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Abstract

The operation of unmanned aerial vehicles (UAVs) in constrained indoor environ-
ments presents many unique challenges in control and planning. This thesis inves-
tigates modeling, adaptive control and trajectory optimization methods as applied
to indoor autonomous flight vehicles in both a theoretical and experimental context.
Three types of small-scale UAVs, including a custom-built three-wing tailsitter, are
combined with a motion capture system and ground computer network to form a
testbed capable of indoor autonomous flight.

An L1 adaptive output feedback control design process is presented in which con-
trol parameters are systematically determined based on intuitive desired performance
and robustness metrics set by the designer. Flight test results using a quadrotor
helicopter demonstrate that designer specifications correspond to the expected phys-
ical responses. Multi-input multi-output (MIMO) L1 adaptive control is applied to a
three-wing tailsitter. An inner-loop body rate adaptation structure is used to bypass
the non-linearities of the closed-loop system, producing an adaptive architecture that
is invariant to the choice of baseline controller. Simulations and flight experiments
confirm that the MIMO adaptive augmentation effectively recovers nominal reference
performance of the vehicle in the presence of substantial physical actuator failures.

A method for developing a low-fidelity model of propeller-driven UAVs is pre-
sented and compared to data collected from flight hardware. The method is used
to derive a model of a fixed-wing aerobatic aircraft which is then used by a Gauss
pseudospectral optimization tool to find dynamically feasible trajectories for speci-
fied flight maneuvers. Several trajectories are generated and implemented on flight
hardware to experimentally validate both the modeling and trajectory generation
methods.

Thesis Supervisor: Jonathan P. How
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Chapter 1

Introduction

1.1 Motivation

Unmanned aerial vehicles (UAVs) have become increasingly prominent in a variety

of aerospace applications. While most commercially available UAVs are designed

to operate outdoors in large, open environments, the rapid evolution of computer,

sensing, and estimation technology brings the prospect of useful indoor UAVs closer

every day. Such vehicles could open the door for an entirely new set of unique mission

capabilities.

However, with the possibility of indoor flight comes many associated challenges

in vehicle planning and control. For example, position constraints become tighter

with more severe consequences for violation. Obstacles in a cluttered indoor envi-

ronment make the task of dynamic trajectory planning essential. These examples

illustrate the requirement for more than conventional planning and control meth-

ods. Advanced adaptive control and trajectory planning algorithms may very well be

needed to address these challenges.

Despite the reasons necessitating the use of adaptive control and trajectory plan-

ning in the future of unmanned flight, implementation of such algorithms on hardware

has been limited. The increased potential to improve performance typically comes

along with an increased risk of failure. Thus it is difficult to justify trading the risk of

losing an expensive airframe and avionics system for performance benefits that may



not be analytically guaranteed.

This thesis explores the use of both adaptive control and trajectory generation

techniques in the context of indoor autonomous flight. With a testing facility that

has the unique capability to enable such flight in a low-risk, controlled indoor envi-

ronment, advanced algorithms are tested in both simulation and experimental imple-

mentation.

1.2 Literature Review

1.2.1 Control and Flight Testing of UAVs

Advances in autopilot hardware have enabled research institutions to conduct flight

experiments testing a variety UAV control and coordination algorithms. Several no-

table outdoor testbeds have been developed. Stanford's STARMAC testbed utilizes a

custom autopilot to control a fleet of quadrotors for multi-agent control research [1].

Brigham Young University's MAGICC Lab has developed a broad range of outdoor

testing capabilities for a variety of research topics in flight control, coordination,

and planning [2]. UAV testbeds have also been used to investigate the potential of

adaptive control algorithms to improve flight performance and robustness [3, 4].

Few research facilities have the ability to perform indoor flight experiments with

small-scale, agile UAVs. The Realtime Autonomous Vehicle test ENvironment (RAVEN)

at the Massachusetts Institute of Technology Aerospace Controls Laboratory is capa-

ble of performing such indoor tests [5, 6]. RAVEN bypasses the challenge of onboard

sensing and control with the use of a motion capture system and ground computers

(details in Section 2.5). This enables the rapid-prototyping and testing of experi-

mental control algorithms in a low-risk, controlled indoor environment [7].

1.2.2 L1 Adaptive Control

Model Reference Adaptive Control (MRAC) has been thoroughly researched for the

task of recovering nominal performance in the presence of uncertainties, but can be



particularly susceptible to time delays [8]. A filtered version of MRAC, termed L1

adaptive control, was developed to address these issues and offer a more realistic adap-

tive solution. [9, 10]. The main advantage of L1 adaptive control over other adaptive

control algorithms such as MRAC is that £1 cleanly separates performance and ro-

bustness. The inclusion of a low-pass filter not only guarantees a bandwidth-limited

control signal, but also allows for an arbitrarily-high adaptation rate limited only by

available computational resources. This parameterizes the adaptive control problem

into two very realistic constraints: actuator bandwidth and available computation.

In Chapter 4 of this thesis the output feedback version of L1 described in [11] is

considered. One consequence of using this output feedback (as opposed to full-state

feedback) form of L1 is that the expected closed-loop response becomes somewhat

complex. Whereas in full-state form the reference model sets the desired system

behavior, with output feedback L 1 it is not immediately clear how to choose the

design parameters to achieve some desired response. Previous design methodologies

have focused on norm minimization and time delay optimization via modification

of only the low-pass control signal filter [9, 10, 12]. In [13], more than just the

low-pass filter is considered, but the analysis again relies on a system norm as the

only performance metric. Metrics are validated through extensive flight testing in

[3], but these metrics are not considered in an a priori control design process. None

of the approaches listed comprises a systematic design process that considers both

transient performance and robustness simultaneously. Such a design process would be

a key step for further application of L 1 adaptive output feedback control in real-world

applications including indoor autonomous flight.

A multi-input multi-output (MIMO) form of L 1 adaptive control is developed in

Refs. [14] and [15]. Full-state (as opposed to output) feedback is assumed, avoiding the

design issues described above. However, the MIMO form requires a linear reference

model. This prevents the applicability of MIMO £1 to systems with non-linear plant

or control models. Also, there are no published experimental MIMO £1 flight results

at the time of this writing.



1.2.3 UAV Modeling and Trajectory Generation

While the problem of finding accurate dynamic models for flight vehicles has long been

a topic of intense research, many techniques result in models that are too complex

to be used practically for the purposes of UAV planning and control. Several works

address the problem of finding models for UAVs that are less complex yet still capture

the most essential aerodynamic effects. In [16], a blade-element propeller model is

combined with an aerodynamic panel method to create a model that is used for multi-

objective airframe optimization. A similar propeller model is used in [17] but with a

numerical vortex aerodynamic approach.

Trajectory planning for agile maneuvers such as those that may be required for

indoor autonomous flight requires close consideration of the vehicle dynamics. Several

notable works have addressed this problem for autonomous helicopter maneuvers. In

[18], the Maneuver Automaton is introduced as a way of specifying and finding agile

trajectories in a general mathematical context. A supervised learning approach to

aerobatic trajectory generation is used in [19], whereby training data from a human

operator provides a starting point from which the controller can begin to iteratively

learn a maneuver. In [20], a vehicle dynamics model for a small fixed-wing UAV (the

same as is used later in this thesis) is constructed largely from measured wind tunnel

data . A Lyapunov backstepping technique is then applied to determine the control

commands require to achieve a desired trajectory.

1.3 Contributions

In Chapter 4, a design process is developed that addresses the difficulties of apply-

ing £1 adaptive output feedback control in realistic flight control scenarios. While

previous efforts focus more on non-tangible performance metrics, the design process

presented allows the user to specify meaningful and intuitive characteristics of both

the transient response and robustness of the controlled system. The process is ver-

ified with implementation on an indoor autonomous quadrotor, demonstrating that

variations in the specified cost function produce the expected and desired physical



responses.

A MIMO L1 adaptive controller is applied to a three-wing tailsitter in Chapter

5. The approach differs from previous publications in that the adaptation must be

applied about the inner-most body rate loop of the system due to a non-linear plant

and baseline controller. Also, there have been no published implementations of MIMO

L2 control to date, and the thesis proposes a simple adaptive anti-windup scheme that

is found to be essential for reliable flight testing of the algorithm.

In Chapter 6, a previously-developed propeller model is combined with flat-plate

aerodynamic theory to provide a low-fidelity model of propeller-based UAVs. The

model is unique from previous research in its ability to capture the important first

order effects dominating vehicle dynamics with very little computational complexity.

The vehicle model is used in Chapter 7 for a trajectory generation technique based

on the Gauss pseudospectral optimization method. As opposed to those previously-

published, the technique presented enables the specification of desired vehicle trajec-

tories in an intuitive cost function format. In addition, state and control constraints

are easily modified and the trajectories generated are guaranteed to be dynamically

feasible if a solution exists. Finally, the technique is successfully tested on a fixed-wing

aerobatic aircraft in a closed-loop manner for two-dimensional agile maneuvers.

Possibly the most important area of contribution throughout the thesis is the

implementation and flight testing of the techniques explored. Oftentimes controls

algorithms are tested only in simulation, giving no indication as to whether or not

they would actually be useful in a real-world situation. While analytical proofs and

simulation results are, of course, absolutely essential in the development process,

implementation is often neglected as the final means by which a method's usefulness

will be measured. The difficulties involved in implementation also serve to provide

insights into the algorithms themselves that may never have been realized through

simulation alone. Special care is given throughout the thesis to ground any analytical

findings firmly in the applicability to physical flight vehicles.



1.4 Overview

The thesis is structured as follows. Chapter 2 introduces the three indoor autonomous

vehicles used for flight testing throughout the thesis. The RAVEN testbed is also in-

troduced as a facility enabling indoor autonomous flight. Chapter 3 describes the

quaternion-based attitude controller for the flight vehicles as well as the outer-loop

horizontal velocity controller. Chapter 4 proposes a systematic design process for

the use of £1 adaptive output feedback control in realistic flight control applica-

tions. In Chapter 5, multi-input multi-output L 1 adaptive control is applied to a

novel three-wing aircraft with a non-linear baseline controller. Chapter 6 presents a

low-complexity modeling procedure for propeller-driven UAVs. In Chapter 7, a tra-

jectory optimization method is presented that makes use of the model and generates

dynamically feasible trajectories via a user-specified cost function. Flight test results

complement analytical findings throughout the work. Finally, Chapter 8 serves to

summarize the thesis and outline future directions of research.



