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Abstract

Synaptic plasticity is the ability of a synaptic connection to change in strength
and is believed to be the basis for learning and memory. Currently, two types of
synaptic plasticity exist. First is the spike-timing-dependent-plasticity (STDP), a
timing-based protocol that suggests that the efficacy of synaptic connections is
modulated by the relative timing between presynaptic and postsynaptic stimuli. The
second type is the Bienenstock-Cooper-Munro (BCM) learning rule, a classical rate-
based protocol which states that the rate of presynaptic stimulation modulates the
synaptic strength. Several theoretical models were developed to explain the two
forms of plasticity but none of these models came close in identifying the biophysical
mechanism of plasticity. Other studies focused instead on developing neuromorphic
systems of synaptic plasticity. These systems used simple curve fitting methods that
were able to reproduce some types of STDP but still failed to shed light on the
biophysical basis of STDP. Furthermore, none of these neuromorphic systems were
able to reproduce the various forms of STDP and relate them to the BCM rule.
However, a recent discovery resulted in a new unified model that explains the
general biophysical process governing synaptic plasticity using fundamental ideas
regarding the biochemical reactions and kinetics within the synapse. This brilliant
model considers all types of STDP and relates them to the BCM rule, giving us a
fresh new approach to construct a unique system that overcomes all the challenges
that existing neuromorphic systems faced. Here, we propose a novel analog very-
large-scale-integration (aVLSI) circuit that successfully and accurately captures the
whole picture of synaptic plasticity based from the results of this latest unified
model. Our circuit was tested for all types of STDP and for each of these tests, our
design was able to reproduce the results predicted by the new-found model. Two
inputs are required by the system, a glutamate signal that carries information about
the presynaptic stimuli and a dendritic action potential signal that contains
information about the postsynaptic stimuli. These two inputs give rise to changes in
the excitatory postsynaptic current which represents the modifiable synaptic efficacy
output. Finally, we also present several techniques and alternative circuit designs
that will further improve the performance of our neuromorphic system.
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1. Introduction

Artificial intelligence is a dream that we can only hope to achieve in the future.
On average, scientists believe that we will be able to create an independent learning
machine in the next few decades. For years, scientists have studied, developed, and
tested multiple types of intelligent systems in the hopes of achieving the futuristic
view of having artificial intelligence dominate the planet, but so far, although some
sort of progress have been achieved, nobody was able to build a fully functional
superior, intelligent and independent learning machine. The biggest reason why this
is the case is because no one has developed an effective way to implement memory
and learning in an artificial being.

If we think about it, why are we working so hard to create an entirely new
system that mimics the behavior of the human mind? Why not just emulate how the
mind works and behaves? Scientists around the world are beginning to realize this
fact and slowly but surely, we see researchers faced by a seemingly impossible task
find a similar and parallel challenge in the natural world that is solved by evolution.
For instance, to create sleeker and better underwater vehicle designs, scientists
studied how fishes maneuver [1]. Thus, instead of figuring out the most optimal
aerodynamic design from scratch, scientists based their ideas using a proven design
from mother nature.

In developing an efficient and effective learning machine with memory, we have
the alternative approach of not starting from scratch. Instead, we can focus on
understanding how the brain, a natural and perhaps one of the most complicated
machines ever, actually works. To do so, we have to analyze basic structures of the
brain because the brain's behavior is dependent on how these structures behave.
Realistically, the most basic functional unit that we can easily replicate is the
neuron. Once we successfully capture the full behavior of neurons and subsequently,
networks of neurons in silicon, we can implement subsystems of the brain in an
electronic chip. The caveat though is that these neurons should be so accurately
modeled otherwise our system design might not work.

Neurons are simple minute structures. Simply put, they are transmission lines
through which signals in the central nervous system flow. A much more important
and interesting structure to study is the connection between any two neurons, or the
synapse. The synapse is a very complex structure because it encapsulates the
dynamics that describes the relationship between any two neurons. This is why
scientists believe that learning and memory are encoded in the combination of
synapses in the nervous system. The average person probably does not realize this
but each of the quadrillion synapses in the human body has a property called
synaptic strength and modifying this property leads to adaptation, habituation, and
eventually learning and memory.

Our goal for this project is to emulate how the brain modulates this synaptic
strength and implement an electronic synapse that behaves like its natural
counterpart. We shall present to you a very robust model of synaptic strength
modification, more commonly known as synaptic plasticity and we will propose a
novel, compact, and low power analog circuit designed to fit in a chip that simulates
the functions of a real synapse.





2. Unified model of spike-timing-dependent synaptic plasticity

Information storage in the brain depends on modifications in neuronal networks,
is brought upon by inputs from the environment. More specifically, the connection
between two neurons, which is called a synapse, can vary in strength depending on
the stimuli acting upon the neurons. These stimuli originate from sensory inputs and
go through the signal processing pathways of our brain and ultimately modulate the
connection strength of synapses. This phenomenon of synaptic strength modification
is called synaptic plasticity.

In the last decade, it was discovered that the strength of synaptic connection is
influenced by the relative timing between presynaptic and postsynaptic spikes [2].
Hence, the term spike-timing-dependent synaptic plasticity or STDP was coined.
This discovery is very crucial because it supports and expands the Hebbian theory,
the most widely regarded neurological learning rule. It is such an important theory
that the principal experimental protocol for inducing change in synaptic plasticity
was based from it. Since the discovery of STDP, multiple experiments have been
done to prove the Hebbian theory, however, the theoretical basis for STDP is not a
popular study for research because very few biophysical models can account for the
temporal asymmetry properties of STDP, as well as explain five different subtypes of
STDP that were discovered [3].

Quite recently, a unified theoretical model that explains the multiple subtypes of
STDP was developed [3]. The model consists of three essential components:
backpropagation of action potentials through the axon and the dendrite, dual input
activation of the N-methyl-D-aspartate (NMDA) receptors, and calcium dependent
plasticity. First, the model carefully derives an accurate representation of the
morphology of the backpropagating action potentials using Hodgkin-Huxley
equations. Secondly, the model calculates the dual requirement of NMDA receptors
for increasing the conductivity of calcium ionic channels. Lastly, calcium dependent
plasticity was explained using a two-component model involving calcium dependent
protein kinase and phosphatase [3].

Before we discuss the details of the unified STDP model, let us first summarize
the important components of neuronal networks.

2.1. The neuron

Neurons are highly specialized single cells and are the most basic components of
the nervous system. They are electrically excitable cells that process and transmit
information around the nervous system. Neurons are the core components of the
brain, and spinal cord in vertebrates and ventral nerve cord in invertebrates, and
peripheral nerves (Lopez-Munoz, et al, 2006). Figure 2-1 shows a cartoon of a neuron
and its different parts.
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Figure 2-1. A cartoon of a neuron showing its basic parts.

The main parts of the nucleus are the soma, axon, and the dendrite. The soma
acts as the processing unit of the neuron and is responsible for generating action
potentials. These action potentials are propagated from the soma to the end of the
neuron, also called axon terminal, by the axon. In the axon terminal, chemical
neurotransmitters that encode the electrical signal are produced to cross the gap
between the axon terminal and the next neuron. This gap is part of the connection
system of the two neurons which is collectively referred to as the synapse. The
neurotransmitters that cross the synapse bind to the input receptors on the dendrites
of the postsynaptic neuron. Every neuron has multiple dendrites that are all
connected to other neurons. Current signals that are coming from the dendrites, also
referred to as postsynaptic currents, form postsynaptic potentials that are summed
at the soma to produce new action potentials.

2.2. The Synapse

Synapses are special junctions that enable two neurons to communicate with each
other. These structures allow neurons to form interconnected circuit networks within
the nervous system and are very crucial to the biological computations that underlie
perception, thought, and memory. They also provide the means for the nervous
system to connect and control other systems of the body. For instance, the
specialized synapse between a motor neuron and a muscle cell is called a
neuromuscular junction [4]. A cartoon of the synapse is shown in Figure 2-2. The
synapse has three main parts, the axon terminal that contains the neurotransmitters,
the synaptic cleft, and the dendrite spine.

2.2.1 Signaling mechanism through the synapse

Neurotransmitter release

The first stage of signal propagation through the synapse is signified by the
release of neurotransmitters. In the axon terminal, vesicles containing
neurotransmitters are docked, ready to release their contents. The arrival of the
action potential results in an influx of calcium [Ca] ions [5] whose presence triggers a
biochemical process that results to the release of neurotransmitters to the synaptic
cleft about 180 microseconds after [Ca] influx [6].

.. ... .... .... .... .... .... .... .... .... .... .... ...:. .. ...: : .: : : :m .... .... ..; : .. .... .... .... .... .... .... .... .... .... .. ... ... .... .-.. .... .... .... .... .. . . - - -
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Figure 2-2. A cartoon of a synapse showing its basic parts.

Receptor binding

Receptors on the dendrite spine bind to neurotransmitter molecules and respond
by opening nearby ion channels in the post-synaptic cell membrane, causing ions to
rush in or out forming postsynaptic currents that change the local membrane
potential of the cell. The resulting change in voltage is called postsynaptic potential.
In general, the result is an excitatory postsynaptic potential (EPSP), in the case of
depolarizing excitatory postsynaptic currents (EPSC), or inhibitory postsynaptic
potential (IPSP), in the case of hyperpolarizing inhibitory postsynaptic currents
(IPSC). Whether a synapse is excitatory or inhibitory depends on what type of ion
channel that conduct the postsynaptic current which in turn is a function of the type
of receptors and neurotransmitter employed at the synapse.

