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Abstract

This thesis explores power and consistency of estimation and inference procedures
with moment inequalities, and applications of the moment inequality framework to
estimation of frontiers in finance.

In the first chapter, I consider estimation of the identified set and inference on a
partially identified parameter when the number of moment inequalities is large relative
to sample size. Many applications in the recent literature on set estimation have this
feature. Examples discussed in this paper include set-identified instrumental variables
models, inference under conditional moment inequalities, and dynamic games. I show
that GMM-type test statistics will often be poorly centered when the number of
moment inequalities is large. My results establish consistency of the set estimator
based on a Wald-type criterion, and I give conditions for uniformly valid inference
under many weak moment asymptotics for both plug-in and subsampling procedures.

The second chapter evaluates the performance of an Anderson-Rubin (AR) type
test for a finite number of moment inequalities, and propose a modified Lagrange
Multiplier (LM) and a conditional minimum distance (CMD) statistic. The paper
outlines a procedure to construct asymptotically valid critical values for both pro-
cedures. All three tests are robust, to weak identification, however in most settings,
conservative inference using the LM statistic seems to have greater power against
local alternatives than the AR-type test. Furthermore, confidence regions based on
the LM statistic will remain non-empty if the model is misspecified.

Finally, the third chapter, which is co-authored with Victor Chernozhukov and
Emre Kocatulum, presents various set inference problems as they appear in finance
and proposes practical and powerful inferential tools. Our tools will be applicable to
any problem where the set of interest solves a system of smooth estimable inequalities,
though we particularly focus on the following two problems: the admissible mean-
variance sets of stochastic discount factors and the admissible mean-variance sets of
asset portfolios. We propose to make inference on such sets using weighted likelihood-
ratio and Wald type statistics, building upon and substantially enriching the available
methods for inference on sets.
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Chapter 1

Estimation and Inference with

Many Moment Inequalities

1.1 Introduction

In this paper, I consider estimation of the identified set, and inference on a partially

identified parameter when the number of moment inequalities is large relative to

sample size. This situation is commonly found in applications in the fast-growing

literature on partial identification. Prominent examples include estimation with con-

ditional moment inequalities, instrumental variables models with missing or interval

measured data, and estimation of games with rich strategy spaces. For instance Ba-

jari, Benkard, and Levin (2007)'s procedure for the estimation of a dynamic oligopoly

model uses up to 500 moment restrictions with a sample size of no more than 1,200

observations. Also, in point-identified problems, restricting attention to a subset of

the available moment restrictions primarily affects only the efficiency of the estimator.

However, in set estimation, omitting relevant constraints will also alter the shape of

the identification region. Therefore in partially identified problems, estimation using

a large number of moment restrictions is even more common than in the standard

GMM framework.

In order to characterize the finite-sample properties of econometric procedures, I

consider limits of sequences of experiments for which the number of moment inequal-



ities grows at some rate as the sample size increases. In addition, the framework

allows the combined strength of the moment conditions to change with sample size.

The standard large-n asymptotic framework used in the previous literature implicitly

constrains the number of moment conditions to be negligibly small and the identifying

power of the moments to be proportional to sample size. The many weak moment

approximations considered in this paper nest the standard setup as a special case,

but also allow us to model more realistic settings in which identification is weak and

the number of econometric restrictions is large.

This modification of the asymptotic experiment changes the conclusions of the

previous literature in three main aspects:

(1) The distribution of the criterion used for estimation or inference need not de-

generate on the interior of identification region, and standard test statistics need

not be centered or attain their minimum in the identification region

(2) Standard approximations to the distribution of a vector of moment functions

(subsampling, bootstrap, Gaussian) may be poor if its dimension is large, so

that the true null rejection probabilities of hypothesis tests using critical values

based on these approximations may exceed nominal size.

(3) Anderson-Rubin (AR)-type tests which are frequently used in the literature

- including the Quasi-Likelihood Ratio (QLR) Statistic (Kudo (1963), Rosen

(2008)) and the Empirical Likelihood Ratio (ELR) Statistic (Canay (2007))

- have many degrees of freedom. For moment equalities, the power of chi-

square tests is known to decrease to size as the number of restriction goes

to infinity, and furthermore for the one-sided testing problem, inference has

to be conservative over high-dimensional nuisance parameter. Therefore tests

based on these statistics should be expected to have low power if the number

of moment restrictions is large.

The first point mainly concerns set estimation from lower contour sets of a GMM-type

criterion, and will lead to inconsistency of the estimator unless severe restrictions on

:



the dimension of the moment vector relative to the identifying power of the restrictions

are imposed. The second aspect of the problem is relevant for construction of critical

values for hypothesis tests and confidence sets and will be investigated in section

4 of this paper. The last observation concerns the choice of a test statistic and

suggests that in many cases it will be possible to improve considerably over standard

procedures by reducing the dimensionality of the parameter that is tested implicitly.

As I will argue below, these three features of standard procedures will alter many of

the recommendations put forward in the literature on set inference based on standard

"large-n" asymptotics.

For point-identified problems, it has long been known that a large degree of over-

identification often leads to significant finite-sample bias in G NMM estimators and may

render classical inference procedures invalid. GMM under weak identification with a.

fixed number of moments was considered in Stock and Wright (2000), and Han and

Phillips (2006) analyze GMM with many weak moment conditions and give rates on

the number of moments and their combined explanatory strength under which the

GMM estimator is consistent and the GMM objective function converges to a non-

stochastic limit. Newey and Windmeijer (2008) give conditions for consistency and

derive the asymptotic theory for GMM, the Continuous Updating Estimator (CUE),

and standard testing procedures under many weak moments sequences.

In this paper, I will argue that issues with finite-sample bias and bad size proper-

ties and power loss of common testing procedures typically associated with estimation

with over-identification also arise in set-identified problems using many moment in-

equalities, which are in fact strictly under-identified according to conventional termi-

nology. In many applications of set-identified models the relevant test statistic turns

out to be minimized at a single point of the parameter space even if the parameter

is only set-identified (e.g. Pakes, Porter, Ho, and Ishii (2006) and Bajari, Benkard,

and Levin (2007)), and simulation studies often show substantial bias in the set esti-

mator. This happens particularly often if the moment vector used for inference and

estimation has a high dimension relative to sample size.

The problems of standard inference procedures are not necessarily limited to cases



with a extremely large number of moments, but from the GMM literature it is known

that finite-sample bias can be severe, even for a moderate degree of over-identification

and especially if the identifying power of the moments is low. For example, Hansen,

Heaton, and Yaron (1996) document significant bias of the 2-step GMM estimator

for the CAPM for as few as 6 over-identifying restrictions with a sample of 400

observations.

In the literature on set-identified problems, consistency of criterion-based set es-

timators and validity of uniform confidence regions for the identified set based on the

supremum of a GMM-type statistic on the identified set has been shown by Cher-

nozhukov, Hong, and Tamer (2007) under standard "large-n" asymptotics. Inference

on the true population parameter has been considered by Imbens and Manski (2004),

Chernozhukov, Hong, and Tamer (2007), and Andrews and Guggenberger (2007b).

In the theoretical literature, set inference subject to infinitely many moment re-

strictions has only been considered systematically by Chernozhukov, Lee, and Rosen

(2008), Kim (2008), and Andrews and Shi (2008). Andrews and Guggenberger

(2007b) give conditions for uniformly valid inference for a fixed number of moment

conditions under local parameter sequences which include cases in which some mo-

ment inequalities are close to binding. This covers in particular the set-identified

analogue of the problem of weak identification.

The primary contribution of this paper is to analyze commonly used procedures

for set estimation and inference under many moment asymptotics. I derive conditions

on the number of moment restrictions used for estimation and the combined explana-

tory power of those restrictions under which different estimators of the identified set

are consistent. I discuss these conditions for a number of practically relevant exam-

ples. I also find that for a slow to intermediate growth rate mn for the number of

moments, critical values for GMM-type statistics based on a normal approximation

yield uniformly valid inference, whereas subsampling critical values are valid only

for slow rates in mn. The reason for the poor performance of subsampling is that

subsampling will in general fail to approximate distributional features of the moment

vector other than only the first two moments. In situations in which the number of



moments is large relative to sample size, the resulting critical values need not even

be conservative, but fail to guarantee the desired confidence level altogether.

As an example, I develop an inference procedure for conditional moment inequal-

ities based on series approximations. For the case of a one-dimensional conditioning

set, I show that if the number of unconditional moments is chosen as to achieve

the fastest possible rate of convergence for the corresponding set estimator, Gaus-

sian asymptotic approximations to the distribution of any of the commonly used test

statistics discussed in section 4 continue to be valid.

This paper proceeds as follows: In section 2, I will outline the problem and give

basic notation. Section 3 analyzes the behavior of GMM-type criterion functions

under many weak moments asymptotics and gives conditions for consistency of set

estimators defined as lower contour sets of the criterion. Section 4 gives conditions for

uniformly valid set inference under many moment sequences with drifting parameters.

Section 5 concludes.

1.2 Setup

In this paper, I consider inference on a k-dimensional parameter 0 CE given a

sample Y ,,..., Y,,, of n observations. The observed sample is modeled as a triangular

array of random variables Yl,.. ., Y,, which are i.i.d. from a population distribution

P, E P for each n.1 It is possible to relax the i.i.d. assumption, but for expositional

purposes, I will only consider the leading case of i.i.d. observations in this paper.

Estimation and inference will be based on an m-dimensional vector gm(Yi, 0),

where the population parameter 0o satisfies

Ep, [gm( ( , ,,o)] > 0 (1.1)

for all P, E P. I will allow mn = mn to increase at a certain rate as the sample

size grows. Throughout the paper, I will treat the order at which additional moment

'Following the notation in van der Vaart and Wellner (1996), P, will always represent the pop-
ulation distribution for the nth row vector, whereas the empirical measure will be denoted Pn.



inequalities are imposed as fixed, and state asymptotic results depending only on the

rate m, at which new moments are added.

1.2.1 Examples

There are many econometric problems in which the number of moment inequalities

can be very large. As a first example, we consider a linear model which allows for a

large number of unconditional moment restrictions, and which is similar in spirit to

Manski and Pepper (2000)'s "Monotone Instrumental Variable" (MIV) setting.

Example 1 Linear "One-Sided" Instrumental Variables Suppose we have variables

Zim which do not satisfy a proper exclusion restriction in a regression of Y on Xj,

but we know sign of bias. The moment restrictions are of the form

gj(0, P):= E[Zil(Y - Xil)] > 0 for 1= 1,..., m

An estimation problem with this structure can arise in many situations, e.g.

* diferential sample attrition

* with heterogeneity in parameters, want to bound one particular average treat-

ment effect with local average effects

* Manski and Pepper (2000)'s Monotone IV assumption

* identification from discrete variation (Chesher (2005))

Generally, the number of instruments in this setting can be large for the same reasons

as in point-identified settings.

A variation of this example would be IV regression with interval-measured data,

which is related to the problem analyzed by Manski and Tamer (2002) and has been

analyzed by Bontemps, Magnac, and Maurin (2007).

Another important case in which the number of moment functions is potentially

infinite is that of conditional moment restrictions. This arises frequently, for example



in structural estimation with instrumental variables. Examples include Manski and

Tamer (2002)'s framework for estimation of bounds for linear models with interval-

measured data or Khan and Tamer (2008)'s estimation of censored regression models.

Also in the setup of Pakes, Porter, Ho, and Ishii (2006) in the estimation of games

with incomplete information, any quantities that are common knowledge among all

players and observed by the econometrician can be used as instrumental variables.

Example 2 Conditional Moment Restrictions I Suppose for an i.i.d. sample of ob-

servations Wi = (Zi, Yi) we have a moment restriction of the form

h(z, Oo, P) := E[p(Y, Bo)IZi = z] > 0 for all z cZ := suppG(z)

where Z G(z) is a vector of instrumental variables with a continuous distribution,

and we assume for simplicity that Z is bounded and the density of Zi is bounded away

from zero uniformly on Z. The residual g(Y, 0) is a real-valued function of the data

14' and a parameter vector 0. 2

We can now form moment functions gl(Wi, 0, P):= 4Oi(Z)o(Y, 0) for a given choice

of non-negative instruments Vm (Zi), so that at the population parameter 00,

E0 [g,(W, o)] := E0p[ 1(Zi)p(Y, Oo)] = E p [ 1(Zi)h(Z., 0o, P)] > 0

by the law of iterated expectations. As we will discuss below, possible choices of

instruments include basis functions for B-Spline approximations (see e.g. Niirnberger

(1989)), or characteristic functions for subintervals of Z as in Andrews and Shi

(2008).

For expositional purposes, I will now propose an alternative way of forming un-

conditional moments from the conditional moment inequality model which is better

suited for the subsequent discussion of the rates of consistency of set estimators.

2This can be generalized easily to a vector valued residual function, but for notational simplicity,
we will stick to the one-dimensional case.



Example 3 Conditional Moment Restrictions II Consider the conditional moment

inequality model from Example 2. If h(z, 0, P) is continuous in z for any value

of 0, we can approximate the function using B-splines.3  Given a matrix m :

{g(Zi) i=n,1=m ofm basis functions Om(z) (m (z),... ,V(z))', we have

m

h(z, 9, P) = E m(z)7xm(0, P) + Rm(z, 0, P) = m (z)'r m (0) + Rm(z, 9)
1=1

for some remainder term Rm(z, 0) such that f Rm(z, 0)2dG(z) is minimized, i.e. re-

sults from a projection of h(z, 0, P) onto the spline space generated by oDm(z) with

respect to the weighted L2 norm, where the weights are given by the distribution of

Zi. It is known that any nonnegative function can be approximated by B-splines with

nonnegative coefficients (see De Boor and Daniel (1974)), so that we can consider a

(possibly data-dependent) restricted projection of h(z, 0, P) onto the spline space with

positive coefficients.

For example, we could seek to minimize the length of Qpm(h(Zn, 0, Pn) - m7r),

where Qm = Tm( m'm) -V is the linear projector onto the column space of Tm,4

and A- denotes the generalized (Moore-Penrose) inverse of a square matrix A. Then

this amounts to solving

min IIflQm(rn - mF)II = min( m - t)'('n qm)(i m - t)
ir>O t>O

where rn(0) := (g(Y, 9),... ,o(Yn, 0))'. Hence, a test based on unconditional moments

that are formed using instruments /m(Zi) can be interpreted as testing whether-the

least-squares coefficients ?rm := ( nm)-'rn from the unrestricted projection of

rn onto the basis functions of the spline space are non-negative. A test of this form

3 For m equidistant knots tl < -. < t < ..- < ti, the basis B-Spline of order n can be
constructed recursively as l,n(t) := 1,n-1(t) + tl+n+ -t Vl+1,n-1(t), where we set 01,o(t)

equal to the characteristic function for the interval [tl, t1+ 1).
4Note that by the definition in footnote 3, z1,n(t) has support only on the interval [ti, t+ 1),

so that if the p.d.f. of Z is bounded from below on Z, and the uniform partition tl < ..- < tm
grows finer at a rate slower than n - 1, the smallest eigenvalue of the matrix TiJm~m will be bounded
from below by a positive constant with probability going to 1. For the remaining discussion of this
example, we can assume for simplicity a fixed design setting with regard to the values Zi = Zin,
where, without loss of generality, the draws of Zin are evenly spaced on Z.



clearly has power against any alternative OA because if h(z, OA, P) < 0 at some value

of z, in the limit at least one spline coefficient has to be negative.5

Conditional moment inequalities are a special case of set estimation subject to a con-

tinuum of inequality constraints, which has been analyzed for the case of intersection

bounds for a one-dimensional parameter 0 by Chernozhukov, Lee, and Rosen (2008)

who propose both kernel and series based methods to construct implied bounds on

the parameter.

Finally, we consider moment inequalities from economic models of optimization

behavior and estimation of discrete games:

Example 4 Estimation of Discrete Games Suppose a group of n agents can make a

choice s E S, where S = {sl,..., sm} is a finite set of pure strategies common to all

agents. The information set of the agent is given by the variables Zi, and we observe

the agent's choice Si as well as her opponents' strategy profile S-i. Therefore for the

population parameter 0o we have

h(z, Oo, P) := Ep[7r(Y, S, S_i, Oo) - 7(Y, s', S, 00o)Z= zI 0 Vs' E

Hence for each s' E S, we can form moment conditions

[r(Yi, Si, S_io) - 7(Y, s1, S_i, 9)

gm(Z1, Yi, o) = !(Zi) ®
(( Y, S,, s_ 0) - 7(Y,, S-, S , 0)

where V!/(z) is a vector-valued positive function of the conditioning variable. The

dimension of the moment vector gi(0) can be large if either the strategy space S or the

information set is very rich.

5This idea extends to the general case of a continuum of moment conditions in a straightforward
manner. For example in the oligopoly model in Bajari, Benkard, and Levin (2007), investment
a is a continuous strategy, so it would be possible to replace the vector r, with simulated payoff
differentials for appropriately chosen values of a and let Tm be a matrix of B-spline basis functions
in a. This method would aggregate the information from a large number of values for a to a moment
vector whose dimension is lower by an order of magnitude and should be chosen depending on sample
size.



Symmetry and discreteness of the game are imposed only for notational convenience,

and Pakes, Porter, Ho, and Ishii (2006) also discuss extensions if the information

set is not common knowledge among the agents and the econometrician. In the

estimation of a Dynamic Oligopoly Model, Bajari, Benkard, and Levin (2007), firms'

strategies are assumed to be stationary but depend on a rich state space and entail

both discrete entry/exit and continuous investment decisions, so that there is a large

number of alternative strategies. In their example, for a sample of at most n = 1600

observations Bajari, Benkard, and Levin (2007) draw as many as m = 500 alternative

strategies at random and construct moments from differences in instantaneous profits

and simulated value functions.

1.2.2 Identification

For a fixed sample size n, the identification region eI,n is defined as the subset of 0

for which the population moment restrictions in (1.1) hold,

EI,n := {C e : Epn [gm(Yin, 00)] > 0}

The second subscript indicates that the identification region will be allowed to change

with sample size both through the population distribution Pn of Yn, and the number

mn of moment inequalities imposed for estimation or inference. Note that indexing

the identification region with sample size n is not meant to suggest a dependence on

the particular realization of the sample. Also, even though the econometric model is

incomplete in the sense that the moment conditions (1.1) hold at 00 for every measure

P E P, the identification region is defined with respect to one particular population

measure P E P.

For a large, potentially infinite, number of moment inequalities, the main object

of interest for estimation is the set of parameter values that satisfy all moment re-

strictions that can be derived from the econometric model. The next section will give

a formal definition of the sharp identification region 0 as the (set-valued) limit of

the approximating sequence OII,n



The identification region can be characterized as the (typically set-valued) arg-zero

of the population criterion

Q(O0) :=min (IEp,[gM(Y, Oo)] - t)' Wn(O) (Ep [gm(Yin, Oo)] - t) (1.2)
t>0

where the mn x m, matrix W,(0) is continuous and positive definite. For a given

value of 0, the minimizer t* of the quadratic form over non-negative values of t C R I

is the projection of the moment vector onto the positive orthant with respect to the

Euclidean norm defined by Wn(0). Loosely speaking, concentrating out the slackness

parameter t C Rm can be understood as penalizing only the component-wise negative

parts of the moment vector. Under conditions to be discussed in the next section,

the criterion Q,,(0) defined in (1.2) epi-converges to a limit Qo(O), where Qo(O) = 0

if and only if 0 E O1, the sharp identification region.

One particular case of interest is that of a continuum of moment conditions of the

form

h(z, Oo, P) > 0 for each z C Z and P C P

where h(0, P) := (h(z, 8, P)),cz is a vector in the separable Hilbert space L2 (Z, P)

which depends on the probability measure P. This moment vector does not neces-

sarily have to be an unconditional expectation of a known function of the data, but

e.g. in the case of a conditional moment inequality as in Example 2, h(z, 0, P) is the

conditional expectation function Ep [(Yi, 0)IZZi = z]. The corresponding population

criterion function is

Qo(O) := inf (h(s,O , P,) -p(s))(h(z, 0, P,)- (z))n,o(s, z)P,,(ds)P,(dz) (1.3)
0>0 ,Z xZ

for a positive definite weighting kernel w0(s. z). 6 Since IRM is a closed convex subset

6For example, the criterion based on approximation of the continuum through averages on subin-
tervals,

Qo(O) = min (g(I) - p(I))'W(I)(g(I) - cp(I))y(dI)

given a weighting distribution p(I) over the set I of subintervals I C Z, where g(I) := f h(z)P(dz)

.'f, P(dz)

For simplicity, suppose the weighting matrix is not data-dependent and diagonal with weight w(Z)



of a Hilbert space, the infimum t* = t*(O, P) in the definition (1.3) is attained and the

arginf is unique (see e.g. section 3.12, Theorem 1 in Luenberger (1969)). For estima-

tion, Qo(O) can be approximated using a finite-dimensional vector of unconditional

moments.

1.2.3 General Approach to Estimation and Inference

For inference we will replace population moments with their sample counterparts

E,[g(Yes, 0)1 = n(O) :=- gg()
i=

where the covariance matrix of the moment vector is given by 1Q(0) = Var (Vin (0)).

Using the sample moments, we can form the sample criterion

Qn(O) :- min(n (0) - t)'W,(0)(in,(0) - t) (1.4)t>o

for a potentially data-dependent weighting matrix W(0) that converges to W,(0)

uniformly in the sense that supl<k,1<m, Wn,kl(O) - Wn,kl(O) -+ 0 as n -> oc, where

Aki denotes the (k, 1) element of a matrix A.

Given the sample criterion from (1.4), we can construct the set estimator as a

lower contour set of Q,(0) for a data-dependent non-negative sequence an,

n : 0 C 0: nQ,(0) 5 n (1.5)

on interval I. Then the criterion function can be represented using the kernel

w(s, z) := W(I){s I, z c I}p(dl)

For example if Z C R is an interval of length A =- | - zj > 1, and intervals are drawn from a
distribution that puts mass proportional to wp on any subinterval of length 2- p , p = 0, 1, 2,..., the

implicit kernel is proportional to

w(8 0z wmax{2-P - Is -
w(s, z) c Wp max A - 2- '0

p=1



The next section is going to discuss conditions on c, which ensure consistency of the

set estimator for OI. Alternatively, as proposed by Chernozhukov, Hong, and Tamer

(2007), we can construct a sequence 4, of cutoff values such that C, is a valid 1 - c

confidence set either for the population parameter 00 or the sharp identification region

0I.

1.2.4 Comparison with Conditional Moment Equalities

The consistency results in section 3 imply that with an infinite number of moment

inequalities, there will typically be no estimator of the form (1.5) that is vn-consistent

for the sharp identification region 0I. This contrasts with well-known convergence

results for the point-identified setting with infinitely many moment equalities analyzed

among others in Newey (1990), Carrasco and Florens (2000), Ai and Chen (2003),

and Domninguez and Lobato (2004), and I am going to devote the remainder of this

section to give an intuitive explanation for this difference.

In the literature on estimation subject to a continuum of moment conditions, con-

sistency is usually achieved imposing a full-rank condition on the Hessian of Qo(O),7

V 0O0 (00) = Voh(s, Oo. P)Voh(z, , P)w0 o(s, z)P(ds)P(dz)

on the boundary of the identified set 0 1.s If this condition fails, the error in the

nonparametric estimation of the moment functions h(z, 0, P) may dominate in the

limit in the approach of Newey (1990) and Ai and Chen (2003) and slow down the

rate of consistency of the point estimator.

