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Abstract

In this thesis, we analyze how electromagnetic waves propagate in ionosphere around
the earth which is magnetized plasma. We calculate the electromagnetic wave field
made by a dipole antenna at an arbitrary observation point far from the antenna
using the Stationary Phase Method. With this wave field, wave energy flux is calcu-
lated, and by integrating this wave energy flux on the sphere around the antenna, the
radiation resistance of this antenna is computed. We compare the results with some
past analytical and experimental works. We also analyze the wave propagation char-
acteristics. The wave propagation ways are different for different wave frequencies.
We precisely analyze this different wave propagation ways by analyzing the group
velocity and k surface of the wave. There are intense radiation directions. We discuss
the nature of these intense radiation directions and compare the characteristics with
the past works. There are spatial oscillations of wave fields and wave energy flux. We
also discuss the reason of this oscillation and compare with the past works.
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Chapter 1

Introduction

1.1 The Van Allen Radiation Belt

The region of the space between about 700km to 10,000km altitude is called the inner

belt of the Van Allen radiation belts. In the Van Allen radiation belts, many high-

energy electrons and ions are trapped by the magnetic field of the earth. High-energy

electrons and ions gyrate around the magnetic field of the earth and move back and

forth in its magnetic bottle. The smaller the angle of the particle velocity with to

earth magnetic field, the farther can the particle go along the magnetic field line.

These high-energy particles are mainly from the sun, but also a high altitude nuclear

explosion can be a source of these particles[3]. Some of the trapped particles enter

the loss cone by being scattered by a variety of natural mechanisms, such as Coulomb

collisions, Cerenkov radiation from cosmic ray particles, and, most significantly, the

interaction with a family of low frequency plasma waves, called Whistler waves, and

escape from the earth magnetic field. Those escaping particles penetrate low enough

and lose their energy through collisions with the upper atmosphere. Whistler waves

are produced in nature by the magnetoplasma instabilities and by lightning strikes

around the world[4, 5].



1.2 Motivations for Radiation Belt Remediation

Radiation from these high-energy particles is harmful for devices in artificial satellites[6,

7]. For example, the Hubble Space Telescope must turn off its sensors when passing

through intense radiation to maintain reliable operation[8]. This radiation would be

an obstacle to the use of electric propulsion to raise the orbit of satellites, because

the satellites would be in the intense radiation zone for a long time. Radiation is

also harmful for humans in that area. For these reasons, we need these high-energy

electrons and ions to be decreased in order to use artificial satellites and for humans

to travel in that area. It has been suggested that Whistler waves can be injected

artificially into the magnetosphere by antennas on the ground or in space, and the ar-

tificially injected Whistler waves could strongly contribute to the loss of high-energy

particles. This particle cleaning method is the leading candidate for the so-called

Radiation Belt Remediation. The mechanism of Radiation Belt Remediation is as

follows.

1. Emit low frequency waves (Whistler wave) from an antenna

2. The wave changes the velocity direction of high-energy particles

3. Some high-energy particles go into the loss cone and can escape from the earth

magnetic field

4. These particles penetrate to the upper atmosphere and lose their energy

1.3 Whistler Wave

The Whistler wave is one kind of low frequency electromagnetic wave propagating in

a magnetized plasma. The frequency of Whistler wave is below the electron cyclotron

frequency of the plasma, but above the lower hybrid frequency. Whistler waves have

the property that they propagate strongly along the magnetic field, so if this wave

is injected to the magnetosphere by a lightning somewhere on the earth, it mainly



Figure 1-1: Mechanism of Radiation Belt Remediation

propagates along the magnetic field and reaches the magnetic conjugate point on the

earth.

To change the velocity of high-energy electrons efficiently, the frequency of the

electromagnetic wave should be near to electron cyclotron frequency for the compo-

nent of B along the wave propagation direction. Also, the field of the electromagnetic

wave should rotate in the same sense as the electron gyration to produce a resonance

and scatter electrons efficiently. However, a right-handed polarized wave whose field

rotates in the same sense as the electron gyration does not propagate in the mag-

netized plasma if the frequency is higher than the electron cyclotron frequency. For

these reasons, Whistler waves should be used in Radiation Belt Remediation.

1.4 On-ground Antenna and Spaceborne Antenna

Some experiments of Radiation Belt Remediation using ELF/VLF high power anten-

nas all over the world have been reported in the last few years[9, 10, 11]. They have

shown that the Whistler waves injected into the magnetic field from the antennas on

the ground contribute to the loss of high-energy particles. However, in order to use

on-the-ground antennas for Radiation Belt Remediation huge power levels are neces-

sary, because about 95% of the low frequency wave is reflected by the ionosphere when



injecting a wave to the magnetosphere from the ground. If we use a spaceborne an-

tenna, we need less power to emit Whistler wave into the magnetosphere. Therefore,

we choose investigate the direct way, Radiation Belt Remediation with a spaceborne

antenna. Given the very long wavelength involved, magnetic dipole antennas are dif-

ficult to implement, so a linear dipole antenna is a logical choice. Beyond some 100m

in length, rigid antenna structures become unfeasible, so we postulate the use of very

long flexible cables (orbiting tethers), with length from 1 to 10km or more. If the

lower frequency EMIC band were targeted in order to scatter ions, the length would

be even more, to perhaps 100km.

1.5 Wave Propagation Analysis and Wave-Particle

Interaction Analysis

The analysis of the Radiation Belt Remediation using a spaceborne antenna can be

divided into two parts. One is the analysis of wave propagation in the, magnetized

ambient plasma from an antenna. There are many high-energy particles in the ra-

diation belt, but there are many more low-energy particles there. When considering

the wave propagation in the magnetosphere from an antenna, the analysis needs to

consider propagation in the low-energy magnetized plasma. The other element is the

analysis of wave-particle interaction. Using wave propagation analysis, the wave field

and energy from an antenna in the magnetosphere can be calculated. From these

values, the pitch-angle diffusion rate of high-energy particles by the electromagnetic

wave can be estimated. Some previous works have presented the diffusion rate by

assuming the wave field intensity from an antenna [12, 13, 1].

Much work on wave propagation calculation has been done previously. In this

earlier work, the spatially averaged radiation pattern has been calculated. However,

more detailed analysis can be done. For example, calculating electric and magnetic

field with analysis using the stationary phase method, more detailed spatial property

of the wave field can be obtained. Most previous work avoids the Poynting's vector



calculation in favor of a direct calculation of the radiated power via Parseval's theo-

rem. This thesis is a preliminary research for Radiaition Belt Remediation, and we

aim to develop a flexible and usable tool to analyze wave propagation in the magne-

tosphere for broader study in the future. For example, this basic analysis is useful to

compare with the results of more advanced model calculations involving nonlinearities

and inhomogeneities to see whether the physics is correct or not.

This analysis can also be used to estimate the particle diffusion with wave-particle

interaction analysis. This thesis presents the detailed analysis on wave propagation

in magnetospheric plasma with a simple model.

1.6 Thesis Outline

This thesis presents analyses about low frequency electromagnetic wave propagation

in magnetized plasma from an antenna in space. Chapter 2 gives the explanation of

the calculation method used in this research. The stationary phase method which

is used in this calculation, and analysis about group velocity of the electromagnetic

wave are discussed in chapter 3. The wave radiation pattern from the antenna in

magnetospheric plasma has an interesting shape. There are some intense radiation

cones around the antenna. The analysis about this intense radiation cones is discussed

in chapter 4. Chapter 5 shows the results and comparison with previous works.

Chapter 6 concludes this research and suggests some possible future works.





Chapter 2

Calculation Method

2.1 Equations

The propagation of an electromagnetic wave in plasma is formulated by application

of Maxwell's equations and the equations of motion of the particles. In our problem,

we use Maxwell's equations and the electron equation of motion. We neglect the ion

motion because the frequencies of interest are above the lower hybrid frequency.

Maxwell's equations (neglecting displacement current):

VxE(=- at (2.1)

V x B(e = oj(o = po (j - enev, (2.2)

where jis the current iin the antenna wire, shile -en, v is the current due to the

motion of electrons. Linearized electron equation of motion:

Met = -e(E(- + Ve x Bo(fj) - mevev' ( ve : collision frequency) (2.3)

From Eq.(2.1) andEq.(2.2),

V!(r - V(V E() = -poeneo + po (2.4)



2.2 Fourier Transformation

We can solve those equations using Fourier transformation. In this problem, we

analyse the wave propagation with fixed frequency w.