Termination

The last stage of signaling is termination. Presynaptic signals are terminated via
the breakdown or reuptake of existing neurotransmitters. Reuptake is mainly
localized in the presynaptic neuron and serves to recycle transported
neurotransmitters.

2.2.2. Synaptic strength

The strength of a synapse is defined by the change in postsynaptic current as a
result from the activation of postsynaptic neurotransmitter receptors. Changes in
synaptic strength can be short term (short term potentiation/depression, or
STP/STD) and causes no permanent structural changes in the neuron. Typically,
this change lasts a few seconds to minutes. Sometimes, strength changes are long
term (long term potentiation/depression, or LTP/LTD) [7]. For these types of
changes, repeated or continuous synaptic activation results in an alteration of the



structure of the synapse itself. Learning and memory are believed to result from long
term changes in synaptic strength, via the synaptic plasticity mechanism.

2.2.3. Integration of synaptic inputs

Having discussed the notion of synaptic strength, we can then differentiate a
strong from a weak synapse. In strong synapses, action potentials in the presynaptic
neuron will trigger another action potential in the post-synaptic neuron, whereas, in
a weak synapse, the sum of EPSPs may not reach the threshold for action potential
initiation.

Each neuron forms synapses with many other neurons and therefore receives
multiple synaptic inputs. When action potentials fire simultaneously in several of
these neurons, multiple EPSCs are created which all generate EPSPs that sums up
in the soma. Hence, the output of a neuron may depend on the input of many others,
each of which may have a different degree of influence, depending on the strength of
its synapse with a specific neuron [8]. John Carew Eccles performed some of the
important early experiments on synaptic integration, for which he received the Nobel
Prize for Physiology or Medicine in 1963.

2.3. Synaptic plasticity

Synaptic plasticity, the phenomenon of synaptic strength modification, has been
intensively studied because it is believed to be the underlying mechanism of learning
and memory. STDP refers to the long term potentiation (LTP) or depression (LTD)
of synapses as a function of the relative timing between the external stimuli to
presynaptic and postsynaptic neuron [9]. Studies on STDP has boomed since
STDP's discovery and it was soon discovered that a Hebbian synapse becomes
potentiated (strengthened) if the presynaptic neuron is stimulated before the
activation of postsynaptic neuron and becomes depressed (weakened) if the
presynaptic neuron is stimulated after the activation of the postsynaptic neuron [3].

The profiles of STDP as functions of spike timing between presynaptic and
postsynaptic spiking can vary significantly depending on which part of the nervous
system is studied. Two major types of STDP responses exist: symmetric and
asymmetric STDP. Symmetric STDP demonstrates no significant difference in the
nature of synaptic strength change regardless of the temporal order between the
presynaptic and postsynaptic stimuli. On the contrary, asymmetric STDP shows the
opposite effect of long-term plasticity under opposite temporal order. Asymmetric
STDP is further divided into two subtypes: Hebbian and anti-Hebbian. In the
former subtype, the synaptic strength gets potentiated when EPSPs induced by
presynaptic stimuli precede postsynaptic action potentials. Rat hippocampal
synapses belong to this class. Figure 2-3 shows an example of a hebbian STDP. The
latter subtype demonstrates depression under the same pre-post temporal
stimulation. Synapses linking parallel fiber to Purkinje-like cells in electric fish are
good examples of anti-Hebbian subtype of STDP [3].
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Figure 2-3. Hebbian STDP. Figure obtained from [2]

Knowing that there are various subtypes of STDP, we might wonder whether we
can elucidate a unified theory about the mechanism of STDP that could potentially
explain its different subtypes. Lee hypothesized that such a theory "exists and can
be built as long as we accurately model essential molecular mechanisms that
contribute to the temporal dependence of synaptic plasticity". Such mechanisms
include the back propagation of action potential to dendrites which can be seen as an
essential process in transmitting postsynaptic signals. On the other hand, glutamate
neurotransmitter signals could symbolize the presynaptic stimuli. The dynamics of
calcium current that are gated by NMDA receptors could be responsible for
temporally linking the presynaptic and postsynaptic stimuli [3].

2.4. Previous models of synaptic plasticity

Since the discovery of STDP, several models were proposed and developed to
explain it. Some of these models aim to reproduce the experimental data with a
mathematical expression to model the results from a macroscopic perspective. This
type of modeling is called empirical. Perhaps, the simplest empirical model describes
the STDP responses as two separate levels of synaptic plasticity subject that
exponential decays. This type of model successfully demonstrates the time-dependent
bidirectionality of STDP due to interacting depression and potentiation processes.
However, the weakness of empirical models is the fact that we do not gain any
significant knowledge about the biomolecular reactions at a cellular level which is
responsible for STDP [3].

Other types of models focus instead on deriving physiological mechanisms at the
biomolecular level to interpret experimental findings. These models are classified as
mechanistic models. The calcium control hypothesis for instance [10], suggests that
synaptic plasticity is dependent on the calcium level. This hypothesis clearly
supports the well known and widely accepted BCM rule that was proposed by
Bienenstock, Cooper, and Munro [11]. Eventually, scientists found out that NMDA
receptors through which calcium ions flow into the postsynaptic membrane are the
focal point of several mechanistic models [10, 12, 13]. These receptors serve as



temporal coincidence detectors that relate the timing of glutamate release from the
presynaptic neuron and the back propagation of postsynaptic action potentials for
both these stimuli are required to activate NMDA receptors which are both voltage
and ligand gated ion channels. However, these mechanistic models can not explain
asymmetric STDP responses. To overcome this. issue, models that have two
coincidence detectors were developed as well [14] but they did not quite have a
strong biophysical reasoning.

These previous efforts are very important in shedding light in the mystery that
surrounds STDP. However, none of them can completely explain the whole picture of
STDP. No one admits this, but truth be told, the scientific community is craving for
a fresh ideas for modeling STDP thereby causing more and more people to feverishly
work to unlock this mystery. In the next section, we will present a novel and
groundbreaking theory that we believe captures the whole picture of synaptic
plasticity.

2.5. Unified model of synaptic plasticity

We conjectured that STDP requires a series of subsystems that interact with one
another in a timely fashion. Unlike simple models that were developed in the past,
we constructed a rather composite model consisting of several subsystems that are
based on actual biophysical reactions in the synapse. We can summarize this model
by these few sentences. Presynaptic stimuli lead to the release of glutamate
neurotransmitter while postsynaptic activation leads to the propagation of the
dendritic action potential. Calcium signaling reaction begins when NMDA receptors
promote calcium influx which occurs when there is a glutamate influx and prolonged
membrane depolarization due to the backpropagating dendritic action potential.
Calcium kinase (Ca 4K) then catalyzes the activation of Alpha - Amino - 3 -
hydroxyl - 5 - Methyl - 4 - Isoxazole Propionic Acid (AMPA) receptors while
calcium phosphatase (Ca4P) promotes the breakdown of these AMPA receptors [3].
The balance between the kinase and the phosphatase is determined by the total
amount of calcium that flows to the postsynaptic membrane. Figure 2-4 summarizes
this model.

Stage one ' Stage two

Presynaptic I. . .. Glutamate
sttic Simple diffusion model Ligand andstimuli Ligand and

voltage-gated
Postsynaptic H-H Action AP back- V at NMDA ceptor
stimuli jJmodelJ potential (AP) roagation dendriteeepto

Stage three

Ca dependent plasticity
synaptic by BCM rule Calcium current thrustrength NMDA receptor

Figure 2-4. Block diagram of the unified STDP model. Figure is obtained from [3].

There are three stages in the STDP model. First is the backpropagation of action
potential, second is the NMDA receptor activation, and third is the calcium



transduction pathway. We shall therefore organize our discussion based on these
three stages. In the first stage, presynaptic stimuli get transduced to glutamate flux
while the postsynaptic stimuli get back propagated as a dendritic action potential
before they act on the NMDA receptors together. In the second stage, the influx of
calcium enters the postsynaptic neuron through NMDA receptors that are both
ligand and voltage gated. Finally in the third stage, activated NMDA receptors
allow the accumulated calcium level to determine the synaptic strength change using
the BCM rule. A two-component model was developed to model the calcium
dependent plasticity and validated by experimental data of frequency-dependent
plasticity [3].

2.5.1. Backpropagation of action potentials

To initiate an action potential, we follow the standard experimental protocol of
spike timing dependent plasticity. Here, the postsynaptic neuron is stimulated
milliseconds before or after the presynaptic neuron is stimulated. The action
potential due to the stimulation of the postsynaptic neuron gets back propagated to
the dendrites. We noted that most of the previous theoretical undertakings did not
adopt rigorous biophysical models for plotting action potentials and did not consider
detailed dynamics of backpropagation [3]. For example, the morphology of action
potentials in the NMDA receptor-dependent bidirectional model was simply modeled
as two monotonously decaying exponential functions [10]. In reality though,
experimental recordings of action potentials typically illustrate depolarization,
repolarization, and refractory phases. This is a very important detail that researchers
failed to incorporate in their experiments and is the main reason why none of the
past researches were able to explain the different forms of STDP.

To accurately represent the morphology action potential, we employed Hodgkin-
Huxley equations that represent the dynamics of the ion channels of the neuron. We
then decided to model the postsynaptic neuron by an equivalent circuit consisting of
axon and dendrite compartments [3]. This is justifiable because the action potential
back propagates through these two pathways in order for it to reach the dendrite.