7The following condition corresponds to Assumption 4.1. in Ai and Chen (2003), and is implicit
in the statement of Theorem 2 in Dominguez and Lobato (2004). Generally speaking, in order to
achieve consistency of the estimator, the infiinum of the population criterion Qo(O) which is by
definition achieved at the identification region EO,, has to be well-separated (see e.g. van der Vaart
and Wellner (1996))

inf Qo(O) > K62 (1.6)
oC S,, ()

for any 6 > 0, where K, > 0 and S,(6) := {0 E O : 6/2 < d(O, 0 1,) < 6). This statement will be
made more precise in the analysis of consistency for the set estimator in section 3 of this paper.

8Note that even though the kernel is also allowed to depend on 0, it is straightforward to verify
that the additional derivative terms have expectation equal to zero for any value of 0 in the identified
set.



Since only the part of the continuum corresponding to binding constraints will

contribute to the Hessian, a necessary condition for the full-rank condition to hold is

that for any 0 on the boundary of the identified set, the binding restrictions constitute

a subset of the continuum with measure bounded away from zero. In the point-

identified case, this assumption is very natural since in this case, the identification

region consists of one unique parameter value 0 satisfying the moment condition P-

a.s., so that a mass of the continuum with strictly positive measure must be binding

at 00. This need in general not be the case for set-identified models: even if for any

parameter value 0 E O8 outside the identification region, p(O) := P(h(Z, 0, P) <

0) > 0, under reasonable conditions infoec JL(O) = 0.

Except in some very special cases, the moment condition will be slack for all z

except at a point z* at any 00 E aEI, so that if P is absolutely continuous with

respect to Lebesgue measure, the second derivative of Qo(O) is defined, 9 and

Voo,Q o (O) := Voh(s, 0, P)Voh(z, 0, P){h(s,o,P)=h(z,,P)=O } wo(s, z)P(ds)P(dz) 0

Hence the analogue of the rank condition driving the /consistency results for

estimation subject to a continuum of moment equalities will likely fail in set-identified

problems with infinitely many moment inequalities.

This also has implications for power of tests against local alternatives: since the

subset of the continuum of violated constraints will typically shrink as the parameter

sequence n, = 00o+A, c E 8 approaches a point 00 on the boundary of the identification

region, and in that case, the population criterion Qo(O) will vanish at a rate faster

than O((0n - 00)2).10

9If at some 00 E aOI, the measure of the continuum pu(00) corresponding to binding conditions
is strictly positive, the criterion defined in 1.3 will not be differentiable at 00, but the set of second
subdifferentials will be defined (for definitions, see Rockafellar and Wets (1998)) and may contain a
non-zero element.

10I.e. for many realistic settings, a condition like Kim (2008)'s Assumption 4.1(g) that the criterion
is locally quadratic in the distance to the identified set seems to restrict the estimation problem to
cases in which the identified set is defined by a finite subset of the moment inequalities: suppose e.g.
that Z is bounded, and the density of Z is bounded from above by p. Furthermore, let h*(z, 0, P)
be quasi-concave in z, and there is B > 0 such that for any 0 e O8, P(h*(Z, 0, P) > 0) > 0.
Furthermore Then for e := @ > 0, there is a finite e-packing set of points Z {z , ... , ZM}, such
that for each 0 E 8o, h*(zi,0, P) > 0 for at least one value of 2. Hence we could construct a



1.3 Consistency of the Set Estimator

In this section, I will consider set estimators obtained from inverting a criterion func-

tion at a possibly data-dependent cutoff value that depends on sample size but is

fixed across parameter values. This type of set estimators correspond to fixed critical

value confidence sets for the identified set as those proposed by Chernozhukov, Hong,

and Tamer (2007) or Romano and Shaikh (2006) where I let the confidence size shrink

to zero at some rate as the sample size increases.

In order to define the sharp identification region (91 when the number of moment re-

strictions increases in sample size, I start from the identified set 0 [,,, for a finite subset

of the moment restrictions, and then take the limit as I let the number of restrictions

used for inference go to infinity. I therefore first have to introduce the notion of

Painlev4-Kuratowski set convergence (see also Molchanov (2005) or Rockafellar and

Wets (1998)):

Definition 1 For a sequence A, of sets, the inner limit lim inf An is the collection of

the limit points x for which we can construct a converging sequence x, -+ x such that

, E A, for all n. The outer limit lim sup A,, is the set of points x for which we can

construct a converging subsequence r,(k) c An(k) Such that X,(k) -+ X. We say that

PK
A, PK-converges to A, in symbols lim, A,, -4 .4, if lim inf,, A, = lim sup, A, = A.

Alternatively, the inner limit contains all points which are attainable through a se-

quence such that xn E An for all except finitely many values of n > 1, whereas the

outer limit consists of the limit points of sequences for which x, C An for infinitely

many n > 1. In this paper, I will only consider the case in which the parameter

space 0 is a bounded subset of Rk. Under this assumption, PK set convergence for

nonempty closed sets is metrized by the Hausdorff distance of two sets A and B,

dH(A, B) = max sup d(a. B). sup(A, b) }

finite-dimensional sieve space that is identified with a. finite set 2 of evenly-spaced values z E Z,
and which contains the identified set.



Condition 1 (Identified Set) (a) The parameter space E C Rk is nonempty and

compact. (b) The identified set is given by OI,n = {0 E O: Ep,[g(Yi, 0)] > 0}, and

OI = Oi,c := lim, OEI, in the sense of Painleve-Kuratowski set convergence.

Note also that if n(0O) is continuous in 0 and the sign of gn(0) doesn't change in n

for any value of 0, PK convergence Condition 1 (b) is satisfied, and we have

OI = OI,n
n>O

since by definition, the sequence O1,n is nonincreasing in n with respect to the partial

ordering induced by set inclusion, C and

lim inf EI,n = lim sup OI,n = clOI,n - I,n
n>O n>O

by a straightforward argument, so that indeed EI = nn>O I,n,. Note however that

EO,n need not necessarily be nonincreasing in n, as example 5 below illustrates.

It is now useful to indicate the speed at which the identified set at sample size n

converges to its limit under the Hausdorff metric:

Condition 2 There is a non-increasing sequence n7 of non-negative constants such

that

dH(OI,n, OI) = O(n)

It will usually not be straightforward to derive the rate Tr from the primitives of

the problem, but we can continue the discussion of the conditional moment inequality

problem in Example 3 to illustrate the approximation property of OI,n with respect

to the sharp identification region.

Example 5 Consider the setting of Example 3. Suppose z is scalar, and for ev-

ery n = 1, 2,..., h(z, 8, Pn) has bounded second derivatives in (z, 0) at all values

of z C Z, where for now I assume that Z is a compact subset of IR. Also let

Dn(z,0) := °h(z, 0P,), and suppose that there is a sequence an of constants such

,~;I-i,~~r?~l~~,--i--,I ,;-. ;;; ;;;.;;--I; -;-i ;;-~:~-~i~;:~ ii;~:;-r~~ ; -;;;;;- - ; _-~i~ ~;1~ ;- ---; --: ;-;,:;-,~1;-~. --~:1~~~



that anl/rnl/211D,n(Zi, 0)I1 is bounded away from zero. Also assume that for some se-

quence pm -- 0, supzz I[h(z, 0, P) V (-r)] - [~m(z)'1(0)m V (-r)]I = O(c,) for some

r > 0 and any 0 C 0 (e.g. by Proposition 2.8 in De Boor and Daniel (1974), for

B-splines with nonnegative coefficients of fixed order k with m evenly spaced knots,
-1/2

c:m = .- 2) Then, as shown in the appendix, Condition 2 holds with T-, = r

In order to allow for the rate of convergence of the set estimator to differ across

the k dimensions of the parameter space. we are now going to define a rescaled Haus-

dorff distance. For some deterministic sequence Pn(O), - - - , PUk,() of appropriately

chosen constants and some positive number r > 0 (all of which will be determined by

Condition 4 below) I specify a parameter-dependent diagonal matrix

Sn,o = diag(P(O)l/r, . - , kn() / ) (1.7)

In the following, I am going to use the properly renormalized Hausdorff-metric

Vn(A, B) := min sup d(S,,oO, Sn,oB), sup d(S,A, Sn,o0) (1.8)
OEA OEB

which differs from the usual Hausdorff distance in that the scaling of the local pa-

rameter space inside the supremum depends on the order of arguments. In a slight

abuse of notation, I will also denote the pseudo-distance of a point from a set by

,(0, A) := o,({Q}. A).

I will now develop an abstract consistency result for set estimation in terms of

the sample criterion function Q,(0), which will then be applied to the set estimation

problem outlined in section 2. The criterion function nQ, ,(0) can be decomposed into

nQ,(0O) = pn,Y,,(O) + m,,,n(O) + Rn(0)

where ,(0) and S,(O) are non-stochastic functions. For the moment inequality

model, y,,(0) will have the interpretation of the identifying ("signal") content of the

population moments, and 6,(0) will be the expectation of the "noise" contribution



(n(0) := ,(0) - Epn[g(Y, 0)] of the sample moments. I will also define cn, : m
An

where the focus of attention will be on cases in which can -- a c [0, oc) and p~ - 00

as n -- oo.

In order to allow the strength of identification in terms of asymptotic rates to differ

over the parameter space, I have to scale the criterion in a way which may potentially

result in it or its components taking infinite values, a case which has been considered in

the literature on constrained M-estimation among others by Geyer (1994) and Knight

(1999). Under these conditions, we can typically not achieve uniform convergence,

but I will rely on the weaker notion of epi-convergence (see e.g. Rockafellar and

Wets (1998)): Recall that a function f(0) is lower semi-continuous (l.s.c.) if for any

sequence 0, -- 00, liminf, f(0n) > f(Oo). We then say that a sequence fn(0) of 1.s.c.

functions epi-converges to a l.s.c. function f(0), fn(0) ep f(0), if for every sequence

0, - 00o one has liminfn fn(0n) > f(Oo), and there is some sequence O, - 00o such

that lim sup fn(On) < f (0o).

We can now state our main conditions on the criterion function:

Condition 3 (Criterion Function) The criterion function nQn(0) is nonnegative and

lower semi-continuous and

(a) The rescaled population criterion function 7y,() is nonnegative and lower semi-

continuous, arginfo y(0) - OEI, C e, and info yn(O) = 0.

(c) For some constant 0 < K < o00,

sup min{K, ,s 1n,(0) - a.6n(0)} min{K, -(0)} 0
0ee

(d) 6,(0) is uniformly bounded in 0 E 8

11Note that this condition is equivalent to convergence of the epi-graphs epifn :- {(0, y) :y >
f(O), 0 E 6} to epif with respect to PK set convergence, see Rockafellar and Wets (1998) Proposi-
tion 7.2.



Part (a) is mainly needed to ensure that the identification region as defined through

the population criterion function is closed, and that the limit in part (b) yields a

well-defined minimization problem whose solution will correspond to the sharp iden-

tification region. 12 Part (c) requires uniform convergence in probability, where the

truncation at a fixed level K avoids problems in cases for which -/,(0) diverges to

infinity in some parts of the parameter space.

The following condition quantifies the "strength" of identification of the entire

identified set and modifies the standard condition for consistency in the point identifies

case (see e.g. van der Vaart (1998), Theorem 5.52) or condition C.2 in Chernozhukov,

Hong, and Tamer (2007) for the set-identified case.

Condition 4 (Polynomial Minorant) There exist positive constants ( 1, K2 , r) such

that for every E > 0, there exists K, > 0 such that for n large enough,

inf r A Q(
ee:p({doi,,)(,)r (^ Y n1/r1() , ( I,n) A K2)

with probability greater than 1 - E.

Informally, we can read Condition 4 as putting a lower bound on the subgradi-

ents of the suitably normalized population criterion function over all points on the

boundary of the identified set.13 This is a direct analogue of the rank condition for

identification in the point-identified case, a.s e.g. in Assumption 1 of Newey and

Windmeijer (2008). Essentially this condition requires the rescaled signal part ln(0)

of the criterion to be bounded from below by a polynomial in the Euclidean distance

of 0 from the identification region OI,n.

12Note that if we let y,(O) = Q,(0) as defined in (1.2) and -y(O) = Qo(O) for the moment inequality
setting in section 2, then by Theorem 7.31(b) in Rockafellar and Wets (1998) Condition 3(b) taken
together with Condition 4 below ensures that for the nr, blow-up of H ,,, lim sup, a cE C bi for
any strictly positive sequence s,, - 0. On the other hand, by part (c) of the same Theorem, there

exists a sequence E' - 0 such that lim sup, OI = 81, so that Condition l(b) holds. If O1, is
nonincreasing in n, the second statement is clearly true for any positive null sequence E,,, in which
case Condition l(b) will be redundant for the consistency result below.

13 Since the population criterion function y,(0) is typically not smooth on the boundary of the
identified set. the gradient is not defined, so instead we have to consider the subgradient set OQ(0),
which is typically a convex cone, see Rockafellar and Wets (1998).



In order to analyze the convergence rate of the set estimator, we can now define

the rate of "global" strength of identification

:lim inf min ,,j(0) (1.9)
E10 aOE6, n j<k

where A- := {0 E 8 : d(O, A) < e} denotes the closed e-blowup of a set A. In the case

of the linear IV model with a scalar endogenous regressor, pt, corresponds to the rate

of the concentration parameter. Note also that I allow the strength of identification

to vary across the boundary of the identification region. 14

To fix ideas, consider the most important special cases of this setup

1. the "classical" case of strong identification, which corresponds to PIt = n and

mn = m. In the case of identification regions with a non-degenerate interior,

Chernozhukov, Hong, and Tamer (2007) show that the set estimator defined

below is \,' -consistent with respect to the Hausdorff distance.

2. the set-identified version of weak identification with a fixed number of moment

conditions, which is given by m, = m constant, and constant strength of mo-

141n order to see how this can happen in realistic applications, consider the following stylized
example in the spirit of Manski and Pepper (2000)'s Monotone IV assumption:

Example 6 () (Bounds on the ATE in the Presence of Attrition) Suppose we want to evaluate the
effect of a binary treatment, Ti E {0, 1} on a random variable with potential outcomes Yit = Cai + it
under treatment t - 0 and 1, respectively. Suppose now that we have three different assignment
mechanisms: Zi = 1 corresponds to voluntary participation, Zi - 2 to full compliance, and under
Zi = 0, all subjects are precluded from taking up the treatment, where we assume that the usual
monotonicity condition holds, i.e. P(Dio 5 Dl < Di2 ) = 1, where Dik denotes the counterfactual
treatment status under the treatment regime Zi = zk. To make the problem interesting, assume that
there is also a problem with differential attrition, or some other violation of the exclusion restriction,
such that E[YitlZik = z] is increasing in z E {0, 1, 2} for t = 0,1. The effect of treatment on the
outcome for individual i is given by i = - Y*Y, and say we are interested in estimating the average
treatment effect (ATE) for the non-attriting population under Zi = 1 given by /o := E[3ijZi = 1].
Assuming that the averuge effect on the treated under voluntary participation is greater than the ATE
(this could be justified e.g. by a Roy selection model), the moment restrictions implied by the model
are E[(Yi - a)lZi = 0}] < 0, E[(Yi - a - TiP)1{Zi = 1}] < 0, and E[(Yi - a - P)Il{Zi = 2}] > 0
where we can use the sample analogs to estimate the bounds.
Now, if under the voluntary treatment regime, take-up is very low, the upper bound on the ATE is
only identified off a rather small group of "compliers" vis-&-vis the regime under which no subject
receives treatment. On the other hand, the complier group corresponding to a change from voluntary
participation to full compliance is then relatively large, so that identification of the upper bound is
much weaker than that of the lower bound.



ments, P, = p. Our results will show that for this case, the rescaled criterion

has a non-deterministic limit, and the set estimator is inconsistent for any choice

of critical values.

3. the many weak moments scenario corresponds to p, -> oc and m, -. I will

establish that if we have in addition that "n - 0, there is a consistent set

estimator.

For a critical value c, we can define a set estimator as

C,,(c) = {0 c e : nQ,,(O) < c}

In order to ensure consistency, the critical value c,, should increase in sample size,

and has to be chosen in a way such that C,(c) covers the identified set OI,, with

probability approaching 1.

Condition 5 (Cutoff Value) There is a sequence 6n, which may depend on the data,

such that (i) 4 0 and (ii) P (suPo,,,, nQn(0) > n- 0

The first part of Condition 5 requires the cut-off value to grow at a smaller rate

than the rate of the signal component of the criterion function which, in conjunction

with Condition 4, will force the set estimator to shrink towards the identified set

from the outside. On the other hand, the second part of Condition 5 implies that the

cut-off has to grow sufficiently fast to dominate the noise component in large samples.

In general, there is no guarantee that such a sequence ,, exists, but I am going to

give primitive sufficient conditions below in this section.

We can now state the general consistency result for the set estimator C,:

Theorem 1 (i) Suppose (, --+ 0 and Conditions 1, 3, and 5 hold. Then dH(C,, 87,,) -

0 so that C, is consistent. (ii) Suppose Conditions 1, 4, and 5 hold. Then C,, is a

consistent estimator for OI,n, and

l'l ),(n(n('n), OI,n) = Op(1)



From Condition 2 and the second part of Theorem 1 we can now give the conver-

gence rate of the set estimator with respect to the limiting identified set 8O.

Corollary 1 Suppose Conditions 1, 2, 4, and 5 hold. Then

An 1/rn(C(an), E1) = OP an V 7,
(An )1

/ r

Example 7 (Conditional Moment Restrictions, continued) Under the choice of basis

functions discussed in Example 5, and noting that in this example An = a' and r = 2,

the set estimator under a conditional moment restriction satisfies

An1/2 On(n(n), dI) = OP nV nmn4 
1 / 2L

n

If mn --+ o0 and 'n 0 O, we can find a critical value for which 'n _- oo satisfies

Condition 5 and obtain a consistent estimator for the sharp identification region. In

close analogy to more familiar problems in nonparametric estimation, we can inter-

pret ,-2 as the rate of the approximation "bias", and a as the rate of the "variance"

contribution to the squared Hausdorff distance between the set estimator and the iden-

tification region, where relative to the standard setting, both parts are inflated by the

factor n accounting for "weaker than strong" identification.

If the distribution of the criterion does not degenerate in the interior of the sharp iden-

tification region, we can only bound the optimal rate for m* by m* = o (n1/5 V )

since an - 0 (note also that in this example, the sequence pn doesn't depend on

the number of moments). This bound depends on the rate of &,, and following Cher-

nozhukov, Hong, and Tamer (2007) a feasible choice would be an = m log n, imply-

ing that m n = O . For strong identification, i.e. pn = n, we can there-

fore bound the rate at which the set estimator converges in Hausdorff distance by

dH(Cn, e1) > 0 (n-2 /5). If the dimension of z is greater than 1, the "bias" term

will vanish at a slower rate, so that the optimal number of moments will typically be

greater than in the scalar case.



The previous example illustrates that in realistic cases, the information about

the parameter (in this example the rate of the approximation error) from additional

constraints can be quite small compared to their "cost" from adding noise to the

estimation problem, so that keeping the number of moments small in small samples

may in fact result in smaller set estimates or confidence regions.

1.3.1 Moment Inequality Model

I will now give primitive assumptions for the moment inequality model that are

sufficient for the conditions for consistency of C,. To fix notation. following Han and

Phillips (2006), I will write the moment functions as the sum

gn,(Yi, ) = I,(0) + ,n(Y, 0)

where ,,r(O) = IEp [g,,m,(Y, 0)] is the population expectation, and mn(Y, 0) = m ,(Y, 0)-

,,m(0)) the noise component of the mth component of the moment vector for sample

size n. Also define

i=1

The partial derivatives of the moment functions CG( 0 ) = -g(Yj, 0) are stacked

into the matrix Gi(0) = [Gl(0).... ,Gik(0)]. The average Jacobian is given by

G(,) = i Gi(0), and we denote the expected Jacobian by G(0):= Ep[Gi(O)].

Assumption 1 (Set Identification) (a) There are constants 6, C > 0 such that for n

large enough

n lln(0)lw > CC(g,(0, .) A 6)r

for all 0 E O, where [xl|w,- denotes the Euclidean norm of the component-wise

negative parts of a vector x given a weighting matrix W, and -,(., .) is as defined



in 1.8. (b) There is a sequence of constants ,r -+ 00 which is defined as

p, : lim inf min Ajn (0)
EO ce, n j<k

Note that if jn(O) has uniformly continuous Jacobians G,(0), Assumption 1 holds

if the smallest eigenvalue of H(0) - lime nS, C"O(O)G(O)'Sn,1 is bounded away from

zero uniformly over a0I,, and minj<mn infoeaei,, PIn(O) --> o. Note that for the

point-identified case this corresponds to Assumption 1 in Newey and Windmeijer

(2008).

We now state the main regularity assumptions on the signal component of the moment

functions:

Assumption 2 (Moment Signal)

(a) The expectation of the moment functions g,(0) E= Ip[gin,()] is continuous in

0 c 0 for all n.

(b) The population criterion function

n n
Y (0) := Q, (0) = n min(gn(0 ) - t)TW (0) (9n (0) - t)

is nonnegative and lower semi-continuous,

If the weighting matrix is diagonal, the "signal" ,y(0) from the moment restrictions

is a weighted sum of the squared negative parts of the moment vector at 0. Note

also that part (b) of Assumption 2 does not require yn(0) to be finite in the limit.

This is particularly important in the case in which the strength of identification varies

across dimensions of the parameter space and different regions of the boundary of the

identification region. We now state our main conditions on the noise component of

the moment vector:

Assumption 3 (Moment Noise)

.) -- " ?5 ................... ' ':



(a) For the rate of the number of moments, m,,, we have

6,(o) = m;n(nQn(O) - Pny,()) = OP(1)

(b) 6n,() 4 6(0) uniformly in 0.

(c) The first four moments of (m,(O) are bounded uniformly in 0.

(d) max,m<r,, )lnri.,,0() is tight.

(e) The distribution of supoej,,n nQ ,(0) is continuous.

All parts of Assumption 3 are fairly standard. I also impose a high-level assump-

tion on the convergence of the weighting matrix in order to include the practically

relevant case of a data-dependent choice for Wn,(0):

Assumption 4 The weighting matrix W,(0) converges in probability to W(O) in the

sense that

max Iwl,,,fl(0) - Wim(0) 1 0
l,rn<m,

uniformly in 0, where wt,,n (0) and m,, (0) are the (1, m) elements of W,, (0) and W (0),

respectively.

In most standard settings, a necessary condition for 4 to hold is that 'I -4 0. If

SIn (0) is the inverse of the variance-covariance matrix of the moment functions, we

would have to require in addition that the fourth moments of (i,(0) are bounded

uniformly in 0 C 0.15

I will now give the main condition on the relative rates of number and strength of

moments:

Assumption 5 p,, -- oc and c, :- - 0 as n -- oc.

l"Typically, in a setting with many moment conditions we would also care about higher-order
efficiency of the estimated inverse variance matrix, as delivered by Empirical Likelihood (see e.g.
Newey and Smith (2004)). However, in estimation using moment inequalities, the bias from esti-
mating the slackness parameters is of the same order as that from estimating the Jacobian and the
weighting matrix. Since no GEL criterion function appears to address the former problem, efficient
weighting does not lead to an improvement in the rates for the set estimator.



