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Abstract

Aerospace systems are among the most complex anthropogenic systems and require large
quantities of systems knowledge to design successfully. Within the aerospace industry, an
aging workforce places those with the most systems experience near retirement at a time
when fewer new programs exist to provide systems experience to the incoming generation of
aerospace engineers and leaders. The resulting population will be a set of individuals who by
themselves may lack sufficient systems knowledge. It is therefore important to look at teams
of aerospace engineers as a new unit of systems knowledge and thinking. By understanding
more about how teams engage in collaborative systems thinking (CST), organizations can
better determine which types of training and intervention will lead to greater exchanges of
systems-level knowledge within teams.

Following a broad literature search, the constructs of team traits, technical process,
and culture were identified as important for exploring CST. Using the literature and a
set of 8 pilot interviews as guidance, 26 case studies (10 full and 16 abbreviated) were
conducted to gather empirical data on CST enablers and barriers. These case studies
incorporated data from 94 surveys and 65 interviews. From these data, a regression model
was developed to identify the five strongest predictors of CST and facilitate validation.
Eight additional abbreviated case studies were used to test the model and demonstrate the
results are generalizable beyond the initial sample set.

To summarize the results, CST teams are differentiable from non-CST teams. Among

the most prevalent differentiators is a team's self-reported balance between individual and
consensus decision making. Teams that engage in consensus decision making reported
stronger engagement in collaborative systems thinking. Another differentiator is the median
number of past program experiences on a team. Teams whose members reported more

past similar program experiences also reported more engagement in collaborative systems
thinking. Data show the number of past similar programs worked is a better predictor
than years of industry experience. The apparent enabling effects of qualitative team traits
are also discussed. The conclusions of this document propose ways in which these findings

may be used to improve training and team intervention within industry, academia, and

government.

Thesis Committee Chair: Deborah J. Nightingale
Title: Professor of the Practice of Aeronautics and Astronautics and Engineering Systems





Executive Summary

The aerospace industry is maturing in more than one way. The industry's workforce

is greying: rapidly approaching retirement age. Many of the contributing disciplines

have reached a level of advancement that permits accurate modeling and prediction

of complex phenomena. These two conditions collide at a time when the industry is

increasingly being asked to execute complex system design with fewer people, fewer

monetary resources, all without compromising on performance. The result is an

increased need for systems expertise and fewer opportunities to organically develop

systems skills at a time when the industry is loosing much of its systems expertise to

retirement.

To address this conundrum, empirically-based research into the development of

systems thinking has emerged as a tool to develop a grounded expertise for inter-

ventions within academia, industry, and the government aimed at understanding and

improving the systems engineer development pipeline. Past research has focused

on the individual as the unit of systems thinking and the unit at which to intervene.

While fundamental questions still remain as to 'how' systems thinking develops, there

is now empirical evidence supporting the importance of experiential learning, certain

personal characteristics, and a supportive context as enabling individuals to develop

systems thinking skills. The same research found evidence implying there is no short-

cut to developing systems skills.

Since the industry finds itself with an insufficient number of people in the pipeline

to fulfill its near-term need for systems thinking, this research turns to the team as

a unit for leveraging systems thinking. The term 'collaborative systems thinking' is

introduced to differentiate systems thinking within teams from that by individuals.



The questions guiding this exploratory research are 1) What is collaborative systems

thinking and how does it differ from individual engineering systems thinking? 2)

What are the empirically generalized traits of systems thinking teams within the

context of the aerospace industry? and 3) What observed mechanisms best predict

collaborative systems thinking?

The research consists of in four phases: the literature review, the pilot interviews,

the case studies (including in-depth case studies and additional abbreviated case

studies), and the validation case studies. The in-depth case studies consist of multiple

surveys and interview per team. The abbreviated case studies and validation case

studies relied on interviews with one member per team. Combined, these represent a

progression of exploration that starts with a wide net being cast over many different

bodies of literature and ends with a set of focused recommendations for industry,

academia, and the government.