One of the space-time Fourier components can be expressed as

S= (,,) exp i(wt - k .) (2.5)

From Eq.(2.4),

From Eq.(2.3),

-k E + k(k E) = -itioeneowi +, iLowj,

me(iw+ ve)e = -e(E + exBo)

Then, from Eq.(2.6) and Eq.(2.7),

ik me(iw + Ve) 0 eik

low e2neo poneowe

-me(iw + v') E

e 2ne0

A(k.E)i k me(iw + ve)
/low e 2neo

j. x Bo
eneO

b = BolBo

Ve

Wce

e2 neoto

K = kl

e2 neo
Oce -

meWce

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

Assuming that Bo = 10- s Tesla and electron temperature is 1 eV, the plasma skin

depth 1,ace and 5 for n = 1010 [/m3 ] and n = 108 [/m3 ] are estimated as shown in

(2.6)

E[1

(2.7)

Define

k x Bo
I.oeneow

(2.8)



Table 2.2. (w,, - 1.7 x 106 [rad/sec])

Table 2.1: Estimated 1,ac and S

n [/m3 1 [m] ce [Si/m] S
1010 50 1.6 x 10-4 4 x 10-8
108 500 1.6 x 10-6 4 x 10-10

Then,Eq.(2.8) becomes

K + ixbo
-K~sV

(iv + S) j, + j, x bo

0ce

+i 215K)

(2.15)

The configuration is such that k is along the x-axis,and Bo makes an angle 0 to k and

is in the x-y plane (Fig.(2-1)).

Figure 2-1: k and Bo configuration

-4

E (1 + K-iK - - K2E xbo+ K-E



Then,

bo = cos O5 + sin Y0

Ex bo = - sin OEBi + cos OEz + (sin OEx - cos oE)

K x bo = K sin 0Z

3 = - sin Oj ci + cs j (sin ojz - cos 0j)

(i, A, Z: unit vectors on x, y, z axes)

Thus, Eq.(2.15) becomes the system

K 2S)
i E

( + K 2

(iv + 6) j. - sin Oj,,

Oce

-K 2cs = - (iv +6) j, - cos Oja
- - ceos

V ace

-K26

- i Ez =
V

(iv + 6) j8, + sin Oj, - cos ojs
Oce

E, and 1z are decoupled from Ex (along k), but Ex is tied to E. by Eq.(2.16). For

the medium to support free oscillation (i.e., with no source, hence a homogenous set

of equations) the determinant of Eq.(2.16), Eq.(2.17) and Eq.(2.18) must be zero.

2.3 Dispersion relation

The determinant of Eq.(2.16),(2.17),(2.18) is same as the determinant of Eq.(2.17),(2.18).

For a valid Ex, Ey, v , we need this determinant to be zero.

KS) 2
V )

K 4

S cos 2 0 = 0 (2.19)

And the roots are

K, = + vicos 0 - v + i

K2

Ex + i- sin OE,
v

1 + K -

.K2
z cos 0E, +v+

(2.16)

(2.17)

(2.18)

(2.20)



Kd = +i = v (2.21)
cos + v - i cos (r - 0) - v+ i(

These are the dispersion relations. As in Fig.(2-2), for 0 < cos - 1 v, K represents

slightly damped waves, and Kd represents heavily damped waves. For cos-1 <

0 < 7r - cos - 1 v, Ku and Kd represent heavily damped waves. For 0 > 7r - cos- 1 v,

K represents heavily damped waves, and Kd represents slightly damped waves. So,

the Ku wave propagates when 0 < cos - 1 v, and the Kd wave propagates when 0 >

7r - COS - 1 /.

Im

Kd+X

Ku-

X

Im

Kd+x

Ku-X

x
Ku+

Kd-
X

8 0 < cos- v

Im

Ku-X

Kd+

x

XK+
XKd-

cos - 1v < 0 < cos - 1 (-v)

x
Kd-

xK,+

cos
- - < 0

Figure 2-2: Ku and Kd pole position

2.3.1 Wave Polarization

For a free wave (18 = 0), with no collisions (8 = 0), the dispersion relation Eq.(2.20)

gives

(2.22)K 2  &v
cos 0 - v

and then both Eq.(2.17) and Eq.(2.18) reduce to

(2.23)



while Eq.(2.16) reduce to
sin0

Ex= -i E, (2.24)cos 0 - Y

The relation in Eq.(2.23) means that the E vector projection on the y-z plane (per-

pendicular to K) rotates with constant magnitude about K. It can be verified that

this rotation, at angular velocity w, is in the Right-hand sense, the same as the gy-

rorotation of an electron under the influence of the projection of B on K. The

relationship in Eq.(2.24) then implies that both |EJ and JEJ become much smaller

than IEJ when cos 0 -+ v, while at the same time, from Eq.(2.20), K -+ oo. Thus,

at this Resonance condition, the vector E is along K, which implies K x E = 0, or

B = 0. The wave approaches in this limit a purely electrostatic wave, with only a

longitudinal electric field, and no magnetic field.

For any other allowed direction of propagation (cos 0 > 0), the wave is of a mixed

nature, with an Electromagnetic component (the rotating (E,, E,) set, with its as-

sociated (By, Bz), as in a natural EM wave), plus a longitudinal E, oscillation.

Notice finally that the Resonance condition cos 0 = v implies

wee cos 0 = w (2.25)

or
eBo cos 0

W - 0 (2.26)
me

This means the wave frequency is then the same as the gyrofrequency of electrons

under the projection B cos 0 of Bo on K; since, as we saw, the sense of the rotation of

(E,, Ez) about K is the same as the sense of the gyromotion, a mechanical resonance

occurs, and the wave pumps energy into the electron gyration.



2.4 Matrix form of Ohm's law

Eq.(2.16),(2.17),(2.18) can be solved for the wave's electric field as follows

E, j,,
E= = Zj Z B y (2.27)

iv(1 + K2)2  i-_ (K2 + sin2 0)

iK2 sin 0 cos 0

(1 + K 2 ) sin 0

iKL sin 0 cos 0
V

iv(1 + K 2 ) - i- (coS2 0)

- cos 0

A = 1 + K -i(,, .K'

- (1 + K 2 ) sin 0

cos 0

iv(1 + K 2)- iK (cos2 0)

K 4
- Cos 2 0

2.5 Antenna related axes

For the computation of the inverse Fourier transformation, we will need to vary k in

all possible ways. Thus, it is better to change the coordinates to ones which do not

change in the inverse Fourier transformation process. Now, I is on the x-axis. We

will change the coordinates by defining axes(XB, YB, ZB) such that Bo is on the z-axis

(B-frame) as in Fig.(2-3). The antenna is in the XB - ZB plane and has an angle a

to Bo. k is oriented according to the polar angles (0, 0).

Any vector can be expressed in the old coordinates V = (Va ,, V,, V,) and in the new

coordinates VB = (VB, VvB, VzB) and the two representations are related as

VB = RV

1
Z =

Oce/

(2.28)

(2.29)

(2.30)



R is a rotation matrix and has components as follows

sin 0 cos

R = sin 0 sin €

cos 0

- cos 0 cos €

- cos 0 sin €

sin 0

sin 1
- cos 

0

(2.31)

R - 1 = RT, so V= RTV.

Antenna

Figure 2-3: Antenna Related Axes

From Eq.(2.27), the current to

B-frame gives

field relationship is E = Zj,. Transforming to the

RZj, = RE = EB = ZBjsB = ZBRjs (2.32)

and, therefore

ZB = RZ RT (2.33)



Explicitly, ZB has components as follows

ZB -

where

-p + K 2 sin2 0 (-p cos2 4 + sin2 2)

-(1 + K2 sin 2 0) - iK 2 (1 + K 2) ( - v) sin2 0 sin 4 cos

-K 2 (pcos € + sin ) sin 0 cos 0

-(1 + K 2 sin2 0) - iK 2 (1 + K 2) - ) sin 0 sin4cos 0

- p - i'- sin2 0) cos2 4 - p (1 + K 2 sin2 0) sin2 4

K2 (-p sin € + cos 4) sin 0 cos 0

K2 sin 0 cos 0 (sin 4 - p cos €)

- K 2 sin 0 cos 0 (p sin 0 + cos ) 

-pK 2 cos2 0 + iv (1 + K 2) J

K 2

p = - iv (I + K 2)
V

(2.34)

(2.35)

2.6 The antenna model

For an antenna source current distribution j(), the Fourier transformation is

Jc, = (2ir) 3 f (f)e d3 x (2.36)

and,

£=
-; X

33Vc'

ala

0

inside wire

outside wire
(2.37)

a is the radius of the antenna, la is the unit vector along the antenna, I. is the

current, za is distance along the antenna. So, if Io is I, (z, = 0), Eq.(2.36) becomes

1 _-'-sa I(za)ikx-dA
(27r) 3 ra2 Illantenna 10 (2.38)

Let k± be the projection of k on the plane perpendicular to the antenna, and kl be

the projection of k on the antenna. Then if k1 makes an angle X to the Xa axis (which



Antenna

a2 (radius= a)

Figure 2-4: Antenna and k

is on the XBYB plane), and 5 has cylindrical components (R, b, Za) in (Xa, Ya, za),

k. I= kR cos (4 - x) + kllza (2.3

The integration volume element is d3x = RdRddza. Using Bessel functions

S= j eirsinO-in dO (2.4

27r = -",

o0)

, the integral on b is

J2 7r

eikLRcos(- -X)do = 27rJo (ki R) (2.41)

and the integral on R is,

f 27rJo (k R) RdR

27r
= ki (aki) J(ak±)

Ic

9)

(2.42)

3

la



Then, we can get

3 -=Az (1 Io -. 2 ra
- la-J(akl)(27k)3 a2

_L/2 I,(Z,

J-L/2 Io
) 6 ikil zdz, (2.43)

Integrate by parts and assume I,(za = +L/2) = 0, and I(zo) = Is(-z.)