We carefully examined the shape of the action potentials that pertains to each
experiment to ensure a precise theoretical model. Ordinary Hodgkin-Huxley
equations are adequate to model Hebbian asymmetric STDP. However, the shapes
of the action potentials in anti-Hebbian asymmetric STDP and symmetric STDP
shows depolarizating after potential (DAP) behavior. Hence, for these two cases we
introduced DAP into H-H model by inverting the hyperpolarization part of action
potentials.

2.5.2. NMDA receptor activation

It has been shown by recent studies that postsynaptic calcium transduction plays
an essential role in regulating long term synaptic plasticity and it turns out that
NMDA receptor-gated ion channels are the main pathways for calcium flux to the
postsynaptic neuron [15, 16]. These NMDA-receptor channels are very sensitive
channels. To open, they require both the binding of glutamate and a substantial
degree of depolarization. This led us to define a property of these NMDA channels
that represents how well they allow ions to pass through them. This property is
called the conductance. Clearly, as the conductance increases, ions pass through the
channel more easily.



We defined the conductance of NMDA receptors as gNMDAR and as it turned out,
it is actually a product of two terms: the dependence function of glutamate
concentration (Glu) and that of membrane voltage (Vdent). Note that glutamate flux
mainly results from presynaptic stimuli while depolarization is caused by the back
propagation of postsynaptic action potential [3].

Glutamate dependence can be described by the ligand-receptor model whose
association constant is KGu. Glutamate concentration can be related back to the
presynaptic stimuli by a simple diffusion model whose details are found in Lee's
thesis. The voltage dependence of the NMDA channel has been modeled with the
logistic function below:

Glu NMDAR-ax
MDAR(Glu,V ) Gl x N AmaNMDA Vdent Glu + Ku 1 + e - k

M"""(v
" -

tV1/2)

The exponential term of this equation is derived from the Arrhenius equation [3].
In qualitative terms, the voltage dependent activity function rises to a maximum
gNMDARmax following a sigmoidal curve whose half voltage is equal to V1/2 and whose
slope is 0.5kNMDAR at the half voltage point [3].

Once we found out the conductance of NMDA channels, we determined the
amount of calcium flowing to the postsynaptic neuron. We reasonably assumed that
the NMDA receptors are the major gateway of calcium inflow, thus, calcium
concentration would be proportional to the integration of current flow through
NMDA receptors over the time span of stimuli:

Ca a INMDARdt = gNMDARVdentdt

Where INMDAR is expressed as the product of the NMDA conductance gNMDAR and
dendrite membrane potential Vdent [3].

The lag time between the glutamate flux and arrival of dendritic action potential
influences the level of NMDA receptor activation which in turn modulates the
amount of calcium influx. Since both transient signals only last for a few tens of
milliseconds, such temporal proximity between presynaptic and postsynaptic stimuli
is necessary to trigger the interaction between the two signals. Figure 2-5 shows the
transient profiles of glutamate from the presynaptic neuron and dendritic action
potential at the postsynapstic neuron with lag time equal to + five milliseconds [3].

Intuitively, we can see that if the glutamate profile overlaps mostly with the
positive portion of action potential (Figure 2-5.a), the NMDA receptor is activated
causing more calcium to flow into postsynaptic neuron. On the other hand, if
glutamate influx occurs at the same time as the negative portion of the action
potential (Figure 2-5.b), the NMDA receptor is not fully opened, which ultimately
results into less calcium inflow [3]. Now that we can determine the calcium level, we
can use this to determine the direction of synaptic plasticity.

I- I I - I KUM=



19

a b

50 300 50 300
E AT= +ms E 4Th-5ms

40 240 - 40 4 240

a. 30 180 & 30- 180

0 0
20- -120 20 1200 a o0

-10 60 60
E 10 E

- 0. 0...
S00

-20 0 20 40 -10 -20 0 20 40 -60
Time, ms Time, ms

Figure 2-5. Profiles of action potential and glutamate concentration. (a) Onset of glutamate input
precedes the peak of action potential by 5 ms. (b) Onset of glutamate input lags the peak of action
potential by 5 ms. Figure obtained from [3].

2.5.2. Calcium transduction pathway

Accumulated calcium in the postsynaptic compartment through the action of the
NMDA receptors strongly influences the action of synaptic plasticity. Depending on
the total amount of calcium inflow, postsynaptic calcium can either upregulate or
downregulate the signal transduction pathways that lead to synaptic plasticity
change. Synaptic strength tends to exhibit LTD at low levels of calcium and LTP at
high levels [17, 18]. This forms the basis of the BCM rule. Basically, this rule states
that an omega-shaped function describes the dependence of synaptic strength on
postsynaptic activity [11]. Eventually, this rule was used in STDP models to relate
synaptic strength to intracellular calcium concentration [10]. Detailed mechanistic
models involving complex multi-step calcium dependent enzyme activation are quite
challenging to reproduce [3], but after extracting essential reaction mechanisms, a
bidirectional calcium binding model was developed with sufficient biophysical details
to describe the phenomena.

Calcium in the postsynaptic neuron influences synaptic plasticity through two
steps. To begin, the calcium either binds with calcium-dependent protein kinase or
phosphatase. Afterwards, these enzyme-calcium complexes either insert active
AMPA receptors [19] to the postsynaptic membrane if they are kinases or remove
AMPA receptors from the membrane if they are phosphatases [3, 20].The total
number of active AMPA receptors remaining in the postsynaptic membrane
determines the magnitude of the EPSC.

We can describe the binding between the calcium and two different types of
enzymes using the reaction below:

4Ca + K " t , Ca4K
4kCKb

4Ca + P krp ' Ca4P
kCPb

- I -r



Trapped calcium can either bind with calmodulin-dependent protein kinase II (K
for short) or protein phosphatase 1 (P for short). The binding between enzymes and
calcium is assumed to be cooperative and four calcium ions are required to fully
activate the kinase (Ca 4K) or protein phosphatase (Ca 4P). To simplify things, we
define the binding ratio of Ca 4K as R,,aK and that of Ca 4P as R0,,. In equilibrium
the values of RcaK and Rcap are:

Ca4  Ca4

=CaaC4 + KC4, ; R Ca 4 + K 4

C + K CaP

Afterwards, calmodulin-dependent protein kinase II bound by calcium (Ca 4K) can
insert and activate AMPA receptors whereas calcium-bound protein phosphatase 1
(Ca 4P) may internalize and deactivate AMPA receptors. This reaction is shown in
this reaction:

AMPARive+ kA pA+Activity(Ca4 K) AMPARativ
active kAMPARb +Activity(Ca4 P)

Where kAMPARf and kAMPAb denote the forward and backward reaction rate
constants of AMPA receptor activation.

Ca 4K activity can be computed as the product of VCaK and RCaK. Similarly, the
same relationship holds to the activity of Ca4P too. Intuitively, VCaK and VCaP are
proportional constants that quantify the contributions of Ca 4K and Ca 4P to the rate
constants, respectively. Changes in the activity of Ca 4K and Ca 4P caused by
calcium inflow would modify the number of active and inactive AMPA receptors. If
we assume that the total number of AMPA receptors remains constant, the
difference between synaptic strength before and after stimuli (AW) is proportional to
the change in normalized forward rate constants [3].

AW c kAMPARf + VCaK RCaK kAM PAf

kAMPARb VcapRcaP +kAMPARf +VCa K R c a4K  kAMPARb +kAMPARf

After determining the relationship of AW with the total calcium in the
postsynaptic neuron, we now have a working model that predicts how AW changes
as we stimulate the presynaptic and postsynaptic neuron with varying lag times.
This is the unified model of synaptic plasticity which we use to construct our
circuits.



3. Fundamentals of low power neuromorphic circuit design

3.1. Neuromorphic circuit design overview

Neuromorphic circuit design was established by Carver Mead in the late 1980's to
describe analog very large scale integration (aVLSI) circuits that emulate neuronal
networks present in the nervous system [21]. Recently, the term neuromorphic circuit
design has been used to refer to analog, digital or mixed signal VLSI systems that
implement circuit models and real time simulation of different neuronal systems.
Such systems include perception, motion control, and signal processing pathways in
the brain [22].

Figure 3-1. The synapse and the physical gap between two neurons. Chemicals need to travel between
the gap to send information between the two neurons.
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The first thing to consider when designing a neuromorphic circuit is to
understand how the biochemical processes of neurons compare with available circuit
techniques and overall architectures. Circuits are an excellent way to represent
neuronal networks because neuronal processes are governed by ion diffusion and drift
in neuronal ion channels [21, 23]. Science has evolved to such an extent that accurate
mathematical models have been developed to characterize the physics of neuronal
biological processes. What is amazing though is that circuits also follow the same
physical laws which allow us to reproduce biological computations using analog
circuits.

A basic neuronal network is usually comprised of a few interconnected neurons
that have specific behavior. Information is usually encoded in terms of action
potentials or digital spikes via the spiking frequency, spike amplitude, or in some
cases, spike morphology. These action potentials propagate through the axon which
can be modeled as the information carrier medium of the neuronal network. To
travel to another neuron, the information stored in an electrical action potential has
to be transduced so this information can be stored in a chemical format. This change
is essential because there is no physical connection between two neurons for electrical
signals to travel to. Literally, a gap exists and only chemicals can pass through this
gap, which is also referred to as the synapse. Once the chemical reaches the next
neuron, the information is transduced back to an electrical action potential [24-27]
Figure 3-1 shows the synapse and the physical gap between two neurons.