The pilot interviews focused the exploration on a few important areas: names

team composition, organizational culture, and standard technical processes. The pilot

interviews also provide the basis for a definition of collaborative systems thinking

as an emergent behavior of teams resulting from the interactions of team members

and utilizing a variety of thinking styles, design processes, tools, and communication

media to consider systems attributes, interrelationships, context and dynamics towards

executing systems design.

The case studies revealed a set of generalized traits that appear highly correlated

to team collaborative systems thinking. The majority of these traits touch on 'soft'

issues within teams and include utilizing consensus decision making, having more

supportive and creative work environment, and the presence of both social and tech-

nical leadership. Technical indicators included an apparent link between conceptual

design practices and collaborative systems thinking and suggest that teams whose

members have greater past program experience and moderate concurrent program

participation also engage in more collaborative systems thinking.

From the case studies, a rudimentary model was constructed. Five factors that

combined account for 85% of the observed variability in collaborative systems think-
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ing ratings were married into a multivariate regression model for validation purposes.

Data were collected for eight validation case studies as a test of the broader applica-

bility of the initial case study results. The five predictive factors accounted for 72%

of the observed variability in validation case study collaborative systems thinking

ratings, bolstering the broader applicability of the results.

From the model and additional supporting qualitative results from the interviews

conducted, three sets of recommendations are put forth for industry, academia, and

government.

The three recommendations for industry include the use of IR&D funds for small

development programs to provide employees with pertinent systems experience; en-

couraging informal mentoring relationships that incorporate real program experience;

and placing an emphasis on both technical and social capabilities when training and

selecting program leaderships.

The four recommendations for academia center on providing systems experience

to students, structuring team activities to introduce students to effective team work

practices, coursework in technical writing and speaking, and an introduction to draft-

ing, model making, and other media used for exchanging systems-level knowledge.

Finally, there are four recommendations for government. These are to support

policies that provide incentives for corporate IR&D funding to provide systems ex-

perience to the aerospace workforce, to support research funding within academia

that will ensure sufficient numbers of students are in the systems skill development

pipeline, to utilize black-world programs or similar to allow for some programs to

greater risks and familiarize the workforce with greater uncertainty, and to promote

entrepreneurship within the industry through continued support and expansion of

small business grants and partnerships with smaller aerospace companies.
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Chapter 1

Introduction

There's nothing odd about looking at 40 year old hardware in museums... but only in

American Aerospace...can we go to a museum and look at certain artifacts and wish

that we could still do as well, and that fact should sober everyone here.

-Michael Griffin, speaking at the NASA 50th Anniversary Gala,

26 September 2008

The aerospace industry designs and builds some of the most complex systems

ever imagined. Aerospace systems have shrunk the globe to a few hours travel, put

men on the moon, and enabled the global flow of information. In short, aerospace

technologies are a major contributor to the world as we know it and enable growth

and new efficiencies in other industries. In 2008, $640 billion in US gross domestic

product (GDP), or 5.4%, was enabled by civil aviation activity [11]. In addition, the

space industry contributes great value to the GDP via vast constellations of global

positioning and communications satellites. Global positioning satellites (GPS) enable

more accurate surveying, more efficient agriculture, and more accurate construction.

Communication satellites enable real-time information sharing across the globe and

provide both television and radio signals, improving communication in areas otherwise

too remote for ground-based infrastructure. Aerospace also contributes to intangible

benefits such as security and scientific exploration.



The aerospace industry has become a critical component of our society and like

many other industries is being asked to produce more advanced systems with fewer re-

sources, manpower included. Aerospace engineers are retiring faster than the industry

is hiring new talent, resulting in a 'silver tsunami' [2]. With 25% of aerospace work-

ers eligible for retirement within five years [12, 20, 137], the industry stands to lose

much of the knowledge and design skill required not only to develop new aerospace

systems but to maintain current systems. The failure to maintain an aerospace skills

base within the United States will have a negative, and possibly very large, impact

on the economy. It is therefore important to understand how systems skills develop

and to explore new ways in which to leverage systems skills and to thus avoid having

even more artifacts in museums for which we no longer possess the requisite systems

knowledge.