L/2 eikldz - 2 f/22 sin (k da)

J-L/2 o10 ekall Jo dz, 10 dze (2.44)

We next assume a triangular current distribution for I,(za):

21zl
(2.45)

10

T.F. Bell, U. S. Inan and T. Chevalier showed that the antenna current distribution

in magnetized plasma can be approximated by a triangular current distribution if the

antenna is short compared to c/wo where w0 is the local angular plasma frequency. [14]

Then,

- cos kl )) (2.46),2 Izei (dz 4 (
L1/2 Io e 1

Substituting this in Eq.(2.43),

8aloJ(ak±)

J k) =(27r)3La2k±k

L ))
(2.47)

In general, ak. < 1, so Ji(ak±) x ak±, and then

i (k) 41oL 1 - cos (kjL/2) a

= (27r) 3 k L 2 (2.48)

For long waves ( < 1)

(2.49)

This is the Fourier transform of a delta function at the origin with strength 10oL (an

elementary dipole).

: 1 IoL3 k -2 (2r)3



2.7 Inverse Fourier Transformation

We now have explicit expressions for Z and j,, and the Fourier transformed E field

is E= ZBJ'. Then, the inverse Fourier transformation is

Ex)= JJ E (k) ekd k (2.50)

sina

E = ZBAaj, with A. = 0 (2.51)

COS a

ZB is shown in Eq.(2.34)

d3 k = k2dk sin OdOdb

The process for integration is as follows.

1. Fix 0, 0, and integrate on k from 0 to oo. Integration on k is effected in the

complex k plane.

2. For 0 and / integration, we will use the stationary phase method (explana-

tion in [3.2 Stationary point method]). After k integration, for large kr (far

field) identify the values (0, €) that make the phase (k. - ) stationary for each

observation point '.

3. We can carry out the 0, € integration by covering the vicinity of the stationary

points only. At the stationary point, (0,, ,), we can take the (k) term out

of the integral and also we can expand (k. - ) to quadratic order in 0 - 0, and

4. Perform the integration of e- kt (k - has only zeroth and second order terms

now). This completes the process for most observation points X.

5. For certain observation points I where the second derivative of k- x is zero, the

expansion must be carried out to the next order.

For observation points along B, we need another treatment for the integration



because the 4 derivative of k - X is zero at that point.

Integration region is all over k space. Usually we use k : 0 to oo, 0 : 0 to ir, q : 0 to 2rr

as the integration region. However, for k integration, it is better to integrate from

k = -oo to k = oo. For this reason, we use k : -oo to oo, 0 : 0 to , 4 : 0 to 27r as

the integration region. Inverse Fourier transforms with these integration regions are

mathematically identical.

Ox

Figure 2-5: Antenna, observation point and I





Chapter 3

Inverse Fourier Transformation

3.1 K integration

As a first step in computing the inverse Fourier transform (Eq.(2.50)), we fix the

observation point i(r, 02, 0,) and the wave direction (0, q) of k = /l1, then perform

the k integration. Now, allow K to be a complex variable and perform complex

integration using the residue theorem, although the K integration is in principle

along the real axis. In order to use the residue theorem, we need to close the path of

integration around some of the poles of E(K), which are K,± and Kd± as given by

Eq.(2.20) and Eq.(2.21). However, K, is a heavily damped wave when cos-1 v < 0

and Kd± is a heavily damped wave when cos - 1 (-v) > 0 as in Section 2.3. Now the

integration region is k : -oo to oo, 0 : 0 to !, : 0 to 2ir (Section 2.7). In this

integration region, Kd± waves are heavily damped and cannot propagate well. Then,

only K,± waves can propagate and are included as valid poles.

This closure should be done in the half plane in which the e-'*' does not diverge.

Thus the imaginary part of k -I should be negative in this closure.

Now

k .x = -K [sin 0 sin cos ( - ) + cos cos,] (3.1)
1
-K cosy (3.2)

_ Kcos7~



7 is the angle between k and Y, and cos7 is the bracket in Eq.(3.1). Thus, when

cos - > 0, we must have Im(K) < 0, and vice versa.

The angle between k and I is always less than 900 (from the k tip graphs in Section

3.3). Therefore, cos 7 is always positive. Then, the integration path and the valid

pole (K,+) are shown circled in Fig.(3-1). With the residue theorem, the inverse

Kd+X

Ku-
X

Kd-

Figure 3-1: K and integration path

Fourier transform is now reduced to a double integral as follows.

-Ei - -dsin Od
r= I 2iRes k E kj e' UpoleKU+ ddfo fo I

(3.3)

Poles are from 1 in Eq.(2.34)(Ku and Kd+ are the roots of A = 0). Thus, the

residue of 1 isa

K - K,+
Co02-,2 (K 2 - K) (K 2 - KI) K=K+

_ v (cos 0 - V)
4 cos 0

(3.4)Res



We can get Res [E_ e-i'@poleK+] using Eq.(3.4), and substituting K,+ into

Eq.(2.50) and Eq.(2.51). Then, considering the direction of the integration paths,

the integration is

Ef ( = 2ri ZBK,+ AI . e-ifv ., ,, dsin dd4 (3.5)

sin a

Aa = 0 (3.6)

cos a

sin 0 sin 0, cos (€ - Cx) + cos 0 cos 0. (37)
(,,,)= v/cos 0 - v

ZB(Ku+)

-p + K 2 sin 2 0 (-p cos2 + sin2 )
/-(- 1+ K 2  20) i v) n- cos -(1 + K 2 sin) - iK 2 (1 + K2 ) ( - ) sin2 0 sincos

-K 2 (p cos € + sin €) sin 0 cos 0

- (1 + K2 sin2 0) - iK 2 (1 + K 2) ( - v) sin2 0 sin €cos

- (p - isin 0) cos - p (1 + K2 sin2 0) sin

K2 (-p sin 0 + cos q) sin 0 cos 0

K2 sin 0 cos 0 (sin q - p cos k)
-K 2 sin 0 cos 0 (p sin 0 + cos ) (3.8)

-pK 2 cos 2 0 + iv (1 + K 2 )

3.2 The Stationary Phase Method

For the 0 and 0 integrations, we will use the stationary phase method. For the inte-

gration of Eq.(3.5), if j is large, which means the observation point is far from the

antenna, the exponential term e-i' ,*o,4 ,o, ) oscillates much more rapidly than the

other terms (27riZ(K,)A 8 sin 9). However, at some points where ° = = 0, the

exponential term does not vary rapidly. These points are called stationary points. For



example, Fig.(3-2) is the real part of the integrand (x component) with r = 1000km.

There are two stationary points in this graph (red dots). For wave orientation (0, q)

t 0.006-
r = 1000km, 1 = 100m, L = 100m,

r 0.004 V =0.1, a = Orad, qx = rad, 0, =0.2rad

C 0.002

8o0

-0.002

-0.004
SStationary points

-0.006

0 0.5 1 0[rad]

Figure 3-2: Integrand and stationary points

not near these stationary points, the integrand (f (k) e ik) contribution to the inte-

gration is small, because e-i k term oscillates rapidly around zero, and cancellations

occur in the integration.

Near the stationary point (0,, , ), we can take the (27riZ(K,,)Ai; sin 0) terms out of

the integral and we only have to integrate the exponential term. In addition, since

only the vicinity of (0s, ,) contributes, the exponent can be expanded in a Taylor

series about this point, where the first derivatives are zero, and terms higher than

second order in (0 - 0s), (0 - 0,) can be neglected.

As in Section 2.7 and Section 3.1, we only include K,+ wave in the Inverse Fourier

Transform calculation. Stationary points can be calculated as follows.

The phase 0 can be written as in Eq.(3.7). The stationary point for q (- = 0) can



be calculated from this equation.

&I sin 0 sin 0, sin
sin (4 - q) = 0 (3.9)

TO /cos 0 - v

Then,

€=- or . +7r (3.10)

Stationary points for 0 ( = 0) for each stationary point for € can be also calculated

from Eq.(3.7).

