort

level by testing the adjoint equation (3). We will discuss this issue in section 4.



A simulated example 1: u = 2V/, la(x, a) =

We provide a Monte Carlo experiment as follows. The theoretical counterpart of this example

is considered by Holmstrom (1979). In this example, suppose the utility function u = 2v/- is

known and average output is a sufficient statistic for effort, but p.d.f. itself and the contract

details are also unknown. We do Monte Carlo simulations to simulate 1000 sequences of data,

with each containing 100 observations. The results are reported in table 1. It can be seen, in

both contract, M and k are significantly positive in most trials. M is positive at 0.1 significant

level in all simulations. k is positive at 0.1 significant level in 99.7% of simulations in contract

A and 98.0% in contract B (the rest are at least 0.2 significance level). For contract A, p

are significantly close to 1, the finite sample z value of 1 - j is almost zero under alternative

hypothesis, and p value of chi-square test is almost one under the null hypothesis. For contract

B, though P value looks high, it significantly deviates from zero, indicated by both z test and

chi-square test 12 . Monte Carlo simulations indicates that , test behaves very well in detecting

contract optimality, although in contract B, the profit losses are actually not significant (up to

2.09% per capita loss).

12 The true contract in A is optimal contract, s(x) = ( + 1)2, while the true contract in B is a piece-
rate contract s(x) = 0.5093x. Given the same utility (u,c), the piece rate contract will implement effort level
aBR(B) = 10, the same as contract A does (See Technical Supplement 2 for details).



Table 1. Testing Results for Monte Carlo Simulations

Contract A Contract B

variables Med. s.d. % of 0.05 % of 0.10 Med. s.d. % of 0.05 % of 0.

9.6063 2.9498 9.7701 2.1270

z val. M 2.1724 0.1938 98.7 100 2.4271 0.2035 99.9 100

z val. A 2.8836 1.2244 96.8 99.7 2.2089 0.6976 86.1 98.0

S= 1 1.0000 9.5165e-017 0.9610 0.0083

z val 1-P 0.0000 1.8918e-013 100 32.5455 4.0758 0

p of X2 -test 1.0000 6.6173e-008 100 0.0052 0.0053 0

AII(%) 0.38 0.0011 2.09 0.0050

z val. AH 0.0246 0.0019 100 0.1317 0.0150 100

p of X2-test 0.9804 0.0015 100 0.8952 0.0119 0 33.8

Note: The fourth (eighth) column displays the percentage of simulations where

null hypothesis can not be rejected at 0.05 significance level, and the fifth (ninth)

column displays that at 0.1 significance level.

1.3.2 Unknown Parameters in u(w, y) and la(x, T): Incentive, Selection and

Matching

This subsection extends the benchmark model to a situation in which parameters appear in

monetary utility and score function that can not be estimated through the first stage esti-

mation. Suppose the monetary utility u(w, -y) can be parameterized by unknown parameters

y Er C Ir lr , and la(x, a) can be parameterized as la(x, a) = wa(, T) - Ewa(X, T) 13 where

T - (a, 0), and 0 E O CRI'O. We assume that O and F are compact. In the empirics, it

is common that the agent's risk aversion coefficient is unknown, such as in constant relative

13In this formula, the likelihood equality still applies. For example, in Logistic distribution, wa(x, 0, a) =

2e~ , the moment estimator wa(x, 0, a) provided 0 will implies MLE of effort. But in general, given
1+e 0

the value of (0, a), the MLE of a can not be solved by the equation jw(x, 0, a) = Ewa(x,0, a) provided
0. One particular example is curved exponential family. For example, if f(x, a) is the curved normal, then

l() = (2 ax - a2) here,w (x,, a) = x 2 - ax, which implies that1 E wa(x,0,a) is unbiased estimator of
E[ 2 - ax] for given a, but the fact that & solves ± C la(x, a) = 0 does not result in consistent estimator of a. So
the specification here is weaker than the requirement that MLE of a is implied by la (x, a) = 0. Of course,
if wa(x,a, 0) does not contains a (or a only enters Wa as a multiplicable term), this means Wa(x,8) is a sufficient

statistic of a, given 0, then in this case MLE of a is implied by 1 E l(x, a) = 0.



risk aversion (CRRA) or constant absolute risk aversion (CARA). The unknowns in the utility

and production functions bring in a set of identification issues on whether these unknowns are

endogenous or exogenous to the principal's choice of contract. In empirics, this issue is called

matching. We deal with these issues in next subsections step by step.

Test for the optimality and Bound of Losses for Given Type of Agent

Before proceeding to derivations, we make the following identification condition:

A6: Distribution function of output is identifiable, namely, f(x, a, 0) = f(x, d, 0) for (a, 0) 0

(a, 0) EAx .

In order to do estimation, we form a criterion function as follows:

(h(wi, y) - Eh(wi, y) la(xi, T)
A(-y, T) = E Eh(w,)l ) - E T)2 (1.15)

( Eh(wi,Y)la(x, T) Ela(xi, T)2 )'I

which will be non-negative and achieve minimum value zero if and only if the first order condition

(1) holds with probability one 14 . For convenience, denote 6-- (-y, T). Note that EOx is compact,

so there exist some 6 minimizing A(Q-, T). We can compute p(6 ) value corresponding to the

minimizer 6 and test the null hypothesis Ho : p(6 ) = 1.

We denote the sample analogue of A(y, T) as

(-, T)= ( h(wi,) - Eh(wi,-y) la(xi, T) (1.16)

( Eh(wi,-Y)la(xi, T) 1E l(Xi, T)2)

For the uniform convergence theorem to be applicable, we also make the following assumption.

Assumption 7: sup6  a2(6) _ 02 A(6) -I 0 and VnA (6) -d A(0, Q), and 2A(0) are non-

singular (assume Lindberg-Feller or Liapounov Central Limit Theorem is applicable), where

A(6) is defined as formula (15).

We have the following theorem:

Theorem 1.3: If the moral hazard problme is regular, FOA is valid, and A5-A6 hold, when

14When the first order condition (1) holds, the distance between the two sides of equation (1) should be zero,
namely, E[A + pl (x) - h(s(x), y))] 2 = 0. In order to avoid the trivial solution that p = 0 and h(s(x), y)) is a
constant, we re-scale the objective function as (15). Additionally, there are many criterion functions that can be
employed, like the Lo norm or others. Here, for simplicity we use the L 2 norm as an example. The comparision
between different criterion functions is not the primary purpose of this paper.



score function wa(x, T) is known (up to some unknown parameter(s) T E E x A), and the utility

function u(w, 7) is known up to unknown parameter(s) y, then

(i) contract s(x) is optimal only if hypothesis H p p(y, T) = 1 is accepted, where p(-, T) is

approximated by

COV(Wa(X, T), h(w, ,,))

/Var (Wa (x, T)) Var (h(w, i)))

with (-, T) E arg min(y,T) A(y, T).

(ii) With the additional assumption A7, (~j, T) has asymptotic distribution,

-- (p - p) __d (O, nAVar(k)) if p < 1,

or

1 -l nla Z - 1  0 Ftla if
n( - p) -+ - 1 if p = 1;

where Q is a quadratic form of multivariate normal distribution with degree of freedom r+t+ 1,

and

V/(n - 5) d g (0 [A,(3)-l'[A , ()'] - 1)

with Z = El , Z - 1 = nAVar(T) and F = nAVar(/). (See Appendix A5 for the proof)

The intuition behind the above test is that we pick the parameters which make the data

most likely to be consistent with an optimal contract. If these parameters can not support

our hypothesis, then there exists no possibility for the contract to be optimal within the whole

parameter space, i.e., data are not rationalizable. This test is conservative in the sense that

we might fail to reject optimality when the contract is not optimal given the unobserved true

tuple (u, f, c). In other words, 6o solving p(6 o) = 1 needs not to be the parameter(s) consistent

with the true utility. However, under some conditions, 6 0 can be the true primitive parameters

under the null hypothesis. These conditions will be discussed below and proved more generally

in section 4.

Remark 1.1: If the p.d.f. of output, f(x, a, 0) has some unknown parameters 0 in terms of

f(x, T(a, 0)), and f(x, ) / f (x,-) if T ?, then assumption A6 may not hold. In this case,



we can test the first order condition (1) by E[h(wi)1,(xi, a)] = E[1-r(xi, a)]2 Var(h(wi )) and

treat 1,(xi, a) as la(xi, a) without knowing a(O).

The further task is to estimate the loss of profit. Because the utility is not completely

known, we are only able to bound the losses. Note that the profit loss will be a function of

unknown parameters 6, written as,

AII(6) = Ewi - Es*(xi, 6),

where s*(xi, 6) is the solution to problem (P1) given effort a.

We can find the lower bound and upper bound of AI(6) within parameter space r x O,

and subject to the constraints

u(s*(x, 6), 7)la(x, T)f(x,a)dx = u(w, )la(x, T)f(x, a)dx, (1.17)

and /u(s*(x, 6),7)f(x,a)dx = J u(w, ) f (x, a)dx, (1.18)

where the first constraint means that s*(x, 6) and w implement the same effort level a, and the

second one means that the agent is indifferent between s*(x, 6) and w"15 . So we construct the

Lagrangian as follows,

L*(6, A*, /,*)

= w - h-(A* + p*[wa(X, T)- Ewa(xi, T)])f(x, a)dx

+A* [J u(h l(A* + i*[Wa(X, T) - Ewa(xi, T)]),-) f (x, a)dx - u(w, -)f(x, a)dx]

S[ u(h -(A* + * *[wa(x, T) - Ewa(xi, T)]),y)[wa(x, T) - Ewa(xi, T)]f(x, a)dx

- f u(w, ) [w (x, T) - EWa(Xi, T)] f(x, a)dx

Because 0 and F are compact, we can find a lower bound and an upper bound of the profit

loss by choosing 6, that is, (6 min,A*( 6 min), p*( 6 min)) E argminErxT,>o,,>oL*(6, A*, b*) s.t.

15The reason why we only search the exetreme values within space E x F instead of whole contract space S is
because we parameterize the primitives within the parameter space. Let .FCrxe be the subset of feasible class
indexed by parameterized utility family and score family, then given this restriction, for any suboptimal s(x) E S
which can not be rationalized by parameter space F x e, we have supErxe AII() supsE,sgcrxe Ewi -

Es(xi), and 0 = inferxe rIl(6) < infEs,s~ycex, xEwi - Es(xi).



(17) and (18) and (6max, A*(6max), tt*(6max)) E argmax6ErxT,x>o,~>o L*(I, A*, [*) s.t. (17) and

(18). The lower bound of profit loss is

AI( 6 )lb = Al( 6 min) = Ew, - Es*(xi, 6 min) (1.19)

and the upper bound of profit loss is

AII(6)ub = Al(6max) = Ewi - Es *(xi, max). (1.20)

Particularly, if there exists some 6 such that the first order condition (1) holds, AII(6)lb = 0,

achieving the lower bound of profit loss, otherwise, AII(6)lb > 0. The reason of AII(5)lb > 0

is that, if h(w) does not attain CRLB, s*(xz, 6min) can not be the pointwise minimizer of

principal's problem (P1), although 6 min is the minimizer of L*(6, A*, p*).

The first order conditions can derived be as follows:

-( y (s y) f(x, a)dx = 0

and j/ WW [u(s*,'y) - u(w, y)][WaT(X, T) - EWaT(Xi, T)Jf(x, a)dx = 0.

These two first order conditions are not the first order condition of principal's original problem

(P1).

The sample analogue of the Lagrangian L*(6, A*, *), constraint (17) and (18) and the two

first order conditions can be replaced by their sample analogues. Therefore, bounding profit

loss is feasible. The following proposition provides the asymptotic distribution of AH(6)lb and

AHi(6) u b

Proposition 1.4: If the conditions in theorem 3 hold, and assuming condition for uniform

convergence applies, then AII(6 k) = Ewi - Es*(xi, k) (k=min or max) has the following

asymptotic distribution:

a *(A(6k) - iin(6k)) -t eN(0, nAVar(aH(6k));

and M*(a) > 0 and K*(a) > 0 justifying the existence of moral hazard and the second order



condition. (Proof in Technical Supplement 4).

One fact worthy noting is that if there only exists a unique 60 to solve AII(6b") - 0, then

Jo should be the true parameters under the null hypothesis. Unfortunately, it is complicated

to analytically justify that AIIH( 1b) - 0 has a unique solution. Another condition is that if To

is the true parameter, then yo will be the true utility parameters under the null hypothesis.

This will be the case if either f(x, a, 0) is functionally known (then we can do MLE to estimate

To at the first stage) or there exists a sufficient statistic for effort (then we estimate To by its

moment). The following proposition summarizes the result of these two cases.

Proposition 1.5: If the conditions in theorem 3 hold, then under the null hypothesis,

and f(x, a, 0) is functionally known or there exists a sufficient statistic for effort a, then (i)

Yo = arg min-Er A(y,T) should be the true preference, and (ii) under assumption A7, Z E

arg miny A(, T) has the following asymptotic distribution:

n( - yo) --+N A 0, E Z- E ' E0 0-Y 0-y T'Z- OT , \ 0 0

where

0e Ei Var(h_) (El) - Var(hyla)
-- (E1a)3

&e8' 0 Y2 (El)3

ai Be- 1
and E- - = 3 [Cov(hy, la)Cov(la, laT,) - ( ) Cov(h, laT')]

and P has asymptotic distribution,

1 E1a Z-1 0 Ela i
n(1 [ - T) 0 - PTT' v/n( - T) ) if p =1.

(Proof in Appendix A6).

Remark 1.2: The estimate of the agency cost AC and total loss TL can be done similarly..

Identification for Selection of Agent

We go further to proceed with the issue that the type of agent may be endogenous. The

endogeneity can be due to the principal's selection of certain a type of agent to contract with.



If there exists a certain type of agent, say -Ymin, so that the null hypothesis Ho = 0 is accepted,

is -min the most profitable agent in the principal's prospect? This is the identification issue

between incentive and selection, which has been mentioned by literature: dealing with empirical

data. For example, in the agrarian contractual context, the principal (landlord) may choose

the most profitable tenant based on tenants' degree of risk version. Let V(y) be the solution

to problem (P1), then if the principal recognizes the profitability of selecting different agents,

he should solve the further optimization problem:

(P2): max V(y) s.t. IC and IR.
-YEr

The solution to (P2) means that the principal "chooses the right agent to offer the right con-

tract".

Our identification of selection depends on additional restriction over y related to the solution

to problem (P2). Given r is compact, to find f* E argmaxyEr V(y) s.t. IC and IR, we only

need to search the saddle point(s) and the boundary of r. Thus we can find -y* by the first

order condition w.r.t. -y. According to the envelope theorem, an estimable condition can be

found as the following lemma states.

Lemma 1.1: If s*(x) is the optimal contract regarding agent's utility u(s*(x), 7y), therefore

"* is the most profitable agent selected by the principal (matching with contract s*(x)) if

_u(s, y) F u(s*(x), Y)
S,(A+ P (x, T)) f (x, a) dx ) f (x, a*)dx = 0. (1.21)

(Proof see Appendix AT)

Formula (21) in lemma 1 is strikingly simple, whose sample analogue is V*(-*, T) = Pr(w >
U(wi,) (

s)El>s a ) + Pr(w < ) (sE<s( + fla(x, 6)). One simple way to test selection is to

test H* : VY(-y0 , To) = 0 where (y 0 , To) is found by P(y0, To) = 1 and (-Yo, To) is not on

the boundary of parameter space A x E x F. But in some cases, if asymptotic distribution of

V*( ,, T) does not exist (for example, CRRA utility under null hypothesis yo = 0), then we

test selection in another way. This is to use the estimators of T from theorem 3 to replace the

object in (21), and solve y* by comparing the value function at saddle points with its value at

boundary. Particularly, if s is not effective, then we can solve y* without involving T. Based



on y* found in (P2), we can test the null hypothesis Hos p(7y*, To) = 1. We summarize the

above results as follows.

Proposition 1.6: Under the conditions that theorem 3 holds, (i) when there exist yo such

that Ho : P(yo) = 0 accepts, then the principal does not solve the problem (P2), if either

hypothesis HO* : V(7 0 , To) = 0 or Hos : p(7*) = 0 is rejected. (ii) V,* can be estimated

V( (, T) and by p(Q*) can be approximated by (/*) and their asymptotic distributions can be

established. (Proof in Technical Supplement 5).

Meanwhile, we also can estimate the profit loss due to either suboptimality of incentive or

selection, or both of them. When the null hypothesis HO is rejected, the bound of the profit

loss is
An= I- ( i)] + -s (x-i)-s** (xi, **)]

wn is(xi +n_ _ _

incentive error selection error

where s*(x) is defined as proposition 4, and s**(xi) can be found as follows:

h(s*(xi), ) = A** + t**la(x, T)

with -y** E arg max-yr V(y) and (A**, p**) and T defined as in proposition 4.

The idea of the above decomposition is to construct the optimal contract based on the most

profitable type of agent (the solution is unique for s**(x)), under the same IC constraint and

IR constraint. By this decomposition, we can quantify the mechanism leading to efficiency loss

(gains).

Identification for selection of technology

Another important issue is that the parameter(s) in the production function, namely 0, can

be a decision variable too, though exogenous to the agent. The choice of production function

or technology is to choose the "information system" (Holmstrom, 1979; Kim, 1995), which



indicates the degree of informativeness of the output 16 . Paralleling the previous section, the

matching of technology to the agent and/or contract should also be detected. Let V(0) be the

solution to problem (P1) when 0 is parameter(s) in distribution function or score function. If

the principal indeed is doing optimalization over 0, he should solve the following optimization

problem:

(P3): max V(0) s.t. IC and IR.
O8EO

The solution to (P3) means the principal "choosing the right technology to match the right

contract".

Similarly, 0* E arg max0e V(O) s.t. IC and IR can be found by the first order condition,

compared with the boundary of parameter(s). By the envelop theorem, the first order condition

becomes:

* = (x - s*(x))fo(x, T)dx + A u(s*(x), 7) fo(x, T)dx + [ u(s*(x),) f. 0 (x, T)dx 0,

(1.22)

where,

fo(x, T) 1og f(x, 6)
f( le = W o(x, a) - Ewo(x, a), and

f(x, T) 80

fa(, T) laO + lale = woa(X, a) - IEwOa(x, a)wa(x, a) + (wa(X, a) - Ewa(x, a))(wo(x, a) - Ewe(x, a)),f(x, T)

so that V* can be replaced by its empirical moment.

We can test whether 0 is the most profitable technology matching with current contract or

the agent. The following proposition states the results.

Proposition 1.7: The technology is perfectly matched with the contract if the following

hypothesis:

Hom : V = 0,

is accepted, where V* has asymptotic distribution

/ ( - V*) +d N(O, nAVar( V*)).

16 For example, the landlord may choose different crops, because different crops may vary in their dependence

on weather condition; therefore, the precision of measurement of the effort through the output will be different.



(Proof in Technical Supplement 6)

1.3.3 Testing M > 0, K > 0 and Adjoint Equation (3)

The remaining subsections are to test M(a) > 0 and K(a) > 0. It is easy to test M > 0 by using

a sample analogue of M and asymptotic variance of M can be computed by bootstrapping.

Proposition 1.8: When la(x, a) is parameterized by formula la(x, a) = 1[((x, T) -

Ew(x,T))], M(a) > 0 if and only if the sign of Cov(h(w,-y), w(x,T)) is the same as that of

Cov(x, w(x, T)).

Proof. Because la(x, a) is not completely identified (up to a multiplicative constant), we

can determine the sign of - , which is determined by - Co(h(w,-),w(x,) The signSq(T)' 7(T) - E(w(x,W)-Ew(x,T)) 2 "

of Cov(h(w,)(x,T) can be tested based on its sample analogue. Without loss of generality,

suppose I' > 0 is the case, then we need to check whether r(T) > 0. By assumption A3,

E - ~ T)1 ((x, T) - Ew(x, T))f (x, a)dx > 0,
aa q(T)

thus Cov(xi, (xzi, T)) > 0 if and only if r(T) > 0. Similarly, we can show the case _< 0.

Q.E.D. .

The difficulty to test f > 0 is due to absence of an estimator of laa(X, a). We discuss two

cases, depending on whether wu(x, T) contains a or not. We have the following proposition.

Proposition 1.9: The second order condition can be tested based on the sample analogues:

(i) When w (x, T) does not contain a, to test K > 0, it suffices to test

Cov (xi, ((xi, T) - Ew(xi, T)) 2 ) Cov(u(wi), w (xi, T)) > Cov(u(wi), (wu(xi, T) -Ew(xi, T)) 2 ).
Cov(x, w(xi, T))

(1.23)

(ii) When u (x, T) contains a, and the sign of Cov(xi, (zw(xi, T) - Ew(xi, T)) 2 ) is the same

with that of Cov(u(wi), (w(xi, T) - Eu(xi,T))2), the sufficient condition for K > 0 is that the

sign of Cov(x i, z ))Cov(u(w),(w(u x ,T)-Ew(xi,T))2 ) - Cov(u(wi), -(x, T)) is the samei, Cov(xi,(w(xi,T) -Ew(xi,T)) 2 )  aa

as that of Cov(xi, (xti, T)). (Proof in Appendix A7)

We can use the sample analogues of the above objects, and the asymptotic variance of the



above objects can be obtained by bootstrapping17 .

Once the null hypothesis H is accepted, i.e. the contract is the conditional constrained

optimum, we can partially identify whether the effort level is optimal or not by testing the

following two inequalities implied by adjoint equation (3):

(x - s(x)) fa(X, a)dx + J u(s(x)) faa(X, a)dx > 0

and

(x - s(x))fa(x, a)dx > 0.

If f(x - s(x))fa(x, a)dx < 0, we can conclude that the effort level a is higher than the op-

timal level. In this respect, one can increase the effort level until f(x - s(x))fa(x, a)dx +

l f u(s(x))faa(x, a)dx is no longer significantly positive (See Technical Supplement 7 for the

details).

1.4 Non-parameteric Identification With Unknown Utility u(w)

and Score la(x, a)

This section considers a more general case, in which both utility u(w) and score la(x, a) are

unknown. In general, without putting any further assumptions on agent's utility, cost of effort

and score function, it is impossible for the econometrician to fully identify contract optimality

and the moral hazard problem. Although with infinite data, we can recover the distribution

of output, say, f(x, a), but without variations of a, the score function la(x, a) is not identified

based on the single sequence of data generated by the same a. This situation differs from

identification of the adverse selection problem (d'Haultfoeuille and Fevrie, 2007), where the

quantile of agents' type can be fully identify based on distribution of trade data, provided

single-crossing property. Given this difficulty, we can not jointly identified two functions h(w)

and la(x, a) only based on one first order condition (1). We formally state it as follows.

17When the sign of Cov(x, (w(x,T ) - lw(x, T)) 2) is not the same with that of Cov(u(w), (w(x,T) -
Ew(x, T)) 2), or when either we are not sure whether w(x,T) contains a, or the functional form aw(x,T)
is unavailable, we need some additional conditions. For example s(x) non-decreasing and la,,,(x, a) < 0. Under
these two conditions, Cov(u(s(x)), laa(x, a)) < 0, implying Eu(w)laa(x, a) < Eu(w)El aa(x, a) = Eu(w)El2 (x, a),
thus the sufficient condition for K > 0 is Cov(u(w), (w(x, T) - Ew(x, T))2 ) < 0.



Proposition 1.10: Given a single sequence of data being observed, h(w) and la(x, a) can

not be jointly identified without knowning one of these two functions.

The questions turn out to be: what is a weaker condition to identify h(w) and la(X, a)?

The condition provided in this paper is that output is generated by effort and noise additively.

Formally, we write as follows,

x = m(a) + 6 (1.24)

where m(a) = Exi is an unknown monotonically increasing function of effort level a (according

to assumption A3); and e is random noise coming from an unknown density. This specification

is general enough to cover many distributions used in empirical studies. The left hand side of

the above equation can be generalized to any parameterized monotone transformation y(x, 0) or

even unknown monotone transformation y(x). We will discuss these generalization in another

paper (Ke, 2008). For simplicity, we derive all the theoretical results based on formula (24).

If (24) holds, the unknown score function can be estimated non-parametrically up to a

positive scale constant1 8 as follows,

la(x, a)= - m(a).
f(e)

Without loss of generality, we normalize m'(a) = 1 since we need not estimate m'(a). For

convenience, since a in this section is a nuisance variable, we suppress la(x, a) as la(x).

For the d-th order derivative of density f(e), if we choose band width b -+ 0 such that

nb2 d+l -+ o0, nb2d+1 b2 -- 0 as n - oo, then we have the asymptotic distribution (See Pagan

and Ullah, 1989, pp56, Li and Racine, 2007)

/nb2d+l(f(d) - f(d)) d A (, f /(K(d)(P))2dy) , (1.25)

where f(d) is the kernel estimator

nbd K b
j=l,j4i

18Denote the noise's c.d.f (p.d.f.) as G(e) (g(e)) temporoally, then, F(x, a) = Pr(X < x) = Pr(E < x-m(a)) =
G(x - m(a)), thus f(x, a) = g(x - m(a)), and = -m'(a)g'(E).



and K(p) is a kernel function with some appropriate properties such as:

0

J K(d) ()P)Jd (-1)dd!

constant

for j=0, 1, 2,...,d-1

for j=d

for j=d+1

for j=d+2

Therefore, choosing b oc n- 7  (a > 0), and using leave-one-out estimator 1a = - , thus

yields limn-,"O(EiB - l,) 2 -* 0, and limn-oo Var(la) 0 O. The pointwise asympotic distribution

is as follows,

/ (a -la) - N (0, J [K'()dp

Based on well established nonparametric estimation techniques, we state the following theorem.

Theorem 1.4: If the moral hazard problem is regular, FOA is valid, assumption A5 holds,

and the output is generated by equation (24), then

(i) contract optimality can be tested by testing the null hypothesis H : p(h, la) 1 and

p(h, la) can be estimated by

CoPv(h(wi), ia(Xi))

'Var(h(wi)) Var( a(xi))

where

is a monotone

space H.

(ii) Under

h(wi) - Eh(wj) la(xi) 2
h(wi) E= arg m13 E(

hEH,ho>0 Cov(h(wi), la(Xi)) Var(la(xi))

smooth non-parametric estimator of marginal incentive cost h(wi) from a compact

the null hypothesis, P(h, la) has the following asymptotic distribution,

-1+ ( fi [K'(p)]2 dp + -b4 (p2K(p)d) Var([f'( (i"(2i)-f(i)f"(i)]2Z b3 f (E) 4 f (-)2

d (0, o 2  E K'(]2d] + O() + o(b4)))

(Proof see Appendix A9)



The above theorem provides an optimality test without functional form specifications of

marginal utility or score function. The power to reject the null hypothesis comes from the

fact that wage should be a smooth monotonically increasing function of score. This is the

well-known monotone likelihood ratio property advocated by Milgrom (1982). The violation of

optimality happens when the payment usually is not an increasing function of the score (maybe

an increasing function of performance).

Because implementing theorem 4 involves a two-step non-parametric procedure, it is desir-

able to find some ways to reduce the computational cost by testing the relationship between

payment and score directly. One very loose testing is to test Cov(wi,la(xi)) > 0, but the

stronger testing of correlation should be a rank order correlation test (Kendall, 1955). The

discussion of those tests is not the main purpose of this paper. The above test is conservative,

as we have noticed before. However, under the null hypothesis that the contract is optimal if

we rationalize data by some utility function (u, c), theorem 1 leads us to conclude that (u, c)

is unique though it can not be completely estimated. And the estimated h(wi) in theorem 4

identifies the true h(wi) up to an affine transformation. So we can construct confidence interval

to cover the true h(wi) based on the data. We state it as follows.

Theorem 1.5:If the conditions in theorem 4 hold, then under the null hypothesis Ho : p = 1,

based on

h(wi) E arg min E(h(w) - h(w) la(Xi)
hE-l,h,>O Cov(h, la(Xi)) Var(la(Xi))

we can identify h(w) (up to positive affine transformation) by the asymptotic distribution:

n / b ( w) - h(w) - 1 h"(w) (w) + 2h'(w) '(w) 2 Kr (j) d)
Sdh O(w)(w)f(

dA 0 [K' ((p)]2d/ K(P)2dS)

where b is defined as in theorem 4, limn,,, bh -- 0 and n b-b --- oo, and O(w) is p.d.f. of

payment schedule w. (Proof in Appendix A10).

Another step is to bound the profit loss based on the consistent estimator la(Xi), the idea is

the same as in section 4, except replacing h(wi) and la(xi) by their non-parametric estimators.

We summarize as follows.



Theorem 1.6: If the conditions in theorem 4 hold, then the profit loss of observed data

{xi, wi)}= can be bounded by the extrema of L*(h, A*, [*), and the asymptotic variance of AH

can be bootstrapped accordingly. (Proof in Appendix All)

One caveat of the above theorem is that we do not have theoretical judgement about how

sharp the bounds are, because they depend on the data and the particular model. Finding some

good theoretical properties of bound of profit loss is a future research question. One fact worth

noting is that we can find the most profitable utility by solving problem (P2) over a compact

function space, similar to what we did in the previous section. The profit loss can decomposed

into selection error and incentive error as described in proposition 6.

Although above results are very general, there are two special cases of interest. The first

case is that utility is unknown but score can be parameterized by some unknown parameters.

In this case, we can find (h(wi), T) E arg minhE-H,h>,TEAx× x(h, T) without non-parametric

estimation of h(wi), and test the null hypotheses by replacing la(x, T) with non-parametric

estimator la.

Corollary 1.2: If the conditions in theorem 4 hold, when the score function can be para-

meterized by la(x,T) -= w(x, T)- Ewr(x, T), then contract optimality can be tested by testing

the null hypothesis HP : p(h, l) = 1. And p(h, la) can be estimated by

Cov(h(wi, ), la(Xi))

where (, T) E argmin(,,T) ('y, T). And the asymptotic variance of p(h, 4a) can be obtained.

The second case is that the monetary utility function is parameterized by some unknown

parameters. In this case, we can infer the most favorable score function la (x, T) theoretically

up to some parameters T. The results are summarized as follows.

Corollary 1.3: If the conditions in theorem 4 hold, when and the monetary utility func-

tion can be parameterize by u(w, 7), then contract optimality can be tested by testing the null

hypothesis Ho : p(h, l)= 1. And p(h, la) can be estimated by

J:: ar (h (wi, )) V-ar (ia (Xi)



where (-, T) E arg min(-,T) A (-y, T). And the asymptotic variance of p(h, la) can be obtained.

Remark 1.3: When the agent's utility is not separable, like u(s(x), a), the first order

condition (1) becomes

v'(x - s(x)) Uwa(s(x), a)

uw (s(x), a) uw(s(x), a)

Let h(s(x),a,) = v'(x-s(x)) ua(s(x),a) the basic conclusions still go through, as long asL,,(s(x),a) - P uw(s(x),a)

h(s(x), a, p) can be parameterized. Particularly, the derivation of test will be identical when the

utility function is log-separable, say, u(w, a) = u(w)c(a).

Remark 1.4: The conclusion can also easily extend to the Glossman-Hart approach of

characterization of moral hazard, if FOA is valid.

Remark 1.5: The model can be used to deal with optimal insurance deduction considered

by Holmstrom (1979).

Remark 1.6: It may be easier to implement all the procedures when the action space is

binary, say, agent can choose aH or aL. In this situation, the likelihood ratio will be la() =

f(x,aH)- (x,aL) and theorems still holds and the algebra is similar.

1.5 Heterogeneous Data-generating Process

This section extends the previous result to the situation that the data-generating process is

heterogeneous. The heterogeneity of data-generating process can due to non-i.i.d. shock, pref-

erence and/or productivity heterogeneity, or contract variety. In addition, it is very important

for the theory to distinguish the principal's observed heterogeneity from the agent's privately

known heterogeneity. In this section, we deal with commonly observed heterogeneity, which

sheds important light on the principle of informativeness (whether additional observables should

enter the contract), heterogeneous shock, and non-deterministic contract process. We leave the

agent's privately known preference heterogeneity issue to another paper, where moral hazard

and adverse selection coexist (Ke, 2008).



1.5.1 Commonly Observed Heterogeneity

Suppose both the principal and agent observe some additional information Z EZ C RIZI be-

sides output x. Z could be multidimensional signal, IZ may be finite or infinite, and assume

limn IZ = 0. There are several ways to introduce Z, depending on how Z affects con-

tracting and the agent's behavior. We adopt a more general form that both principal and agent

observe Z before the agent puts effort, and the principal should sign the contract based on

(x, Z) and implement effort level according to Z. Suppose the joint distribution of output is

f(x,Z, a), therefore the first order condition will be 19 :

v'(x - s(x, Z)) fa(x, Z, a(Z)))
= A(Z) + /(Z) (1.26)u'(s(x, Z)) f (x, Z, a(Z))

We can also introduce preference heterogeneity into the model. Thus A and P become a function

of Z (or subset of Z). The utility can be parameterized as u(w, -y jZ).

Since /L(Z) and a(Z) only vary in Z, when the number of the observations with the same Z

is large enough, we can do the same analysis within each group Z as we did in section 4. This

approach has some disadvantages. For example, when number of observations from the same Z

varies, the quality of estimation also varies. And running testing procedures case by case will lose

some information that can be utilized more efficiently. Instead, we can use all the information

to estimate unknowns. We only discuss the parametric identification here, assuming utility is

known up to some unknown parameter(s) -y, and score function la(x,Z, a(Z)) = fca(x,Z,a(Z))

be parameterized by wa(X,Z, T) - Ex[wa(xi,Z, T) IZ]. Suppose Z is a discrete (or discretized)

variable and let p - J(Z) Note that p Zz n-Pz = 1 if and only if for all Pz = 1

since Pz < 1 for all Z. To test the optimality is to test whether p = 1 by using its sample

analogue. Theorem 3 can be extended as follows.

Theorem 1.7: If the conditions that theorem 3 hold for every Z, given the information

xi, Zi7 Z)il

(i) the contract s(x, Z) is optimal only if hypothesis Ho : p(5) = 1 is accepted, where p(6)

1 9 The classic model (Holmstrom, 1979) is that Z happens after effort has been made. For example, the weather

changes after tenant finishes his field work. In this case, cost function c(a), and monetary utility function u(w)

do not depend on Z, nor the effort level. Another type of modeling is that Z affects effort level but will be
verified by both parties ex post. In this case, the contract will be more complicated, we leave this to another
paper. In practice, which type of Z makes more sense depends on the context.



n
z

COV(Waa(xi, Z, T), h

Var(wa(i, Z, T) IZ)

with (', T) E arg min(-y,T) A('-, T), where,

n nz h(wi, -y Z) - h(Z)
A(-y, =Tin E= h(wi, y IZ)(a( i , Z, T) - C'a(Z))

and nz is the number of observations with the same Z.

(ii) With the additional assumptions,

supa2, (6 )  02A() I -+ 0 and Vn,5 (6)
[ 0606' 06(6'

2
(wa(xi, Z, T) - wa(Z))

n ( Z T) (Z)) 2

nz-1 i=l Wa (X i Z, T ) - C a ( Z ) ) 2

--- dA( 0OQ)

under the null hypothesis, P(y, T) has asymptotic distribution

( -(p- p) -_+d A/(O, nAVar(p))

and 3 has asymptotic distribution

I-(6 - 6) __+d (0, [A,,(6)]- 1 [A5 35,(6)']-) .

(Proof in Appendix A12).

Meanwhile, we can estimate the bounds of the profit loss similar to what we have done in

the previous sections. The Lagrangian is,

L*(6, A*(Z), p*(Z))

= -- {  [w - h(A* + p*[wa(x, Z, T) - EWa(Xi, T)])f(x, Z, a)dx

+A* (Z) [u(h-1 (A* + i*[a(X, Z, T) - Ewa(xi, Z, T)]), -y)f(x, Z,a)dx - u(w, y)f(x, Z,a)dx]

f u(h-1(A* + *[wa(x, Z, T) - EWa(Xi, Z, T)]), y)[wa(x, Z, T) - Ewaa(Xi, Z, T)] f (x, Z,a)dx

- f u(w, y) [wa (x, Z, T) - Ewa (Xi, Z, T)] f(x, Z,a)dx

can be approximated by

(w _, Z) IZ)
Var (h (wi,) |Z)



where for each Z, IC constraint and IR constraint are binding. Therefore, we can find the

extreme value of L*(6, A*(Z), [t*(Z)) by choosing (6, A*(Z), p*(Z)), and the lower bound of

profit loss is,

AII(6)lb AH(6min) = {EWi - Es*(Xi, Z, 6 min)}; (1.27)

and the upper bound of profit loss is

AII()ub = Afr(6max) = E Wi - Es*(xi, Z, 6max)}. (1.28)

Based on the above estimations, we can also figure out which group can be the most prof-

itable. The testing for selection and matching can be done similarly.