Chapter

Flight Vehicles

2.1 Introduction

This section gives a brief overview of the various UAVs used in the chapters to follow.

The three main vehicles used in flight testing are a quadrotor helicopter, a custom-

built three-wing tailsitter, and a fixed-wing aerobatic aircraft. Each has its own

unique properties and control challenges as outlined below. Table 2.1 summarizes

key physical parameters for each vehicle. The section also describes the RAVEN

testbed used to carry out indoor flight experiments.

2.2 Quadrotor Helicopter

The Draganflyer VTi Pro quadrotor, shown in Figure 2-1 (left), is a small-scale (<

1 kg) quadrotor helicopter well-suited for indoor autonomous flight. The vehicle

uses four independently controlled, fixed pitch, counter-rotating propellers to achieve

Table 2.1: Summary of key physical parameters for flight test vehicles.

Vehicle Mass (g) Max. Thrust (N) Prop. Diameter (m) Wing Span (m) Batt. Type

Quadrotor 580 6.9 0.31 n/a 11.1v/2Ah

Three-wing 145 2.9 0.20 0.52 7.4v/0.4Ah
Fixed-wing 165 2.9 0.20 0.78 7.4v/0.4Ah



Figure 2-1: Quadrotor helicopters (left) and fixed-wing aerobatic aircraft (right).

control about all three axes. As such, a complex variable-pitch swashplate system is

not required which greatly increases the physical robustness of the aircraft. Onboard

rate gyros stabilize the angular rates allowing a human pilot to fly the vehicle with

a relatively small amount of practice. The typical Lithium Polymer batteries used

allow for flight times of 7-10 minutes.

Lack of aerodynamic surfaces gives the vehicle relatively predictable dynamic char-

acteristics. However, one control challenge to be addressed is the susceptibility of the

vehicle to actuator variation and partial failure. The brushed DC motors used for

propulsion are subject to slow failure over the lifetime of the vehicle. Also, the rudi-

mentary motor controllers onboard do not account for change in battery performance

over the course of the flight, for which a 12% drop in voltage is typical.

2.3 Three-Wing Tailsitter

In an effort to test adaptive algorithms on more dynamically complex flight vehicles,

a custom three-wing tailsitter was designed and built. As shown in Figure 2-2, the

vehicle has three symmetric, triangular wings with independent control surfaces at

the bottom of each. A carbon-fiber skeleton gives the vehicle structural solidity and

allows for an extremely light-weight airframe (-145g) with a high thrust-to-weight

ratio (-2.0). The vehicle uses standard RC commercial-off-the-shelf servos, motor,

- -I



IJ
Figure 2-2: Three-wing tailsitter (left and center) and its RC flight hardware (right).

motor controller, and radio.

The three control surfaces and the wings themselves are almost fully immersed in

propeller wash, giving rise to a complex aerodynamic situation. This and the fact that

a single control surface effects a moment about all three CG axes make the vehicle

dynamics very difficult to model accurately. The response grows more complex as

the vehicle translates out of the hover configuration and free stream velocity becomes

a factor. This gives rise to a difficult control problem that may be addressed with

adaptive control algorithms.

2.4 Fixed-Wing Aerobatic Aircraft

The Clik F3P competition plane is shown in Figure 2-1 (right). It is an extremely

light (< 200g) airframe designed for aggressive aerobatic maneuvering. The Clik's

high thrust-to-weight ratio (-1.75) give it the ability to hover in a "prop-hang"

configuration and transition smoothly to forward flight. The vehicle uses the same

RC COTS hardware as the three-wing tailsitter.

This aircraft provides several relevant control challenges. The dynamics within a

single flight regime (e.g. during the hovering prop-hang) can be well-approximated

with standard aerodynamic modeling techniques. However, as the aircraft approaches

forward flight and its translational speed increases, the dynamics change substan-

tially. Also, it is not immediately obvious how to design trajectories for this aircraft

that achieve some meaningful goal. For instance, to command a step in position,

the aircraft would start in hover, smoothly transition to forward flight, then tran-

.... ...... ..
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Figure 2-3: RAVEN system architecture (left) and the RAVEN flight space (right).

sition back to hover. Given the varying dynamics, some type of trajectory gener-

ation/optimization tool must be used to select a dynamically feasible path to the

goal.

2.5 The RAVEN Testbed

Figure 2-3 presents the control architecture used for all of the flight experiments in

this thesis. The system can support cooperative missions of up to ten (10) vehicles

flying simultaneously [5] as well as switched-mode aerobatic flight [21]. A key feature

of RAVEN is the high-precision motion capture system that can accurately track all

vehicles in the room in real-time. The current architecture can utilize either a Vicon

MX system or a Motion Analysis Raptor system. With lightweight reflective balls

attached to each vehicle's structure, the Vicon motion capture system can measure the

vehicle's position and attitude information at rates up to 120 Hz, with approximately

a 10 ms delay, and sub-mm accuracy [6].

Flight control commands are computed using ground-based computers at rates

that exceed 50 Hz and sent to the vehicles via standard Radio Control (R/C) trans-

mitters. An important feature of this setup is that small, inexpensive, essentially

unmodified, radio-controlled vehicles can be used. This enables researchers to avoid

being overly conservative during flight testing. The computer configuration is shown

in Figure 2-3 (left), with input (vehicle and environment state estimation), planning

and control, and output (conversion to R/C commands) processing all done in linked

. ........ ...... -
I



ground computers, as if it were being done onboard.
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Chapter 3

Quaternion Attitude Controller

3.1 Introduction

This chapter describes the baseline attitude and velocity controllers developed for the

flight vehicles listed in Chapter 2. An important consideration in designing an aircraft

attitude controller is the choice of attitude representation. Use of Euler angles (yaw,

pitch, roll) is widespread in aerospace due in large part to the physical intuition of

the system. However, Euler angles suffer from a set of singularities known in flight

control as "gimbal lock", making them impractical for use in tracking arbitrary 3D

attitudes [22]. Quaternions offer a singularity-free solution and have special properties

that can be exploited for the design of a simple, generalized attitude controller. The

algorithms presented in this chapter form the core baseline controllers for all three

flight vehicles and have been thoroughly tested through many hours of indoor flight.

The chapter proceeds as follows. Section 3.2 serves as a brief primer on quaternion

rotations, Section 3.3 outlines the development of a general 3D quaternion attitude

controller, and Section 3.4 describes the outer-loop horizontal velocity controller used

to generate attitude commands.



3.2 Quaternion Rotations

A quaternion can be thought of as a complex number with one real (scalar) part and

three imaginary parts that form a vector:

q=[ qo0 , qx, qyj, qZ~ ] (3.1)

scalar vector

Quaternions are used widely as computationally efficient descriptors of three-

dimensional rotations. The following is intended as a brief summary of quaternion

rotations, a more thorough treatment can be found in [23]. A quaternion essentially

represents an axis-angle rotation. Consider a rotation of 0 radians about an axis

described by the unit vector [rX, r, rz]. The quaternion describing the rotation would

simply be:

q= [ cos ), rz sin (_) i, r sin () , r sin ()lk ] (3.2)

Note that by definition I q12 = qo + q + + q = 1. Sequential rotations are

achieved by quaternion multiplication (denoted herein by 0) which is a simple al-

gebraic operation similar to the cross product [23]. Consider rotating by a first

quaternion q], then again by a second quaternion q' (where the second rotation is

relative to the previously rotated frame). The quaternion representation of this set of

rotations is:

total = q q(3.3)

The quaternion rotation operation is more efficient than matrix methods (like the

direction cosine matrix) due to its small number of arithmetic operations. The inverse

of a quaternion rotation is the quaternion's complex conjugate q* = [qo-q.I-qj-q z -].

Thus q] 0 q* corresponds to no rotation.



3.3 Quaternion-Based Attitude Control

The sequential rotation properties of quaternions can be used to devise a generalized

attitude controller for flight vehicles. The algorithm presented here is similar to that

in [4]. Consider some desired aircraft attitude that is specified as a quaternion rotation

from the global frame q'. This desired rotation can be constructed intuitively with

an axis and an angle as in (3.2). The actual measured attitude of the aircraft can also

be represented as a quaternion rotation from the global frame q. Now consider that

the desired attitude q' can be constructed as the measured attitude q' sequentially

rotated by some error quaternion qe. Since quaternion rotations are sequential, the

error quaternion represents a rotation from the aircraft frame:

qd = q 0 q (3.4)

global frame aircraft frame global frame

The error quaternion can then be solved for explicitly using the conjugate of the

measured attitude quaternion:

qe = qi 0 q (3.5)

aircraft frame global frame global frame

The error quaternion qe represents the rotation required to get from the measured

attitude to the desired attitude. Since the rotation is from the aircraft frame, the

x, y and z components of q correspond to the rotations needed about the x, y and

z body axes of the aircraft. Thus the three components correspond directly to the

required aileron, elevator, and rudder commands without any transformation. The

scalar part of q represents the angle through which the aircraft must be rotated and

is thus proportional to the amount of control effort required.

The following procedure outlines the implementation of a quaternion attitude

controller based on the above result:

1. Set the desired attitude qc, which can be done by some higher-level control loop.

2. Obtain the aircraft's measured attitude q' from either an onboard IMU or mo-



tion capture system.

3. Calculate the error quaternion q = q- 0 q*

4. From qg, compute the error angle 0e = 2 arccos(qeo) and the error rotation axis

components:

r e- (3.6a)
x = sin(0e/2)

r qe (3.6b)
= sin(0e/2)

4 e (3.6c)
sin(0e/2)

5. Split the errors into the required aileron, elevator, and rudder commands Ja, 6e

and 6,:

6a = K e rx (3.7a)

6 e = Kpe 0e ry (3.7b)

6r = K Tz (3.7c)

where the Kp's are positive proportional gains.

6. The proportional commands above are augmented with derivative terms using

the measured body rates p, q, and r to form the complete proportional-derivative

(PD) attitude controller:

6a = Kpa Oe rx - Kda p (3.8a)

pe = Kp, Oe Oy - Kde q (3.8b)

6 = K C, Oe rT - Kd, r (3.8c)

where the Kd'S are positive derivative gains.