In constructing a complete neuronal network, we need robust and accurate circuit
models of action potential generators that will be used to encode electrical
information and chemical signal generators to encode chemical information. We also
need a synapse that is able to analyze chemical and electrical inputs and follow the
observed synaptic plasticity behavior. To build such circuits we then face many
design considerations such as power, area and speed.

Fortunately, the neuron is not a fast signal processing unit. Hence, circuit speed
is not a big design issue that we need to face. Now, we are not saying that the brain
is a slow machine. However, compared to modern circuits which typically operate in
high frequencies (1 - 1000 MHz), the brain is fairly slow as neurons typically reside
in low frequency bands (10- 100 KHz). So the two important design issues are power
and area. Area is typically solved by building circuits using the minimum amount of
transistors while avoiding large capacitors and resistors. On, the other hand, power
issue is solved by designing circuits that operate in subthreshold or weak inversion
regime. These circuits typically have transistors that draw currents in the
picoampere (pA) and nanoampere (nA) range which is coincidentally similar to the
order of magnitude of currents in neuronal circuits. This fact makes it even more
appealing and easier to emulate neuronal networks using low power aVLSI circuits.

The biggest drawback of analog design, thermal noise, is not a big problem when
capturing the behavior of neuronal networks because these networks are inherently
noisy. Now we might wonder, why not use the alternative design technique, digital
design? The main reason why we do this is because analog computation is almost
instant, as computation occurs in real time and is limited only by the motion of
dopant ions in semiconductors. Digital design on the contrary, needs more
complicated circuitry to implement biological computation, as every bit of precision
needs to be encoded. Thus, we burn more power and more importantly, it takes
longer time to get results.



One intuitive example to see the beauty of analog versus digital design is to
consider the simple process of addition. Efficient and fast digital adders takes an
order of nlog(n) time and circuitry to perform n bits of addition [28]. On the other
hand, to perform addition in analog domain, we simply need to combine two current
sources in one node and observe the current exiting that node in real time! Kirchoff
current laws naturally dictate that the sum of those currents must be the magnitude
of the current observed at the output node.

For this chapter, we will discuss the operation of weak inversion transistor
circuits. Furthermore, low power and area saving techniques will be also covered in
this section. Finally, we shall also present to you basic circuit building blocks that
will enable us to build useful aVLSI circuits that emulate neuronal networks.

3.2. Metal oxide semiconductor field effect transistor (MOSFET)

Every aspiring electrical engineering student probably knows a lot about
resistors, capacitors, inductors, and voltage sources. However, these elementary
devices, while useful for composing basic circuits and understanding circuit theory in
general, are note the main components of VLSI circuit design. Truth be told, the
main device used in circuit design is actually the transistor.

As an engineering student myself, I have seen a lot of students understand and
appreciate resistor and capacitor networks. However, the same students suddenly
become overwhelmed when they get introduced to the transistor. How come? This
device is just like a resistor! Like a resistor, it has current-voltage (I-V)
characteristics, albeit not as linear as the resistor. Nevertheless, it has fully
characterized I-V curves that have been modeled mathematically. Upon realizing this
fact, I began to appreciate how fascinating this little device is in creating useful
circuits.

So why do people use transistors instead of resistors and capacitors? The reason
is quite simple: transistors are small, flexible, and easy to produce. They can also be
operated in very low power, i.e. they use up very low amounts of currents (pA levels)
to perform interesting operations. Resistors on the other hand, need to be huge in
order use up low power. A resistor that operates in similar power levels as a
transistor would be at least thousand times larger than the transistor. This is very
detrimental to chip design as we do not want chips are bulky. Because of this, we try
to limit the amount of resistors that we put in our design. Same thing goes for
capacitors.

However we have to be careful in working with transistors for they are strange
gizmos whose behavior varies depending on the amount of current flowing through
them. Since most of our circuits are low power, we will focus on understanding the
basics of subthreshold transistor operation.

3.2.1. MOSFET fundamentals

The MOSFET is a four terminal device that is used for most integrated circuits
we can find in the market nowadays. Its four terminals are called Gate (G), Source
(S), Drain (D), and Bulk (B). Without going into all details how these four terminals
interact, let me just say that the voltages between any of these two terminals react



to current that flows through them. Standard schematics of transistors are shown in
Figure 3-2.

Drain (D) Source (S)

Gate (G) z Bulk (B) Gate (G) > Bulk (B)

Source (S) Drain (D)

N-Channel MOS P-Channel MOS

Figure 3-2. Schematics of the NMOS and PMOS.

There are two types of MOSFETS, the N-channel MOSFET (NMOS) and the P-
channel MOSFET (PMOS). NMOS is primarily used to sink current while PMOS
are used to source currents. Currents flow opposite across these two types of
transistors because the dopant ions for these two are of opposite polarity. The theory
behind these transistors can be found in any electronics textbook and I will not
waste time explaining this. Instead, I will focus on explaining the essential I-V
relationship of the MOSFET in subthreshold or low power regime.

3.2.1. MOSFET in subthreshold regime

We can apply and measure the voltage between the MOSFET's gate and source.
This voltage is referred to as VGS. This affects the current flowing through the drain

ID. VGS can be modified by two ways - by setting a fixed current through the drain
of the transistor or by applying a fixed voltage across the gate and source of the
transistor. Now, all MOSFETs have a certain threshold VGs where the ID to VGS
relationship changes dramatically. This threshold voltage is referred to as Vth. We
call the MOSFET operation as above threshold when VGS > Vth. If VGS < Vth, the
MOSFET is operating in the subthreshold regime. ID is much more larger in above
threshold than in subthreshold (about 1,000 - 1,000,000 times larger).

In subthreshold regime, the Boltzmann distribution of electron energies allows
some of the more energetic electrons at the source to enter the channel and flow to
the drain, resulting in a subthreshold current, ID that is an exponential function of
VGs. In weak inversion, the current varies exponentially with gate-to-source bias VGS
as given approximately by [29, 30]

KVG (1-K)Vs VDS

ID = Io e e Q'  1 - e (1)

Io is the intrinsic current that flows when VGs is equal to zero. This term is
process dependent or in other words, it depends on how the chip and silicon was
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manufactured. 0, is the thermal voltage and is defined as = kT/q, where k is the
Boltzmann constant, q is the charge of a single electron and T is the absolute
temperature of the room. The value of A is typically around 25 mV in room
temperature. On the other hand, K is also process dependent constant and typically
its value is around 0.7.

(1) could be simplified if we short circuit the bulk to the source. This will set VBS
to be equal to zero and the second exponential term becomes equal to one. Also, if
we bias the transistor so that it is saturated which is setting VDS to be 100 mV or
bigger, the third exponential term would simplify to about zero because VDS > 4 0
which would put make the last term equal to above 0.99. After these series of
simplifications, our new expression for ID becomes:

KVGS

ID Io et (2)

We then get a purely exponential relationship between VGS and ID*

3.3. Basic subthreshold circuit blocks

Now that we have an idea how the MOSFET in subthreshold regime works, we
can start discussing basic building blocks that we will use to build neuromorphic
circuits. These circuits are comprised of several transistors and in some cases
resistors and capacitors that work together to produce a desirable circuit behavior.

3.3.1. Current mirrors

Current mirrors allow us to create multiple scalable copies of a current from a
control circuit to another active circuit by modulating the current drive of the
control circuit. The mirrored current is held equal to the control current regardless of
the load in the active circuit. Mirrors are essential if we want a certain signal
carrying current to be used in several active parts of our circuit. Properly biasing
circuits also require current mirrors for creating accurate, non-fluctuating current
sources are quite challenging. If all our circuits would require accurate biasing
current sources, it is probably better to create one accurate current source and create
scaled mirrors of it for biasing our circuits. This is much better than creating
multiple accurate current sources which would consume a lot of space in the chip.

The basic current mirror is shown below in Figure 3-3. The input current 'in is
mirrored to the output current Iout. M1 and M2 represent the W/L ratios of the left
and right transistor respectively, and W and L are the widths and lengths of the
transistor respectively. So by varying the size of the transistor we can create scale
copies of the Iin. So how exactly does a current mirror work?
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Figure 3-3. Schematic of a current mirror.

Clearly,
VVGSi

I n = Iole t (3)

Since we are controlling lin, VGSl will be set to a value depending on Iin such as:

, = "K In 10 i

Because the gates of the two NMOS are tied together and they share a common
source :

VGS1 = VGS2 (4)

Now the main difference between the two transistors is M1 and M2. However, Io
is proportional to M. Given that:

IVGS2

1out = o2e "1 (5)

Combining (3), (4), (5), gives us:

M2
Iout =--ln (6)

So, to create equal copies of in, we just need to set M1 = M2.

3.3.2. Current multipliers and dividers

Current mode circuits employ current signals to perform a certain task. For
arithmetic operations, currents are so easy to work with because addition and
subtraction can be easily done by connecting multiple current sources together.
Kirchoff's current law simply mandates that the total current entering at a junction
must equal the current exiting it. The same thing can be said for current



multiplication and division. Because of the beauty of transistor current mode design,
it is very easy to create compact low-power current multipliers and dividers.

lout

Figure 3-4. Schematic of a low power one-quadrant multiplier.