Theorem 7 can be extended to deal with non-parametric identification where both the

monetary utility and score function are unknown. If we assume that the output is generated

by effort Z and random noise as follows

y(x) =m(a) + Z' + e, (1.29)

where y(.) is an unknown monotone function, and m(a) the p.d.f. of e are unknown. The model

(29) falls into transformation models in econometrics literature (Horowitz, 1996, Chen, 2002,

among others). It is known that 6 can be efficiently estimated without specifying the error

function, and y(.) and la(x) can be estimated consistently. Particularly, when y(x) = x, the

model becomes a classical adaptive estimation in econometrics (Newey, 1988, Ai, 1997, among

others). Discussion of those estimations is beyond the scope of this paper, but in our real

example, we will perform an addaptive estimation, where individual heterogeneity is allowed.

1.5.2 Heterogeneous Shock to Each Observation

The analysis can also be extended to the situation where additional individual specific shock

exists. We suppose the shock e is drawn according to p.d.f. p(e), which is uncontrollable by

the agent such as unconscious mistake, trembling hand, and so on. Then the p.d.f. of output

becomes f(x,Z, a Ie) given the shock e, where e are unobserved by all contract parties before

~j~;- ----~_~~,i~*i iii~~~~~nii~i ~-:-:l--;---;~~;:: rl-_~, rr;;- ~;~i;ii -i;~:-; (- ;-.r~-~iixi~;~-~r --:- -; --- - -t ; r~i;ii:; --;i~-;b~(~~~~_



effort is put. In this case, the first order condition for contract optimality is

1 fa(x, Z, a |e)p(6)dE

u'(s(x, Z)) f f (x, Z, a e)p(e)de

Then we can repeat all the analyses in the previous sections by using marginal p.d.f. f f(x,Z, a Ie)p(E)de,

instead of f(x,Z, a). If both f(x,Z, a Ie) and p(e) is functionally specified, then we can estimate

the parameters by maximizing conditional likelihood or maximum marginal likelihood. This

excise could be used in cross section data analysis.

1.5.3 Non-deterministic Contract Process

If contract is not a deterministic process, where the payment wi is generated by some stochastic

process. In this case, the contract optimality refers to the optimality of non-stochastic moment

s(xi,Z) = E[w- Ixi ,Z] because wi itself is not a measurable function. We can characterize the

problem slightly different as problem (P1). Let the conditional distribution of w given s(x,Z)

be q(w Is(x, Z)), hence,

s(x, Z) = wo(w |s(x, Z))dw.

Therefore the first order condition for the principal's profit maximization problem is

1 fa(x, Z, a)

s f u(w)q(w Is(x, Z))dw f (x, Z, a)

If contract is a deterministic process, a f u(w)¢(w Is(x, Z))dw = u'(s), back to the condition

(1). If (ls( aog()s(x,z)) la(x,Z, a) and u(w) is functionally specified, then our

analyses in section 3 are still applicable. If wi = s(xi) + vi, xi = g(Zi) + Ej (vl and ej are

noise term form unknown distribution) and u(w) are unknown, in principle, the analyses in

section 4 will apply. This framework could be used to analyze cross-sectional contract, such as

sharecropping, insurance and CEO payment. We will leave this to future research.

1.5.4 Asymmetric Information

A more general case discussed by Holmstrom (1979) is to consider the existence of post contract

asymmetric information, corresponding to Harris and Raviv's (1979) model 2. Some recent case



studies regarding piece rate contract (Paarsch and Shearer, 1999, 2000), can be regarded as this

type of inquiry. In Paarsch and Shearer's model, the principal can not observe the realization

of the shock that the agent observes, given the contract has been written and there is no

renegotiation after the agent realizes the shock. In this situation, the test for the optimality is

still similar but more complicated. We leave this interesting topic to future research.

1.6 A Real Evidence

1.6.1 Data Description

The data were collected from a textile factory in Zhejiang Province, China. The payroll data

document 50 cotton weavers' monthly output, monthly wage and working days in each month

from June 2006 to May 2008 (See Table 2). All these workers are female, and paid by piece rate

contract at the same percentage 18.75% per unit of output. At the beginning of the observation

window, their working experience, age, and education level were also documented.

Table 2. Summary Statistics of Cotton Weaver's Contract Data

Variables obs Mean std. dev Min Max

Age 1200 38.36 5.83 30 49

Education (Year) 1200 9 1.83 5 12

Ini. Experience (Year) 1200 3 0.84 1 3

Monthly wage (Yuan) 1200 1346.93 368.20 108 2415.74

Monthly output (Meter) 1200 481.05 131.50 38.57 862.76

Work days 1200 25.83 2.35 8 29

1.6.2 Test for Contract Optimality with Wage-Output Data Only

The first test is to identify the contract optimality using wage-output data only, without utilizing

any additional information partition. We assume the output generating process is additive as

follows

xi = a + ei

with e from an unknown p.d.f.



First of all, note that the prestage Kolmogrov-Smirnov normality test is not rejected20 .

Inspired by this, according to theory, if the score is close to linear function of x, then the

inverse marginal utility function should be linear in wage. So log utility is the most favorable

functional form to rationalize the data. Our first estimation is to test whether log utility can

rationalize the data.

We estimate the score function - based on kernel estimation (leave-one-out). The band

width is chosen to minimize the expected MSE 21 f E(la - la)2 f(e)de, where

J -E(1a - la)2 f(E)dE

O 1 f "'(ei) f'(ei)f (Ei)) 2 ( f 2 0)2

=[K'( )]2dpE + E -2K( c)do .(1.30)nb3  Ekf(i f(Ef) f(ei) 2  2

Since our pre-assumption of the output is normal, we choose b according to the normal distrib-

ution of f(E) which results in f _ 2 f()d = 28" Using Gaussian kernel, and

using sample range to replace f de, we have

(Emax - min) ) max Emin) 7  41.5742.
bo =1 2 n 7 = 28n 7- 41.5742.

128 28

However, under this band width, the second term (biased term) in (30) will be 3 times larger

than the first term, which is not reasonable since we want to avoid estimating high order derives

in the biased term. So we adjust b0 by b = bo(log n)-1 which will make the second term only

a tenth of the first term on average. So the final band width is

b = 25.4777.

2 0 Our pre-stage test tells us that the Kolmogrov-Smirnov test for normality can not be rejected at p-value

0.65. And Pearson Chi-square test for normality is also not rejected.
2 1 We can also choose b minimizing approximated mean intergrated squre error (AMISE, see Jones, 1991) of

derivative estimator of f'(e) since estimation of f'(e) requires larger band width. Minizing AMISE based on the

normal distribution associated with Gassian Kernel yields,

1 __ 1

b 4 15 1 n7 = 5-7 (n -  = 37.948,
which is close to our choice.

which is close to our choice.
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Figure 1-1: The kernel plot of density (b=25.4777)

Under this band width, we estimate f(e) and score (See Fig. 1 for p.d.f. plot and Fig 2. for

score plot). The basic results are reported in Table 3.

In Table 3, we find that both 1M and A are significantly greater than zero, which indicates

that moral hazard exists and the second order condition is met (at least locally). And our test

for optimality Ho : p = 0 is rejected at 0.01 confidence level, if the smaller order biasness of

estimator ^ is not taken into consideration. When the bias is substracted, the null hypothesis

is rejected at 0.05 confidence level 22 . And we also find that the profit loss is about 57 RMB, 1%

of total profit, compared with a potential optimal contract which is consistent with log utility.

The finding indiciates that log utility seems to explain the variation of wage very well in terms

of small profit loss. However the test significant rejects that log utility is the most favorable

type of utility, as we will see in next subsection.

22The boostrapped standard error is slightly higher than the theoretical asymptotic variance, but the null is
still rejected even using bootstrapped standard error.

............................................ , ! : ; :r i ii, i , : " . "



Table. 3. Optimality Test Using Wage-Output Information Only

b=25.48

A --+ Ehl

M(e)

Adjusted

s*(x)

Isb - nob{%}

Adjoint Equation

Log utility

6.1736 x 10- 5 (3.7297 x 10- 6)

1.3469x 103 (10.6289)

4.2820 x 104

(5.4341 x 103)***

0.0022 (0.0016)*

2.0343 x 10- 6

(5.8544 x 10-5) * * *

0.9138 (0.0239)***[0.0277]

0.9612 (0.0239)**[0.0277]

103(1.2896 + 4.30241a)

57.2442{0.98%}

11.2146 (?)

Unknown utility

6.1736 x 10- 5 (3.7297 x 10-6)

5.8151*10-4(1.6868 * 10- 4 )

0.3509

(0.0139)***

6.4956 (0.0301)***

4.4946 x 10- 4

(7.1030 x 10- 4 )

0.8858 (0.042)***

0.9723 (0.042)

n.a.

55.3682{0.96%}

-1.0134 (46.3283)

Since the optimality hypothesis is rejected for log utility, we run a non-parametric optimality

test. We try to find a smooth monotone function h(w) to rationalize the first order condition,

this is

h(wi) = A + pila(Xi).

To estimate h(w), we adopt the estimate proposed by Dette et al (2006). We use E-kernel,

and choose the bandwith of bh according to the critierion

1 n-1

bh =2(n- 1) Z(la(xi+l) - la(Xi))2 = 3.7492 * 10 - ,
2(n - 1) i=

which also numerically coincides with the criterion minimizing expected MSE of h(w),

bh E argminh f m (2h'5')22(w)2dw+ [K'(O)]2do Kr (P)2dp nbb 1 (w)2 dw.
bh 4 2 (JJ J )ibhrb 3 J (W)f(6)

The results show that the recovered inverse marginal utility is almost linear function, and we

are no longer able to reject the null hypothesis. The profit loss is even smaller (about 0.5%).



This shows that log utility explains the data very well, and pasts the non-parametric test (We

also did test based on daily output, and the results are the same)23 .

1.6.3 Tests for Optimality by Using Individual Fixed Effect

The second exercise is to utilize additional information partitions. Assuming the output is

generated by

x= Z+e

where Z is individual dummy variable, and we let a = P1 as effort parameter. We can do

parametric or non-parametric test.

For parametric case, we assume score is linear in x, thus the most likely funtional form to

rationalize the data is CRRA or log utility familiy. We run OLS to estimate 3 first, then the

score can be estimated by,

la(Xi, 1) =i Xi - Z3.

The OLS regression shows that the majorities of /3's are significant, indicating the presence

of heterogeity among agents. Our testing results are reported in Table 4. We find that in

this parametric case, the null hypothesis is not rejected. This means that the heterogeneity

among agent is not enough to beat the optimality of contract, even though these heterogeity is

significant based on the output data. That is said, if we believe that the contract is optimal, the

agent's utitity should be close to log or CRRA (these assumptions are employed in empirical

macro literature and labor literature). We also run non-parametric testing, by doing adaptive

estimation, but result seems similar. However, if we take the selection issue into considerations,

then the data shows that principal may fail to match the right agent or technology to contract.

23We can also choose the bandwidth by Cross Validation minh f(f'(x))2dx - i().



Table 4. Test Results for Piece-Rate Contract (Linear Score).

Z -+ Ell
S- Var(h)

A - Eh

Cov(h,Ia)

M(a)

Q(0.99)

S*(x)

Ilsb -_ ob

(twj _e *) 2  d 2
X1

AVar(AH)

]ffb _ fisb

fifb -_ iob

Ho : V* = 0

or HOy : = y*

Hoo : V 0

Adjoint Equation

CRRA

0.4117(0.0047)***

1.2422*10 4 (507.6182)

131.9964(6.3309)

66.6460(0.4690)

0.0878(0.0181)***

530.7616(148.4872)***

1.1690*108 (1.4567*108)

0.8516(0.8454)

0.3260**

(68.5600+0.08831a) 0.4117

8.8016(1.6821)***

0.15%

0.0484[0.1741]

23.5366(1.6821)***

32.3382(20.9582)*

1.3029*104(79.7825)***

n.a.

4.6440*1010(9.5883*109)***

1.6.4 Allowing Preference Heterogeneity

If we allow each individual to be different in their utility parameter within CRRA family. Then

we choose a set of -y = (y, ..., Y50) to maximize the criterion function. And we also assume

that score is linear function of output for each individual j,

la(xj, Zi, aj) = xji - E[xjil/Zi]

log utility

0(n.a.)

1.2422*104 (507.6182)

1.3557*105(5.4144*103)

1.3469*103(10.6289)

2.7977(0.3686)***

29.2213(23.0592)*

1.9104*103(3.4128*103)

0.8466(0.1073)*

0.3305**

103(1.3317 + 0.00281a)

15.2283(8.6577)*

0.26%

0.0340[0.1463]

42.0576(8.6577)***

57.2859(15.8125)***

n.a.

0.1380(1.4983*10 - 4) **

n.a.

1.4607*105(2.1829*104)***



By doing the same estimation, we have the following results:

Table 7. Testing Results for Heterogeneous Preference

variables Min Max Median

S-9.1171*10 - 6  6.7257*10-6 -2.9671*10 - 8

Z - El 2  5.1745 33.9309 12.2156

Q --+ Var(h) 40.5673 266.0103 90.5633

ov (hl 2.6832 2.6835 2.6833

0.9583 0.9583 0.9583

X, [p-value] 0.0299[0.8628]

Mean

8.5095*10 - 8

11.5514

95.7705

2.6833

0.9583

std. dev

2.6726*10-6

5.0451

39.5293

3.5521*10 - 5

4.8361*10 - 14

The results shows that the p-value is significant larger than before and we

null hypothesis. The reason is that there are only 24 observations for each

dramatically increases the degree of freedom.

can not reject the

individual, which

1.7 Conclusions and implications

Moral hazard theory has been an important element of modern economics since the 1970s, while

there has been increasing interest in testing contract theory in recent decades. But as Chiappori

and Salanie (2003) highlight, testing of contract theory has been hampered due to self-selection,

unobservable action and preference, and other factors. On the one hand, empirical regressions

using exogenous variations face the difficulties of self-endogeneity and separation between the

exogenous factors and variation of effort which also depends on those factors2 4 . On the other

hand, without variation of effort, it is hard to back out the alternatives of observed choice by

the agent. These difficulties become somewhat of a barrier to examining contract theory and

also weaken the generality of the conclusion drawn by a specific case study, such as piece rate

(Paarsch and Shearer, 1999, 2000, Haley, 2003, among others) and sharecropping (Ackerberg

and Botticini, 1999, among others). Based directly on the first order conditions for contract

optimality, this paper provides a set of conditions to identify moral hazard problem without

relying on exogenous variation. As indicated by simulations and an empirical example, our

24 For example, suppose we observe exogenous variation Z, which affects variation of contract w. However, the

agent effort should depend on Z and w, say a(Z, w). It is hard to separately identify the mechanism leading to

the change of effort and evaluate the efficiency of contract.
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approach seems to work well. Furthermore, this technique has broad applications to incentive

design and allows more refined tests of contract theory (particularly moral hazard theory) using

observable data. The data in this paper shows that piece rate contract can be rationalized by

log utility very well in the sense that the lower bound of profit loss is very small, given that

normality of output distribution is not rejected. Our approach can handle more complicated

contracting situations such as CEO compensation, insurance co-pay plans, and taxation codes,

though we use a relatively simple contract data set in this paper. We expect to further examine

this approach in future empirical research.

This paper is the first paper taking a close look at the testing of the contract theory based

on the first order approach, especially in a situation with moral hazard. However, there are

a couple of authors also looking at the first order conditions of contract optimality in adverse

selection (d'Haultfeuille and Fevrer, 2007). Their paper aims to identify contract optimality in

pure adverse selection where the observed data are quantity of trades and transfers, but the

agent's type, the distribution of types, the agent's cost function and the production function

are not observed. These two independent papers have similar motivation, though our approach

is very different.

There are several extensions of the current findings worth noting. The first one is to consider

an environment in which an agent has privately-known productivity and there exist both moral

hazard and adverse selection (see Myerson, 1982; Faynzilberg and Kumar, 2000). Limited here

by length, we deal with this question in a separate paper which shows that our approach ap-

plies to this setting (Ke, 2008). The second extension is to examine algorithms for achieving

contract optimality through repeated experiments (trial and error) without knowing the func-

tions, mimicking how the principal behaves in the real world, and find evidence to support this

type of behavior. The third extension is to extend the framework to a dynamic setting, where

interactions due to learning between principal and agent is activated. All of these extensions

seem to be challenging but interesting for future exploration.



1.8 Appendices

1.8.1 Proof of Propositon 1

Proof. By contradiction.

First, for a given contract s(x) and output distribution f(x, a), when the Lagrangian mul-

tiplier A and A are fixed, there is only a unique utility (ia(.), 8(a)) rationalizing s(x) since U is

monotonically increasing and concave and 4 = A + Ala (x, a) > 0. This is,

h(=) = A + pla(x, a) or - i(q).

Hence, if the underlying utility is different from i2(.), the difference between u and it is up to

an affine transformation in their inverse marginal utilities, i.e., h(.) - klh(.) + k 2 . Therefore,

the optimal contract under utility (u, c) should be:

h(s) = A + lla(x, a) with A > 0 and ft > 0 or s = r(q).

Since h(.) = k h(.) + k 2 , it can be seen that (q) = r(aiq + a 2 ) with al = , a 2 =A - 4A-. We

want to prove al = 1 and a2 = 0.

Because 9 is the true contract offered to the agent, and la(X, a) is generated by the agent's

true effort a, therfore, keeping the agent's utility the same as that of contract 9(x), we have

US(4r())la(x)f(x, a)dx = u(r(q))a(x) f (x,a)dx

and u(P (q)) f (x,a)dx = u(r(q)) f (x,a)dx,

yielding

E[u( (q)) - u(r(q))]q = 0.

By the concavity of u(.), if i(q) 4 r(q) with positive probability, then,

E( (q) - r(q)) > 0.



At the same time, when (q) = r(alq + a2),

E(i(q) - r(q)) < F[u(r(alq + a2)) - u(r(q))](alq + o2) = 0,

we have i(4) = r(q) pointwise. Q.E.D. m

1.8.2 Proof of Proposition 2

Proof. The proof of theorem 3 is a special case of theorem 3, which is proved in Appendix 3.

(i) In this simpler situation, we have

4{Var((h - A)1a) + Z- 1 [E(h - A)laT]2 } + -TVar(Q)

nAVar() = +( J)2 [Var(12) + 4Z - 1 (ElalaT)2 - 4()Cov((h - A)1a, Q) + 2 Cov(Q, 12)

-4(J)Cov((h- A)la, 2) - J [E(h - A)laTlElalaT]

1 4Var((h - A)1a) + Var(Q) + ( )2 Var(lI)

4QZ -4( 1 )Cov((h- A)aa, Q) + 2 1-Cov(Q,l ) - 4( )Cov((h - A) a, 12)

Z Var(2(h - A)1a - -

(ii) Especially, under the null hypothesis, the asymptotic distribution of (T) - p here is a

special case of theorem 3, and T here is a scalar and PTT = 0, therefore,

n[p(T)- 1] = -- n(Ela)2 -d X
2Z 2

Q.E.D. .

1.8.3 Proof of Proposition 3

Proof. (i) We want to estimate the profit loss due to the suboptimality of the contract. Suppose

we observe a real payment w, and detect the effort level a and some exogenous parameter 0 as

well. Given the estimated 7, the potential optimal contract s*(x) = h-1[A* + ,U*la* (x, a, 0), y]

can be found by the following:

(a*, 0*) = (a, 0);



u(s*(x),y)la(x, T)f(x, T)dx =J u(w,7)la(i, T)f(x, T)d;

(s*(x)), 7)f(x, T)dx = u(w,) f (x, T)dx.

Among the above conditions, the first line means that the comparison is based on the same

effort a as we estimated; the second line means that the IC constraint under the potential

optimal contract will be binding, thus, by the monotonicity of c'(a), both s*(x) and wi will

implement the same effort. The third line means the agent will get the same utility under two

different contracts. Plugging a* = a into the second and the third equation and combining

them, we can solve A* and [*. Thus, the profit distance (per capita) to the potential optimal

contract is the following:

A n = H(s*(x)) - n(s(x))

Sf f(x, T)dx - J*(x)f (x, T)dx

= f (x, T)dx - h- [A* + 1,*a(x, T*),7] f (x, T*)dx

In our problem, true effort level a and true contract s(x) are unknown. We thus formulate

an estimator of profit loss in terms of sample analogues, which is solve (A*, *, T*) solving the

following equations:

T = T

Eu(h-l[* + *la(xi,T),y],)la(xi ,T) - E u(Wij,)la(xi,T)
n

i=1

where T = (a, 0')' and - E arg min, A(y).

(ii)-(iii). The rest parts of proof are techical, so we put them on the technical supplement

(TS1). Q.E.D. .



1.8.4 Proof of Corollary 1

Proof. (i) It is obvious to see that wfb is the full insurance contract through which the principal

implements the same effort, keeping the agent's utility the same. (ii) Note that

Sfb w fb = Ou(u(wb, ' ( - r) + (u(w ( , ) - Eu(wi, 7)) + h.o.
=0r' ,(Wfsb)

fb - wfb = du-(u(wi, ), )( + h.o.
dy'o

therefore,
nAVar( wfb) = du-1 (Eu(wi, y), y) du- 1 (Eu(wi, ), r)

nAVar( f b)

dry' dy

since ACov(Eu(wi), ) = 0. And we have

au-(u(wb, y), y) du-1((w b, Y), f)
nAVar (fb) r

2u-l(u(w fb' y)
+h(wfb) 2 [Var(u(wi)) + Eu,,(wi)rEu^(wi)] + 2 1  b, rEu(wi)

The rest parts of proof are technical, so we put them in technical supplement 2. Q.E.D. *

1.8.5 Proof of Theorem 3

Proof. (i) First, we need to check the consistence of P under the null hypothesis. Using the

sample analogue A(-y, T) as an approximation of A(-y, T), for the uniform convergence to apply,

we need to confirm

sup A(), T-A(,T) -A(, T)
(-,T)



Note that,

sup A(y, T)- A(, T)
(~y,T)

sup + (Z r7 ,, xiT) (-, T
Ss i(T)- J)h(wi,)- h(w,7) - a(xi, 2

(spT) n J*2  (-Z) *2,T)

(y,T) n ,T) J2

+3 sup (2 - Z)2 1 (xiT)

Note also that J* ---P J, -+P J, Z* ---P Z, -+ Z, (h(w, 7)- h(w,)) 2  Q < ,

1 E12,(x,) -~ Z < o. The only item left is to show that sup- eIi(-y, T) 2 - A(Y, T) -p
n a n

0, which is implied by the uniform law of large numbers, because of

sup (h(w, ) - Eh(w, y) la(x, T)
E[sup ]

(,T) Eh(w,-) ')la(x, T) Ela(x, T) 2

< 2E[sup h(w, -) - Eh(w, y) 2 (la(x , T) )2

S2E[(suT) Eh(w,7)la(x , T) +Ela(x, T)2

1 2
2E[sup (h(w, y) - Eh(w,))2] sup 2 +2

-yer (Q,T) [Eh(w,Y)la(x, T)12  El,(x, T*) 2

< 00

(-la(x,T) ' 2

where T* = arg maxT E,(x,T)2) And the last step comes from Eh(w, )la(x, T) > 0 and

El,(x, T*) 2 > 0. Thus, sup, I(, T) - A(-y, T) -+P 0.

Based on the above conditions, the extremum estimator of (-, T) E arg min(, ,p) k(-y, T)

is a consistent estimator of the minimizer of A(-y, T).

(ii) We can derive the asymptotic distribution of ^(S) based on the asymptotic distrbiution

of 6. With the additional assumptions that

sup 2A( - 0 and iA 5(6) _d A(0, Q)

Ss6a6 a60606



and is non-singular, the asymptotic normality of 6 can be derived by the following (since

we do not apply a two-step estimation):

0 = A~(6) = A(6) + A ,(, T)(5 - 6)

Therefore, we have,

VI( -6 ) - [5' i ]- V "'

Note that

)- p() = P,(6 - 6) + ,(6) - )'p() -)

We find that under the null hypothesis,

- p(5) + h.o.

J (6) 1 2)
Q C - 2 j (6)_

1
+ o()

n

J- (6) 1 J ()

t2 2 2 2
1

=o(-)
n

1 ( T(T) - laElaT ZT(T)

=(T) 2 Z(T)

1
- ( ),

72

and

PT 1 =T(6)

1
+ ()n

VZ-7

12(T)- J(6)ZT(T)
2



and

() - p(6)
1 1 1- [Z - Z - (Eta) 2] - 2[ - Z - (El ) 2 ] - (Z - Z)

J 2Q 2Z
1 1I [ 3[2- Z - (IEl) 2]2  1[i - Z - (ta) 2 (2 - Z)

2JQ 2ZJ

+4J f 2 [Z - Z - (E&a) 2 ](Z - Z)+ Q-2L4[Z - Z - (Ela) 2] 2 + Z-2(2 _ Z) 2 + h.o.

1 3 1) 2 ] )2  3 2(
S() 2  8 2 [Z - Z - ()22 2 - - (ta)2]( ) 2) 2 ]2  + Z-2(Z - Z )22Z 8 2  4Z 2  8

1 (El)2 2Z2 (Z - Z)(Ela)2 + (la ) 4  -
2 2Z2 8 tl) + o(n-2),

therefore,

r[4(6) -p(6)] = n[,() - k(6 + ) -p(6)]

1 1
-V'(6 - 6)'ps'V(B - 6) - (~ la) + h.o.2 2Zh.o.

Note that both vIEla and v/-n(6-6) are asymptotically normal, then n[P(3)-p(6)] is quadratic

form of a multivariate normal. We can rewrite it as the expression in theorem3. The typical

value of quadratic form can be simulated or approximated. Q.E.D. 0

1.8.6 Proof of Proposition 5

Proof. In this case, we can run a two-step estimation.

Step 1:

Because a(O) is endogenized by 0, for (a, 0), we have

[ f(xfa(), 0) + fj (x, a(O), 0)]dx = 0 for j = 1,..., t

Note that a is a parameter, so f fa(x, a(O), O)dx = 0 still holds. Therefore, together with

f f0 (x, a(O), O)dx = 0, there are t + 1 moment conditions to identify (a, 0) under A6. Let

T = (a, 0)', then the parameter T can be estimated through MLE or GMM. The standard

result of MLE follows:

/n(' - T) _d N((0, Z-1)



where Z = -E ~ nf(xT) is information quantity.

Step 2:

We can justify the applicability of the uniform convergence, i.e., sup (-y, T) - A(-y, T) --P

0 by the same technique used in theorem 3. With the additional assumptions A7, the asymptotic

normality of i5 can be derived as follows. By the first order condition

0= A7 ( , T) = Ay (, T) + Ar(, T)( Y - ) + AyT'(;Y, T)(T - T)

we have

/n( - -y) - -[A(', T)-1 [V/n _yy , T) + T'(;Y, T)>v( T - T)]

Note that A7 T/ '(, T) - T h IT', (-y, T) -- P A7 , Ai-y, (, T) ---P A y,, therefore, the asymp-

totic distribution of (9 - y) is:

n(f - -o) -d Af(0, A-, [ + A A .A -']AI,).

For convenience, write IF = A-, [Q+ATZ-'Ay'T]A-',. Particulary, under the null hypothesis,

Q = 0, and nAVar(AT',(Q, T)) = Var(eT,), we have

n(4 - _7) d A(0, E(e 7 T' - E6EyT,))Z-1(E-T, - EEyT,))]

which converges at rate - rather than 1 Given this effect, according the proof in A5,

/( - -y) converge faster than -( - T), so we can neglect them in the the asymptotic

distribution of P(y, T).

The asymptotic distribution of M1 and k can also be derived similarly. For estimator

A = Eu(wi, /)g(x, T), its asymptotic distribution is

Vn(A - A) -+d N(0, Var(ug) + (EugT,) Z-1 (EugT) + (Eu',g) r (Eu-g) + 2 (Euy,g) O(rTEUgT)

where g = la for M and g = la + 12 for K. Q.E.D. m



1.8.7 Proof of lemma 1

Proof. Note that if y is maximizer of value function V(7),

V(7) = v(x- s(x, 7))f(x,a*)dx

+A[ [u(s (x, 7y), ) - c(a*)] f(x, a*)dx - U]

+[j u(s(x, ),7) fa(x, a*)dx -(a*)],

and by the envelop theorem,

dV* V Oa* 5VOs s
V* d7 -a 9- 6s d+ A u(s(x, 7), 7y)f(x, a*(7))dx

d a fy 6s &y

+t a u(s(x, y), y)fa(x, a*(7))dx + -- [ [u(s(x, y), y) - c(a*)]f (x, a*)dx - U]

+ [ u(s(xZ, y),7) fa(x, a*)d - c'(a*)]

= A J u(s(x, ),7)f(x,a*)dx + J u(s(x, 7),)fa(x,a*(7))dx

- 0.

tili U t U

Here we utilize = 0. The reason that = 0 can have different interpretations. The obvious

one is that the reservation utility is kept the same cross different types of agent. The second

one is that the principal assures that every agent got the same utility since IR constraint will

be binding for any type. U does not vary means that any type of agent will have the same

utility, which could be regarded as market equilibrium (otherwise, some agent will switch). In

terms of statistics, U need not to be exactly the same, as long as the error happens to U (or

the agent's equilibrium utility) is mean independent of the type, the above result still holds.

Note that y fa(x, a*) = h(s*, 7) - A when s*(x) > s, and s*(x) is uniformly bounded by

s from below, therefore we obtain the condition V,* = SY (A + la(x, a*))f(x,a)dx +

Lf> (s*(),-) f(x, a*)dx = 0. Q.E.D. .
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1.8.8 Proof of Proposition 9

Proof. (i) if w(x, T) does not contain a, given the score function la(x, a) = (w(x, T) -

Ew(xi, T)), thus

a (T)
laa(x, a)= - () (w(x, T) - Ew(xi, T)) - Ewv(xi, T)(w (xi, T) - Ezw(xi, T))

q (T) )(T)

Note that El = -Elaa, thus

1 w((T) 1

1
+ 2Ew(xi, T)(w(xi, T) - Ew(xi, T))Eu(wi)

Meanwhile, note that

I x(w(x, T) - Ew(xi, T))f(x, a)dx +
1

E[xi(w(xi, T) - Ew(x,, T)) 2 ]

?I(T)2

1
2Ew(xi, T)(w(xi, T) - Ew(xi, T))Exi

< 0.

And note that -- (T) > 0 iff Cov(xi, w(xi, T)) > 0. When Cov(xi, w(xi, T)) > 0 is the case,

we have a-(T) > 0 and E [u(w)(w(xi, T) -Ewu(xi, T))] > 0, therefore, the sufficient condition

for K > 0 is,

Cov(xi, (v(xi, T) - E(xi, T))2 ) Cov(u(wi), w(xi, T)) > Cov(u(wi), (w(xi, T) -Ew(xi, T)) 2).
Cov(x, w(xi, T))

(1.31)

When Cov(xi, z(xi, T)) < 0, then aq-(T) < 0 and E[u(wi(w(xi, T) - Ew(xi, T))] < 0, the

sufficient condition will be the same as inequality (23).

(ii) When w(x, T) contains a as an explicit parameter, thus, we normalize q(T) to a constant

independence of a, therefore,

Oa9(x, T)
1

laa(x , a) = 1
q(T)

- E u(xi, T))
Ba/

1
2 Ew(xi, T)(w(xi, T) - Ew(xi, T)).

?I(T)l

a2 Exi

da2
2a (T)aa(T)
?(T)2



Note that

K = -Eu(wi)(la(xi,a) + l (xi, a))

E[u(wi)( aw(x, T) - 1E aw(xi, T))] - Cov(u(wi), (mu(xi, T) - Ew(x, T))2)
(T) a Oa (T)

Meanwhile, note that,

2Eix 1 8 8 1= E[xi( aw(x, T) - E a(x, T))] + 2Cov(zi, (u(i(, T) - Ew(xi, T)) 2 )aa2  q(T) aa aa I(T)

< 0

Therefore, when E[xi(w(xi, T) - Ew(xi, T))] > 0, we have 1> 0, and

(T(T))

Moreover, when the sign of Cov(xi, (wu(xi, T)-Ewu(xi, T))2) agrees with that of Cov(u(wi), (w(x., T)-

Ewu(xi, T))2), then, to test K > 0, it suffices to test,

a a 1
-E[u(wj)( w(xj, T) - E w(xi, T))] - Cov(u(w), (cU(x, T) - Ew(x, T))2 )

8a &a a(T)
a ( Cov(u(wi), (~m(xi, T) - Ew (xi, T)) 2)

S-ov((wi), Cov(i, Cov(xi, (Lv(xi, T) - Ewuc(xi, T)) 2)
>0

If E[xi(w(x, T) - Ew(xi, T))] < 0, we haveT < 0, and

Cov(xi, (w(xi, T) - Ew(xi, T))2 ) > -E[x( (x, T) - E- (x, T))]
,q(T) aa aa

To test K > 0, it suffices to test,

-E[(wa)(a (x, T) - E (x,T))1 Cov(u(wi), (w(xi, T) - Ew(xi, T))2)

a a Cov(u(w), (w(xi, T) - Ew(xi, T)) 2)
< -Cov(u(wi), wu(xi, T)) + Cov((x, -- (x, T))

aa a Cov(xi, (w(xz, T) - Ew(xi, T))2)

<0



Put these two cases together, we need to test that the sign of E[xi( w(x, T) - Ew(xi, T))]

agrees with that of Cov(x, , 9 T)) Cov((w (xi,T)-E(xi,T))2 ) C ((w), T)).

Use the sample analogue of the objects, we can test K > 0. Q.E.D. m

1.8.9 Proof of Theorem 4

Proof. (i) For convenience, we use K 2 =f ~ 2K(p)dp as our notation. We have,

= 1 b2 fill()
f(E) 6 I 3 K'(p)dp + f'() 1 f"()b2f(6)2 2 J 2 K(p)do

= b2A(e)K2
2

where A(E) ['()"()-( e)f'()]. And we have
where~~ A)= f(0),

MSE(la) = Var(la) + (Ela - la)2

I [K'( )]2 d + 1A(e) S2K ()d )

Choose b cc n- 7 (a > 0), thus limn,,,oo(Ela -la) 2 -- 0, and limn-,,, Var(ia) = 0. So we have

n(ia - a) Af(0, f [K'(p)]2d)

We can proceed to estimate h(w) with monotonicity constraint.

We use Delette et al (2006) procedure to estimate a monotone function h(wi). We have

regression

i= h(wi) + a(x)Ei

where e~ comes from the first stage estimation error. The first step is estimate h(wi) without

monotonicity constraint, such as

1 n Kr(wi-w) i
htN(W) I nb h  Ei n- Kr( w-w )

nbh l=-- I(Wi-bh

Ela - la

S 1 1

b3 f(e)



We have

1 (ENi1) 2  ENI
Var(hN) Var(Ni) + Var(N 2 ) - 2 Cov(N1, N2)

(EN 2 )2  (EN 2 ) 4  (]EN2)3

1 1 J[K'(p)]2 do f O2
nbh (w) nb3f () K()d

where we utilize f pK,(p)2dc = 0 and Var(N1) = EVar, (91)+ Var(Ex (91)) and O(w) = s'()

is the density of w under the null hypothesis.

To minimize the AIMSE of h, we can choose bh cX (n2b3) - o(n -), then the biasness

term asymptotically disappears, so we have,

n b3 bh(h(w) - h(w)) d (0, (w)f (e) [KI()2dJ K d( )2

The convergence rate is faster than routine one.

The second step is to derive the asymptotic distribution of h(w) with monotonicity con-

straint. Our results is based on Dette et al (2006). Their approach is to inverse the estimated

density of hN(w). The second step estimator of h(w) is

h-1 (t) Nbd -
Nb _Koo bd

and the third step is to reflect 1 -l(t) on the axis y = x, we have the asymptotic distribution of

hj (t) as following:

n b3 bh ( (w) 1 h"(w)Q(w) + 2h'(w)'(w) 1

2 (w) - ,

d ( 0(, w)f(e) [K'(W)]2 dW K,(P)'d) ,

where limn-- b = 00. b2 = o(n-) as we set before.