For the classical linear instrumental variables problem Chao and Swanson (2005)

showed that 2SLS is consistent under the rate satisfying Assumption 5, whereas LIML

is consistent as long as n - 0. As we will see below, in set-identified settings,

inverse variance weighting will typically not achieve this improvement in rates because

the "noise" component of the criterion will depend on the parameter 0 not only

through the variance of i,(0), but also through the slackness [g,(0)]+ of the moment

restrictions.

1.3.2 Criterion and Decomposition

We will now analyze consistency for the set estimator based on the Wald statistic

nQ,(O) := nmin |gn(0) - tll2 w() = min (n(0) - t) + (n(0) w( 2)

for the moment inequality problem. Denoting the projection of a vector x onto

a convex cone C with II(x C, W) := argmint~c x - t| w, we define /ton(0) :

II(v'Tnh(0)[R , W,o) and V/-nt(0) := II(vn,(0) + (n(0)|RM", Wn,O). Note that the

projection 1I(x C, W) is well-defined and unique (see e.g. Theorem 1 in section 3.12

of Luenberger (1969)).

The following proposition states that under the assumptions made above, after proper

rescaling, the criterion function converges uniformly to the decomposition into a signal

and a deterministic noise component:

Proposition 1 Under Assumptions 2-4, and oa, = r a < on,

sup(An,ohn(0)) rQ(00) - nO (Yn(O) + Oann(0)) 0
oce

where hn,() = 1 V 7,(0), and

6n(0) = EII|((0) - v'PG(tn(0) - ton()) W11,o - 2n(n(0) - ton(O))'Wn,o(E[in(O)] - ton(O))

~ ~~~~~~;r~~;;;;~;~-~;~: ~'I'; LL ~l":-~.~l~-:~~-I_ ii i. __~;i_*:j-~l~"~" ~;; ':~""' -'L-- ---'i;'--'i-'-~' ;' - i; : -:~-r~-i;iiF



The first term of the noise component 5,,(0) is the expectation of a quadratic form

of the projection residuals, which in the case of moment equalities16 collapses to

tr(Wn.oSn(0)), the bias term of the standard GMM objective function (see e.g. Donald

and Newey (2000)). Since a given moment only contributes to this bias term when

it is binding, the bias on the criterion function is in a loose sense less severe than in

the case of moment equalities. This discussion also suggests that we should expect

finite sample bias to be more of a problem if the identification region is small or

identification is weak in the sense that at all points of the identification region a large

number of moment restrictions is close to binding. Note also that in the identified

set, .(0) - ton(O) = 0, so that the second term in 6, is nonzero only outside of the

identified set O),,.

Lemma 1 Suppose Assumptions 1-3 hold, and that there is a (possibly random) se-

quence n such that n -> 0 and m_" 0. Then c, satisfies condition 5, and we
-tn Cn

have

P sup nQ,,,(0) > , - 0

PROOF: By Assumption 1 (a), 7,(0) = 0 for 0 e 0)/,. Hence, by Proposition 1,

sup /Ln nQn(O) - m.n(0)IA 0, and sup 6n(0)1 < B
OC le, E0 1,1

for some B < oc by Assumption 3. Therefore, for any Tr, E > 0 and n large enough,

P( sup Lp 'nQn(0) - TI< lj, ,) > P( sup ,1 'm1,,(0) < ,, ,,)
OCe ,, 0EO,,,

> P(m,, B < c,,) > 1-

where the last step follows from -c A 0, and supoce,, S,(0) < supOE-),,, 6n(0) < B

where we used (O,n C O,,n from Assumption 1. Since the choice of r7 > 0 was arbi-

trary, the result follows from Assumption 3 (b) Ei

16recall that we can represent any equality as a combination of two deterministically related
inequalities



Since Assumption 5 ensures that a critical value , satisfying the assumptions

of Lemma 1 exists, we can now state our main consistency result for the moment

inequality model:

Theorem 2 The Moment Inequality model given in Assumptions 1-5 satisfies Con-

ditions 3-5. Hence Theorem 1 applies, and the set estimator Cn is consistent.

This result can be modified to accommodate moment selection procedures as in

Andrews and Soares (2007), which can in many cases mitigate, but not entire solve,

the problems with bias under many moment asymptotics. Also, while continuously

updated inverse variance weighting is known to remove parts of the higher-order bias

in GMM (see e.g. Chao and Swanson (2005) and Newey and Smith (2004)), for set

estimation there will typically not be an improvement in the rate results as illustrated

in the following example.

Example 8 (Linear "One-Sided" Instrumental Variables, continued) For simplicity,

assume that errors are independent of Zi with Var(Y - XiO0Zi) = U2(0). Then it can

be seen that for a weighting matrix of the form Wn,() = s,n(O) 2 ( Z'Z)- , the noise

component converges to 6(0) = H (0) for some function H(0) which by inspection

is minimized at some point in the identification region Gi (in the case of classical

linear IV, H(O) = 1). Note that the latter depends crucially on the variance of the

moment functions being a scalar multiple of 1Z'Z at any value of 0. By definition,

o-(0) 2 is minimized at the probability limit of the OLS estimator, so that for s,(O) = g,

a constant, p-Q(0) = y(0) + a-i()2 H(0) is minimized at a point which is "biased

towards OLS" unless a = 0. On the other hand, for continuously updated inverse

variance weighting, Sn(0)2 - a (0) 2, the limiting criterion is minimized at some point

in the identified set. However, in contrast to the point-identified case, this feature

does not lead to an improvement in the fastest permissible rate for m~n as in Chao

and Swanson (2005), but only guarantees that the limit of the set estimator has a

nonempty intersection with the sharp identification region.



1.4 Confidence Regions

In this section, I will show uniform validity of inference procedures using critical val-

ues obtained from "plug-in asymptotics" (henceforth PA) and subsampling. More

specifically, we will consider the asymptotic confidence size of a nominal 1 - a confi-

dence set o := {0 E O: T,(0) < c(O, 1 - a)} based on a test statistic T(0) given a

(possibly parameter-dependent) critical value c(O, 1 - a).

Following Andrews and Guggenberger (2007b), we define the asymptotic confi-

dence size of C,, as

,4syCS := lim inf inf P( ( (0) < c(0, 1 - a)

where Po is the set of null distributions (0, P) for 0 E (91 (P), the identification region

corresponding to the measure P.

By taking the infimum over (0, P) before taking limits, this definition requires

in particular that the underlying hypothesis test has size less than or equal to a

uniformly in both the parameter of interest 0 and other nuisance parameters of the

distribution of the data, P. Uniformity with respect to 0 is a minimal requirement

for the correct coverage probabilities for the resulting confidence sets, and uniformity

with respect to other features of P gives the procedure certain robustness properties,

including robustness when identification is weak in the sense of the preceding discus-

sion, or when the identification region is small, as discussed by Imbens and Manski

(2004) and Stoye (2009).

Uniform validity of Gaussian asymptotic and subsampling procedures for inference

with a finite number of moment conditions has been shown by Andrews and Guggen-

berger (2007b), and I am going to show how to modify and extend their arguments

to situations with a growing number of moment inequalities.



1.4.1 Test Statistics

I now give a general framework of test functions S(g, W) which depend on the

(infinite-dimensional) moment vector g and a weighting operator W. The test func-

tion may depend on g or a suitable nondecreasing transformation p(g, m, n) of g

which may vary with sample size n and the number of elements of g used for infer-

ence. This will make it possible to introduce a proper normalization of the moment

functions as well as incorporate generalized moment selection procedures as in An-

drews and Soares (2007) into our framework. In order to account for the fact that

only m moment conditions are used for inference, I will consider the component-wise

transformation Wmn(g) whose lth element is given by

~(1(g) := g11{1 < m}

where m is the number of moments used for inference.

The weighting operator W : 12 x 12 - IR is a positive definite bilinear mapping on

the space of square-summable sequences in R (a bilinear map is said to be positive

definite if for any x E 12, W(x, x) > 0, where the inequality is strict if x 7 0). In the

Hilbert space 12 endowed with the norm induced by the usual scalar product,

W(x, y) = (x,y)w = (, Wy) = xzwijy (1.10)
i,j l

so that the weighting function can be represented by the linear operator W. In order

to operationalize convergence of bilinear forms, we will use the metric induced by the

operator norm for W in 12,

d(W, W2) := sup I(W - W2)xll

The weighting operator W is a member of I C {B : 12 - IR such that q(x) -

(x, Wx) positive definite} C B(12), the space of bounded, self-adjoint linear operators



on 12.17

Since in finite samples only a finite-dimensional subvector of q is used for inference,

in some cases, the weighting matrix is replaced by S( (Wn, m, n) := ({wkln{k, I < m} } k, 1

where wkl is the (k, I)th element of the inverse of W. This mainly concerns the

case W,,(O) = Q(0) - 1, and since this transformation preserves continuity in nuisance

parameters and positive semi-definiteness, I will suppress the function V)(.) in the

subsequent discussion.

Given a choice of a test function S(., .), we will consider inference based on the

statistic

Tnm(O) = amS(4(nmln(o)), Wr(O))

where rn,, is the number of moment conditions used for inference, and am is a sequence

of known normalizing constants which will ensure that the distribution of the test

statistic does not degenerate as the number of moments grows. Note that the mean

of the distribution of T~(0) will typically depend on the slackness of the constraints

in a complicated manner, and may well diverge as the number of moments grows.

However, this turns out not to be relevant for the uniform coverage results presented

in this section, and I will therefore address this point only for the distribution under

the least favorable hypothesis.

1.4.2 Examples for Test Functions

A commonly used test function penalizes the one-sided deviations of the sample mo-

ment functions (see e.g. Manski and Tamer (2002)) and can be extended to

SI(g, W) =
S1> 1 1

17Note that below, W will only operate on differences (g- t) for some nonnegative sequence t. Even
though the moment vector g need not be square-summable, for the value of t solving the optimization
problem implicit in the computation of each of the statistics below, we will have (g - t) E 12 with
probability 1 under the null hypothesis.



where au1(O) = Var(gi(O0)) so that the corresponding test statistic takes the form

Trm,1(O) = amSi(4 2((M)), Wn(O))= amrZ - 2

For a fixed value of m, this statistic coincides with that defined by the function S1 (, .)

in Andrews and Guggenberger (2007b).

The second statistic of interest is an extension of the quasi-likelihood ratio statis-

tic (QLR, see Silvapulle and Sen (2005)), which has also been applied to the problem

of set inference based on moment inequalities, see Rosen (2008). I consider a modifi-

cation which allows for a sequence of moment functions,

S2(g, W) = min g - t2t>O

so that the corresponding test statistic takes the form

Tnm,2 (O) = amS 2 (nlm(]n(O)), Wn(O))- amnmn(Om,n(O) t)'Wm,n(O)(Pm,n(O) - t)
t>O

where 4m,n denotes the subvector consisting of the first m components of n, and

Wm,n denotes the corresponding m x m submatrix of Wn.ls

Note that in principle, evaluating the test function S2 involves a minimization

over an infinite-dimensional parameter (see e.g. Luenberger (1969) or Rockafellar

and Wets (1998)), but in finite samples we will only have to deal with the finite-

dimensional version of this problem, since for each n we use only a finite number of

moments for inference. Either statistic can be combined with a moment selection

procedure like the one suggested by Andrews and Soares (2007) to improve power in

cases for which some moment constraints are very slack for some parameter values 0.

Furthermore, I consider the Generalized Empirical Likelihood Ratio (GELR) statis-

tic which for point-identified problems defines the class of GEL estimators analyzed

"sVariations of this statistic with different choices for the weighting matrix and the cone for t have
been analyzed frequently in the literature, e.g. if we replace the maximization over t E R with

t E Cw :- W()-1/ 2 R, we obtain the weighted GMM statistic considered in e.g. Pakes, Porter,
Ho, and Ishii (2006) or Chernozhukov, Hong, and Tamer (2007). S 2(n(O), n(O) - 1) is the QLR
statistic.



by Newey and Smith (2004). One of the most prominent subcases is the Empiri-

cal Likelihood Ratio (ELR) statistic for which Canay (2007) showed large-deviation

optimality for tests under moment inequalities. The GELR statistic is given by

n

iGELR(0) := inf sup nP(A, 0, t) = inf sup p ((A, gi,(O) - t)) - np(0)
t> AcA(O,t) t>OA t)t ,,o t)- A A(o,t) i=1

where g(v) is a strictly concave function of v, P(A. 0, t) = p ((A, g,(0) - t)) -

p(0), and A,(0, t) = {A E 12 (A, gi,(0) - t) c dom o}. For g(v) = log(1 + v), the

GELR statistic corresponds to the Empirical Likelihood Ratio statistic, and if the

data are i.i.d. and g(v) = - (1v2 this becomes a feasible QLR statistic with W,(0) =

Q,(0), see e.g. Newey and Smith (2004). Even though the GELR statistic can't be

expressed directly in terms of a test function of the average moment vector q, and a

weighting matrix, in section 4 we will give conditions under which the GELR statistic

is asymptotically equivalent to S 2(g, Q(0)-1) under many moments asymptotics.

Another test function of interest is

53(g, W) sup (a, W'/ 2g)1
aEACCw

where we take the supremum over certain positive linear combinations of the moment

functions. E.g. for W = I and A = {el, e2,... }, this statistic simply penalizes the

largest violation in the set of constraints. The Kolmogorov-Smirnov type statistic for

countable intersection bounds arising from the conditional moment inequality model

in Chernozhukov, Lee, and Rosen (2008) using series approximations falls into this

class.

1.4.3 Main Assumptions

I will now state basic conditions on the test functions used for the construction of

confidence sets. Below, we will show that all test functions discussed in Section 2

satisfy these requirements.



Condition 6 The statistic of interest can be expressed as Tnm(0) = am(S (gnm(O), Wn(O))-

Bm) + Op(l), where

(a) The statistic S(g, W) is nonincreasing in g.

(b) S(g, W) is continuous at g E 12 and W E '.

(c) S(Ag, A- 1WA- 1) = S(g, W) for all g E 12, W C I and p.d. diagonal A.

(d) S(g, W) > 0 for all g and W positive definite.

(e) S(g, W) is quasi-convex in g for W positive definite.

Note that for any continuous nondecreasing function p : 12 --- 12, S(W (g), W)

inherits properties (a),(b),(d) and (e) from S(g, W).

For the following condition, let yp(g) be the subvector obtained from g by elimi-

nating all components m with him = oc, and let (W) be either the sub-matrix of W

corresponding to the elements in p(g), or the inverse of the corresponding sub-matrix

of W - 1 if W = Q- 1.

Condition 7 For all positive sequences (with some elements potentially being infi-

nite) hi E Ro, all W E T, and Gaussian sequence Z with mean zero and covariance

operator Q, the distribution function of S(Z + hi, W) at t E R is

(a) continuous for t > 0

(b) strictly increasing for t > 0 unless him = oc for all m = 1, 2,...

(c) less than or equal to 1 at t = 0 whenever him = 0 for all m = 1, 2, ....

(d) For the selection functions p(.-) and 0(.) defined above, S(p(g), ?(W)) = S(g, W).

Note that part (a) and (b) require that the statistic is normalized properly thus

ensuring that its distribution doesn't degenerate at any point on the positive real

axis, except potentially at zero.

The moment functions will be required to have uniformly bounded fourth moments

in order to allow for a Gaussian approximation and consistent estimation of the

- :' "2-2 _2:2 2
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covariance matrix under the restrictions on the rate for the number of moments

given below. The latter is necessary for the calculation of PA critical values, and in

some cases the weighting operator may also depend on estimated components of the

covariance operator.

Condition 8 There exists a constant C such that for all m and n E gim(0) -

I,,,(0) I4 < C uniformly in 0.

The rate at which we can allow the number of moments to grow has to be slow

enough to ensure that we can approximate the distribution of the moment vector by

a Gaussian is given by the following condition.

Condition 9 The growth rate of the number of moments satisfies m, - o00 and

S-r- 0.

Note that this rate condition is much more restrictive than that needed for a

normal approximation in the point-identified case, e.g. Newey and Windmeijer (2008)

show that if the moment functions are uniformly bounded, the AR statistic can be

approximated under the null hypothesis by a chi-squared with mn,, degrees of freedom

as long as " --* 0. For moment inequalities, the chi-bar square approximation is an

weighted average of chi-squared random variables with degrees of freedom less than

or equal to m,, (see e.g. Silvapulle and Sen (2005)). However, this approximation

relies heavily on the rotational symmetry of the distribution of Gaussian random

vectors and therefore only valid if the moment vector is centered at the origin and

not approximated well enough by a multivariate normal distribution. For the more

general case, the distribution of the length of residuals from projections of random

vectors onto convex cones is not well understood, which does not rule out that the

rate stated in the previous condition may be improved upon for many instances of

the test function S(., .).

Example 9 (Conditional Moment Restrictions, continued) The rate condition need

not be restrictive if we are mainly interested in inference on the sharp identification



region. The optimal rate for consistency derived for set estimation under a condi-

tional moment inequality in Example 7, m = o (n1/5), satisfies Condition 9. Hence,

according to our main results on inference with moment inequalities below, the rate

needed for the Gaussian approximation to be valid does not impose any additional

restrictions if the number of unconditional moments is chosen as to ensure the fastest

possible rate of convergence for the set estimator discussed in Section 3. However, if

the conditioning variable has dimension greater than 1, the curse of dimensionality in

the approximation error for the function h(z, 0, P) may make Condition 9 the binding

constraint on the number of moments.

For a given sample size n, we will parameterize the null distributions (0, P) =

(8, Ph) E Po by 0 and a vector h E H for some appropriately chosen index set H.19

h can be split into three components hi, h2, and h3, where hi contains the slackness

parameters of the moment inequalities, hi = n1 /2 /'nE[gim(0)], where the some con-

straints may be close to binding at 0, so that this limit may be finite. The vector h2

contains auxiliary parameters that have to be estimated to obtain the weighting op-

erator W, and we will assume throughout that all components of h2 can be estimated

consistently. h3 captures other features of the underlying population distribution P

and may be infinite-dimensional. This distinction is important when we analyze sub-

sampling procedures since in many instances, the subsampling distribution gives a

poor approximation to features of the population distribution which are best mod-

eled by local parameters (see e.g. Mikusheva (2007) and Andrews and Guggenberger

(2007a)).

We will now consider two different procedures to obtain critical values for the

construction of confidence intervals:

19 Note that Po does not have a cartesian product form in the coordinate pairs (0, P), since the
set of possible values 0 is given by the identification region Or := OI(P) and therefore depends on
the choice of P.



1.4.4 "Plug-In Asymptotic" Critical Values

The PA critical value CF(O, 1 - a) is computed using a consistent estimator h2 for

the nuisance parameters h2 and replacing the component of the nuisance parameter

vector hi which cannot be estimated consistently with the values corresponding to

the least favorable hypothesis, usually h1 - 0. More specifically, let

Tr(hl, h2,0) := am, S(Anm7 (hi + Zn), W/,) (1.11)

where Z, is a Gaussian vector with mean zero and covariance operator Qn ,h2 . Since

by condition 7 (a), the distribution of T,(hl, h 2, 0) is continuous for t > 0, we can

choose the plug-in asymptotic critical value cF(O, 1 - a) as the smallest value c such

that

P(T,(O0, i 2n, 0) < c) >_ 1 - a

In practice, one obtains &F(0. 1 - a) as the 1 - a quantile of a simulated sample of

T(O. h2, 6) based on Gaussian random draws Z,.

In order for the procedure based on PA critical values to be similar on the boundary

of the null hypothesis, we need the following condition to hold:

Condition 10 For some (0, P) e Po with h1 (0, P) = 0, the distribution function of

S(Z, W(O, P)) is continuous at its 1 - a quantile, where Z is a mean zero Gaussian

sequence with covariance operator Q(0, P).

This condition requires that the postulated least favorable value of hi is in fact at-

tained by at least one member in the family of probability measures P.

1.4.5 Subsampling Critical Values

For block size b < n, we define the jth subsample statistic given the test function S

as

TnrTnmbj(0) = am (bpn(gbj(O)), Wr,(O)) - 3m



where the subscript j indicates that the moment function is evaluated at the jth

subsample of size b. Note that since the normalizing constants (am, Bm) depend on

sample size only through the number of moments, and are therefore the same as for

the full-sample statistic Tnm(0).

The subsampling approximation to the distribution of Tnim() is then constructed

using the c.d.f. for the subsample statistic Tnmbj (0) over the Nnb subsamples,

Nnb

Lnmb( , t :=N- I ftnmbj (0) <
j=1

where in the case of independent samples, Nnb (b) is the number of subsets of

W1,..., Wn of size b. The subsampling critical value is(0, 1 - a) at 0 is the smallest

value of c such that Lnmb(O, c) > 1 - G.

The subsample size has to satisfy the following requirements:

Condition 11 The subsample size bn satisfies bn -+ 00, -- 0, and - 0.

Note that for estimation of first and second moments of a finite-dimensional distribu-

tion, the optimal rate for b, is typically of the order n1 /3 (see e.g. Politis, Romano,

and Wolf (1999) and references therein), for which the rate of the number of mo-
21

ments would have to satisfy - -- 0, a third of the rate needed for inference based

on plug-in asymptotics.

The following condition will be needed to establish that inference using subsam-

pling critical values is non-conservative in the sense that for at least one distribution

in Po, the asymptotic size of the subsampling confidence set is equal to its nominal

level:

Condition 12 For some (0, P) E 7, the distribution function of S(Z+hl(0, P), W(0, P))

is continuous at its 1 - a quantile, where Z is a mean zero Gaussian sequence with

covariance operator Qh 2 (,P)
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1.4.6 Main Results

We will first state a preliminary result which will both be used for the proof of the

main theorems, but also justifies the use of a particular instance of the generalized

moment selection procedure proposed by Andrews and Soares (2007). Let 0, be a

sequence such that
. .I

lim sup > 1
n (2 log log 'n)1/2

Define (gq) and V/(W) as in Condition 7 (d), and let q,,(g) be the vector obtained

from g by deleting all components m such that g, > ,n, and 4~/,(W) the components

of W corresponding to the elements of W,(g). Then we can state the following result:

Proposition 2 Under Conditions 6, 7, and 8

limsup P(S(p,,(,,), i,,(Wn)) > S(,, W,,)) = lim sup P(S(pr.(,, ), i)' (W)) < S(g,, IW,)) = 0
n' n

Due to the "liminf" in the definition of asymptotic confidence size, it is not suf-

ficient to consider pointwise limits at the parameter h of interest, but limits along

subsequences w, of sample size and all parameter sequences which converge to h. For

this argument we will use the following notation from Andrews and Guggenberger

(2007b):

Notation 1 As in Andrews and Guggenberger (2007b), we define the sequences r, =

(77 a r, 712, ) nd ,, , y/ ,,, 7 ), (y,,, r,,) C IR' x I for all n, where for a given

sequence b,,, N72. 172 f= n '/2 (O), and "1: b,/2 (O,).

Convergence along all subsequences ensures that the limsup and the liminf of

finite-sample confidence sizes coincide and determine the asymptotic confidence size

as defined above. The following is the main coverage result for plug-in critical values

under many moment asymptotics:

Theorem 3 Suppose Conditions 6-9 hold. Then for 0 < a < !, the nominal level

1 - a confidence set based on T,,(O) and critical values a ,(O, 1 - a) obtained from



plug-in asymptotics satisfies

lim inf inf P(T (0) F F(0, 1 - a)) 2 1 -
n (0,P)

If in addition Condition 10 holds,

liminf inf P(Tn(O0) 8F(0, 1 - a)) 1- a
n (0,P)

The argument behind this result is similar to that of Theorem 2 in Andrews and

Guggenberger (2007b), however we have to account for the fact that under reasonable

conditions, the distribution of the test statistic need not converge to a proper limit.