While denoted above as aileron, elevator, and rudder, the control commands are

easily generalizable to any actuator set (e.g., the three-wing tailsitter or quadrotor

helicopter) so long as the commands are mapped to the appropriate control axes.



Along with its applicability to any generic flight vehicle, another key feature of this

attitude controller is its ability to track arbitrary 3D attitudes without singularities

of any kind (such as those inherent in Euler angle control methods).

3.4 Outer-Loop Horizontal Velocity Controller

With the attitude controller in place, a simple outer-loop horizontal velocity controller

can be added to generate the desired attitude q'. The controller is based about

the aircraft in a hover configuration, where thrust is being generated vertically to

counteract the acceleration of gravity. Tilting the vehicle in any direction will generate

a horizontal component of thrust and the vehicle will translate as a result. For

example, if a positive z-velocity is desired, the aircraft should be tilted in the positive

x-direction. This corresponds to a rotation about the positive y-axis.

To calculate the desired quaternion q given the desired x- and y-velocities [vd,, va,]

and the actual measured x- and y-velocities [va,, va,], the velocity errors are calcu-

lated:

vex = Vd, - Vax (3.9a)

ve, = Vd, - va, (3.9b)

The errors are then used to determine the desired quaternion rotation q', with integral

action added to the controller:

q-= [1.0, (-Kpvy ve - Ki, f vedt) 1, (Kp Vex + Ki,, f vedt)j, O (3.10)

Finally, the quaternion is normalized to ensure that 11q 2 = 1. The combined

proportional-integral (PI) horizontal velocity controller and quaternion attitude con-

troller forms the baseline controller for the quadrotor, three-wing, and Clik aerobatic

aircraft used throughout this thesis.
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Chapter 4

L 1 Adaptive Output Feedback

This section provides a brief overview of L1 adaptive output feedback control [11, 24],

which is the adaptive algorithm used herein. Derivation of the predicted time-delay

margin is presented, as well as the expected closed-loop system response. Challenges

in choosing the £C control parameters C(s) and M(s) are discussed as a motivation

for the proposed design process.

4.1 Overview

Figure 4-1 shows the block diagram for the adaptive controller. The disturbance

d(s) is used to represent any type of non-linear disturbance, and thus can represent

not only external disturbances but also changes in the plant A(s) due to parameter

variations or actuation failures. Note that if C(s) = 1, a simple single-input single-

output MRAC controller is recovered. If this were the case, & (the adaptive signal)

would simply be "whatever it takes" to make the output of A(s) match the output of

M(s). The T block represents a typical sensor measurement time delay, and will be

used later in the characterization of robustness metrics.

Adding the low-pass filter C(s) does two important things. First, it limits the

bandwidth of the control signal u being sent to the plant. This prevents high-

bandwidth oscillatory control signals (as are often seen with fast-adapting MRAC

controllers) from being commanded. Second, the portion of & that gets sent into



Figure 4-1: L1 adaptive output feedback control block diagram. Note that if C(s) = 1,
a simple single-input single-output MRAC controller is recovered.

the reference model is the high-frequency portion (note that the low-pass version is

subtracted from the full signal before being sent to the reference model M(s)). This

signal, in a sense, corresponds to the portion of the disturbance d(s) that can not be

canceled given the limited actuator bandwidth. The fact that this is sent into the

reference model M(s) along with the reference signal implies that the output of M(s)

is the achievable system output, a realistic goal that the system should be able to

match given its bandwidth constraints.

4.1.1 Control Parameters

The user-specified parameters of the £1 controller are the low-pass filter C(s), the

reference model M(s), and the adaptation rate F. It is clear that C(s) should be

chosen such that its bandwidth does not exceed that of the available actuators. The

adaptation rate F is essentially the gain of the adaptive estimator, and since the

control signal is low-pass filtered a very large value can be used (for example, F =

10000 in the flight tests in Section 4.4). Since the controller must still be implemented

in real-time on a computer, F is limited in practice by the stability of the numerical

integration which is determined largely by available computational capabilities. As

will be discussed below, the choice of M(s) is not so straightforward since it does not

. .. ... ........................- M



act in the same way as the reference model in MRAC.

4.1.2 Predicted Time Delay Margin

It is helpful to be able to predict the adaptive controller's margin to a time delay on

the output measurement y(s) (corresponding to some known sensor delay). While

this analysis has previously been done for the general £1 control setup [12], it has

not been shown explicitly for the output feedback case considered here. Since the

output feedback system is comprised of SISO linear blocks, the time delay margin

of the system can be calculated as the ratio of phase margin to cross-over frequency

of the appropriate system. From Figure 4-1, the system of interest is the system

whose input is Ydelayed and whose output is y, assuming that r = 0 and d = 0.

It is easiest to analyze this system using state space techniques instead of transfer

functions. Let [AA, BA, CA, 0], [Ac, Be, Cc, 0], and [AM, BM, CM, 0] be the state space

representations of A(s), C(s), and M(s), respectively. It can be verified that the

system with input Ydelayed and output y has the following state space representation:

AA 0 BACc 0 0

A 0 A BCc B B= C= CA 0 0 0 D = [0] (4.1)
0 0 Ac -Bc 0

0 -FCM 0 0 F

The time delay margin is then calculated by taking the ratio of the phase margin to

the cross-over frequency, both of which can be deduced from a Bode plot of the system.

Determination of the time-delay margin using this method has been confirmed both

in simulation and experiment.

4.1.3 Expected Closed-loop Response

An excellent analysis of the £1 output feedback system is provided in [[13]] where it is

shown that, if the disturbance is known exactly (i.e. F is sufficiently large such that

the adaptive estimator is doing its job perfectly), the expected closed-loop response



becomes:

y(s) = H(s)C(s)r(s) - H(s)(1 - C(s))d(s) (4.2)

Response to reference r(s) Response to disturbance d(s)

where
A(s)M(s)

C(s)A(s) + (1 - C(s))M(s)

Recall that in MRAC the expected closed-loop response is simply y(s) = M(s)r(s).

Now, even if the disturbance is known perfectly, the expected closed-loop response is

a complicated function of A(s), C(s), and M(s).

4.1.4 Selection of C(s) and M(s)

As seen from Eq. 4.2, the inclusion of a low-pass filter in the control path obscures

the expected closed-loop dynamics. Since M(s) no longer acts as a reference model,

it is not obvious how its choice affects the system response. In other words, while it

is a design parameter of the L£ controller, it cannot simply be chosen as the reference

model like in MRAC. While the bandwidth of C(s) should be upper-bounded by the

bandwidth of the corresponding actuator, there is no intuitive lower bound.

This brings about the need for a systematic method of choosing the filters C(s) and

M(s) based on desired performance and robustness metrics. Performance measures

may include transient response characteristics such as rise time, overshoot, or cross-

over frequency. Robustness measures may include metrics such as time delay margin

and disturbance rejection.

4.2 Design Process

In this section, a design process is proposed by which C(s) and M(s) are selected in a

systematic way based on desired performance and robustness metrics. This is achieved

by performing multi-objective optimization on a weighted cost function comprised of

these metrics, which also requires basic system identification of the baseline plant

A(s).



4.2.1 Specifying Performance and Robustness Metrics

The first step in this design process is to identify performance and robustness metrics

relevant to the control task at hand. For the dynamic control of indoor autonomous

flight vehicles, three important metrics are considered. Transient performance

characteristics such as rise time and overshoot provide intuitive measures of the closed-

loop system response. For instance, these can be chosen to set the aggressiveness of

the controller based on mission requirements. For application to real-world physical

systems, time delay margin is a very important measure of robustness. Some

minimum time delay margin must be achieved based on known delays in the sensing,

estimation, computation, and actuation of the physical system. Finally, the general

goal of adaptive control is to maintain nominal performance in lieu of disturbances

such as actuation failures or plant parameter variations. Thus, it is important to

somehow specify a desired degree of disturbance rejection.

Transient Performance

As shown in Eq. 4.2, the expected closed-loop response y(s) to the reference input r(s)

is given by the transfer function H(s)C(s). Thus, the design process should shape

the transient response of this system. The response can be affected by weighting a

combination of standard step-response characteristics which may include rise time,

overshoot, or settling time. Frequency-domain metrics may also be used such as the

bandwidth of H(s)C(s), which in this case would roughly represent the frequency

range through which the output y(s) matches the reference input r(s). Calculation

of these metrics is fairly straight-forward either by simulating the closed-loop system

(more time-consuming) or via second-order approximation (less accurate).

Time Delay Margin

The time delay margin of the adaptive controller can be calculated as in Section 4.1.2.

As will be seen, A(s) will often represent the nominal closed-loop system which may

include internal feedback loops from the baseline controller. It should be noted that,



for analytical simplicity, the margin considered here only considers a time delay on

the output signal y(s) being sent back to the adaptive controller, and not on any of

the feedback signals internal to A(s). Even so, this time delay margin still provides

a good indication of how robust the adaptive controller will be to feedback delays in

general. In addition, since only the adaptive controller is being designed here, use of

this measure also offers analytical separation between the effect of time delay on the

adaptive controller and the potentially complex effects on the nominal system.

Robustness to Disturbances

As shown in Eq. 4.2, the expected closed-loop response y(s) to the disturbance d(s)

is given by the transfer function H(s)(1 - C(s)). Note that d(s) can be an arbitrary

signal (restricted only in its Lipschitz norm [13]), thus it can represent many types of

disturbances including actuation failures, parameter variations, and exogenous fac-

tors. To minimize the effects of these disturbances, the norm of H(s)(1 - C(s))

should be minimized. The L1 norm has typically been used, [9, 10] so the measure of

disturbance rejection used here is chosen to be IIH(s)(1 - C(s))IIL1, a smaller norm

corresponding to increased robustness to disturbances.

4.2.2 System Identification

Since the expected closed-loop response from Eq. 4.2 includes the nominal system

A(s), some knowledge of this system is required to design the adaptive controller. As

will be seen in Section 4.3, A(s) can be taken to be the nominal closed-loop system,

which includes the baseline controller. Since this system is typically stable and well-

behaved by design, system identification from experimental data is relatively easy.