We turn to derive the asymptotic distribution of ^. First of all, the asymptotic distribution



of Z = E a2 can be determined as follows,

lim nE(Z - EZ)2
n---+oo

= lim nE(Z - Z) 2 - lim nE(Z - EZ)2

n---oo n--c o

= lim nE[E(i2(xi) - 12(xi)) + El(xz ) - Z - (Ela(Xi))2 2 
- lim nE(Z - Ei(xi) + E(Ela(Xi))2 2

n--oo n--+oo

= lim nEE[((xi ) - 12(xi)) + El (xi) - Z] 2 -2 lim nE(Ela(Xi))2 [E(i(xi) - 12(xi)) + El2(xi) - Z]
n-- oo n--*oo

+ lim nE(E(xi))4 - lim nE[Ei2(xi) - Z]2+ 2 lim nE(Ela(Xi))2E[El(xi) - Z] - lim n(E(Ela(Xi)2
n-oo n-*oo n--,oo n-+oo

The first term is equal to,

E[E(l (x,) - 12(XZ))]2 + 2E[E(^(xi) - (X))][1El2(xz ) - Z] + E(El(x) - Z)2

= 4El2(Xi)(la(Xi) - la(Xi))
2 + (n - 1)4Ela(Xi)(la(Xi) - la(Xi))la(Xj)(la(Xj) - la(Xj))

+41E[la(Xi)(ia(Xi) - la(xi))(1 (Xi) - Z)] + 4(n - 1)E[la(xi)(la(Xi) - la(Xi))(12(Xj) - Z)]

+Var(12 (Xi))

E + b4K 2 E [AI212(Xi)]=4 -1 + 4(n - 1) K2 2 [EAil (xi)] 2

+4 (K 2 EAila(xi)(12(Xi) - Z)] + 4(n - 1) b
(22 ) (

K2) EAila(Xi)E(12(xy) - Z)] + Var(12(xi))

The sum of the second term and the fouth term is:

lim nE(EtI(xi)) 2 [E( (Xi) - 12(xi)) + E12(xi) - Z] - lim nE(1la(Xi))2E[El2(Xi) - Z]
n-oo n--+oo

S2(n - 1) (E2(Xi))[E(x)[(1(xi) - 1(xi)) + El2(Xi) - Z]]

(n - 1)(n - 2) (Ela(Xi))2 [(1ia(Xi) - Z] - nE (Ela(Xi)) 2 E[i(Xi) - Z]
n

= 2(Ela(Xi))t[la(i) [( 1(Xi) - 1(Xi)) ± El 2(Xi) - Z] 2(n - 1) (Ea(Xi))2 E[1a(Xi) - Z]

-Ela(xi)E[1 ) - Z] -+ o()

4 (1K 2 b2EA(ei) 1IK 2 b2EA(e )2(xi ) - 4

-2Z K2b 2 EA(es)1a(Xi) + o(b 4

(K2b 2 ) E A ( j ) E A (F1) l ( x i )

(i[K( P)]2d~p)



The sum of the third term and the fouth term is equal to,

lim nE(tEla(Xi)) 4 - lim n(E(EiE(Xi)2)2 = 4Ei2 (xi)(Ela(Xi)) 2 + o(b4 ) = 4Z( K2 b2 EA(e))2
n-oo n--+oo

Putting all terms together, we have,

lim nE(Z - EZ) 2

n-->oo

E f-)
+ b4K2 2E+4 b

+4 (K2 EAila(Xi)(12(x) - Z)] + 4(n - 1)

[A? l2(x)] + 4(n - 1) bK2

2 K2) EAila(x)E(1(j) -

[EAila(xi)12

Z)] + Var(1(Xi))

4 ( K2b2EA(6e)) K2b2EA(\ )12(x,) - 4 ( K2b2 ) 2 EA(e6)EA( )l(xi)

-2Z (K2) EIA(ei)la(Xi)

f(E ) + b4K22E [Al12(xi)]
1 2

EAla(Xi)1 (Xi) + Var(12(x,)) - 8 (1K 2b 2 EA(e)

1) KbIK2) 2 [EAila(xi)12

[EA(6,)1 (x,) - EA(6)1a(Xi)]

As nb3 - 00, b -+ 0, we have

Vl(2 - Z) __d ( b2K 2 E [A(ei)la(i)], Var(12(x))).
2 a

Note that Z converges to Z at routine rate. This is the case as J and Q since h(w) converge to

h(w) faster than Z's. Given this fact, we choose J = E(h - h)(la - Ela), Z = E(la - Iti) 2 to

estimate P, and we have,

J(la)

I (- (ia - El)(la - la)Z 2
1

+ IE(ia - l)(la)2
- Elt))

1(

± b3 nbh

1
+ o( )

n2b3bh

1 1+2 -o(E(la -

2Z E(la a)

E (a a)) [O( ) + O(b4)]

- E(la - la)] 2 + o( )

-2

+4

: i;;~-"~'L~~i~" ; i-lll~*l'-P~~~~~-;-"~Ci~i;__-Llil -~~FI;--~~~X~~ -~~ ;-:--.l~;lill~-~i~._ilii~~-~i~iiiii.~Li i:i.~i;;:~i:~a~ij~:(i

4 n

S4 1( ;

[K'(p)]2dy )

+ 4(n -(f[K' ( ) ]2 dW)



This is due to the second order items is in the order of 11 o( ) + o(). Note that

E[]la(Xi) - la(xi) - E(lta(X) - la(Xi)]2

= E[1a(Xi) - la(Xi) - E((la(Xi) - la(Xi)]2

= n - 1 (E(a(Xi)- la(Xi))2 - [E(la(Xi) - la(Xi))]2

= [K'(p)]2d) Ef( + b4K Var(A(e))

and

lim {E[la(xi) - la(xz) - E(la(Xi) - l(x)] 4 - (E[a(xi) - la(Xi) - E(la(Xi) - la(Xi)]2 ) 2}

= lim {E[la(Xi) - la (xi)]4 - 4E[1a(Xi) - la(Xi)]3E[i[a(Xi) - la(Xi)]
n-oo

+8E[la(Xi) - la((X)] 2 [E(la(Xi) - la(xi))]2 - [E(ia(xi) - la(xi))2]2 - 4[E(la(xi) - l,(xi))]4

= lim E[^a(Xi) - la(xi)]4 + O(E[la(xi) - la(xi)]3 E[ia(xi) - la(Xi))
n--oo

= lim E[ [f'(xi) - f'(x)]]4 + o(E[ ['(x) - f'(x)]]4
n--*xo f() f( i)

24 f 2la(El)
nb3 J f()

Finally, we have,

+ 1E 1 [K'(p)]2d p+ b4K2Var(A(ei))

/-d 1 2 1'- 4)

d 4nZ 2 4 (E- [K' (p) 2 d + ( ) + o(b4

f



1.8.10 Proof of theorem 5

Proof. Given h(g) = A +

utility ii(.), therefore,

Ila, under the null hypothesis, .(x) is the optimal contract under

O = J ((4))la(x)f(x, a)dx - '(a)

U J ())f(x,a)dx - (a)

if i(.) is the true primitive utility, then we done, h is identified by the asymptotic distribution

of estimation of h.

If h is not from the true utility u(w), instead under the true utility u(w), the optimal

contract should be

h(g) = A + /lla, with A > 0 and [ > 0 as two unknown parameters,

since true marginal incentive cost h(w) is an affine transformation of estimated marginal utility

h(w). Therefore, there must exist another contract s(x) = r(q), and IC and IR constraints

binding accordingly. Thus the following condition satisfied (using the notation as proof of

theorem 1),

Es(x)

Su(r(q))la(x)f(x, a)dx - c(a)

u(r(q)) f (x, a)dx - c(a)

< E9(X);

o= o Ji((i))la(x)f(X, a)dx - (a);

= U = i v(())f(x, a)dx - ~(a).

At the same time, since the true utility is u(.), then we also observe the following fact to hold:

I u((4))la(x)f(x, a)dx - c'(a) =

u((4))f(x, a)dx - c(a) =

0 JiV((k))la(x)f(x,a)dx - '(a)

U = J (P()) f(x, a)dx - a(a).



Combining all the above conditions, we have

These two conditions are sufficient for theorem 1 to apply. So estimated 4 is consistent with

the true q. The asymptotic distribution of h(w) is in A9. Q.E.D. m

1.8.11 Proof of Theorem 6

Proof. Similarly, we can estimate the profit loss, based on

S [w h- 1 (A* + *])f (x, a)dx

+A*[j u(h-1(A* + I*a), y)f(x, a)dx - Ju(w,'7)f(x,

+p* [ u(h- 1 (A* + * l), y)af(x, a)dx - u(w, 7)af(x, a)dx]

Therefore, we can find a lower bound and a upper bound of the profit loss by choosing h. That

is (hmin, A*(hmin), /-*(hmin)) E arg minhE,h,4,>o,A>,>O L*(h, A*, f*) s.t. IC and IR constraints.

Therefore the lower bound of profit loss is,

AI(h)lb = A(hmin) = Ewi - Es*(xi, hmin); (1.32)

and the upper bound of profit loss is

ALI(h)ub = AIH(hmax) = Ewi - Es*(xi, hmax). (1.33)

Q.E.D. n

L*(h, A*, /*)

a)dx]



1.8.12 Proof of Theorem 7

Proof. We prove (i) and (ii) together. Use the sample analogue A(-, T) as an approximation

of A(-y, T), for the uniform convergence to apply, we need to confirm

sup X(y,T) -A(y, T) O
(-y,T)

Note that,

sup A(y, T) - A(Qy, T)
T

= sup ,(IZ) 2 - ((Z) J(Z)) Y Z)- h (y Z) - a(Xi, Z, T) 2A
T n J(Z)*2 + (Z(Z)-Z(Z)) Z(Z) *2

S 3 sup nz ei(T IZ) 2 - Ex[~(T/Z)2 Iz]
-f n E \nz EZ i=1

nZ J(Z))2 I nz h(wi, IZ) - h(y IZ) 2

T z- )
+3sup (Z(Z) - Z(Z))2 nz la(iT, Z 2

z=1

Note also that as n -+ o, limn-oo, Z = 0, this means supz -z -oo, for any ZEZ such that

S= k > 0, J* -->P J, J -P J, Z* -P Z, Z - Z, I (h(w, IZ)- h(w, Z)) Qz <

00, Cz - (,Z, T) - ZZ < oo. For any ZEZ such that nZ < 1, we have" (Z(Z)-Z(Z))2

0, nn(J(Z) - J(Z))2 = 0. Thus, the only item left is to show that

sup nz n i(T/Z)2 - Exe(T/Z)2 P 0.
T n z nz i1

This is implied by the uniform law of large numbers, because for a given Z,

E[ sup (h(w,y IZ) - Ex[h(w,y) IZ] la(X, Z, T)
(r,T) Ex [h(w, ylZ)la(x, Z, T) Z] Ex[12(x, Z, T) IZ]

similar to the proof of in previous section (see theorem 3). Thus sup, IA(6) - A(6) -- P 0.

Based on the above conditions, the extremum estimator of (i, T) E arg min(,A,,) A(-y, T)



is a consistent estimator of the minimizer of A(y, T). The rest part of proof is similar to the

proof of theorem 3. Under the null hypothesis, the asymptotic variance of ' is regarded as

asymptotic variance of weighted sum of PZ(6), this is,

1 nl 1' nACov(p, ')1n
nsAVar( ) = ns

j=1 ns

where ln,, is a vector of ones. Q.E.D. m



1.9 Technical Supplements

1.9.1 TS1. Techical Supplement to Proof of Proposition 3

Proof. (ii) To derive the asymptotic distribution of All based on , we rewrite the above

equations as follows:

Eu(h-l[A* + A*la(xi, ), y7], i)la(Xi, T) - Etu(h-1[A* + A*l(x, T*), y], 7)la(x, T*)

+u(h-' [A* + A**l(x, T*),7],7)l,(xi,T*) - u(h-[A* + A*la(x,

= u(w, )a(xi, T) - u(w, y7) 1(xi, T*) f (x, a)dx
i=and

and

T*), y], 7) fa (x, T*)dx

Eu(h-1 [* + la (x , T),], ) - Eu(h-1 [A* + A*l(x, T*), 7], )

+Eu(h- [A* + *la(x T*), 7], 7) - u(h 1 [A* + A*la(x, T*), ],) y)f (x, T*)dx

S u(wi, ) - u(w, Y)f (x, a)dx
i=1

For notational convenience, we compress notation y when there is no confusion in expression

u(s*, 7) or u(w, 7) where y is not the estimated value.

Note that,

u(*(Z), ) - u(s*(x),7)

(h-l[* + f*la(x, t*) - h- [A* + L*la(x, T*)])

U_(s*(x))
hw(s*(x))

+ (u(s*()),i +

( - A* + (* - p*)la(x, T*) + T*(l(x, T*) - l (x, T*)) + h.o.)

+ 's* au(s*(x))

+, (s*(x)) a + ' (0 - 7),

Ou(s*(x)) )07 ( - )



therefore,

EUw(s*(xi)) - A* + (A* - L*)la(xi, T*) + p*(la(Xi, T*) - la(Xi, T*)) + h.o.) l (Xi, T*)
hl (s* *))

+E uw(s*(x2))a, + +u(s*(x) h.o. l( - )

+Eu(S*(xi))(l (Xi, T*) - la(x, T*)) + ]u(s* (xi))la (xi, T*) - EU(S*( (i))la(xi, T*)

= Eu(wi, )la (xi, T) - E(wi)la (xi, T*)

and

Euw(s* (xi)) (* - A* + ( * - ,l( P*)(la( T*) + P* (la(X, T*) - la (X, T*)) + h. o.
hw (s*(xi))

+E uw(s*(i) + (s( + h.o. (A - "Y) + Eu(s*(xi)) - Eu(s*(xi))

= Eu(w, ) - Eu(w)

For convenience, denote EW *( )(xi, T*)(= k), (s*(xi))2 T*) = k2, W(S k3,

therefore,

A* -* = kiA-k2
S12_ 3

P . k3A- '
k 2 k3-k

where

A = 1u((wi,-)la(XiT) - ]Eu(wi,, ~y)l(iT*) - EUw(s*(xi)) [ I*(la(Xi, T*) - la(xi, T*)) + h.o.]la(xi, T*)
hw(s*(xi))

-{E(s*(Xi))(la(xi, T*) - la(X, T*)) + Eu(*(xi))la(xi, T*) - EU(S*(xi))la(xi, T*)}

- u w((s*) a* + au + .o.) I ( - )

and

B = Eu(wi,) - Eu(w, ) - (s*()) [*(la(xi, T*) - la(xi, T*)) + h.o.]
hw(s*(x-))

-{Eu(s*())-Eu(s*(x))}-E (s*)_' +h.o. ( -7)



Now we show the plim of Aand b first. Let, p lim ki - ki (i- 1, 2,3), we have

p I r n- 0 =, and p li.rnb 0§=.
fl--+0 ?2--coO

And by the delta method,

AVar(V~nA)

=Var(u(wi)la) + [IEU(Wi)laT'] Z 1 EU(Wi)laT + [EuyI (Wi)la11L' U-(Wi)la] + 1EU-yi (Wi)lalcUy-T'IU(Wi)laT

+p*2IEhw(s*) 1alaTI]Z IE uw(s*)) lalaT + [EU(S*)1aT']Z l1EU(S*)laT + Var(u(S*)la)

-2f[EU(Wi)laTIZ1E__Itb*lalaT - 2EU(Wi)laTIZl(S)a + LE(SlT'ZE~ laa
hw (s*)hw(s*)

+[E~w~s*s~± u-YI(S*))lalr[IE(Uw(S* ) S + Uy (S*))tlal - 2 [Fuy (W) ar [E (uw (s*) s* + Uy (S*)) lal

-2[E(uw (s*)s*, + uL~ I(*)aUTFUW~a + 21* [E(uw(s*)s*, ± uy UW (S*) aa
fS)l],T~ (s*))

+2{E(uw(s*)s*, +y uY,(S*))laU.yTEu(s*)laT;

AVar(V/'nf)

=Var(u(wi)) +[Eu'Y(wi)]F[Eu-)y(wi)] + -*2[E hw(s) l]TZ'E hw(s*)l1 + Var(u(s*))

±[E(w~s)Sy +1 u7(*)r{~ s) + uy,(s*))]. - 21Euy,(Wi)]F[E(Uw(s*)S;* + U-Y(S*))]

- Fuy W)]fy'E [*a + 2[JE(Uw(S*)s*, ± u ~ (*

and,7

A Cov (y nA, V/nYb)

=Wi ___________ uly(S*)lla]F + [E[u(wi) -t u h(S **)']-T -Y J.(wi)

)SKEEI'(*)ullUy' (wi) ( - [I La (S*)]-UlTT']- Ea

+ Pi E ~ y, w i - u (s* )s , - u^/ S * l ] + {u(w ) - ,* u w (S *) -(s*)1 ] Z l)wu ( s * )

- ([~4U.I(Wj UW(*)S; - yi(S)llaF + E~u~~)) *~la - U(S*)1laT/19-yTI) T.(UW(s*)s* + UI



By the continuous mapping theorem,

p lim (V/r(* - A*) = 0, and p lim V/(p* - [*) = 0.
n-*oo n-*oo

and

k AVar(# A) +k 2 AVar(#- B) - 2kik 2ACov(V A, V B)

[k2 - k23]2

k AVar(V A) +k 2AVar( iB) - 2kik3ACov(JiA, y'TB)
[k -

1k k3ks

= lim Cov(v'A, Vn(fT* - T*)')
n-*oc

= [EUy,(Wi)la - E(u,(s*)~, + uLy(S*))la]oryT + [E(u(wi) - * a - U(S*)]laT)Zhw(s*)

= lim Cov(vA, /n( - ,)')
n-.oo

= [EUy (Wi)la - E(u,(s*); , + uw,(s*))la]r+[E(u(wi) - * w la - U(s*)IlaTI)O'T
hw(*) T

nACov(B, T*')

nACov(B, k')

= lim Cov(v/B, v (ft* - T*)')
n--+oo

Y z -- + [Ehw(S.aT'l)
= [Euy, (wi) - 1E(u,(s*) s*, + uY(s*))]yT, + * [E laT)]Z

h,(s*)

= im Cov(xB, (' - ,)')

= [Eui,(wi) - E(1F,(S*)S;, + Uy,(s*))lL + bL*([E )l TI)KTIh(S*)

Therefore,

nACov(A*, /*) lim Cov((/-( * - *), V(A* - t*))
n--*oo

-kik 3AVar(JA) - kik 2AVar(v-B) + (k2 + k2k3)ACov(xfiA, -B)

[k2 - k2k3]
2

nAVar(A*) = AVar[v/-(A* -*)] =

nAVar(A*) = AVar[/(A*-p*)] =

nACov(A, T*')

nACov(A, I')



- lim Cov(VY-(A* - A*), V -(T* - T*))
n---*oo

1
k 2 k (knACov(A, T*')' - k2 nACov(B, T*')')
k2 - k2k 3

Z- 1

k - k 2 k 3

(k 1 E ((wi) - U(S*) - u(S*)i*la)
hw(s*) )

(kE[ (wi) - uw(s*)s*, - ,,(s*)l - k2E[U',(wi) - u,(S*)', UY,(S*)])
k 2 2k3 

)I

= lim Cov(vl(A* - *), /(T* - T*))
n--+oo

S- (k 3 nACov(A, T*')' - kinACov(B, T*')')
k2 - k 2 k3

Z- 1

- k - k 2 k 3 (k 3 E
U(Wj) - u(s*) - laT +

hws*)

- k 2k3 (k 3 E[,y(w) - U,(s*)s*, - Uy(S*)la - kiE[ui(w)ki - kczk3

Based on the above formulas, for every given x,

vJ[g*(x) - s*(x)] - /(h-1[* + A*la(x,T*), ] - h-[A* + *la(x, T*),y])

- /h(s.(x)) - A* + ( * - *)la (x, T'*) + Pl* (la(x, T*) - la(x, T*)) + h.o.

+ /(s*,(x) (- 7) + h.o.)

nACov(A*, T*)

laT + k2E  (
hw(s*)

nACov(A*, T*)

u (S*)IP*laT
hw(S*))

nACov(A*, )

nACov(p*, )

- U,(s*)s*, - u ,(s*)] )

1
Sk2 k (knACov(A, '')' - k2 nACov(B, ~')')

k( - k2zk3

2- (k3nACov(A, ')' - klnACov(B, ')')
k1 -k2k3

; l~: "i~"Xe~iic~~~l~l-~ * ~~~~~~-r;~x~~



then,

nAVar(E(9*(xi) - s*(x)))= (E )2nAVar(A + (E l )2nAVar(A*)

+2nACov *)(E la 1 + 2( l' (E la
hw(s*) h,(s*) hw (s*) h,(s*)

+2(E 1 )E *)aT' nACov(*, 'T*) + 2 (E la )E *1 T' nACov(p*, T *)

h,(s*) ha(s*) h(s*) h,(s*)

+Es*, (xi){IEs*(xi) + 2E nACov(, + 2 E nACov(*, r) + 2 a hs) }

Additionally,

= lim Cov(v/-n, /§[Ewi - Ewi])
n-*oo

= Cov(u(wi)la, wi) - Cov(u(S*)la, wi) = E1(u(wi) - u(S*))laWi

and

nACov(B, Ewi - Ewi) lim Cov(-nB, v-[Ewi - EwI])
n--+oo

= Cov(u(w-), w ) - Cov(u(s*), w-) = E(u(wi) - (s*))wi,

therefore,

1
nACov(A*, Ewi - Ewi) = 2  [klE(u(wi) - u(s*))lawi - k2 E(u(wi) - u(s*))wi]

and

1nACov(p*, Ew - Ewi) = - 2 [kaE(u(wi) - u(s*))lawi - klE(u(wi) - u(s*))w],
kg, - kczka

nACov(A, Ewi - Ewi)



therefore, we have

nACov(E(*(xi) - s*(xi)), Ewi - Ewi)

- limr Cov(v/-E[*(xi) - s*(xi)], \/[Ewi - Ewi])
n--+oo

1 l
= nACov(A*,Ewi)E + nACov(ft*,Ewi)E

hw(s*) h (s*)

E(u(wi) - u(s*))laWi 1 - las
k= [k1E -k3E ]k - k2 k3  w(s(*) w(*)

E(u(wi) - u(s*))w[ _ 1 k lE la
k2 k2k3  hw(s*) hw (s*)

similarly,

nACov(E(* (xi) - s*(xi)), Es*(x) - Es*(xi))

E(u(wi) - u(s*))laS* [ 1  1 la

k= [kJE -k3E ]k - k2 k3  wh(s*) khw(s*)

E(u(w ) - u(s*))s* [k2E 1 - la
k - k 2k 3  hw(s*) hw (s*)

It is straightforward to see,

plim Vn(AH-AII) = plim V/n[E( *(xi) -s*(xi))+ Es*(xi)-Es*(x)]-plim \b[Ew -Ewi] = 0.

As a result,

nAVar(AH) = Var(wi) + nAVar(E(9*(xi) - s*(x-))) + Var(s*(xi))

-2nCov(tEwi - Ew,Es*(xi) - Es*(xi)) - 2nACov(EQ(*(xi) - s*(xi)),Ewi - Ewi)

+2nACov(E(* (xi) - s*(xi)), Es*(xi) - Es*(xi))

= Var(ws) + nAVar(E(.*(xi) - s*(xi))) + Var(s*(xi))- 2Cov(wi, s*(xi))

-2 nACov(^*,Etwi)E + nACov(i*tEw)E la
hw (s*) hw (s*)

+2 nACov(\*, Es*(x,))E + ) nACov(pt*, Es*(xi))E h )

Using the sample analogues of the objects appear in the above formula, we can form nA(s*)Var (A),

Using the sample analogues of the objects appear in the above formula, we can form nAVar(AII),



a consistent estimator of nAVar(AH).

Particularly, under the null hypothesis that the wi generated based on some optimal contract

s*(xi), and s*(xi) can be estimated by s*(xi) = h-1(A* + P la(xi, Ti), ), where A*, W' and 4

need not to be solved by equations IC and IR constraints, instead of directly plugging in

A*= Eh(wi, ),, = w) ((h( ),()) In this case,
El (xi,T)

Al- = E(xi - wi) (x - E(i *()) = E(*(i) - w) = E(9*(xz) - s*(Xi))

1 h(s*(x)) - A* + (p* - P*)la(xi, T*) + L*(la(xi?,T*) - la(xi,'T*)) + h.o. + Es*',(xi)(y -Y)

Note that for random sample value Ai,

nAVar[(* - A*)IAi]

= lim nE((,* - A*)EAi) 2 - n lim (E(* - A*)EA )2

n--oo n---)oo

= lim E(* - A*)2 E AjA - lim (E Z(A - *)Ai)2
n--+ooT n n-*oo

= AVar(^*)Var(Ai) - -Cov(Ai, A*)2

1 .1= -AVar(V/~ )Var(A) - -[E(h(wi) - A)A]2

Therefore,

nAVar(AI) = nAVar(E(9*(xi) - s*(xi)))

where,

hw(s*)) a hw(s*)) a

+[E(uw(s*)s*,]r[ E(U(s*)s*] + 2p*[E(u,(s*)s*, +- uy,(*))la]oT]E w() lalaT;

U'(s* U'(sh*)(s*))

AVar(v/ b) = 2Var(u(w,)) + P*2 [E (s*)T]Z 1 E ( aT' + [E(UW(s*)s*,][E(uw(s*)s*j
h((s*) hw(*)*

+2[E(uw(s*)s]OYT,[]JET[ * *l*,aT]-
'Y-T Ehw(S*)



ACov(vf A, VB) = - * [Eu (s*)s*,la]uT, - [ * lalE U,]Z-  lw(S*
[]-T -(S) hw(s*) , haT']s*

+([EU(s*)S*Ila]r + [EP*Uw( S*lalaT,]o ,  (u,(s*)s*)hw(s*) /)

then (w-tge*)
2 >d 2

AVar(AII)

At times, if the function of (A*, p*) is too complicated, then we may reduce the intensity

of computation by approximating. For example, if taking the first order approximation of

u(h-1 [A* + I*la(x, T)]) around observed contract h(w), we have

[u(wi) - U"(W) (A* + *la(Xi T) - h(wi))] la(xi,'T) n U(w)1a(X,)
U"() n i=1

u(w) (-- (A* + *la(Xi, T) - h(wi))] u(wI)

Use the same notation as in theorem 3, as n -- oo, we obtain:

^U'(ws)2
kA* + k 2/-* + E l(W)a(i,') = 0

U"(i)2k A* + ki,* + ±IU(W 0.

(iii) Based on (ii), we can derive the asymptotic distribution of AM* and K*. The asymp-

totic consistency follows by the continuous mapping theorem. The asymptotic variance is

based on the delta method. For a continuous function g(x, a), the asymptotic variance of

Eu(9*(xj), )g(x, T) can be found by follows.

nAVar(u(9*(xi), '/)g(xi, T))

= Var(u(s*)g) + [Eu(s*)g,]Z-[Eu(s*)gT] + nAVar(Eu'(s*)(* - s*)g)

+E[(u, (s*)s*, + uy,(s*))g]rUE[(uZ(s*)s* + U, (s*))g]

+2E[(u (s*)s*, + uy,(s*))g]nACov(fuw(s*)(A*(xi)- s*(xi)), I')

+2E[(u,(s*)s*, + U (s*))g]OyIEu(s*)g~

+2[Eu(s*)gT,]nACov(Eu,(s*) (* (xz) - s*(xj)), T),



where

nAVar(Eu,(s*)( * - s*)g)

= (E (s*)g 2nAVar(*) + (E (S*)gl2nAV
hw(s*) h,(s*)

*2 Uw(S*)glaT' Z-IE Uw(s*)glaT +

S hw (s*) ) h,(s*)

+ 2 (,*Ew(S*)g Ew(* )glaT,)nACov(* Tk*)
h(s*) h,(s*)

2nACov( , )*)( )( )91a
hw(s*) h,(s*)

+ 2 (/*Euw(s*)la uw(s*)gl laT')nlACov(I*, T*)
h,(s*) h,(s*)

and

nACov(Euw(s*)(§*(xi) - s*(xi)), )

[Eu(s) ]nACov(A, ') + [E (S*) la]nACov(, ) + EUW(S )I*aTr*ACov(, T)
h(s*) h (s*) w(s*)

and

nACov(E(g*(x) - s*(xi)),T)

S[Euw(s*)]nACov(, t) + [Euw(s*)1a]nACov(, T)
hw(S*) h,(s*)

+ EUw(S*)L*laT' Z-1

h,(s*)

Therefore, nAVar(fI*(T)) can be computed by sending g(xi, T) = la(xi, t), and nAVar(^I*(T))

can be computed by sending g(xi, T) = 12(xi, T) + laa(xi, T). Q.E.D. U

1.9.2 TS2. Technical Supplement to Proof of Corollary 1

Proof. The asymptotic variance of AC can be derived as follows:

n(A-C - AC) = V/I'E(s*(xi) - s*(xi)) + v/-(Es*(xi) - Es*(xi)) - V(7-i b - wfb) + h.o --p 0



and

nAVar(AC) nAVar(E( *(xi) - s*(xi))) + Var(s*(xi)) - 2Cov(s*(xi), u(wi))h(wfb)

-2nACov(E(9*(x ) - s*(xi)), Eu(wi) - Eu(wi))h(wfb)

+2nACov(E(9*(xi) - s*(xi)), Es*(xi) - Es*(xi))

+h(wfb) 2 [Var(u(wi)) + Eu, (wi)FEI-u(wi)] + 2 ( fb rEu, (wi)

-(u(wfb , y) y) o - 1((f b,y),y)

-2[ u - 1(u(fb + h(wfb)Eu ,(wi)]nACov(t(* (xi)

where,

nACov(E(9*(x) - s*(xi)), -)

[E h ]nACov(, ) +
hw(s*)

[E 1 la]nACov(?, §) + E hla ' nACov( , T)
hw(s*) h,(s*)

nACov((g*(xi) - s*(xi)), tu(wi) - Eu(wi))

E(u(wi) - u(s*))lau(wi) [klE 1 la
=-[kE - k3s*E ] -

k - k2k3 h(s*) hw(s*)

E(u(wi) - u(s*))u(wi)
k2- k2k3

kE la
- khw(sh,( *

[nAVar(E(9*(xi) - s*(xi))) and nACov(E( *(xi) - s*(xi)), Es*(xi) - Es*(xi)) are derived in

TS1].

For the total profit loss, to keep the agent's utility the same as U, a fixed payment wfb

needs to solve u(wfb) = f u(w)f(x, a)dx. The asymptotic distribution of wfb is:

nAVar(TL) - nlim E[wi- Ewi- [u - 1 (u(wi))- u-(Eu(wi)))]]2

-n [lim (wi - Ew - [u - 1 (u(wi) - u-1(Eu(wi)))]) 2

= Var(wi) + Var(u(wi))h(wfb)2 - 2Cov(wi, u(wi))h(wfb).

Q.E.D. m

and

- s*(x)), )I

[k2E
hTw(*)



1.9.3 TS3. Analytic derivation of example 1

Proof. The contract B is a piece-rate contract. We can solve the potential contract by

* i Wn

- n Z~1 JWa(ni,&)En j]El(X,&)

Therefore, the estimated profit loss per capita is

n i i=1

and its asymptotic variance is

nAVar(AH)
Ij 2 j2 n

- Var(wi) + nAVar((- )2 ) + nAVar(-) + 2nACov(-, (- -) 2 )
i=1 i= 1

-2nACov(Ew, ( 1 S V/-,)2) - 2nACov(Ew, )

4J2 J3 j4
= Var(wi) + 4A2nAVar(A* ) + 2 nAVar(J) - 43 nACov(Z, J) + P nAVar(Z)

J J 2 Z Z4 2

+8A--nACov(J, ) - 4A2 ACov(Z, - 4- nACov(Ewi, J) + 2-2 nACov(Ewi, Z)
Z 2  Z - 1)

4J2
= Var(wi) + 4A2 Var(x/ ) + V2 (Var((h - A)1a) + (E(h - A)laT) 2 Z-1 )

J3  J4

-4 [Cov((h - A)la, I~) + 2Z-'1(h - A)laTElalaT] + ZVar(1a)

J J 2  j J2

+8A-Cov((h - A)la h) - 4A2 Cov(, h) - 4-Cov(w, (h - A)la) + 2 - Cov(w, 12)

Under the null hypothesis,

nAVar(AH)
4J2

Var(wi) + 4A2Var(-U) + Z2 (Var((h -
Z2

A)1a)) - 4P Z-1 YElalaTElalaT

+4A Cov(1a, h) -Z2 2 Z Cov(wi, (h - A)1a)
z

4J2

= Var(wi) + 4A2 Var(Vwi) + V2 Var((h - A)1a)
Z2

J2
+4A PCov(1 , h) -

Z2
2-Cov(w, (h - A)1a)

[1 E_ l 'la(Xi, &)]2

El ? (xi, 8



S4[Ev i]2Var( /-) + 4[El (xi, a)]2 Var(w-i la(xi, ))a_ 2,

+4[Ev/~iEl (xi, a)Cov(/ la 1(xi, 6), V-J)

Analytically, in this case, relative to the piece-rate contract, the potentially optimal contract is

given by,
_ -Vlrx a 2 -7

2 = 4'a

thus
1 1

AH = - a(1 - - - r) ' 0.018pa - 0.09
4 16

the relative loss
Alln (1- 1r- 7r)n* 1- IR - f 16

For 3 < 0.9, the relative loss is less than 15%. Q.E.D. m

1.9.4 TS4. Proof of Proposition 4

Proof. The sample analogue of the Lagrange becomes:

L*(6, A*, *)

E[wi - h-(A* + Il*[a(Xi, T) - IEWa(i, T)])]

+A* [Eu(h-1 (A* + IL*[Wa(Xi, T) - EWa(Xi, T)]), y) - Eu(w, -y)]

+I*{Eu(h-1 (A* + /*[Wa(xi, T) - IEwa(xi, T)]), y)wa(Xi, T) - Eu(w, -)[wa(Xi, T) - EWa(Xi, T)]},

associtated with two constraints:

Eu(h-(A* +/C*[wa(xi, T) - Ewa(xi, T)]),y) - Eu(wi,7) = 0

Eu(h-'(A* + tI*[Wa(Xi, T) - Ewa(Xi, T)]), )Wa(Xi, T) - Eu(w,Y)Wa(Xi, T)

and the first order conditions can be replace by the empirical moment conditions.

= 0.

nAVar(AII)



Suppose y should solve the first order condition:

dL*(y, A*, t*)

dy

6L Os*

6s 06
+ A*(7y)[ u(s*(x, -y), ) f (x, a)dx - f -u(w,-)f(x,a)dx]

+*a) f u(s*(x, y), )fa(x, a* (y))dx -
+*(Y[w>s 0-Y Lw>s

+ [ u(s*(x,y), )f(x,a)dx - u(w, )f(x,a)dx]

+ W*( )y [j u(s*(x, y), 7)fa(x, a* (-y))dx - j u(w, y) fa(x, a)dx]

= 0,

by the envelop theorem, and note that A*(7) + ~*() (x,*()) - which results in,

0= A*(C)[ +u(s*(x, ), )f(x,a)dx - j u(w, y)f(x,a)dx]

+t*(7) [w +u(s*(x, 7, ) fa(x, a*(~))dx -

[a u(s*, y) - * , y )]

> - as ( U(w) f(x,a)dx.

W> u(w, ) fa(x, a)dx]s 'y a

(1.34)

Together with the constraint (15) and (16), we have r + 2 equations to solve the same number

of unknowns. For convenience, denote ( = (A, a, 6')' and,

.f ,I u(s*(x7), - )la (x, T)f(x, a)dx - f]> 5 u(w, Y)la(x, T)f(x, a)dx

, T) ,>, u(s*(x, ), y)f (x, a)dx - fw>s u(w, -)f (x, a)dx

I, [u (s* (x),) f(x, a)dx

f,>s u(h-i(A* + *[Wa(Xi, T) - Ewa(xi, T)]), Y)Wa(xi, T) - fL>s U(W, Y)wa(xi, T)

Assume that supcr,>o, >o IP((, T) - IF((, T) -P 0, therefore,

V( ( ((, T) - I((, T)) __d (0, (),

where the i-th row and j-th column element of upper triangle of symmetric matrix 4i can be

u(w, y) fa(x, a)dx]0-



found accordingly. Based on the above formula, we have

x/ ( - = -V/[Ij(,((, T)]-(P(, T) + @T'((, T)(T - T)),

therefore, we have

V/ _ d (07 F I + lTZIT).