Consider the circuit in Figure 3-4. It is a circuit that performs low power division
single quadrant multiplication and division [31]. This circuit works because of the
translinear principle [32]. The translinear principle states that in a closed loop
containing an even number of translinear elements, in our case, MOSFETS, with an
equal number of clockwise and counter-clockwise components, the product of the
currents through the clockwise MOSFETS equals the product of the currents
through the counter-clockwise MOSFETS. Hence:

n I n= I
neCW ne CCW

In our circuit, MI, M2, M3, M4 form a translinear loop with M1, M2 forming the
clockwise branch and M3, M4 forming the counter-clockwise branch. Combining (7),
and these facts: a. Iout flows through Ml, b. 13 flows through M2, c. 12 flows through
M4, and d. I, flows through M3, we can solve:

lout 3 = 121

out = 11 
(

13

Thus, to multiply two currents we simply need two current sinks and replace 12
and I, with these sinks. 13 could just be a constant current with a magnitude of 1.
Similarly, we can divide two currents by using I, and 13 has current signals and use 12
as a constant current. We can then obtain the monophasic output from the Iout node.



Figure 3-5. Schematic of a low power four-quadrant multiplier.

We can extend the previous schematic to obtain a four quadrant multiplier/
divider design. The disadvantage of single quadrant design is that our inputs and
outputs can only be monophasic. Four quadrant design allows us to have biphasic
inputs and outputs which makes our arithmetic more flexible. The schematic for
such a four quadrant design is shown in Figure 3-5. Here, we use the same old
divider but we make slight modifications to the bias currents. Now, we use eight
current inputs 4 of which are instances of a constant reference current 1o, 2 of them
are instances of I,, and the last 2 are instances of I2,. So now let us derive Iou based
from our schematic.

Applying our new schematic to equation (8) gives us:

( + Io)(2 + o)= I + 12 Io + Io

1j +2  + I + + + Io

IO
1 r 2 ++1+ I I +1r +1I +1I,

'0 1 2 o - u

We can then get a biphasic output:
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3.3.3. Transconductance amplifiers

We have been talking a lot about current mode circuits and current mode
arithmetic but most of the time signals are usually in the form of voltages not
currents. The question how can we perform current mode arithmetic to voltage
signals? Well the obvious answer is to convert voltage to current. However, how do
we do this efficiently without worrying about loading problems? Of course, a rather
simplistic approach would be to apply the voltage to a resistor which would give a
corresponding current. However, if we apply this current to a load circuit which has
a non-zero input impedance, our current will decrease and our arithmetic will have
errors in it. To solve this problem of converting voltage to current, we use one of the
most widely-used building block of analog circuits, the transconductance amplifier as
shown in the Figure 3-6 below.

Transconductance amplifiers are usually implemented as a voltage-controlled
linear conductor. In reality though, the transconductance amplifier is a non linear
device that implements an output sigmoidal hyperbolic tangent (tanh) current, Iout
from a differential input voltage V. - V. However, in the middle of the function lies
a linear range where we can approximate Iut to be linearly related to V+ - V_. To
understand the function of the transconductance amplifier, let us solve for its
current-voltage characteristic function.

Vdd

r2 lout
1+ vVo

SV M3 Vs M4 kV-

Ib M5 kVb

Figure 3-6. Schematic of an ordinary transconductance amplifier.

Assuming the transistors are all saturated and all the bulk terminals are tied to
the source, equation (2) should hold for all transistors. Considering M3, the current
that flows through it is I, and its VGS is V, - Vs. Applying (2) gives us:

K(V-=)e (9)

+ = 10e "1" (9)



Similarly, if we consider M4:

By using KCL:

Kc(V--V,)
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I+ +0 = Ib
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Combining (9), (10), and (11):
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Notice that even though the overall I-V relationship is nonlinear, for a certain
voltage range, the I-V relationship is quite linear. This voltage range is called the
linear range of the transconductance amplifier. The linear range VL is defined as:

VL = 2p

To obtain an effective linear V-I converter, we need a wide linear range design.
Past research has led to the development of such wide linear range transconductance
amplifiers [33, 34]. The I-V relationship is still the same but the linear range has
increased due to changes in the effective value of K. The schematic for such an
amplifier is shown below in Figure 3-7. You can clearly see the effects of having such
a wide linear range design. For an ordinary, narrow range design the linear range is
limited to 75 mV, hence we can only have voltage inputs of that magnitude. On the
other hand, for wide range designs, we can have voltage inputs of 2 volts or more,
which gives us more flexibility in circuit design. This difference is illustrated in
Figure 3-8.

Vdd

Figure 3-7. Schematic of a wide linear range transconductance amplifier.
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Figure 3-8. I-V relationship of the ordinary and wide linear range transconductance amplifier.

Transconductance amplifiers can be used as comparators as well. If V, > V., V.
becomes low. On the other hand if V. > V+, V. becomes high. So it is quite common
to see transconductance amplifiers used as cheap comparators because of its
simplicity especially if switching voltage accuracy is not a big design issue.

One last thing to note, V+ and V. must have values of between roughly 1.5V and
Vdd - 0.8V to ensure that all our transistors remain saturated. Hence, it is
traditional practice to append a common mode voltage V,~ on top of both V+ and V.

3.3.4. Differential pair

The use of differential pairs in neuromorphic circuit design is very common
because of its intrinsic sigmoidal I-V relationship which is present in most neuronal
networks. For instance, NMDA receptors in the synapse have a sigmoidal I-V
dependence relationship such as for increasingly negative differential voltage, the
current output approaches zero while for increasingly positive differential voltage,
the current output approaches the bias current. If the differential voltage is zero, the
current is half the bias current. Again to obtain a wide sigmoidal range, we want to
use a differential pair that has a wide linear range [22]. The design shown in Figure
3-9 is one example of a wide linear range circuit.
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Figure 3-9. Schematic of a wide linear range differential pair.

The exact transfer function between Iout,V+, and V is:

I out= bia W (13)

K(V+-V)

1+ e 

L2

Where, W,/L1 , and W 2/L 2 are the widths to length ratios of M1 and M2
respectively.

3.4. Summary

The circuits that we described above are simple building blocks to construct a
complete synapse that exhibit plasticity. We would exploit the laws of physics to
mimic real life neurons which are also governed by similar principles. As you notice
some designs have narrow linear range while some have wide linear range. We would
decide depending on the application of such a device whether we need a narrow or
wide range design. Chapter 4 will illustrate our synapse system that takes advantage
of all these MOSFET building blocks.





4. Development of a low power aVLSI synapse

For almost a decade, since the phenomenon of synaptic plasticity was discovered,
neuromorphic engineers have attempted to create circuit network models of synapses.
Every year, new neuromorphic circuits have popped up claiming to be better than
previous models in several aspects: power, stability, memory retention, and network
scalability [35-37]. Some of their claims are true but they all fail to capture the most
essential aspect of synaptic plasticity - its behavior.

Some of these models are inaccurate and does not reproduce experimental results.
As an example, some do not even reproduce the correct exponential-like shape of the
synaptic change function in hebbian STDP [37]. Others are just too simplistic and
merely employ curve fitting methods to reproduce the STDP curves [38]. None of the
previous neuromorphic implementations capture all known types of STDP which is a
very important issue since their technology can only be used in special circumstances
and cannot be used as a general way to form intelligent machines. Furthermore,
these circuits were not able to relate calcium based synaptic plasticity to STDP - in
other words, no other system was able to show both the BCM learning rule and
STDP. In short, the existing synaptic implementations are neither accurate nor
complete. Our research will aim to ameliorate these issues and here we shall present
our approach to develop a robust and versatile circuit model that will unify the
various forms of STDP as well as the BCM rule.

4.1. Inputs

Synaptic plasticity is influenced by two essential inputs - the glutamate ligand
concentration and the back propagating dendritic action potential. Lee's unified
theory suggests that the timing of these two inputs is essential in capturing STDP
[3], thus, in this regard, we have to ensure that our implementation reflects how the
EPSC level is modulated by the timing of these two inputs. Hence, we would need
two external circuit blocks that would emulate the behavior and timing of these two
inputs.

Dendritic Voltage with a VCM = 3V Glutamate Concentration with a VCM = 3V
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Figure 4-1. The inputs of the synapse, glutamate and dendritic action potential.
Both the glutamate and dendritic signals are time varying continuous signals that

have the shapes shown in Figure 4-1. To reproduce these types of shapes, we employ



spiking circuits such as the one shown in the schematic in Figure 4-2, which are
similar to existing spiking systems [22, 39]. The circuit in Figure 4-2 emits a spike or
a series of spikes in the voltage node, Vmem, based on the current stimuli I. , that we
inject. The heart of the circuit is the transconductance amplifier formed by
transistors M1-M4. This transconductance amplifier is used as a comparator such
that when the voltage Vmem rises above Vthreh, Vx decreases, turning off transistor M5
which causes the current source INa to charge Cmem to a higher voltage Vmem. Vx also
charges the feedback capacitor, Cfeedback such that when it's voltage Vfeedback rises above
a certain threshold, transistor M6 turns on causing the current source IK to discharge
Cmem back to its initial resting voltage Vrest. This last event forces Vx to return to its
resting value of around Vdd which turns on M8, discharging Cfeedback and thereby
turn off M6. Overall, this results in a rapid up-down spike shown below in Figure 4-
3.

Vdd Vdd Vdd
Vdd

linput i Ina ir Ichargef
M i  M2

Vx
M5 M7

Vmem -. ,Vfeedback
Vthresh -M3 M4 V

Cmem
Ibias( Ileak + M6 M8 Cfeedback

I I
Vrest Idi chargef

Figure 4-2. Schematic of a basic spiking circuit.
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Figure 4-3. The output spike generated by the spiking circuit.