Take, for example, the quadrotor helicopters used in Section 4.4. The system A(s)

in this case represents the closed-loop response of the system from x-velocity reference

command to x-velocity measured output. Using data from routine flight tests, the
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Figure 4-2: System identification results for quadrotor closed-loop velocity system.

User-generated reference command (red), measured output (green), and predicted

output based on system ID (blue).

following second-order system model was fit using an ARMAX-type regression:

V omea k(s - zi) 1.80(s + 0.44)
(s) (4.4)

Vxef (S - pl)(s - P2) (s + 0.89)(s + 0.89)

As can be seen in Figure 4-2, this simple second-order model adequately characterizes

the closed-loop response.

4.2.3 Multi-Objective Optimization

The desired performance and robustness metrics are combined into a cost function

that can be minimized in an effort to calculate C(s) and M(s). The optimization

process must be provided with the cost function, relevant constraints (like system

.. . .... ...



stability), a model of A(s) from system identification, and some parametrization of

C(s) and M(s). Figure 4-3 shows a general diagram of the optimization process.

Cost Function and Constraints

The cost function considered here is a simple weighted combination of the performance

and robustness metrics listed above. For example, a possible cost function might be:

J = ai(Rise Time)+a 2 (Overshoot)+a 3 (TD rgin 4 (IH(s)(1 - C(s))|L) (4.5)

Since the cost function is to be minimized, ai represents the penalty on the associated

metric. Two constraints must be considered. First, the bandwidth of C(s) must

be limited to the bandwidth of the associated actuator. In the case of the quadro-

tor velocity controller, the "actuator" is the closed-loop system given by (4.4), thus

C(s) must be limited in bandwidth to that of (4.4). The second constraint to be

considered is the stability of the expected system response H(s)C(s). One simple

way to implement this constraint is to augment the cost function with a term that

is arbitrarily large if the system is unstable. The test for stability used in the ex-

perimental validation below is simply a check of whether the roots of H(s)C(s) are

strictly negative.

Filter Parametrization

C(s) and M(s) must be parameterized such that the cost function can be minimized

over these parameters. A particularly straightforward parametrization is:

C(s, a) = (4.6)
s+6

M(s, rh) = f (4.7)

Using this parametrization, each transfer function has only one parameter associated

with it. While this may limit performance in some ways, it greatly simplifies the

optimization process and provides for an intuitive initial design iteration. Use of



higher-order filters is an open topic of research [13]. It will be shown in Section 4.4,

however, that these simple filter parameterizations are intuitive, easy to implement,

and work quite well in practice.

Solution Methods and Limitations

Once the cost function, constraints, and parameterized solution forms are specified,

the designer is free to use any constrained optimization technique to solve for C(s)

and M(s). One obvious drawback to this process, though, is that the cost function

presented is almost certainly non-convex with respect to the parameterized transfer

functions. This is not surprising considering that characteristics like overshoot and

time-delay margin are summed in the same function. Typical solvers, like Matlab@'s

fmincon, work well for a small number of parameters, but exhibit poor convergence

properties as the parametrization complexity increases.

Using filters in the form of (4.7) is thus advantageous since typical solvers usually

converge to a global minimum. It is easy to then verify this minimum if necessary

using exhaustive search methods when there are only two parameters. Furthermore,

the cost as a function of the two parameters ( and rri) can be visualized using

a contour plot, making the process more intuitive to the designer. Ongoing work

(see Section 4.5) aims to address the non-convexity issue by attempting to cast each

performance and robustness metric as a linear matrix inequality (LMI) constraint and

performing the optimization with much more efficient search methods. This has been

done for the general L1 adaptive control formulation [25], but has not been extended

to the output feedback case considered here.

4.3 Experimental Setup

The quadrotor helicopter described in Section 2.2 is used to experimentally validate

the above design process. While the dynamics of quadrotor can be modeled reasonably

well, its four motors are subject to performance variations and partial failures. The

goal of adaptive control in this case is to make quadrotor flight more robust to these
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Figure 4-3: Multi-objective optimization diagram

types of actuator failures. Since the vehicles are controlled autonomously, failures can

be simulated mid-flight by scaling the control commands to individual rotors. The

RAVEN testbed described in Section 2.5 is used to measure the position, attitude,

and rates of the quadrotor in realtime.

The nominal controller for the quadrotor consists of an outer-loop velocity con-

troller wrapped around an inner-loop attitude controller. The vehicle's translational

velocity in the X-Y (horizontal) plane is affected by commanding an appropriate

attitude. For example, if a positive x-velocity is desired, the outer-loop velocity

controller will command an attitude that "tilts" the vehicle in the x-direction, and

the inner-loop attitude controller will attempt to track this commanded attitude.

Independent controllers for x- and y-velocity are used, and attitude commands are

combined and sent to a single inner-loop attitude controller. The velocity controller is

linear Proportional+Integral, while the attitude controller is quaternion-based linear

Proportional+Derivative similar to that presented in [[4]].

Figure 4-4 shows the baseline x-velocity controller for the quadrotor helicopter

augmented with an £1 adaptive controller. The system in the dashed box represents

A(s), the baseline closed-loop system that takes a velocity reference input and pro-

duces some measured velocity as an output as described above. This is the system

identified in (4.4). Note that the £1 controller is completely external to the nominal

closed-loop system, augmenting the velocity reference command sent to the baseline



Closed-Loop Baseline System

Figure 4-4: Setup for the quadrotor x-velocity controller with L1 adaptive augmenta-
tion. The system in the dashed lines represents A(s), the baseline closed-loop system.

controller.

4.4 Experimental Results

The design process described in Section 4.2 would normally be carried out by weight-

ing the appropriate performance and robustness metrics in accordance with mission

requirements. However, to validate the design process experimentally, flight results

are shown that vary only one parameter of the cost function at a time. In doing so,

modifications to individual components of the cost function can be clearly verified to

have the expected result. The cost function chosen is:

J = a,(Rise Time) + 2 ) + a3(jlH(s)(1 - C(s))II 1) (4.8)
TD margin

Thus a penalizes slow transient performance, c 2 penalizes small time delay margin,

and a3 penalizes poor disturbance rejection. Three flight scenarios are used to test

these metrics with the quadrotor: nominal response to a step command, response to a

step command with time-delayed sensor measurements, and response to a single-rotor

actuator failure to 50% of its original capacity.

Note that while the £1 adaptive controller is acting on the velocity controller

of the baseline system, a simple proportional position controller has been added as

an outer-loop. This is done primarily due to space constraints of the testing area,

since step commands in position are more predictable than steps in velocity. Position
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Figure 4-5: Nominal transient performance flight results, position response (left) and
velocity response(right). Parameters chosen for slow tracking (top), nominal tracking
(middle), aggressive tracking (bottom).

response also provides insight as to how adaptation on the velocity controller impacts

position control. As a result, the following will show not only the velocity response

of the system, but also the position response.

4.4.1 Flight Results: Nominal Transient Performance

To test nominal transient performance, a, was increased while keeping a 2 and a 3

constant, corresponding to an increasing penalty on rise time. Figure 4-5 shows

that the expected behavior is achieved. As the penalty is increased, the position

and velocity responses show faster rise times at the cost of more overshoot and less

damping.
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4.4.2 Flight Results: Robustness to Time Delay

As can be seen in Figure 4-6, the increased penalty yields a slower, more well-damped

response in lieu of a 90ms sensor measurement delay while the smaller penalty yields

a marginally stable response. It should be noted that measurement delay is applied

to all feedback loops (including the inner-loop controllers) as would be the case for

realistic time-delayed systems. Recall from Section 4.1.2 that the time delay analysis

for the 1l controller only considered delay on the output feedback signal, not the

internal feedback loops. The fact that the expected result is still achieved here implies

that the L1 time delay analysis yields the correct trend even when all of the feedback

loops are delayed.

4.4.3 Flight Results: Robustness to Actuator Failure

To test robustness to disturbances, a 3 was increased while keeping al and a 2 constant,

corresponding to an increased penalty on poor disturbance rejection. In Figure 4-7,

it is clear that the increased penalty yields a stable response after a 50% single-

rotor failure, while the lower penalty leads to an unstable response in which the

Position Step Response for Low Time Delay Margin Velocity Response for Low Time Delay Margin
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Figure 4-7: Actuator failure flight results, position response (left) and velocity re-
sponse(right). Parameters chosen for poor disturbance rejection (top), and good
disturbance rejection (bottom).

vehicle eventually crashes. While the increased penalty yields stability, it comes at

the cost of a slower and more conservative response (note that it initially has a greater

maximum error in position). This result highlights the fundamental tradeoff between

performance and robustness.

4.4.4 Comparison to Baseline Controller

As a useful benchmark, flight tests are performed comparing the baseline controller

to the augmented £1 adaptive system. To provide a fair comparison, the adaptive

controller is tuned so that the nominal step response for both systems is sufficiently

similar (see Figure 4-8 top). The same adaptive controller is then compared to the

baseline controller in the measurement delay (Figure 4-8 middle) and actuator failure

(Figure 4-8 bottom) scenarios. In the time delay case, the adaptive controller shows

noticeably improved tracking in both position and velocity. The same can be said

for the actuator failure, as the adaptive controller yields a smaller maximum error

in position as well as improved damping in the transient response for both position

and velocity. These results confirm that adaptive control can offer useful performance

improvements in the context of indoor autonomous flight.
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a fixed-wing aerobatic aircraft. Both of these results confirm the potential of 1

adaptive control as a useful tool for autonomous aircraft.



Chapter 5

MIMO L1 Adaptive Control

5.1 Introduction

In more complex flight scenarios the need arises for more than just single-input single-

output adaptive augmentation. With more information available and more inputs to

the system, it is apparent that multi-input multi-output (MIMO) adaptive control

has the potential to yield increased performance and robustness for complex systems.

Chapter 4 describes the application of single-input single-output (SISO) L1 adaptive

control to a quadrotor helicopter. This chapter describes the application of multi-

input multi-output (MIMO) £1 to the three-wing tailsitter, an aircraft with more

complex control challenges as described in Section 2.3.