Therefore, for every fixed x,

i(Z*(x, ^) - s*(x, )) -d (O, nAVar( *(x,9)))

where

nAVar(9* (x, '))

Os*(X, ) -- ('& 7

K,

+ ,Z- - &s*(x, y)0( + 2EI 1 laT]Z-E[ 1 laT]
hs(s*(x, 7)) T(s*(x,))

hsS(Z )

Finally, we have

(/(An- - A k) -d K (0, nAVar(Allk)),

where

as*(xi, 7) a s*(xi )
nAVar(Al k ) = Var(wi) + Var(s*(x, y)) + E (' nAVar()E 4,

To justify M > 0 and K > 0, the asymptotic variance of Eu(9*(xi))g(xi, T£) can be found by

follows.

nAVar(Eu(§* (xi))g(xi, T)) = Var(u(s*)g)+[Eu(s*)gT]Z-l [Eu(s*)gT]+nAVar(Eu'(s*) (*-s*)g),

~;l ~;1~i~ --- ~ :,; ir;,~-;:i -?;-; ; ;;--~- ri i;~~ l- j;~-~~~~; ; ;;-- -- . ^ --;- - ;- --i*i~~ -;- ;I- ---- ---------- -1~1-- -1 ~~ ~



where

nAVar(Eu,(s*)(* - s*)g)

- (EUW(s* )g 2nAVar(* ) + (uW(s*)gla )2nAVar( *)

hw (s*) hw (s*)(u (* )gl a w
/) + h (s*)g la r nA*r(f* )uw(s*)g )(guw(s*)gla)

+ *2 E (w(s*)laT' Z-E ( (S*)9laT + 2nACo *)(E v(( U ) (s*)la

hw(s*) hw(s*) hw(s*) hw(s*)

+ 2 (*E u,(s*)g uw(s*)g1 l)nACov(V*, T*) + 2(]*E Uw(s*)glaE w(s*)gla laT)nACov(p* *)
h(s*) h (s*) )hl (s*)- h*(s*))

Therefore, nAVar(M*(T)) can be computed by sending g(xi, T) = la(i, T), and nAVar(M^I*(T))

can be computed by sending g(xi, r ) = 12 (x, T) + laa (i, T). U

1.9.5 TS5. Proof of Proposition 6

Proof. There are two types of test we can do. If yo is not the boundary point, then we can

directly test the first order condition based on -Yo, which is the following hypothesis test:

Hoy : V*('y) = 0

where V*(yo) can be estimated by the empirical analogue

a U (wi , ~o) u(, O) -

V*('o) = Pr(w > s)I> u(w, + Pr(w < s) (+ Aa(X, &))
mu(wi', o) aGo

with Pr(w > s) = l(w > s) and Pr(w < s) = 1(w < s).

The asymptotic distribution of V*(0o) can be calculated analytically or by bootstrapping.

When f(x, T) is functionally specified, we can estimate Pr(w > s) by integration

Pr(w > s) = F(s*-'(s), T) = f(x, T)dx
J *-1(_)



For convenience, denote xo = s) A , , ) = au O)E(s' <s (A + la(x,)), therefore,

nAVar(V.(o))
a u(w W o)

nAVar((1 - F(xo, T))Ew> I, ) + nAVar(F(xo, T)M(A, A, , ))
-u(wi, o)

+2nACov((1 - F(xo, T))E > 8  , F(xo, T)M(A, (W, o, ))
S7au(wi, o)

Note that

nAVar((1 - F(xo, T))Ew>2 a )

u (Wi, o) +(1(1 - F)2Varw>,( Y(wi,Y + (1 F)2a (wi, Yo) -- '

-2(1 - F)ES u'Y(wi) E) a
- W(Wi, - o) W--

+FT,Z lFTE>sU(Wi, ) E u (wi, Yo)
-- u (wi, o) -- u,(wi'Yo)

and

= F 2u ,(s, ~o )U, (s, 70)

+2FEw,<(A + P la)u ,(s o)

Varw<s(A + Ala) + 2 + 2 EwS laTZ -Ew<slaT + (Ew<sla)2 2

+ 2 "ATEw<slaT' + 2 UAX Ew<sla + 2 p~-LTEw<slaT',Ew<sla

-ATFT' u (s, 0Yo) + u,,/ (_, "Y)o)rxF + rEw<slaT' Z- FT' (, 'o)

liFu.Y, (s, Yo )O7yT IEw<slaT + O'LTFT'Ew<sla + Uyy(s, Y"o0)- yFEw<sla

+(A + pEw<sl) 2 [FT Z- 1FTy(S, Y0)Uy, (S, -~) + F 2 u' (s, 70)uy,, (/s, (Yo) + 2Fuzy, (A, Yo)aYT, FT,]

and

Su(w i, o)
2nACov((1 - F(xo, T))E>, F u(xo, T)M(A, ))

a U(i, 9o)

= 2F(1 - F)u,(s, yo)
rATFT'u(-, yo) + U~r,( ,(,)auF + Ew<slaT, Z- 1 FTU Y (8, ~0)

lpFu,y, (U, yO)u,-T,Ew<slaT + UTpTFTEw<sla + u,,-Y(s, 7yo)g1YFEw<sla

Particularly, when s is not effective, then the second item Pr(w < s) (') \<s + -1(x, 8))

r>_
"7

UyT' FT (xo, T)

~ -- '--- -i~- ii '-:-li~lri~i~'-:~%-*r~- l- --;=_11 i ;;iri--iil- ;- i-;ii;;v.ii: :;i;:;:- i-:::;::i;-:----~rl-LI~L1 r-----n- i-li

ur (wi, -o)
uW (wi, -Yo)

U (wi, o)
uW (wi, 'o)

(uY (wi, Yo)
un,(wi, -to)

nAVar(F(xo, )M (A, A, o, a))



can be neglected, the asymptotic distribution is much simpler, which is the following:

uY(w, To) & n, (w To)\ & u(w-Yyo))nAVar(V*(f o)) = Varw>( + EW>s ,°) FE,> k ( u0- (w'i,) O
u,(,wi yo) '-y' u,(wiy0)I (W,70)

Because both V *(io) and nAVar(V7*(yo)) do not exist 2 5, we can use alternative approach

to test whether P(o) is significantly close to 1 under o, solved by V*(o) = 0 (For example,

for CRRA utility, we solve E = Ewi l
Ewi log wi

First of all, there exist only a unique y such that V(7) is maximized. To see that, suppose

that there is another j also maximizing V(7), then both y and will satisfying the first order

condition (1), this contradicts with the uniqueness of optimal contract.

Now suppose that the solution y* solves the first order condition (20). Assume that

a •U(S*(X) -U(S*(x))y) 0
sup a ( E . - 0
yEr jU (S* (xi), '9) (S*(xi)V)

therefore,

(-y -Y*) = VY d , J\1 1K(

therefore,

(4* - 7*) -4 N(o, E( -, ) Var( )[ ( u s .

Based on the above formula, /n(p(*) - p(Q*)) -d N(O, nAVar(^(ai*))), and the asymptotic

distribution of 4P(*) under the null hypothesis is,

4AVar(J) + j2 AVar(Q) + ( 1 ) 2AVar(Z)

nAVar() 4QZ -4 ACov( - J, Q) - Q) - 4-ACov(J - J, Z - Z)

+2--jACov(; - , Z - Z)

2 5 For example when u(w) = - , we can test whether V* ( yo) = ( - + twi logw) = 0. The asymptotic

distribution of Vin[ '-Ewi + ]w log w] is

1 1 2
nAVar( Ewi + Ew log w) = 2 (Var(wi) + (Ew) 2IF) + Var(w, log(w2 )) - 2Cov(w,, wi log wj)

n o wYo o

Although when yo - 0, Vj*( 0o) - oc and nAVar(-LoEwi + Ewi log wi) -* oc, we have V;(o)
To VnAVar(V, (i0 ))

Ewi as z-value.
Var(w,)+(Ew)2r



nQZ(1 - p)2

(laTZ-1ElaT + 2) + 2ZlBhlyfEh-

d 2
Xr+t+l

- 4ElahfEthlyla 
d

where fE= E( l U')] - 1 Var( u ' r ) [E( -u ') -

1.9.6 TS6. Proof of Proposition 7

Proof. The sample analogue of the first order condition is,

Y* = E(xi-s*(x))lo(x, T)+A1u(s*(xi), o)lo(x, t)+1 u(s* (i), o) [l0a(xi, )+la(xi, T)le(x, i)].

Note that

nAVar(AIEu(s*(xj), '%)le(xi, T))

= A2Var(ule) + A2{EuyloFEufr l 0 + EulOTZ'EulrT + 2[E u.-,l]urT'EuleT}

+2AEulo{Eu,loax, + EUloT'UAT} + (Eule,) nAVar(A) (Eulo)

where OrAT Eh y Ir'~TI.

And,

nAVar(tEu(s*(xj), §o)[0lo(xi, T) + la(Xi, t)l(xi, T)1)

= #2Var(u(la + lala)) + [2

Eu,(10a + lale ) Eu(lea + lalo)

+Eu(loaT' + laT'l + laleOT)Z-1 Eu(lOaT' + laT'le + lalOT')

+2[Eu, (loa + lalo)]TyTEU(lOaT' laT'1 o + lalOT')

+2~pEu(Lla + lale){EI,(l10 a + lal)av + Eu(loaT' + 1aT'lo + lalOT')prT}

+ (Eu(lea + lalo)) nAVar(A) (Eu(l0 a + lalo))'

where

c, = nACov(, ') = ZFEhyla + -,yTEhlaT - Z2 T'ElalaT

[4 2

if P = 1;



and =nA v(f) [Uy(i)lcyT+E(W<YlTZ'-

UpT = A~v~t I[E~'(i, )la yT + U Wi,-01,,'Z 2 1ElalaT' Z 1 .

and

iA Cov (t(xi - s *(xi)) 1o(xi, T), Adu (s *(xi), 0) lo (xi, Ti))

=ACov((xl, - s*(xi))lo, u1o) + AIEUyloulyT'E(Xi - S'*'(Xi))IoT + AE(xi - s*(Xi))IOTZ-lEUlOT

+ x - s *(xi))10T'crxTEUlo

and

rtACov(B(xi - s*(xi))lo(Xi,rT),A/L]u(S*(Xi), j0)[l0a (Xi,rT) + la(Xi, t)o(Xi, ))

1 utCov((Xi - S*(Xi))lO, U(l0a + 1l,10)) + /IEUIY/(l0a + lalO)0U-YT'E(Xi - s*(Xi))loT

ILx - S* (Xi))lOT'Z 1Eu(lOaT' + laT'1 0 + lalOT') + ThE(Xi S*(Xi))l0O/,TEU(0a + lalO)

and

nACov(Au(s*(xj), ,0)l(xj, Ti), /?Lu(s*(Xi), I') [l0a(Xi, Tk) + la(Xi, Ti)lo(Xi, 1'))

A/ ZCov(UlO, U(l0a + lalO)) + AAE(uy'to)FEuy(l0a + 1la10) + A/1[EuyloOgyT/]EU(lOaT/ + t aT'10 + lalOT')

+AIItEu-y(l0a + lalO)c7ryT'FJUlOT/ + AILE10~lTIZ11FEU(19aT + laTlO + la 19T)

+LEUlo [EUly' (10a + lal10)U0),y + EU (lOaTI + laT"O1 + la 1OT') UAT]

+AFu(10 a + lalO)[E(U-yIO)O1,vy + hUlOT'JUTI + UAjiEUlOEU(l0a + laln)

where

(7A= riACov(ft, A) = z[Cov(h, hla)+EhyFEhyla+EhUI .yT'IBhaT] - Y-Cov(h, a~ -2+Z2 hIuyTIElalaT



Putting together, V* has asymptotic distribution:

nAVar(VO*)

lim nE(Vo*- lim IE*) 2
n-*oo n-oo

Var((xi - s*(xi))le) + (xi - s*(xi))loTZ-E(xi - s*(xi))oT + nAVar(Eu(s*(xi),/ o)lo(xi, T))

+nAVar(tu(s*(xi), o)[loa(Xi, T) + la(Xi, T)10(xi, T)])

+2nACov(E(xi - s*(x ))lo(x, i), AEu(s*(xi), 'o)lo(xi, T))

+2nACov(E(xj - s*(xi))lo(Xi, t), A u(s*(xi), )[o) [10a(Xi,) + la(xi, T)loe(x, T))

+2nACov(Iu(s*(xi), /o0)lo(xi, T1), 121u(s*(xi), o) [lea(xi, T') + la(xi, T)loe(x, T))

Q.E.D. m

1.9.7 TS7. Testing the Adjoint Equation

Proof. To test the adjoint equation,

AE = E(X - wi)la(xi,T)+ AEu(w, ,)(l(xi, T)+ laa.(Xi,T))

note that

nAVar((fA - 1)Eu(ws, )(l (xi, T) + laa(Xi, )))

= im nE(( - b)Eu(w, )(l(x,, T) + la(x, T)) - nim (E(f - )(w, )(1 (x,, T) + l ta(X, T)))2

= nAVar(t) (Eu(+ laa))



and,

nACov(E(xi - wi)la(xi, T), ( p - p)Eu(wi, )(l a(xi, T) + laa(xi, T)))

lim nE[E(xi - wi)la(xi, T)(f -(,)Eu(wi, $)(12(xi, T) + laa(Xi, T))]
n-oo

- lim nE(xi - wi)la(xi, T)E(j - )u(w, A)(12(xi, T) + laa(Xi, T)))
n--oo

Slim (n - 1) (xi - wi)laT'(T - T)( - )Eu(wj, )(12 + laa)
n-*oo

+ lim (n - 1)E(xi - wi)laE(A- )( 7)'uy,(wj, 7)(12 + laa)
n--oo

+ lim (n - 1)E(xi - wi)laE(A - p)( 2 1alaT' + laaT')(T - T)u(wj, 7))

E(Xi - Wi)laT, TEU(Wj, ')(1a + la,) + E(x~ - Wi)laE ryU(w y,)(l + la)

+E(xi- wi)laEU(wj, Y7)(21alaT' + laaT')) pT

where

if = nACov(t, ') = -FEhlyla + Zo-yT,EhlaT - 2 j27T'Elalar

and

1 J2osT, - nACov(T,ft) = -[EUI,(wi,7)la'yT + EU(Wi,7)laTZ - ] - 2ZEaa, -

And

pnACov(E(xi - wi)la(Xi, T), Eu(wa, +)(12(xi, T) + laa(Xi, T)) - Eu(wi, 7)(I + laa))

= Cov((x i - wi)la, u(wi, )(1 + laa)) + PEu,(w, 7)(a + laa)OyT'E[(xi - wi)laT]

+PE[( i - wi)laT,]Z-Eu(wi, )(21alaT + laaT)



and

unACov((f - ul)Eu(w, /5)(12(xi, T) + laa(xi, T)), u(wi, /)(12(xi, T) + laa(xi, T)) - Eu(wi, )(12 + laa)

n--oo

+[t lim (n - 1)E[(A -a + laa)(U(wi, a1+ laa) - Eu(wi, 7) ( + laa)]

+p lim (n - 1)E(A - i) (u(wj, _)(12 + laa) - u(+ l))
n-o U(Wi, Y)( 2 1alaT' + laaTI)(T - T)

+[t lim (n - 1)E(P - /t)u(w, y)(l 2 + la(a) [U, (wj, )(l 2 + laa)(~/ --) + u(w , y) (2lalaT, + laaT')(T - T)

= JEu(wi, y)(l + la)E~Ul (Wj,)(la + laa)Oy + p/-tu(w, Y)(1a + laa)E(wj, y)(21alaT, + laaTI)[nACov(i

Putting all pieces together, we have

nAVar(AE)

= lim nE(AE - lim EAE) 2
n--oo n--oo

= nAVar((xi - wi)la) + E(xi - wi)laTZ-1 E(i - wi)laT + nAVar(f) [Eu(1 + laa)]2 + 12nAVar(k )

+2nACov((xi - wi)la(Xi, T), ( - A)Eu(wi, )(12 (x, T) + laa(Xi, T)))

+21tnACov(E(xj - Wi)la(xi, T), [Eu(w, -)(12(x, T) + laa(Xi, T)) - Eu(wi, )(12 + laa)])

+21tnACov((A - [)Eu(w,, y)(12(xz , T) + laa(Xi, T)), Eu(w,, (12(xi, T) + laa(xi, T)) - Eu(wi, 7y)(12 +

Q.E.D. .
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Chapter 2

A Fixed-Point Approach to Validate

the First-Order Approach:

Relaxation of Global Concavity

2.1 Introduction

It is well known that the sufficient conditions for the first order approach (FOA) to be valid

could be very restrictive. The main concern is the conditions under which one can replace the

incentive compatible (IC) constraint by the agent's first order condition (local IC constraint)1 .

One of the sufficient conditions is the global concavity of the agent's utility for every given

contract, which is equivalent to the conditions assuring the convexity of the constraint set, in

terms of the principal's optimization problem. In this spirit, based on Kuhn-Tucker's theorem,

Rogerson's (1985) seminal idea is first to relax the principal' original problem futher, and find

that the solution of the double relaxed problem is indeed within the original constraint set.

1Mirrlees (1971) provides a famous example that the first order condition for the agent's best response fails to
be valid for the principal's program. He also shows an insightful example: if the likelihood ratio function is not
bounded from below, a simple two-part tariff contract can arbitrarily closely approach the first best contract.
The condition that the likelihood ratio function is bounded from below seems reasonable and will be met in many
commonly used density functions, although the most commonly seen normal distribution fails this restriction. In
terms of pragmatic application, we also can put a limit liability constraint on the agent's side, which means the
principal cannot infinitely punish the agent when performance is bad. Given these two facts, the boundedness
likelihood ratio is not the main concern (Kim, 1995).
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As a result, he shows that FOA validates with convexity of the distribution function condition

(CDFC) together with monotone likelihood ratio property (MLRP). Even though the latter

seems to have a very intuitive intepretation in terms of statistics (Milgrom, 1982), the former

is really restrictive so that many commonly used density functions fail. In order to remove

this difficulty, Jewitt (1988) somewhat relaxes CDFC, keeping MLRP the same, at the cost of

introducing restrictions on the agent's utility shape. That is, the absolute risk version measure

should not decline too fast 2 . Jewitt's (1988) proof looks different from Rogerson's (1985),

but they both require global concavity. Jewitt's (1988) results rely on a concavity-preserving

transformation, so that the agent's expected utility is globally concave when the utility is

concave in output.

This paper validates FOA based on a new but very intuitive approach. In contrast to Roger-

son's original double-relaxed approach, we narrow the contract space first, directly searching

for the existence of a solution within the contract class satisfying the Mirrless-Holmstrom char-

acterization (MN4 contract). Therefore, we treat the classical moral hazard problem as a game

between the principal and agent, and then we transfer the issue of validity to a problem of

whether there is a fixed point regarding the agent's best response against a MNI contract.

The main difference between the existing literature and the current approach is that the

proof in the current approach does not rely on global concavity of the agent's utility. And

global concavity is a special case of our approach. Instead, based on our approach, the FOA

is valid even though the agent's utility is convex or even stranger, as long as the best response

is continuous in some parameters. Using the current approach, we can unify Jewitt's (1988)

and Rogerson's (1985) seminal results. As an application, we restore Jewitt's (1988) results

to situations where the log likelihood ratio is not bounded from below, and/or the payment

rule is not concave due to the existence of some limited liability constraint. We provide a set

of conditions to assure the single-peakness of the agent's utility, though global concavity is

not met. According to our proof, the FOA is valid for normal distribution or its monotone

2Several other authors also try to relax or generalize the first order approach, using some more technical
tools such as rearrangement (Carlier and Dana, 2002, 2005), but the conclusion seems not to make a significant
difference to the CDFC. One exception is Araujo and Moreira (2001), who use a generalized Lagrangian approach
to deal with the situation where the FOA is not valid. Recently, Mirrlees and Zhou (2007) characterize the
principal-agent model by enlarging the agent's choice space. However those papers do not justify the validity of
the FOA, and in them, it remains unknown whether we could have a more friendly condition for the FOA to be
valid.
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tranformations (like log normal) with constant-relative-risk-aversion utility, if the action space

is well-specified.

Meanwhile, we present a necessary and sufficient condition for FOA to be valid in a general

non-separable utility environment, which also can be applied to a general bi-level non-linear

optimization problem. It is well known that when the constraint set is non-convex, there exists

a duality gap so that the FOA is not valid. Our approach provides a direct method to judge the

validity by checking two conditions: (i) the action chosen by the agent should be a fixed point

against the M contract; (ii) the optimal action should maximize the Lagrangian under the

M- contract associated with the multipliers being determined by the IR constraint and local

IC constraint. It can be seen that a sufficient condition for FOA to be valid is the continuity

of the best response correspondence so that the fixed point exists and any effort level can be

a fixed point by adjusting the multipliers. Fortunately, the classical moral hazard problem has

some good properties so that this continuities is met even in the general non-separable utility

case. In addition, even the explicity analytical conclusion is not available, our approach will be

very useful for numerical algorithm in practice, once the functions are known.

This paper thus is organized as follows. Section II presents the basic model and several

properties of its characterization. Section III provides a fixed approach to validate FOA and

prove the existence of solutions and offers two examples where the existing literature does not

apply. Section IV deals with some applications to an additive output-generating process and

the exponential family with existence of a sufficient statistic. Section V generalizes several

theorems to situation where the agent's utility is non-separable and shows a necessary and

sufficient condition for the validity of FOA. Section VI presents basic conclusions.

2.2 The Model

2.2.1 Characterizations

In a standard moral hazard problem setting (Holmstrom, 1979), there are a principal and a

risk averse agent whose utility functions are v(.) E V and u(.) E U respectively. The principal
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could be risk neutral or risk averse3 . The agent's output x is randomly distributed over region

X cR, with an atomless probability density function (p.d.f.) f(x, a), given the agent's effort

a E A C R+, where A could be an open interval [0, oo) or a close interval [0, d]. Throughout

this paper, we assume A =[0, oo), unless we point it out explicitly. And the relevance of the

boundedness will be discussed later. We assume the support X does not depend on the effort

level a and p.d.f. f(x, a) is continuous and differentiable in a up to some appropriate order.

The agent's effort is unobserved by the principal, and the principal makes a take-it-or-leave-it

contract w E W with W being a measurable compact functional space. We assume that the

disutility of effort c(a) is increasing as effort increases and separable from the monetary utility4

The principal solves the following optimization problem:

(P1) max v(x- w)f (x, a)dx
{a,w} J

subject to the following individual rationality (IR) and incentive compatibility (IC) constraints

for the agent,

J [u(w) - c(a)]f (x, a)dx > U (IR)

/u(w) - c(a)]f(x, a)dx > J[u(w) - c()]f(x, a)dx, Va, E A, (IC)

where U is the outside reservation utility, and the choice set A implies that a = 0 could be a

default choice by the agent.

Formally, we write the following assumptions explicitly.

Al: Agent is risk averse and the principal is risk neutral or risk averse;

A2: cost of effort is a strictly increasing function of effort;

A3: expected output is increasing and weakly concave in effort a, namely, (i) -- Ex > 0 and

Ex < 00 for any a < c0, and (ii) Ex < 0;

A4: the score is well-defined everywhere, namely o log f(x, a) > -oo for any x E X;

A41: or the payment is uniformly bounded from below, namely, s(x) > s > -oo for any

3 1t is not necessary to assume that at least one of them is risk averse. What is necessary is - - + (- ) >

0, which means that the principal can be risk averse or risk taking.
4As Rogerson (1985) does, we always are able to reparameterize the cost of effort as c(a) = a, without loss of

generality. We preserve this opportunity for the moment.
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xE X.

Assumption A3, the concavity of the mean of output, is standard5 . The first part A3-i

is weaker than second order stochastic dominance (SOSD), and therefore much weaker than

monotone likelihood ratio property (MLRP) 6 . A3-ii is weaker than the condition (2.10a) in

Jewitt (1988), and thus much weaker than the convexity of the distribution function condition

(CDFC).

A4 may be the most restrictive assumption, precluding the most familiar normal distribu-

tion. Under CDFC, A4 can be dropped if limited liability constraint A4' holds. The economic

intuition behind A4 or A4' is that the principal cannot punish the agent by a negative infinite

fine, even if the agent's performance is bad. However, without CDFC, replacing A4 by A4' is a

non-trivial task, because under A4', Jewitt's (1988) condition does not apply since the payment

rule is no longer concave (e.g., normal distribution). We will discuss this issue based on our

new approach later.

The above assumptions are fairly general, which may not be sufficient to validate the first

order approach. We will first present several important results under general conditions, then

make some more specific assumptions to validate the first order approach based on the general

findings.

Remark 2.1: Under the above assumptions Al-A4 or A4', the first best solution exists if

at least one of the following conditions holds: (i) cost of effort is strictly convex; (ii) expected

output is strictly concave; or (iii) action space is compact.

2.2.2 The Properties of Optimal Contract

For convenience, use U(w, a) = f[u(w) - c(a)]f(x, a)dx to denote agent's utility, and use

aBR(w) E arg maxa U(w, a) to denote agent's best response to contract w, and denote ABR(W)

as all collections of best responses. Because the agent is always able to choose quit as one of

his strategies, we define the implementation as follows.

5If the action space is compact, we do not need to specify any assumption about the distribution function. If
the action space is not compact, a E R+, then it is necessary to make some assumptions to assure the existence
of the optimum.

6 The first part also implies the identifiability of the distribution function, that is, EX is increasing in a implies

there is positive measure x such that f(x, a) : f(x, a') for all a : a'. This is very useful in terms of empirical
identification.
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Definition 2.1: An effort level a is implemented by a contract w, if: (i) a E aBR(w), and

(ii) U(w,a) > U.

First of all, we show the first order condition is a necessary constraint for (P1), which means

the solution (a, w) to (P1) must satisfy the following first order condition:

u(w) f(x, a)dx - c'(a)d - c(a) = 0. (LIC)

We can prove it formally as follows.

Lemma 2.1: Under assumptions A1-A3, and A4 or A4', suppose a* E aBR(w*), then (i)

IR constraint is binding; (ii) and LIC is a necessary condition for (P1).

Proof. We check (i) first. By contradiction, suppose (w*, a*) is an optimal contract for

which IR is not binding. Consider the contract 'di = u- 1 (u(w*) - e) for any constant e > 0. We

choose e so that IR is binding. And note that U(w, a) = U(w*, a) + e, w implements the same

effort level as w* does. Because e > 0, the principal is strictly better off with w.

(ii) Because U(w*, a) is a continuous and differentiable function of a E [0, oo) for any given

w, the optimal happens at a point where the first order condition is satisfied unless the optimizer

is unbounded. So it suffices to show that a* is bounded. Note that for given w*,

S< U(w* a*) < u(Ew*) - c(a*).

Because Ev(x - w*) < v(E(x - w*)), as the solution to problem P1, Ew* is bounded by a linear

transformation of Ex, therefore

u(aEx + P) - c(a*) > U

where a and 0 are two constants. Therefore a* E aBR(w*) must be bounded. This implies that

Ua(w*, a*) = 0 must hold. Q.E.D. m

Remark 2.2: If the action space is compact, namely, a E [0, a], under assumptions A1-A4

or A4', then (i) LIC must hold if the principal is risk-neutral7 ; (ii) when the principal is risk-

7Suppose (w*, 5) is the optimal contract and Ua(w*, a) > 0, then according to the median value theorem,
we can construct another contract 2i- = (1 - a)w* + aEw* - E(a) with a E (0, 1) and E(a) > 0 such that for a

small enough Ua(a, iv) = 0. By Jensen's inequality, since u(w) is concave, there also exists e(a) > 0 such that
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averse and LIC does not hold, then Borch's Rule 0 < w*' < 1 must hold for all x. The basic

economic intuition from (i) is that for the risk-neutral principal, the optimal solution is always

constrained by LIC. But for the risk-averse principal, LIC might not hold. Once the LIC does

not hold, the incentive from risk sharing is enough so that Borch's Rule holds.

A straightforward corollary is that for any best response a* E aBR(w), the agent's utility

with w fixed must be locally concave in a at a*.

Corollary 2.1: If conditions for lemma 1 hold, and if (a*, w*) is the solution to (P1),

U(w*, a*) must be locally concave in a at a*. Formally, we have for all a* E aBR(w*),

Uaa(w*,a*) < 0 and at least for one a* E aBR(w*), Uaa(w*,a*) < 0.

Proof. For any given w*, since LIC is a necessary condition, Uaa(w*, a*) < 0 must be

satisfied since a* is the best response. And since the optimality cannot happen at the boundary

points, then there must exist some a* E aBR(w*), then Uaa(w*, a*) < 0 is strict. Q.E.D. n

When IC is relaxed by LIC, the problem (P1) becomes

(P2) max v(x - w)f (x, a)dx, s.t. IR and LIC.

Use A to denote the set of (w, a) constrained by IR and IC, and use B to denote the

one constrained by IR and LIC. Because the solution to LIC contains all true best responses

satisfying LIC, A C B because LIC relaxes the constraint so that (P2) adopts some solutions

that might be not attainable by the principal under the original IC constraint.

We use Vi(w, a) (i = A, B) to denote the maximized value over constraint set i. To show

that the FOA is valid, it is equavalent to show that the solution constrained by LIC is indeed

the same as IC, i.e., VA(w, a) = VB(w, a). Rogerson (1985) relaxes B even further, namely,

C D B, and shows that the optimization constrained by C actually will happen in A, and

therefore, VA(w, a) = VB(w, a). The present paper uses a very different approach. We refine

the solution set A so that the necessary conditions for the formula of optimal contract can be

used to narrow the search for a valid solution.

In order to compare (P1) and (P2) in a more intuitive way, we rewrite the problem (P1)

U(Co, ~) = U(w*, a). Therefore, a E a BR(~), is still implemented. However, the principal is better off to pay less.
The extra profit is E(a) > 0. So (w*,a) cannot be optimal contract for any Ua(w*,a) > 0. The same logic can
be applied to the boundary a = 0 where Ua (w*, 0) < 0 cannot be optimal.
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based on lemma 1, as follows,

(Pl') max Jv(x - w)f (x, a)dx
{a R(w),w}J

s.t.

[u(w) - c("w) - c(aB(w))]f (x, a)dx > U (IR')

u(w)fa(x, aBR(w)))dx - c'(aBR(w)) = 0. (IC')

It can be seen that problem P1' is equavalent to problem P1 since aBR(w) is a true best

response rather than just a solution to LIC.

For convenience, we define a particular class of contract that comes from the first order

condition of (P2).

Definition 2.2: We call s(x, a; A, it) the Mirrlees-Holmstrom contract (MH) if '(=s(x,a;A,)) -

A+ Pla(x, a) whenever A + la(x, a) 2 v ,() and s(x, a) = s whenever A + iila(x, a) < v'(x-')

where la(x,a) - fa)

Any contract from the MN class is indexed by three parameters, A, y and a. For conve-

nience, we introduce notation q(x, a) = A + ila(x, a), and let r(q) solve =(x-r(q)) = q. First

of all, we consider the following mapping. If the contract is chosen from the MN class, for a

given A and p, the contract s(x, a; A, IL) can be indexed by a E A, say, s(x, a; A, [t). Therefore,

the best reponse to s(x, a; A, A) can be regarded as a mapping a BR : A A given A and p. For

notational compactness, we may suppress the index (A, u) in the best response aBR and MN

contract s(x, a; A, /a) with no confusion.

We obtain the following important lemma.

Lemma 2.2: Under assumptions Al-AS, and A4 or A4', suppose there exist a, A, [ such

that: (i) the effort level a is implemented by the MH contract s(x, a; A, /), and (ii) A > 0

satisfies the complementary condition: A = 0 if f u(s(x, a; A, p))f(x, a)dx - c(a) > U; and

y 2 0 satisfies the complementary condition /u = 0 if f u(s(x, a; A, p))fa(, a)dx > c'(a). Then

s(x, a; A, [a) is Pareto-optimal contract implementing a.

Proof. (By contradiction). Suppose a is implemented by s(x, a; A, /) with condition (ii).

When the IR constraint is binding, and supposing there is another contract w implementing
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a and keeping the agent's IR constraint binding, we have:

u(w)f (x, a)dx = u(s(x, a; i, p))f(x, o) d,

and

0 = -P[ u(w)fa(x, a)dx - c'(a)] = p[J u(s(x, a; A, p))fa(x, a)dx - c'(a)].

The profit distance between using s(x, a; A, p) and w is:

Al = v(x - s(x, a; A, )) f (x, a)dx - v(x - w)f (x, a)dx

= v(x - s(x, a; A, ,))f(x, a)dx + [ u(s(x, a; A, p))fa(x, a)dx -c'(a)]

+A[ u(s(x, a; A, p)) f (x, a)dx - u(w)f(x, a)dx]

v(x - w)f(x, a)dx + iJ u(w)fa(x, a)dx -c'()

= (v(x - s(x, a; A, )) - qu(s(x, a; A, ft)) - [v(x - w) - qu(w)])f(x, a)dx

- q[u(s(x, a; A, )) - u(w)] f (x,a)dx

= {v(x - s(x, a; A, p)) - qu(s(x, a; A, p)) - [v(x - w) - qu(w)]}f (x, a)dx

> 0.

The last step holds as long as w s(x, a; A, p) with positive probability since s(x, a; A, /) is the

pointwise minimizer of v(x - w) - qu(w) for any q > ,(_); and if q v(x), s(x, a; A,) s.

To see this, note that: (i) when q >2 >li ) 0, the object v(x - w) - qu(w) is concave and

has a unique minizer at w = r(q); (ii) when '(X) q, v(x - w) - qu(w) is monotonically

decreasing in w.

When the IR constraint is not binding, we have A = 0, by the definition of s(.),

J u(w)f(x, a)dx < / u(s(x, a; A, /))f(x,a)dx,

by the same construction, the above reasoning is true as well. Q.E.D. *

The above lemma shows the fact that if an action can be a fixed point of best response against

108

---------- -------



a MH7- contract, given A and [ such that the IR cosntraint is binding, then the optimal contract

to implement that action must belong to the MR class. To validate FOA is essentially to check

whether an action can be implemented by a M4- contract s(x, a; A, y) with IR constraint

binding.

It is important to point out the relationship between (A, M) and effort a constrained by IR

and LIC constraint. Jewitt et al. (2008) have found the wonderful relationship independently,

though our main result does not require such a strong relationship between (A, p) and a. For

self-containedness, we provide the following formal proof.

Lemma 2.3: For every given effort a > 0, there exists a unique (A, bp) with p 2 0, A > 0

solving the following equations

A [fu(s(x, a; A, y)f(x, a)dx - c(a) -U] = 0 (2.1)
p[f u(s(x, a; A, p))fa(x, a)dx - c'(a)] = 0

where f u(s(x, a; A,I )f(x, a)dx-c(a) -U > 0 and f u(s(x, a; A, p))fa(x, a)dx-c'(a) > 0 should

hold.

Proof. Note that for any given A and a, f u(s(x, a; A, p))fa(x, a)dx is strictly monotone in

p. And if p = 0,

I u(s(x, a; A, 0))fa(x, a)dx - c'(a) < 0

and there exist f such that every ft > ft

I u(s(x,a; A, ))fa(x,a)dx - c'(a) > 0

Therefore, by the median value theorem, there must exist a unique p such that

Su(s(x, a; A, )) fa(x, a)dx - c'(a) = 0

holds. If f u(s(x, a; A, 0))fa(x, a)dx - c'(a) > 0, we set ft = 0. For the y satisfying the above

conditions, we call it k/(A, a). Also y(A, a) will depend continuously on (A, a) by the implicit
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function theorem. Substituting p(A, a) into the IR constraint, we have

I u(s(x, a; A, t(A, a))) f (x, a)dx

u'([.)r'(.)f(xa)dx f u'()r'(.)la f (x, a)dx]2
Su'(.)r'(.)r'(.)12f (x, a)dx

If we write ZI = Vu'(.)r'(.), Z 2 = /'(.)r'(.)la(x, a), by the Cauchy-Schwarz inequality, then

we have

EZ EZ2 - (EZ 1Z 2 ) 2 > 0

and equality holds only if Zi is linear in Z 2
8 . Because la(x, a) can not be a constant, Zi cannot

be linear in Z2 . Therefore, the above inequality must be strict, and

9 Ju(s(x, a; A, y(A, a))) f (x, a)dx > 0.

So if f u(s(x, a; 0, [(0, a)))f(x, a)dx < c(a) +U, then by the median value theorem again, there

must exist a unique A > 0, making IR constraint binding. If f u(s(x, a; 0, /t(O, a)))f(x, a)dx >

c(a) + U, then we set A = 0, and solve t(0, a). Q.E.D. n

Following from the above proof, we have corollary 2.

Corollary 2.2: Let (A*(a),p *(a)) be the solution of (1), then the implicit function A*(a)

and ,t*(a) are continuously differentiable in a.