We can also no longer rely on finite-dimensional convergence results for the moment

functions, and we have to re-normalize the sequences and use a truncation argument

in order to ensure that the statistic is properly defined for an increasing number of

moments. Under regularity conditions, we can now give a uniform coverage result for

subsampling critical values:

Theorem 4 Suppose Conditions 6-9, and 11 hold. Then for 0 < a < I, the nominal

level 1 - a confidence set based on Tn(O) and critical values ,n(O, 1 - a) obtained from

subsampling satisfies

liminf inf PF(Tn(O) as (0, 1 - ar)) 1 -
n (,F)

If in addition Condition 12 holds,

lim inf inf PF(Tn (0) 5 s(O, 1 - a)) 1 - a
n (0,F)

The rate condition on m, needed for Theorem 4 is much stronger than that for

Theorem 3. This is a direct result of the fact that the distribution of the statistic

also depends on the nuisance parameters h3 characterizing distributional features of

the moment functions other than the first and second moments. Unlike in the case

of finitely many moments, the corresponding parameters of the sample distribution
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do not necessarily converge to the values corresponding to a Gaussian limiting distri-

bution, but the Gaussian approximation will generally only be valid under the rate

restrictions on m, relative to sample size n or subsample size be, respectively. If

the corresponding components of the nuisance parameter vector converge to different

limits for the sample and the subsampling distributions, there is no guarantee that

the critical values obtained from subsampling will be conservative.

It should also be noted that the rate conditions for Theorem 3 and Theorem 4

are sufficient but not sharp. Below in Proposition 4 we will give sharp rates for

two important subcases which considerably weaker than in the general case, but still

restrict the growth rates in m, relative to n and be, respectively. Hence, there is a

range of growth rates in the number of moment conditions for which the Gaussian

approximation works, but subsampling does not.

As a final remark on the general inference result, I should point out that the

theoretical argument justifying the Generalized Moment Selection (GMS) procedure

suggested by Andrews and Soares (2007) and Bugni (2008) can also be extended to

many moment asymptotics along the lines of the previous argument.2" This insight

is of great practical importance because the power advantage of moment selection

procedures should be expected to play out particulary strongly in testing problems

involving a very large number of constraints.

1.4.7 Asymptotic Results for Quadratic Forms with Gaus-

sian Errors

We will now state different sets of conditions under which the quadratic forms corre-

sponding to the test functions S and S2 converge in distribution to a normal random

variable under the least favorable hypothesis. The limiting distribution of the test

statistics under any value of the nuisance parameter pertaining to the null hypothesis

20More specifically, under quasi-convexity of the test function and imposing the rate condition
needed for the Berry-Ess6en bounds, the proof of their Theorem 1 on asymptotically correct coverage
of GMS confidence sets goes through using the same truncation and approximation arguments as in
the proof of Theorem 3 in this paper. In order to avoid unnecessary additional notation, I will not
reproduce the proof, but refer the reader to the proofs in Andrews and Soares (2007).



will therefore be dominated by a normal experiment.

We will first discuss the case in which the joint finite-sample distribution of the

sample moment functions is Gaussian. Under the conditions for Theorem 3, the

distribution of the statistic for non-Gaussian data will be approximated by that for

a Gaussian experiment, so that the limiting argument will continue to hold.

For the asymptotic normality result, we will apply a central limit theorem for

heterogeneous strong mixing sequences to the distribution of chi-bar square weights

for the QLR statistic. Recall that the chi-bar square weight for j degrees of freedom

is equal to the probability that exactly j constraints are binding (see Kudo (1963)).

For the mrth moment condition, define Dim(O) := ll{Z - II,(ZIIRm, Qnm(0)) < 0}.

Then the number of binding constraints is given by El=, Dim(0). If the moment

functions are Gaussian, by a result from Kolmogorov and Rozanov (1960), we can

give sufficient conditions for strong mixing of Dim(O) in terms of the second moments

of ((0) : ~n(0) - i,(0):

Condition 13 (i) ( = ((1,..., (m) is an m-dimensional random vector with E[(] = 0

for 1 = 1,... , m, E[C('] = nm(0), (ii) the eigenvalues of supm eigQnm(0) < B for

some B < oo, and (iii) for Wkl, the (k, 1)th element of Q we have wkl = o ( k - 1 -2).

Geometrically, this condition also implies that neither the cone CQ-1 corresponding

to the null hypothesis nor its polar cone become "too small" as we add more moment

conditions, so the distribution of chi-bar square weights does not degenerate.

Now let

&m(0)2 := Var m 1/2 Dim(O) (1.12)

Now we can show the following limiting result for the QLR statistic as the number

m of moment restrictions goes to infinity:

Proposition 3 Suppose Condition 13 holds and ( is Gaussian, then the QLR statis-

tic under the least favorable hypothesis, Tnm(0) = am mint>o(n(O)-t)'Qnm(0) 1 (n(0)-

t) converges in distribution to

S( Pnm((n(O)), Qnm(O) - 1) 2 d N(, 1)
( + N(0, 1)

m(/n1 (I + i7-m(0)2)



Example 10 (Diagonal Covariance Matrix) Suppose under the least favorable hy-

pothesis gn(O) " N(0, Q,(O)), where Q2,() = diag(wi1 (0), w2 (), . . .) is diagonal.

Then the finite-sample distribution of T,(0) is chi-bar squared with c.d.f.

P(T(O) > t)= _wj(O)p(X2 > c) = E 2- (Mn)p(X2 > C)
j=1 j=1

where , 2 is a chi-squared random variable with j degrees of freedom. As shown in the

appendix, for mn -- oo we have

2Tn(O) - mn d
-+N (0, 5)

1.4.8 Results for Commonly Used Statistics

We will now turn to the statistics given by the test functions S1 - S3 and the GELR

statistic, and show how they fit into the general framework for which we derived the

general inference results above.

Lemma 2 (i) Under Condition 13, the statistics corresponding to the test functions

S1 and S2 satisfy Conditions 6 and 7 with a, = -1/2 , where Th corresponds to

the number of elements of the subvector (hil,..., him)' that are finite. (ii) The test

function S 3 also satisfies Condition 6.

It is important to point out the role of the correlation structure among the mo-

ments for the choice of am. The most commonly used forms of Cramidr-van-Miscs type

statistics in the literature (see van der Vaart (1998) and also Dominguez and Lobato

(2004) or Linton, Song, and Whang (2008) for examples) are based on the empirical

c.d.f. and converge to functionals of a (non-ergodic) Brownian bridge. In those in-

stances the proper normalizing constant is am = - , whereas the rate am = m-1/2

for the statistics defined by the quadratic forms S1 or S2 depends crucially on the

ergodicity assumption in Condition 13.

We will now give conditions under which the GELR statistic satisfies Conditions

6 and 7:



Assumption 6 (a) The variance of imn(O) is bounded away from zero and from

above uniformly for all m, n, and Condition 14 holds, and (b) tn := arg inft>o n(0) -

t()-l and ':= arg inft>o sup ,ot) Pn(A, 0, t) are defined for all distributions in

M, and mn'lin 2 and mnll t 2 are uniformly bounded for all n with probability 1.

Lemma 3 Under Assumption 6, we can approximate

GELR(0) = S2 (n(0),n()- 1 ) +o ( )

In particular, if m - 0, by Lemma 2 for S2, the GELR statistic satisfies conditions

6 and 7.

The proof of this Lemma follows exactly the same logic as the argument in section

10.3 Andrews and Guggenberger (2007b) and will therefore be omitted. The only

modifications needed for many moment asymptotics are that n,(0) -t = Op (Pm),

in - toll = Op (mn), and that we need - 0 for consistency of the weighting

matrix. This establishes TELR(0) - S2 ((0), (0)- 1)  Op ( - ) op(1) by the

assumptions of the Lemma. Hence we can apply Lemma 2 to establish Conditions

6-7 for the GEL statistic.

We now state conditions under which it is possible to implement feasible inverse

variance weighting for statistics based on the test functions S1 and S2. This requires

that the top left 'n x mr submatrix of the covariance operator QR (0) can be estimated

consistently.

Condition 14 (a) n {E[,n(0)n(0)'] - E[ ,(0)1]E[n(O)']} = Q(0)

(b) There exists a consistent estimator m,n (0), i.e.

!mn,n(0) - Qmn (0) - 0

(c) The eigenvalues of Qm(0) are bounded from below uniformly in m and 0.

(d) The elements of Qm(O) are bounded in absolute value uniformly in m and 9.



Under condition 14 and ' n - 0, the weighting matrix ,(Q,(O). m, n) can be

estimated consistently, and using the results from Proposition 2 and Lemma 3, we

can give a coverage result for some of the most instances of the general framework

for inference set out above.

Corollary 2 Suppose /V,,(O) = Q ,()-'. For the test statistics T,, 1(0) and T,,2(O)

based on the test functions Sl(g, W) and S2(g, 11), respectively, and the GELR test

statistic T,,,3 (0) := n" /2 2 ELR () , we have

(a) Under Conditions 6, 7, 14, 8, and 9, for critical values F(0O, 1-a) obtained from

plug-in asymptotics, the asymptotic size of the test based on Tn,,j(0), j = 1, 2, 3

satisfies

lim inf inf PF(T,,(O) < r(O0, 1 - a)) > 1 - a
n (,F)

(b) Under assumptions 6-7, 8, 9, and 11, for critical values is(O. 1 - a) obtained

from subsampling, the asymptotic size of the test based on T,3(0), j = 1,2,3

satisfies

liminf inf PF(T,,(O) < s(O, 1 - a)) > 1 - a
S(OF)

From Lemma 2 and Theorem 3, we can approximate the distribution of the QLR

statistic arbitrarily well by a chi-bar square random variable, so that we can extend

Proposition 3 to the case of non-Gaussian errors:

Corollary 3 Suppose Condition 13 and the Assumptions of Theorem 3 hold, then

the QLR statistic under the least favorable hypothesis, Tm,, (0) = VI mint>o(~n(0) -

t)'nM(O)-1((n(O) - t) converges in distribution to

1/2TI,,, (0) - dT2 d- N(O, 1)
/1 + m,(0)

2

Recall that Theorem 3 requires that -- - 0 which seems overly restrictive for deriv-

ing the distributions of quadratic forms of the type given by test functions S1 and S2.



We will now give an asymptotic normality result under the assumption that Q is di-

agonal which sidesteps the argument from Theorem 3 and delivers a sharp restriction

on the rate of mn.

Proposition 4 Suppose Condition 8 holds.

(i) If mn, - oc and mn -+ 0, and (,mn are strong a mixing with size -~  then for

Si(g, Q-1) we have

S(W"n n) /nAn d
i2n - N(0, 1)

2/1+-

where the sequences An and n, are defined in the appendix.

(ii) If m, --- o0 and m -+ 0 and Q (O) is diagonal, then the QLR statistic satisfies

2S2 Omn (in), Q n d
i(/)n,- N(0, 1)/12

where under the least favorable hypothesis 1 + n = 5.

where the rate condition " -- 0 is necessary for the conclusions.

This last result gives a sharp rate on the number of moment conditions for one

relevant special case. Since for the subsample size, we have Eb -4 0, this rate result

implies that for a range of rates mn, subsampling fails whereas plug-in asymptotics

remain valid. It is interesting to note that for this special case of the QLR statistic, the

approximation error enters only through the mean of the censored censored moments,

and, as one can see from the proof of Proposition 4, its magnitude depends mainly

on the third cumulants of the marginal distributions of the components of i,n(0).

If ,(O) is not diagonal, the contributions of the individual components of the

moment vector become interrelated through the projection implicit in the multivariate

censoring problem, so the analogous argument would be more involved, and I leave

this for future research. Also, this argument is specific to the quasi-likelihood ratio

test, and does not extend to other convex test functions.

4, ......... ........ ir .......... ...... /1



1.5 Discussion

In this paper I show how important insights from the literature on weak identification

apply to set-identified problems. However, settings with moment inequalities differ

from the standard GMM setup in that the shape of the identification region, which

is the main object of interest, depends on which constraints are used for inference

or estimation. In this sense, there are typically few or no "over-identifying" restric-

tions, and the sharp identified region can only be obtained if all available moment

restrictions are used for estimation. Also, estimation and inference has to account

for the presence of the slackness parameter which has the same dimension as the mo-

ment vector and can only be estimated conservatively as suggested by Chernozhukov,

Hong, and Tamer (2007) and Andrews and Soares (2007).

My results on the rate of consistency also indicate that even though in many cases

any finite number of constraints does not determine the sharp identification region, a

set estimator using only a relatively small subset of moment inequalities may in fact

be superior to a procedure based on a larger number of restrictions. In particular

for the conditional moment inequality example, the approximation error discussed in

Sections 2 and 3 decreases very fast even for small numbers of moment conditions,

whereas the noise contribution is proportional to m,,. It would clearly be desirable

to have a data-driven method to resolve this trade-off in practice, but this is beyond

the scope of this paper.

The conditions needed for consistency of the set estimator may in practice be

quite demanding, and we saw that unlike in some point-identified settings, inverse

variance weighting does not lead to a weaker condition on the rates mn and ,n for

the set estimator. In part, this is a result of the set estimator using a fixed critical

value whereas the distribution of the criterion function is not asymptotically pivotal,

but will typically vary across the parameter space. This suggests that for inference,

parameter-dependent critical values should be used, especially in weakly identified

settings, which has been the recommendation of the more recent literature.

The general inference result is also relatively demanding on the maximal number



of moments compared to sample size. In particular, I show that we should expect

approximations of the distribution using subsampling to be poor in particular if the

distribution of the moment vector is asymmetric. If the number of moments is small

relative to sample size, this leads only to a bias in the slackness parameters towards

zero which makes inference conservative. However if mr is large, subsampling also

fails to approximate other features of the distribution, so that asymptotic size of the

resulting confidence region may exceed the nominal level.

-:I



Chapter 2

Conditional Inference Procedures

with Moment Inequalities

Inference on a finite-dimensional parameter in set-identified models is often subject

to a number of momecnt inequalities that is significantly larger than the dimension

of the parameter space. Whereas in a K-dimensional parameter space, at any given

point on the boundary of the identified set, typically at most K population moment

inequalities will be binding, an AR-type procedure will often test a much larger

number of moments, even after applying a moment-selection procedure as in Andrews

and Soares (2007). In the presence of a large number of moment restrictions, there

are two factors which reduce the power of inference procedures: for one, the power of

tests based on quadratic forms decreases in the number of degrees of freedom, and on

the other hand, common tests for moment inequalities have to be conservative with

respect to the slackness of non-binding constraints.

As for inference with moment equalities, the power of a chi-square type test de-

creases in the number of degrees of freedom for an Anderson-Rubin type statistics for

a fixed noncentrality parameter (see e.g. Lehmann and Romano (2005), ch.14), and

for the case of linear instrumental variables models with Gaussian errors, Andrews

and Stock (2006) showed that AR type tests have only trivial limiting power under

many weak moment asymptotics.

Also, since for partially identified problems, at any given point in the identifica-



tion region, most moment inequalities are going to be slack. The relevant slackness

parameter for the asymptotic distribution of the test statistic can only be estimated

conservatively either by a moment selection procedure as suggested by Chernozhukov,

Hong, and Tamer (2007), Bugni (2008) and Andrews and Soares (2007) for finitely

many inequalities, or by preliminary estimation of a contact set if there is a contin-

uum of conditions as in Chernozhukov, Lee, and Rosen (2008). In general, inference

has to be conservative regardless of the procedure used to obtain critical values. For

the AR-type statistic, the dimension of this nuisance parameter equals the number

of moments used for inference. Therefore the problem of inference with moment in-

equalities exhibits an additional "curse of dimensionality" in that the critical values

correspond to the least favorable value of a high-dimensional object.

In the weak instruments literature, there are two main approaches to eliminating

variation in directions orthogonal to the parameter: Kleibergen (2002)'s LM test is

based on the score of the concentrated objective function, whereas Moreira (2003)'s

Conditional Likelihood Ratio (CLR) test conditions on a sufficent statistic for the

nuisance parameter. The idea behind the LM test seems to adapt more readily to

the GMM set-up (Kleibergen (2005)), but tests based on the LM statistic turn out to

be dominated the conditional likelihood ratio test in power comparisons (Andrews,

Moreira, and Stock (2006)). Also, the score may have multiple roots.

In this chapter, I propose an LM-type statistic that is based on lower-dimensional

linear combinations of the original moment vector. This is an alternative to the

Anderson-Rubin-type statistics several versions of which have been recommended for

use in the recent literature (see e.g. Rosen (2008), Canay (2007), and Andrews and

Jia (2008)). I will show that reducing the dimension of the moment vector can lead

to a more powerful procedure.

Due to the geometry of the one-sided testing problem, the LM and CMD statistics

proposed in this paper will in general not be asymptotically pivotal, so it will be

necessary to obtain critical values from a simulation procedure.

A major concern in inference for over-identified models is that commonly used

some testing procedures such as the AR test will yield empty confidence sets under
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mis-specification, or more generally that imposing moment constraints which do not

hold at the population parameter leads to narrower confidence intervals, which may be

mistaken for a greater precision of the inference procedure. A version of the proposed

LM statistic will address this problem and guarantee non-empty confidence regions

even if the mnoment inequality model is inisspecified.

In the following section. I will define the general setup for inference considered in

this paper, section three defines a Lagrange Multiplier (LM) statistic and a Condi-

tional Minimum Distance (CMD) statistic for the moment inequalities, and section

four discusses their theoretical asymptotic properties. Section five presents Monte

Carlo simulation results comparing power of AR-, LM-, and CMD-tests. and the final

section concludes.

2.1 Setup and Motivation

This paper considers inference for a K-dimensional parameter vector 0 = (01 ... , OK)

O, a subset of RK. For a sample Y 1,..., Y,, of i.i.d. observations, the population pa-

rameter 00 is assumed to satisfy M moment inequalities

E [g(Y, 0o)] > 0 (2.1)

where g(y, 0) is an Al-dimensional function of y and 0 with expectation .g(0) :=

E[g(Y, 0)] and variance matrix Q1(0) := E[(g(Y, 0) - (0O))(g(Y, 0) - 0(0))']. I will

assume that the moment function g(y, 0) is bounded and twice continuously differen-

tiable in 0 for any value of y in the support of Y. For the purposes of my analysis, I

also assume throughout that the number of moments M is greater than the dimension

of the parameter vector, K.

Since the empirical restrictions imposed on the parameter are inequalities, in the

present setting, the value of 0 satisfying (2.1) will typically not be unique. The

identification region

0 {:= 0 CE 0: E[g(Y, 0)] > 0}



is defined as the set of parameter values for which all moment inequalities hold in

the population, and any testing procedure based on these moment restrictions can

(at best) only have nontrivial power against alternatives outside of the identification

region.

Given the sample Y, ... , Y,, the continuously updated, inverse variance weighted

GMM criterion is given by

n(-) := min( n(O) - )', (O)(.n(O) - V)
v>O

where the M-dimensional vector (0O) n:= 1 g(Yi, 0) is the sample moment, and

Q ,() is a consistent estimator for the variance covariance matrix of On(0). Minimiza-

tion of the quadratic form over non-negative values of v, R4M should be understood

as taking component-wise negative parts of n(O) in a way which takes into account

the variance-covariance structure of the moment vector.

2.2 Test Statistics

The Anderson-Rubin (AR) type statistic for this estimation problem is given by the

concentrated CUE objective function

AR,(O) = nQn(O) := min(gn(O) - V)'Y (0) (gn(0) - Y)
v>0

In the case of moment equalities, inference based on the AR statistic may yield empty

confidence intervals with nonzero probability (see Kleibergen (2002) and Kleibergen

(2005)), and moreover for a large number of degrees of freedom, the test may have

low power. In fact, for the point-identified linear IV model, which is a special case

of our model up to the restrictions on the growth rate of the number of moments,

Andrews and Stock (2006) showed that under many weak moment asymptotics, the

AR test has asymptotic power equal to size.
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2.2.1 Score (LM) Statistic

Concentrating out the slackness parameters v, the continuously updated (CU) inverse

variance weighted criterion function for this problem is given by

Q,(0) = n min(,(0) - v)',(0) -( (0) - v) - t(gn(0) - I*(0)) f(0) (n() - (0))
V>O

where for positive definite Q,(0) /*(0) := arg min,>o( ,(0) - v)'f (0)-1 ( n(0) - V)

exists and is unique, see e.g. Luenberger (1969).

Note that even under the null hypothesis and at a parameter value 0 in the identifi-

cation region, the expectation of the moment vector will be non-negative expectation,

but not necessarily equal to zero, so that it is important to re-center the moment vec-

tor using an estimator for the population mean .(0) := E[g(Yi, 0)]. In order to keep

the problem numerically tractable as well as make sure that the limiting distribu-

tion of the relevant functions of the estimated variance matrix is continuous, we will

impose non-negativity of the moment functions by using a suitable component-wise

transformation of the sample mean depending on sample size, defined as

{ - mn(0) if 77n > 1

0 otherwise

for the mth component of g,(0), where *n( 0 ) := Var(9.n(0)), and r, is a sequence

of nonnegative numbers such that

P nT --+ 0 and lim inf 2logl n, > 1 = 1

For i.i.d. data, we will estimate the variance-covariance matrix of the moment

vector with

=1n(0) n ((g(Yi, 0) - lr())(0-lr())i=1



Denoting

Gnk(O) :G- d-g((i,0), an(0) := [nl1(0)',.,GnK(0)']'
ii=1

1 a
Cnk(0) : ((iO) -- )()) 0Y-9(

i= 1

and the stacked matrix C(0) = [C,1(0)',..., OnK(0)']', we can define

Gn(0) := Gn() - (LtK ((pn(O) - ln(O))'Qn(0)-l n(0)

At any minimizer 0 of the concentrated criterion, we then have the following

first-order condition on the subgradient of Q* (O)

() : V) o (O = G(0)'-()-l(MO() - v*(0)) = 0 (2.2)

where G(0) = G,(O) n(O) and the selection matrix Wn(0) is a diagonal matrix for

which the mth diagonal element is an indicator n'nmm(O) 11 {Pn m(0) > 0}.

Even though v*(0) > 0, the coefficients on the linear combinations are not guaran-

teed to have non-negative coefficients, so that 2.2 will in general not give informative

inequality restrictions. Instead we are going to define

Dn+(O) := Gn,. (0)'-n (0)-l(On(0) - '2n(0)) (2.3)

where the columns of G, .1 are defined by

Gmn, I. Gmn,+ - Grmn,- Proj(GR* ) - Proj(G -1)

where Proj(xC, W) := arg mintEc(x- )'W(x- t) denotes the orthogonal projection of

the vector x onto the cone C with respect to the inner product defined by the weighting

matrix W, and C - {y E Rm : y'Wx < 0 for all x E Rm} is the polar cone to the

positive orthant of Rm with respect to the inner product defined by the weighting
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matrix W. The function mn(0) := 02(0n()) is a component-wise transformation

of the sample moment vector and does not necessarily have to be the same as the

moment selection function 0I,('). This allows in principle to extend this analysis to

a. refined moment selection procedure as in Andrews and Jia (2008).