4.2. Outputs

Our synapse has two measurable outputs. The main output of our system is the
synaptic weight which is represented by the excitatory post synaptic current
EPSC). The secondary output used to modulate the EPSC is the total calcium level
Caoti) of the synapse. Our system determines the Caot from our two signal inputs

and maps this value to the proper EPSC as determined by the BCM learning rule.

4.3. Synaptic plasticity system design

Two options were considered in developing our system. One option is to use
voltage centered design while the other option is to use current mode design.
Existing circuit technology makes it much easier and simpler to design the system
using a current mode approach. A lot of neuromorphic arithmetic favors transfer
functions that are inherent in several current mode design systems. This ultimately
led us to reject voltage mode design and stick to mostly current mode
implementation. Figure 4-4 illustrates the overall block diagram for our system.

LEGEND

Glutamate Receptor Kglu Circuit is designed (tested)

I F ;Numerical simulation (theoretical)

Vglu Glutamate .llu Glutamate I Variable Inputs
Voltage to Reaction Variable Outputs

Current Circuit Fixed InputsInternal Outputs
Converter

...... ...................... .............. .... ............. ...........e.. B C M
...................................... ................... Calcium Integration constants

NMDA Channel
Glu and

Vdent tnmda: A totaS Calcium Ca to delta
dependentic

V2 NMDA GenerationEPSC
Circuit coTransductioner

V4 channel a: dent

"dent ........................

Vdentamped Dendritic o EPSC
Voltage toA- 0Current EPSC
Converter Transduction

Figure 4-4. Block diagram for the aVLSI circuit design of a synapse.

4.3.1. Glutamate receptor dynamics
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Glutamate ligand concentration as a function of time, Vglu, combines with
glutamate receptors in the postsynaptic membrane with an association constant of
Kgi,. Ultimately, in equilibrium, the ratio of bound glutamate to the total glutamate
concentration is given by:

Glu
Glu + Kgiu

Vdd

k*Inmdamax I k*Inmdamax*Iglukglunorm= Iglu+Kglu

Divider
Vglu+Vcm -

TCA
Vcm + glu glu Iglu+Kglu

SKglu

Figure 4-5. Schematic of the glutamate receptor circuit.

The equation above is a simple arithmetic equation that involves addition and
division. Using aVLSI, we could implement this using a current adder and a divider.
However, since our input Vg~, is a voltage signal, it was first converted to a current
signal using a wide range transconductance amplifier. The V-I conversion rate that
was used was 10 mV - 1 nA. Since two instances of Ig, is needed, Igu, was mirrored
twice and a constant KgU current source was added to one of the mirrored instances
of Ig, , creating two currents sinks: a) Ig, and b) Iglu + Kg,. A translinear current
divider was then used to divide these two current sinks to generate an output
current signal that represents the maximum NMDA receptor conductance. Hence,
the overall transfer function of our glutamate receptor is given by:

'glunorm - Igu + Kgu
glu + Kglu

Where INMDAmax = 1 nA and k = 10. Iglunorm is a current sink so it is mirrored to
transform it to a current source to ensure that it segues seamlessly with the next
circuit block. Figure 4-5 depicts the schematic of the circuit that we have developed
for this first stage. The output current of this stage is qualitatively equal to what the
model predicts except with a constant gain factor of k and INMDAma x . This is not an
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issue because INMDAmax is used in the NMDA receptor circuit. The gain term is not a
big deal as long as we keep track of the value of k.

4.3.2. NMDA channel dynamics

A wide-range differential pair is the main component used to represent the
dynamics of the NMDA channel. If we recall, the model for NMDA channel
dynamics states that the conductance of the NMDA channel is dependent to both
the dendritic voltage and glutamate concentration and this dependence is given by
the equation:

gNMDA (Vdet, Glu) gNMDAmax Glu
Sl+ ekNMDA(V /2-Vdent) Glu + Kglu

This complicated looking sigmoidal equation seems challenging to implement in
aVLSI at first glance. However, an analog circuit that naturally expresses this type
of behavior already exists in the form of the differential pair whose I-V characteristic
is quite similar to the NMDA channel conductance dynamics as shown below in this
equation:

Tout = bias 1 (V-V)

1+ -- e O

Certainly, the differential pair can be used to obtain gNMDA but caution was
exercised to ensure that the NMDA was accurately mapped with the differential
pair. First of all, the bias current Ibi. was represented by Iglunorm , the output current
of the glutamate receptor circuit. Secondly, the transistor geometry terms were
normalized to 1 by making the transistor sizes equal. Thirdly, we mapped V, to V1/2
and V to Vdent.

Mapping the K / , factor to kNMDA is very tricky because their values are quite
different. Naively mapping the two directly without considering the scaling error
between the two values would result in an incorrect emulation of the NMDA channel
dynamics (for example, the dynamics might become too fast or too slow). We
analyze this difference by solve the value of K in a wide linear range differential pair
using this equation [22]:

1-K

1+C
KP

,cpand K, represent the coupling coefficients of the PMOS and NMOS in the

circuit. These values are process dependent and typically fall between 0.5 and 1 and
are usually approximated as 0.7, which gives us the approximate working value of K

of 0.15. Thus, K / 4 has a value of about 6 V 1 at room temperature. In comparison,



kNMDA is about 100 V'- , hence, to ensure that gNMDA is calculated correctly, Vdent and
V1 /2 needs to be scaled up by a factor of about 16.7. Common amplifying techniques
were used to implement a scaled up input version of Vdent, a signal we call Vdentamped

Another main component of our NMDA circuit is the conversion of our scaled
dendritic voltage, Vdentamped to the current, Ident. We can implement this by simply
using a transconductance amplifier with an I-V ratio of 1 mV is to 1 nA. This
completes the necessary temporal inputs for our next circuit block, the calcium
integrator. Figure 4-6 below shows the schematic of the NMDA channel circuit and
the equation below summarizes the mathematical equivalent of gNMDA*

k AkgNMDAmax Glu
NMDA (V/ 2 Vdent) IGu + Kglu

1+e 't

gNMDA

Vcm

Vdent -/
Gain = 1/16.7 Vdentamped +Vcm

Ident

Figure 4-6 Schematic of the full NMDA channel dynamics circuit.

4.3.3. Calcium integrator dynamics

Calcium integration determines how much calcium is present in our synapse by
integrating the product of our NMDA conductance and the incoming dendritic
voltage. This relation is captured by this equation from Lee's model:
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Cattos = nd gNMDAgdentdt

tstart refers to the time at which the first stimulus arrives and tend refers to the
time at which the final stimulus ends. Notice the the multiplication between the two
temporal signals gNMDA and Vdent. Again, similar to the glutamate receptor circuit, we
implement a four quadrant multiplier because Vd t can be a biphasic signal (gNMDA is
monophasic since conductance cannot be negative).

Figure 4-7. Schematic of the calcium integrator circuit.

Integration is the second operation in this system and is very trivial to implement
for current and time integration can be easily achieved by using a capacitor. The
total current, Catota. is represented by the accumulated voltage in the capacitor
within the stimuli time window. The schematic in Figure 4-7 summarizes what the
circuit described above. The overall transfer function of the circuit implementation of
Catotal is given by:

Catotal = ~gA dt

4.3.4. Mechanistic design of the calcium to EPSC transduction circuit

Here, we propose a mechanistic design for the calcium to EPSC transducer. First,
we recall Lee's model for EPSC current generation. His model introduces two
equations that govern the changes in EPSC:



Rc - Catot R Ctotal 4

Cao +K K Catotal4 + K aP

A W = a k +V, RCp + kAARf + VCRCaK kAMP.b + kAMPA W = kAMPARf CaK AA PARf (14)
AMPARb CaP AMPAR CaK - AMPARb AMPARf 14)

RCaK represents the binding ratio of Catotal with kinase while RCap represents the
binding ratio of Catota, with phosphatase. The rest of the terms are simply constants
that are specific to each type of STDP. A W represents the amount at which the
EPSC changes after each stimulus.

The equation above suggests that the we first need to create powers of the
voltage signal Catotal. Current mode multiplication easily achieves this goal, but to do
this, voltage Catota, must be first converted to a current ICaT, which was done using a
wide linear range transconductance amplifier. Two copies of Ica, was produced using
a current mirror and these copies served as inputs to a current multiplier to give us
Ic,, 2. Again, mirroring and squaring this current again gives us IcaT4 .

Four instances of this current signal, ICaT4 were generated using current mirrors.
These four signals were sent to two current dividers and the corresponding constant
currents, KCaK4 and KCap4 were added to two of these instances to obtain the RcaK and
Reap currents. Next, RCaK and RCap were multiplied by two constants VCaK and Vap,
respectively, using the scaling capability of the current mirror (remember M2/M1
ratio from equation 6). Again analog arithmetic blocks were used to implement
equation (14) to the several constant currents and our signal currents. Finally, using
a current mirror, the resulting current was scaled by the factor a which is dependent
to the type of STDP that was being emulated resulting to a final output current
of A W.

The proposed circuit schematic that implements the mechanistic approach above
is illustrated below in Figure 4-8. For the exact values of the constants used, please
refer to Lee's manuscript [3].
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Figure 4-8. Proposed schematic for the calcium to EPSC transducer.

4.3.5. Empirical design of the calcium to EPSC transduction circuit

The mechanistic implementation of the EPSC transduction circuit is the most
accurate representation of the biophysical processes within the synapse. However,
this accuracy compromises the circuit's size and complexity causing our
implementation to become extremely bulky and prone to mismatch and leakage
problems, making it more difficult to test and debug in a chip implementation. This
leads to an alternative and much simpler empirical design which saves area, power,
and complexity.