Basically, we want to provide a set of conditions under which the following problem P3 will

be equivalent to problem Pl:

(P3): max v(x - s(x))f(x, a)dx

s.t.

[u(s(x)) - c(aBR(s))]f(x,a)dx > U (IR')

Su(s(x)) f(x, aBR(s) ))dx - c'(aBR(s)) = 0. (IC')

where s(x) E M7I.

sThis fact is also noted by Jewitt, Kadan and Swinkels (2008).
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It becomes clear based on the fixed point approach that the validity of FOA requires two

conditions, summarized as follows.

Lemma 2.4: Under assumptions Al-A3, and A4 or A4', (P3) is equavalent to (P1), if (i)

every a E [0, a] can be sustained by a certain combination of (A, p); (ii) the (A, IL) pair solves

system (1).

Proof. If every a E [0, a] can be covered by (A, p), then for any action a* which is imple-

mented by contract w*, we can find a pair of (A*, p*) such that a* becomes a fixed point against

the MR contract s(x, a*, A*, 11*) with IR constraint binding. Based on Lemma 1 and Lemma

2, contract s(x, a*, A*, *) will be the least cost contract to implement a*. Q.E.D. m

Before proceeding, we provide a tight necessary condition for FOA to be valid.

Proposition 2.1: FOA is valid only if there is at least a fixed point a E aBR(s(x, a, A*(a), p*(a))),

where (A*(a), p*(a)) are functions of a, implicitly defined by system (1).

Proof. Suppose FOA is valid, then the optimal effort a* is implemented by s(x, a*; A, y),

and (A, y) is determined by system (1), which means a* E aBR(s(x, a*, A*(a*), t*(a*))), which

is equivalent to aBR(s(x, a, A*(a), p*(a))) at least admits a fixed point. Q.E.D. 0

By adding another condition, actually, we can have a necessary and sufficient condition for

the FOA to be valid. We present this stronger result in Section 5, where the agent's utility is

more general.

2.3 Validity of FOA and Existence of Solution

If aBR(s(x, a, A, p)) is continuous in (a, A, p), then the necessary condition is met since aBR(s(x, a, A*(a), /*(a'

is also continuous in a. We now show that the continuity of aBR(s(x, a; A, p)) in (a, A, p) is also

sufficient so that the two conditions in Lemma 4 are met.

2.3.1 Validity of FOA

Theorem 2.1: Under assumptions A1-A3, and A4 or A4', (P3) is equivalent to (P1), if

either aBR(s(x, a, A, t)) is continuous in i for every given (a, A) or aBR(s(x, a, A*(a, p), [)) is

continuous in [t for every given a.

Proof. (By construction) For every effort level e to be implemented, we construct a M-
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contract and make IR constraint binding as follows.

Step 0. Boundedness of effort level e.

Since the optimizer a* must be bounded, let a be the upper bound of effort responding to

any optimal contract a = sup aBR(w*).

Step 1. Construction of contract

Given _ d, based on Lemma 3, we construct contract s(x, , A, p) where A = A*(5) is the

solution of system (1), associated with A (but we will vary /i). Therefore, aBR(s(x, &, A, p)) is

continuous in t.

Step 2. Adjustment of aBR(.) by /

We claim that we can adjust the best response by varying p based on continuity. Note that

when p = 0, aBR(.) = 0, and therefore, if by varying p, we can achieve aBR(s(x, e, A, tL)) = a,

we are done. Suppose that & can not be achieved by adjusting p. Therefore, there must exist a

largest fixed point sustained by p. Let a*ax = sup {ae aB(s(x, a, A, u))} be the largest fixed

point a which can be sustained by p. We discuss two cases.

(i) The first case is that if any a E [0, amax] is fully covered by adjusting I, then the new

fixed point(s) a*/+' against s,(x, a*I+E, A, m + E) must fall beyond [0, af* ] since the same fixed

point can never be sustained by two different p's due to

[ u(s(x, a, A, p))fa(x, a)dx] = u'(.)r'(.)12(x, a)f(x, a)dx > 0

Therefore, a*I +IE > ama, a contradiction to a*ax being the largest fixed point.

(ii) The second case is that if a E [0, aAx] is not fully covered by adjusting ,a, then there

must exist some gap(s) which cannot be covered by p anymore. In this case, since a*±+E can

not fall into the gaps, nor can the places be covered by p, a*/+E > ama will be the case. We

obtain the same contradiction.

Based on (i) and (ii), by varying 1a, the fixed point is unbounded. Therefore, by con-

tinuity, we can adjust [t such that the best response & E aBR(s(x, , , t). This means

f u(s(x, , , /,))fa(x, a)dx - c'(&) = 0. By Lemma 3, the solution to system (1) is unique.

Therefore, [t = f will also make IR constraint binding. Therefore, the two conditions in

Lemma 4 are met.
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Step 3. Implementation of any action

Since any i a can be implemented by the above process, FOA is valid.

Similarly, when the contract is s(x, a, A*(a, p), y), the proof relies on continuity of A*(a, p)

for every given a, and the following monotonicity:

-[ u(s(x, a, A(a, p), p))fa(x, a)dx]

[f u'(.)r'(.)la(x, a)f(x, a)dx]2

Sfu'(.)r'(.)f(x, a)dx 
> 0

as we show in Lemma 4. Q.E.D. m

The proof of the above theorem does not require the global concavity of the agent's utility.

For instance, in our setting, as long as the best reponse is unique, the agent's utility could be

concave, quasi-concave, convex or quasi-convex, or convex first and concave later. Even if the

best response is not unique, as long as there exists a path-connected correspondence, the above

theorem will be true as well. Therefore, it allows us to validate FOA in some situations where

the existing literature does not apply. For example, as we will see in next subsection, when

the limited liability constraint is effective, the payment rule is no longer concave even though

restrictions are introduced on the monetary utility function.

It is worth pointing out that under some conditions, the fixed point a* will be a monotone

function of p, and we are able to continuously adjust the fixed point by varying p.

Proposition 2.2: If the conditions for Theorem 1 hold, in addition, the lax(X) > 0 and

laax : 0, then for every given /t, the best response correspondence, aBR(s(x, a, A(a, p), y) : A -3

A has and has only one unique fixed point. Meanwhile, the fixed point a* (p) is a continuously

monotone increasing function of p.

Proof. Based on the conditions in Theorem 1, for every t, the fixed point exists. To show

the uniqueness of the fixed point, it sufficies to show the monotonicity. For the fixed-point a*,

let A*(a*, p) be the A solving the IR constraint and substitute A*(a*, t) into the LIC constraint,
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and take the derivative with respect to p, we have:

ai u(.s(x, a*, A(a*, ), )) fa(x, a*)dx - c'(a*)]

u '(.)r'() ,Jfadx + u'(.)r'(.)laafadx + u(r(.))faadx - c"(a*)

/f u'()r'()fdx
/ (.)rf u'(.)r'(.)fdx + u'(.)r'(.)laafadx + u(r())fdx - c"(a*)< -[J u'(.)(.)fadxf u'()r'(.)lfdx J u r())f f -fa (a*

f u'(.)'(S(.)fdx + u'(.)r'(.)laafadx.

We want to show f u'(.)r'r') f dx f u'(.)r'(.)laa fdx- f u'(.)r'(.)f adx f u'(.)r'(.)laa f dx < 0 under

condition la,(X) 0 and laax < 0.

Construct a function,

W(T) = u'(.)r'(.) f dx u'(.)r'(.)laafadx - 1u'(.)r'(.)laf dx

with p(xmin) = 0. It suffices to show P'(7) < 0. This is to show

u'() u'(.)r'(.)laafadx + lala u'(.)(.).) f dx
u' () r'(.)

-la u'(.)r'(.)laafdx - laa

< 0

I Tu'(.)r'(.)fadx

Denote (-r) = '( ' we have p(xmin) = 0. And to show -(T) < 0, it suffices to show

'(7) < 0. Note that due to lax > 0 and laax 0, we have

T

S[ala]' u'(.) r'(.) f dx - lax
S (.)r)laafdx - laax

u' (.) r' (.)l10af dx - la u' (.) r' (.) fadx

= lax u'(.)r'(.) [laa(T, a) - la] f dx + laax u'(.)r'(.)[la(, a) - la] f dx

< 0.

Therefore,
Oa*

dp

2[j u(((x, a*, A(a*, y),[ ))fa(x, a*)dz - c'(a*)]
>0

o [u(s(x, a*, A(a*, y), t))fa(x, a*)dx - c'(a*)]
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where [J u(s(x, a*, A(a*, p),i ))fa(x, a*)dx - c'(a*)] > 0 according to the proof in Lemma 3.

The continuity of a*(p) is because the object f u(s(x, a, A(a, p), (x))fa(x, a)dx - c'(a) is con-

tinuous and monotone in a, since for each p, the best response correspondence, aBR(s(x, a, A(a, Ip), I ) :

A = A has one unique fixed point. Q.E.D. n

2.3.2 Existence of Solution

Theorem 1 only specifies the condition for the equavalence between (P1) and (P3). We need

to prove the existence of a solution to (P3). Holmstrom's (1979) condition can be applied to

assure the existence of a solution, by assuming that the payment L< 1. With CDFC along

with MLRP, the existing literature also shows the existence of a solution (Dana, 2005, Jewitt,

2008). Below, we prove the existence of the solution with the results based on Theorem 1.

Theorem 2.2: If the conditions for Theorem 1 hold, then the solution to (PS) exists.

Particularly, when the principal is risk-neutral, LIC is a necessary constraint regardless of the

boundedness of the action space.

Proof. First, by Lemma 3, for each a, A*(a) and p*(a) are continuously differentiable in a.

And given a, A*(a) and y*(a), aBR(s(x, a, A*(a), /*(a))) is also continuous in a. Therefore, the

objective function

Sv(x - s(x, a, A*(a), *(a))) f (x, aBR (s(a, A*(a), *(a)))))dx

is continuous in a.

Second, let F(a) be the set that satisfies two constraints IR' and IC' as listed in P3. F(a) is

non-empty due to the existence of fixed point a E aBR(s(a, A*(a), p*(a))) based on continuity.

We want to check that the constrained set is closed. Let an E F(a) be a sequence converging to

a. By definition, then IC' and IR' hold for an. By upper-hemi-continuity of the best response,

when an -+ a, then aBR(s(an,A*(an),I *(an))) -+ aBR(s(a,A*(a),/ *(a))), and therefore, IC'

and IR' will hold for a based on continuity. Thus, a E F(a).

Third, we check the boundedness of a. If a E [0, a] is typically assumed, we are done. If

a E [0, oo), we want to show that the optimality can not happen at a -+ oo. By contradiction,
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suppose that the optimal solution to (P3) happens at a* --+ oo. Therefore, we have

-o < M < v(x - s(x, a*, A*, *)) f (x, a*)dx

for M small enough. By Jesen's inequality, we have

[x - s(x, a*, A*, *)] f (x, a*)dx > v-(M).

Therefore, Es(x, a*, A*, fj*) is bounded by C1Ex + C2 with two finite constants C1 > 0 and C2.

If Es(x, a*, A*, /*) is bounded by C1 Ex + C2, based on IR constraint,

U < u(CEx + C 2 ) - c(a*),

therefore, a* can not be unbounded, a contradition to a* -- 00oo.

Putting these three steps together, solution of (P3) exists and it is the same solution for

(P1). Q.E.D. .

Theorem 1 and 2 provide a set of conditions where FOA is valid and the solution to P1

exists. To find the solution is to find the fixed point of the best response correspondence.

There is a lot of literature dealing with computation of a fixed point (e.g., Scarf, 1967), and the

computation becomes numerically available. Sometime, it is also useful to search for the fixed

point based on the following corollary.

Corollary 2.3: If for every a, we have a E aBR(s(x, a; A*(a), p* (a))), then FOA is valid.

Proof. It directly follows from Theorem 1 since every a could be a fixed point. Q.E.D. M

It is worth pointing out that Ev(x-s) is continuous in a, but might not be differentiable in a,

and therefore the adjoint equation in Holmstrom (1979) might not be applicable in finding the

solution. However, if the principal is risk neutral, then E(x-s) will be continuously differentiable

in a, and therefore the adjoint equation will hold too for an inner solution. Formally we provide

the following theorem.

Theorem 2.3: If the conditions in Theorems 1 and 2 hold and in addition, the principal is
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risk neutral, then FOA is valid and the following adjoint equation

(x - s(x, a, A, [))fa(x, a)dx + [J u(s(x, a, A, A)) faa(x, a)dx - c"(a)] = 0 (2.2)

also holds for every a c (0, a); otherwise, a E {0, a}.

Proof. When the principal is risk neutral, we can decompose P3 into a two-stage optimiza-

tion. The first stage is to choose (A, p) to minimize the cost of implementation f s(x, a; A, p)f(x, aBR(s(x, a; A

for given any a, and the second stage is to choose the optimal effort a. Let

C(a) = min s(x,a; A, p)f (x, aBR(s(x, a; A, p))dx s.t. IC and IR and s(.) > s

By Milgrom and Segal (2002), C(a) will be continuously differentiable in a E (0, a), even though

aBR(s(x, a; A, p) is continuous but not differentiable (and at the left (right) boundary point, it

is left-hand (right-hand) differentiable). Therefore, the envelope theorems apply and we obtain

the adjoint equation in addition to LIC and IR constraints. Q.E.D. *

In some real situations, there is some exogeneous specification on A4'. The cutting point

xo is exogenously given, rather than an endogeneous solution to s(xo, a*; A*(a*), -*(a*)) = s.

Assumption A4' can be replaced by A4".

A": The limited liability constraint is specified as w > s if x > xo and w = s if x < xo.

Under assumption A4", to find the optimal solution a*, we need to take constraint s(xo, a, A*(a), ,*(a)) >

s into consideration. We formally state the following corollary.

Corollary 2.4: If the conditions in Theorem 3 are met, and A4 or A4' is replaced by A4",

then the adjoint equation holds whenever s(xo, a, A*(a), [t*(a)) > s; otherwise

s(xo, a, A*(a), p*(a)) = s

should hold for a E (0, a), where xo is the cutting point where the limited liability constraint is

being activated.

Proof. When s(xo, a, A*(a), ,t*(a)) > s, based on Theorem 3, we obtain the adjoint equa-

tion. Otherwise, based on Kuhn-Tucker's theorem, s(xo, a, A*(a), *(a)) = s should hold.

Q.E.D. m
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Remark 2.3: If FOA is valid, under assumption A4, the limited liability constraint must be

activited at xo where la(xo, a) < O0. Otherwise, u'(s) > A = E (s) > u'(s_) , a contradiction

arises.

We now discuss the connection between the fixed point approach and existing literature.

Based on Theorem 1 and Theorem 2, we can prove Rogerson (1985) and Jewitt (1988) in a

more intuitive way, and understand the difference between them. We can state their results as

follows.

Proposition 2.3: (Rogerson, 1985) Under assumption Al, A2, and A4 or A4', and as-

suming (i) MLRP, i.e., lax(x,a) > 0, (ii) CDFC, i.e., Faa(x, a) _ 0, then FOA is valid and a

solution exists.

Proof. We can check whether the two conditions in Theorem 1 are met. Under MLRP, we

have as(x a ,p) > 0, while, by CDFC, we have

Uaa(s(x, a; A, i, i) J u(s) faa(x, a)dx

= - u'(s) Faa(x, a)dx < 0.

Therefore, fu(s(x,a; A,))fa(x,i)dx - c'(i) 0 has a unique solution 5i given A > 0 and

[ > 0. And by continuity of U(a, s), when the best response is unique, the best response

aBR(s(x, a; A, I))) is continuous in (a, A, [). Based on Theorem 1, FOA is valid and the solution

exists. Q.E.D. n

Jewitt (1988) relaxes the concavity of U(w, a) to that of U(s(x, a; A, p), a).

Proposition 2.4: (Jewitt, 1988) With assumption (i) MLRP, i.e., lax(x, a) O0, (ii)

fx Faa(r, a)d-  0 for all x, (iii) laxx 0 and la(x, a) is uniformly bounded from below; and

(iv) the principal is risk-neutral and u(r(q)) concave in q, then FOA is valid and a solution

exists.

Proof. Since we utilize the functional form s(x, a; A, /t), we can integrate by parts one step
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further as follows,

Uaa(s(x, a; A, p), ) = u(s) faa(X, i)dx

= - '(s)s(x)Faa(X, &)dx

-u'((,a))( .) Faa(X, a)d + X F( a)d d(u'(s)s'(x)).

When conditions (i), (ii) and (iv) hold, u'(s)o is decreasing in x; together with condition (iii),

this implies that Uaa(s(x, a; A, p), d) < 0 for any d. Therefore, the best response aBR(s(x, a; A, et))

is continuous in (a, A, p). Q.E.D. m

The connection between Rogerson (1985) and Jewitt (1988) seems very smooth in terms of

the fixed point approach. The trade-off between restrictions on utility and on distribution can

be seen by integration by parts intuitively. Condition fx Faa(r, a)dT > 0 can be regarded as a

higher order convexity than CDFC.

Remark 2.4: Rogerson's (1985) result holds if A4 does not hold, but A4' holds. However,

Jewitt's (1988) proof is not robust to the situation where A4 does not hold or there are restric-

tions on the payment rule. But our approach is able to deal with this issue as we do in example

2.

2.3.3 Some Properties

With the fixed point approach, we can provide some new conditions to validate FOA. The

following proposition is based on Tarsky's fixed point theorem.

Proposition 2.5: Under assumptions A1-A4 or AV', if utility and distribution function

satisfy condition f u'(s(x, a; A, t)s'(x, a; A, )laa(x, ) fa(x, a)dx > 0 for any d, a E A, then (i)

aBR(s(x, , A, yt)) has a fixed point; (ii) if in addition the principal is risk-neutral and the output

generating process is additive,

y(x) = a + E, (2.3)

and FOA therefore is valid.

Proof. (i) We can show a condition under which the best reponse is non-decreasing based
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on supermodularity. Note that, when

u(s(x, a2; A, p))f(x, a)dx - c(a) Ju(s(, a2; A, ))f(x,a)dx - c(a1) and
f 2 2 1 u.sIx, a2; , p))f(x, LL~d - c\C1a*)IL

Su(s(x, a; A, p)) ))f(x, a*)dx - c(at) > u(s(x, al; A, )) f (x, a*)dx - c(a),

u(s(x, a2; A, )) [f(x, a) - (x, a)d - u(s(x, al; A, )) [f (x, a) - f (x, a )]dx] 0 (2.4)

Note also that when f u(s(x, a; A, ))f(x, a)dx is continuous in (a, i), the necessary and suffi-

cient condition for inequality (4) is

j u'(s(x, a; A, ))s(x, a; A, )la(x, a)fa(x, ii)dx > 0

where x 0 solves s(x, a2; A, ~) = s. Under this condition, then a* > a* must be the case. By

Tarsky's fixed point theorem, aBR(s(x, a; A, ft) has at least one fixed point.

(ii) Based on (i), the fixed point exists for any given (A, [t). From additivity (3), we have

fa(x,a) =

la(x, a)

faa(x,a) =

laa(x, a) =

and lax(x, a) =

-g (e)y',
g' ()y' g'(e)

g(e)y' g()

9

-( )'y'.

120

then,

~;;;;;r~-n~-;rr~l~-.~;; ~si-i-i~;ri; i~ -i~=:i 1~1 ;-; ; ~;;i: '-""--" 1-;:;;--ii;~--;;- ;~~ ;L~r~l-l ;~- -- -, ~__~;---W~j;i:i-~i;li~-*l~iTi-i-~~-l~ ~j



Therefore,

= it u/(ws'(.)1aa(x, a) f (x, a)dx

= u(s(x, a; A, p))g(y - 5) - u(s(x, a; A, d)))g(y - ! u(s(x, a; A, L))la(x, a)f(x, d)dx

Sg(y - )[u(s(x, a; A, - u(s(~, a; A, u))] -/u(s(x, a; A, L))la(X, 5)f(x, d)dx

- + u(s(x, a; A, , a)f(x, )dx + Constant

Similarly,

+Ju(s(x, a; A, a)) fa(x, )dx = J u(s(x, a; A, p) fa(x, a)d.

Therefore, if c'(a) is non-decreasing, then for given (A, [), there is only a unique a solving

equation

Su(s(x, a; A, i)) fa(, a)dx - c'(a) = 0,

which implies that the fixed point a is continuously differentiable in (A, P). Therefore, every

effort level a can be achieved by adjusting (A, p) properly and IR will be binding at the end.

Q.E.D. .

The above proposition depends on some restriction of utility and the output-generating

process, but this new set of conditions is not discussed by the existing literature. The advantage

of the above proposition is that the cost of effort could take a very general form (e.g., non-

smooth). In the future, it will be possible to provide a set of intuitive conditions to validate

FOA based on our new approach.

2.3.4 Examples

We provide two examples where the existing literature does not apply. Example 1 violates Je-

witt's (1988) specification of utility, while example 2 violates assumption A4. In both examples,

the agent's utility is not globally concave in his action.

Example 2.1: (FOA might be valid when the agent's utility is convex.) The principal is



risk-neutral. The agent's monetary utility is u(w) = - , cost of effort outside

reservation utility U = 0, and the distribution function is f(x, a) = -e-aX where a E [0, a] is

effort and x E [0, oc) is the output. We assume a is large enough so that U(s(.), O0) f U(s(.), a).

In this example, the MH contract is

s(x, a, A, () = (XA p 2 3

therefore, the agent's utility under the MH contract is

3 [ x-a. 2  2
U(s(.), a) = - (A + tx a)2 f(x, 5)dx -

S [ 2 + [(5 - a) + 2 (252 - 2ia + a2)] - 2
2 a 2  a 4

When > 1, U(ii, s(.)) is convex in ii, and when < 1, U(ii, s(.)) is concave. From LIC

and IR constraints when i = a, we have

3/(Aa + /-) 2a
a

3

and

(A2 + _L) - a2 = o
2 a 2

Therefore, it = Aa, yielding /I*(a) = and A*(a) = -. To check the validity of FOA, we

need to check that for the given MH contract

a x-a.3

(x, a, ~A*(a), )= ( + - 2

the best response is continuous in IL for every given a. Therefore, based on Theorem 3, and by

the adjoint equation

(1 - 2va 2 ) + /(3 - 3) = 0

we have

a 61P 6 ~=3 2

122

--~'" 3C~ilj5?i~j5?~u?~~r-~o;~i~r^~~.ir- --^ii:~ -- i.- - ::-~--:_il;;:_- ; l:c:,; -ii -- ;-i~r;~-~l~~= ;i:r--- l _~;;;a;;;;;~ ;Llr;;i-:i ;L-ii~L ~-r;~-. --i-rl~~ai~;c~;r~---r.-ii~iF-C~"I'~-~



To check the validity of the solution, we find that a = is indeed a fixed point, which makes

the agent's highest expected payoff zero, hitting the IR constraint exactly. The principal's profit

is j - . (One may assume that if the agent is indifferent in its choice, he will choose

the one that the principal instructs.) In this example, we find that when the MH contract

s(x, a, A*(a), * (a)) = ()3 is employed, the agent's utility is

U(s(.), ) = ii2 _ 2 = 0

which is indifferent against his choice. So any effort the principal favors is weakly imple-

mentable.

The observation from the above example is that, when the agent's utility appears to be

convex in his action, the principal might be able to choose contracting parameters so that the

agent does not have any profitable deviation.

Example 2: (FOA is valid for normal distribution with limited liability constraint) Suppose

the output is normal distribution, x - N(a, 1), and the utility is u(w) = 2v/, cost of effort

c(a) = a2 , and the outside reservation utility U = 0. With the limited liability constraint, the

MH contract is specified as follows:

s if x < 0

(x, , ) + (x - a) 2 if x > 0

where s = 0.

In this example, the existing literature does not apply due to the existence of the limited

liability constraint. We have

U(s(.),a) = 2F(0, )/ + 2 (+ a(x - a))f(x, &)dx - d2

2 -22 1 2 52= -[e + [A +( - a)]( + ( ))+ (A - a)(1 '))-

and

Ua(S(.),) =/i(1 + ( -- )- 2a
vZ
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where (z) - fo e-, 2 dt is the error function. And

/2 i 2
Uaa(s(.), &) = , a2 - 2.

It can be observed that the agent's utility could be convex, when 5 is small enough, but it will

be concave when i becomes large, and Uaaa(s(.), ii) < 0 for any a > 0. Therefore, the agent's

utility is single-peaked. We first solve the LIC and the IR constraint for a - a. Note that

1 2 a a 2ae a2 + A(1 + (± ) + (A - a)(1 - 4( M) a

a
/(1+ Q>( )) = 2a

Therefore, we have

X - 22 -2a - a( -4)
A 1 2 ( e r )2

2 (1 + D( ))

2a

(1 + ( ))

Using the constraint A = Maa, we have equation

a[a - 2 1e- a)(
-0

2(1 + D(-))

Therefore, the only solution is A = = a = 0. 9

2.4 Application to Non-concave Payment Rule with Limited

Liability Constraint

In this section, we use the current approach to validate the FOA in situations where the score

function is not uniformly bounded from below, CDFC does not hold, and there exists some

12
9By the adjoint equation 1- + (2 a2 2 ) - 2 = 0, we can find that the profit is maximized at

a = 0.465886. However, this solution does not satisfy the limited libility constraint.
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limited liability constraint. A very useful example is that the output or its monotone tran-

formation obey a normal distribution. The idea is to show that the best response against a

given MN contract s(x, t, A, P) is unique. It also turns out that the agent's expected utility is

single-peaked.

2.4.1 Additive output-generating process

For the output-generating process (3), if we also assume MLRP holds, then there exists a unique

E* such that e > e* if and only if la(x, a) > 0. We employ Assumption A4", i.e., the limited

liability constraint is exogenously specified at x = x0o. Under assumption A4", without loss

of generality, we normalize the zero effort as a = y(xo) - e* = 0, which implies a > x0o (for

convenience, we let e* = 0). In this case, for a given MN contract s(x, a, A, p), it can be seen

that the agent's utility might not be globally concave because

u(s)Faa(xo, a) + u(s(x, t; A, P))faa(X, a)dx

- J a u(s(x, &; AI p))Fea(x, a)dz

> 0

when a is close to x0 , even though we put restrictions on the agent's utility like constant

relative risk aversion (CRRA). The following proposition provides a set of conditions to make

the single-peakedness of the agent's utility.

Proposition 2.6: If (i) assumption A4" holds, namely, x0o is exogeneously given; (ii) the

boundaries of the effort level a and d satisfy the normalization la(xo, a) 0 and 12(xo, a) +

laa(Xo, C) < 0; (iii) the output-generating process is additive and MLRP holds, and layy 0; (iv)

the principal is risk-neutral and the agent's utility satisfies Jewitt's (1988) restriction, namely,

u'u' - 3u"2 < 0; and in addition, (v) c"'(a) > 0 and c'(0) O0; then FOA is valid.

Proof. Step 1. First of all, we need to normalize the action space. Based on MLRP, let

x*(a) be the unique interior solution to la(x, a) = 0. For given x0 , we want la(o,a) < 0 so

that for any effort level, the limited liability constraint is activated at some point where the

score is negative (for example., if the limited liability constraint is activated at x0o = 0, then

we normalize a = 0. See Remark 3 for some justification). At the same time, we also need
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to specify the upper bound of the effort. Based on additivity (3) and layy 0, for x < x*,

12(x, a) + laa(x, a) crosses the x-axis only once, which is denoted as Xmin. For x > x*, we claim

that 12(x, a) + laa(x, a) crosses the x-axis odd numbers of times. It can be shown that 2Emin > 0.

We let xo > xmin(a) provided Xmin(a) > a.

Step 2. Note that Ua(s(.), 0) > 0; therefore, to show the single-peakedness of U(s(.), 5), it

suffices to show that Uaaa(s(.), 5) < 0. Let w(x, &) denote u(s(x, &; A, /i)). Note that xmin(a) <

xo a and zuyy(x, a) O0. Meanwhile, for x > xo, g"(y - a) must at first be less than zero,

and greater than zero at the end. So g"(y - a) crosses the x-axis from below and the number of

intersection points will be odd (except for the boundary point). We denote those intersections

as (l, ..., X2k-1) and let x2k = 2. Therefore, we have

- Wy(x, )y'(x)Faaa(X, a)dx

= L wy(x, a)y'(x)g"(y - a)dx

2k-1 Xj±1

E >3 UY(X,60)y'(x)g"(y - a)dx
i=0 mi

2k-1

> VYy(Xi+l, et)[g'(y(xi±2) - a) - g'(y(xi) - a)]
i=O

< -ZUy(xj, 4)g'(y(xo) - a)

< 0

The condition for uyy(x, a) < 0 is stated by Jewitt (1988), which is lay 0 and layy > 0 and

u"u'' - 3u"2 < 0. Meanwhile, by c"'(a) _ 0, Uaaa(s(.), 5) < 0. Combining these conditions, the

agent's utility will be single-peaked. *

Based on the above proposition, for any normal (or log normal) distributionlo with xo = 0,

a > a - , if agent's utility is CRRA u(w) = w with y7 < , then FOA is valid. The

restrictions on the boundaries of effort indeed do not hurt because we can tranfer effort level

to a compact space by reparameterization since we do not specify the functional form of cost

function c(a). But A4" is a key assumption where x0 is exogenous.

0oFor normal distribution xmin = a - a and Xmax = a + a. This conclusion holds for exponential family
distribution with l,,(x, a) = -v = -a.
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2.4.2 Exponential family with existence of a sufficient statistic

For exponential family distribution (Brown, 1986), without loss of generality, we can repara-

meterize the effort and output so that

f (,a) = )( where y'(x) > 0 and v(x) > 0, eay()v(x)dx < c (2.5)
f eay(x)v(x)dx

with normalization x E [0, :] C RI+ .

The above distribution satisfies MLRP, and therefore A3-i. And it can be shown that

(x, a)+laa(x, a) = 0 has only two solutions, Xmin = -l1 (m(a)- ) and max = y-l(m(a)+

Vi/a2), where m(a) = Ex. It can be seen that VE 2 is a constant independent of a. Therefore,

we have a similar conclusion.

Proposition 2.7: For exponential family (5), if (i) assumption A4" holds, namely, xo

is exogeneously given; (ii) the boundaries of the effort level a and a satisfy normalization

y(xo) < m(a) and m(d) < y(xo) + V/ ; (iii) fy-l(m(a)) Faaa(X, a)dy > 0 holds; and (iv)

the principal is risk netral and the agent's utility satisfies Jewitt's (1988) restriction, namely,

u"'u' - 3u"2 < O; in addtion, (v) c'"(a) > 0 and c'(0) = 0; then FOA is valid.

Proof. Observing that 12(x, a) + laa1(, a) - 0 only has two solutions Xmin = y- 1 (a - /l)

and Xmax = y-(a - a), we see for x > y- 1 (a), Faaa crosses the x-axis from above only

once. Therefore,

- L zy(x, )y'(x)Faaa(x, a)dx

S-wy(y-1(a + VEla2), &) y'(x)Faaa(x, a)dx

< 0

The last step is because fxo Faaa(X, a)dy > 0 for x 0 < a since fy-1(m(a)) Faaa(x, a)dy > 0.

Q.E.D. m

The above two propositions should be very useful for empirical research, where the additive

output-generating process and exponential families are commonly used. We also explicitly

provide the following corollary for Gamma distribution, where CDFC does not hold and the

agent's utility is not globally concave.

127



Corollary 2.5: For Gamma distribution f(x, a) =r(- " -, if the effort level is within

bound A C [- 2  Jx--] and utility satisfies u"u' - 3u"2 < 0, then FOA is valid.

Proof. For Gamma distribution, note that ft Faaa(X, a)dy e-Eta+lat--(2+a)a) > 0 if

t < (2 + a)a, and that the two solutions to Faaa(z, a) = 0 are Xmin = a(2 + a - 2 +a) and

xmax = a(2 + a 2+ \ -a). Therefore, if a(2 + a - 2\+/a) < xo < (2 + a)a, we can show the

single-peakedness. It turns out that the action space A = [a, l]C[ ' 2+- ]. Q.E.D.

2.5 Generalizations and A Necessary and Sufficient Condition

2.5.1 Generalization of Theorems to Non-separable Utility

Theorems 1 and 2 can be generalized to a non-separable environment. The specification of the

agent's utility is the same as Alvi (2004). But our result sheds some light on validity of FOA

without global concavity. Before proceeding, we extend system (1) to the general utility case

as follows:

SA [f u(s(x, a; A, p), a)f(x, a)dx - U] =0 (2.6)

[ [f[u(s(x, a; A, p), a)fa(x, a) + ua(s(x, a; A, [), a) f(x, a)]dx] = 0

where f u(s(x, a; A, y), a)f(x, a)dx-U > 0 and f[u(s(x, a; A, p), a)fa(x, a)+Ua(s(x, a; A, /t), a)f(x, a)]dx >

0 should hold.

Theorem 2.4: Theorems 1 and 2 hold if the agent utility is non-separable, u(w, a) with the

assumptions (i) v < O0, uw > 0, ua < 0 and (ii) U, < O0, Uaa 0, uaw 0, uaww < 0.

Proof. We generalize Theorem 1 first; the proof of generalization of Theorem 2 can be

done similarly.

Step 0. Construction of the MN contract

In the non-separable case, under assumptions (i) and (ii), the MAt contract can be specified

as follows:

-v(x- s) + Au,(s, a) + [aw(s, a) + u,(s, a)a(x, a)] = 0 whenever q v- ua

s = s otherwise
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which is because for every given (x, a; A, p), there is a unique s that solves the above equation.

So the .4M contract s(x, a; A, y) is continuous in each of its arguments.

Step 1. Fixed point argument

Similar to the proof of Lemma 2, when there exists (a, A, p) such that (i) a c aBR(s(x, a; A, ));

(ii) A 2 0 satisfies the complementary condition: A = 0 if U(s(x, a; A, P), a) > U; and (iii) p > 0

satisfies the complementary condition: yi = 0 if Ua(s(x, a; A, p), a) > 0; then s(x, a; A, P) is a

Pareto-optimal contract implementing the effort a.

Step 3. Continuity of A(a) and /(a) for every a.

The proof is similar to Lemma 3. Formally, we state as follows. Note that for every given

(p, a),
2Os uW > 0

OA (vXxu, + vX,,) + b(UawwUw - Uawww)

so f u(s, a)f(x, a)dx is strictly monotone in ([, a), so either there is a unique A > 0 solving

I u(s, a) f(x, a)dx - U = 0

or f u(s, a)f(x, a)dx - U > 0 implying A = 0. We call it A(y, a), which is continuously differ-

entiable in (t, a). Substituting A(1 i, a) into the LIC constraint, and observing that

as U2S ____(la + aw)
- - (Vxxuw + uVxww) + 1(Uawww, - Uawuww )  u

we have,

[Ju(s(x, a, A(p, a), p), a)fa(x, a)dx + Ua(S(x, a, A(p, a), p), a)f(x, a)dx]

OA(p,a) asf
p [u (s(.), a)la(x, a) + Uaw(S(.), a)] Of(x, a)dx

+ J[uw(s(.), a)la(x, a) + ua.(S(.), a)] f (x, a)dx

E72 (EZlZ2)2
2 E2

> 0

where Z = and Z 2 = a + ) and the last step is due to Cauthy-Schwarz
- U W AAS U= y aT u
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inequality. We want to show that there is only a unique p solving tUa(s(x, a; A(a, y), p), a) = 0

for every given a.

If la + ' is not a constant, the above Cauchy-Schwarz inequality is strict; therefore,

Ua(s(x, a; A(a, p), p), a) is monotone in /, as a result, the solution to pU (s(x, a; A(a, [L), pf), a) =

0 is unique. If la + - is a constant, which requires uaw -0 with a strict positive probability.

Therefore, we can write s(x, .) in terms of la and a constant C, as follows,

s(x, a; A(a, y), /) = w(C - la).

And w(.) is a decreasing function, implying that s(x, a; A(a, p), t) is an increasing function of

la. Meanwhile, note that for any x, u,(s(x, .), a)la + uaw(s(x., ), a) = Cu,(s(x, .), a) with the

constant C. Therefore, u(s(x,.), a)la(x, a) + ua(s(x,.), a) = C(u(s(x,.), a) - u(w, a)), and we

have

pUa = C J(u(s(x, a; A(a, t), t), a) - u(w, a))f(x, a)dx = 0.

As a result, either C = 0 or p = 0 since s w, which implies that =v(x-s) - is a constant.uw(s,a)

Note that

- E[u (s, a)la + a(s, a)] < 0

Euw (s, a)

due to Eu,(s(x., ), a)la = Cov(u,(s(x,.), a), la) < 011 and Euaw (s, a) < 0. Therefore t = 0 is

the unique solution to pUtU(s(x, a; A(a, [t), /), a) = 0. We call this solution /*(a). As a result,

ft*(a) and A*(ft*(a), a) both are continuously differentiable in a.