We are now going to define a statistic based on the modified score from equation

2.3. The modified LM statistic for the inequality testing problem is given by

LAI(0) := min(D+(0) - t)' (\CnI.I(0)'n (0) -1G , H(0) (D, + (0) - t) (2.4)
tER+ \

Note that whenever g(0) > 0, by construction G,.J(0)'Q (O)'g(0) > 0. We will show

below that under regularity conditions ,n(0) - g(0) and G,. 1.1(0) are asymptotically

independent at any value of for which g(00) > 0, so that for any 00 C OI in the iden-

tification region, E[D±,+(00o)G,,.rli(Oo)] _ 0. Therefore, the non-negativity restrictions

on the slackness parameters for the original moment inequalities imply non-trivial

restrictions on the linear combinations of slackness parameters in the modified score.

The LM statistic as defined in 2.4 only makes use of a number of linear combina-

tions of the sample moments equal to the dimension of the parameter vector. Hence,

in the case of linear moment restrictions there exists at least one parameter value 0*

at which all linear combinations of moment inequalities hold as equalities, so that at

this value, LAM(O*) = 0. This ensures that in the linear case, a confidence interval

based on the LM statistic is non-empty with probability one regardless of whether

the model is correctly specified.

Note also that using the modified score of the CU objective function for inference

reduces the computational cost of simulating critical values for the statistic since the

quadratic optimization problem we have to solve in order to obtain (2.4) is over a

vector of the same dimension as the moment vector used for inference.

Aggregating moment inequalities will likely result in loss of power against certain

alternatives because binding moments at parameters outside the identification region

may cancel against restrictions that are slack at that parameter value. That means

that even though under a given alternative OA V (-() some moments will not be



satisfied, i.e. (OA) "_ 0, the linear combination b(OA)'Q(OA)-(OA) may still be

non-negative. Even when inference can only be conservative, an optimal procedure

should therefore let the dimension of the linear combinations to be larger than k and

increase with sample size.

This stands in contrast to point-identified GMM problems for which typically all

locally identifying information contained in the moment restrictions can be aggregated

into appropriately chosen linear combinations of dimension equal to the number of

parameters. The problem with the aggregation for the moment inequalities can be

interpreted as an instance of the lack of "global" power of the Kleibergen test against

"irrelevant alternatives", i.e. roots of the score which do not correspond to a minimum

of the CUE objective function.

2.2.2 Conditional Minimum Distance (CMD) Statistic

In order to address the potential lack of power of score type tests against points

corresponding to other extrema of Q,(0O), I will now propose an alternative statistic

which retains some of the potential advantages of the (conditional) LM statistic while

improving its power against extraneous roots of the score.

In GMM inference with moment equalities, a generalization of Moreira (2003)s

Conditional Likelihood Ratio (CLR) test can be represented as a weighted combina-

tion of the AR and the LM statistic, using a test statistic for the rank of the average

Jacobian of the moment functions as weights. Analogous to Kleibergen (2005), we

can define the following conditional minimum distance (CMD) statistic

CMD,(9) = AR (0) - RKn(0) + x/(AR.(O) - RKn(o)) 2 + 4RKn(O)LMn(0)

(2.5)

where RKn(0) := G,(0)'(0)-1G,(0) is a statistic for a test of the rank condition.

For the case of moment equalities, Kleibergen (2005) showed that this modification

removes the extraneous roots of the score equation for the CUE estimator.

For moment equalities, the conditional minimum distance statistic should be ex-

pected to improve power over an Anderson-Rubin type procedure because subtracting



off the minimized value of the statistic over the parameter space reduces the degrees

.of freedom by the number of over-identifying restrictions, and conditioning on RKn(O)

eliminates the nuisance parameter corresponding to the Jacobians from the asymp-

totic distribution of the statistic. In the next section, RK,(O) will be shown to be

-asymptotically independent of AR,(0) and LA,,(O). However, since we have to im-

pose non-negativity on the coefficients for linear combinations of moments, it will in

general not be possible to decompose AR,,(0) into a function of the LM statistic and

a component independent of LM,(0), so that in order to obtain asymptotically valid

critical values for a CMD test, AR,(O) and LM(0) have to be simulated jointly.

:2.3 Large Sample Theory

I will now give results on the asymptotic distribution of the statistics LAI,,(O) and

CMD,(0) which justify the simulation procedures to obtain critical values proposed

in the previous section. In the following, I will denote the population expectations of

the moment vector and its Jacobian by

4(0) := E[g(Y, 0)], Gk(O) := E a g(Y, 0) , and Gn(0) := [,1(0)',..., K (0)']'

respectively.

Assumption 7 (i) The sample moment ,,(0) and its first derivative (,(0) satisfy a

central limit theorem,

v' n( ) - (0) d * 0 (0) C(0)
vec(G,,() - G(0)) 0 C(0) V(0)

uniformly in 0, where (ii) Q(0) is positive definite, and (0) C(0) is positive
C(0) V(0)

semi-definite for all 0.

Assumption 7 (i) can be replaced by relatively standard lower-level assumptions

- e.g. the moment functions and their Jacobian being bounded Lipschitz - for a



summary see e.g. van der Vaart (1998) or van der Vaart and Wellner (1996). As

in Kleibergen (2005), the requirement that the joint variance matrix of the moments

has to be only positive semi-definite also accommodates the practically relevant case

in which elements of the Jacobian are non-random.

Assumption 8 (i) For the estimator of Q we have that uniformly in 8,

- (0) : (g(Yi, 0) n (0))(g(Yi, 0) _ n(0))' - Q(0)
n

i=1

(ii) Uniformly in 0,

n

k(O^ :=- (g (Yi, 0) - .n (0)) (G (Y, 0) -0 n(O))' Ck(0)
i=1

The first two parts of Assumption 8 require that the covariance matrix of the

moment functions and Jacobians can be estimated consistently for i.i.d. data, which

is true under commonly imposed regularity conditions (e.g. existence of fourth mo-

ments).

Assumption 9 At 0 G 0I for each moment m, we have either (i) .mn(O) + g > 0,

or (ii) (nloglog n)1/ 2 gmn(O) -~ 0.

Assumption 9 restricts the behavior of the slackness of population moments in the

population in the identification region. Case (i) corresponds to conventional strong

moments with fixed parameters under the null hypothesis, and (ii) covers cases of

weak identification and near-binding moments.

As shown by Rosen (2008), under Assumptions 7 and 8, ARn,() converges in

distribution to a chi-bar squared distribution with M degrees of freedom,

ARn(O) 4d min(j(O) + Z - t)'/(0)-1 (9(0) + Z - t) =: k2((0), Q(0), CQ(O )
tERMwhere Z

where Z - N(O, IM).



In order to analyze the asymptotic properties of the score test statistic defined

in (2.4), let us first consider the joint distribution of the sample moment and the

estimated Jacobian, G,(0):

Proposition 5 Under Assumptions 7 and 8, as n -4 oc,

I(0() -N( 0 Q(0) 0
vec(G,(0) - GC(0)) 0 0 V(O) - C(O)'Q(O) 'C(O)

In particular, .i(0) and C,(0) are asymptotically independent which implies that

Gn,1.1(0) is also asymptotically independent of g,(0), so that from Slutsky's theorem

-and a central limit theorem for g,(0) we can derive the asymptotic distribution of the

modified score, D,,(0) conditional on G,(0):

Corollary 4 Under the Assumptions of Proposition 5,

sn(0) := vn na (0)'in,(0)-'dn,. (0) Gn, .(0)'i n(0) (,(0) - (0)) - V(0)

where conditional on Gn,1.1(0), ,(0) " N(0, 1).

It follows that the asymptotic distribution for the LM statistic defined in 2.4 is given

by

Corollary 5 Under the Assumptions of Proposition 5, the asymptotic distribution

for the modified LM statistic is given by

L A(0) - min( (0)- t)' ((n). (0)'0, (0) -d, . (0) (D,4+(0) - t)

d ,2( CW(o) 1, W(0)- 1) := min(Z - v)'W-'(Z - v) for Z -~ (1i, Q)
V>O

conditional on D(0), where W(0) = G,,1.1(0)'n(0) -'G1 , 1.(0), and Q2(pq2,Cw)

Hence, inference based on the pseudo-LM statistic again reduces to a chi-bar-square

testing problem where critical values can be obtained by simulation given the esti-

mates G,,1. (0) and Q0,(0). By the conditioning argument we can replace the popula-

tion expectation of the projected Jacobians with their sample analogs without having



to adjust the asymptotic distribution for the fact that they are estimated from the

same data as the sample moments. It should be pointed out that this argument is

only valid for the case of a finite-dimensional moment vector.

2.4 Simulations

In this subsection, we compare the power functions of tests based on the AR-type

and LM-type statistic for the linear model. More specifically, we generate data from

y x03 + v

where (E, v) N 0, [ 2 'j and zi is an M-dimensional nonnegative random

vector with unit variance which is independent of (e, v). For estimation, we assume

that we do not observe y*, but bounds such that yil < Y* < yi with probability one,

and E[y, - yllz] - h for some positive constant h. We then form moment functions

gii(o) = zi(Yiu, - X), g2 (/3) = -Zi(Yil - Xi1)

The graphs show the simulated rejection probabilities of the AR and LM type tests at

a nominal 5% significance level for different values of 3 using critical values obtained

by simulation from a Gaussian distribution under the least favorable hypothesis. The

data was generated under 30 = 1, and the boundaries of the population identification

region for a particular choice of parameters are plotted as vertical dotted lines.

The "first stage" parameter r was chosen to be small in all scenarios so that gener-

alized moment selection would not have been likely to detect any slack moments for

the range of hypotheses on 3 considered in the simulation study. From the power

functions, we can see that the rejection probabilities are less than 5% for parameter

values in the identification region (marked by the vertical dotted lines in the graphs),

indicating that both testing procedures are conservative, and have confidence size



Figure 2-1: Power Comparison between AR and LM Type Test

Simulations with N = 1000, M = 20, 117r = , = 0.3, h = 0.05, a = 2.

less than or equal to the nominal level indicated by the horizontal dotted line. Most

notably, at least in a neighborhood around the identification region, the LM test dom-

inates the AR test in terms of power, also suggesting that confidence regions based on

the LM statistic would be considerably smaller than those constructed by inverting

the AR statistic.

The simulations in Figure 2 are based on the same scenario as in Figure 1, except

that the diameter of the identification region varies from very short (h = 0.02) to

relatively wide (h = 0.2). The simulations show that the LM test dominates the AR

test except for a very narrow identification region, in which case at each boundary of

e1, the moment selection procedure fails to detect some of the slack inequalities which

correspond to the other boundary point of the set. As Figure 3 shows, this problem

becomes less relevant if the number of moment conditions increases, because in this

case the benefits from reducing the number of degrees of freedom of the procedure

seems to outweigh the potential power loss from aggregating the moment conditions.

In particular, the relative performance of the score-type test statistic seems to improve

as we consider testing problems with a larger number of moment conditions.

__



Figure 2-2: Power of AR and LM Test for M - 20 and Different Lengths of the
Identification Region

Simulations with N = 1000, M = 20, p = 0.3, 11lr11 =
left) to h = 0.1 (top right), and h = 0.2(bottom).

o-, = 2, and h varying from h = 0.02(top



Figure 2-3: Power of AR and LM Test for M = 50 and Different Lengths of the
Identification Region
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Simulations with N = 1000, M = 50, e = 0.3, 117i11= = a = 2, and h taking values

h = 0.02(left) and h = 0.1 (center).

2.5 Discussion

The power comparisons between AR-type and the pseudo-LM statistic in section 5

indicate that especially under weak identification, aiming directly at the sharp iden-

tification region need not necessarily give the smallest confidence sets, but taking

suitable linear combinations of moments together with a conditioning argument can

enhance the power of inference procedures under reasonable assumptions. The com-

bination of a conditioning argument with moment selection as in the definition of the

CMD statistic looks very promising, but finding the optimal combination of these two

aspects and systematic power comparisons with alternative procedures are beyond the

scope of this paper and will be left for future research. However not all recommen-

dations are as clear-cut due to the inherent "second-best" nature of one-sided testing

problems that has long been known in the literature.

The simulation results suggest that for a range of practically relevant settings, the

proposed new statistics dominate the AR type procedures which are recommended

and used widely in the literature on moment inequalities. Since under regularity con-

ditions, the GELR class of test statistics is asymptotically equivalent to the QLR/AR

test statistic, any test from that class should also be expected to inherit the same



drawbacks. It should be pointed out that this can be reconciled with Canay (2007)'s

large deviations optimality result for the ELR statistic as follows: large-deviations

optimality only means that for any choice of a critical value, an ELR hypothesis test

solves the trade-off between type-I and type-II error optimally in the limit. Since

the asymptotic distribution of the ELR test for moment inequalities depends on a

nuisance parameter which can't be estimated consistently, estimated critical values

are conservative - i.e. it is in general not possible to control size precisely. There-

fore, large-deviations optimality does not imply that a feasible size a test based on

the ELR statistic is more powerful than alternative procedures. Furthermore, the

arguments behind Kleibergen (2005)'s LM statistic and Moreira (2003)'s CLR test

involve a conditioning argument whereas the large-deviations optimality result is on

unconditional inference.

In classical GMM problems, the CMD test outperforms the AR test in part because

it conditions on a sufficient statistic for the Jacobians of the moment functions, which

are a potentially high-dimensional nuisance parameter for inference on the parameter

of interest. However, for one-sided GMM-type testing problems, the slackness param-

eters of the moment inequalities introduce an additional nuisance parameter which

can't be eliminated in a similar fashion. Therefore, it looks promising to combine the

use of a CMD or LM-type statistic with a refined moment selection procedure as in

Andrews and Jia (2008) using a tuning parameter which remains finite. Working out

this connection properly is beyond the scope of this paper and will be left for future

research.



Chapter 3

Inference on Sets in Finance

Joint with Victor Chernozhukov and Emre Kocatulum

3.1 Introduction

In this paper we introduce various set inference problems as they appear in finance

and propose practical and powerful inferential tools. Our tools will be applicable

to any problem where the set of interest solves a system of estimable inequalities,

though we will particularly focus on the following two problems: The first problem

will deal with mean-variance sets of stochastic discount factors and the second with

mean-variance sets of admissible portfolios.

Let us now introduce the problem. We begin by recalling two equations used by

Cochrane (2005) to effectively summarize the theory of asset pricing:

-t = Et[At+2Xt, ]

Alt+1 = f(Zt+l, parameters),

where Pt is an asset price, Xt+ is the asset payoff, AIt+l is the stochastic discount

factor (SDF) or pricing kernel (PK), which is a function f of some data Zt+ and

parameters, and Et is the conditional expectation given information at time t. The

set of SDFs Mt that can price existing assets generally form a proper set, that is, a



set that is not a singleton. SDFs are not unique, because the existing payoffs to assets

do not span the entire universe of possible random payoffs. Dynamic asset pricing

models provide families of potential SDFs, for example, the standard consumption

model predicts that an appropriate SDF can be stated in terms of intertemporal

marginal rate of substitution:

A- 0u'(Ct+i)

where u denotes a utility function parameterized by some parameters, Ct denotes

consumption at time t, and 03 denotes the subjective discount factor.

The basic econometric problem is to check which families of SDFs price the assets

correctly and which do not. In other words, we want to check whether given families

or subfamilies of SDFs are valid or not. One leading approach for performing the

check is to see whether mean and standard deviation of SDFs

are admissible. The set of admissible means and standard deviations

80 := { admissible pairs (pu, o 2) E R2 n K},

which is introduced by Hansen and Jagannathan (1991) is known as the Hansen-

Jagannathan set and the boundary of the set O0 is known as the Hansen-Jagannathan

bound. In order to give a very specific, canonical example, let v and E denote the

vector of mean returns and covariance matrix to assets 1i, ..., N which are assumed

not to vary with information sets at each period t. Let us denote

A = v'E-lv, B = V'E- 1 1N, C = 1'>E-1lN (3.1)

where 1N is a column vector of ones. Then the minimum variance a2(p) achievable

--



by a SDF given mean p of the SDF is equal to

Therefore, the HJ set is equal to

0o- = {(p, a) E n K : a(p) - a < 0},

0 r(O)

where K is any compact set. That is,

e0 = { E : m(O) < 0}.

Note that the inequality-generating function m(O) depends on the unknown parame-

ters, the means and covariance of returns, m(O) = m(O, y) and y = vec (v, E).

Let us now describe the second problem. The classical Markowitz (1952) problem

is to minimize the risk of a portfolio given some attainable level of return:

min Et [rp,t+i - Et [Tp.t+1]] 2 such that Et[rp,t+] =

where rp,t+l is portfolios return, determined as rp,t+l = wrt+l, where w is a vector of

portfolio "weights" and rt+l is a vector of returns on available assets. In a canonical

version of the problem, we have that the vector of mean returns v and covariance of

returns E do not vary with time period i, so that the problem becomes:

a(p) = min w'Ew such that w'v = p.

An explicit solution for a(Lp) takes the form,

2 (It) C P 2 - 2Bp + A
AC - B 2

where A,B and C are as in equation 3.1.



Therefore, the Markowitz (M) set of admissible standard deviations and means is

given by

o = {(, a) E n K : () - < 0},

that is,

eo = {0e : m(O) 0}.

The boundary of the set 00 is known as the efficient frontier. Note that as in HJ ex-

ample, the inequality-generating function m(O) depends on the unknown parameters,

the means and covariance of returns, m(0) = m(0O, y), where y = vec (v, E).

The basic problem of this paper is to develop inference methods on HJ and M

sets, accounting for uncertainty in the estimation of parameters of the inequality-

generating functions. The problem is to construct a confidence region R such that

lim P{Go C R} = 1 - a.
n---+oo

We will construct confidence regions for HJ sets using LR and Wald-type Statistics,

building on and simultaneously enriching the approaches suggested in Chernozhukov,

Hong, and Tamer (2007), Beresteanu and Molinari (2008), and Molchanov (1998).

We also would like to ensure that confidence regions R are as small as possible and

converge to 0 at the most rapid attainable speed. We need the confidence region R

for entire set 0o in order to test validity of sets of SDFs. Once R is constructed, we

can test infinite number of composite hypotheses, current and future, without com-

promising the significance level. Indeed, a typical application of HJ sets determines

which sets of (p, u)'s within a given family fall in the HJ set and which do not. Similar

comments about applicability of our approach go through for the M sets as well.

Our approach to inference using weighted Wald-type statistics complements and

enriches the approach based on the directed Hausdorff distance suggested in Beresteanu

and Molinari (2008) and Molchanov (1998). By using weighting in the construction

of the Wald-type statistics, we endow this approach with better invariance properties

to parameter transformations, which results in noticeably sharper confidence sets, at



least in the canonical emprical example that we will show. Thus, our construction is

of independent interest for this type of inference, and is a useful complement to the

work of Beresteanu and Molinari (2008) and Molchanov (1998). Furthermore, our

results on formal validity of the bootstrap for LR-type and W-type statistics are also

of independent interest.

The rest of the paper is organized as follows. In Section 2 we present our estimation

and inference results. In Section 3 we present an empirical example, illustrating the

constructions of confidence sets for HJ sets. In Section 4 we draw conclusions and

provide direction for further research. In the Appendix, we collect the proofs of the

main results.

3.2 Estimation and Inference Results

3.2.1 Basic Constructions

'We first introduce our basic framework. We have an inequality-generating function:

rm:O-IR.

The set of interest is the solution of the inequalities generated by the function m(O)

over a compact parameter space 0:

e0 = {0 E e : m(O) < 0}.

A natural estimator of 00 is its empirical analog

0o = 0C 0 : (o) < 0}.

where P,(O) is the estimate of the inequality-generating function. For example, in HJ

and M examples, the estimate takes the form

7 4(0) = m(0, / = vec (', E).



Our proposals for confidence regions are based on (1) LR-type statistic and (2)

Wald-type statistic. The LR-based confidence region is

RLR E : [Vi- (<)/s()] k(1 - a) , (3.2)

where s(O) is the weighting function; ideally, the standard error of rin(0); and k(1 - a)

is a suitable estimate of

k(1 - a) = (1 - a) - quantile of n,

where

n = sup I[V/n(0)/s(0)] 2
is the LR-type statistic, as in Chernozhukov, ong, and Tamer (2007)

is the LR-type statistic, as in Chernozhukov, Hong, and Tamer (2007)

(3.3)

Our Wald-based confidence region is

Rw = ( E 6 : [/d(0, ao)/w(o)12 k(I - a)}, (3.4)

where w(O) is the weighting function, particular forms of which we will suggest later;

and k is a suitable estimate of

k(1 - a) = (1 - a) - quantile of Wn,

where W, is the weighted W-statistic

W, = sup [nd(O, 9o)/w()] 2.
oe0o

(3.5)

Recall that quantity d(O, 0o) is the distance of a point 0 to a set 00, that is,

d(O, Go) := inf |0 - 0'1.

In the special case, where the weight function is flat, namely w(O) = w for all 0,



the W-statistic WI, becomes the canonical directed Hausdorff distance (Molchanov

(1998), Beresteanu and Molinari (2008)):

V o/ d(e80, 0o) = sup inf I10 - a' 1.
0E8o 0'E~o

The weighted statistic (3.5) is generally not a distance, but we argue that it provides

a very useful extension of the canonical directed Hausdorff distance. In fact, in our

empirical example precision weighting dramatically improves the confidence regions.

3.2.2 A Basic Limit Theorem for LR and W statistics

In this subsection, we develop a basic result on the limit laws of the LR and W

statistics. We will develop this result under the following general regularity conditions:

R.1 The estimates 0 H fi(0O) of the inequality-generating function 0 -+ m(0) are

asymptotically Gaussian, namely, we have that in the metric space of bounded

functions 0 0(0)

v(Tit(0) - ri(()) =d ((O) + op(1),

where G(O) is a Gaussian process with zero mean and a non-degenerate covari-

ance function.

R.2 Functions 0 " i(0) and 0 F m(0) admit continuous gradients Voit(0) and

Vom(0) over the domain E, with probability one, where the former is a uni-

formly consistent estimate of the latter, namely uniformly in 0 E e

Voi(0) = Vom(0) + op(1).

Moreover, the norm of the gradient IIVom(0)I is bounded away from zero.

R.3 Weighting functions satisfy uniformly in 0 E 8

s(O) = a(0) + op(1), w(0) -- (0) + op(1),



where o-(.) > 0 and w(.) > 0 are continuous functions bounded away from zero.

In Condition R.1, we require the estimates of the inequality-generating functions

to satisfy a uniform central limit theorem. There are plenty of sufficient conditions

for this to hold provided by the theory of empirical processes. In our example, this

condition will follow from asymptotic normality of the estimates of the mean re-

turns and covariance of returns. In Condition R.2, we require that gradient of the

estimate of the inequality-generating function is consistent for the gradient of the

inequality-generating function. Moreover, we require that the minimal eigenvalue of

Vom(O)Vem(O)' is bounded away from zero, which is an identification condition that

allows us to estimate, at a usual speed, the boundary of the set 00, which we define

as

ae0 O:= { e : m( ) = 0}.

In Condition R.3, we require that the estimates of the weight functions are consistent

for the weight functions, which are well-behaved.

Under these conditions we can state the following general result.