This dissertation concentrates on the skill of systems thinking. Broadly defined

as 'big picture' thinking, systems thinking is a necessary skill for complex systems

design [137]. Systems thinking provides a link between the pure analytic side of

engineering and the creative design side [59]. Systems thinking is a critical skill for

communicating between design and analysis, ensuring the final product delivers the

desired functionality, identifying and managing interfaces (social and technical), and

brokering effective design tradeoffs. However, systems thinking skill development is

poorly understood. An empirical study of aerospace engineers showed the importance

of work and personal experience, individual traits, and a work environment that

values systems thinking as enablers for individual systems thinking development [35],

but little is known about the impact of training interventions or the overall time

required to identify and develop a strong systems thinker. More data are required to

understand the phenomena of systems thinking and to identify the best options for

enabling its development in the next generation of aerospace engineers.

This research focuses on the team level as a new way to conceptualize systems

thinking with potential promise for improving system development and providing a

new means to promote systems thinking skill development within the workforce. As

aerospace product development cycles often span decades, the shift to the team level
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for systems thinking is natural. Programs may span multiple careers and individuals

will come and go from teams. Teams, however, have a more stable existence within

programs. The team focus is also motivated by increasing system complexity and a

shift toward defining work at the team level based on evidence that teams are better

able than individuals to make decisions in complex situations [124]. A new term,

collaborative systems thinking, is introduced to refer to team-based systems thinking

and to differentiate this team-based phenomena from individual systems thinking.

1.1 Motivation

Engineering problems are under-defined, there are many solutions, good, bad and

indifferent. The art is to arrive at a good solution. This is a creative activity,

involving imagination, intuition and deliberate choice.

-Ove Arup

1.1.1 The Importance of Systems Thinking:

Bridging the "Two Cultures" of Engineering

Within the past 20 years, the aerospace industry has seen a shift in the way projects

are managed and organized. Changes include the bringing together of different engi-

neering disciplines earlier in the development cycle to avoid problems later in systems

integration and operation. Bringing the disciplines together earlier in design has

placed an emphasis on teams within engineering, especially multi-disciplinary teams.

Yet, despite strides towards cross-functional design, there is still evidence of a gap

between designers and analysts. This gap impedes communication and understanding

and is therefore a barrier to improving both the ways in which systems are engineered,

as well as the systems themselves.

Former NASA administrator Michael Griffin likened the communication gap within

engineering to the cultural divide between the sciences and humanities [59]. One side,

engineering science, is rooted in analysis, numerical methods, and the pursuit of objec-



tivity. Engineering science relies on a convergent thought process: using the scientific

process or similar to find a single correct answer. The other side, engineering design,

is rooted in experience, creativity, intuition, and in using science and technology in

novel ways to find multiple solutions to a problem. Engineering designers are en-

couraged to use divergent and creative thought processes to find as many potential

solutions as possible [149]. Best designs are then selected on the basis of satisfying

sets of requirements, not by natural laws. Engineering is the skillful combination of

science and design. However, current industry emphasis is on the science side of engi-

neering and underemphasizes the role of creativity and imagination. Balance may be

achieved through the application of systems engineering and systems thinking [59].

Systems thinkers are able to engage in both convergent and divergent thinking, thus

bridging the gap between engineering science and design [45, 149] and facilitating a

more thorough exploration of the design space and therefore more innovative design

solutions.

Within academia, attempts to close the engineering science-design gap and cul-

tivate systems thinking skills have been addressed through industry-academia part-

nerships and initiatives such as Conceive, Design, Implement and Operate (CDIO)

[24], which have sought to bring an awareness of the entire engineering lifecycle back

to engineering education. However these initiatives alone are insufficient [65], and

more research is necessary to understand systems thinking, not just at the individual

level, but also at the team and organizational level [35]. Within industry training,

job rotation, and continued employee education are used to promote systems thinking

skill development [35] and to address the industry need for more systems thinking

within the aerospace community [59, 65, 24, 70, 87, 98, 105, 118].