0 _ l sin 0 cos ( )-(cos 0 - v)sin (O ) ± 0 + : = . +

90 (cos 0 - )312  - =

(3.11)

Fig.(3-3) and Fig.(3-4) are plots of the stationary points = = _ for changing

observation direction 08 (. = 0) and for v = 0.1 and v = 0.8. For v < 0.5, there is

a point where L2k = 0 on the stationary points line, for v > 0.5, there is not a point

where = 0 on the stationary points line. This point follows from

2 cos 0 cos (0 - ) =0 (3.12)= 0 (3.12)802 2 (cos - v) 3 /2  cos0 - v

Therefore, from Eq.(3.11) and Eq.(3.12), the second derivative of 4 is zero when

cos 0 = + 1 - (3.13)
3

In the stationary phase method, the waves which do not propagate to the observation

point are cancelled mathematically, and only the waves which propagate to the ob-

servation point (they are stationary points) contribute to the integration. Therefore,

the wave field is the sum of the integrands at the stationary points and contributions

from the vicinity of the stationary points. Terms other than the exponential term can

be moved out of the integral at and in the vicinity of the stationary points. Then,

we can integrate the exponential term by expanding D in a Taylor series about the

stationary points. Only the integrand in the vicinity of the stationary point con-



0, [rad]

1 12 / [rad]

Cos-1 2v cos- 1 v

Figure 3-3: Stationary points (v = 0.1)

0~ [rad]
0.9

' -1

Figure 3-4: Stationary points (v = 0.8)



tributes, so we can set the integration region from -oo to oo. The integration of the

exponential term can be calculated as follows.

f jjexpe-iV 
Pd{d

exp r-i I ed
o

= e

1 a+ 2

2 02 10" 2 021

(0-00)2 "+ 2 ' 04 ,

2(3.dOd14)

(3.14)

i1 2 r80 1, 0, 0, 0,

As a result of complex integration for the k integration and the stationary phase

method, the electric field made by the wave can be written as

S4L 1 - cos (kL)
S( = 1-27i 2 +0(2)3  k~L2

StationaryPoints ()

_ _ K,2 sin 0,

82i 2 8 I 0 82 2 1
S1 2 10 8,, ae 10,, ,

ZBeo,, , [sin a

0

COS a

(3.15)

Also, from Maxwell's equations Eq.(2.1) and Eq.(2.2),

(3.16)

Therefore, the magnetic field made by the wave can be written in the same way as

Eq.(3.15).

E
StationaryPoints

82$

41°L 1 - cos (kL)
(2r) 3  k2L 2  e

o82$ 12 1 VW,,

l,, 50 0,, 8,

(3.17)

sin a

0

cos a

-- A^ X
A kxE
B =



3.3 Group Velocity Analysis

When integrating over k in the inverse Fourier transformation, the frequency w must

vary with k to satidfy the Dispersion Relation. Let us examine the vicinity of one k

vector; vary k by 8k, calculate Sw = - kk and then calculate the variation of the

phase q = -wt + k - i (given t, X):

Ow -0 N -O

S okt + SkSk = (- Sk (3.18)

When 1 = 4t (i.e., moving at the velocity v = '), the phase does not change,

and so the Fourier components ad up directly. For other velocities (at this k, 5, t)

the phase varies rapidly, and the net effect is small. Thus, information and energy

propagates at vG (the group velocity), not at the v¢ = h phase velocity of each

partial wave.
- w
O k (3.19)

We define polar angles

0, 4 :polar angle of k

0 ,, 0, :polar angles of the vector ' to the observation point

OG, OG :polar angles of v'G

The direction of v' should be same as the direction of the observation point F. So,

for the waves to be observed from (0,, 0.),

OG = O., kG = 0. (3.20)

should be satisfied. For very small damping (6 < v), the dispersion relations

(Eq.(2.20) become

K c O or v K (3.21)
os 0 - V 1 + K

So, we define

K u = cos 0 - v

44



K propagates only for 0 < cos - 1 V, Kd propagates only for 0 > 7r - cos - 1 v, where

v = --. Using K , = K sin 0 cos <, K, = K sin 0 sin , Kz = K cos 0, so for K, wave,

VGX VG

-VGy

Wcel

VGx -
CJ, wel

9w 1

Ow 1
OK, wel

dw 1

OK, wcel

1-K 2 K,

(1 + K2) 2 K

1-K 2 Kv

(1 + K2)2 K

K 1 - K2 C

1 + K 2 1 + K2cs

From Eq.(3.22),

cos Gu+ =

COS OGu_ =

2 cos 0 (cos 0 - v) + sin2 0

4 (cos 0 - v) + sin2 0

2 cos 0 (cos 0 - v) + sin 2 0

4 (cos 0 - v + sin2 0

(3.23)

As in Section 2.7 and Section 3.1, we only include the Ku+ wave in the Inverse Fourier

Transform calculation.

There are three methods to visualize the wave propagation:

1. The VG graph

2. The k tip graph

3. The 0 vs 0, graph

The VG graph is a locus of the components of along Bo and perpendicular to Bo,

with the I direction 0 as a running parameter. Fig.(3-5) is a VG graph for v = 0.1. For

the K,+ wave, VG is on the ^ axis for 0 = 0, then OG increases until it reaches its local

maximum value, then it decreases to zero at 0 = cos- 1 (2v) and goes to negative.

When 0 = cos - 1 v, the Ku wave is resonant. The Ku wave doesn't propagate for

0 > cos- 1 v, so that branch ends at this point.

(3.22)
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VGz " * @ 0 = cos- 1
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1
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Figure 3-5: VG graph
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The k tip graph is a locus of k with 0 as a running parameter. VG is perpendicular

to the locus of k at each point. Fig.(3-6) is a k tip graph for v = 0.1. For the K,

wave, 0 cannot be larger than cos - 1 v, so the k tip curve for K. goes to the asymptote

0 = cos - 1 V.

0=0/

0.003

0.002

0.0015

0.001

0.0005

0 ==co = os-'

far away on
-the asymptote /

asymptote

Figure 3-6: k tip graph



Using Eq.(3.23), we can draw the 0 vs 0, graph. For the wave to propagate, 8

should be equal to 8G. Fig.(3-7) is a 0 vs 0, graph for v = 0.1. For one observation

point with 08, only the waves with 0 on those curves in the graph can propagate. In

Fig.(3-5), Fig.(3-6) and Fig.(3-7), , @, @ and @ correspond to

:0 = 0, @:0 = cos-1 (v + max, @:0 = cos-1 2v, @:0 = cos-1 v

= COS-1 V

Ox =

0.25 -

02 -

0.15-

0.1

0.05

0

Figure 3-7: 0 vs Or graph

G [rad]
® = cos-' (,+ 3-)

0 [rad]



This relation between O8 and 0 is just as same as the relation between O8 and 8,

in the Stationary Phase Method(Section 3.2). Fig.(3-3) and Fig.(3-7) show the same

relation between 8, and 0. Also, the equations in the Stationary Phase Method and

Group Velocity Analysis are mathematically the same. Therefore, in the same way as

in the Stationary Phase Method, Group Velocity analysis shows that electromagnetic

wave propagating to one observation point is the sum of k waves whose group velocity

is in the direction to that observation point and the waves in the vicinity of those k

waves. The Stationary Phase Method is a mathematical treatment, but the Group

Velocity analysis shows the physical meaning of it.

The shape of the graph and the wave propagation pattern varies with v. There are

three distinct ranges of v.

Range 1: v <

Range 2: < v < 0.5

Range 3: v > 0.5

In Range 1 (Fig.(3-8), Fig.(3-9), Fig.(3-10), v = 0.1), 0G does not reach its maximum

on the resonance point. OG reaches its maximum when k has cos 0 = v + V v2

(inflection point) and 8G at the resonance point is smaller than O8 at the inflection

point. In Range 2 (Fig.(3-11), Fig.(3-12), Fig.(3-13), v = 0.25), 8G at the resonance

point is larger than 8G at the inflection point. In Range 3 (Fig.(3-14), Fig.(3-15),

Fig.(3-16), v = 0.8), the first branch (0 < cos - 1 2v) disapears and O8 simply increases

to the resonance point. When v = V ' (Fig.(3-17), Fig.(3-18), Fig.(3-19), v = ),

8G on the resonance point has the same value as 8G on the inflection point (namely,

10.8930). When v = 0.5 (Fig.(3-20), Fig.(3-21), Fig.(3-22), v = 0.5), the first branch

just dissapears.
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Figure 3-10: 0 vs 0, graph (v = 0.1)
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Figure 3-12: k tip graph (v = 0.25)

6G [rad]
0251-

v = 0.25

1 0[rad]

Figure 3-13: 0 vs O0 graph (v = 0.25)
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Figure 3-14: VG graph (v = 0.8)
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Figure 3-15: k tip graph (v = 0.8)
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Figure 3-16: 0 vs 0~ graph (v = 0.8)
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Figure 3-21: k tip graph (v = 0.5)
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Figure 3-22: 0 vs 0a graph (v = 0.5)