THEOREM 1 (Limit Laws of LR and W Statistics). Under R.1-R.3

On =d £+ Op(1), £= sup G()] (3.6)

Wn =d W + Op(1), W sup [ G(O) (37)
aeo f IVo0m(O)1 -w(0) +(

where both W and £ have distribution functions that are continuous at their (1 - a)-

quantiles for a < 1/2. The two statistics are asymptotically equivalent under the

following condition:

IlVom(O) |
Wn d n + 0,(1) if w() = (O) for each 0 8 .

We see from this theorem that the LR and W statistics converge in law to well-

behaved random variables that are continuous transformations of the limit Gaussian

process G(O). Moreover, we see that under an appropriate choice of the weighting



functions, the two statistics are asymptotically equivalent.

For our application to HJ and M sets, the following conditions will be sufficient

C.1 Estimator of the true parameter value yo characterizing the inequality generating

function m(O) = m(O, yo), where yo denotes the true parameter value, is such

that /n( ( - yo) -d Q1/ 2Z, Z = N(O, Id).

C.2 Gradients Vom(O, y) and Vm(O, -y) are continuous over the compact parameter

space (0, -') E 0 x F, where F is some set that includes an open neigborhood of

yo. Moreover, the minimal eigenvalue of Vom(O, y)Vom(0, -/)' is bounded away

from zero over (0, y) E 0 x F.

It is straightforward to verify that these conditions hold for the canonical versions

of the HJ and M problems.

Under these conditions we immediately conclude that the following approximation

is true uniformly in 0, that is, in the metric space of bounded functions F"(0):

V\-(Mi(0) - m(0)) = V,m(0, 5)'V (P - 7o) + oP(1) (3.8)

dV3,m(O 'y0)' 1/ 2 Z + op(1), (3.9)

where Vm(O, 5) denotes the gradient with each of its rows evaluated at a value 5' on

the line connecting ' and 70, where value y may vary from row to row of the matrix.

Therefore, the limit process in HJ and M examples takes the form:

G(0) = V,n,(0, '0)'Q 1 /2Z. (3.10)

This will lead us to conclude formally below that conclusions of Theorem 1 hold with

sup [V ym(0,'7)'Q1/2 
(2

C = O sup / , (3.11)
OEao L u(0) +

W = o sup m(, ) (0) Z] (3.12)

A good strategy for choosing the weighting function for LR and W is to choose



the studentizing Anderson-Darling weights

U(0) = |Vm(0, y0)'/ 1/21, (3.13)

(0 VIm(0, yo)' 1 /21(
w(o) =)(3.14)

1 Vom(0, -yo) 1

The natural estimates of these weighting functions are given by the following plug-in

estimators:

s(0) := |V~m(0, )'~1/ 2 , (3.15)

I V m(0, )1/2
IWI(V) mO (3.16)

We formalize the preceding discussion as the following corollary.

COROLLARY 1(Limit Laws of LR and W statistics in HJ and M problems).

Suppose that Conditions C.1-C.2 hold. Then conditions R.1 and R.2 hold with the

limit Gaussian process stated in equation (3.10). Furthermore, the plug-in estimates

of the weighting functions (3.15) and (3.16) are uniformly consistent for the weighting

functions (3.13) and (3.14), so that Condition R.3 holds. Therefore, conclusions of

Theorem 1 hold with the limit laws for our statistics given by the laws of random

variables stated in equations (3.11) and (3.12).

3.2.3 Basic Validity of the Confidence Regions

In this section we shall suppose that we have suitable estimates of the quantiles of

LR and W statistics and will verify basic validity of our confidence regions. In the

next section we will provide a construction of such suitable estimates by the means

of bootstrap and simulation.

Our result is as follows.

THEOREM 2 (Basic Inferential Validity of Confidence Regions). Suppose that for



C < 1/2 we have consistent estimates of quantiles of limit statistics W and £, namely,

k(1 - a) = k(1 - a) + op(1), (3.17)

where k(1 - a) is (1 - a)-quantile of either W or . Then as the sample size n grows

to infinity, confidence regions RLR and Rw cover o0 with probability approaching

1 -a:

Prp[o C RLR] Prp[Cn k(1 - a)] -- Prp[ < k(1 - a)] = (1 - a)(3.18)

Prp[O0 C Uw] = Irp['W,, < k(1 - ()] Irp[W k k ) - =(1 - a)(3.19)

The result further applies to HJ and M problems.

COROLLARY 2(Limit Laws of LR and W statistics in HJ and M problems).

Suppose that Conditions C.1-C.2 hold and that consistent estimates of quantiles of

statistics (3.11) and (3.12) are available. Then conclusions of Theorem 2 apply.

3.2.4 Estimation of Quantiles of LR and W Statistics by

Bootstrap and Other Methods

In this section we show how to estimate quantiles of LR and W statistics using boot-

strap, simulation, and other resampling schemes under general conditions. The basic

idea is as follows: First, let us take any procedure that consistently estimates the

law of our basic Gaussian process C or a weighted version of this process appearing

in the limit expressions. Second, then we can show with some work that we can get

consistent estimates of the laws of LR and W statistics, and thus also obtain con-

sistent estimates of their quantiles. It is well-known that there are many procedures

for accomplishing the first step, including such common schemes as the bootstrap,

simulation, and subsampling, including both cross-section and time series versions.

In what follows, we will ease the notation by writing our limit statistics as a special



case of the following statistic:

S = sup [V(O)]+, V(0) = r(O)G(O). (3.20)

Thus, S - £ for () = 1/s(0) and S - W for 7(0) = /[llVom(0) ll w()]. We

take 7 to be a continuous function bounded away from zero on the parameter space.

We also need to introduce the following notations and concepts. Our process V is a

random element that takes values in the metric space of continuous functions C(8)

equipped with the uniform metric. The underlying measure space is (Q, F) and we

denote the law of V under the probability measure P by the symbol Qv.

Suppose we have an estimate Qv* of the law Qv of the Gaussian process V.

This estimate Qv* is a probability measure generated as follows. Let us fix another

measure space (Q', F') and a probability measure P* on this space, then given a

random element V* on this space taking values in C(E), we denote its law under

P* by Qv*. We thus identify the probability measure P* with a data-generating

process by which we generate draws or realizations of V*. This identification allows

us to encompass such methods of producing realizations of V* as the bootstrap,

subsampling, or other simulation methods. We require that the estimate Qv* is

consistent for Qv in any metric pK metrizing weak convergence, where we can take

the metric to be the Kantarovich-Rubinstein metric. Let us mention right away that

there are many results that verify this basic consistency condition for various rich

forms of processes V and various bootstrap, simulation, and subsampling schemes for

estimating the laws of these processes, as we will discuss in more detail below.

In order to recall the definition of the Kantarovich-Rubinstein metric, let 0 I-- v(0)

be an element of a metric space (M, d), and Lip(M) be a class of Lipschitz functions

p : M --+ I R that satisfy:

ko(v) - _<(v') < d(v, v') A 1, Io(v) < 1,



The Kantarovich-Rubinstein distance between probability laws Q and Q' is

PK(Q,Q';M) : sup IEQ - EQ,I.
cpeLip(M)

As stated earlier, we require that the estimate Qv. is consistent for Qv in the metric

PK, that is

PK(Qv*, Qv; C(O)) = o(1). (3.21)

Let Qs denote the probability law of S = W or £, which is in turn induced by

the law Qv of the Gaussian process V. We need to define the estimate Qs. of this

law. First. we define the following plug-in estimate of the boundary set aOo, which

we need to state here:

ao0 = {0 E a : (O) = 0}. (3.22)

This estimate turns out to be consistent at the usual root-n rate, by the argument

like the one given in Chernozhukov, Hong, and Tamer (2007). Then define Qs. as

the law of the following random variable

S*= sup [V*(0)]+ (3.23)

In this definition, we hold the hatted quantities fixed, and the only random element

is V* that is drawn according to the law Qv.

We will show that the estimated law Qs* is consistent for Qs in the sense that

PK(QS QS; R) = op(1). (3.24)

Consistency in the Kantarovich-Rubinstein metric in turn implies consistency of the

estimates of the distribution function at continuity points, which in turn implies

consistency of the estimates of the quantile function.

Equipped with the notations introduced above we can now state our result.

THEOREM 3 (Consistent Estimation of Quantiles) Suppose Conditions R.1-R.3



hold, and any mechanism, such as bootstrap or other method, is available, which pro-

vides a consistent estimate of the law of our limit Gaussian processes V , namely

equation (3.21) holds. Then, the estimates of the laws of the limit statistics S = W

or L defined above are consistent in the sense of equation (3.24). As a consequence,

we have that the estimates of the quantiles are consistent in the sense of equation

(3.17).

We now specialize this result to the HJ and M problems. We begin by recalling

that our estimator satisfies

-(9 - ") =d -1/2Z + p(1).

Then our limit statistics take the form:

S = sup [V(O)] 2, V(O) = t(O)'Z,
OcOeo

where t(O) is a vector valued weight function, in particular, for S L= we have t(O) =

(V,m(0, 1)'1 / 2 )/o-(0) and for S = W we have t(0) = (Vm(0, y)'l1/2) (lV 0em(0, y)l

w(O)). Here we shall assume that we have a consistent estimate Qz- of the law Qz

of Z, in the sense that,

pK(QZ*, Qz) = o(). (3.25)

There are many methods that provide such consistent estimates of the laws. Bootstrap

is known to be valid for various estimation methods (van der Vaart and Wellner

(1996)); simulation method that simply draws Z - N(O, I) is another valid method;

and subsampling is another rather general method (Politis and Romano (1994)).

Next, the estimate Qv* of the law Qv. is then defined as:

V*(O) = t(O)'Z*, (3.26)

where t(O) is a vector valued weighting function that is uniformly consistent for the



weighting function t(O). In this definition we hold the hatted quantity fixed, and the

only random element is Z* that is drawn according to the law Qz.. Then, we define

the random variable

s*= sup [V*()]

and use its law Qs* to estimate the law Qs.

We can now state the following corollary.

COROLLARY 3 (Consistent Estimation of Quantiles in HJ and M problems) Sup-

pose Conditions C.1-C.2 hold, and any mechanism, such as bootstrap or other method,

that provides a consistent estimate of the law of Z is available, namely equation (3.25)

holds. Then, this provides us with a consistent estimate of the law of our limit Gaus-

sian process G, namely equation (3.21) holds. Then, all of the conclusions of Theorem

3 hold.

3.3 Empirical Example

As an empirical example we use HJ bounds which are widely used in testing asset

pricing models. In order to keep results comparable, the sample used in this section

is very similar to data used in Hansen and Jagannathan (1991). The two asset series

used are annual treasury bond returns and annual NYSE value-weighted dividend

included returns. These nominal returns are converted to real returns by using im-

plicit price deflator based on personal consumption expenditures as in Hansen and

Jagannathan (1991). Asset returns are from CRSP, and the implicit price deflator is

available from St. Louis Fed and based on National Income and Product Accounts

of United States. We use data for the time period 1959-2006 (inclusive).

Figure 3-1 simply traces out the mean-standard deviation pairs which satisfy

m (0, ') = 0



where ~ is estimated using sample moments.

Figure 3-2 represents the uncertainity caused by the estimation of y. To estimate

the distribution of ' bootstrap method is used. Observations are drawn with replace-

ment from the bivariate time series of stock and bond returns. 100 bootstraps result

in 100 -. The resulting HJ bounds are included in the figure.

In Figure 3-3 in addition to the bootstrapped curves 90% confidence region based

on LR statistic is presented. LR based confidence region covers most of the bootstrap

draws below the HJ bounds as expected. An attractive outcome of using this method

is that the resulting region does not include any unnecessary areas that is not covered

by bootstrap draws.

Figure 3-4 plots 90% confidence region based on unweighted LR statistic. Com-

parison of Figure 3-3 and Figure 3-4 reveals that precision weighting plays a very

important role in delivering good confidence sets. Without precision weighting LR

statistic delivers a confidence region that includes unlikely regions in the parameter

space where standard deviation of the discount factor is zero. On the other hand pre-

cision weighted LR based confidence region is invariant to parameter transformations,

for example, changes in units of measurement. This invariance to parameter transfor-

mations is the key property of a statistic to deliver desirable confidence regions that

does not cover unnecessary areas.

Figure 3-5 plots confidence region based on Wald-based statistic with no precision

weighting. This is identical to the confidence region based on Hausdorff distance.

Similar to Figure 3-4 this region covers a large area of the parameter space where no

bootstrap draws appear. This picture reveals a key weakness of using an unweighted

Wald-based statistic or Hausdorff distance to construct confidence regions. These

methods are not invariant to parameter transformations which results in confidence

regions with undesirable qualities that cover unnecessary areas in the parameter space.

The problem in Figure 3-4 and Figure 3-5 are of similar nature. In both of these

cases the statistics underlying the confidence regions are not invariant to parameter

transformations therefore when drawing confidence regions uncertainity in one part of

the plot is assumed to be identical to uncertainity in other parts of the plot. However



a quick look at the Figure 3-2 reveals that uncertainity regarding the location of the

HJ bound varies for a given mean or standard deviation of the stochastic discount

factor.

Figure 3-6 plots the confidence region based on weighted Wald statistic. Weighting

fixes the problem and generates a statistic that is invariant to parameter transforma-

tions. The resulting confidence set looks very similar to weighted LR based confidence

set in Figure 3-3 as it covers most of the bootstrap draws below the HJ bounds and

does not include unnecessary regions in the parameter space.

3.4 Conclusion

In this paper we provided various inferential procedures for inference on sets that

solve a system of inequalities. These procedures are useful for inference on Hansen-

Jagannathan mean-variance sets of admissible stochastic discount factors and Markowitz

mean-variance sets of admissible portfolios.
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Appendix A

Proofs for Chapter 1

Derivation of the Rate in Example 5:

Denote by h m (z, 0, P) the projection of h(z, 0, P) onto the space of B-splines with

nonnegative coefficients with basis functions ,m(z). Suppose there is 0o E OI\OI,, so

that for all z E Z h(z, 00o, P,) > 0, but h m (z, 0o, P,) < 0 for some CE Z. By uniform

approximation through splines Ihm "(, Ho, i,,) - h(O, o )I = O(cm). Let 01 be the

point closest to Bo with respect to the Euclidean metric for which hmn(f, Oo, P,,) > 0.

By standard arguments,

(O0 - 00) 0 ),,(Z, O)(l)(Z, 0o)'),(z, 0o)-'hm" (nQ,, ( I1,) -0)(,O o0,I ,,)1

so that by our assumptions on the rate of D,., 00 - 01 = O For OA C (in \,,

the analogous argument goes through with only slight modifications since eventually

K < rm, so that taking both steps together, we can establish the rate stated above [

Proof of Theorem 1:

For part (i), we will show that with probability approaching 1, O(, C C and C, C

O K for any K > 0, where 8I,, denotes the K blow-up of 8, with respect to the

renormalized Hausdorff distance (-). := C{0 8 ) :Vl"r',(0, 0i),,) < K}.

First note that by Condition 5, ^, > supoc(),,,i nQr,(0) with probability converging



to one, so that E,n C en, implying d(SnoO, Sn6Od) = 0 for all 0 E OI,n with probability

approaching 1.

In order to prove that the set estimator approaches OI,n from the outside, we

have to show that for any K > 0, dn C OK with probability approaching 1. By

construction, p7 SUP 0oBd nQn() = an which is o,(l) by assumption 5. On the other

hand, by uniform convergence from Condition 3 (c), for any choice of r > 0 and n

large enough,

p inf nQ, (0) > inf ((-) +( 6,())(1 ) 1 inf 3) - 31
e \e8, soce\en oee\er,

where the last step uses Condition 3 (b) and an -- 0 and 6n(O) is uniformly bounded

on n .

By epi-convergence from Condition 3 (b), arginfe~e -y(O) = 01, so that 'y(O) > 0

for any 0 E 0\OI. Since E) c OI,, and by compactness of 0\E n, infoee\eO 'y(0) >

E for some E > 0. Hence choosing e.g. q = , we have that with probability

converging to 1, Cd C O K , implying d(S 0no, SnO0E ) = 0 for all 0 e C. Since K was

arbitrary, this establishes part (i).

We will now prove part (ii). By the same argument as above, OI,n C C, with

probability converging to 1. Now, let Kn, =( a which converges to zero in

probability by Condition 5 so that for any E > 0 and n large enough, P(Kn S6) < e.

Then by Condition 4,

inf nQn(O) > lPn(Kn A -6)
1/ = n

with probability approaching 1. On the other hand, by definition of the set estima-

tor, supoe0 nn(O) = sn SO that P(Cn C O ) 1. Hence, Lt, /j Qn(Cn, 1,n)

Op () , which completes the proof r
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Proof of Proposition 1:

In order to show uniform convergence for the criterion function, we will first prove

the following Lemmas:

Lemma 4 The orthogonal projection of Vn/ + ( onto a cone C with respect to the

scalar product (., ")W is a contraction, i.e. for any (, (,

IyJ(V - + Cc, W) - Y(#p + IC, W)112 I -_112

PROOF: By an orthogonal projection result for convex cones (e.g. Lemma 2.7.5

in Stoer and Witzgall (1970)), we can write for any (

n(v' + (IC, W) = ( - Hn(V + )iC0, W)

where C' denotes the polar cone to C with respect to the scalar product (., .)w induced

by W, and

(H(VFi + ( C, W). H(V + (IC0 , W))w = 0 (A.1)

Now, instead of calculating the moments of ( and H(V-j + (IC, W), we will look at

the differences between two independent draws (, ( from the same distribution, which

have mean zero by construction. For any pair (, ( we have

- n(v. -+ C, W) 1= ( II(v-n,+ (C 0, )-I( -, ) (, W) 2

-+1i - ( 11 - 2(n(vn~-- + ( IC, W) - H(r-ig + (IC0, W))'W(( - ()

S | ( IC0 W) - H(Vng + Co 2

+2H(Vf + (IC0 , W)'WH( n + (- , W)

+2H(v + |C W(, w)'WnH(V q + (IC, Wi)

< I (I iin( +IC 0 , W) -H( () + )2W

< 11(- 12
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where the second equality holds by A. 1, and the first inequality uses that by defini-

tion, any vector in C forms an obtuse angle with respect to (-, -)w with any vector in

the corresponding polar cone C' o

Lemma 5 We can bound the expectation of the norm of the projection by

ElnII(v'j + (Ic, W) - E[I(v5 + (C, W)] 112 < Ei (1i2

PROOF: Noting that for two independent draws X 1, X 2 from the same distribu-

tion, EIIXi - X2112 = 2Var(Xi), by Lemma 4,

E II(v/ + ( C, W) - E[(vn -+ ( C, W)]|| 2  2~E H(x/ + (C, W) - II(V + C, W) 2

= + - , = 2

since the expectation of ( equals zero E

Lemma 6 If the fourth moments of (n (0) are bounded uniformly in 0, then the fourth

moments of HII(15 + ( C, W) are also uniformly bounded.

PROOF: As in the preceding Lemma, and noting that for two i.i.d. draws

X 1 , X 2 , EIX 1 - X2 114 = 2E|1X 1 - E[X 1] 114 + 2 (EII X - E[X 1] 112) 2 . we can produce a

very generous (but finite) bound using Lemma 4 for independent draws (, (:

- (Ell (vY + ( c, W)l )2

S El( (14 Ell(14 + (El (1|2 )2

where both terms on the right-hand side of the last inequality were assumed to be

finite m
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Lemma 7 Under Condition 3,

Var (W(0)1 /2I vi n(0)) < Var (Wri,(0)'/ 2 
n(0))

in the positive definite matrix sense.

PROOF: Note that int is the projection of V/n.,(8) + (,,(0) onto a polyhedral

cone. Hence, for each value of the vector and the corresponding set of constraints

J" C {1,..., mn} defining the face of the cone v/-g,(0) + ,((0) is projected onto,

V /In constitutes an orthogonal projection with respect to the distance weighted by

W (0) onto the linear subspace C = span({ej : je J}), where ej denotes the jth unit

vector. For projections onto linear spaces, it is known (see e.g. Malinvaud (1980),

section 6.4) that Var(ng,,,(0) + ,,(0) J,) - Var(v nif,,l,) is positive definite. By a

similar argument, Var(E[,(0))IJ]) > Var(E[tinl3]), so that the desired conclusion

follows from the conditional variance identity J,, n

Lemma 8 Define

T,(0) n (,(0) - ton(O), (,(O))w

and

T2,, (0) : /n(g ((0) - to,(0). i,,(0) - E[,n(0)]))w

Then, under the conditions of Proposition 1,

sup h,(0)-1 IT(0)j -P* 0 and sup h(0)- 1 T 2n(0) -L+ 0.
OE8 OcE

PROOF: We will first show pointwise convergence, and then show that the sequence is

asymptotically tight, so that uniformity follows e.g. from Theorem 7.1 in Billingsley

(1999). For the argument based on Prohorov's Theorem we can in fact dispense of

measurability conditions via the Hoffmann-Jorgensen approach using convergence in
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outer measure, see e.g. van der Vaart and Wellner (1996).

By inspection, Tin has mean zero, and we can bound the variance by

E[T~ 2]  n Ln()-2E[ ( (n(0) - ton), n(0))W 12

< nln(p)-2(gn() - ton)'Wn(O) l/E[Wn(O)n W(0)l/2(in (0) - tOn )

_n ,(0-(,()- 0) - tOn)'Wn ()(~n() - ton) = ln(0)-xl (0)

where "-<" means "less than or equal up to a multiplicative constant," and since

by Condition 3 (b), the maximal eigenvalue of E[Wn()1/2n( n()) 1/2 is uni-

formly bounded. Now note that by construction hn(0)-1yn(0) is uniformly bounded

over 0 E O. Since A~ -- oo by Assumption 5, the variance of hn(O)- 1T(0) goes to

zero for all 0 e O so that, by Chebyshev's inequality, for all 0 E ) hn8(0)- 1 Tl(0) P- 0.

Using the same argument and Lemma 7, we also have pointwise convergence for

hn(0- T 2 ().

In order to prove tightness, note that we can use the Cauchy-Schwarz Inequality to

bound

IT1n(O)IT 1 
V(0)2 / (V/)n (9.(0) -tOn()), n(0))W 2

ITn( )  -- /Tn () 2  n (0)

< i n (O) - ton(0) wm W 1/
2  n(O)11 < O o/y ()1/2(1/

2 1/21(0) fW
n( W n n

Since h,()-l'y,(O) is uniformly bounded in 0, it suffices show that I 11(n(0) | is

tight, which follows from Condition 3, part(d) by

mn ||((0)lw CG max (mn(0)2 (max Imn(O)I1nm<mn - m<M /

where Cj :- max eig(W) is the largest eigenvalue of W. Therefore, hn(0)-T is

concentrated on a compact. Using Lemma 5, we get the analogous result for T2 O
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Lemma 9 Under the conditions of Proposition 1,

T3n := Pj' (11n - v(,, - to,,)l 2 - E [ I(,- (i - ton) I]) 4 0

uniformly in 0 E 09.