As a necessary skill for senior systems engineers, systems thinking is a recognized

mode of thinking that facilitates identification and understanding of the technical

and social interdependencies and feedback dynamics within a system [35]. Systems

thinking is credited with producing better process, more effectively coping with com-

plexity, aiding in identifying interfaces, and the efficient allocation of resources to

manage these interfaces and interactions [35]. Systems thinking is a skill that must



be learned, developed, and maintained. It is grounded in experience and tacit knowl-

edge. As system complexity increases, a greater fraction of the necessary design

knowledge is tacit, and systems thinking becomes more important. For simple com-

ponents, 85% of the design knowledge is explicit and documented. The remaining

15% is categorized as experiential, or tacit [41]. The knowledge distribution shifts

dramatically even for relatively simple systems. Fully 70% of the design knowledge

for an automobile throttle body is tacit, as shown in Figure 1-1 [41].

Knowledge Storage as a Function of Complexity

100
- Documented

S80- - - Experience-Based
0

o 60 - 0
1/.

w 40

* 20 /I-

Increasing
0 Complexity

Part Assembly System

Figure 1-1: Distribution of design knowledge between documentation and experience

for an automobile throttle body. Figure adapted from [41].

Systems thinking within teams is a more complex problem because the tacit knowl-

edge required for systems development lies with individuals, each of whom brings her

unique set of design experiences and skills to a team, but must be effectively leveraged

by the entire team. To address the engineering science-design gap within teams, it is

necessary to understand how teams think about problems, allocate resources (mental,

financial, and material), and facilitate design. Within engineering teams, it is pro-

posed that synergies and tensions between team norms and process usage form a set

of enablers and barriers to an emergent mode of team thinking based on holistic sys-



tems perspectives. This construct shall be called collaborative systems thinking and

is an emergent property of teams, whereby a group of individuals are able through

their interactions to appreciate and value inter-disciplinary interactions and' inter-

faces, thus facilitating systems design. Because teams execute design, efficiencies are

gained when a team is able to realize and make necessary design decision as opposed

to having these decisions facilitated by a small number of systems thinkers who must

then overcome the team's inertia to affect change.

1.1.2 Anticipating a Future Shortage of Systems Thinking

Good judgment is usually the result of experience. And experience is frequently the

result of bad judgment. But to learn from the experience of others requires those who

have the experience to share the knowledge with those who follow.

-Barry LePatner as quoted in To Engineer is Human

Like most engineering fields, the aerospace industry in graying: more than 60% of

scientists and engineers in the United States are over the age of 45 [12]; the average

age of an engineer at NASA is 49 [83]; and within the aerospace industry, 25% of

the workforce will be eligible for retirement in the next five years [20]. As these

workers retire invaluable tacit knowledge regarding the design of aerospace systems,

in the form of systems thinking skills, is lost. Figure 1-2 shows how much older the

aerospace workforce is relative to the overall US workforce.

Because experience is a necessary contributor to systems thinking development,

it is a great loss to lose so many of the industry's experienced workers within a short

timeframe. The loss of experienced workers, however, is made even worse as few

opportunities to gain necessary design and implementation experience are presented

to today's young engineers.

Data show a reduction in the number of military aircraft program starts from 50

program starts in the 1950's to only three program starts in the 1990's as shown in

Figure 1-3(a). This pattern is repeated in commercial jetliners, manned space flight,

and planetary probes. For example, commercial jetliner program deliveries peaked

--~~:~~~ .;i--- ---- ----~-;-;~~i ~;~~



Comparison of Aerospace Workforce to Entire US Workforce

25

Aerospace
Workforce

20 - -US Workforce

o 15

* ,".-- . ..
J% 10 -

5-/

0
Under 20 to 25 to 30 to 35to 40 to 45 to 50 to 55 to 60 to 65 to 70 and

20 24 29 34 39 44 49 54 59 64 69 Older

Five-Year Age Bands

Figure 1-2: The aerospace workforce is older than the overall US workforce. Figure
adapted from [20].

in the 1980's with 20 new and derivative airframe designs delivered, compared to the

six airframe designs and derivatives that are expected in the first decade of the 21st

century, as shown in Figure 1-3(b) [4, 5]. Figure 1-3(c) shows the pattern repeated in

human space flight, with a dramatic reduction in the number of human space flight

programs since the 1960's [107].