The chapter proceeds as follows. Section 5.2 gives an overview of MIMO L1

adaptive control and the difficulties of applying it to a non-linear baseline controller,

Section 5.3 describes how the reference model is selected from system identification,

Section 5.4 lists some modifications that are made to the standard adaptive law,

Section 5.5 presents simulation results of the MIMO controller, Section 5.6 presents

flight results, and Section 5.7 gives future directions of research.



5.2 Inner-loop Body Rate Adaptation

In Refs. [14] and [15], standard state-feedback £1 is extended to the MIMO case. In

doing so, the authors assume a general form of the system dynamics similar to:

= Ax(t) + BA(t) (u(t) + d(t)) (5.1)

where x E ~n1, E e, mx l, d is some disturbance with known Lipschitz bound, and

A E ×nxr is a diagonal "failure matrix" of the form:

A, 0  0
0 A2 0 (5.2)

where upper and lower conservative bounds on Ai are known. Incorporating both

input failures and a time-varying disturbance, the resulting general form is applicable

to many realistic aerospace systems.

However, in Refs. [14, 15] the adaptive augmentation encompasses a linear closed-

loop baseline controller on the example systems. This is necessary because the refer-

ence dynamics of the £~ adaptive controller must be linear. The linearity requirement

is an issue if the closed-loop controller is non-linear. As is the case on the three-wing

tailsitter, complex aircraft often require complex non-linear and/or ad-hoc control

methods to achieve stable flight. In this situation it is very difficult to obtain a linear

representation of the entire closed-loop dynamics without extensive MIMO system

identification and approximation. The problem becomes how to cleanly augment the

system with adaptive control when a non-linear baseline control scheme is in place.

To overcome the problem of augmenting the non-linear closed-loop system with

an £1 adaptive controller, adaptation is instead applied to the inner-loop body rate

subsystem. The body rate system inputs are the derivatives of the three control

surface deflections 61, 62, and 63 and whose outputs are the three body angular rates,

p, q and r. The system involves only the physical open-loop dynamics of the vehicle,
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Figure 5-1: Diagram of inner-loop MIMO L1 body rate adaptation.

and thus is invariant to any specific baseline (BL) controller. The baseline controller

still generates the three control deflections, but now the £1 controller monitors the

response from deflection to body angular rate. The L1 controller then attempts to

make the response match some nominal reference model in the case of some sort of

physical system variation/failure (more details in the next section). Figure 5-1 shows

the block diagram for the inner-loop body rate control structure.

Since it is the control deflections that directly affect the body angular rates, the

derivatives of the control deflections directly affect the body angular accelerations.

As will become more obvious in the next section, this is why the L1 system uses

the derivatives of control deflections and not the deflections themselves. One conse-

quence of using the time derivatives of deflection is that the adaptive output must be

integrated before being added to the baseline control signals. The integration brings

about the need for a slight modification to the adaptive laws which will be explained

further.



5.3 Identifying a Reference Model

The inner-loop L1 adaptive system requires a reference model which it will use to

compare to the measured system dynamics. Note that unlike the output feedback

case described in Chapter 4, the MIMO version of C1 follows the reference model

more directly. This greatly simplifies the task of choosing the £1 parameters as will

be seen. In the MIMO case, the reference model will be chosen to simply be the

nominal dynamics of the three-wing from {I1, 62, 63} to {p, q, r }.

As mentioned in Chapter 2, the dynamics of the three-wing tailsitter are very

difficult to model accurately from first principles due to the complex propeller flow and

asymmetric control forces. System identification is instead used to fit a parametrized

state-space model of the dynamics. The state-space model is parametrized as follows:

P a1  0 0 p bil b12 b13 61

q 0 a2  0 + b21 b22 b23  62

0 0 a 3  [b3 1 b32 b33  63

A B

Y1 1 0 0 p 00 61
Y2 0 1 0 q + 0 0 0 2 (5.3)

0Y3 001 r 000 3

C D

In this parametrized model, several assumptions are implicit. The dynamics matrix A

is chosen to be diagonal to ignore coupling of body rates and simplify the identification

process. The as's thus represent small, negative terms accounting for aerodynamic

damping in the system. The input matrix B is chosen to be full in order to generalize

the model to any arbitrary actuator geometry, as on the three-wing. The state output

matrix C is chosen to be identity so that the state {p, q, r} is the output. Finally, the

feed-forward matrix D is chosen to be zero to ensure a strictly-proper system that

will avoid complications in £1 implementation.

To identify the parameters of the above model, data is logged for a series of



routine flight tests. The control deflections 61, 2, 63 are numerically differentiated

using a simple finite difference technique. The differentiated control data {61, 2, 63},

the body rates {p, q, r}, and the parametrized state space model (5.3) were applied

to Matlab's prediction-error minimization (pem) command to find estimates of the

parameters ai and bij. The regression method attempts to minimize the mean-square

prediction error. Figure 5-2 shows the measured outputs {p,q,r} compared to the

predicted outputs from the parameter identification using actual flight test data as

input. The plot shows adequate prediction accuracy given the measurement noise

and numerical differentiation involved. The estimated parameters are:

p -4.6 0 0 p 5.6 7.6 -60.1 61
q 0 -7.9 0 q + 17.2 -26.8 -4.6 62

S0 0 -6.4 47.7 49.5 87.7 j63_

A B

yi 1 0 0 0 0 0 i 1
2 = 0 1 0 + 0 0 0 62 (5.4)

y3 ,0 0 1 O 0 0 oj 3

C D

The above system, which represents the nominal open-loop body-rate behavior of

the three-wing tailsitter, is used as the reference model for the MIMO £1 adaptive

controller.

5.4 Adaptive Law

Based on Refs. [14, 15], the following elements comprise the MIMO L1 controller.

The state predictor i has the following dynamics:

S= Ami + Bmrbl + Bm(A ad + x ± bl) (5.5)
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where Am and Bm are the reference dynamics from (5.4), x is the predictor state
[p, q, r]T, 6b and 6 ad are the SJi3x1 baseline and adaptive control inputs, respectively,
to control surface deflection rates, and A, -, ke, and k, are the adaptive estimates
whose dynamics are given by:

A(t) = -F6ad X(t)PB m (5.6a)

&^(t) = -JjT(t)PBm 
(5.6b)
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(5.6d)

where F > 0 is the scalar adaptation rate, 2(t) = i(t) - x(t) is the prediction error,

p = pT > 0 is the solution to the algebraic Lyapunov equation, and the projection

operator [26] is applied to all derivatives to ensure boundedness. Finally, the adaptive

control input is given by:

sad(S) = -kX(s) (5.7a)

x(s) = D(s)A(s)6ad(s) (5.7b)

0 0

D(s) = 1 0 (5.7c)

001

where k > 0 sets the control bandwidth since 6 ad is in a simple gain-feedback system.

As shown in Figure 5-1, the output ad of the adaptive system is integrated to

obtain the adaptive control increment 6 ad. This gets summed with the baseline control

signal 6bl to form the total control signal sent to the control surfaces.

5.5 Simulation Results

To verify the performance of the adaptive augmentation in an actuator failure sce-

nario, simulations are performed using identified system (5.4). The failure matrix

from (5.2) is set to:

0.2 0 0

A- [0 0.4 0 (5.8)

0 0 1.0

which represents extreme failures of 80% and 60% on actuators one and two, respec-

tively. The adaptive parameters chosen are k = 25 and F = 1000, and the simulation

integration timestep is 0.0005 seconds. Simple sums of sinusoids are given as baseline

inputs. While the sinusoids are not a very realistic input to the system, the point is to

ku(t) = -Fbl(t) (t ) P B m



prove that the adaptive augmentation does its job in recovering reference performance

in the face of actuator failures.

Results of the failure simulation are shown in Figure 5-3. The top three plots

show the body rates {p, q, r} for the reference system, baseline system, and system

with adaptive augmentation. As expected, the baseline system response no longer

matches the reference dynamics (due to the failures), and the adaptive augmentation

recovers the reference performance for all three body rates. The bottom plot shows the

adaptive control increment. Note that the magnitude of the adaptive control inputs

relfect the fact that there is a large failure on the first actuator and a slightly smaller

failure on the second. The lack of adaptive input on the third actuator indicates that

there is no failure on that input. The result confirms that, at least in simulation, the

adaptive controller is doing it's job correctly.

5.6 Experimental Results

5.6.1 Implementation on Flight Hardware

To experimentally test the MIMO C1 scheme described above on the three-wing

tailsitter, the algorithm is implemented in the RAVEN testbed (see Section 2.5).

Numerical integration on the flight computer is performed at 3000Hz and a fourth

order Runge-Kutta scheme is used to ensure numerical stability. The C1 bandwidth

parameter is set to k = 5, the adaptation rate is F = 2500, and the reference model

(5.4) is used.

To test the adaptive controller's ability to recover performance after an actuator

failure, roughly 60% of one of the three control surfaces is physically removed as shown

in Figure 5-4. Data is obtained comparing the baseline controller with no failure, the

baseline with the phsyical failure, and the C1 controller with the physical failure. To

ensure a fair comparison, the vehicle tracking responses are compared when a ±lm/s

sinusoid is given as the horizontal X-velocity command.
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Figure 5-3: Results from failure simulation. Top three plots show the body rates
{p, q, r} for the reference system, baseline system, and system with adaptive augmen-
tation. Bottom plot shows the adaptive control increments, which correspond to the
failures on the first and second actuators.

5.6.2 Modification to Adaptive Laws

Upon implementation and flight testing, the L£ controller was found to slowly sat-

urate the control surface deflections, leading to vehicle instability and failure. Note

in Figure 5-1 that the £1 adaptive control signal 6 ad is integrated to obtain ad be-

fore being added to the baseline control signal. Thus if the output of the adaptive

controller is non-zero the signal 6ad will slowly grow with time, eventually saturating

the control surface. This effect, known as "windup", must be addressed for stable
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Figure 5-4: To test the ability of the MIMO L1 controller to recover baseline per-
formance after an actuator failure, roughly 60% of a three-wing control surface is
removed.

adaptive augmentation in flight.

To counteract the windup, a few small modifications to the adaptive laws are

needed. It should be noted that windup is a common problem in flight control,

and many anti-windup schemes have been developed to address it [27]. The method

presented here was devised to be simple to implement in hardware and, more impor-

tantly, was found to work such that the £1 controller still had an effect on the system

response without saturating the control surfaces. It should be noted that no theoret-

ical proof is given asserting the stability and performance of the resulting adaptive

system, only experimental results are shown.