3.3.1 Range 1: v <

The branch that is observed, as well as the particular k within that branch, changes

as the observation point angle 0. changes. Now, consider the wave propagation in

Range 1 (v ). First, if the observation point is on the z axis, which means

O = 0, two waves propagate as in Fig.(3-23), Fig.(3-24), and Fig.(3-25) at € = #=.
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Figure 3-24: Region 1 k tip graph, v = 0.1 (Propagation along Bo)
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Figure 3-25: Region 1 0 vs 0, graph, v = 0.1 (Propagation along Bo)

In region 2, when 0 < 0, < sin - 1 v, three waves propagate as in Fig.(3-26), Fig.(3-

27), and Fig.(3-28). Two waves have # = # and one wave has = 7r + 0,, but these

three waves have 0 = OG = Ox.
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Figure 3-26: Region 2 VG graph, v = 0.1 (very near Bo)
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Figure 3-27: Region 2 k tip graph, v = 0.1 (very near Bo)
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Figure 3-28: Region 2 0 vs 0, graph, v = 0.1 (very near Bo)

On the point where 0, = sin - 1 v, three waves propagate. One of these waves is

resonant as in Fig.(3-29), Fig.(3-30), and Fig.(3-31). From Fig.(3-30), we can easily

see that 0, at the resonant point is 0, = M - cos - 1 v = sin-' v
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Figure 3-29: Region 3 VG graph, v = 0.1 (on the resonance cone)
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Figure 3-30: Region 3 k tip graph, v
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Figure 3-31: Region 3 0 vs Ox graph, v = 0.1 (on the resonance cone)

4(1-v 2

In region 4, where sin - 1 v < 0, < cos - 1  , two waves propagate
3 2(1 -v2 )-2v1

as in Fig.(3-32), Fig.(3-33), and Fig.(3-34). These waves have q = q.
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Figure 3-32: Region 4 VG graph, v = 0.1 (outside resonance cone, but within propa-
gation cone)
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Figure 3-34: Region 4 0 vs 0, graph, v = 0.1 (outside resonance cone, but within

propagation cone)

On the cone where 0, = 0 ,MAX, only one wave propagates as in Fig.(3-35), Fig.(3-

36), and Fig.(3-37). 0 G reaches its maximum and no wave can propagate in the

region where Ox > OxMAX. From Fig.(3-37), 2- = 0 on this point. From Eq.(3.13),

this corresponds to

cos = v + - 2
3

From Eq.(3.23),

cos-1

cOS - 1 vos-
v- O 3

4(1 - v2)

- a = 1-2v9.47

0.3398rad = 19.47"

(3.24)

(3.25)



VGz

10 0.05 0.1 VG x

Figure 3-35: Region 5 VG graph, v = 0.1 (on the edge of the propagation cone)

kll

0.003

0.0025

0.002

0.0015

0.001

0.0005

OG max

1 wave z asymptote

v = 0.1

Figure 3-36: Region 5 Ic tip graph, v = 0.1 (on the edge of the propagation cone)



Ox = Oc[rad
025. -

G max

02

0.15

1 wave
0.1 -= .1

v = 0.1

0.05

o0 0.5 1 [rad]

Figure 3-37: Region 5 0 vs 0, graph, v = 0.1 (on the edge of the propagation cone)

3.3.2 Range 2: < < 0.5

Now, consider the wave propagation in Range 2 (~ < V < 0.5). First, if the

observation point is on the ^ axis, which means 0, = 0, two waves propagate as in

Fig.(3-38), Fig.(3-39), and Fig.(3-40) at 0 = 0r. This is just the same propagation

as in Range 1.



VGz

0.6

2 waves
v = 0.25

VGx

Figure 3-38: Region 1 VG graph, v = 0.25 (Propagation along Bo)

kll
0.011

0.01

0.009

0.008

0.007 - asymptote

0.006

0.005 b
0.004 , 2 waves

0.003 v = 0.25

0.002

0.001

0 0.01 0.02 0.03 0.04 L

Figure 3-39: Region 1 k tip graph, v = 0.25 (Propagation along Bo)
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Figure 3-40: Region 1 0 vs 0. graph, v = 0.25 (Propagation along Bo)

In region 2, where 0 < O < OXMAX, in the same way as in Range 1 again, three

waves propagate as in Fig.(3-41), Fig.(3-42), and Fig.(3-43). Two waves have € = #=

and one wave has 0 = wr + 0, but these three waves have 0 = OG = ,.
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Figure 3-41: Region 2 VG graph, v = 0.25 (very near Bo)
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Figure 3-42: Region 2 k tip graph, v = 0.25 (very near Bo)
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Figure 3-43: Region 2 0 vs 0, graph, v = 0.25 (very near Bo)

On the point where 0, = OMAX, two waves propagate. One of these waves is on

the inflection point as in Fig.(3-44), Fig.(3-45), and Fig.(3-46). Ox on the inflection

point is smaller than 0, on the resonance point. Only one wave can propagate outside

of this inflection point 0,.
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Figure 3-44: Region 3 VG graph, v = 0.25 (on the resonance cone)
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Figure 3-45: Region 3 k tip graph, v = 0.25 (on the resonance cone)
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Figure 3-46: Region 3 0 vs 0, graph, v = 0.25 (on the resonance cone)

In region 4, where OzMAX < 0, < sin- 1 v, only one wave propagates as in Fig.(3-

47), Fig.(3-48), and Fig.(3-49). This wave has ¢ = ir + ,.
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Figure 3-47: Region 4 VG graph, v = 0.25 (inside the resonance cone)
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Figure 3-48: Region 4 k tip graph, v = 0.25 (inside resonance cone)
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Figure 3-49: Region 4 0 vs O8 graph, v = 0.25 (inside resonance cone)

On the cone where O8 = sin - 1 v, there is only one wave as in Fig.(3-50), Fig.(3-51),

and Fig.(3-52) and this wave is the resonance wave.

3.3.3 Range 3: v > 0.5

For Range 3(v > 0.5), only one wave propagates as in Fig.(3-53), Fig.(3-54), and

Fig.(3-55). On the point where O8 = sin - 1 v, the wave becomes resonant wave as in

Fig.(3-56), Fig.(3-57), and Fig.(3-58).
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Figure 3-50: Region 5 VG graph, v = 0.25 (on the edge of the propagation cone)
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Figure 3-51: Region 5 k tip graph, v = 0.25 (on the edge of the propagation cone)
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Figure 3-52: Region 5 0 vs 0., graph, v = 0.25 (on the edge of the propagation cone)
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VG z
0.16

0.14

0.12

0.1

0.08

Resonance wave 0.06

VG=O
-0.04

1 wave \
v = 0.8 - 0.02

I III ,I i I 0 , --
ro

-0.075 -0.025 O
VGx

Figure 3-56: VG graph, v = 0.8 (on the edge of the propagation cone)

k!l Resonance wave
far away on

the asymptote

a

asymptote

1 wave
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Figure 3-58: 0 vs O6 graph, v = 0.8 (on the edge of the propagation cone)

3.4 q Integration Using Bessel's Function

For the antenna parallel to Earth's magnetic field (a = 0), Bessel's functions can be

used for an exact q Integration. We use

j2 e- 'xcos( - ) = 27rJo (x) (3.26)

o cos Oe- icos(O- O") = -2ri cos O.J (x) (3.27)

o sin oe-ixcos(0- 0,) = -27ri sin €=J1 (x) (3.28)

Notice the asymptotic behavior of these expressions: when x > 1, each of the above

integrals contain mainly the contributions from q values near 0, and Ox + 7r. At other

€ values, the rapid oscillations of the exponential produce cancellations.



The electric field made by the wave is then found to be

v (cos0 - v) 4 1 Cos (kL)
4 cos 01 (27r)3 (k(L)2

K 2 .
K )2sin Oe-iK icosCos e

1

-27riJ 1 (x) K 2 sin 0 cos 0 (sin 0 - p cos ,)

27riJ1 (x) K2 sin 0 cos 0 (p sin 0 + cos O,)

27rJo (x) {-pK2 cos2 0 + iv (1 + K 2)}

where
r sin 0 sin O0

x = -71 cos0 -v

Also the magnetic field made by the wave is found to be

27ri

Oce ,wce

Vv (cosO - v) 411 - cos (k)

4 cos 01 (27r) (kilL) 2

-27riJ 1 (x) K2 sin 0 cos 0 (sin , - p cos )

27riJ1 (x) K 2 sin 0 cos 0 (p sin 0, + cos €,)

2rJo (x) {-pK2 cos2 0 + iv (1 + K 2 )}

If x > 1, we can use the asymptotic expansions

Jo (x) C os

J (X) i cos x
rx

(x-)= [exp i (x - + exp -i(x-)

- =, 2 1
4 -Y 2 [exp i x - + exp -

(3.32)

(3.33)

27ri

a0ce

dO (3.29)

(3.30)

\T) sin Oe-iK cosB co
s

(3.31)

- o
E (r=

Jo=o

B(rj =
0=0



Then, from Eq.(3.32)

f =0 27rJo (x) e ,o - dOV d
d 1 [9 X+coo-- I j sinOO rco - si in z+c 0 ce 1

f 21 

.7r - 1

i-le V '60-0- -tT e V-- 086 V/ 27 - , ke) e4-_0=0Fi [I

7rre- - 27r2rx i _r o 2i
StationaryPoints 1 2 082

+ i --1 T',, +r) 27r
1 2 002

7rr

- W e-i/6s, 0) (3.34)
StationaryPoints 2 2 a0

StationarPoints T7 2 VO -50 2 0

where we used

1

824D r 921 r

i 1 1 i 1
JZJ2

In the same way, from Eq.(3.33)

• r '-- co0 coo

fe o 27riJJ (x) e- 'T o- o d

etti2(0,n 2 82 ,)

StationaryPoints 1 2 Vj92 j0
2

Comparing with Eq.(3.15) and Eq.(3.17), we can see that the wave field calculated

using the (0, 0) Stationary Phase Method and using the 0 Stationary Phase Method

with 4 integration using Bessel's functions are mathematically identical, as long as

77u V > 1. Clearly, this inequality is violated and the stationary phase method

cannot be used for propagation near 0 (0~ <K 1), so that region needs to be examined

separately.