Step 4. Adjustment of [ to implement every effort a E [0, l].

The remainder of proof is essentially the same as Theorem 1. Fixed (A, a), if the best

response is continuous in I, then we are able to adjust ft such that the complementary condition

for IR constraint holds. So far, we generalize Theorem 1. The rest for existence is similar to

Theorem 2. Q.E.D. m

Remark 2.5: If the principal is risk-neutral, then we can show that ft > 0 once LIC holds

under a MH contract, since Cov(u, 1 - t~L) > 0.

1"Because s(x, a; A(a, i), ~) - w(C-l4) is an increasing function of la and u,, < 0, so Cov(uW(s(x,.), a), l4) <
0. This conclusion also holds when there is limited liability constraint A4' since the limited liability constraint
is activited at xo where l (xo, a) < 0.
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2.5.2 A Necessary and Sufficient Condition for Validity of FOA

Furthermore, we extend proposition 1 to the following theorem, which is a necessary and suffi-

cient condition for FOA to be valid.

Theorem 2.5: Under the assumptions (i) Vw < 0, uw > 0, Ua < 0 and (ii) u,, < 0,

Uaa < O, Uaw < 0, Uaww < 0, the FOA is valid if and only if there at least exist one a* E [0, d]

so that (i) a* E aBR(s(x,a*; A*(a*), t*(a*))) and (ii)

a* E arg max v(x - s(x,a; A*(a), /*(a)))f(x, a)dx
a*

where (A*(a), L*(a) is defined by system (6).

Proof. Necessary part. If the FOA is valid, the solution must be one of the fixed points.

So (i) is necessary. At the same time, if the FOA is valid, the principal's original problem is

equivalent to the following problem:

max Ev(x - s(x, a; A, p)). s.t. Eu(s(x, a; A, p), ) > U and a E arg maxEu(s(x, a; A, p), )
{a,A,q} a

We construct the Lagrangian

L(s(x, a; A*(a), p* (a)), a)

V(x - s(x, a; A*(a), 1 * (a))) + A*(a)[U(s(x, a; A*(a), I*(a)), a) - U] + p*(a)Ua(s(x, a; A*(a), p*(a)), a)

Note that for every given a, there is a unique (A*(a), p*(a)) solving system (6); therefore, the

above problem is equivalent to the following problem:

max J L(s(x, a; A*(a), P*(a))), a) f(x, a)dx
aBR(s(x,a;A* (a),p* (a))

Therefore the solution a based on the FOA has the following property:

S{v(x - s(x, a; .)) + A*(a)[u(s(x, a; .), a) - U] + bp*(a)[Ua(s(X, a; .), a) + u(s(x, a; .), a)la(x, a)]} f (x, a)

> {v(x - s(x, 6; .)) + A*(&) [u(s(x, &; .), et) - U] + P*() [ua (s(x, h; .), et) + u(s(x, &; .), a)la(x, e)]} f (x, a)
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for any , /r a.

As a result, both conditions (i) and (ii) are satisfied when the FOA is valid.

Sufficient part. If the optimal action a* can be implemented by a MA- contract s(x, a; A*(a), t* (a)),

we are done. Suppose there is an optimal action a* being not implemented by any M7- con-

tract, but some contract w. We discuss two subcases: either LIC is binding under (w, a*) or

not binding (IR is always binding for the optimal contract).

(i) LIC is binding under (w, a*).

By the optimality of w, IR constraint is binding as well, therefore,

u(w, a*)f(x, a*)dx - U = 0

and

[ua(w, a*) + u(w, a*)la(x, a*)]f (x, a*)dx = 0

Let a be the action satisfies conditions (i) and (ii). Therefore, the profit distance between (s, a)

and (w, a*) is:

AII

= v(x - s(x, a; .))f(x, a)dx - v(x - w)f(x, a*)dx

= {v(x - s(x,a;.)) + A*(a)[u(s(x,a;.), a) -U] + *(a)[ua(s(x,a;.),a) + u(s(x, a;.),a)la(x,a)}f(x,a)

S{v(x - w) + A*(a*)[u(w, a*) - L] + ,*(a*)[u(w a + u(a*) w, a*)1,(x, a*) f (x, a*)d

> {v(x- s(xa;.)) +A*(a)[u(s(x,a; .),a) -i] +I *(a)[ua(s(x, a; .), a) +u(s(x,a; .),a)la(x,a)]} f (x,a)

v(x - s(x, a*; A*(a*), i*(a*))) + A*(a*)[u(s(x, a*; A*(a*), L*(a*), a*) - U] (, a*)dx

+,i*(a*)[ua(s(x, a*; A*(a*), T*(a*)), a*) + u(s(x, a*; A*(a*), L*(a*), a*)la(x, a*)]

> 0

The second last step is because s(x, a*; A*(a*), f*(a*)) is the pointwise minimizer of the object

v(x - w) + A*(a*)[u(w,a*) - U] + t*(a*)[ua(w, a*) + u(w, a*)la(x, a*)
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Since AHl > 0 results, we obtain a contradiction to the optimality of w.

(ii) LIC is not binding under (w, a*)1 2

When LIC is not binding under w, we claim that

[ua(s(x, a*; A*, p*), a*) + u(s(x, a*; A*, p*

J[ua(w, a*) + u(w, a*)la(x, a*)]f(x, a*)dx

> 0.

To show the above inequality, note that

l(,a*) v(x - s) - Au,(s, a*)

pIw,(s, a*)

uaw(s, a*)

u,(s, a*)

therefore, if we let A* solve IR constraint, and for notational convenience, compress s(x, a*; A*(a*, ,), ) =

s, we have

[Ua(S, a*) + u (s, a*)la(x, a*)](x, a*)dx - (W, a*) + u(w, a*)la(x, a*)]f(x, a*)d

vs(Z - s) - A*uw(s, a*)
u- (w, a*)] + [u(s, a*) - u(w, a*)](V ( x - s) - A* )

w, Lu(s, a*)

> {Uaw(sa*) u(s, a*) - u(w, a*)+ [u(s, a*) -+ ((S,, a*)) u(w, a*)](V (X
- s) - A*u,

AtuW(s, a*)

aw(s,a*) aUa,- ,a) )} f(x, a*)dx
u (s, a*)

(s, a*) Uaw(s, a*) )}f(x, a*
U,(s, a*)

= [u(s, a*) -

= 1 J[u(s, a*)

u(w, a*)] vX(x - s) - A*Uw(s, a*) f( a*)dx

Ituw(s, a*)

- u(w, a*)] x f(x, a*)dx
Uw

Note also that p > 0, so it suffices to show

/ [u(s, a*)
S v x (x - s)

- u(w, a*)] f(, a*)dxz 0
uW(s, a*)

for p = p*(a*).

12Here we can rule out the case Ua(w,a*) < 0 by assuming Ua(w, 0) = Ua(w,0) = 0 for some fixed payment w
solving u(w, 0) = U. This seems very reasonable. Even for linear cost fuction, we can let c(a) = 1(a > 0)a .
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By the definition of w, we have

Sv(x - w)f(x,a*)dx

> L(s(x, a; A*(a), *(a))), a) f (x, a)dx

J L(s(x, a*; A*(a*), t*(a*))) a*), a*)f(x, a*)dx

= v(x - s(x, a*; A*(a*), /*(a*)))f(x, a*)dx

By the concavity, we have,

[u(s(x, a*; A*(a*), ,*(a*)), a*) - u(w, a*)] v(s) f(x,a*)dx
uW (s, a*)

SJ[s(x, a*; A*(a*), p*(a*)) - w]vx(x - s(x, a*; A*(a*), p*(a*)))f (x, a*)dx

S [v(x - w) -v(x- s(x,a*;A*(a*),~*(a*)))]f(x,a*)dx

> 0

As a result, for effort level a*, if w is the optimal contract implementing a* and f [ua(w, a*) +

u(w, a*)la(x, a*)]f(x, a*)dx > 0, then

J [ua(s(x, a*; A*(a*), *(a*)),a*) + u(s(x,a*; A*(a*), *(a*)), a*)la(x, a*)]f(x,a*)dx > 0

as well. Hence, the solution to system (6) must result p*(a*) = 0. Based on ,*(a*) = 0, we can

construct the same Lagrangian as subcase (i). Finally, we obtain AH > 0 as a contradiction.

This implies that (s(x, a*; A*(a*), ,*(a*)), a*) should be the solution to the principal's original

problem. Q.E.D. m

The above theorem provides an important method to justify the validity of FOA and com-

putation of the solution. Because the value function Ev(x - s(x, a; A*(a), /*(a))) of relaxed

problem (with LIC constraint) or the Lagrangian L(s(x, a; A*(a), /*(a)), a) is a continuously

deferentiable function of a, to find the maximizer(s) of them, we only need to focus on the

steady points where the adjoint equations hold, or the boundary points. Therefore, the two-

step procedure to check the validity of FOA or solve the principal-agent problem can be stated
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as follows:

(i) Find the maximizer of the expectation of Lagrangian, EL(s(x, a; A*(a), * (a)), a) by using

the adjoint equation, together with LIC and IR constraints.

(ii) Check whether the maximizer a* is a fixed point of the best response correspondence

aBR(s(x, a; A* (a), * (a))).

If the above two steps are passed, then FOA is valid and we find the solution, if not, FOA

is not valid. This theorem and algorithm can be applied to a very general environment.

2.5.3 Implications for A General Non-linear Optimization

It is valuable to point out the applicability of the fixed point approach to a general non-linear

optimization problem. Consider a constrained optimalization problem like

(P5) max V(w, a)
{a,w}

s.t.

a E argmaxU(w,a) (IC")
a

U < U(w,a) (IR")

where we assume both V(w, a) and U(w, a) are continuously differentiable over a compact space

Ax W.

For problem (P5), it is well-known that there might exist some duality gap when the con-

strained set is not convex or U(w, a) is not globally concave in a. Our fixed-point approach

provides a necessary and sufficient condition to judge whether (P5) can be solved by only using

the local first order condition of IC".

Theorem 2.6: If V(w, a) and U(w, a) are continuously differentiable over a compact space

A x W, then (P5) can be solved based on FOA if and only if there exist some s(a, A, f) E

arg max, V(w, a)+A[U(w, a)-LU]+aUa(w, a) and a* E A such that (i) a* E aBR(s(a*, A(a*), p(a*)))

and (ii) a* E argmaxa V(s(a, A(a), Ip(a)), a)+A(a)[U(s(a, A(a), p(a)), a)-U]+p(a)Ua(s(a, A(a), p(a)), a),
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where A(a) > 0 and ,p(a) > 0 solves the system

A[U(s(a, A, p), a) - U] = 0 (2.7)

tUa(s(a, A, p), a) = 0

with the complementary conditions A = 0 if U(s(a, A, A), a) > U and [t = 0 if Ua(s(a, A, ), a) >

0.

Proof. (The proof is quite similar to the proof of Theorem 5.)

Necessary part. If (P5) can be solved by FOA, then the solution must have properties

s(a, A, /) such that a E aBR(a, s(a, A, /)) and (A, M) solving the system of (7) with the com-

plememtary conditions. Therefore, to search the optimal (a, A, ~) is equivalent to choose a to

maximize the Lagraingian,

L(s(a, A(a), p(a)), a) = V(s(a, A(a), /t(a)), a)+A(a)[U(s(a, A(a), p(a)), a)-U]+(a)Ua(s(a, A(a), p(a)).

Sufficient part. First of all, for problem (P5), at least of IC" or IR" must hold for the

optimal solution (suppose not, we can find a profitable deviation i such that u(@, a) + e =

u(w, a) where a constant e is chosen to make at least one of IC" or IR" constraints binding).

We show that there is no profitable deviation from (i) and (ii). By contradiction, suppose there

is an optimal w = s(a, A, p) implementing the optimal a aBR(s(a, A(a), p(a))), we discuss

several subcases as follows.

Subcase (i): both IC" and IR" binding

In this subcase, we have the profit distance,

An = V(w, a) - V(s(a*, A(a*), p(a*)), a*)

= V(w, a) + A(a)[U(w, a) -U] + /,(a)Ua(w, a) - L(s(a*, A(a*), j(a*)), a*)

< L(s(a, A(a), [t(a)), a) - L(s(a*, A(a*), j(a*)), a*)

< 0,

a contradiction to the optimality of (w, a).

Subcase (ii): only IC" binding, IR" not binding.
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In this subcase, choose s(a, A, p) = w, so we have U(w, a) = U(s(a, A, ), a) and

Ua(s(a, A, p), a) = Ua(w, a) > 0

Therefore the solutions to system (7) will be A(a) > 0 and p(a) = 0. We can do the same proof

by construction as subcase (i).

Subcase (iii): only IR" binding, IC" not binding.

It is similar to subcase (ii), except now A(a) = 0 and p(a) > 0.

Putting all pieces together, we show that hte two conditions in Theorem 6 are sufficient to

solve problem (P5). Q.E.D. m

The above theorem holds under a very general environment. It does not require s(a, A, P) to

be unique, nor the continuities of A(a) or [L(a) in a. However, because the second condition in the

theorem seems less tractable, we can provide some sufficient condition instead, where the global

concavity can be relaxed by the following three conditions: (i) a E aBR(s(a, A, y)), i.e., the best

response admits a fixed point, where s(a, A, yt) = arg min,, V(a, w) + A[U(a, w) - U] + lUa (a, w)

is the unique minimizer for given (a, A, it); (ii) there exists (A, p) such that two complementary

conditions are met as follows:

A > 0 and A = 0 if U(a, w) > U

and

y _> 0 and p = 0 if Ua(a, w) > 0

and (iii) every a could be a fixed point by adjusting (a, A, p) properly.

Remark 2.6: There are several differences between (P5) and the principal-agent problem:

(i) s(a, A, ya) is a number for given a, so it is hard to have both IC and IR constaints bindingl3 ;

(ii) in Theorem 5, we make conditions to assure the uniqueness of s(x, a; A, y), and A(a) and

ji(a) have nice properties under those conditions, but in problem (P5), those properties are not

available. For example, when the agent's utility is separable U(a, w) = u(w)cl(a) - c2(a), then

13For example, suppose V(a, w) = a - w, U(a, w) = 2/-a - a2 , and U = 0. In this case, IR will not binding
at optimum. The solution is * = a*= -, A* = 0 and w* = 1
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ft cannot adjust effort a when IR is binding.

2.6 Conclusions and Discussion

The global concavity of the agent's utility is a too strong condition for validity of FOA. This

paper provides a new approach to justify FOA based on the existence of a fixed point of best

reponse correspondence, which is weaker than the global concavity condition since the latter

implies the existence of a fixed point. Based on this approach, we can check the validity of FOA

directly by checking the existence of a fixed point against a M7- contract, which makes it more

transparent to judge the validity in practice. And using our approach, we restore the validity

of FOA when the payment schedule is not concave due to the existence of some limited liability

constraint. For a concrete example, FOA can be applied to a useful case such as a normal

distribution combined with a CRRA utility, under some specifications of effort space. We also

find some nice properties still hold in the situation where the agent's utility is non-separable.

Particularly, we provide a necessary and sufficient condition for FOA to be valid, which also

sheds light on a general non-linear optimization without a convex constrained set. In the future,

we expect that the relaxation of global concavity would bring some additonal chances to find a

set of more intuitive conditions to validate FOA. At least, the numerical algorithm can be built

on this ground even if an explicit solution is not available.
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Chapter 3

Auctioning Social Surplus: First

Best Bayesian Mechanism with Ex

Post Invidual Rationality

3.1 Introduction

Suppose a social planner wants to allocate resources efficiently ex post, and he also subjects to

budget balance ex post. Basically, we have the following seven combinations of interest (See

Table 1).

Table. 1 Combinations of Properties of Ex Post Efficient Mechanisms.

Individual Rationality Incentive Compatibilty Budget Balance

Ex ante (1) (4) N.A.

Interim (2) (5)* N.A.

Ex Post (3)* (6) (7)*

The well-known classic Vickery-Clark-Groves (VCG hereafter) mechanism can be either ex

post individually rational or ex post budget balance, but cannot be both. Holmstrom (1977)

provides a necessary and sufficient condition for ex post budget balance. Another well-known

mechanism by Arrow (1979) and d'Aspremont Varet-Gared (1979) is ex post budget balance but

might not be interim individually rational. The celebrated result by Myerson-Satterthewaite
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(1983) shows the impossibility of having combination (2), (5) and (7) in the above table, when

the agent's preferences are linear and the seller owns the object initially. Several other authors

provide some additional insights with slight change of assumptions in endowment or divisibility

of the good, where conterveiling incentive matters (Crampton, Gibbons and Klemperer, 1987;

McAfee, 1992, among others). In their story, combinations (2), (5) and (7) might be possible.

Recently, Ledyard and Palfrey (2006) has fully characterized the solution to an interim

socially efficient mechnism, i.e., combination (2), (5) and (7). And Krishna and Perry (1998) has

generalized the classic Vickery-Clark-Groves mechanism to discuss the sufficient and necessary

condition for existence of interm socially efficient mechanism. Unfortunately, Ely and Cheung

(2003) shows combination of (3), (6) and (7) is impossible.

This paper is considering the possibility of the combination (3), (5) and (7), star marked

in table 1. Our interest on ex post individual rationality is motivated by the fact that, the

participant may opt out of ex post once the ex post. allocation can not give him higher utility

than the outside reservation utility. The consequence of this option is subtle: because the

participant expects that somebody will opt out, his strategy at the interim stage will change

given that the designer is not a budget breaker. Therefore, the interim incentive compatible

constraint will be different from the mechanism without an option to quit. We first show that

the condition for a mechanism being robust against ex post option to quit needs to satisfy an

ex post individual rationality constraint. Then we check the condition under which an ex post

efficient allocation exists, satisfying incentive compatible (interim), budget balance (ex post)

and individual rational (ex post). The importance and significance of the ex post IR constraint

have been discussed by Dudek, Kim and Ledyard (1995). Recently, there has been increasing

literature on exploring robustness of mechanism design, which requires ex post IR, even ex post

incentive compatibility (Morries, 2003; Bergemann, S. Morris, 2005). Our strategy of proof is

to construct a concrete mechanism or auction which has these good properties.

Our mechanism or auction has a very intuitive intepretation, and seems simple in terms of

pragmatic use, which can be regarded as an auction to sell social surplus (if any). The game

can be decomposed into two stages: (i) the first stage, all bidders compete for the right to own

entitlement (license). The owner of entitlement can charge full consumer surplus to the other

bidders, but in order to win the entitlement, he needs to pay a lump sum transfer to the others;
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(ii) the second stage is a trivial game, where the bidders are charged according to their first

stage reports. By constructure, this mechanism is always ex post budget balance. We show it

will be also ex post individual rational under some conditions, depending on the context. In

private good cases, it will be ex post individual rational whenever VCG runs expected social

surplus. However, in public good cases, it sensitively depends on the flexibility of total supply

and the number of participants.

We also use this mechanism to explore the possibility of no trade (Myerson-Satterthewaite

theorem) in a generalized environment, where divisibility of trade object, distribution of initial

endownment and concavity of preference have receieved full consideration. We show trade could

happen when either endownment is extreme or relatively symmetric when preference is concave.

But if we impose the ex post IR constraint instead of its interim counterpart, even though the

endownment is symmetric, no trade happens, in constrast to the existence of efficient partner

dissolving mechanism (Clampton, Gibbons, Klemperer 1987). We provide a set of conditions

for non-existence of ex post socially efficient trade mechnanisms.

The closest paper to ours is Dudek, Kim and Ledyard (1995) (DKL, hereafter), though

our discovery is independent of theirs and the motivation is quite different. They propose an

ex post individually rational mechanism to allocate a single unit private good among agents

whose reservation utility is type-independent'. However, our paper proposes an explicit auction

format for privitization 2 , both for private good and public good, either for endogeneous or

exogeneous quantity and derives the necessary and sufficient condition for the existence of ex

post individually rational mechanisms. In addition, we also discuss how flexibity of endowment

and type-dependent reservation affect the existence of the ex post individual rationality.

The connections of our paper to standard auctions also can be seen in the following senses.

In private good cases (whether or not the quantity of supply is fixed), compared with the stan-

dard auction, the present auction format generates a risk-free revenue (same as any efficient

allocation) to the seller (Eso, 1999), and meets all bidders ex post individual rationality with-

out any side-payment. We can explicitly characterize the bidding strategy under asymmetric

'Their paper is also motivated by the importance of a transfer among agents.
2 The bidding function in our auction will be consistent with DKL's mechanism when either in the symmetric

independent private case or the two-bidder asymmetric independent private case. We also discuss the relevance
of choice of an auction format, especially in public good cases.
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distribution; as a contrast, finding the solutions to the standard asymmetric first price auction

is very complicated. In public good cases, our auction connects with multi-unit auction or

divisible good auction (Wilson 1979, Ausubel, 2004, Wang and Zender, 2001; among others),

but there are several differences worth mentioning. First, the bidding strategy in our auction is

much more tractable, so that we can work out the solution explicitly, for general quansi-concave

preferences. As a consequence, we can check the revenue easily, while in a standard multi-unit

auction, it is hard to invert the demand function and work out the formula of expected revenue

in general quasi-concave utility form. Second, the seller can earn a risk-free revenue, which

is the highest revenue among all efficient allocations, and the bidders' ex post individual ra-

tionalities are met when the number of bidders is two. Third, under symmetric situation, the

allocation in our auction is always efficient, while the standard auction may not be (Ausubel,

2004).

The paper then is organized as follows. Section 2 describes the basic setting of the environ-

ment and associated solution concepts. Section 3 deals with private good and Section 4 deal

with public good. In section 5, we propose a specific auction to implement the mechanisms we

proposed in section 3 or 4. We finally summarize the findings in Section 5. Technical proofs

are in the Appendices.

3.2 Preliminaries

3.2.1 Classical environment

Environment: There are n players. Each i's utility is u- = vi(xi, 0Q) - mi, where vi(xi, Oi) is

utility from consumption of good xi, and mi is money payment3 , where Oi is only known by

player i, which is a random variable drawn from some set EO C R, with cumulation distribution

function (c.d.f) Fi(.) and probability distribution function (p.d.f) fi(.), but the distribution is

common knowledge. And we assume vi(.,.) is an increasing function of xi and 0j, and satisfies

3This preference can be regarded as a general form of common value. vi(x, 0j) = E[u(x, S)/S = Oi], where
S is some random variable common to all players, and 0i is a private signal. Many public good consumptions
have such a feature, such as hospital space, energy, public transportation and so on. This specification of utility
function is general enough to cover the private value and public good situation, associated with a certain form
of cost function. In a pure public good case, all xi = x. One may generalize the utility function to vi(hi(x), 0j)
with hi : R" --+ R, as Mookherjee and Reichelstein (1989).
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supermoduarity, i.e., vi(xi, Oi) + 2v(x', 0') 2 vi(x, Oj) + vi(x', Oi) for any x', xi, of, Oi (this

means, the preference appears an increasing difference). We use v = (vI, v2, ..., n) to denote

the collection of all variables and use subcript -i to indicate all individuals except i (0 and x

have the same treatment).

Suppose the cost of building x takes a general form c(x), where x = (x , x2, ,n) is the bun-

dle of the goods. We assume c(x) is non-decreasing with any arguments, and at least for some i,

it is strictly increasing. To capture the possible externality, we assume c(xl, .., , n) appears

piecewise submodular, namely, c(xi, x , xij) + c(x , x-, zXi) c(xi, Xj, X-ij) + c(Xi, Xj, X-j).

This cost function can be a pure public good case if c(Xl, x 2 , ... , n) = c(max xi) such as national

security, or partially/fully excludible public good c(xi, x2, ..-, Xn) = c(Z xl). Particularly, we

allow c(x) to have an infinite marginal cost at some exogenous point, which corresponds to

situations where the total endownment is given (resambling a pure exchange economy in text

books).

Allocation Rule: Let X CR be an arbitrary set of allocations (feasible), and let x : O -

X be the social choice rule. Throughout this paper, we are interested in the following allocation

rule, which is called optimal if

) arg maxx E vi(xi, O8) - c(x) given state 0, if quantity is endogenous

arg maxx E vi(xi, Oi) s.t. c(x) < E given state 0, if quantity is exogenous

Unless pointed out explicitly, S(0) is used to denote the social surplus of either case, i.e.

S(0) = maxx E vi(x-, 0) - c(x) or S(0) = maxx Ev i(xi, 0i) s.t.c(x) < . The following

proposition is a standard result based on supermodularity.

Proposition 3.1: Assuming vi(xi, Oi) appears an increasing difference, and c(x) appears

a decreasing difference, then (i) in the endogenous quantity case, the S(0) is supmodular

and x*(Oi, 0j, 9 ij) is non-decreasing in 0i and Oj. (ii) In the exogeneous quantity case,

x*f( , 0, , ij) is non-decreasing in 0.; in addition if E xi = and v(xi, 08) differentiable in xi,

then S(0) is submodular and xi(0 , Oj, 0-_j) is non-increasing with Oj. (Proof see Appendix

Al)

Incentive compatibility: There are two concepts of interest, interim incentive compatible

(IIC) or ex post incentive compatible (EPIC). They are defined as follows:
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Definition 3.1: A direct mechanism < x, M > with x : E -- X being allocation rule and

M : 0 -- R n being payment rule, is interim incentive compatible if,

IC(Bayesian)

> Eo ivi(Xi(Oi, 0-), i)- Eo-%Mi(OiO Oi) V0, 0; i 0%

The above concept means truth-telling is a Bayesian Nash Equilibrium (B.N.E.) strategy at

the interim stage. If we use ex post equilibrium as solution concept, the incentive compatibility

will be stronger, as follows.

Definition 3.2: A direct mechanism < x, M > with x : 0 -- X being allocation rule and

M : 0 - R n being payment rule, is ex post incentive compatible if,

IC (Ex post) : v(xi(0j, 0-i), 0) - Mi(O0, 0-i)

> v(xi((, O-i),0i) - Mi(Oi, O_) VOi,OiE 0E O-i E 0-i

Individual Rationality: Paralleling IC constraint, the participation constraint also can

be defined as interim individual rationality,

IR (Interim): Eoe[vi(xi(Oi, o-i), i) - Mi(0i, 0-i) > _ Ui(0i), VO E O

or ex post individual rationality,

IR (Ex post): vi(xi(0O, 0 _), OI) - Mi(0i, 0 _i) ui(0j), VO c E

where uA(0i ) is reservation utility, usually normalized to be zero if it is type independent. We

will discuss this later.

Budget Balance: Ex post budget balance is defined as,

BB (Ex post): E Mi(0i, O-i) = {c(x) if endowment is endogenous

0 if endowment is exogenous

It is acceptable that under some situations, budget balance is not a problem, like union nega-
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tiation (government may subsidize one of the parties), while in many other situations, budget

balance ex post is a constraint hard to break through4

It is well known (Groves (1971), Clark (1973), Vickery (1961), Laffont and Green (1977)

Holmstrom, 1979 among others) that VCG mechanism with payment rule:

M y (0i, 0i) = S(AI, 0-i) - >E vj(x(Oi, -i), bj) + c(x*(0i, gi)) (3.1)

will implememt the optimal allocation rule in terms of both ex post IC and ex post IR. However,

it is also well known that VCG defined as (1) can not be budget balance ex post. Another

seminal mechanism propsed by Arrow (1979) and d'Aspremont-Garad-Varet (1979), (AGV

hereafter) is budget balance ex post by constructure, but it may not be individual rational,

either interim or ex post. The following two lemmas state the positve and negative sides of the

existence of desirable mechanisms.

Lemma 3.1: (Krishna and Perry, 1998; Krishna, 2002) There exists an efficient, incentive

compatible (interim) and individual rational (interim) mechanism that balances the budget if

and only if the VCG mechanism results in an expected surplus.

EA = E _EoS(, 0 -i) - (n - 1)EoS(0i,0-i) > Z i&B )

where 0% = arg mine, Ee_ S(0i, 0-i) - ui (i).

Krishna and Perry (1998) generalizes the conclusion that, among all individual rational

(interim) and incentive compatible (interim) mechanisms, VCG maximizes the payment. If

VCG runs deficit, no other mechanism can be better off.

However the negative result appears if instead using a stronger solucton concept as EPIC

and EPIR. The following lemma states the impossibility (Chung and Ely, 2003).

Lemma 3.2: (Chung and Ely, 2003) If the utility is increasing difference, there does not

exist an optimal allocation that is ex post IR, ex post IC and ex post budget balance.

The existing literature tells that if ex post BB is imposed, one has to compromise, yielding

4 To taking an extreme example, regarding all humen beings as pariticipants in a global mechanism, then

no third part can subsidize people living on earth. Of course ex post budget constraint may be too strong,
sometimes it can be relaxed to a feasible constraint (Palfery and Ledyard,1999), which is non-defict constraint,

E Mi(0j, 0) > c(x), where money left over is burned.
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IR and IC to interim sense. Interim IC is understandable since it is the best play given the

information set the agent achieves, but interim IR exproiates the participant's right to quit even

if participation is indeed not profitable ex post. This paper attents to discover what happens if

this right is entitled to the players, and then they can "vote by foot" at the last minute when

all types are revealed. In order to incorparate this feature, we extend the classical Bayesian

game to a sequential game.

3.2.2 Effectiveness of option to quit ex post

The game is modified as the following:

Game: (i) Designer anounces the allocation rule of game < x, M > with x being the

allocation rule and M : E -+ R1W with M = (Mi, M 2 , ..., M,) as the rule of monetary transfer

when the report is 6. (ii) Knowing his own type Oi only, each decides to be in or out of the

mechanism; if he chooses "in", he needs to report his type (simulatenously with all opponents);

(iii) all reports 0 E E are published and < x, M > is proposed; (iv) given the mechanism, for

individual i, if he accepts (x ( , 0 _), M( A, _ i)) then he is implemented by what he accepts,

or he can leave permanently (without any penality), obtaining an outside option u (Oi); (iv)

finally, an up-to-date mechanism < x, M >* is enforced among all individuals who have not

left. The allocation and payment in < x, M >* might be different from the original mechanism

< x, M > because some payment and allocations might no longer be plausible due to some

participants' quiting. We denote this game by F(n, v, x, M, O).

Equilibrium: The equilibrium here not only requires each player to tell the truth as a

Bayesian Nash Equilibrium, but also requires that the expectation operation at the interim

stage should be based on ex post participation set E* C 0, where 0* = xi{all Oi E Oi:

vi(xT(Oi, O-i), O) - M (0, 0_j) > u(0i)}. The complication here is that O* is endogenized by

rule of game < x, M >, and affects the enforceability of < x, M > in turn. For example, if a

proposed mechanism results in O* = D, then < x, M > loses any power to be effective.

Implementability: A direct mechanism < x, M; E*> such that x : 0* -+ ]R and M:

0* -+ Rn with O* C O is said to be implementable if

148



(i) for any i E .A* - 10*1, truth-telling is a BNE, i.e.

IC(Bayesian) : Ee_ ivi(xi(Oi, Oi), Oi) - E. Mi(Oi, O-i)

> E 0 _.vi(xi(0, O-i), Oi) - E0  M i(0i, O-i) VOi, Oi E O*

(ii) Participation set is consistent, i.e.,

vi(i (oi, 0_-), 8) - Mi(8i, 8-i) _ i (8i) for V(Oi, 0 _) E EO

Under this setting, a lot of mechanisms are no longer implementable even though they are

initially implementable without requirement (ii). For example, AGV is one of the mechanism

that fails (ii), as example 1 shows.

Regarding the complication of the above equilibrium, we particularly are interested in a

typical implementable mechanism that all participants will not leave ex post, i.e., O* = 0.

This is a full participation mechanism. Therefore, the linkage between the current setting and

classical mechaism design literature is obvious, throung the following theorem.

Theorem 3.1: A direct mechanism < z, M; * > is full participation B.N.E. imple-

mentable if and only if (i) < x, M; 0 > is intereim incentive compatible, i.e.,

IC (Bayesian) : Eo_vi(xi(Oi, Oi), 0i) - Eo_Mi(Oi, Oi)

> Eo_,vi(xi(i, _-i), O;) - Eo_,Mi(i, 8-i) Vi, Oi E Oi

and (ii) each individual's ex post IR constraint is met, i.e.,

IR (Ex post): vi(xi(0i, 0_i), Oi) - Mi(i, O-i) > ui(Oi), VO E 0

Proof. If part: use backward induction, if ex post IR is met, based on information set

0 E O, then not leaving is a best response to other players, given other individuals' not leaving.

Given this future best response, back to the interim stage, IC constraint is consistent with

support condition over O* = 0; therefore, truth-telling is a B.N.E based on the information

set Oi. Therefore, < x, M; 0 > is implementable.
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Only if: If ex post IR condition is not met, at least some players are leaving, then it is not

full participation implementable. Q.E.D. m

Based on the above theorem, giving the optional right to the participant ex post can be

thought of as putting the addtional ex post IR constraint on the program. For conceptual

convenience, we define the ex post socially efficient mechanism below:

Definition 3.3: A direct mechanism (x, M) is called ex post soically efficient if it maximizes

"social surplus" (x E x*) and at the same time satisfies IC (Bayesian), IR (Ex post) and BB

(Ex post).

The natural question arises here is, how significant is the difference that this extra constraint

brings in? Intuitively, participants under ex post individually rational mechanisms, seem to have

higher expected utility than under interim IR since they can always leave for higher payoff by

voting by foot. Therefore, in order to "bribe" the players not to leave in equilibrium, the

designer seemingly needs to have more surplus. In other words, is the expect surplus of VCG

enough for such a kind of mechanism design?

3.2.3 Characterization of IC and Budget Balance Mechanism

Before proceeding, we characterize the incentive compatible condition first, which is a standard

result in the existing literature. Let

m (zi) = Mi(zi, O-f-i(0-)dO-

be the expected payment when individual i reports zi, therefore, in the social allocation game,

for individual 0i, his expected utility is

U (z, ) = vi (x* (zi, 0 _i), O) f-i(8-i)dO_ - mi(z) (3.2)

It is well known that (Myerson, 1979; Laffort and Green, 1978; among others), a direct mech-

anism is incentive compatible, if and only if,

m' (0) = vi v(x(z, 0), Oi)f-i(-i)dO i > 0 (3.3)
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Remark 3.1: x4(zi, O-i) needs not to be differentiable, but we assume that f vi(x(zi, 0-i), Oi)f-i(O-i)a

is differentiable in zi. Of course, assuming vi(x\*(zi, O-i), i) is continuously differentiable func-

tion in (x, 0) is conventional.

For the ex post budget balance mechnisms, the following lemma states the link between

lemma 1 and the lowest type's payoff in the class of budget balance mechanism.

Lemma 3.3: For any incentive compatible and ex post budget balance mechanism, the

following inequality must be true:

EZU(o,)( <EA

where Ui(Oi) is the lowest type's expected payoff under that mechanism. (Proof see Appendix

A2)

The above lemma builds an interesting linkage between budget balance mechanism and

individually rational mechanism. Particularly, if jui(0) = 0, it had better hold E Ui(_0) = EA,

since individual rationality condition > Ui (_i) > 0 holds if and only EA > 0. For the typical

approach to construct a budget balance mechanism, the crutial issue is to construct mi(0i).

Note that under any budget balance mechanism, there must be somebody who pays and others

who are paid. So the allocation of payee/payer-ship is a key instrument, like conterveiling

incentive. Our constructure of the mechanism is based on this intrinsic property of budget

balance mechanism.

3.2.4 Related literature

1. Mechanism design and public good provision (Vickery, 1961; Groves, 1973; Clark, 1971),

Green and Laffont (1977, 1979), Holmstrom (1977), Holmstrom and Myerson (1983). There is

a lot of literature in this field.

2. Auction of shares (Wilson, 1979 QJE; Ausubel, 2004, AER among other): auction degign

for divisible good quantity. Conclusion: no efficient allocation in general.

3. Partnership dissolving (Crampton, Gibbons and Klemperer, 1987, EMA, MacAfee, 1992,

JET, Modouano with others, 2002;). There is efficient resolution in symmetric independent

environment if the initial endownment is very symmetric. But not in general.

4. Ex post implementation and ex post mechanim design. Bergermann and Morries (2003),

Chung and Ely (2003). In general, it is impossible to have an efficient mechanism satisfying ex
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post IC, IR and BB.