The trends illustrated above imply that an engineer graduating today can expect

her career to span just one military aircraft program, one human spaceflight program

and only a handful of commercial aircraft programs. While these trends testify to the

durability of past designs, it also is a symptom of longer development times, post-cold

war budgets and higher fuel costs. The result is engineers are provided with fewer

opportunities to develop the experiential knowledge that composes upwards of 70%

of the required knowledge for system-level design [41].

The question then becomes how to encourage the transfer of knowledge eluded

to in the LePatner quote above: How do engineers compensate for reduced program

Ir _
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(a) Military aircraft starts have slowed from a high of nearly
50 program starts in the 1950's [103].
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(b) Commercial airframe development peaked in the 1980's
and has subsequently dropped by 70% [4, 5].
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(c) There are only a small number of human spacecraft de-
velopment programs today as compared to 40 years ago [107].

Figure 1-3: Across the aerospace industry there are fewer program opportunities for
young engineers to gain systems-level experience.
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experience by learning from the the experience and mistakes of others? Two natural

solutions arise from this quandary: 1) place engineers in teams where individuals

can leverage each other's experience and 2) codify experience-based knowledge into

standard process.

By nature of the size and complexity of aerospace systems, team-based engineering

has been a de facto norm since the early 1990's when integrated product teams became

popular. Teams offer an opportunity to have each detail and decision reviewed by

many eyes, thus bringing to bear multiple sets of knowledge and experience. For

this reason, teams are demonstrably better than individuals at making safety-critical

decisions [125]. Through interacting, team members are able to develop pointers to

knowledge held by other team members. This is called transactive memory [151]

and enables teams to develop informal webs of knowledge. However, teams are not

without faults and team dynamics and culture can lead to groupthink or other forms

of dysfunction. It is therefore of value to identify which team traits (e.g. culture and

demographics) promote the exchange of tacit knowledge and therefore enable teams

to engage in team, or collaborative, systems thinking.

Standardized process offers an opportunity to codify best practices and facilitate

effective coordination among individuals and groups working on a complex problem.

As systems engineering practices have matured, standards and frameworks have de-

veloped to help structure and evaluate a given organization's systems engineering

practices. These standards can be as simple as specifying what information should

be presented at a gate review (e.g. Mil Standard 1521B) or as complex as specify-

ing the steps and necessary interactions during the design process (e.g. EIA 632).

The emphasis on standard process is also driven by contract requirements. The Air

Force estimates greater than 35% of program cost growth and schedule slips are

caused by failures to follow systems engineering practices and principles [87]. Many

aerospace and defense contracts now require some minimal level of process maturity

in an attempt to reverse decades of cost overruns and schedule slips. One such process

capability maturity index is the Software Engineering Institute's Capability Maturity

Model Integration: CMMI®. However, standard process is best applied to routine



tasks and many aerospace programs are novel concepts dealing with problems and

technologies without precedent. The art to process is determining when to standard-

ize and when to innovate. By better understanding how process is used to promote

systems thinking, process can then be better designed with that goal in mind.

1.2 Research Questions and Objectives

As motivated above, focusing on teams offers a new way to explore and understand

systems thinking. Because teams are comparatively stable units within programs,

an investment in a systems thinking team should have longer lasting benefits than a

transient systems thinking individual.

1.2.1 Research Objectives

This research began with a simple question: What is the structure and behavior of

systems thinking teams within the aerospace industry?

The primary objective of this research is therefore to describe collaborative sys-

tems thinking as observed through case studies of aerospace engineering teams and

explored further through interviews with aerospace engineers and managers. By com-

bining these field observations with insights from literature, a definition of collabo-

rative systems thinking was developed. An early definition of collaborative systems

thinking was used to focus the general inquiry and was refined over the course of

research.

The second objective is to identify heuristics for collaborative systems thinking.