(3.35)

(3.36)



3.5 Propagation near Bo

If the observation point is very near the magnetic field line from the antenna, there is

an interesting phenomenon about wave propagation. For this analysis, O. in Fig.(3-59)

needs to be very small. The Stationary point should satisfy Eq.(3.9) and Eq.(3.11).

Antenna

Observation point

0, very small

Observation point is near z axis

Figure 3-59: Observation point near B line

However, if O - 0, a- 0 for any q. Then, the oscillation frequency of the inte-

grand in Eq.(3.5) with respect to 0 is not high enough to produce cancellations in

the integration. A modified mathematical procedure is needed for calculating the

wave field at observation points very near the magnetic field. If the antenna is set

parallel to Earth's magnetic field, 0 integration can be done with Bessel's functions

as in Eq.(3.29) and Eq.(3.31). If x in the Bessel's functions is not large (x f 1 that

is, O, 2 f) the oscillation of Bessel's functions are not high compared with the expo-

nential term, and they can be moved out of the integral. With K integration using

residue theorem, the phase of the exponential term in the integrand is

(3.37)cos 0 cos O

/cos 0 -



and with this phase,

80

v cos Or sin 0 - . cos O. sin 0 cos 0

(cos 0 - v) 2

Then, the stationary points (0 = 0) are 0 = 0 or cos - 1 2v. On these stationary

points,
p2s cos Or (v cos 0 cos2)

5702 3

02 (cos 0 - v)

With the Stationary Phase Method for 0 integration, we obtain

E ( =
tationaryPoin ce

StationaryPoints

v(cos 0 - v) 411 1-cs(2) (K\K 7r

4 cos 01 (27r) (k lL) sin0

-2rriJ (x) K2 sin 0 cos 0 (sin , - p cos Ox)

27riJ (x) K 2 sin 0 cos 0 (p sin , + cos ,)

27rJo (x) {-pK2 cos2 0 + iv (1 + K2 )}

dO (3.40)

where x = .F sinn . Also Magnetic field made by the wave is found to be
I x : /v

B (r) = C
J0=0 Oce wce

,/v(cos0 - v) 41 1- cos(k'2) (K 3  7r

4cos1 (2)3 (kl2 sin0(2os 1 (27r 1L (1 1 2 a82 '

-27riJ (x) K 2 sin 0 cos 0 (sin . - p cos Ox)

2nriJ1 (x) K 2 sin 0 cos 0 (p sin ~, + cos ,)

27rJo (x) {-pK2 cos2 0 + iv (1 + K 2 ))

dO (3.41)

Because of the sin 0 term in Eq.(3.40) and Eq.(3.41), 0 = 0 has no contribution to the

integral, so we only have to include a stationary point 0 = cos - ' 2v. This mathemat-

ical procedure should be used only when x < 1 (Or < ). This boundary is a thin

cylinder along Earth's magnetic field on the antenna as in Fig.(fig:NearBRegion.eps).

This cylinder is very thin in our case (1 50m, r _ 1000km) and the radiation in

this cylinder has small influence on radiation power integration.

(3.38)

(3.39)



sin O8 1

x

Figure 3-60: A "cylinder" along B 0 line

This mathematical procedure is for the antenna parallel to Earth's magnetic field

and the € integration for the antenna perpendicular to Earth's magnetic field is much

more complicated because kll in the antenna term includes €. However we judged

that a more refined mathematical procedure for the antenna perpendicular to Earth's

magnetic field is not necessary for the radiation power integration because the contri-

bution of the near B0 to the radiation power integration is small. We compared the

result of the radiation power integration for the parallel antenna using this refined

mathematical procedure and without this procedure and found that the difference is

small.





Chapter 4

Radiation Pattern Analysis

4.1 Radiation Pattern

With the calculation methods shown in Chapter 2 and Chapter 3, the radiation

fields E and B can be acquired. Fig.(4-1) through Fig.(4-6) are the plots of these

radiation fields for some representative cases. Fig.(4-7) and Fig.(4-8) give the value

of the energy flux away from the antenna. The energy flux is the r' component of the

time-averaged Poynting's vector. The time-averaged Poynting's vector (s) can be

calculated as follows[15

S=Re E x (4.1)

The parameters in this calculation are v = 0.1, L(antenna length)= 100m, ne(electron

density)= 1010m - 3 , I(antenna current)= 10A, Bo(Earth's magnetic field)= 10-5 T,

a(antenna angle, Section 2.5)= j. There are three intense radiation zones (conical

lobes), and they are Near Bo zone (0., _ o)(see Section3.5), Resonance point zone

(0., 0.100) and Inflection point zone as in Fig.(4-8) (OX _ 0.259). The radiation

in the Inflection point zone is weak compared to the other two intense lobes. For 0,

other than these special values, we see rapid spatial oscillations of the field values.

and to a lesser extent, of the power flux as well. It can be shown that these so-called

"interference patterns" are due to interactions between E from one of the waves

observed at Ox and B from one of the other waves.
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Figure 4-1: x-component of E (v = 0.1, a = ) (the antenna direction)

The radiation pattern varies with calculation parameters. Fig.(4-9) shows the

radiation pattern (Poynting's vector) for a = 0 with the same parameters as the

energy flux calculation for Fig.(4-7). For the a = 0 case, the radiation in near-B0

direction is weaker than the near-resonance radiation, compared with the radiation

pattern for a = 1. This is because the electromagnetic waves in the dipole antenna

direction is weak.

Figs.(4-10) through (4-13) show the radiation pattern of perpendicular antenna

and parallel antenna for v = 0.25 with the same parameters as the Energy flux

calculation for Fig.(4-7). The near Bo point, the Resonance point and the Inflection

point are shown in Figs.(4-11) and (4-13).
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Figure 4-4: x-component of B (v = 0.1, a = f) (antenna direction)
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Figure 4-6: z-component of 1B (v = 0.1, a = -) (direction of Bo)2
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Figure 4-9: Energy flux (v = 0.1, a = 0)
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Figure 4-10: Energy flux graph (v = 0.25, a = )

Energy flux [W/m 2]2E-06 -

1.5E-06

1 E-06

5E-07

0.

Near Bo

Resonance Point

Inflection Point

U U.1
0.2
0.2 [rad]

Figure 4-11: Zoomed view of energy flux graph (v = 0.25, a = !)



Energy flux [W/m 2]

0.1 0.2 0 [rad]

Figure 4-12: Energy flux graph (v = 0.8, a = !)
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As seen in Fig.(4-7) through Fig.(4-13), time-averaged Poynting's vector are spa-

tially oscillating. This is because the wave field at one observation point is the sum

of more than one k wave as shown in Chapter 3. In vacuum (and in some Whistler

cases), the electromagnetic wave at one observation point consists of just one k wave,

so from Eq.(4.1) the time-averaged Poynting's vector (putting X = E, Y = ) is

(A)= (Xe-ikl) x (Ye-ikl)*

Xx Y* (4.2)
2

which has no rapid spatial dependence. However, in our case the electromagnetic

wave at one observation point is the sum of more than one k wave in plasma; then

the time-averaged Poynting's vector is obtained from the sum of up to three k waves:

2 () = Re [(Xie- 'ik + X 2 e-ik2 + X 3 e -ik) x (Y-ikL + Y 2 e-ik2 + Y3e-ik3s)*]

= Re [Xi x Y* + X 2 x Y2* + X3 x Y** + X 1 x ,*ei(k2-k)x + X 2 x Y*e 'i(k-k 2 )x

+X 1 x Y*ei(k3-kl) + X3 x Y*ei(k'-k3) + X 2 x Y3*ei(k3-k2)x

+X 3 x Y*ei(k2-kas)]  (4.3)

Therefore high frequency oscillation terms (ei(k2 - k )x, ei(ki - k2)
x ... ) remain in the

time-averaged Poynting's vector because x in Eq.(4.3) is large (far field). These

spatial oscillations are not shown in previous works such as [12, 13, 1].