3.3 Private Good Senario

3.3.1 Mechanism under SIPV environment

In the case without externality, neither in utility nor in production, for individual i, his utility

from consumption is vi(xi, 0i) over xi, and no one else benefits from xi at all (this mean the only

gets utility from his own consumption). We assume that 0% is independent crossing individuals,

and we will discuss both identical distribution or asymmetric distribution later. The cost

function is c(maxi xi). In this case,

s(e ) = max vi (0n:, x - c (xi)
Xi

where we use 0i :j to denote the i-th smallest order statisics among j random variables. It is

reasonable to assume Si(O) 0, implying that production is always socially efficient, otherwise,

the socially efficient decision might be no production since outside option is higher".

In this case, VCG payment is the following:

S(04) + c(x*(Oi)) if maxj4i Oj < Oi

() [S(O- 1 n) + c(x*(o ))1 for any 0i E .j

0 if maxj=i 'j > Oi

VCG runs expected surplus if and only if ES(O)n-l:n > 0, which is always the case since

Si( i) > 0. The question here is: can we allocate this expected surplus properly so that a

budget balance mechanism is also ex post IR?

We propose the following mechanism to answer the above question.

MI: (i) The highest type agent makes production decision by himself (therefore it is opti-

5If c(x) is continuous, the first best solution x 1st solves -2v(x, 9 n) = c'(x), If x is not continous, like a
binary variable, S(O'"") is still well-defined.
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mal); (ii) based on the report 0, the payment rule associated with this allocation is:

SnlE[S(T"n:n)/Tn:n < i] if maxjfi 9j < Oj

M[(0) = n-E[S(Tn:n)/Tnn 0I] for any 0i E NJj (3.4)
1(n nf < ^n:n

-nE[S(T:n)/Tn:n 0- ] if maxjhi Oj > Oi

Under this decentralized mechanism, individual i's payoff is

uZ (9i, i, 0;) = 1( max 0j < 0) S(0i) - M(0)
j=fi

where 1(Z) is indication function for event Z.

Remark 3.2: This mechanism decentralizes the production decision, comparing with VCG,

where the production decision is centralized. There is a centralized counterpart of M1, where

the designer determines x*(O) and sells to the highest type reporter. The agents' behavior

is equavalent (in term of strategy) under both versions. This conclusion holds even in the

environment of externality.

We claim this mechanism M1 or < x*(0), MF(0) > is an ex post socially effecient mecha-

nism if and only if VCG runs expected social surplus, under SIPV environment.

Theorem 3.2: Under SIPV, the proposed mechanism Ml: < x*(0), MF(0) > is ex post

soically efficient if and only if VCG mechanim runs expected surplus.

Proof. (i) To check the incentive compatibility, note that,

m(0) G G(0)n - 1 fo S(r)dF()) (T)7))dF(T)) dG(z)
n F(O) n- 1 n F(z) dG(z)

= (n - 1) S(T)F(T))- dF(T) - (n - 1) j S(r)F(T))n-2dF(T)

therefore,

m'(0) = g(0)S(0)

which accords with the necessary and sufficient condition of interim IC.

(ii) Ex post budget balance is met by construction.

(iii) We check interim IR first, since if interim IR fails, the game can not proceed. It is easy
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to chek that

U(0) = G()S(9) - m(0)

therefore,

U(0) -m(O) = (n - 1) f S(-)(1 - F(T))F(T))n- 2 dF(7) = lEA
Jo n

So if and only if EA > 0, at the interim stage, nobody will quit. And at the ex post stage, if

maxji 0j > i, his ex post payoff ul(0) = nE[S(Tn:n)/Tn:n < :T] 0; if max O < i,

u() S() (n -1) fo S(-)dF(r))n

u(0) S() - - > uz(0) > 0
n F(0)n -

This complete the proof of argument. Q.E.D. m

It is also seen that M1 satisfies ex post monotonicity, defined as follows.

Definition 3.4: A mechanism satisfies interim (ex post) payoff monotonicity if the interim

(ex post) payoff is non-decreasing given any realization of other bidders' type.

It is clear that IC interim requires interim payoff monotonicity, but not ex post monotonicity.

And ex post monotonicity at least implies that in the ex post stage, the higher type can at

least never be worse than the lower type. The existing mechanisms such as AGV do not satisfy

ex post payoff monotonicity (as we will see an example later). Ex post payoff monotonicity

is closely related to ex post incentive compatibility, because ex post payoff monotonicity is

necessary for IC ex post but not sufficient. Meanwhile, ex post payoff monotonicity may imply

that with some subset of realizations of state of the world, ex post IC is met.

Proposition 3.2: Under SIPV, M1 satisfies ex post payoff monotonicity.

Proof. Given any realization of other players' type, if individual i's type is lower than

the winner's, say 0i < on:n, then his ex post payoff is independent of his type; if he himself

is the highest type, 0i - On:n, then his ex post pay off is increasing of his type since S(O) -

(n-I) f: S(r)dF(-))S( ())is increasing with 0. The only trick here is to show that there is no drop

when his type passes the pivotal point 0n - :n . Note that uw(0) > u'(0), so when passing the

pivotal point, his payoff jumps rather than drops. And at the point Oi = On- 1 :
n, the tie-setting

makes his payoff in between u'(0) and u1 (0), therefore, his expost payoff is non-decreasing given
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any realization of other bidders' type. Q.E.D. m

Although M1 is not ex post incentive compatible, the ex post payoff monotonicity still

generates several notable robust properties, in terms of ex post implementation. The agents

will not regret the allocation under MI: the winner definitely does not want to be a loser by

lowering his report; and the loser probably does not want to increase his report to become a

winner under some subset of realizations as well. It seems acceptable that the winner can not

renege on his payment, unless he wants to give up his winner-ship. Formally, we define winner's

no veto power as below.

Definition 3.5: Winner has no veto power in payment (WNVPP), if he cannot underpay

without giving up his winner-ship.

The above assumption rules out the winner's default such as simply paying less when he

obtains the object. But we still allow the winner to change his report if he wants to switch the

allocation. We have the following proposition.

Proposition 3.3: Under SIPV, M1 with WNVPP is ex post incentive compatible with

probability,

s fo S(T)dF(T))n n-1

Pr(EPIC) = n fs F(S-1( F() dF(S-'())

especially, when F(S- 1 (T)) = SY, a power function, then

Pr(EPIC) = ( ~y )(n-l)y __ 0.37
n- + 1 e

Proof. Given his oppenent's truth-telling ex post, the winner will not report 0 > 0 ex post.

And with WNVPP, the winner can not report 0 < 0, but still holds the object. Moreover,

the winner does not want to report 0 <_ On-1:n too, since he earns less by changing allocation.

Given the winner's behavior, the losers do not benefit by reporting 0 < 0. The loser may only

mispresent his type 0 > 0 when the second highest type agent's realization is close enough to

the winner's,

n- 1 fo:n S(r)dF(T))n 1 fo":" S(T)dF(T))"
n F(On:n) - n- 1 F(On:n)n
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This event happens with probability

:" S(T)dF(r))n fJ S(T)dF(T))
Pr(Sn_:n F(On:n ) ) = 1 - n F(S-1( F() )) dF(S-1())

F(On:n)n F(_~n

Thus, we have Pr(EPIC) = 1 - Pr(Sn-:n > fnn ( )dF( ). It is easy to check when

F(S-1(-)) = S , f S(r)dF(-)) = ' and Pr(EPIC) - (- )(n - 1)7 follows. Q.E.D. m
F(O)n  ny+l' n Pr(EP

The above proposition indicates that if an interim incentive compatible mechanism wants to

maximize the probability of ex post incentive compatibility, then ex post payoff monotonicity

is required6. For example, the probability for AGV to be EPIC is zero even with WNVPP. We

are wondering if other mechanisms also have nice properties as Ml. The answer is no. M1 is

the generically unique mechanism that satisfies ex post monotonicity and ex post individual

rationality among all budget balance Bayesian mechanisms.

Theorem 3.3: Under SIPV, M1 is the (generically) unique symmetric mechanism that is

ex post socially efficient and satisfies ex post monotonicity (maximize probability of ex post IC).

(Proof see AS)

We compare M1 and AGV below. Take n = 2 as an example, the ex post pay-off structure

of M1 is indicated by Figure 1, which is a non-decreasing function. In a concrete example

below, probability of winner being worse than loser in AGV is slightly greater than 60%, and

probability not ex post IR is about 28%. The probability for M1 to be EPIC is A
3.

6 The implication of the above proposition can also be understood as follows. If the designer only accepts the

appeal that is pivotal (dismisses any ex post change of report if it is not pivotal), then with some probability,
M1 is ex post incentive compatible.
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1
S(e,) E[S(rt2)T<0]

Ex post 2
payoff

2

E[S(r~)r <q](

0 O.

(Insert Figure 1 here)

Example 3.1: Comparison between AGV and M1.

Assume n = 2, 0 uniformly distributed over [0, 1], c(x) = 19P, v = zO. It is easy to see the

first best social welfare is S(0) = 107 where P

Payoff Under AGV.

If i wins, his expost payoff is:

5 f) S(_)dF() 1 07( + 1)(1- )- (1-
S(0i) -

1 - F(Oj) "(7 + 1) (1 - Oj)

Because when 03 is close to 0i enough, since -y > 1, we have

O (-y + 1)(1 - Oi) - (1 - 0 + 1 )=- y7(1 -0i)-(1-07)<0

So if the two agent's types are close enough, the winner may suffer even though he wins the

object. For example, if -y = 2, the cost is quadratic, then,

1 + Oj + j20? < O < 3
3

is possible. The possibility that the winner's ex post IR fails is about a third.

Pr(winner's EPIR fails in AGV) = [I - 0 2]dO = 5
.Io 3 18
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And the probability of winner being worse than loser is:

Pr(winner being worse than loser in AGV)

S 2(1+ 02) _ 02]d + (1 - 02)d0 = 0.60

If we look at ex post IC, we find for any realization of 0, there is at least one agent who wants

to change the allocation and report.

Payoff Under M1.

If i winns, his ex post payoff is

12 1 3
uW(0) = -02 1o2 =302

2 8 8

if i loses, his ex post pay off is uW(0) = 102. In both case, the participant's ex post payoff is

positive. Meanwhile under M1, nobody would like to make change if an ex post realization falls

into region Oj > -\0i, which happens with probability 3 = 58%.

3.3.2 Asymmetric Distribution Case

We now consider environments where the distribution is not identical, but still independent.

As we will see, the payment rule can be characterized by a set of non-homogeneous linear

ordinary differential equations. Moreover, we can obtain some important observations without

requirement to solve the system analytically. As a special case, when n = 2, we can completely

solve the payment function without putting restriction on distributions.

With a little loss of generality, we assume that all Oi's are in the same support [_, 8], being

drawn according to c.d.f. F(09) association with continuous differentiable p.d.f. f (0).

Let Gj(zj) = Ilk/jFk(zj) be the c.d.f. of the random variable zj = maxk$j zk, association

with p.d.f. gj(zj) = G (zj), and let 11(z) = IIHnFk(z). The distribution that j wins given i is
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not the winner is,

Fn-_:n-1(zj + Az\zj > Oi) - Fl:n-_(zj\zj > 0i)

= Pr(Zj E [zj, zj + Az], zj > maxzk\zj > Oi)
S kri,j

Pr(Zj E [zj, zj + Az], zj > maxki,j zk, zj > Oi)
Pr(maxk4i zk > Oi)

(Fj(zj + Az) - Fj(zj)) [fnkj,iFk(zj)]

1 -Gi(0i)

Therefore,

fj(zj) [Inkj,iFk(zj)1
1 - Gi(Oi)

Let Mi(Oi) be the winner i's payment when he reports O, then the expected payment for i is:

mi(Oi) = Gi(Oi)Mi(Oi) - - Mj(z) [Ik j,iFk(zj)] dFj(z) (3.5
ijhi

Note that mi(0i) is incentive compatible if and only if

m (0) = gi(0)Si(O)

therefore, we can characterize the payment rule Mi(0i) through the following ODEs. Tak(

derivative w.r.t.0i on both sides of equation (5), obtain an ODE for any i,

Si(i) Gfk= MC
ki k7Ai

Gkfk MGk A + Gimi' +
Fj

1

22-ZiGkfMkF-

This is

Si(0i) AM = + M + LMk
k i k i k i
k:(o . M +M +4-Z M

where we compress the augument 0 for convenience.
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M, (0)

Write = qk, q-i = k i qk, denote M(O) = M 2 (0)

Mn (0)

q i() )2 ) --- 9/8)

- 1 ) 1q2() .. -qn )

B(O) = -2 0 S(O). Finally, the ODE system is,

1

1 S(2) exists and is unique.

It seems hard to solve the above system in general if n is large. But for us, the information

from the above characterization is enough for us to have the following important result.

Proposition 3.4: Under asymmetric but independent environment, (i) the payment rule

M(O) characterized by (6) is ex post socially efficient association with allocation x*; (ii) the

lowest type's expected payoff coincides with expected surplus of VCG U (i) = EA. (Proof

see Appendix A4).

The above proposition generalizes the result of SIPV. And the second property shows that

under this payment rule the lowest type agents' social benefit is exactly the expected social

surlus in VCG. (AGV does not have property (ii)).

Remark 3.2: This observation can be generalized to the situation that utility function is

also heterogenous. In that situation, we can re-parameterize the type and the similar reasoning

still applies (with a little loss of generality in the support restriction).
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For intuition, we solve the explicit solution in a two player case, for any distribution. We

have the following proposition.

Proposition 3.5: Under environment of asymmetric independent private value (AIPV),

the payment rule of M1 is,

1 Oi f3 (O) f F (z)F(z)S'(z)dz
Mi(0i) = 2S(0) + Jo F()Fj(0)2  dO (3.7)

and satisfies ex post monotonicity. (Proof see Appendix A5)

Therefore, we find even under asymmetric distribution, the ex ante side-payment is not

required to meet both interim IR and ex post IR. For intuition, we provide the following

example.

Example 3.2: Asymmetric payment function when type distribution is a power

function.

If the distribution is Fi = 0a i , it can be calculated that,

U + aj aj + a +y)

So definitely, the above regime is ex post socially efficient although AGV is not interim soically

efficient. We find that Mi(O) Mj(0) iff aj > ai.

Oi aj Oaj - 1 f0 zai+ajz^-ldz a
Mi(i) = dO = a 0

j ai+2aj ai - aj +7

The stronger type agent's payment scheme will be flatter than the weaker one's, as we find in

standard first price auction (Maskin and Riley, 2001).

As an important result, we now improve lemma 1 to a stronger version, by incorporating

ex post IR.

Theorem 3.4: If type is independent, under private value case, (i) there exist ex post

socially efficient mechanisms if and only if VCG runs expected surplus, EA > 0; (ii) in addition,

M1 is the unique payment rule generates ex post monotonicity.

Proof. (i) The necessary part is commonly known in the existing literature, same as the

proof of lemma 1. We only show the sufficiency. First consider the payment structure MF,
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defined in Ml. By revenue equivalence theorem, any two incentive compatible mechanims differ

in their payoff up to a constant. So there exist constants cF such that,

UFF(02) = E _ S(9, 0-) - CF

It is also the case that constants cV exist, such that,

Uv(i) = Ea_os(0, er) - cv

If VCG runs an expected surplus, EA > 0 means,

E cY >: Frc

for all i 2 1, define di = cF - c , and let di = - Z4-2 di. Then we can construct a mechanism

M# by

M#(o) = MF(O) + di

and this means M# is also incentive compatible. We only need to check M# is ex post individual

rational. Importantly, note that M F() is ex post individual rational, therefore, the difference

of ex post payoff between M (O) and Mf(O) is also up to a constant 7 . So it is sufficient to

check the ex post using similar construction.

For i 1,

U#(O) = Ur (o) + di = U (O) + cF - cV = U() > 0

and

ut(0 1) = U (o) + d,

>L U (01) + d

= u (o1)

> 0

7This is the key part of the proof. In the proof of lemma 1 (Krishna and Perry, 1998; Krishna, 2002), their
proof is based on AGV, because AGV pe se may not be IR ex post, MA(O) + di may not be IR ex post as well,
although Mj (0) + di may be IR interim.
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Since both VCG and < x*(0), MF(0) > are ex post individual rational, then M# is also ex

post individually rational.

(ii) The proof is similar to theorem 3. The key observation is that the payment must depend

on the winner's type only. Q.E.D. m

In fact, M1 does not require ex ante side-payment, even under the asymmetric environment,

which is an advantage in terms of pragmatic implimentation.

3.4 General Preference with Presence of Externality

Now we consider environment with presence of externality, either due to utility interaction

like public good, or cost complementarity/substitution like spill-over. For tractability, here we

discover a two-agent case, and will discuss an n-agent generalization later. It will be shown that

the mechanism works in a 2-agent case might not work in the n-agent case. Interestingly, there is

dramatically different implication between endogenous endowment sitution and its exogeneous

countpart8 . So we deal with them separately.

3.4.1 Endogenuous Quantity

Basics

For notational convenience, let

f (n-1)() = (n - 1)!f(On-:n-1)... f (01:n-1)

be the joint pdf of n-1 order statatistics. And we deonte the expected consumption to i, when

i's type is ranked as j-th order statistic as:

O. .. Oj- 2 + 1 8j + 2 .. ' n- 1
(x*j(.),j) j... { o ... J vi((.., Oj- 1, OO l, .. ),)f(O- )( (-i)dO-i.

j-1 n-j

8 When endowment is endogenous, S(O) will be supermodular, while endowment is exogeneous, S(O) will be

submodular, see proposition 1.
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Similarly, his expected social surplus is,

S(i)(o) ... jj- 2 jO j ... S(.., Oj-1, 0, Oj+1, .. )f(n- 1)(0-i)dO-i
J0 0 0 0 0

j-1 n-j

We propose the mechanism as follows:

M2: (i) The designer chooses optimal alloction rule x*(O) according to report 0;

(ii) each player receives consumption x*(Oi, O-i), and the payment rule is the following:

-S-i(Oi, O-i) + [(1- k) k(Oi) + 3k ( "-2:)] if Oi > maxji Oj

Mi(O, i)- [S(9i, 9 ) -k(i) if Oi = Oj for i,j E Afj

Vi(zi(Oi, i_),9 ) -) [(1-k)Lk(O n:n)+kk(Of-l:n)] if Oi < maxj#i iO

where

fF0- d 9(1)(T) - - 1 d P) ( (.' , T,.) T) +(T F(-)k d (

k(k) ( F( (3.8)
(F(O) - k)n

with m'(T) = [ fo_ v(x(z, O-), z)dF-i(Oi)] and with k E [0, 1] as a constant.

Under this mechanism, the individual with type Bi pretends to report Oi will have the

following ex post payoff:

vi(xi(0i, O-i), Oi) + S-i(Oi, O-i) - [(1 - k) 3k(Oi) + k k(0on-l:n)] if Oi > maxj#i Oj

ui(O, Oi) = E[S(Oi, 0-i) - Oi] if Oi = Oj for i,j E Af

vi(xi(0i, 0-i), Oi) - vi(xi(Oi, O-), O) + [(1-k)ak(On:n )+kk(O.-1l:n)] if Oi < maxji Oj

The above mechanism can be understood as follows. The highest type agent gets the

entitlement to charge all social surplus at the cost of paying lump sum payment to the remaining

losers; while the remaining losers need to pay the consumptions (thus earn zero consumption

surplus) according to their reports but are paid by lump sum transfer from the winner. We

claim that (i) the mechanism M2 is interim socially efficient for any k e [0, 1] if and only if

EA > 0, and (ii) there exist some k such that M2 is ex post socially efficient.

The following theorem states the results regarding (i).
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Theorem 3.5: If the distribition is i.i.d., and utility is symmetric, mechanism M2: <

x*(0), Mk(0) > is: (i) budget balance and incentive compatible, and (ii) interim socially efficient

if and only if EA > 0 for any k E [0, 1]. (Proof see Appendix A5)

Under M2, the lowest type agent's payoff is exactly a I share of total VCG expected social

surplus (deficit). Obviously, M2 is one kind of budget balance mechanism other than AGV.

Compared with AGV, M2 is interim budget balance if and only if VCG runs expected social

surplus9 .

Remark 3.4: k/k(0) may be negative or even non-monotonic. If Ok(O) is negative, this

means the remaining people need to subsidize the winner in equilibrium.

Two-player case

If n = 2, we claim that k = 1 is expost socially efficient. It is easy to know that from formula

(8),

1() f0(1 - F(7))(S(T, 7) - h(T))dF(7)

[1 - F(0)]2

where

f Dv(x*(T, z),T)dF(Z)
h(7) f(T)

The following theorem states the result regarding M2 when n = 2.

Theorem 3.6: Given that endowment is endogenous, if distribution is i.i.d. and preference

is symmetric, when n = 2, M2 with k = 1 has the following properties: (i) lump sum payment

function 01(0) is monotonic (without restriction on distribution); (ii) M2 is ex post socially

efficient if and only if EA > 0. and (iii) M2 also satisfies ex post monotonicity

Proof. (i) If the endownment is endogenous, then Lv(x*(T, z), T) is an increasing function

9 To see this, note in symmetric situation, under AGV, the lowest type's payoff is,

uA(q ) = EO_iS(Oi,O_i)__ 1 _, E _[S-j(0j,0-j)]

n-1
= Eo_ S(Oi,Oi) - (n- 1 [EoS(Oi,O i)+E E c(x(,))]

SE0 _S(2,0) - (n- 1 S(0s, 0-)n2
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of z, since x*(T, z) is an increasing function of z. Therefore,

1() f(1 - F(T))(S(T,T) - h(T))dF(T)
[1 - F(O)]2

ee(1 - F(7))(S(r, ) - v(x*(T, T), T) )dF(T)

[1 - F(0)]2

/fo(1 - F(T))S(-, r7)dF() f )d (1 - F(T))2d

[1 - F(0)]2  [1 - F(0)]2
1

=- s(0, 9)
2

The last step comes from integration by parts. Note that when 0 - 0,

1,31(9) - s(9,0)

This means p1(0) is uniformly bounded by S(0, 9), but achieves IS(9, 9) at the boundary,

which implies that
ld

#'(o) > -1 s(0, ) > 0

Suppose this is not true, then for some 0 < 0, there always exists 6 small enough such that for

0 E [0 - e, 0], 2/(0) > S(0, 0), a contradiction.

(ii) We only need to check ex post IR constraint. To meet the loser's ex post IR, the bid

should be non-negative. To see this,

= [S(, 9) - h(0)](1 - F(O))dF(O)

= j J S(O, T)dF(T)dF(O) j 1 F(O) 0 -v(x*(,T), 9)dF(-r)dF(0)

0 1 -F(9) [( 0
+ 1 - F(9) Jo v(x*(0, T), 9)dF(r)dF(O)

0 f(0) 0 0s
o ~~ S(, T)dF(r)dF(o) - I  

v(x* (, T), 9)dF('r)dF(O)

= , S(O, T)dF()dF() - A(O) 0

1
= -EA = U()

2
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As long as EA > 0, then the bid will be non-negative overall, and the lowest type agent's payoff

will be non-negative overall (not only interim but also ex post). For the winner, it is easy to

see for any 0i > j,

S(O, 0j) - (oj) > 0

since 3(Oj) < !S(O,j 0).

(iii) It is ready to see, from the monotonicity of the bid, that the loser's ex post pay-off is

monotonic over his own type, and the winner's pay-off is monotonic over his own type too since

payment is independent of his own type. The only point we need to check is the pivotal point.

As 0j -- OB, the winner still be better off since 3(0j) < S(Oj, Oj). The equality only holds at

0 = 0. Q.E.D. .

The above theorem says that for a two-person case, mechanism M2 solves the allocation

problem well. And we verify that the necessary and sufficient condition for existence of an ex

post socially efficient mechanism is the same as that of interim socially efficient one. It is worth

pointing out that o0(0) might not be always ex post individually rational, due to the fact

S(0, ) - 3(0) > 0

might fail when 3(0) = EA > 0 but S(_, 0) = 0.

Remark 3.5: If the outside reservation utility ju(Oi) is symmetric but type-dependent, then

we need to modify the social welfare S(O) as net social welfare S() -E ui(0i), and each agent's

gain from the project will be net gain v 2(x , Oi) -ui(Oi). The conclusions from the above theorem

are still true as we will see in the next section.

Do other values of k E [0, 1) have such kind of properties? For example, k = 0, The following

corollary states the result.

Corollary 3.2: For M2 when n = 2, under the same condition as theorem 4, there exists a

cut-off k* E [0, 1) such that for k > k*, M2 with k < 1 possesses the same properties as k = 1

if EA > 0.

Proof. The proof crucially depends on the property of k = 1. Note that /k1(0) is a continous

function of k and kI(0) > 0 for k = 1, therfore, for k close enough to 1, 3k'(0) > 0 will still
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hold. At the same time, observing that

h9 -(x*(, 9), ) ff f (av v(x*(, 7), 0)) dF(T)
h'(0) = O

f(0)

f'(9) ff ~v(x* (0, T), 9)dF(T)

f(0) f(e)

will be negative as 0 close enough to 0, which means for k close enough to 1, for 09 F- 1 (k),

we have

f(f) -[S((k)(F(7) - k)(S(T,-r) - h(r))dF(7)
k'(0) [S(9, 0) - h(0) - 2 2

F(0) - k [F(0) - k]2

f(0) 0-l(k)(F(7-) - k)2(d S(T,7) - h'(r))d-

F(o) - k [F(O) - k]2

Moreover, if EA > 0, therefore, it is possible to have 3(0) > 0 for k to be close enough to 1.

In sum, take k* = supk{k : l'(0) > 0 and /(0) 0}, therefore, '8k(0) will be monotonic and

non-negative. It is also easy to see that pk(0) < S(O, 9) by the similar derivation:

k(_) (k)(F(7) - k)(S(T, ) - h(T))dF(T)

[F(O) - k]2

F -(k)(F(-) - k)(S(, -7) ~v(x*(,( ,) F))dF(T)

[F(9) - k]2

Sf-1(k)(F() - k) S(Tr,7) - v(x*(,7),7) 1 7)]dF()

[F(O) - k]2

1(1 - k) dSr) (F() - k)dr1 )JF-
1 (k) d--

(9)- [F(O) - k]2

< S(0,0)
2

Q.E.D. .

For intuition, we provide a concrete example.

Example 3.3: Two residents are living in a small town. They can build a public good (like

internet) together and share with each other or build the good on their own. Suppose that the

utility function for each individual i over the size of public good x is v(x, 9~) = Oi(2x - 2),
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and the cost of x is c(x) = cx 2 . We assume type O drawn from [a, 1] with c.d.f. F() =-a

If they build the good autarkily, they choose xi(O8) E argmaxx v(x, 0i), particularly, u() =

maxx v(x, 0)10. Does there exist an ex post socially efficient mechanism for them to cooperate?

Note that

x*(0) =
c + EC

and

(0 z )2
s(0) = ( )

c + E Oi

In this example, use c = 1, a = , and it can be computed EA = 4(61n5 - 91n2 - 31n3) =

0.490 > 2u(0) = 1

For M2 with k=1, we have

h(7) v(x*(T,z),T)dF(z) 1 1
h(r) =1 - +

f(T) 1 + 2T 2 + T

and

31(0) fo(1 - F(T))(S(T, T) - h(T))dF(T)

[1 - F(0)]2

fol(1 - T)( (1- - 1 + 1 ))dT

(1 -0)2

1
2(1 -2 [1 + [(5 - 20) - 4]0 + In 27 - 6 In( + 2) + 3 In(1 + 20)]

It can be shown that p1(0) is monotone and non-negative (In the following Fig. The red dot

line is S, 0), the green dots line is u(0) and the black solid line is p1(0)).

'oWe can verify that arg mine ES(0j, Oj) - u(O%) = 0 = due to monotonicity of ES(0O, 0j) - y(oi) in Oi.
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Fig. 2. Ex post payoff functions

To verify ex post IR, we find 31(0) - u(0) > 0, and s(0i, Oj) - p 1(0j) > U(Oi) for any Oi > Oj

by noting that
(E e,)2 O? 202

1 + i 1 + Oi 1 + 20j

since the LHS of the above inequality is an increasing function of Oi.

We also take a look at M2 with k = 0. The payment function is,

f0 F(7)(S(T,T) - h(T))dF(7)
o () F(0)2

2(- + 20 - 02 + 203 - In3125 + 51n(2 + 9) - 21n(1 + 20))

(1 - 20)2

Therefore, ex post IR

u() <_ p°(0) < S(0, - u(0)

fails.

Meanwhile, M3 with k = 0 proposed by the next subsection is also not ex post individual

rational i.e., the payment or bid does not satisfy

u() < b°(O) < S(0, 0) - u(0)
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Although when u(O) = 0, it will be true, 0 < bo(O) < S(O, ).

Remark 3.6: The mechanism considered by CGK is not ex post individually rational, even

proceeded with a side-payment. One of the advantages of M2 is without need of side-payments.

3.4.2 Fixed Endowment

Basics

When the endowment is fixed, then VCG always runs expected social surplus. This observation

comes from the following:

EA = S(0)dF(O)- (1 - Fi(i))S( ) d dF (-)

= ( vi(x(OiOi) i)dF(O)- j(1 - Fi( O vi) dF ( )

S( vi(x* (O , O0i), i)dF()- J (1 - F(Oi))dvi(xf*(O, 9_), Oi) dFi(Oi)

-= - vi(x (O, 0-i), B)dF-i(0-i)

> 0

The reason that as(,o) a(( is similar to lemma 3; the third equality is due to

0 I zi Oi=zi + 80
However, M2 is no longer ex post individually rational. To see this, take n = 2 as an

example, it is noted that now -v(x*(T, z), T) is a decreasing function of z. It is no longer the

case that theorem 5 holds in general1 1 . We propose the following allocation rule (Reverse Order

Allocation).

M3: (i) The designer chooses the optimal allocation rule x*() according to report 6;

1 1For example, suppose v(xi,0i) = OiVx, Oi~U[0,1], Ex = 1, then S(O,0j) = l-Ei, in this case, it is
impossible to have either 31(0) < S(O, 0) or /3(0) > 0 overall.

171



(ii) each player receives consumption x*(Oi, Oi), and the payment rule is the following:

S(Oi, -i) - [(1 - k)rk(Oi) + krk(02:n)1 if i < minj: 0j

M((~i, O) = {S(0, -i) - [(1 - k)rk(Oi) + krk(2:n)]} if min Q for i,j eE

-vs(x(O, 0-i), O) + [(1 - k)rk(O :n ) + krk(2:n)] if i > minj#i j

where

SF-(1-k) 1kF(r))n-1 ( dj ((T, ) T- m'(T) - Sd(;)(r))dr
T(- i (3.9)

[k - 1+ F()] (3.9)

Similarly, it can be justified that the above mechanism is (i) budget balanced and incentive

compatible, and (ii) interim socially efficient if and only if EA '> 0 for any k E [0, 1]. (See

Appendix A6 for detail).

Two-player case

We claim M3 with k = 1 has nice properties in dealing with an exogeneous endowment case.

When n = 2,

r( 0 (1 k)[k -1 + F(s)](S(, ) + (r) )dF(T)

[k - 1 + F()]2

where
f av(x*(rz, z), T))dF(z))

f(r)

And truth telling is a globally optimal strategy.

Theorem 3.7: When n = 2, M3 is ex post socially efficient and satisfies ex post monotonic-

ity.
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Proof. It is obvious that r1 (0) is non-negative. And note that

r'(0) ,fj F(7r)(S(r, T) + p(T))dF(T)

fO F(T)S(-, 7)dF(T) + fo F(r)2 S(r, O)dT

.f F()S(, )dF(r) + F(0)2 S(0, ) - 2 fj' F(r)S(T, 0)dF(r)

< S(, 0)

The last step is due to submodularity S(i, 0j) > [S(Oj, j) + S(, Oi)] > 1 S(Oj, 0j)12. Thus

S(Oi, oj) - r1 (0j) > 0 for any Oi Oj.

To verify the ex post monotonicity, first of all, note that

_, f- F(T)(S(T,T) + A(T))dF(T)
'I ( )

2 ff F(T)t(T)dF(T) - f' F()2 S(, T)dT

2F(0)
2

1> - S(0, )+- 2

2 fO F(T) 2 - v(x* (T, T), T))dT - fo F(T)2  S(T, T)dT
2F(0)2

- iS(0,0)

which implies rl'(0) > d S(O, 0) > 0 since r'(0) = S(, ). Q.E.D.

However, ro(0) might not be always ex post individually rational. Note that the ex post

individual rationality requires,

S(9O, Oj) - ro(O) > 0 for any Oj > Oi.

When Oj -+ Oi -+ 0, it is possible that S(2, j) - r(0) = S(0,0j) - EA < 0 when EA > 0 but

s(oi0j) = 0.

1 2 This is due to the fact that x(0, Oj), 0) must decrease with Oj since E7i = . Therefore, based on
supmodularity of v(xz (B,, B0),), S(0, ,j) + S(Oj, OB) > S(,, 0B) + S(Oj, 0j).
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Example 3.4: The utility is the same as in example 3, but Exi =- 1. We have

S(O)=Z i- 20_ 0
0i + 03

Qi + Oj

EA= 2ES(0 0)f ( 2 0102 dO1 d 2 = 2-0.795 > 0
=0 0 +2 01+02)

And [t(T) = (ln4 - 1) and ro(0) = 1n4+1 (20 + 1). So ro(0) is not ex post IR. But S(0,0) =

30 < rl(0) = n4+10 < S(9, 0) = 0, therefore r' (0) is ex post IR and satisfies ex post monotonic-

ity. In fact, as we will show later, there is a window of distribution of endowment satisfying ex

post IR even if the outside reservation is type-dependent.

3.4.3 Discussion for case of n>2

The above allocation rules do not work well when n > 2. The issue is that Sk(O) or rk(0)

is no longer always bounded (either from below or above). Take 31 (0) as an example, when

0 -- 9, 31(0) will be not bounded in general, due to the fact that item - F(O),O-dF(O

will dominate all other items when n > 2 as 0 -+ 0. The economic intuition is that, due to the

externality, the subsidy to the boundary type will be too high, once the number of player is

more than 2. This situation happens not only in k(0) or rk(0), but also under any allocation

rule such as giving the entitlement to the j-th order highest type. Whether k(0) or rk(O) is still

valid depends on the functional form of utility v(x, 0). This fact demonstrates the sensitivity

of the choice of a mechanism.

3.5 Auction-like Implementation and Bilateral Trade

3.5.1 Implement mechanism by auction

The mechanisms proposed in previous sections, M1, M2, or M3, can be implemented by a

realisitic form of auction, especially under symmetric independent environment. For example,

the first price auction with post auction redistribution will exactly implement the payment rule

in M1 under SIPV. To see this, let b be the bidding function, then under the first price rule,
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the payoff is:

S(Oi) - bi if bi > maxjAi bj

u4(O4) = E[S(0i) - bi] if b- = bj Vi,j E Afj (3.10)

n maxji bj if bi < maxjyi bj

In equilibrium, the optimal bidding strategy will be consistent with n-lE[S(Tn:n)/rn:n < 0].

However, the ex post individual rationality will be senstive to the payment rule. For example,

the second price auction in our context will not be ex post individually rational, though it is

still interim individually rational. In general, we can state our auction rule as follows:

(1) Government/designer runs a sealed price auction to pick a winner, and deterimines the

supply of products according to the collected messages.

(2) The winner pays the cost, but gets the entitlement to charge the remaining bidders

according to their consumption given their announced types;

(3) In order to obtain this entitlement, the winner(s) pays a lump sum transfer to the

remaining losers. The rule of the game is known before bidding starts (in M2 who bids the

highest wins; but in M3 who bid lowest wins).

(4) The revenue (deficit) collected from the winner's payment is redistributed among all

bidders (perhaps including the winner himself), the redistribution policy is known before bidders

submit their bids.

Our advice for chioce of auction rule can be summarized as the following.

Table 2: Chioce of auction rule in different context

Private good Public good Public good

Endowment Endogeneous Exogeneous

Title Allocation The highest type The highest type The lowest type

Price Rule 1st price auction Second price auction Second price auction

# of Bidder n > 2 n = 2 n = 2

In SIPV environment, based on our first price auction, the auctioneer can earn a risk-free

revenue that is the same as any efficient auction in terms of expectation. So if the auctioneer

is risk averse, he can induce the bidders to compete for the entitlement, and only charge the

participants an entry fee. The participants then will behave exactly as what we have described

in section 3. And this auction will be ex post individually rational, so that nobody will quit
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due to an outside option. Another important implication is that this auction form is also

collusion-proof, from the auctioneer's prespective.

Moreover, in public good case, the present auction form possesses several important advan-

tages, compared with auction of share when the quantity is continuous. In continuous quantity

or multi-unit auction case, the bidder needs to submit their demand function, and in general,

the allocation is inefficient (Wilson, 1979, Ausubel, 2004). However, in our formulation, the

allocation is efficient, and the auctioneer's revenue is maximized among all efficient allocations.