Understanding the circuit's input-output transfer function is the most essential
thing to do. This was achieved by plotting equation (14) as a function of its input,
Catotal which results to a famous curve known as the BCM rule curve [11] as
illustrated in Figure 4-9. Looking at the curve, it seems that it could be easily
decomposed as a sum of multiple sigmoidal functions, which is reminiscent to the
Fourier series decomposition where a signal is broken down into multiple sine and
cosine terms. Here, instead of using sine and cosine functions, sigmoidal functions



were employed because of the characteristic shape of the curve. We observed that
the BCM curve is composed of a fast decreasing segment followed by a slow
increasing segment that can be minimally represented by a sum of two sigmoidal
curves.
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0
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-0.2
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0 0.5 1 1.5 2 2.5 3
Ca, g4M

Figure 4-9. The BCM rule curve. Figure is obtained from [3].

Biophysical relevance of sigmoidal decomposition

Sigmoidal decomposition of the BCM curve corresponds to the breakdown of the
difference in the chemical kinetics of the binding between calcium to phosphatase
and kinase. Phosphatase kinetics is faster and dominates in low Catot0a concentrations
and corresponds to a decrease in EPSC current from the AMPA channels. On the
other hand, kinase kinetics is slightly delayed and slower but has the direct opposite
effect of increasing the EPSC current from the AMPA channels in higher Catotal
concentrations. Hence, the phosphatase and kinase kinetics then maps respectively to
the decreasing and increasing sigmoids. To obtain the best fit shapes of the both
individual sigmoidal curves, we used a least error method algorithm. Once these
curves were obtained, we summed them up to produces the BCM output curve
shown in Figure 4-10a and 4-10b.

sigmoid 1
0.2

0.15

0.1

0.05

3 0 1

sigmoid 2

2 3

Figure 4-10a. Sigmoidal decomposition of the BCM curve. The two sigmoids that are used to generate
the BCM curve.
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Figure 4-10b. Resulting BCM curve from the sigmoidal decmoposition.

Hardware implementation of sigmoidal decomposition

Sigmoidal decomposition simplifies the needed hardware for implementing the
transduction circuit. Hyperbolic tangent functions like equation (12) accurately
represents a sigmoidal curve implying that two transconductance amplifiers can be
used to generate the two sigmoidal curves in Figure 4-10. The current outputs of
these two amplifiers are added together by connecting them to a single node
resulting to an output current, lout, that represents the instantaneous value of the
change in EPSC, A W. The first amplifier has a narrow dynamic range to simulate
the fast decreasing segment of the function. This amplifier is shown in the left arm of
Figure 4-11. Notice that, the voltage inputs were obtained from the gate of the
middle transistors eliminating the increase in linear range obtained from gate
degeneration in standard wide linear range amplifiers [34]. To finely tune the linear
range we used bump linearization transistors. On the other hand the second amplifier
was designed to have a wider dynamic range to emulate the slow increasing segment
of the BCM curve. To do this, we used our old wide linear range design (Figure 3-7),
only this time we removed the bump linearization transistors to slightly tune down
the linear range. A schematic of our alternative implementation of the EPSC
transduction system is shown in Figure 4-11.

Figure 4-11. Schematic of the alternative design for the EPSC transduction circuit.
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Our design includes 4 tunable constant inputs to facilitate for minor and common
changes to the shape of the BCM curve. The first current input, Ibis, sets the
maxima and minima of the BCM curve, which represents the maximum amount of
potentiation and depression of the synapse. Iof, on the other hand, represents the
current that sets the vertical offset of the BCM curve. Changing this current shifts
the BCM curve up or down. The two voltage inputs, Cao, and Cahih set the zero
crossings of the BCM curve. Modifying these two values shifts the BCM curve left or
right. The last input is the variable voltage input, Catota, which represents the
instantaneous calcium voltage that is transduced to an appropriate change in EPSC.

4.4. Test and results

Our synaptic system was designed using Tanner tools' S-Edit and the system's
performance was tested using T-Spice. To benchmark the performance of our circuit,
its output synaptic plasticity behavior was compared with the behavior of Lee's
model. Synaptic plasticity was induced by sweeping the two inputs, Vdent and Vgu,
with varying time offsets, AT. A positive AT implies that a dendritic action
potential that comes after the glutamate stimulus while a negative AT signifies that
a dendritic action potential arrived before the glutamate stimulus. Lee's model
predicted five different types of STDP, hebbian, anti-hebbian, mixed LTP and LTD,
STP and STD [3] and our design was tested for all types by modulating the shape of
Vdent input for Lee's hypothesis suggests that the different shapes of Vdent lead to
different types of STDP.

One of the two essential outputs of our system is the voltage Catotal that has
accumulated within the stimuli period. As expected, this value varies as a function of
AT like the model predicts. Catotal was then used as an input to our mechanistic
EPSC transducer circuit to obtain the change in EPSC amplitude, AW. A W,
perhaps the most important output of circuit, represents the degree of potentiation
and depression of the synaptic system. Both Catotal and A W were obtained and
plotted for several values of AT for each of the different types of STDP and their
plots are summarized in Figures 4-13 to 4-17.

We also tested our empirical implementation of the EPSC transducer to ensure
that it matches well with the BCM curve. Our first test involves sweeping the Catotal
input of the empirical EPSC transducer system within a range of physiological values
while measuring the EPSC output generated keeping the other four constant inputs
to their nominal values. For the second test, we sweep Catotal again, but this time we
scaled in half the values of Ibia and Iof to produce a vertically scaled down version of
the BCM curve. Lastly, for the third test, we repeated the conditions of the second
test, but we increased the values of Caow and Cahih by one volt to shift the curve to
the right. The inputs that we used are summarized in Table 4-1 and the output
curves of the three tests are shown in Figure 4-12.

Table 4-1. Input constants for the EPSC transductor tests.

Inputs Test 1 - Normal Test 2 - Scale down Test 3- Scale down and right shift
Calo,, 0 V 0 V 1 V
Cahi, 1 V 1 V 2 V
Ibias 40 nA 20 nA 20 nA
Iof 32 nA 16 nA 16 nA
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Figure 4-12. BCM curve outputs from manipulations of the empirical EPSC transduction circuit.

To further characterize the performance of our circuit, its power consumption
was also determined and it measures about 1.98 uW when the circuit is idle and 2.48
uW when the circuit is active (processing incoming signals). The measurements
above were done using a 5 volt power supply. Using a lower power supply voltage of
3.3 volts reduces the power consumption to around 1.3 uW - 1.63 uW. To complete
our benchmark tests, an estimation of the area of the chip was also obtained using
layout design rules from Tanner Tool's layout editor software. We estimate the chip
size to be about 1.2 mm x 0.8 mm using a half micron MOSIS technology. These
findings are summarized in Table 4-2 below.

Table 4-2. Power and area estimates of the STDP system.

Power Consumption (Vdd = 5 volts) 1.98 - 2.48 uW
Power Consumption (Vdd = 3.3 volts) 1.3 - 1.63 uW
Chip Area 1.2 mm x 0.8 mm
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4.5. Relating rate-based to spike timing dependent plasticity

Rate-based plasticity is the classic synaptic plasticity protocol that was
characterized by Bienenstock, Cooper and Munro to form the BCM curve. In the
actual experiment, synaptic strength was measured as a function of the presynaptic
neuron's stimulation rate. The relationship between the stimulation rate and change
in synaptic strength turns out to be similar to the BCM curve shown in Figure 4-9
[11]. Recently, studies made by Rachmuth [22, 40] resulted in a circuit that
reproduces this relationship between rate and synaptic strength modification as
illustrated in Figure 4-18.

z,

5 10 20 50
Stimulation Frequency (Hz)

Figure 4-18. Rate-based plasticity curve. Figure obtained from [40j

The relationship between STDP and calcium-based plasticity was fully
characterized by Lee's model [3]. However, it was not clear how rate-based plasticity
relates to STDP. In rate-based plasticity, the postsynaptic stimulus is absent because
we only stimulate the presynaptic neuron which presents a slight problem to the
model. To amend this problem, we propose a slight extension to our implementation.
In Figure 4-19, we present a block diagram that illustrates our extension. Our
current circuit's signal path is symbolized by the blue lines and to connect STDP to
rate-based plasticity, we append the feedback signal path depicted by the red lines.
This feedback path corresponds to the coincidence detection by the NMDA channel
of the EPSP signal that originates from the AMPA channels. In STDP, this feedback
path was ignored because the amplitude of the EPSP signal is significantly smaller
than the back propagating dendritic potential's magnitude. However, this is not the
case in rate-based plasticity where only the EPSP signal is detected by the NMDA
channel.

In the rate based protocol when only the presynapatic neuron is stimulated, we
hypothesize that the glutamate signal is paired with the EPSP signal alone (in
contrast, in STDP protocol glutamate is paired with the dendritic action potential)
because the dendritic signal is absent. This results to a much lower calcium influx
through the NMDA channels. However, since the protocol states that we have to
stimulate multiple times, the calcium level within the synapse will eventually reach a
steady state level, Ca,. If we only stimulated the synapse once, the increase in
calcium would be so minute that it would be buffered almost instantaneously. This



must be the basis why we stimulate the presynaptic neuron multiple times at a
higher rate. After calcium reaches its steady state value, it is then used to create and
degrade AMPA receptors via the action of kinase and phosphatase respectively [3].

EPSC

Figure 4-19. Feedback diagram between the AMPA receptor output to the NMDA receptor. The blue
lines correspond to the current signal path of our circuit while the red lines correspond to the
proposed feedback path.