T. N. C. Wang and T. F. Bell calculated the radiation pattern in a different way.[1]

Fig.(4-14) and (4-15) are their radiation pattern of perpendicular and parallel antenna

for v = 0.25. The Near 0 radiation for the parallel antenna is much weaker than

the resonance point radiation in the same way as in our result. The resonance occurs

at 13.9* in their calculation as in Fig.(4-14) and (4-15), but in our calculation, the

resonance occurs at 0., 14.50. The reason of this difference is because of the fact that

they took the ion effect into account. Our radiation pattern has spatial oscillations,

but their radiation pattern is a "filtered" pattern without spatial oscillations. One

possible reason of this difference is that they calculated the wave energy flux directly



unlike our calculation way which is to calculate electric field and magnetic field first,

then calculate the Poynting's vector. It could also be due to lack of resolution in their

integration; no information was given on this point in their paper.
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Figure 4-14: Radiation pattern for perpendicular antenna, v = 0.25 by Wang and
Bell[l]



-_

I I . LL

Figure 4-15: Radiation pattern for parallel antenna, v = 0.25 by Wang and Bell[]

experiment, radiation from a dipole antenna in a uniform magnetized plasma in the

laboratory is observed. By changing the plasma density, this paper showed the trend

that if the plasma density is low, then the Near B0 radiation is strong, and when the

plasma density goes higher, the calculated Resonance point radiation gets stronger.

Fig.(4-16) through Fig.(4-40) are the calculated radiation patterns for various electron

densities with parameters chosen to be the same as in one of the experiments and the

radiation pattern of the experimental data. The receiver antenna in his experiment

has finite length, so we took the antenna average over the radiation pattern assuming

that the sensitivity of the receiving antenna is triangular. The trend of our results

matches well with the radiation trend in the experiment. For long antenna (4.5cm

antenna), the shape of the radiation pattern of our calculation is very close to that

of the experimental data with the same plasma density as in Fig.(4-28). However,

for short antenna (1.1cm antenna), the radiation pattern is different from that of the

experimental data if we calculate with the same plasma density as in the experiment.



If we use higher plasma density than that in the experiment (two or three times

higher density), the radiation pattern is very close at all density levels to that of the

experimental data.
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length is 4.5cm).[2]

Figure 4-16: Radiation pattern (wp/w =
57, antenna length is 4.5cm). Highest den-
sity for this sequence.
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Figure 4-18: Radiation pattern (wp/w:
33, antenna length is 4.5cm). Density
lower than in Fig.(4-16)
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Figure 4-20: Radiation pattern (wp/w =
28, antenna length is 4.5cm). Density de-
creased again.
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Figure 4-19: Radiation pattern of the ex-
perimental data (wp/w = 33, antenna
length is 4.5cm). [2]
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Figure 4-21: Radiation pattern of the ex-
perimental data (w,/w = 28, antenna
length is 4.5cm).[2]
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10 20 30 40 50 Figure 4-23: Radiation pattern of the ex-
Oe[deg] perimental data (w,/w = 23, antenna

length is 4.5cm).[2]

Figure 4-22: Radiation pattern (wp/w =
23, antenna length is 4.5cm). Density de-
creased again. Note the emerging reso-
nance peak.
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10 20 30 40 0[de Figure 4-25: Radiation pattern of the ex-perimental data (wp/w = 16, antenna

length is 4.5cm).[2]
Figure 4-24: Radiation pattern (wp/w =
16, antenna length is 4.5cm). Density de-
creased further.
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Figure 4-26: Radiation pattern (w,/w = N 9 (DEGRE)
5.7, antenna length is 4.5cm). Lowest den-
sity.

Figure 4-27: Radiation pattern of the ex-
perimental data (wp/w = 5.7, antenna
length is 4.5cm).[2]
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Figure 4-28: Radiation patterns of our result and experimental data.
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Figure 4-29: Radiation pattern (wp/w =
120, antenna length is 1.1cm). Highest
density for this sequence.
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Figure 4-34: Radiation pattern of the ex-
perimental data (wlw = 52, antenna
length is 1.1cm).[2]

Figure 4-33: Radiation pattern (wp/w =
100, antenna length is 1.1cm)
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Figure 4-35: Radiation pattern (wP/w =
90, antenna length is 1.1cm)

Figure 4-36: Radiation pattern of the ex-
perimental data (wp/w = 30, antenna
length is 1.1cm).[2]
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Figure 4-37: Radiation pattern (wp/w = 60, antenna length is 1.1cm)
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Figure 4-38: Radiation pattern (wp/w = 57, antenna length is 1.1cm)
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Figure 4-39: Radiation pattern (w/w = 52, antenna length is 1.1cm)
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Figure 4-40: Radiation pattern (wp/w = 30, antenna length is 1.1cm). Lowest density
for this sequence.
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4.2 Resonance

Formally, resonance occurs when k goes to irfinity. From Eq.(2.20), 0 = cos-1v

at resonance. Using group velocity analysis, for example Eq.(3.23), 0G = sin- 1 v at

resonance. Therefore there is a resonance cone around the magnetic field, and this

cone has an angle 0, = sin-1 v to magnetic field line. As in figures in Section 3.3,

resonance occurs at the wave branch which propagates with 4 = r + C,.

4.2.1 Stationary Phase Method and Resonance

From Eq.(3.15),

II sin (1- cos 2 ) e- I '

StationaryPoints -race cos 0 (sin 0 cos sin a + cos 0 cos a) Lr

1

+ cos O sin 0 sin Ox T 2 (cos 0 - v) cos (0 ± 03) sin 0 sin 0, vcos 0 - v

(cos 0 - v) (cos 0 - ) + (- + i cos 0) sin 2 0 cos2 iCO- sin 2 0sin2 4] sina

(coS-) 2 o-C sin 2 0 + H--oi + i coS 0)si sin sin sin a

[ Ce-" sin 0 cos 0 sin + ( + i cos 0) sin 0 cos 0 cos sin a

[C0-V sin 0cos 0 sin + (- + i cos 0) sin 0 cos 0 cos ] cos a

[os0-V sin0cos0cos 4+ (- + i cos 0) sin 0 cos 0 sin ] cos a (4.4)

[(-i + i cos 0) cos2 0 + i cos 0] cos a
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From Eq.(3.17),

I sin 0 1 - cos IL e-

StationaryPoints 27race cos 0 (sin 0 cos 4 sin a + cos 0 cos a)2 Lrwce

1.

Scos sin 0 sin 2 (cos 0 - v) cos (0 ± 0,) sin 0 sin 0

[sin 2 0 cos 0 (cos2 + ' sin cos €) + cos 8-v cos 0] sin a

[cos 0 { sin 2 0 sin (cos 0 + sin O) - + iv} + i (cos 0 - v) cos 0] sin a

[- sin 3 0 (cos + 'sin) + ( - i cos 0) sin 0 sin - cos0-v sin 0 cos ] sin a

[i sin € + Cos2 0 cos sin 0 cos a

[Cos2 0 sin - Cos sin 0 cos a (4.5)

- sin2 0 cos 0 cos a

From Eq.(4.4) and Eq.(4.5), E, B, and Poynting's vector S have the following limiting

dependence on the diverging term 1.
Cos 0--V

E oc os (4.6)

B oc (cos 0 - v) (4.7)
1 1

S -ExB oc (4.8)
0o V/cos 0 - v

Therefore E and S diverge to infinity at resonance,but the S divergence is integrable.

The magnetic field of the wave doesn't diverge and has finite value at resonance.

This analysis confirms that the wave at resonance is electrostatic, as was discussed

in (2.3.1).

As previously noted, resonance occurs on the wave branch shown in Fig.(4-41). Any

stationary point 0, on this wave branch is always near to cos- ' v. Therefore, the

contribution of this wave branch to the integration in the wave field calculation is

much larger than that of other wave branches.
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Figure 4-41: Resonance wave branch

4.3 Inflection Point

In the stationary points there is in some of the cases a point where 0,¢ = 0. We call

this point the inflection point. There is only one inflection point in our case, which

is @ in Fig.(3-7). On this point,

0 = cos- 1 (V + 1 - v2) (4.9)

from Eq.(3.12) and Eq.(3.13). Two wave modes (two stationary point branches on

the right side and left side in Fig.(3-7)) merge into one wave mode at the inflection

point, then strong radiation occurs. terms in Eq.(3.15) and Eq.(3.17) are zero

at the inflection point. Then the electric field and the magnetic field diverge weakly

at this point if we calculate the wave field as in Eq.(3.15) and Eq.(3.17). If 0 is

near the inflection point, the second derivative 2 ¢- is much smaller than the third

derivative 03. However the integration of the exponential term with a third order
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assymptotic expansion is difficult, also the contribution to the radiation power in the

neighborhood of this inflection point is small, so we calculate the radiation power

integration without considering this inflection point effect, just using the stationary

point method to very near the inflection point and skipping over the precise location

of the singularity at 2
k
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Chapter 5

Radiation Power and Resistance

Analysis

5.1 Radiation Power

By integrating the time-averaged Poynting's vector on the sphere around the antenna,

the power radiated by the antenna can be calculated. The radiated power P is

=r 2 1r sin (~d ,d)

f= 2 j ( S r2 sin O,dO,dOk (5.1)

This integration can be done by trapezoidal integration of the Poynting's vector results

in Section 4.1.