For intuition, we provide the following comparisons.

Suppose the auctioneer has one unit good for sale, say, xi = 1. The bidder i's utility

from xi is 20iVi. If the auctioneer runs the uniform price auction, it can be shown that the

price rule is

p*(4, j)- /2 + 0 with demand function x =

Under this pricing rule, the agent's expected utility at interim stage will be

U (O) = E(20i - p*x) = E 1 > 0

Therefore, the total expected revenue will be

RP = Ep*(o Oj)

For simplicity, suppose Oi is uniformly drawn from [0, 1], then

RP = ( + arg sinh 1) ' 0.765.
3

If we run the auction proposed by M3, the auctioneer can charge a risk free revenue

IE = 40j - 2E = 2 - 2 * 0.765. <R

But when 0 is large enough, EA > R P will be possible.
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3.5.2 Type-dependent Reservation Utility and Bilateral Trade

Endogeneous quantity supply

If the outside reservation utility is type-dependent, a la Myerson-Satterthwaite (1983), do

theorem 5 and theorem 6 still hold? It depends on whether endowment is flexible or not.

Theorem 5 is still true, but theorem 6 does not hold. Suppose each individual i's reservation

utility is ui(0), and let S#(Oi, 0j) = S(Oi, Oj) - Eui(Oi) be the net social improvement, and

v #(xi, Oi) = vi(xi, Oi) - E i(0i) be the net utility improvement of individual i. Therefore,

the payment rule will be based on v# (xi, 0i). Under mechanism M2, the payment rule can be

modified as follows:

M #(0i, Oi) =

where

3#(O) =

_Si(i, j) + pl#(0j) + ((A) - j(_j)) if 0i > 0j

S[S(0i, -i) - 1#(i)] if Oi = 0

v# (xi(bi, j),bi) - 1#() - (_i(2iA) - 4j(2j)) if 0i < b,

f0o(1 - F(T))(S#(T,T) - h#(T))dF(T) 1

[1 - F(0)]2 2

= 3(0) - 2 Z () + 2 )- 1 ).

The following proposition justifies that M2 is still ex post individually rational.

Proposition 3.6: If the reservation utility is type-dependent ui(0i), when n=2, M2 with

k=1 is still ex post socially efficient if and only if EA > E 1 (O0 ), where 0* = arg minoe Eo S(Oi, 0J)-

Proof. It can be shown that

1# (0)= f -(1- F(T))(S#(T, T) - h#(-))dF(-r) 1
[1 - F(0)]2  2

f(1 - F(T))(S(T, 7)- h(T))dF(T) _ 1

[1 - F(0)]2  2 -
1 1 1

S s(0,) - 2 i (0) + 2 T((_) - 1i (T)) -2
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Note that ( S(0, 0) - E>u (0)) > 0, and 01#(0) = S(, ) - u(0), therefore, 1#(0)

will be monotonically increasing in 0. We want to show the following two inequalities:

S(O, 0) - I (Li0) + j(i) ) - #(0)

1

2 (Li (00> + 1 i (00 + (00si

> _(0j) for Oi < 0j

> __(Oi) for Oi < Oj

For the first inequality, by the supermodularity of S(8i, 0j), we have

1s(A, 0) - 1 (Ok(00) + j(0i)) +- 0l#(),) -l. (0) -
1 1

_ S(0, o0) - 4 (0) - S(0, Oi) - I O )
1 1

>2 S(0i, i) - (Oi) - 2 ( (2i)- 23))

1 1

> 0

For the second inequality, note that by the proof of theorem 5,

1

2 (00 + /l#(00 - 'u (0 ) p01(07-) l + 2 A

will increase with O due to 1 dS(Oi o > u(0), therefore it sufficies to show,

1 1 1_
#e 2 0 + W4 2i) 2(02i -2 = E A - > 0

Note that 0 = argminJ{EojS(Oi, Oj) - ui(90)}, therefore, l1#(0) > 0 if and only if EA -

E-i(0) > 0. Q.E.D. .

The above justification applies to the trade problem where the quantity is endogeneous.

Unfortunately, this conclusion may not hold for an endowment economy, as we will see below.

Fixed quantity supply

Suppose the quantity of supply is fixed at E i = 1, and let u(0) = v(.t, 0) be the alterna-

tive option value of trade. According to Krishna and Perry (1998) or Palfrey and Ledyard

178



(2007), there exist interim socially efficient trade mechanisms if and only if EA - y u~ (O# ) > 0,

where 0 = arg min0o Eo S(0i, Oj) - i(0i ) . So far we know that the classic Myerson-Satterwaite

scenario fails this condition when preference is linear, initial endowment is extreme, and the

quantity is indivisible. Any change of one of these three conditions may cause differences of

consequence. For example, EA - E ui((i# ) > 0 happens when initial endowment is fairly sym-

metric (Crampton, Gibbons and Klemperer, 1986), even if utility is still linear' 3 . Furthermore,

if the agent's utility is concave, then existences appear when the initial endowment is either

fairly symmetric or extreme 14 , as we will see below. However, once we take the ex post IR into

consideration, the results are significantly changed. The following propostion describes several

impossibility results.

Proposition 3.7: If utility is identical v(xi, 02) with i.i.d. 9i, and total endowment is fixed,

in the any of following situations, there does not exist an ex post socially efficient mechanism:

(i) the utility v(x 2 , 02) is linear Oixi, for any initial endowment allocation;

(ii) the lowest type v(xi, ) = 0, for any v(xi, 0) and extreme initial endowment allocation.

(Proof see Appendix A6)

Part (i) says that the possibility of trade will dispear again once ex post IR is considered in

a partner dissolving game where each bidder initially owns some lottery or share of the object.

Part (ii) indicates that the lowest type agent's value plays some subtle role, interacting with

the endowment allocation. If v(xi, ) = 0, the designer is not able to punish the lowest type

agent, therefore whole incentive scheme will be affected.

To detect the existence of an ex post socially efficient mechanism, we provide the following

sufficient condition based on M3..

Proposition 3.8: If the utility is symmetric and quasi-linear v(xi, Oi) = 08i(xi), there

exist an ex post socially efficient mechanism if one of the traders' initial endowment satisfies

the following conditions:

-1 2 0( > zi > - (3.11)
S2 ( Oi I -2

13MacAfee (1992) shows that if endowment is uncertain, then there exists an interim socially efficient mecha-
nism too.

14When initial endownment is extremely distributed, there exists an interim socially efficient trade mechanism

if and only if EA + f f' -5v(x*(, Oj),r)drdF(Oj) > v(1,0).
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where rl(0i) is defined as formula (11). (Proof see Appendix A8)

Proof. Based on M3, ex post IR requires two inequalities

s(o , o) - r (Oj)

r, (0j)

u(Oj) if Oi < Oj

uj(Oj) if O < Oj

Note that S(0i, Oj) -i(Oi) decreases with O, the first inequality holds if and only if S(0j, Oj) -

r1 (0j) > u(0j); and the second inequality holds if and only if S(Oj, Oj) > juj(0j). Substituting

x*(, j,Oj) = into these inequalitis, we obtain (11). Q.E.D. *

The window of initial endowment allocation needs to meet two conditions; on one hand, it

should not too asymmetric to meet interim IR constraint, on the other hand, it should not be

too symmetric, allowing ex post IR to hold. The following explicit example demonstrates the

intuition.

Example 3.5. From example 4, under M3, ex post IR requires two inequalities

S(o0, 0,) - r1(0j)

r1(Oj)

Li(0i ) if Oi < Oj

uj (j) if Oi < Oj

which requires
Oi 6 In4 + 1 

2)S Oi + In4 - > Oi (2xi - x )Oi + Of 3

The necessary and sufficient condition is

3 In4+ 1

2 3
In4 + 1

3

> (2xi - x) - x

> 22 3 % -- z

The endowment satisfies the above requirement is

1 In4+1
0.456 1 - v 21n4 -1 > 31  0.452

6 3
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3.6 Conclusion and discussion

The basic findings of the present paper can be summarized as follows. First, in private good

environments, we prove that the existence of an ex post IR socially efficient mechanism if and

only if the VCG mechanism runs expected social surplus, which is the same as the condition for

the existence of interim socially efficient mechanisms. Interestingly, we prove that our mecha-

nism is the generically unique Bayesian mechanism satisfying ex post budget balance, ex post

IR and ex post payoff monotonicity, which maximizes the probability of ex post IC. Our mech-

anism can be implemented through a specific auction for social surplus, which can be regarded

as an auction for an entilement associating with post-auction redistributions. Compared with

standard auctions, this auction enables the seller to earn a risk-free revenue, and the bidders to

be ex post individually rational. It is also worth pointing out that we are able to characterize

the bidding strategy explicitly even if the distribution is asymmetric, which is in general hard

to solve in a standard first price auction.

Second, in public good environments, we find the flexibility of supply matters. If the supply

of quantity is flexible, and when the number of agent is n = 2, there exist ex post efficient

mechanisms whenever the interim socially efficient mechanisms exist, it does depend on whether

or not the IR constraint is type-dependent. If the supply of quantity is fixed like a mutli-unit

auction or a divisible good auction, the conclusion is only true for a type-independent outside

reservation. In the fixed quantity case, our proposed auction generates a risk-free revenue the

same as the expected social surplus of a VCG, which is always efficient, but the seller's revenue

might be higher or lower than the uniform price auction. When the IR constraint is type-

dependent like a bilaterial trade, there does not exist an ex post socially efficient mechanism

even though its interim counterpart exists. For example, there does not exists an ex post

socially efficient partner dissolving mechanism even though the initial endowment is symmetric,

in contrast to Crampton, Klemperer and Gibbons (1986). We show non-existence of any ex

post socially efficient trade if either utility is linear or the lowest type agent gain zero utility

with an extreme initial endowment allocation. We also provide a sufficient condition for the

existence of ex post socially efficient mechanims and an explicit example. This observation

is helpful in understanding no-trade possibility in a more general context, where the trader's

preference and the distribution of initial endowment have been taken into consideration.
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Last but not least, we raise a concrete example where the number of players matters in

determing the existence of an ex post individually rational mechanism. Due to the existence

of externality, when n > 2, it will be more expensive to fully incorporate externatities as the

numbers of players gets larger. Therefore the punishment of low boundary type will be too

heavy (or the rewards to the upper bound type are too high), which may break ex post IR.

There are several important extensions, including inter-dependent value, affiliation, correlated

type or information acquisition in our prescribed auction, but we leave them for future discovery.

3.7 Appendix

3.7.1 Al. Proof of Proposition 1

Proof. (i) Note that

v (x* (O, _O-), Oj) + S_ (8o, _ )

vi (x (0, _-i), 01) + S-i(01, Oj)

therefore, x (Oi, O-i) is non-decreasing in 0i

note that,

> vj(xf(9,_), ) + S_i(,_-i)

> v(x(9o ,o_ ),eO) +S_i(0, O-i)

due to the supermodularity of vi(., 0i). Moreover,

vi(x* (oi, Oj, Oi), 0i) +

> vi(x'(Oj, Oj,_O ), Oj) +% . i \7i V

E Vk(Xk(), Ok)

EZVk (xk(-), Ok)

- c(x*(o , 1 Oij))

- CL~Z\V, (5 ei -%3 7 3, ~j (oil 0 , 0-ij), X* ii)

vi(x(Oi, 0j,O -j), 0i) +

> vi(xi(Oi, Oi, O-ii), O) +

~ Vk(x(.), Ok) - c(x* (Oil O, O-O,))

k-i
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we have,

c(X* (0, 0, ij),X(, , Oiij), , ) + c(x (Oi, , 0[, 0ij), xj(0j, 0, O-ij), xtij

_ c(x. (Ooj; I0 (),x (Oij, 0-ij), X jj) + c(x* (0i, O -ij), X (O* , O , ), )j

If B 0j, xj(Oi, 0, O6-ij) > x(Oi, , 0-O_), the above inequality implies x(,

x*(0i, Oj, O_ij) by the submodularity of c(x). The same logic applies to 05 < 0j. Therefore,

S(Oi, Oj, O-ij) is supermodular.

(ii) We can derive the similar property based on the Lagrangian. Note that

v i (x( (O, O_1), Oi) + vj (x (0, Oj, -i), 0o)

+ k(* k(.), Ok)+ X (, j 0_j)[ -AC( (OiOj, j))
k i,j

vi ((9, "-i), 7i) + vj ( (6 , (x, -i j)j

+ E Vk (X; k (), Ok) + A* i, j -ij [E - C(XI (0" , 80,), j* (01, Oj, 0-ij) x-ij)

k hi,j

and

vi (x (01, o_), O~) + v3 ( (, o~j, O_ij), j)

+ VIC \(.), Ok) + A*(Oi, Oj, O-ij)[6 - C(x*(0", QO, o 3j))]
k i,j

" Vi(x* (, 0 _), O) + Vj (x (0i, 9, e-ij), ,)

+ E Vk(Xk(.), Ok) + A*(0, 03, O _ij)[E - c((a4(, 0', O j), x(0i, Oi, Oij), x*-ij)]
k i,j

Because the constraint is still binding, then we obtain inequality

v-((o, ~i),), Oj) + vi(x*(0", o_-i, 0') > vi(x (0, oi), o) + vi(x (0j, O_), 0')

which implies that x*(O, 0_i) increases with 0i. At the same time, note that when the quan-

tity is constrained, if x(O,, ,-i) > x*(0, 0, O_ij), there must be at least for some k,
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x2((O, Oj, O-i) < x(O, 0 , 0-i.-). Therefore, we haveX* (0i, 0j, -7, j i

= k (X*(Oz-i, Oij), k)
09Xk
& &

> O-X Vk (Xk(i, 0-i), k) = -v k (k (i, -i), k)

implying x*(Oi, Oj, 6 ij) *((i, 01., Oij). Futhermore, S(Gi, Bj, 0_ij) is submodular. Q.E.D. m

3.7.2 A2. Proof of Lemma 3.

Proof. By contradiction. Suppose that there is an incentive compatible and budget balance

mechanism M* resulting in

EU* (0) > EA

We can rewrite EA as follows:

S(0)dF(o)- (1 - F )) S( 0i0 dO dF-i(O-i)

= S(O)dF(O)- 1 OS( i )dF(0)
O AjA(Oj) &Oe

where -- If xi is continuously differentiable so that xz(zi, O-i) is an interior point,

then

ax(zi, 6_-)
Ozi

0i \( X(zi, O_-),O' ) _
[z Oxi xi(( 0)) = 0

If x (zi, -i) is not continuous, say, a discrete variable, then x (zi, O-i) is a step function

specified by (zi, 0 _i), therefore, under every interval that x* (zi, O-i) is being applied,

axi
- ac(x*(zi 0 i))] = 0Oxi

Therefore, in any case Os( ) - is true. Meanwhile, if x is exogeneously

given, we write S(O) = max,,x E vi(xi, i) + A[ - c(x)], it will also be the case -s(,~ O

184

i ( t (0- 01.0 --, Oi)



a~V((ooi ),) since c = c(x) is binding at the optimum. Moreover, note that

mi(Ti) = m(O ) + v [ i(x*(z-, O_),Oi)f-j(O-i)dOi dOi

And integrating by parts, we have

Emi(Oi) = mi(O) - Eo vi(x (O i, Oi) i vi(x (Ti, O-i), Ti)f-i(Oi)dO-idFi(Oi)

0i -vi A la i -(
_ ~l e 1 Ovi(x (oei -0, i) f- i(-)dO,-i dFi(Oi)

Therefore, the total money collected under mechanism M* is

1 vi(x (Oi,Oi),Oi)]
Em(Oi ) = - U() + Eo[v( (Oi,0i),ji)- A~i(o) (,

1 avi(x (Oi, 0_), )
< -EA +Z Eo[v(x*(Oi,Oi),Oi)- A(o) 0)a , )

= Ec(x*(O))

This means under M*, VCG must runs expected deficit. Given this fact, we may construct

another mechanism M# to subsidize each individual to make M# individually rational (but

not budget balanced), i.e.,

u# (o ) = Uj* (2) + k = i( i)

The total subsidy is

Z Z 2((0) - E U(o() < Eui (2) - lEA

which contridicts lemma 1, given that lEA - E uj(0) I is the smallest amount of subsidy to make

an incentive compatible mechanism to be interim socially efficient, since VCG maximizing the

payment within incentive compatible mechanisms. Putting differently, when E ki = 0, M* is

an interim socially efficient mechanism, but Ejji(_0) - EA > 0 suggests that there does not

exist any interim socially efficient mechanism, a contradiction. Q.E.D. m
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3.7.3 A3. Proof of Theorem 3

Proof. Step 1: payment only depends on the winner's type 08n:

By contradiction. Suppose in general the payment function M(01, 02,..., On) depends on

the ordered type, 01 > 02 > ... O> 0. Here, M(01 , 02, ..., On) need not to be differentiable, but

M(01, 02, ... , On) must be integrable so that Eo_, [M(, _i)\O > maxjil Oj] is differentiable.

We use f(n) (0) to denote the joint pdf of all n order statistics as

n

f (n)(O(n)) - fl,2 ....,n:n(01, .... ,On) = n! f(Oi) 0 2 O1 >2 2 >- >On >
i=l

Note that the efficient allocation must enable the highest type agent to win and pay, then the

expected payment is,

mi(0)

Pr(O > max0j)Eo_ [M(0, _i)\O > max0j]
ji j#1

Pr( < maxi 0)j)Eos EO_ n -2 M(01, ... , ... , On)\O = On-j-2:n-2)\O < maxji Oj]

n-1
0 ..2 JOn-1 1

M(0, O_i)f (n - 1)(O(- 1 ) )d_1 - R(0)
n-1

where

n-1 1 0 O+2 +3 On-1

R(0) = j{ ' 1 .. {i~ lf3± f ..±3 1
0- 1 0 0 A

j-1 n--=
j-1 n-j-1

186

M(01, .. , Oj, 0, Oj+2, -, On)f(n-1).-. dO2d(OI)



Note that M(O) is non-decreasing in each argument, we have

l0 n-1

R(9) < {l
j=1

(n - 1)!F(O)n-j-1 fo1 -1

(n-j-1)! j J

j-1

f n1 (n- 1)!F(O)n-j- 1 (F(9 1 )- F(O))i- 1

JOj=l (j - 1)!(n- j- 1)!

< (n - 1) F(O1)n-2M( 1,'., 1, 9,, O)f(01)

n-2

d11

Therefore,

m (O) ...
SOn- 1 M(0, _)f( (n-1) (O(n-1))dO- o F(O1)n-2M(1 , .01, 01, 0, 8)dF(01)

n-2

(3.12)

Note that when 0 - 9,

(O) = 
0 2

jO
n - 1

Since inequality (3.12) should hold for any 0, and 0, it must be the case,

0} i02 On-i a
.. [M (0, 0_1)] f " - )( n- ))d W 1.. 10 0

+F(O)n-2f(o)M(9, ..., 0,) - F(O 1)n-2 a [M( 1 , ., 01, 91, 9, 0)dF(91)

n-2

where - [M(O, 0-1)] is piecewise if M(0 1,., Oi, 0, 0, 0) is not differentiable in 0 (but M(0 1 , ., 01, 01, 9, 9)

is still weakly differentiable).
n-2 n-2
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M(O, 0-i )f(n-1) (On-1))d2...dOn

m(O )  _f (0)(n - 1) ...
0 0
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Note that fo F(1)n-2 { [M(01,., 0 1, 01, 0)]l}dF(01) > 0, therefore, we have

n-2

See( ... 0fo -- 1 M(0, , )(n-2 )((n-2) )d- 12
Si( <) 

0_

F(0)
n - 2

1
+ M(0, ... , 0,0)

n-i

F(0) fe f
0

2 6n- 6[M(0, 0_) f(-1) (Of(n-l))d0_1

f (0) F(O)n - 1

When 0 -+ , we have -Si(O) < M(O). If n-Sj(_) < M(O), payment rule M(O) will not

lead to ex post monotonicity. So it has to be M(O) = 1-1Si(,). Because

F(O) foe f2 -.. fo _ Z6[M(O, 0_1)]f(n1)((-))dO_1
lim - 0,
04o f(0) F(0)n-1

and the above inequality should hold for any 0 and 0 uniformly, therefore,

f s3 ... f1O-' M(0, 0, 1 )f(n-2) (O(n- 2))d0-1 2  1
Si(0) <- - F(- 2  + M(0 ... 0)

F(O)n-2 n-i

should be true for all 0.

If n > 2, and M(O, 0, 0-12) depends on Oj for j > 3, we have

n
Si(0) < nM(0, ... , 0,0),n-1

which fails ex post payoff monotonicity.

If n = 2, or M(0) = M(0 1, 02), we have Si(O) < ~-M(O, 0). Because M(0, 0) =- n-S (0)

can not be incentive compatible, there must be M(0, 0) > n S (0) for some measurable set of 0.

To see this, note that if M(0, 0) = '1Si(0) is incentive compatible, we will have M(0, 0) = 0

for all 0, a contradiction. Therefore, M(0) must depends.on 0n :n only.

Step 2: derivation of payment rule as a function of 0 n:n only.

If payment depends on 9n:n , we have the following integration eqution:

M(O)G(O) - jM(r)dG(T) = m(0)
n-1
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Note that f4 M(T)dG(7) should be differentiable even if M(O) is not differentiable. We thus

can solve the above integration equation, yielding,

n - 1 lb S(T)dF()n
M(O) = n F(O)n

which is consistent with MF. Q.E.D. *

3.7.4 A4. Proof of Proposition 4

Proof. (i) The incentive compatibility is met by construction, and so is budget balance. We

only need to check ex post IR constraint. First, we need to prove the payment rule is non-

negative. Observing that from the equation (6), we have

n n

ZM = -( Mi)( qk n-1 qkMk f- 1  iM + S(i)(n - 1) :qk

=- M) (Eqk) + S(0i)(n - 1) Sqk

thus,

fO S(r)dlI(r)
Mi() (n - ()(3.13)

Using this formula, we can show that if Mi(0) < mini0 Mj(O) for any 0, then M (0) > 0. To

see this, note that for any 0, if Mi _ minio Mj,

jk ji

therefore

qkMk < qk(E M7 - E M-7)

ifi
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Thus,

1
M - Mi qk - -qkMk + S(i) qk

kAi k4i ki

> -Mi qk - 1 ( M - Mj)Eqk +S(i) qk
kAi ifi khi k=i

( 100 S(r)dfl(-)
k S(0i) - 11(0)

> 0

By the above inequality, payment increases with type. Meanwhile, note that Mi(0) = gS() 2

0, therefore, if Mi(0) is the lowest payment, then Mi(0) > 0; if Mi(0) is not lowest, of course

Mi(0) > 0. Therefore, the loser's pay-off is non-negative.

Now it is easy to show that the winner's ex post pay-off is also non-negative, due to

1
S(0i) - M(0) Mj (00 > M (0)n-1

since Mi is non-negative.

(ii) Note that,

EUi () = - mi(0)
n 1 & L Mj(z) [Ilk$j,iFk(zj)] dFj(z)

j-1 h#i -

Eni 
j,

=1 i=1 ji

where the third step comes from plugging in equation (5). We get the conclusion. Q.E.D. 0

3.7.5 A5. Proof of Proposition 5

Proof. Note that for any incentive compatible mechanism, the first order condition

mi(0) = fj(0)Si(0)
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is always the case. Thus, we obtain two equations:

S(Oi)fj(Oi) = fjMi + FjMj + Mj fj

s(e0j) fi() = fiMj + FMj + Mifi

Therefore, we have

Taking derivative w.r.t. Oi, we have

Mi = S'(07) - M' - ( ) M

Therefore we obtain a second order ODE regarding a single unknown:

fi +
F ]

The general solution is,

, fifo Fj FjS'dO
MFi= C + F-

Mi = M i(O) + C1 S dO +
/O fj 0f FFjS'dr

Jo FiF d

Note that in any case Mi should be non-negative and not be infinite, so C1 = 0, otherwise,

I j~
SF2do >
0 F, F?3

It can be shown that JfO
Law,

jo O dO
1

i:;(ei)

1

Fyj (o)

Ifj f FiF, S' dr
Fj - dO is bounded. Even for 0 - 0, according to L'Hospital

'fo FFjS'dT

FFj

1 1
= lim S'(O)
2 o- f )

hence,

1
lirn -
e-+ Fj

0 = fiFj M' - f F Mj

- )Mi
fi

FjS(O) = Mj Fj
fj FL(-)' +
Fj fj



Therefore, we have

i= , f 0j d FF FjS'd -Mi Mi (14) + 2 do
fo Fi Pj

= M (1) + FjF
Oi 1 fo FiFjS'dT

Fj dF

To check the incentive compatibility, we have

F M - f M dF

= F(M(a) + j

= M()(2Fj - 1)

Oi fj f Fg FjS'd

FiF2 d

fi fo FiFjS'dO

1E2dy

F2Fj S'd' - j i
'10i 10 0i

S'dO)

S fi f F F S' dO -
S Fo -

_se~~i~jF2F

= M(O)(2Fj-1)-

J, FiF S'd-rd
0i F

O fi feFi F -S'dT f j0 -FjF 2 dO - FiFjS'dT +Fj(Oi) S'dO + FjS'dO
0 j

m(O) + S(O)dFi()
=miM0 + fos(O)dry (O)

where

0_ fi f , F F S d -r -
m() = M(2)(2Fj-1)-L 0~ 2Sd dO- FiFjS'dT-j S(O)dFj(O)+S(O)-Fj(Oi)S(_)

S Fi 2

We set M(O) = S(O), which means that for the lowest type, it is indifferent for him to lose or

win. Then,

S(O)d(FiFj) - SS(O)dFj(O) -
9 fS f FiFjS'dT

o dO -
Je FjF2

which is a constant independent of 0.

We can verify that under this payment rule, truth-telling is an equilibrium. For an agent i
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to deviate from 0i, the resulting profit difference will be:

Ui (Oi, Bi) - Ui(Oi, Oi) = [Pr(0j < Oi) - Pr(0j Oi)]S(0i) - [mi(0i) - mi(Oi)]
Oi

[S(0)f(7) - m(T)]dT

When Oi > Oi, S(0i)fj (T) - m(r) > S(Tr)fj (T) - m(r) = 0; when Oi < Oi, S(0i)fj (T) - m(T) <

S(-r) fj(r) - m(T) = 0, therefore, in any case, Ui(0i, Oi) - Ui(9i, 0i) > 0 for any i $ Oi.

For the ex post monotonicity, it is easy to see that the above payment rule is monotone in

0 and non-negative. We only need to verify

S(0i) - Mi(0i) > Mj(0j) for Oi2 Oj.

by noting that

Mi(0) + M(0)
[ fzfFi S fi foFFS'dT

= S(0)- Jo (JZ FiFjS'd) d1

fI FFjS'd7
S(O) -

FiFj

Of Sd(FiFj)
- < (80)

F F

Q.E.D. .

3.7.6 A6. Proof of Theorem 4

Proof. (i) It is obvious to see that M2 is ex post budget balance by construction. The incentive

compatibility could be checked as follows. Note that the structure of expected payment m(0)
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can be written as:

m(9) = (1- k)G(9)k(9) + k j 3k(T)dG() - f S-i(9, 9-)dF-j(9-)

1 k - 1F( 2 (1+ (1 - k) F())k(k)dG(())

n- +(n - 1) fj(1 - F(7)) k(r)dF(T) -2

+ E Pr(9 is j-th highest order statistic)E[v(x*(O, 0_i), 0)/0 is j-th highest order statistic]
j=2

- (1 - k)G(o)k(O) + k j8k(T)dG(T) - S-i(O, O-i)dF-j(O-_)

-k F()n-2 (1 - F(O))k(O) + (1 - F(T))/k(T)dF(T) n-2 -(1-k) k(r)dG(r)

n

j=1

(Here vi(x~(..Oj_l, 9,. 9 j+1,.), 9) means individual i's type is 9, which is j-th highest order sta-

tistic among n). Taking derivative w.r.t 0 and simplifying the above equation, we obtain a

differential equation regarding Pk ():

S-'(o) + Sf ( n-1) (9_)) dfj -(_)_ - ( 0, 0)
-oi se j-i=1

(1 - k)G(O)'(8) - kF(O)n-2(1 - F(O))k'(O) + (1 - k)g(O)/k(O + kg(O)1k()

-kF(O)n-3((n - 2) - (n - 1)F(O))/3k(O)f()

(1 -k)
+k(n - 2)(1 - F(o))k(o)F() 3 fn-3() + ( - g(O)O(o)n-1

/k(()(F(O) - k)F(0)n - 2 + nF(O)n-2 f (0)k(o)

(1 - k)G(O)3k(O) + k 1P(T)dG(T) - Si(0, _i) f(nl )(Oi)dOi

-k F(0)n -2(1 - F(O))k(O) + (1 - F(T r)dF( n-2 (1 k) j k(T)dG(r)
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Plugging m'(0) into the above equation, the ODE becomes

ok'(0)(F(0) - k)F(0)n- 2 + nF(O)n-2f(O)3k(O)

S(0, O-i)dF- (O-
S(.j=1. ) )j=l

The solution turns out to be

k (0) =
(k) S (7)- (ddj- .), ) 7r(T) (F( )k)- d

(F(0) - k)n

which means M2 is incentive compatible. To check the second order condition, just apply the

proof of lemma 3.

U(0, 0) - U(0, 0)

= [v(x(0, O-i), ) - v(x(0, 0_i), 0)]dF_Z(0_i) - (m(0) - m())
.1 9-i

°m'(z)dz

From the IC constraint,

m'(z) = xV(X(T, 0-i), z)dF-i(Oi)
IT=Z

Note that x(z, O-i) is increasing function of z, and -v(x(z, O-i), 0) is increasing function of 0,

therefore,

u(0, 0) - U(0, 0)

> 0

- f,[9
dFi(O_)dz

(ii) To show this, it is convenient to apply the revenue equivalence principle. With assistance
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of Po(0), we know

1o
m(_) = n 1.o O(O)dG(O) + - v(x*(O,O-i), )dF-i(O-i)

And the lowest type agent's payoff:

U(O) = Env(x*(O, Oi), 0)] - m() =- p()dG(O)

Plugging the above equality into the payment function:

1 oj I F(T)d fo_ S(r, O_i)dFi(0_i)
n- 1 J F(O)n d()

( 0F(-)d o_<_S ( -r , O -_ )d F -_ (O -_ ))
d 1
F(O)

= fo S(O, O_)dFi(Oi)dF(O)

The third line of the above simplification comes from integrating by parts. Similarly,

1 s fo (S F() v(*(T, o_), T)dT) dF (O-i)
1- 1 dG(O)

n- 1 J F(O)n

= [( Fr)v(x*(r, -), T)dT40-i[JO O a-

f 
1 - F(O) a

/ 5v(x*(O, O_i), O)dF(O) dF-_i(O_-i)

, f(O) 0
Therefore, the lowest type agent's utility turns out to be:

1 oO(0)dG(0)
n-1 JOodo)d)

- f < S(0, 0-)dF (0-i)dF(0) -
I 0 (1 - F(O) av(x*(O, Oi), )dF(O) dF - i (O- i )
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Note that 15

- S(O, Oi)dF-i(O-)dF(O) = S(O, -)dF-i(O-i)dF(O)
n -i _ 0ii0

So U(O) = -IEA. Q.E.D. u

3.7.7 A7. Derivation of M3.

Let 41(7) = 1 - (1 - F(7))n - 1 be the distribution of Zi = mini#j Oj, the expected payment can

be written as

-(1 - k)(- (O))rk(O) + k j rk(T)di(T) - j Si(, O-i)dF-i(O-i)

1 (n - 1)F(O)(1 - F(O))n-2rk(O) 0

n - 1 +(n - 1)(n - 2) f rk()F(T)(1 - F(r))n-3dF(7) T

+ Pr(O is j-th smallest order statistic)E[v(x*(O), 0)/0 is j-th smallest order statistic]

j=2

S(1 - k)(1 - T(O))rk(O) + k 0 rk(r)d4(r) - j S-i(O, O-i)dF-i(O-i)

-k [F()( - F(O))n-2rk(O) + (n- 2) rk(T)F(T)(1 - F(T))n-3dF()]

(r()dj() + v(x*(O, O-i), O)dF-i(O-i) - v(x*(0, 9i), O)dF _(O,-
n - 1 _ >o

1 5Note that the following formula is true by symmetricity of S(O, O-i):

o oS(_ , 0)dP_,(o_,)dF(o)

= Pr(i is the i-th highest order)ES(O~, O-i)/i is the i-th highest order statistics]
i=1

= ES(Oi, _-i)/i is the i-th highest order statistics]
0 foe S(O,O-i)dF-i(O-i)(0)

F(0) 1  dF()

= n fo S(0, i)dFi(Oi)dF(0)

The above equality can also come from Fubini's theorem.
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Taking derivative w.r.t 0 to simplify the above equition, we obtain a differential equation re-

garding rk(O):

d
nS( )dF

S(O, 0_j)dF_j(0_) - ; V-lj)(x*(O, .),.dT
j=1 9)

= (1 - k)(1 - W(O))rk'(O) - (1 - k)q'(O)rk(O) - krk(O) I(O)

-k F(0)(1- F(O))n-2rk'(O) - (n - 2)F(O)(1 - F(O))n-3 f (O)rk()

+(1 - F(O))n- 2 f(O)rk(o) + (n - 2)(1 - F(O))n"3 F(O)f (O)rk()]

(1 - k)rk() 1 ()
n-1

= rk'(O)[(1 - k)(1- P(0)) - kF(O)(1- F()) n - 2

(1- k)
-rk( )[4i(9) + k(1 - F(O)) -2f(0) + ( '(0)]

n-1

= rk'(0)[(1 - k - F(O)](1 - F(O))n - 2 - rk(O)n(X - F(O))n-2 f(0)

The solution for this ODE is

0___d [k-l+F (r])()m)

[k - 1 + F(0)]
n

Thus, if k = 0,

U() - ES(o, 9_i) - ro(T)

= ES(_, 0_i) - (1 - F(T)) v(x*(T, 0-j), T)dF_(0B-) - S(T, 0-)dF-I(0-i)) 0

=- o LJ S(T, 9_)dF_i(9Bi))dF(r) -
a 1 ( x *( r, - i ) ,a ) d F ( -) d F - j (9 - j )

3.7.8 A8. Proof of Proposition 7

Proof. (i) Let q be the initial endowment and O* = F-l(q ). Without loss of generality,

suppose qj > qi, therefore 0* > 0", thus Ui(O) - O*qi > Uj(9B) - O qj . Ex post IR requires the
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following conditions:

(1-q i)i - b(Oi)-Kj > 0 (if Oi Oj)

b(Oj) - Kj > Oiqi (if O < O0j)

(1- qj)Oj - b(0j) + K > 0 (if Oi <0)

b(Oi) + Kj _ OBqj (if Oi > j)

j T-F()dF(T) - LTdF(r) < Kj < L TdFT- JTF(T)dF(T)

where Kj is possible transfer from i to j.

From the first two inequalities, the necessary and sufficient condition is that

(1 - qi)0i - b(Oi) - Kj > 0 & b(0i) - Kj 0iqi

This requires Kj _ (1- 2qi)Oi. Looking at the third and fourth inequality, however, it requires

Kj > (2qj - 1)0j = (1 - 2qi) O. It is impossible to have (1 - 2qji)O < Kj < (1 - 2qi)Oi for

all 0i and 0j (as long as the type space is not trivially separating).

(ii) Suppose that i=S owns 1 unit of endowment, like a seller and we let i=B denote the

buyer. For any incentive compatible payment rule M(Oi, Oj), ex post individual rationality

requires the following inequalities:

S(OB, Os) - M(OB, O) - Ks _ 0 (if OB < Os)

M(OB, Os) - Ks > 0 (if0B > Os)

S(Os, OB) - M(Os, OB) + Ks v(1, Os) (if OB > Os)

M(Os, OB) + Ks v(1, s) (if B < Os)

v(1, ) - I -v(X)(,(T, ), )drdF(0) -EA + Ks

1
0 < -EA - Ks

2
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Looking at the first two inequalities, it is necessary to have

Ks < S(, B)

since Ks < min{S(OB, OB) - M(OB, Os), M(OB, Os)}.

Moreover, from the third and fourth inequality, we have

S(Os, 2B) > Ks > v(1, OS) - -S(Os,s)
2 2

If v(x, Os) is linear in x, then we go back to (i). If v(x, Os) is strictly concave in x, then

v(1, Os) - S(Os, Os) > 0, a contradiction with Ks < O0. Q.E.D. *
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