PROOF: Denote A := II(g + ( C, W) - E[I(g + IC, W)] By Lemma 6 and

Assumption 3 (b), the fourth moment of A is bounded, and hence by the triangle

inequality and Chebyshev's Inequality, m-( AI 2A - EA 112) - 0. Notice also that

by the triangle inequality

Irn IIIAII2 - 1_E IA 1 < Tn-1 Al . + n7, 1 1'A 12

where m fll 11A is tight by the same argument as in the previous lemma, and

mn'E Jll A112 is uniformly bounded by Condition 3 (b). Since - = av -> 0, T3 n =

am 1(I (A2 - E IIA| 2) converges to zero in probability uniformly in 0 [

PROOF OF PROPOSITION 1: The proof of uniform convergence is similar to that

for GMM in Han and Phillips (2006), except that we have to bound terms using

the contraction argument at several steps since there is no closed-form expression for

projections of the noise part. By Assumption 4 and Assumption 3 (d),

nll, - t*(0)2I - nlln(0) - t*(O)1I - 0

uniformly in 0, so that in the following we can hold W,,(0) fixed at 7W(0). I will also

suppress subscripts and arguments wherever possible with the understanding that all

quantities are evaluated at sample size n and the parameter 0 E 06. We can then
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rewrite

nQn = |W( 9 -t*) + 2

-JV(j - to) + (v (l - t*) + ) - (- to) 11 2

- ln - to l 2( + 2 (.(( - to, - ,(v* - to))w

= n7n(0) + mn,(O) + 2Tin - 2T 2 n + T 3n

where by Lemmas 8 and 9 the terms

TIn, := Vn(-to, )w

T2n : /n(g - to, t* - E[in])W

T3n : (n n - V-n(tn - tOn)ib - [ n - (n Wton) W]

converge to zero uniformly in 0 E 8 after normalizing with hn(O)-1

Proof of Theorem 2:

Note first that Conditions 3 (a) and (b) are clearly satisfied. Now, denote n :=

pl(nQn - On6n). In order to verify (c), note that we have for any E > 0 and r9 > 0

and r E R and n large enough, by Assumption 5 and Proposition 1

( n n V1 "n
1-E < P sup <r7

\6e %nVIy V1 nV1

P(SUP I"n V 1)(7n + T(/n V 1)) V I (Yn V 1)<)

<Psup I(In V 1) - (7n V < n + T< P sup (1nV1)-(YV1)I<?+)

Since we can choose E, r~, and 7 arbitrarily close to zero, so that Condition 3 (c) holds

for K = 1, and part (d) follows from Assumption 3 part (c). Condition 4 is satisfied

by Assumption 1 and Proposition 1 with 6 - 1. Finally, Condition 5 has already

been shown to hold in Lemma 1 n
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Proof of Proposition 2:

By Condition 6 (c), we can w.l.o.g. assume that each component of (, has unit

variance. By Condition 7 (d), we have

limn sup P(S(gn, W4) > S(pn(Pn), .n(/l )))
111

< limsup P(O(gn) 7 ,,(g,,)) = 0
n,

since by a Hilbert space version of Strassen's Law of the Iterated Logarithm (HLIL,

e.g. Theorem 8.5 in Ledoux and Talagrand (1991) or Theorem 3.1 in Kuelbs and

Kurtz (1974)) applied to nl/2,, - hi,

lim sup P (g,, > on for some m such that 7llnm < 00)
n

< lim supP +( > 1 for some m
n ( 2lim sup l og log n

< P lim sup Thn + (mn > 1 for some m
n -\/2 log log n

such that r7inm <

such that rlinm <

By the same argument, lim sup, P(S(gn, W/r) > S(.Pn,(Pn), ~.O(Wn))) = 0 w

Proof of Theorem 3

In order to prove the first statement in Proposition 3, I will first show that

lim sup sup IPF(T,(O) < x) - P(T(rqn, ) < x) = 0
n (6,P)E Po

for all x > 0. Following the argument in Andrews and Guggenberger (2007a), since

the limsup over the infimum over (0, P) has to be attained along some subsequence

of (On, Inr,), it will be sufficient to verify convergence along any subsequence w,,, or
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equivalently,

lim P,7 (Tn (On) < x) - P(T( 7n, r2n, 8n) x) = 0 (A.2)
n

where Pn, denotes the sequence of probability measures in Po indexed by the sequence

(On, 7n).

By Condition 6 (c) we can w.l.o.g. assume that each component of (n has unit

variance, since under n -> 0 we can always pre-multiply the moment vector with

a diagonal matrix containing consistent estimators of the (marginal) standard devi-

ations for each element. Since some of the elements in hi may be equal to infinity,

hi + (, need not be a proper random vector so that it is not possible to apply the

Berry-Essen bound directly to the sequences 7rln + (,,. I will therefore use the fol-

lowing truncation argument:

Define rnm -:= min{rln,m, 2pu}. Clearly, for every n, the sequence {rlwnm}ml is in

£&, the space of bounded sequences. By the definition of the truncated parameter

sequences in, and the argument from the proof of Proposition 2, we have

limsup P (S(i1ln + (n, Wn) # S(rl~ + (n, W,))
n

< lim sup P(S(r71 + (n, W) S(p,(rll + (n), W,))
n

+ lim sup P(S(p(r01 + (n), W) 7# S(,rln + (, W,))
n

+ lim sup P(S( (r71*n  + (n), W,) 7 S(cp(r77 + (n), Wn))
n

- 0

for any x G R. Hence it is sufficient to consider the truncated sequences r71 .

Since the dimension mn of the moment vector increases in n, I will use dimension-

dependent Berry-Esseen bounds to justify the approximation of the distribution of

(n by a Gaussian vector. Since by Condition 6 (d) S(y + Z, W) is quasi-convex in Z,

the lower contour sets con<,S(., W) := {g C 12 : S(g, W) < x} are convex for every

x c R. In particular, if only the first m components of g are nonzero, the projection
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of con<xS onto the first m coordinates is convex.

For the class Cm of convex sets in R m, it follows from Theorem 1.1 in Bentkus (2003)

that for an orthonormal Gaussian sequence Z in 12,

sup P(7.m( n,(O)) e A) - P( mn(O()'/2Z) c A) <

where r,(x) denotes the projection of x onto its first m components. Hence by

Assumption 8,

4 0 0C / 2m 7/ 4

sup P'; (T,(O,) < x) - P(T,*(r;n, O,) < x) < 1/2
tER

This bound depends only on dimension and sample size, the second moment of the

distribution of gi,(O) and an absolute constant, and therefore holds uniformly in the

parameter space.

For any sequence rn, we now have from the above argument that for a Gaussian

vector Z, with nmean zero and covariance operator Q,,, ,

P,(T,,,() < x) = P (a. S(p,,rn( 1i + (S), (Wn,,, m, n)) + o(1) < )

P (a S(, (rl,, + Z), ( ,,,,, n,,n)) < X+ Op(l))+O( mrn)

-, P(T,(<, 72n .) X) + 0 (mn

where the first equality uses Condition 6 (a), the second step uses continuity from

Condition 6 (b) and continuity of the distribution of S(h + Z, W) from Condition 7

(a). Hence, from the rate restriction from Condition 9,

lim P,.(T,(O,) < x) - P(T(qin, 2n,On) < x) = 0

for all x > 0.

Hence, from the definition of the critical value and continuity of the distribution
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function,

lim supn sup P n(0) > &F(0, 1 - a)) 5 lim sup sup P (T*(0, )2n, 0) > F(0, 1 - ))
(0,P)EPo n (0,P)EPo

+ lim sup sup P (T*(1, 2 0) > (0, 1 - )) - P T* (0, > F , 1 - )
n rjCH

+ lim sup sup P(Tn(0) 5 x) - P(T*(qln, 72n, n) < X)
n (O,P)EPo

< a+0+0

The last inequality follows from the following arguments: since under the null

hypothesis H, r > 0, Condition 6 (a) implies P(T*(i77, i 2, n) > F(O, 1 - a)) <

P(T*(0, O2, 0n) > CF(0,1 - a)) for every q E H. Conditions 8 and 9 together imply

that 2n is consistent for ~2n in the sense that SUPl<k,1<mn I2n,kl - 772n,kl nI_ O, where

72n,kl denotes the (k, 1)th element of q2n. Hence by continuity of S in r2, the second

term on the right-hand side is less than or equal to zero. The third term vanishes by

(A.2), and the first term is equal to a by construction.

To prove the second part of the theorem, notice that if Condition 10 holds, there

is a probability distribution in AM which attains hi = 0 at some value 00, so that

Ph(Tn(Oo) < EF(00, 1 - a)) = 1 - a, so that by continuity of the c.d.f. at its 1 - a

quantile, AsyCS = 1 - a E

Proof of Theorem 4

The proof for the first statement of the Theorem follows an argument similar to that

in Theorem 3. The crucial additional step needed to establish uniformly validity of

critical values constructed via subsampling consists in showing that

limsup sup Lnmnb (0, ) - P (t*(l 2n, 0,0) < ) = 0 (A.3)
n (0,P)E'Po

for all x > 0, where Yl, = b N(O,).

From the rate restriction in 11 and the uniform bound on third moments in As-

sumption 8, we can again apply the dimension-dependent Berry-Esseen bound from
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Bentkus (2003), so that

sup
(0,P)EPo

IPh(Tnmbj() > X) P(T(n 7 ,Y 2 ,0) > X) <
400C3/2R7/4

b1/2

By a standard argument, under Assumption 11, 8, and i.i.d. sampling,

sup Lnmnbn, (, X) - Ph (Tnmbj(0) < x) -4 0

establishing (A.3).

Hence, using a similar argument as in the proof of Theorem 3, along the sequence

(On, T/n, Yn),

lim sup I I'(T,(y,, Y2n, 0) < :)

Now it is easy to verify that for all E > 0 and h E H,

P(T, (yln, 72n, 0) < Ch(O , 1 - a) + E) > 1 - a

where ch(0, 1 Ca) is the 1 - a quantile of the distribution of Tn(0) under Ph. Hence

along the sequence (On, rn., Yn), the subsampling critical value satisfies

lim sup P(T,*(l,, 7Y2n 0) > S(On,, 1 - a)) = lim sup P,,(Tn(On) > cS(,, 1 - a)) = o
n, n

Since for all F and 0 E OI,., ,(0) > 0, by Assumption 11, we have r,, > 71yn > 0 for

all (O,, F,) E M, so that by Assumption 6(a), P,,,, (T1 (0) > x) < Py, (T,.(O) > x), so

that at the subsampling critical value,

limsup P,, (tn(On) > (On, ,1- a)) <a

establishing the first conclusion of the theorem.

Finally note that if the first part of Theorem 4 applies and if in addition Condition

12 holds, we can show the second part of the Theorem following analogous steps as

in Theorem 1 (b) of Andrews and Guggenberger (2007h) with the only difference
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that instead of considering the limit of the sequences (which need not exist in the

infinite-dimensional case), it is possible to apply the argument at any fixed sample

size n -

Proof of Proposition 3:

Before we prove Proposition 3, we will show that Condition 13 implies that the se-

quence Zi, Z2, ... is strong a-mixing. Recall that the mixing coefficients of a random

sequence are defined as

ah - sup sup IP(A1 n A2) - P(A)P(A2)IAnm A1EA,A2cAh

where A' is the o--algebra generated by the sequence Zu 1,... , Z.

Lemma 10 Condition 13 implies that {Zm}m>l is a strong mixing sequence, where

ah has size -1.

PROOF: From the definition of the mixing coefficients ah, it follows directly that

ah < Ph := supym,ym+h E[YmYm,+h] where Ym and Ym+h are mean zero random variables

with unit variance which are measurable with respect to Am and Am0h, respectively.

From Theorem 1 in Kolmogorov and Rozanov (1960) it follows that for Gaussian

sequences, Ph coincides with the supremum of correlation coefficients of linear com-

binations of Z 1,..., Zm and Zm+h,..., respectively. For a given choice of coordinate

pairs (a,, bl) and (a2, b2 ), denote the submatrix a2b2 := {W bi1<b2 Then

Q m+h,oo 2 / Qm+h,oo \2

2 __ Km Y x 'm+h,2m+h) -2
ah e P = sup sup X o (h)

,ye2 x0,m m+h,0+ ,YE12 X0,1 oQ Ym+mh,0
0M +h,oo 0,m m+h,oo

by Condition 13 (ii), since we can always reorder the rows of OQm+h'o in a way such

that for all pairs of new indices (k', 1) under the translation by m + h and the old

indices (k, 1), Ik'- 11 > Ik+m+ h- 11 +h. Now define := (x,...,xm,0,0,...), so
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that for ly l,,,+h,o = 1, by the Cauchy-Schwarz inequality we have
m+h,o

(x, -m+hcmh ) 2

X m~h,2m+h
Qm+h, 02 < +o112 . 11+112rn~ h oc Q m+ A oo m+h,00

- (si, Q~hooy)
2  I IL IIYH h oorth.,oo m+h,oo

- Xl12l nilhm+ I < B2
Sx rnm+h,2n+h 

2

m+h,2m+h

Hence, (h < Q)h < Ho (1 h), so that Z1 ZZ2,.. . are strong (v-mixing with (a of size -1 m

PROOF OF PROPOSITION 3: Define Sm := E', D1. Since for each m, Zm is a

mean zero Gaussian, E[DI] = 0, so that ESm = m/2.

By Lemma, 10 and the definition of D1, the sequence D, D, .... is strong a mixing

with size -1. Note that a Gaussian random variable has moments to any order, so

that by Corollary 3.1 from Wooldridge and White (1988)

m.1/2 Sm - 2 N(. U2)

where a2 := Var(m- 1/2Sm).

Now note that from standard arguments for the chi-bar square distribution (see e.g.

Silvapulle and Sen (2005)), ml/2 inm(O) Since EXj = j and Var() = 2j, by

the law of iterated expectations,

Var(x I) = E [E[y j = Sm]2 + Var(j S,)] - E[Xhi,

= +E[,2,2Sm]
2

lE[S n]2 + Var(S,,) + m,
4

Since D1, D2, ... are bounded and strong mixing, we have supmra m2, < oo, so that

Var(X2 12 < o00. Hence, the conclusion follows from Corollary 2.2 in Dykstra

(1991) 0

Verification of Assumption 6 for the Statistics S1-S3:

We will first provide results on quadratic forms as auxiliary lemmas, which will then

be used to show Assumption 6 for the statistic S2-
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Lemma 11 Let C1 C C2 C 12 be closed convex cones. If g E C2, then for any -y E 12,

S(-, WI) = (id - Pcl)7 Y12 I (id - Pc)( + g) 11 = S(y + g, W 2 )

where Pcx denotes the projection of x onto C under the norm I1- I w.

PROOF: By definition,

t* = PciY = arg inf W - t |vtEC1

Since C1 is a closed convex subset of a Hilbert space, the infimum is attained and the

arginf is unique (see e.g. section 3.12, Theorem 1 in Luenberger (1969)).

Since g E C2 , (t* + 9) E C2 . Therefore,

II (id - Pcl)72 11 (_ + g) _ (g+t*)l12 > m i n 1 (- +g) - t2 = 11 (id - Pc2 )( +g) 11

proving the claim E

Lemma 12 Let C C 12 be a closed convex cone. Then for any positive definite W E

S2(y, W) = min Il - t , = I(id - P)>ylw
tEC

is convex in 7.

PROOF: Let iyl, -y2 E 12 and define

t* := arginf ||yi - t| w, and t* := arginf |Y2 - tw
tEC tEC
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Then for any A E [0, 1], At' + (1 - A)t* E C since C is a convex cone. Therefore,

S(A-y + (1 - A)-2, W) inf IIAy7 + (1 -A)72 -t2
teC

< ,Ax(y - t;) + (1 - A)(- -t

+2A(1 - A)h'i - tl wIY2 2- t1 w

SAS(-y1, W) + (1 - A)S(y 2 , W)

where the first inequality follows from the fact that At* + (1- A)t* E C, and the second

from the triangle inequality since - |1w is a norm on 12 o

Lemma 13 Let j = - + Z. Then .for any positive definite W, Q E '1, the critical

value c ,,(, IV, Q) of S(g, VV) is a convex function in -y.

PROOF: Since S(g, W) is convex in g, we have for every realization of Z

S(Ayi + (1 - A)y2 + Z, W) < AS(Q1 + Z, W) + S(Y2 + Z, W)

Therefore,

AS( 7 i + Z, W) + (1 - A)S(71 + Z, W) >FOSD S(Ay + (1 - A)72 + Z, W)

implying that

Acl-(-, W, 1) + (1 - A)c.l_(72, W,1 2) > c1 -,(A-l + (1 - A)->, 14k Q)

proving the claim w

Lemma 14 Let C c 12 be a closed convex cone. Then for any bounded, positive
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definite W G I,

S2(7, W) = min I - t12 = I (id - P)7ylw
tEC

is continuous in (y, W).

PROOF: Let 6 > 0 and let (71, 72) and (W1 , W 2 ) be such that

max { I1 - 2 11, I --Y 2 11W 1 , [71 Y- 72 1 W2} < 6

and I W1 - W2 < 6. Also for i = 1, 2, let t = arg inf ec Tiyj - tI w,. Then

S2(Y1, l ) - S2(Y2, 72) 1 I1 - t 11 - Y2 - t2 W2

< L1 -tI [ -r +- tl 11 + -t12 1-lx2 -t11~

< l W - I2 Y2 2- tW12i - WW2< I1 -72 + 1(_ t*, (Wl _ W2)(_ _ t*) I

< 6(1 + 1l2 - t212)

where the first inequality uses optimality of t*, the second inequality follows from the

negative triangle inequality, the next line follows from the Cauchy-Schwarz inequality

and the definition of the operator norm. Since y2, t2 are in 12, the norm in the last

expression is finite. By symmetry, we also have S2 (72 , W2) - S2 (Y1, W1) 6(1 + iY1 -
t 112), so that S2(-y2, W2) - S2(71, W1) 1 5(1 1 maxi=1,2 I_- t 2) . From the same

argument, we also get that

I1 -_ - t1 2 - 2 _ tf l 2 = IS2 (y, id) - S2 ( 2 ,id)1 _ 5

so that for E > 0 and fixed ', we can pick 6(e, I) := 1 A i so that S2(Q, W2) -

S2(Y, W4)I < E for all y with max{ I'-7iI, |7- 1w} < 6 and all W with IIW- WI <

3, which establishes continuity -
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Proof of Lemma 2:

For S1, the proof of Condition 6 (a)-(d) is immediate, and property (e) follows directly

from Lemma 12 using W = id. For S2 , property (a) follows directly from Lemma 11,

property (b) was shown in Lemma 14, and (c) is immediate. Property (d) follows

from the fact that S2 is a norm, and part (e) follows from Lemma 12.

For S3 note that by restricting the vector a to be in the cone defined by the square root

of the weighting operator W, we ensure that all linear combinations will be positive,

so that the test function is indeed non-increasing in g. Continuity is immediate from

the definition of the test statistic and the fact that the respective norms on the vector

and operator spaces of interest derive from the scalar product. Next, since for any p.d.

diagonal A, we can always pick the matrix square root (A 'WA-1)1/2 = W 1/2A -1,

so that (a, (A -1',WA-/ 2 Ag) = (a, 1'/2A-1Ag), so that part (c) is also satisfied.

Part (d) is immediate, and for (e), note that for any two vectors gy, g2 and A E [0, 1],

we have by the triangle inequality for • 1 2

S(Ag + (1 - A)g2 , W) = sup 1|(a, W' 2 (Ag + (1 - A)2))
aEA

< sup (A21 (a, 1'/2g) 112 + (1 - A)2 (a, i'1/292)112)
aeA

SA2 sup ((, 1/
2

g) 11 
2  

(1 -- ) 2 
Sup (a. 1W/2

1
2) 

2

aEA aEA

" AS(g,, V ) + (1 - A)S(g 2, 11)

Condition 7 can be verified using the same reasoning as in Andrews and Guggenberger

(2007b): If hm = oc for all m, all three statistics are equal to zero with probability

one, so that part (a) is trivially satisfied. On the other hand, if hm 4 oo for some

m we can, w.l.o.g. assume that th < oc since for all components m with hm = o00,

we can set hm + Zm - v,* equal to zero. Then, Sj(h + Z, Q) has full support on

the positive real numbers, and continuity follows from quasi-convexity of Si(., -) and

Theorem 11.1 from Davydov, Lifshits, and Smorodina (1998) (note that their Propo-

sition 11.3 extends from convex to quasi-convex functionals), which establishes parts

(a) and (b) of Condition ??. For part (c) notice that we have S1 (g. W) = 0 if and
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only if g > 0 for i -- 1, 2, 3. Hence for any Gaussian sequence Z with mean zero, we

have P(Si(Z, W) < 0) < P(Z 1 > 0) - . Part (d) clearly holds for all three statistics

O

Derivations for Example 10

In our example, T,(0) can be represented as a mixture of chi-squared random variables

with different degrees of freedom,

mn

li~s () E[(0)] = 2 -mn ( ) EXJ = 2

j=1

Since for the chi-squared distribution with j degrees of freedom E [(X2) 2] = (E[X])2+

Var(Xj2) = j2 + 2j, we can now calculate the second moment by

mE[T n mM j2

E[ (0)2] = 2- m ~(()E(Xj2)2 - 2-m (2 + 2j) = -M(m, + 1) + m
j=1 j=1

We can prove the summation formula Em 1 (.)j
2 = m(m + 1)2m-2 for the last step

by induction over m: Clearly the expression is true for m = 0, so for m + 1, we have

by the inductive hypothesis and standard binomial identities

E m+l mjm +1 j2 (M+l)2 + m=1  j2

j=1 j=1

= (m1)2+ [G 2) ( + 2)+ 1)

j=1 j=0

m(m + 1)2 m - 1 + m2m + 2m = (m + 1)((m + 1) + 1)2(m+ 1)- 2

proving the claim.

Hence,
1 12 5

Var(T (O))= m,(m + 5) m qm

so that the ratio mn(0) 2 < oo. Dykstra (1991) shows that for any mixture of
(O) 5
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chi-squared distributions W, = y~, where J, is a integer-valued random variable sat-

isfying W, < B < 00, the standardization of W,, converges to a standard normal

if and only if the distribution of degrees of freedom J converges to a normal. In this

example, SM - B (M, ), so that asymptotic normality follows from the deMoivre-

Laplace theorem m

Proof of Proposition 4:

Define

P~n = I~:: (0)= 1 +
I 

n

Sm=1 n fmn(0)2(p

where cp(.) is the p.d.f. of a standard normal, and let

, := m (0)2 = Var (
m'n

1 m

r m= 1 Umn
I I{(mn rnn I})

Note that under the least favorable hypothesis, 0,,,(0) = 0 for all m = 1. 2,..., we

have I,(0) = 1.

For part (i), we can write

/nS1 (POnmn(n),7Qn
1
) n

N/TT

mn jmn(0) + mn(0) ] 2

=1 Umrn (0) -

Now, note that since for any random variable Z with finite second moments,

Var(Z) = E[Z2 11Z < 0}1 + E[Z 2 11Z > 01] - E[Z]2

we have

Emin{Z, 0}2

VarZ
E[Z 2 11{Z < 0}]

Var(Z)

1
2

E[Z 211{Z 0o}] - E[Z 2 11Z < 0}]
2Var(Z)
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which is equal to l if Z is distributed symmetrically about zero. Hence,

e 2
ng2P(n < 0)

+ +2 mn(0) 2
Emnfl{gn < 0}] - E[( f1{n __ 0}]

2Umn (0)2

Defining Zmn = C", we have by integrating by parts
&mfn

E [Zmnl{Zmn < 0}] z2 dP(Zmn z) = -2 j zP(Zmn z)dz
-OO

S2jz [4(z) + n-1/ 2 1 E[Zmn](z) + o(n-1/2) dz

by an Edgeworth expansion for the studentized mean (see e.g. Hall (1992) section

2), where 1(z) denotes the standard normal c.d.f. and o(z) the standard normal

density. By an analogous argument for E [Zn'1l{Zmn < 0}] and using that the normal

distribution is symmetric about zero, we therefore have

E m2n {mn < 0} -E m {cmn > 0} n-1/2 2 E [  (0)o(n-2) = O(n-1/2)
mn I} mn

where the first equality follows from a standard result for the censored normal mean.