At the resonance point, the time-averaged Poynting's vector diverges to oo. However,

as shown by Eq.(4.6), by the Poynting's vector near the resonance point is propotional

to and dominated by cs , and integration of results in a finite value.

The radiated power to the region Oi to 0,2 in Fig.(5-1) (very near the resonance)

is

Presi = dO (5.2)
Where C is approximately a constant in the integration. From eq.(3.11), at the

Where C is approximately a constant in the integration. From eq.(3.11), at the
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Figure 5-1: Energy flux near resonance point

stationary points on the resonance wave branch

sin 0
cos 0 - v =

2 tan (0 + OX)
(5.3)

Now, if Ox1 and Ox1 are very near to Ox re, (at the resonance point), by using Taylor

series expansion cos 0 - v can be expressed as

d (cos 0 - v)(
S(cos 0 - ) at resonance + dOX at resonance

+ (cos 0 - v) ( - Ox res.)
+ dO at resonance

VI - I-S-- - (Ox - Ores) + 0 x (Ox - Ox res)2

2 (5.4)

Third or higher terms are neglected. Then, Eq.(5.2) becomes

Pres
ox C' dO

0.2 0 x - OxresdO

= 2C' (Ox res - O - Ox res - Ox2)
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Where C' is a constant different from C. Also, the radiated power to the region from

,2 to 0~ re, in Fig.(5-1) is

Pres2 = 2C'( Ore-Ox2) (5.6)

Then, using the trapezoidal integration result of Pre,1, Pres2 can be calculated as

Pres2 = / Pres (/O~ re - 2) (5.7)
ere - O1 - Ox res - Ox(527)

By add Pres2 to radiation power integration to 0 .2, radiation power near the resonance

point can be calculated.

5.2 Radiation Resistance

The radiation power from the antenna P can be calculated as in 5.1. The radiation

resistance R can be calculated by the radiation power P and the antenna current

I = 0 as follows.
2P

R = (5.8)

T. N. C. Wang and T. F. Bell calculated the radiation resistance in a different way.[16]

K. G. Balmain[17] also calculated the radiation impedance of the short dipole antenna

in the same way as Wang and Bell. They calculated the radiation power by integrating

the product of the current and the electric field. Then they calculated the radiation

resistance for an antenna parallel to B0 as follows.

Z2_ + 1 2 2ir \1/2 Y -1
R11 = 1 6-r +C(hfl)2- ( 2 Y- 1 (h#l) 3J (5.9)

where Zo = 377ohm, h:half of the antenna length, 3 = , e, = , X = 2,

Y =

Fig.(5-2) shows the radiation resistance for various antenna lengths L. In this

calculation, v = 0.1. In these figures, our calculation results match well with the
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Figure 5-2: Radiation resistance and antenna length (Antenna parallel to Bo)

results by Wang and Bell, but our results have oscillations in the short antenna region.

These oscillations could be a numerical artifact, due to the high resolution needed for

resolving the spatial oscillation of the Poynting's vector during its integration. The

results by Wang and Bell are near to the average value of this oscillation of our results.

The radiation resistance diverge as the antenna gets smaller. From these results, it

seems that the radiation power is larger for the shorter antenna, for fixed antenna

current. However, we also should look at the imaginary part of the impedance of the

antenna. If the AC amplitude of the antenna voltage is high, the sheath around the

antenna is thick. In this thesis research, we do not take the effect of the sheath into

account, but the sheath covers the antenna and can weaken the radiation.

This thesis has not computed the imaginary part of the radiation impedance, X11, but

in view of the good agreement found with the "short antenna" thesis of Balmain[17]

and Wang/Bell[14][16] for RII, we can with confidence use their results for X11:

X = 10__ lg h(h 1' (5.10)
I [log ( -

I1resh/3 ya
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where a is the radius of the antenna,

= P
S = 1 weW,

2
- 2

XII is inversely proportional to the antenna length in the same way as RII.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we analyzed how low-frequency Electromagnetic waves propagate in

the Ionosphere. In this analysis, we assumed the following:

* The frequency of the EM wave is so low that only electrons react to the wave

field and ions do not react.

* The plasma temperature and the plasma density are not high. The collision

term in the electron equation of motion is very small.

* The current distribution of the antenna is triangular.

* The plasma is homogeneous. There is no sheath around the antenna.

Chapter 2 presents how the wave field in the magnetized plasma can be calculated.

We used Maxwell's equations and electron equations of motion. By using the Fourier

transform and the Inverse Fourier transform, the wave field at an observation point

can be calculated. The Inverse Fourier transform is a complicated integration, but we

can caluculate this integration analytically with residue theorem and the Stationary

Phase Method.

The calculation method of the Inverse Fourier transform using residue theorem and

the Stationary Phase Method is shown in Chapter 3. Also this chapter presents the
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group velocity analysis. By analyzing the group velocity of the EM wave, we can un-

derstand how EM waves propagate to the observation point. We used the VG graph,

the k tip graph and the 0 vs 0, graph to show which k wave propagates to the ob-

servation point and which k wave does not. We can see that more than one k wave

propagates to one observation point, and there is a resonance wave; also two wave

modes merge into one wave mode at the inflection point. Also, the propagation ways

of these k waves are different with the frequency of the wave.

Chapter 4 presents the calculated wave field. The radiation pattern has some char-

acteristics. There are intense radiation directions which are the near Bo zone, the

Resonance zone and the Inflection point zone. We also compared our results with past

experimental work. The trend of the radiation pattern of our results matches with

the experimental data. This chapter also presents that radiation pattern has spatial

oscillation that comes from the superpopsition of k waves. Finally, in this chapter,

we analyzed the intense radiation zones in more detail. Near B0o intense radiation

occurs in a thin cylinder. At the resonance point, the wave is an electrostatic wave.

Only the magnetic field is finite and electric field diverges.

In Chapter 5, we calculated the radiated power and the radiation resistance. By

integrating the Poynting's vector around the antenna, we can calculate the radiated

power by the antenna. In this calculation, computational integration is used. At

the resonance point, the Poynting's vector diverges, but we calculated the Poynting's

vector integration at this point by approximating the Poynting's vector as a function

of 0.. Then we also compared the radiation resistance with the past work. Our re-

sults reproduce the radiation power of Bell and of Balmain, and show that antenna

of 100m length can still be regarded as simple dipoles.

6.2 Future Work

Possible future researches are listed in the following.

1. Antenna design work.
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The radiation power for various antenna length can be calculated using our

theory in this thesis. We can estimate the optimum antenna size in aspects

of the mass of the antenna, the antenna dynamism, the antenna input voltage

which has a large influence on the sheath, the heat issue of the antenna, and so

on.

2. More detailed analysis on intense radiation zones.

* For the near B0o zone, we analyzed for the parallel antenna case using

Bessel's functions. However, this analysis is not valid for the perpendicular

antenna case. For the perpendicular antenna case, the integration in the

Inverse Fourier transform is much more complicated, and we need another

kind of approximation for this calculation.

* For the Inflection point zone, if we just use the Stationary Phase Method

and calculate the wave field, then the wave field diverges. However, we

decided that the influence of this wave field is small to the whole radiation.

More precise analysis is possible.

3. Sheath around the antenna

In this research, we considered only the far field. However there should be a

sheath around the antenna, and strong interactions between the antenna and

the charged particles occur in the near field. Except for the dipole limit, we

calculated only the radiation resistance which is the real part of the antenna

impedance, but the antenna input voltage is affected also by the imaginary

part of the antenna impedance. The sheath shape is influenced by this input

voltage. Therefore, the imaginary part of the antenna impedance is necessary

for the more detailed simulation.

4. Inhomogeneous plasma simulation

Our analysis is for the wave propagation in homogeneous plasma. The analysis

on the wave propagation in inhomogeneous is left to a more advanced research.

5. Nonlinear duct-forming effect analysis
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This nonlinear effect in the plasma may guide Whistler waves close to the Bo

direction of at high power.

6. Experiments

Only a few experiments on the wave propagation in magnetized plasma has

been done in the past. To compare the result of analysis with other data, we

need some experiments.
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