While still descriptive tools, the heuristics provide guidance to teams seeking to en-

gage in collaborative systems thinking within aerospace teams. These heuristics were

derived directly from field observations and validated through a set of interviews with

aerospace engineers.

The third objective is to put together a theory explaining the influence of team

traits (e.g. demographics and culture) and process usage in enabling collaborative



systems thinking. Whereas heuristics are tied to specific contexts, a descriptive theory

generalizes across observed contexts to provide some explanation for the role of team

traits and process on a team's collaborative systems thinking abilities.

To summarize, this is the first known research to explicitly look at engineering

team systems thinking. This research builds upon past work on engineering sys-

tems thinking and draws insights from a wide body of literature. This research also

varies from the majority of engineering team research because of its use of practic-

ing engineers. Much engineering team literature relies upon student teams for data

despite some concerns over the applicability of student-derived results to professional

contexts.

1.2.2 Research Questions

As discussed above, this research is driven by one central question:

How do teams engage in systems thinking and what traits are common to these

systems thinking teams?

To guide this exploration, three secondary questions are also considered.

1. What is collaborative systems thinking and how does it differ from individual

systems thinking?

2. What are the empirically generalized (i.e. commonly observed) traits of systems

thinking teams within the context of the aerospace industry?

3. What observed mechanisms best predict collaborative systems thinking?

A set of quantitative and qualitative approaches were used to address these ques-

tions. The resulting theory is validated empirically via a small number of predictive

case studies.



1.3 Unique Relevance to Aerospace

This research belongs in an aerospace setting for two reasons: 1) aerospace engineers

are a self selecting and unique subset of the population and 2) the most fruitful areas

for research are those that cross traditional discipline boundaries.

1.3.1 Aerospace Engineers as a Unique Population

While other engineering fields face similar workforce issues, aerospace engineers are a

unique group as defined by their behavioral preferences. The Myers-Briggs Type Indi-

cator is an instrument for measuring behavioral preferences [29]. Databases of person-

ality types are maintained from which characteristics of professions may be deduced.

For instance, while 30% of the general population and 47% of the greater engineer-

ing population prefer "intuitive perception" behaviors, fully two-thirds of aerospace

engineers exhibit this behavioral preference. Characteristics of "intuitive perceivers"

include the tendency to think in abstractions and to see the 'big picture' [112]. Be-

cause collaborative systems thinking is likely dependent on the thinking preferences of

the individuals within the team, it is important to note that aerospace engineers have

different thinking and personality tendencies than other engineering disciplines. To

further emphasize the uniqueness of aerospace engineers, only one percent of the gen-

eral population are Myers-Briggs type INTJ (Introvert-iNtuitive-Thinking-Judging)

[74]; about 3% of civil engineers are INTJ [141]; and 20% of aerospace engineers have

the INTJ personality type [141].

The INTJ preferences for complexity, following sensible rules, and focusing on the

"what can be" rather than "what is" [74, 112] show in how aerospace engineers work

(e.g. in inventing new tools, rules and systems for manned space flight). However,

the INTJ type also is characterized by a desire to explore new ways of completing a

task and a resistance to following past procedures [29]. These seemingly contradic-

tory preferences may explain why engineers exhibit resistance to the use of standard

process, which is emphasized throughout the industry. NASA emphasizes systems

engineering through its handbook [129] and through initiatives at its research cen-



ters to continuously improve systems engineering practices [70]. The US Department

of Defense is striving to improve systems engineering practices across its purview

[87, 105]. Industry too is looking toward developing better systems engineering prac-

tices and more senior systems engineers [35, 65, 118]. By understanding the specific

relationships between aerospace engineers and process usage, processes can then be

tailored to complement their thinking preferences.

1.3.2 Innovation Occurs at Intersections

While the majority of aerospace research will and should continue within the tra-

ditional analytic fields, there is much to be learned by looking at the intersection

of aerospace-specific knowledge and other disciplines. These innovations are origi-

nating in finance, psychology, cognitive science, management, and political science

[37, 45, 49, 61, 89, 112, 139, 141].