The first modification is the addition of a dissipation term to the integrated adap-

tive signal 6ad. Instead of simply integrating 6 ad, the signal is constructed as:

1ad(S) = ad(S) - El6 ad(S)) (5.9)

where E is a positive dissipation constant which in practice typically ranged from 0.1

to 0.4. This update law slowly drives the adaptive control augmentation to zero after

.... .... .. . .. . .



some initial transient. To ensure that the adaptive parameters do not windup as a

result, similar modifications are made to the adaptive laws:

A(t) = -rad(t)(t)PBm -
2 A (5.10a)

^(t) = -F i(t)PBmC a
3  (5.10b)

kx(t) = -rz(t) T (t)PBm- 4 x (5.10c)

ku(t) = -FbI(t(t t)PBm - 45 Ic (5.10d)

where the added dissipation terms are in red, and the ci's are positive dissipation

constants. The ei's are tuned during flight testing so as to eliminate the control

saturation while still ensuring that the C1 augmentation contributes in a transient

manner.

5.6.3 Flight Test Results

Figure 5-5 shows the response of the three-wing tailsitter to the sinusoid velocity

commands described above. The top plot shows the baseline controller, with no

failure, track the velocity command relatively well. The middle plot shows the obvious

performance degradation of the baseline controller when 60% of one control surface

is physically removed. As seen on the bottom plot, the MIMO C1 adaptive system

with the same 60% failure recovers the nominal baseline performance.

These results experimentally confirm the input failure robustness benefits of C1

augmentation, and validate the inner-loop adaptation scheme used for the three-wing

tailsitter. They also confirm that the dissipation modification, though not theoret-

ically justified, is effective in preventing windup of the control and adaptive signals

without apparently negating the effects of the adaptive controller itself.

5.7 Summary

Multi-input multi-output C1 adaptive control is applied successfully to a three-wing

tailsitter both in simulation and flight testing. An inner-loop adaptation scheme is
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Figure 5-5: X-velocity tracking for the baseline controller with no failures (top,blue),
the baseline controller with a 60% failure on one control surface (middle,green), and
the augmented L1 system with the same failure (bottom,black).

used such that the adaptive augmentation is able to operate independently of the

non-linear baseline controller. System identification is used to identify a suitable

reference model of these inner-loop dynamics, which themselves are complex due to

a complex propeller flow field and asymmetric control forces.

The adaptive controller shows greatly improved performance over the baseline

system in spite of severe actuator failures both in simulation and flight testing. This is

an encouraging result promoting further use of MIMO adaptive control on unmanned

vehicles, especially on indoor autonomous vehicles that face many difficult control

problems.
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One area of future work is the application of the same inner-loop body-rate adap-

tation scheme to other indoor flight vehicles. Since the scheme is general and invariant

to the type of closed-loop controller used, in theory it should be applicable to any

vehicle. More important, though, is the theoretical justification of the dissipation

modification to the adaptive laws. In cases like these where the adaptive control

signal must be integrated in time, windup and control saturation is a realistic con-

sequence. Further research should be directed to the study of anti-windup in these

types of adaptive systems.
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Chapter 6

Low-Fidelity Modeling

6.1 Introduction

Chapters 4 and 5 relied on system identification for choosing an appropriate plant

model to be used in designing the adaptive controllers. In the case of the quadrotor in

Chapter 4, identification was used since only a model of the closed-loop dynamics was

needed. As for the three-wing tailsitter in Chapter 5, complexities of the propeller

flow and control forces made first principles modeling difficult and inaccurate. In this

chapter an attempt is made to model the Clik fixed-wing aerobatic aircraft (from

Section 2.4) using basic propeller modeling techniques and flat-plate theory. While

assumptions are made which decrease the fidelity of the model, the objective is to

capture the dominant dynamic behavior without resorting to more complex computa-

tional fluid dynamics methods. Low complexity is an important requirement since the

model will be used for trajectory design and optimization in Chapter refchap:traj.

The chapter proceeds as follows. Section 6.2 presents a blade-element model for

predicting thrust and induced flow velocities from the propeller, Section 6.3 outlines

a method for modeling the development of the slipstream axially towards the control

surfaces, and Section 6.4 describes the method by which control surface forces are

predicted. Model predictions are compared to measured data from the actual aircraft

throughout to verify the accuracy of the method.



6.2 Modeling the Flow Field Behind the Propeller

Following from [16], the first step in modeling the dynamics of the aircraft as a whole

is to model the expected flow generated by the propeller. At low forward speeds this

will be the dominant flow affected by the control surfaces. The modeling strategy is

as follows:

1. Identify a simple blade-element modeling technique

2. Implement the model in Matlab

3. Input propeller geometry and compare with known thrust, power, and RPM

measurements to validate the model

6.2.1 Blade-Element Model

A simple blade-element model is presented by Phillips [28] and later used specifically

for flow field calculations by Hunsaker [17]. Details of the method can be found in

the references, but the calculation at each blade element is derived by equating the

lift from Goldstein's vortex theory [29] to the circulation about the element. The

resulting equation that must be solved numerically for ci at each radial station is:

1CL - Cos-1 exp [- ( 2r/dp) tan(ei) sin(o,0 + ei) = 0 (6.1)
16r 2 sin(0t)

where

k = number of blades

cb = local chord length (m)

r = radius at this station (m)

CL = 2D lift coefficient, function of angle of attack

CD = 2D drag coefficient, function of angle of attack

d, = propeller diameter (m)

Ot = geometric angle of attack at propeller tip (rad)

(i = blade section induced angle of attack (rad)



co = blade section advance angle of attack (rad)

w = Propeller angular velocity (rad/s)

From here thrust can be calculated as:

T = dT dr (6.2)
R dr

kp 2  r= COS2(CO)
= J T 2 c 2 ( ) [CL cos(, + i) - CD sin(c + ci) dr

and similarly torque can be calculated as:

f=h dl

1 = dl dr (6.3)
R dr

kpw2 r=r COS2 (i)- 2 R r 3 Cbc 2 () [CD cos( + Ei) + CL sin(c, + ci)] dr
2 , cOS2 (E

The velocity vector directly behind the propeller at each radial station has an axial

component Vi and a tangential component Voi, which are given by:

wr
VXi = sin(ci) cos(Ei + c) (6.4)

Voi o sin(ci) sin(ci + E) (6.5)
cos(e )

Using this model the thrust, power (the product of torque and angular velocity),

RPM, and flow velocities directly behind the propeller can be calculated. However,

using the model requires knowledge of the lift and drag coefficients CL and CD, which

depend on the angle of attack and Reynolds number.

6.2.2 CL and CD

Once an airfoil is chosen, CL and CD must be estimated as a function of angle of

attack and Reynolds number. XFOIL [30] can be used to estimate pre-stall lift and

drag coefficients at various Reynolds numbers and angles of attack. However, typical

propeller airfoils stall at angles of attack between 15 and 20 degrees while angles of
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Figure 6-1: Combining XFOIL and flat-plate theory for SC1094 airfoil, Re=le5.

attack can range all the way up to 70 degrees in the blade-element calculations. Thus,

XFOIL data must be appended with flat-plate theory predictions for post-stall angles

of attack [31]. Flat-plate theory predicts the following lift and drag coefficients:

CL = 2 sin(a) cos(a) (6.6a)

CD = 2sin2 (a) (6.6b)

where a is the aerodynamic angle of attack. An example of combined CL data for

the SC1094 airfoil (common on helicopter rotors) is shown in Figure 6-1. After the

data has been appended for various Reynolds numbers, 2-D tables of CL and CD

vs. angle of attack and Reynolds number are constructed and used in the blade-

element calculations.



6.2.3 Matlab Implementation

The blade-element model presented above is implemented as a Matlab script. The

user sets the following design parameters:

* Propeller diameter, number of blades, and RPM

* Blade chord, twist and airfoil as a function of radius

* Number of radial stations for blade element calculations

* Freestream velocity (aligned with propeller axis)

The code calculates the following outputs:

* Thrust, torque and power

* Axial and tangential velocities directly behind the propeller

* 3D propeller visualization with calculated flow fields

With 50 radial stations, the code executes in less than two seconds. The code thus

allows the user to quickly and easily modify propeller geometries and obtain the

resulting approximate flow-field.

6.2.4 Comparison to Measured Data

In an effort to validate the thrust prediction from the blade element model, the Clik

propeller geometry parameters were input to the code. The propeller is a Graupner

SlowFlyer with 8" diameter and 4.5" pitch, and the SC1094 airfoil (with XFOIL/flate-

plate CL/CD) is used to approximate the airfoil of the propeller.

Figure 6-2 shows predicted propeller thrust and measured propeller thrust versus

propeller RPM. Measured data is taken from [20] in which a high-precision 6-axis load

cell was used to measured forces and moments. The plot confirms that, while not

exact, the blade element model accurately predicts the trend of thrust with increasing

RPM. The maximum prediction error is 0.2N, or 9%. Given that the airfoil on

the Graupner propeller is not the SC1094, assumptions in the model, and possible

measurement inaccuracies, these errors were deemed acceptable.
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Figure 6-2: Comparison of predicted thrust (dashed) to measured thrust (solid) for

the Graupner SlowFlyer propeller used on the fixed-wing aerobatic aircraft.

6.3 Flow Field Propagation

The flow velocities calculated just behind the propeller must be propagated axially

towards the control surfaces. A slipstream contraction and development model used is

from Stone [16] and is summarized below. Matlab implementation of the development

model coupled with the propeller model above yields a three-dimensional flow field

which can be used for control analysis.

6.3.1 Slipstream Development and Contraction Model

As presented in [16], a slipstream development factor kd is defined:

kd = 1+

s = distance aft of propeller disk

R = propeller radius

kd = slipstream development factor

(6.7)

(6.8)

1.5

4Om0

where:

. . ...............