Rachmuth discovered the relationship between the frequency of stimulation and
Ca. after he designed a simple rate-based synaptic plasticity system [22, 40]. As
shown in Figure 4-20, we can see that the Ca, value monotonically increases as a
function of frequency. One observation that we note is that the waveform of Ca. has
a sawtooth pattern. The upstroke is explained by the inflow of calcium while the
downstroke is explained by the buffering of calcium via biochemical pathways that
include its binding with kinase and phosphatase.
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Figure 4-20. Calcium levels within a synapse increases with the presynaptic stimulation rate. Figure
obtained from [40].
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Lee's model suggests that at low levels of Ca,, calcium binds primarily with
phosphatase, causing synaptic depression to become more expressed as Ca, increases.
However after Ca. reaches a certain threshold value, it begins to bind more to kinase
which slows the rate of synaptic depression and as Ca. further increases, more of it
becomes bound to kinase which eventually leads to potentiation. This phenomenon
explains why the BCM curve has its characteristic shape. Now, since Ca.monotonically increases with the presynaptic stimulation rate (i.e. as the rate
increases, Ca,, increases), the relationship between rate and changes in synaptic
efficacy must exhibit a curve similar to the BCM rule function. Hence, this
completes the loop between the presynaptic stimulation rate, calcium, and synaptic
efficacy. To implement this relationship in silicon in the future, we suggest that the
inclusion of an EPSC to EPSP conversion circuit similar to Rachmuth's design [22,40] that serves as a feedback between the calcium to EPSC transduction circuit and
the NMDA channel circuit as depicted in the modified block diagram in Figure 4-21
below. The feedback flow is indicated by the purple path.
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Figure 4-21. Modified block diagram showing proposed feedback path between the EPSC transduction
stage and NMDA channel circuit.
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4.6. Discussion

Multiple types of STDP were accurately captured by our neuromorphic synaptic
circuit. The Catotal and A W curves qualitatively matches with what Lee's model
predicts., Minor scaling non-idealities were observed in the magnitude of the two
curves but this was expected because the traces generated by Lee's model represent
the overall change in Catotai and A W after continuous stimulation of the presynaptic
and postsynaptic neuron which follows the standard protocol used in generating the
invitro data for STDP [2]. On the other hand, our data only measures the effect of a
single stimulation.

Compared to current neuromorphic technologies (CMOS-nano or traditional
CMOS neuromorphic circuits, our novel synaptic circuit design is the only system
that provides superior functional versatility as well as robustness and holds the best
promise for emulating emergent cognitive functions in large-scale neural networks. As
a baseline, a neuromorphic synapse must be able to emulate multiple forms of STDP
(Hebbian, anti-Hebbian and symmetrical mixed LTP and LTD, STP, and STD).
Furthermore, it must be able to reproduce the classical rate-based BCM learning
rule. To the best of our knowledge, currently, no other neuromorphic technologies
are capable of reproducing all these forms of synaptic plasticity as well as our
system.

As an example, several neuromorphic models of STDP have been proposed in the
engineering literature for various sensory perception functions including odor
detection [41], liquid state machine (for cerebellum) [42], synchrony detection and
amplification [38]. All these implementations used only curve fitting instead of
mechanistic methods, unlike our system. In other words, these implementations can
only model a specific STDP curve (for example, Hebbian). None of them can actually
demonstrate different learning curves based on different experimental conditions. In
particular, none of the neuromorphic circuits so far can demonstrate the relationship
between BCM and STDP in one single implementation of a synapse. Other
theoretical models of STDP and BCM [10, 12, 13, 43] all rely on certain abstract
(non-physiological) assumptions that cannot be readily implemented in CMOS.

Unlike other types of neuromorphic synapses, our synapse demonstrates and
explains the significance of the singularity in the transition point between
potentiation and depression in the multiple forms of STDP. None of the circuit
models could emulate this smooth and continuous singularity. Some circuits
demonstrate singularity but not continuity [37]. Moreover, our system exhibits pure
STP and pure STP behaviors. No other aVLSI design has even attempted to
reproduce these behaviors, which makes our system the best design in the
neuromorphic world.

Presently, our iono-neuromorphic STDP implementation has four circuit blocks
as shown in Figure 4-4. Although the number of transistors that we used is about
seven times as that of phenomenologic STDP circuits demonstrated by others [37],
the circuit area is not significantly increased as the capacitor is the dominant device.
This is one issue that we plan to address as we are currently exploring several ways
to implement low area and high density designs for memory storage besides using a
capacitor. Our power consumption in our implementation is slightly larger that
conventional neuromorphic designs. Another one of our goals in the future is to
reduce the complexity and power consumption of our neuromorphic STDP
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implementation. We can easily scale down the bias current inputs of our circuit
blocks and decrease our power supply voltage and we estimate that this should
reduce our power consumption by roughly one or two orders of magnitude.

This first version of our circuit design can be further improved because several
details in our model can be simplified. For instance, in our mechanistic model of the
calcium to EPSC transducer, most computations in our model are divisions and
multiplications. These can be converted to linear combinations of exponential
functions that can be efficiently implemented in subthreshold analog transistor
circuits. We have already made significant progress towards this end with our
empirical sigmoidal decomposition circuit and our preliminary results look very
promising. Figures 4-12 and 4-9 looks very similar to each other which shows that we
are in the verge of perfecting the implementation of the BCM rule curve. Another
benefit of our empirical implementation is its easiness to segue with the previous
circuit block, the calcium integration circuit. This is because we can directly use the
Catotal output of the calcium integration circuit block without any need to convert it
to a current signal. The transconductance amplifiers in our empirical design perform
this conversion automatically. Our empirical transducer design is also very flexible
and easy to use. With its multiple constant inputs, we can easily scale and shift the
BCM curve to adapt to different types of synapses that exhibits the multiple forms
of STDP. We can also make our circuit adapt to rate-based synaptic models by
inserting a feedback path between our fourth and second stage circuit blocks as seen
in Figure 4-21.

Before our final product is rolled out, we hope to discover and investigate new
forms of STDP that we can test with our novel technology. Demonstrating that our
system works with newly-discovered synaptic plasticity phenomena boosts the
functionality and usability of our system to greater heights. We are very optimistic
that our implementation can easily achieve this with ease and our vision is for our
system to become a fixture in artificial intelligence applications in the future.





5. Conclusion and future work

We have designed and implemented a fully functional aVLSI synaptic circuit that
unifies the different subtypes of synaptic plasticity and relate them to the BCM rule
as well. Not only does our circuit emulate the empirical behavior of the synapse, it
also captures the biophysical mechanisms that govern the process of synaptic
plasticity - something no other neuromorphic circuit has yet to achieve. This
robustness is the key feature of our design which makes it an ideal system to
understand and simulate the behavior of more complex neuronal networks consisting
of multiple neurons and synapses. Our superior design is very promising and should
definitely be a blueprint for potential chip development and fabrication in the near
future.

Since our implementation is the first of its kind, it has a lot potential for
improvement. For instance, we proposed a dual transconductance circuit that
decomposes the complex BCM function into two sigmoidal functions, making the
BCM curve function easier to implement in silicon. This alternative approach will
certainly make our circuit smaller and simpler enabling us to pack more synapses in
a chip once our design is fabricated. Another aspect of our design that we can
certainly improve on is the memory of our capacitor that holds the value of Catot,,.
Currently our design causes this memory to fade fast but by using certain low
leakage memory techniques such as floating gate technology [44], we can definitely
improve the length of time that our memory is stored.

Our circuit is designed for low power applications, but our design was relatively
conservative about the power consumption cuts that we made. We simply exploited
subthreshold circuit design to enable us to cut down power by several orders of
magnitude. However, we have not actually determined the lowest operating power
limit of our circuit as we focused more in capturing an accurate representation of the
synaptic model and not optimizing the circuit's power consumption. This leaves us
with lots of room for aggressive power reductions. For instance, we can lower the
power supply from 5 to 3.3 V which would reduce our power to about 60% of its
consumption now. Moreover, we can also decrease the bias currents of our circuit
until we begin to compromise our circuit's signal to noise ratio to further cut down
our power by about two orders of magnitude.

We can also reduce the size of our system further by ensuring that we layout and
fabricate our system using the smallest possible fabrication size technology to achieve
a high density chip. After fabricating our chip, we could then begin implementing
small neuronal networks in the cortex, cerebellum [45], and the brain stem. In an
ideal world, if everything goes as planned, we can eventually integrate these
networks together to form a more complex architecture that mimics physiological
systems in an organism such as memory formation or respiratory control.

Once the chip becomes feasible for use, we can also begin replacing biological
systems in the central nervous systems with artificial on-chip ones. A person who is
suffering from a chronic nervous system disease could easily be implanted with a chip
that allows him to replace the diseased "neuronal network". Real machine learning
will replace current supercomputer clusters that claims to implement so called neural
networks, the software replicates of the process of learning. With a chip that
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naturally allows learning and memory, we expect a wide scale improvement of
technological infrastructures in the whole world.

Remember that every complex system in the world is nothing without the simple
and miniscule components that make them work. The human brain, for instance, is
perhaps one of the most complicated systems but let us face it, it is just composed of
neurons and synapses which are interrelated to each other through synaptic
plasticity. Once we uncover some of the mysteries of these neurons and synapse,
which we have accomplished in our undertaking, we certainly took a huge step
forward in field of neuroscience and engineering and now perhaps the dream of an
artificial intelligence dominated future seems more realistically feasible to achieve.
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