The results are visible in the inclusion of real options to generate more flexible

designs and the use of cognitive sciences and human factors analysis to improve both

design practices and human-system interactions. From management and psychology

literature comes knowledge on how teams interact, patterns of behavior, and team

roles [16, 61]. From psychology and cognitive science, lessons on non-verbal think-

ing inform how engineers construct shared conceptualizations of a system [45, 49].

From political science and economics engineers can learn to leverage ambiguity in the

decision making and consensus building processes [37, 139].

In addition to learning from the theory and literature of other disciplines, there

is value in adapting their research methods as well. The strength of combining qual-

itative and quantitative research methods is that a greater richness of data can be

collected and analyzed. In addition, the data collected are grounded in practice and

are therefore of immediate value and applicability to industry. To use a systems anal-

ogy, leveraging social research methods allows for viewing the engineering team as

the system. By looking for ways to understand how the system works and ways to

affect positive change within the system, these methods bring a human factors ap-

proach to engineering design. Such research focuses on the social problems inherent



in engineering and the relationship between social and technical problems, the skills

that enable design, and the ways in which engineers think and interact.

1.4 Thesis Outline

The following five chapters, as shown in Table 1.1, outline the relevant literature, the

research methodology utilized, and results, contributions, and conclusions. Chapter

2 outlines past similar research and other pertinent inputs, defines the four critical

research constructs, and introduces two frameworks used to develop research tools.

The research methods used are discussed in Chapter 3. Particular attention is paid

to the concept of grounded theory methods and the use of both qualitative and

quantitative data in a series of interviews and case studies. The second half of Chapter

3 outlines the actual research instruments used in said interviews and case studies.

The first part of Chapter 4 presents examples of data analysis from each stage of

research. The second part of Chapter 4 synthesizes the results of data analysis to

address each research question and objective, as introduced in Chapter 1. Chapter 5

is a brief chapter highlighting the results of a set of validation case studies. Finally,

contributions to practice, implications for industry and academia, and directions for

future work are presented in Chapter 6.



Table 1.1: Thesis Outline

Chapter Content

Chapter 1: Introduction Introduce Research Questions and Objectives

Chapter 2: Literature Survey of Related Literature
Introduce Important Research Constructs
Proposed Literature Framework
Introduction to Grounded Theory Methodology

Chapter 3: Research Discussion of Quantitative and Qualitative Methods
Outline of Research Tools and Development

Examples of Data Analysis
Chapter 4: Analysis and

Answers to Research Questions
Address Additional Research Objectives

Chapter 5: Validation Results of Validation Activity
Summary of Contributions to Practice

Chapter 6: Conclusions Implications of Research for Industry and Academia
Future Work
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Chapter 2

Literature Review

Aeroplanes are not designed by science, but by art in spite of some pretence and

humbug to the contrary. I do not mean to suggest that engineering can do without

science, on the contrary, it stands on scientific foundations, but there is a big gap

between scientific research and the engineering product which has to be bridged by

the art of the engineer.

-British Engineer to the Royal Aeronautical Society, 1922 [148]

2.1 Background

Systems engineering was developed by the aerospace industry in response to the grow-

ing complexity of its products [66, 72]. Systems engineering provides a link between

the science and art of engineering [59] and is therefore an enabler of systems thinking.

The following is a brief discussion of the history of engineering, the origins of the 'two

cultures of engineering,' and the subsequent development of systems engineering.

2.1.1 A Brief History of the Engineering of Systems

The foundations of modern engineering were laid over thousands of years by the Greek

mathematicians and philosophers and Roman architects. These early engineers wrote

about their engineering success and failures, developed heuristics for design, and



attempted theories to explain why their machines did or did not work. Figure 2-1 is

a graphical counterpart to the following discussion of engineering history.

The ancient Greeks were philosophers. They developed the foundations for democ-

racy, geometry, and physics [102]. A practical people, the Greeks sought to apply their

scientific knowledge [76] in the pursuit of architecture (e.g. the Parthenon) and war

machines (e.g. the Helepolis). Many of the well-known Greek engineers were trained

as philosophers or mathematicians (e.g. Aristotle, Archimedes and Hero of Alexan-

dria). Among their contributions to engineering are the steam engine, the scientific

method, and the Archimedes screw.