7UUU6500



For a given distance aft of the propeller, s, the slipstream radius and induced velocities

are given by:

{rnacelle m = 1

ram -m-2 + (r - 2Va Viam+Via-1 ... (6.9)

Vr 1 + rm ) 2Vak iam _ -1)

via =. kdViam (6.10)

vtm = 2 vit ( r (6.11)

where:

s = axial position downstream of the propeller disk

ram = m'th radial position in the slipstream at distance s

rm = m'th radial blade station coordinate (s = 0)

rnacelle = nacelle radius at distance s

Va = axial free-stream velocity at rotor disc (6.12)

Viam = axial induced velocity at m'th radial station (s = 0)

vitm = tangential induced velocity at m'th radial station (s = 0)

Viam = axial induced velocity at m'th radial station at distance s

vtm = tangential induced velocity at m'th radial station at distance s

6.3.2 Realistically Modeling Flow Field Dissipation

According to the above propagation model ( 6.7)-( 6.11), it is assumed that the flow

field does not dissipate with distance from the propeller plane. This is an unrealistic

assumption especially given that the actuators are a substantial distance downstream

of the propeller (see Figure 2-1).

To get an idea of the first-order trends in dissipation, two RC-scale propellers were

tested using a hand-held anemometer. The propellers are a Graupner SlowFlyer (same

as used above) and a single rotor from the Draganflyer Quadrotor. The anemometer

used is a Circuit Specialists MS6250, listed as accurate between 0.4- 30m/s to within
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Figure 6-3: Propeller slipstream dissipation measurement results and polynomial ap-
proximation.

±2.0%. Velocity data is taken at several distances behind the propeller and tested

at several different propeller throttle settings. The distances are then normalized

by the propeller diameter, and the velocities normalized by the velocity just behind

the propeller. This effectively yields a normalized dissipation coefficient that can be

applied to any propeller slipstream. As shown in Figure 6-3, the normalized data

is fairly consistent between the two propellers and throttle settings. A second order

polynomial function is fit to the data and is also shown.

6.3.3 Matlab Implementation

Given the flow field directly behind the propeller as calculated numerically per Section

6.2.3, the contraction and development model above is applied to yield a 3D map of

both the slipstream radius and the induced flow field. The code takes an (x, y, z)

position as input and calculates the flow field velocity,(V , V,, V ), at that location

(which includes both the freestream flow and the induced propeller flow).

Using this function, any arbitrary grid of 3D flow velocities can be created and
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the slipstream (red) and some streamlines starting at the propeller (blue) are shown

in Figure 6-4 for the Graupner propeller.

6.4 Calculating Control Surface Forces

Once the three-dimensional flow field is known, control surface forces can be calcu-

lated. The general strategy is as follows:

1. Discretize the surface spanwise into n 2D stations, specify the leading edge

position and chord length of each.

2. For each node, calculate the 3D flow velocity at the node's leading edge and

calculate the 2D aerodynamic angle of attack. Use this to calculate the node's

2D lift and drag forces as a function of actuator deflection angle (which is just

added or subtracted from the aerodynamic angle of attack).
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3. Resolve the lift and drag forces into a 3D point force in the global coordinate

system.

Assumptions:

1. While actuators can have any chord distribution along their span, they are

assumed to be on a hinge parallel to the plane of the propeller (i.e. perpendicular

to the axial flow).

2. For this first-order analysis, actuators are assumed to be 2D flat plates (of

possibly varying chord as stated above). Aerodynamic forces are assumed to act

at the quarter-chord of each spanwise node and pitching moments are assumed

to be negligible (i.e. CM = 0).

3. Spanwise flow along the control surfaces is assumed to be negligible.

6.4.1 Aircraft Control Surfaces

Measurements of the Clik fixed-wing aircraft geometry are input into the control

force prediction code. Figure 6-5 shows the control surfaces as well as the propeller

geometry and slipstream development. The plot is helpful in predicting what portion

of the control surfaces will be inside of the propeller slipstream. Note that static

surfaces such as the wings and body are not shown. The forces and moments from

these surfaces are calculated in exactly the same manner as the control surfaces with

the exception that the deflection angle is set to zero.

6.4.2 Comparison to Measured Data

Again using data measured in [20], predicted control moments for the Clik are com-

pared to measured values. Figure 6-6 shows the moment comparison for the elevator

(top), rudder (middle), and aileron (bottom). Note that all moments are taken about

the center of mass. From the elevator and rudder plots it is clear that the model con-

sistently over-estimates the moment, which is likely a consequence of the flat-plate

CL used. However, both the trend and the maximum moments appear to be correctly
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Figure 6-5: Fixed-wing aerobatic aircraft control surfaces (green), propeller geometry
(blue), and slipstream development (red). Top view (left), side view (middle), and
isometric view (right).

predicted. The aileron plots shows close agreement for negative deflection angles but

over-prediction for positive deflections. This could be due to the precision of the load

cell given the extremely small moments being measured (- O.O1Nm). Again, though,

the model predicts the maximum moments fairly accurately. The model also appears

to correctly predict the asymmetry of the aileron moment due to the swirl of the

slipstream induced by the propeller.

r -.
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Comparison of Predicted and Measured Elevator Moment for Fixed-Wing Aerobatic Aircraft
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Figure 6-6: Comparison of predicted moments (dashed) to measured moments (solid)
for the elevator (top), rudder (middle), and ailerons (bottom) of the Clik fixed-wing
aerobatic aircraft.
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Chapter 7

Trajectory Design and

Optimization

7.1 Introduction

Many unmanned aircraft are capable of operation through several distinct flight

regimes. For instance, the Clik from Section 2.4 can start in a "prop-hang" hover,

transition to high-speed conventional flight, then resume hover. The ability to perform

such a maneuver gives UAVs the potential to perform many types of missions that

manned aircraft simply cannot match. This problem has been explored and tested

experimentally on the Clik in [20], and this section serves to extend the previous

work.

One difficulty, however, is the design of vehicle trajectories for these maneuvers.

Given a vehicle's dynamics and actuator capabilities, even if relatively straightforward

like those of the Clik aircraft, it is not obvious how to calculate control commands

to achieve some arbitrary desired trajectory. Many techniques, such as backstep-

ping [20], hybrid control [18] and rapidly-exploring random trees [32], have been

developed and tested on unmanned aircraft. This chapter presents a method that

utilizes an inner-loop attitude controller, a low-fidelity dynamic model, and a Gauss

pseudospectral optimization technique to find, optimize, and implement dynamically

feasible vehicle trajectories. There are several reasons for using this approach over



the others. Foremost, the method allows for intuitive specification of desired vehicle

trajectories through specification of a cost function and a desired final state. As will

be seen, the flexibility of the optimization software allows for the inclusion of obstacle

avoidance and multi-phase trajectories. Finally, closed-loop implementation of the

approach adds a substantial amount of robustness to model uncertainty, decreasing

the amount of time and effort needed to find an accurate dynamic model.

The low-fidelity dynamic model developed for the Clik in Chapter 6 is used in

conjunction with a Gauss pseudo-spectral optimization technique to identify dynami-

cally feasible trajectories and optimize them using a user-specified cost function. The

output of the optimization is a time history of vehicle attitudes, which is then sent to

the inner-loop attitude controller from Chapter 3. The attitudes are tracked by the

closed-loop controller during flight and the vehicle thus performs the desired maneu-

ver. The examples are currently limited to two-dimensional maneuvers, but can be

generalized to 3D with future work.

The chapter is structured as follows. Section 7.2 give a brief overview of the

GPOPS optimization software, Section 7.3 describes the specification of the Clik

vehicle dynamics in two dimensions, Section 7.4 presents the method by which desired

trajectories are specified, Section 7.5 presents experimental flight test results, and

Section 7.6 summarizes the work.

7.2 GPOPS

Gauss Pseudospectral Optimal Control Software (GPOPS) [33] is a new, free, and

open-source Matlab tool for solving multiple-phase optimal control problems. GPOPS

implements the Gauss Pseudospectral Method and has an easy-to-use structure-based

interface. The software requires specifications of the system dynamics, initial condi-

tions, state and time constraints, and cost function. It then attempts to minimize

the cost function given the constraints, and if successful returns a time history of the

states and minimizing control inputs.

For the trajectory design problem addressed here, GPOPS is used to find and op-
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Figure 7-1: Diagram representing the 2D model of the Clik aerobatic aircraft used for
trajectory optimization. In the diagram 0 represents pitch angle, 6 elevator deflection,
and T thrust.

timize a feasible vehicle trajectory. The following sections describe the specifications

given to the software to achieve this task.

7.3 Specifying Vehicle Dynamics

GPOPS requires dynamic laws by which the system is governed. The software passes

a state vector to a user-defined function that must return the derivatives of each state.

While the model derived in Chapter 6 is designed to predict 3D forces and moments,

for the purposes of demonstrating this trajectory design method the model is reduced

to 2D forces and moments where the pitch axis of rotation is considered. Figure 7-1

shows the definitions of coordinates x and z, pitch angle 0, elevator deflection 6, and

propeller thrust 7. The model takes in the specified state vector X = [x, b, z, z, 0, 0 ]T

and GPOPS control inputs u = [6, T] to calculate the linear forces Fx and Fz and the

pitch moment Mo. This routine is called frequently by GPOPS whenever it requires

state derivatives, but it should be noted that the model can just as easily be used to

pre-compute tables of these outputs to speed up execution. Physical parameters such

as mass and moment of inertia of the aircraft are taken from [20], where they were

measured empirically.



7.3.1 Imposing Actuator Limitations

GPOPS can be configured to set bounds on the control inputs 6 and 7. In the

case of the Clik aircraft, these limits are 6 E [-600, 600] in elevator deflection and

T E [ON, 2.9N] in thrust. While these represent the measured physical limits of

the aircraft itself, they do not account for the dynamic limits of the actuators. For

instance, GPOPS could legally command an elevator deflection of -60' at one time

step and +600 at the next time step though the elevator servo can not possibly match

this. To enforce rate-limiting on the control inputs, the two control states 6 and T are

added to the state vector. The GPOPS control inputs are now the time derivatives

of the controls, 6 and i. The input bounds are set to coincide with the physical

actuator rate limits (based on published specifications), and bounds are set on the

control states 6 and T coinciding to the deflection and thrust limits listed above. This

guarantees that the control inputs to the system are achievable by the flight hardware

thus ensuring a dynamically feasible trajectory.