For , mn # 0, we get by the same line of reasoning that

E [12nl{CmnULn -E [mn l{mn >
S-Vg mn
V-gmn

z 2 (z)dz+O(n-/ 2)

Hence,

E m[ min I igmn + (m02

m=1 -mn

2nm 1 L m(
2 2 =l

0-gmn

7mn

where O (--) = o(1) by assumption. By the same reasoning as in the proof of

Proposition 3, we get the expression of the asymptotic variance up to a term of order
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. We can now use Corollary 3.1 from Wooldridge and White (1988) to show that

n, mn min{viimn+Cmr.,}
2  

-
m - N(0, 1) d

S.. -I N(0, 1)
V1+d.

For part (ii), note that if the variance operator is diagonal, the minimization problem

in (ii) simplifies to

m,,S2( (, nm , n), ') = n min(,,(O)- )' - ,,()-V>()

mn min{ gVn,(0) + (nn(0) 0}2
Um71 (0)2

Hence, the proof is identical to that for part (i). In order to see why under the least

favorable hypothesis ,mn, = 2, note that by an argument completely analogous to

that for the expectation, we can show that for a standard normal random variable Z,

Var ( 1{(
mn

<o}) Var (Z2 1{Z < 01) + O(n-1/2)

1 1
1 Var(Z 2 1Z < 0) + I (E[Z 2 11{Z < 0}JZ >
2 2

0] - E [Z 2 1{Z < 0}])2

+1 (E[Z 2 11{Z < 0} Z < 0] - E[Z 2 11{Z < 01])2 + O(n - 1/2 )

2
1
8

1 5
+ $ +O(n-1/2) = + O(n-1/2

8 4

using the conditional variance identity. Hence if OQ, is diagonal,

m=1
min { m: 0 2)

5
4

+ m '  1/2

( n

and the conclusion follows from a martingale CLT n[
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Appendix B

Proofs for Chapter

Lemma 15 Under Assumptions 8 and 9, , (0) - Qo(0) -A 0, and COk(O)-Cok(O) ->

0, both uniformly in 0 E (9 for any k = 1,..., K.

PROOF OF LEMMA 15:

By assumption 9, either q,(0) -- g > 0 or n'/ 2g,(0) h < oc. Since g,(0) is a

sample average of n independent (or weakly dependent) observations,

P lim sup
n

Umm() 
)

< 1 )
0
1

if g,(0) -- g > 0

if n 1/ 2 ,(0) - h < oo
(B.1)

by the law of the iterated logarithm, and similarly,

> 1)
1 if in(0) - g > 0

0 if n1/2t,(0) -+ h < oo
(B.2)

The estimator of the covariance matrix can be rewritten as

Q, (0) - E (g(YI, 0) - l/)li(0))(g(Yi, 0) - 01 nr(0))
i=-1

n (g9 (y, 0) - gn(0))(g(yi, 0) - n(0))' + (n(0) - In (0))((0) - ln(O))'

i=1

123

In .(
Omn m(0)

P (lim inf
( n



For the components with ,,~n() - gm > 0, by B.2, P('mn(9) # 41mn(0)) > 0, so

that the contribution to last term vanishes. For the components with n1/2g9mn )

h < oc, we have that, by B.1, P(1imn(0) # 0) -+ 0, so that for any e > 0, by the

triangle inequality

P(I mn(0) - i1mn(0)1 > E) < P(I mn(0) - mn(0) > E) + P(IV)Imn(0) - mn(0) 1 > E)

where the first term goes to zero by a law of large numbers, and the second term

vanishes because

P(11imn(0) - gmn(O)l > E) 5 P(bimn(O) 0) + 11{|imn(O)I > E) - 0

Note that the latter case also includes exactly binding constraints, ,(8O) = 0. Hence,

in either case, by assumption 8 (i), ||Gn(0) - o(0)11 -A 0 uniformly in 0.

Similarly, we have for Cnk(0)

n

Cnk(0) n -(g(Yi, 8) - lln(0))Gk(Yi, 8)'

i=1

S E(g(Yi, 0) - Pn(0))Gk(Yi, 0)' + (On(0) - 01ln(0))Gk(Yi, 8)

i=1

so that by a similar argument as in the previous step, the second term vanishes, and

the first term converges in probability to Ck(8) uniformly in 0 by Assumption 8 E

PROOF OF PROPOSITION 5:

Omitting the argument 0 for notational convenience, notice that by definition of Qn

and Cnk, Gkn(O) := Gk(Yi, 8, 8)(g( , 0) - I1n (0))Qn 1 nk is the average residual from

an OLS regression of G(Y, 8) on g(Yi, 0) - I(0) which is by construction orthogonal

to g(Y, 8) - 01n(0). Since Y,..., Y, are i.i.d., we have for every k =- 1,..., K

1
E[(g, (0) - ' 1,(0))Dnk (0)' -E[(g(Yi, 8) - 'ln(0))(Gk(Yi, 8) - (g(y ) - 'ln())Q~n Cnk)]

n

=0
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Since for every 0 E 01, V,,(0) - g(0) - 0 a.s., ),,(0) and g,(0) are asymptotically

uncorrelated at every 0 E 01.

Since by the same step as in (B.2) and (B.1) either mn(0) = 0 or lmn(0) =

m,,n(0) with probability converging to 1 for all m = 1,..., M, by Assumption 7,

Lemma 15, and Slutsky's Theorem,

( M(0) -n(0) d (0 (0) 0
Gn(0) - Gn(0) 0 0 V(0) - C(O)'/(0)-'C(0) ,

for every 0 CE 0 -
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Appendix C

Proofs for Chapter 3

First, we will prove a simple lemma, which will be used to justify the local approxi-

mation for the Wald statistic:

Lemma 1 Suppose R.1 and R.2 hold, and let On be a sequence such that O8 - 0* E

80o. Then On - arg mineh(o)= 0 0 - 01 2 satisfies On ".

Proof of Lemma 1. Since by assumption R.2, the gradient of rh(O) is bounded

away from zero, by the implicit function theorem, the set {0 : Th(O) = 0} is locally

approximated by a plane, and we can define

8, = arg mmin 0- 112 = +Vom(O*)(Vom(O*)Vom(O*))-l( n(O>)_m(O*))+op(1)
o:rn(0)=

By R.1 and R.2, On - 0* = op(1) so that by the triangle inequality

l0in- 0*1 lOn - Onl + lo - 0*1l

<I I - 0* + I , - n

< 2110, - 0*11 + 110* - aI = oP(1)

since On, - 0* and 0, - 0* = o(1).
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Proof of Theorem 1

PART 1. (Limit law of ,.) Let Gn = V(M" - m). Then

L, = sup [Vrin(O)/s(O)]
OEo

= sup [(Gn,() + v-m(0))/s(0)]
8Ee0

=d sup [(G(9) + /m(O))/(9) + o(1)

The steps, apart from the last, immediately follow from Conditions R.1 and R.3. The

last step follows from the argument given below. Indeed, take any sequence O, E c 0

such that

sup [(G(0) + V/n-m(O))/o(O) + o,(1)] [(G(O) + Vm(9))/(8O) + o,(1)]

In order for this to occur we need to have that

Vm(On)/l(,n) = o,(1),

which is only possible in view of condition R.2 if, for some stochastically bounded

sequence of positive random variables C, - O,(1),

v/d(0n, aEo) < Cn.

Therefore we conclude that

sup [(G(0) + v m(0))/ (0) + o,(1)]

sup
oeaeo,o+A/vfiEeoejAll5cn

[(G(9 + A/ v) + vfm(O + A/! ))/(O + A/V) + o,(1)]

Using stochastic equicontinuity of G and continuity of a, the last quantity is further

approximated by

sup
oeeo ,O+A/Vneo,llAi<c,,

[(G(0) + v, m(O + A/v))/u(0) + o,(1)] .
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Because vm(0 + A/ /) < 0 and m(O) = 0 for 0 E (0 and 0 + A/VI 0, we

conclude that the last quantity is necessarily equal to supeoaeo [G(0)/a(0)] , yielding

the conclusion we needed.

PART 2. (Limit Law of W,,, ). We will begin by justifying the approximation

holding with probability going to one

sup nd(O, o) sup nd(O, Eo). (C.1)
Oceo

where

S= {0Ce (o : nd(O, 0o) < C, }

where Cn is some stochastically bounded sequence of positive random variables, C, =

Op(1). Note that right hand side is less than or equal to the left hand side in general,

so we only need to show that the right hand side can not be less. Indeed, let 0, be

any sequence such that

sup y-d(O, 0 o) = nd(On, o ).

If m(0,,) < 0, then d(O, , 0o) = 0, and the claim follows trivially since the right

hand side of (C.1) is non-negative and is less than or equal to the left hand side of

(C.1). If ' (01,) > 0, then d(O, 0) > 0, but for this and for 0,, E 0o to take place

we must have that 0 < i(0,) = O,(1/ n), which by Condition R.2 implies that

d(On, G0) = OP(1/v,).

In the discussion the quantity 0*(0) as follows

0*(0) E arg min 1l - 0'12.

The argmin set 0*(0) is a singleton simultaneously for all 0 E -,, provided 'n is

sufficiently large. This follows from condition R.2 imposed on the gradient Vom.

Moreover, by examining the optimality condition we can conclude that we must have

that for 0 E 0,
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(I - Vom(O*)(Vom(0*)'Vom(o*))-Vom(0*)')(0 - 0*) = 0 (C.2)

The projection of 0 E O onto the set E( := {0 : h(0) < 0} is given by

0(0) = arg mmin 0 - 0'[ 2.
':'(,)<o

If h(0) < 0, then 0(0) = 0. If ~-(0) > 0, then 0(0) = 0(0), where

0(0) = arg min 110 - 0112.
0':n(e0')=O

In what follows we will suppress the indexing by 0 in order to ease the notation,

but it should be understood that we will make all the claims uniformly in 0 E O .

For each 0, the Lagrangian for this problem is 110 - 0'112 + 2ni(0')'A. Therefore, the

quantity 0(0) can be take to be an interior solution of the saddle-point problem

(0 - 0) + VoA ( 0 )OA = 0

i(0) = 0

The corner solutions do not contribute to the asymptotic behavior of W,, and thus

can be ignored. A formal justification for this will be presented in future versions of

this work. By lemma 1, we can use a mean-value expansion to obtain

(0 - o) + Vo(0)- = 0

(0*) - m(o*) + Vom(0)'(# - 0*) = 0

Using the partitioned inverse formula, we can verify that under the regularity con-

dition R.2, A = Op (0 - 0*). Also, Voi(0) = Vom(O*) + op(1) and Vom(0) =
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Vom(O*) + op(l) uniformly in 0 E 0, solving for (6 - 0) we obtain

6 - O* = Vom(0*)(Vo (o*)'Vom(O*))-'(ih(0*) - m(0*))

+ (I - VOm(0)(Vom(o)'Vom(0))-'Vom(O)')(O - 0* + op (0 - 0*))

Using that m(O*) = 0 and v/'i(0*) =d G(O*) + o(1), we obtain

=d Vom,(o*)(Vom,(o*)'Vom(o*))-1G(o*)

+ /-(I - Vom(0*)(Vom(o*)'Vom(o*))- Vom(0o*))(o - o*) + o, (xv/(o - 0*))

Furthermore, by 0 C (-),, and by the approximate orthgonality condition (C.2) we

further have that (I - Vomn(*)(Vom(O*)'Vom(O*))-lVom(0*)')(0 0*) = 0, so that

V-(6 - 0*) =d Vom()(Vom(O)'Vom(0))-1G(O) + o(1).

We next approximate 1(i(0) > 0) using that

V' (O) vT~A(6) + VOrM(6)Vn(0 - 0)

= Vm(0)' n(0 - 0) + o,(1),

= G(O) + op(1)

for an intermediate value 0, where we used that () = 0.

Thus, uniformly in 0 E 0, we have that

/nd(0, O0 ) = 10-0 2 1{Vm(O)>v(0 - ) > 0 + oP(1)}

= Vom(O)'Vom(O)) '/2C(0)j1{G(O) > 0 + op(1)}

= [ Vom(0) - (0) + oP(1)]+

Therefore, given the initial approximation (C.1) we obtain that
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Wn =d sup [IlVom(O)l-| G(O)]+ + o,(1). (C.3)

PART 3. (Continuity of the Limit Distributions). The continuity of the distri-

bution function 1 on (0, oo) follows from Theorem 11.1 in Davydov, Lifshits, and

Smorodina (1998), and the assumption that the covariance function of G is non-

degenerate. Probability that £ is greater than zero is equal to the probability that

maxj supoe Gj (0) > 0 which is greater than the probability that Gj, (0') > 0 for some

fixed j' and 0', but the latter is equal to 1/2. Therefore the claim follows. The claim

of continuity of the distribution function of W on (0, oo) follows similarly. r

Proof of Corollary 1

This corollary immediately follows from the assumed conditions and from the com-

ments given in the main text preceding the statement of Corollary 1. o

Proof of Theorem 2

We have that Prp[Oo C RLR] = Prp[n < k(1

confidence region. We then have that for any a <

point of the distribution function of £, so that for

Prp[£n _ k(1 - a)] Prp[L, < k(1 - a) + E]

Prp[n, < k(1 - cQ] Prp[ n, < k(1 - a) -

- c)] by the construction of the

1/2 that k(1 - a) is a continuity

any sufficiently small e

-+ Prp[L < k(1 - ) ]
Pr'p[ <k 1- -e

Since we can set c as small as we like and k(1 - a) is a continuity point of the

distribution function of L, we have that

Prp[£n k(1l - a)] -- Prp[£C < k(1 - =)] (1 - ).
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We can conclude similarly for the W-statistic W,,.

Proof of Corollary 2

This corollary immediately follows from the assumed conditions and Corollary 1.

Proof of Theorem 3

We have that

Ep. [(V*)] - Ep [((V)] = op(1) uniformly in p E Lip(C(O)).

This implies that

Ep.[([V*]+)] - Ep[p([V]+)] = op(1) uniformly in p E Lip(C(O)),

since the composition ; o [.] E Lip(C(O)) for (p C Lip(C(O)). This further implies

that

Ep.[p'(sup[V*]+)] - Ep[p'(sup[V]+)] = op(1) uniformly in p' E Lip(R),
Rn Rn

since the composition p'(suPR, [.]+) Lip(C(O)) for (' E Lip(IR) and Rn denoting

any sequence of closed non-empty subsets in E. We have that E0 converges to E00

in the Hausdorff distance, so that

,Ep[('(sup[V]+) - (p'(sup[V]+)]l
i3~-)o3O(

< E[ sup[V
54 (

1+ - sup[V]+I  A 1] = op(1) uniformly in p' C Lip(R),
0-)o

since sup -[V]+ - supaeo[V] = op(l) by stochastic equicontinuity of the process V.

Since metric pK is a proper metric that satisfies the triangle inequality, we have shown
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that

pK(QS*, Qs) = Op(1).

Next, we note that the convergence PK(QS,, Qs) = o(1), for any sequence of laws

Qs, of a sequence of random variables S, defined on probability space (Q', F', P,)

implies the convergence of the distribution function

PrQ,, [S, < s] = PrQs[S < s] + o(1)

at each continuity point (0, oo) of the mapping s - Pr[S

of quantile functions

< s] and also convergence

inf{s : PrQs, [S, < s] > p} = inf{s : PrQs [S < s] > p} + o(1)

at each continuity point p of the mapping s H inf{s : PrQ, [S < s] 2 p}. Recall from

Theorem 1 that the set of continuity points necessarily includes the region (0, 1/2).

By the Extended Continuous Mapping Theorem we conclude that since PK(Qs*, Qs)

o,(1), for any sequence of laws Qs. of random variable S* defined on probability space

(Q', F', P*), we obtain the convergence in probability of the distribution function

PrQS" [S* < s] = PrQs[S < s] + oP(1)

at each continuity point (0, oc) of the mapping s H Pr[S < s] and also convergence

in probability of the quantile functions

inf{s : PrQs, [S* < s] > p} = inf{s : PrQs[S < s] > p} + op(1)

at each continuity point p of the mapping s " inf{s : PrQs [S < s] > p}. E
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Proof of Corollary 3

In order to prove this corollary it suffices to show that

PK(QlZ*, Qt'Z; C(()) = Op(1).

Without loss of generality we can take sup I1|tl < 1 and sup ||tl| < 1. The claim will

follow from

PK(Qz*, Qt'Z; C(O)) < PK(Qi', z Qiz; C(O)) + PK(Qi,'Z, Q'Z; C(O)) = OP(1).

That PK(Q lz*, Qi; C(O)) op(1) follows immediately from PK(QZ* QZ) = O(1)

and from the mapping c2('.) E Lip(Rk) (indeed, IJ(t'z)-p(t'z)l < sup t['(z-z')IA1 <

[(sup 11l sup Iz - z'11) A 1] < [sup liz - z'l1 A 1]. That pK(Q'Z, Q'Z; C(0)) = oP(1)

follows because uniformly in o E Lip(C(O)

IE[i('Z)] - p(t'Z)l < E[sup (ti - t)'ZI A 1] < E[sup lt - t lZ| A 1] = o,(1).

Distribution of the Argmin of dw(O, .)

Denote O0 := {0 E 0 : m(O, To) < 0}. The projection of 0 onto the set 0 := {0 E 8

m,(0, i) 0o}

0 = arg min dw(O. 0')
O:m(O',e)o

If <(, 7) < O, then 0 = 0. If m'(0, /) > 0, then we solve

= arg min
O:m(O',')=C

(o - 6)'W(O - O)

The Lagrangian for this problem is

S= (0 - O)'W(0 - 0) + 2m(O, ')A

By the mean value theorem, the first-order conditions for the constrained optimization
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problem are

W(O - 0) + Vom(O, i)A = 0

m(0*, -o) + Vom(O, ')(O - 0*) + Vm(6, )(' - yo) = 0

Denoting Io = Vom(O, -), Io = Vonm(6, ')(( - 0*) and AI; = V,7n(), we can

rewrite the first-order conditions in matrix form:

W M 0 -0* W( - 0*)

M e M(y - o)

Solving for (0 - 0) via the partitioned inverse formula,

0 -* W-lio(- 1 M 0W-l o)- l'Q(j - yo)

+W-1/2(- W- 1/ 2 /o(MA-12I - 1 -MW-1/ 2)W1/2(O - 0*)

where the second summand is approximately equal to zero if 0 - 0* is small. Note also

that m(O, '1) > 0 if and only if the second component of 0 - 0 is positive. Consider

a local parameter 0 = 0* - h/v , such that 0* = arg minm(O',,o)<o dw (0*, 0'). Then,

by a central limit theorem and the continuous mapping theorem,

JY(0 - 0) [ (_ - 0*) + h]+(2) [w- 1Mo(M1W- 1 Mo)-IM 7I/ 2 Z + h]+(2)

where Z - N(0, I,) and [x]+( 2) equals the norm of x if the second component of x is

positive and zero otherwise.

Therefore the distribution of the Hausdorff distance can be approximated as

n mm dw(8,0) = [h+ ZI Q1/2 MY(Ml W- 1Mo)MoW 1] +(2)

xW [W-1IMo(MoW- 1 Mo)- 1 jQ 1/ 2 M'jj2 + h] +(2)

( IIW-1/2 A/I r(Z, ) 2
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where

I 1/2 A jy 11r(Z,0) = 1/2  { [W-1M(MW-1Mo)-la(0*)2 + h] O

In order to see that this approximation is uniform in 0 note first that the class of

functions

7 := ({ [WI(-' O(MW -'AMo)-'o(*)2 + h] 2 > o}: 0* Q (}

is a VC subgraph class.

On the other hand,

IIW-1/2 Ml

is Lipschitz in the parameter:

19o, - 9021 < sup IVog9(0)llllO - 0211
OE8

where for "y(O) := IlM'W-' MIoej,

V () = -y(o)VoU(o) - U(o)Voy(o)
y( 0 )2

and we can verify that the gradients of a(O) and -7(0) are indeed uniformly bounded

over 0 E 0:

( 1
0 (0) (= 0) M a

8 10 ) = ) (MW(0) M° - M'W(0) 1WVok(O)W(0) -MO)

where the additional subscripts denote derivatives with respect to components of the

parameter vector Ok. Since uniformly in 0 C E the eigenvalues of W - 1 and Q are

bounded away from zero, and second derivatives are bounded in absolute value from

above, supOE IIVog(0)Il < oc if E is bounded.

Therefore for diam(8) < oc, F is bounded Donsker, so that by theorem 2.10.6 from
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van der Vaart and Wellner (Lipschitz transformations), the product (9 - h)F is

bounded Donsker with constant envelope function 1 < 00, where A* and A*

are the smallest eigenvalues of W and Q, respectively.

Distribution under Local Alternatives

In order to analyze the power of the two tests against local alternatives, define

g()i(0, y) m(0, 'y) + (

for a non-positive function g(O) such that the norm of its first derivative is bounded

both from above and away from zero uniformly in 0, i.e. there are constants 0 < C1 <

C2 < oo such that for all 0 C1 < IVog(0)I < C2. Let

eA :-= {0 : f(, Y) < 0}

Then by the mean value theorem, we can approximate the LR-type statistic

]m(0,' ) 2 90 )

C= sup = sup + 0(( - ,0)2

Since() , C coverges weakly to

Since u(0)= M/R' QMy, Cn converges weakly to

nCn " sup Q1/2z - g() 1
oeco U(0)

-sup [Z- g(0) 1
Oeo I IQ1/2M I

where Z ~ N(0, 1).

For 0* c O 0, define = arg minf(eO, 0o)=o dw(0', 0*). By the mean-value theorem,

for some 0, an element-by-element convex combination of 0* and 0, we can write
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first-order conditions for this problem as

W(O - 0*) + Vo(O, 'yo)A

Vom(O, 'o)(O - o*)
g(0*)

Ti

since by continuity of m(.*), m(0O*, Y) = 0 for any 0* E i00o. Solving for 8, we get

V( O - 0*) - w- [AY + / vn]([QO + G/1v/'W-1 1o + /1 ])- g(O*)

where C = VoG(O) and G = Vo(O). Since |lVog(O)II is bounded away from zero

uniformly in 9, 0 - 0* = (n-1 /2), and we have that

(-9) = [v,(O*-#)+ v(&-O*)]+(2)_' [W-1o(MW-1Ao,,)-'M'n (Q 2 Z - g(O*))]+

pointwise. By uniformity of this approximation, the Wald statistic converges to

sup [(o-(O) - g(0))(M W-' Ao)-' IW-'] W [i- 1AIo(MIW-'Mo)
OEOo2

Ssup[ I
0oc(0 L f V-1/2foI

Ssup
OCeo (-

g (0)

C{ [ 1M(AItMI ) 1(U(0)2 - _g()) 2 > 01 2

r(0, Z)]

where r(O, 2) = - Mo { [ W- 1Mo(MWI1Mo)- 1 ((0)2 - g(0))] 2 0 }
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