7.3.2 State Constraints

GPOPS also accepts hard state constraints set by the user. Since experimental tests

are done in the RAVEN indoor testbed, constraints on x and z are set to match the

physical volume of the test area. Also, constraints are set on 6 to prevent extremely

fast pitching motions.

7.4 Specifying a Desired Trajectory

Since GPOPS is a generalized optimization routine, there are many ways to specify

a desired vehicle trajectory. One method is simply to fix the desired final state of

the vehicle. In practice, however, this hard constraint leads to erratic behavior of

the solution and does not give the user control over the actual path taken. Instead,

trajectory shaping is effected through the cost function.



7.4.1 Cost Function for Desired Trajectories

A more robust method to specify vehicle trajectories is through penalization in the

cost function. The general form of the cost functional is:

J= M(X(t1 ))+ / L(X, u, t)dt (7.1)

where tf is the final time. To specify arbitrary desired position trajectories xd(t) and

Zd(t), the following Lagrange cost L(X, u, t) is used:

L(X, u, t) = c[x(t) - Xd(t)] 2 + Cz[Z(t) - Zd(t) 2  (7.2)

where c, and cz are positive weighting terms. Thus the minimizing trajectory is

x(t) = Xd(t), z(t) = zd(t),Vt, which is the desired result. To minimize unnecessary

control effort, a penalty is added:

L(X, u, t) = c,[x(t) - d (t)] 2 + Cz[Z(t) - Zd(t)] 2 + C6g(t)2 + C,T(t) 2  (7.3)

Additional terms can be added to the terminal cost M(X(tf)) to ensure that the

vehicle reaches the final position:

M(X(tf)) = cxf[x(tf) - Xd(tf)] 2 + CZf[z(tf) - zd(tf)]2  (7.4)

To specify that the vehicle not be moving at the end of the trajectory, penalties can

be added to the final velocities:

M(X(tf)) = cxf[z(tf) - d (tf)]2 + Czf [(t) - Zd(tf)]2 + CYf'(tf)2 + CfZi(tf) 2 (7.5)

Using this cost function, the importance of each of the aspects above can be weighted

by adjusting the c's. GPOPS then produces a dynamically feasible solution, composed

of a time history of states and control inputs, the minimizes the cost function.
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Figure 7-2: Simple obstacle avoidance strategy for trajectory optimization. GPOPS
ensures that dob > rl + rob,.

7.4.2 Obstacle Avoidance

To demonstrate the inclusion of a obstacle avoidance to the trajectory optimization, a

simple method is presented. As shown in Figure 7-2, the flight vehicle is conservatively

enclosed by a set of attached circles, and the same is done for the obstacle. A hard

constraint is then set in GPOPS such that dobs > rl + rob8 for each circle surrounding

the vehicle, ensuring that the obstacle is physically avoided throughout the trajectory.

The radii of the enclosing circles can be adjusted to make the method more or less

conservative.

7.5 Experimental Results

7.5.1 Closed-Loop Implementation on Flight Hardware

GPOPS is used to find and optimize dynamically feasible trajectories offline, and the

state and control histories are obtained. One method to implement the trajectories

on the Clik flight hardware would be to send the elevator and thrust control histories



directly to the actuators in an open-loop fashion. The obvious problem with this and

any open-loop control method is that any uncertainty in the dynamic model, hardware

variations, and external disturbances will induce errors in the observed trajectory.

Given that the model from Chapter 6 used in the optimization is designed more for

low-complexity than extreme accuracy, the open-loop errors would likely grow very

large.ed trajectory. Given that the model from Chapter 6 used in the optimization is

designed more for low-complexity than extreme accuracy, the open-loop errors would

likely grow very large.

Instead, closed-loop control is used to track the pitch angle and forward speed

obtained from the trajectory state history. The attitude controller from Chapter 3 is

used to track the desired pitch angle, and a proportional+integral controller on the

throttle is used to track the plane's forward velocity (i.e. the component of velocity in

the propeller axis). As is expected when feedback control is applied, this closed-loop

strategy adds a great deal of robustness to model uncertainty and is a more realistic

implementation technique.

7.5.2 Flight Test Results

Three cases were chosen to test the GPOPS trajectory generation process and imple-

mentation on the Clik aerobatic aircraft. In the first case, x(t) and z(t) are specified

in the cost function to be a linear path that covers a horizontal distance of 6 meters

at roughly 3m/s while holding a constant altitude. Figure 7-3 compares the desired

trajectory, the GPOPS-generated trajectory, and the measured flight test trajectory.

Note that the GPOPS and desired trajectories are not the same, since GPOPS pro-

duces a dynamically feasible solution whereas the desired trajectory is arbitrarily set

by the designer. Close matching can be seen between GPOPS and flight test x-

position. However, the flight test z-position (altitude) is consistently higher than

the GPOPS trajectory. The inner-loop controllers track the commanded pitch and

forward velocity closely, implying that the flight vehicle is achieving the attitudes and

velocities commanded by GPOPS.

In the second case, x(t) and z(t) are specified as a climb-and-descend trajectory
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obtained.

7.6 Summary

The trajectory optimization method presented makes use of a low-complexity, general

model of an indoor flight vehicle and generates a dynamically feasible trajectory via an

intuitive user-specified cost function. Flight tests confirm the feasibility of applying

the method to an indoor UAV. The closed-loop implementation adds margin for model

uncertainty and disturbances, as seen in the flight trajectory results. In addition, the

closed-loop tracking can be examined to determine whether trajectory errors are the

fault of the model or the control implementation. In the case of the results presented,

it is seen that the model under-predicts the aircraft's lift and can be iteratively tuned

as necessary.

The main limitation of this method is that currently it only supports generation

of 2D trajectories. There is no fundamental limitation restricting the expansion to

three dimensions as the method can be generalized to any set of dynamics. One

potential issue with 3D trajectories is that more states must be added, making the

optimization substantially more complex. Another limitation of the method is that

the optimization cannot be done in real-time, and as of this writing takes 3-5 minutes

to run on a machine with dual 2.4GHz AMD Opteron processors.



Chapter 8

Conclusion

8.1 Summary

This thesis investigates modeling, adaptive control and trajectory optimization meth-

ods as applied to indoor autonomous flight vehicles. Importance is placed on experi-

mentally verifying theoretical results through flight testing. The successful implemen-

tation of adaptive control and trajectory generation techniques on indoor autonomous

vehicles is considered a key aspect of the overall contribution.

Three indoor UAVs are presented in Chapter 2, each with unique control chal-

lenges. The RAVEN testbed is introduced as a facility enabling indoor autonomous

flight of the vehicles and is the cornerstone of experimental validation throughout the

thesis. Chapter 3 describes the adaptation of a quaternion-based attitude controller

for the flight vehicles. An outer-loop horizontal velocity controller is designed to pass

reference attitudes to the inner-loop controller, and the combined scheme forms the

baseline controller for all three UAVs.

Chapter 4 presents a systematic design process for the use of £C adaptive output

feedback control in realistic flight control applications. The proposed process pro-

vides the control designer with an intuitive method linking relevant performance and

robustness metrics to the selection of the £1 parameters C(s) and M(s). Flight test

results verify the process for an indoor autonomous quadrotor, demonstrating that

variations in the specified cost function produce the expected and desired physical re-



sponses. In flight tests comparing it with the baseline linear controller, the augmented

L1 adaptive system shows definite performance and robustness improvements.

In Chapter 5, multi-input multi-output £1 adaptive control is applied to a three-

wing tailsitter both in simulation and experiment. An inner-loop adaptation scheme is

used such that the adaptive augmentation is able to operate independently of the non-

linear baseline controller. The MIMO controller shows improved performance over

the baseline system in spite of severe physical actuator failures both in simulation

and flight testing.

Chapter 6 presents a dynamic modeling procedure for propeller-driven UAVs. A

propeller model is adapted from previous work and is used to ascertain the slipstream

velocities and profile. A simple flat-plate method is used to calculate control surface

forces and moments and the predictions are compared to measured data with satis-

factory results. The model predicts 3D forces and moments, yet is not too complex

to use in trajectory generation and optimization.

In Chapter 7, a trajectory optimization method is presented that makes use of

the low-complexity, general UAV model and generates dynamically feasible trajecto-

ries via an intuitive user-specified cost function. Flight tests confirm the feasibility

of applying the method to indoor autonomous flight. A closed-loop trajectory imple-

mentation increases robustness to model uncertainty and disturbances. The method

is limited in that it has only been tested for 2D trajectories, but can be extended to

three dimensions by using the full 3D model of the aircraft.

8.2 Future Work

8.2.1 L1 Adaptive Output Feedback Control Design

Several limitations of the design process have been identified, most stemming from

the non-convexity of the cost function. This acts to limit the complexity of the

assumed forms of C(s) and M(s), preventing the potential benefits of higher-order

filters from being explored. Future work is focused on converting the performance



and robustness metrics to a set of linear matrix inequality (LMI) constraints. Such

a system is much more efficiently solved, thus having the potential to handle more

complex solution forms. Some problems currently being faced are conservatism in

conversion of the metrics to LMIs, and the inability of available numerical solvers to

find initial feasible solutions.

8.2.2 MIMO L1 Adaptive Control

The primary area of future work is to apply the inner-loop MIMO L1 scheme to other

types of flight vehicles to confirm that it is, in fact, independent of the type of baseline

controller used. Application to the Clik and quadrotor should be straightforward since

the adaptive controller is wrapped around the inner-most body rate loop. Also, work

should be done to attempt to theoretically justify the dissipation modification used

in the adaptive law.

8.2.3 Trajectory Optimization

Future work is planned to test the optimization method with the three-dimensional

dynamic model to generate 3D trajectories. The performance of GPOPS with the

larger state vector should be investigated, as it could slow down execution and make

identification of a feasible trajectory more difficult without an initial guess. Also,

tabulation of the dynamic model, use of some pre-computed trajectory as an ini-

tial guess, and reduction of the optimality tolerance could all serve to speed up the

execution of the optimization allowing for real-time trajectory generation.

Finally, another area of future work is to combine individually generated trajectory

segments in a piecewise fashion to create a larger, multi-phase flight maneuver. These

trajectory segments can be pre-computed and stored in a library that can be accessed

in real-time. The method would allow for a wide variety of possible maneuvers from

a limited set of segments.
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