The Romans were the heirs-apparent to the Greek tradition, but their approach to

engineering was markedly different. The Romans were developers rather than inno-

vators in their own right [76]. Their greatest contributions were in water engineering

and building. Vitruvius, an engineering architect of the Roman period, wrote what

are considered the first books on engineering. In these texts are early case studies

of design failures [114]. The Romans produced such engineering marvels as the Ro-

man baths, the first vaulted ceilings, and the Pantheon-still the largest un-reinforced

concrete dome.

After the fall of the Roman Empire, most of Europe fell into the Dark Ages, or

Middle Ages. During this time, the torch of scientific inquiry was passed to the eastern

expanse of the former Roman Empire. This is the height of the Byzantine empire

and the Islamic Golden Age. During this period, there was a separation of cultures.

Western civilization remained under the influence of Roman ideals of engineering.

Their aims were practical and focused on building [76]. It is during this time that

many of Europe's great cathedrals were built. Roman knowledge of vaults, arches,

and domes was utilized to create these soaring stone structures. At the same time,

Eastern civilization was influenced by Greek ideals on science and technology [76].

During this time Arabic numbers replaced Roman numerals and prominent Arab

artist/engineers published texts on mechanical devices.

However, it was not until the 14 th century that engineering as known today was de-

veloped. Engineering development was spurred in large part by the use of mechanical
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Figure 2-1: Highlights in the development of engineering.

power in place of human (mostly slave) power for the implementation of engineering

feats [76] and by the intersection of cultures, science, math, and the practical arts.

At this time, transmission of knowledge between the East and West created a fusion

of knowledge that launched the Renaissance, a period of great innovation in art and

engineering [76].

The Renaissance was a perfect storm of influences. Just as Eastern writings

reintroduced the West to the Greek writing on science and math, the printing press

permitted greater distribution of ideas, and advances in art enabled richer technical

communication. In the mid-1400's the invention of perspective drawings enabled

engineers to effectively convey three dimensions in a two-dimensional sketch [49],

shown in Figure 2-2. Once perspective was included in mechanical drawings, technical

information could be more widely shared and improved upon. The sharing of technical

information is evidenced by the contemporary appearance of similar drawings, often

with modifications and improvements, across large distances [49].

In 1420 Brunelleschi, an Italian artist and architect, designed and built the Dome

of Santa Maria del Fiore, using drawings and scale models to guide construction



(a) 13th century sawmill drawing. (From the (b) 16th century rotary pump drawing
Smithsonian Institution collection) by Ramelli. (From the Hagely Museum

collection)

Figure 2-2: An example of how the use of perspective enabled more accurate technical
drawings.

[53]. In the early 1500's Leonardo da Vinci further perfected the use of perspective

with his exploded view drawings, showing how his fanciful creations worked and

were constructed. The exploded view enabled even more technical information to be

encoded in a drawing. Individual components and their relative position could be

conveyed. Figure 2-3 is an excellent example of da Vinci's use of exploded drawings,

in this instance showing a weight-driven rachet device. Among da Vinci's engineering

legacy are a 720 foot-span bridge design that has been used in modern construction

and a codex on the flight of birds [53]. In 1588 Ramelli published what is regarded as

the first engineering handbook. Shortly thereafter, Descartes developed the Cartesian

coordinate systems and Galileo published the first book with analytic expressions for

the strength of materials.

These improvements in drawings enabled contemporary inventors to communicate

their ideas to others and for ideas to be subsequently improved upon by others. The

Renaissance was a period in which engineering transitioned from an empirical field to
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Figure 2-3: An example of da Vinci's use of exploded drawings to convey technical
information. (From the University of Delaware Library collection)



a learned and studied field. In the three subsequent centuries, advances in design were

complemented by striking advances in mechanics and analysis by the likes of Isaac

Newton and Joseph-Louise Lagrange, which laid the foundation for the spectacular

engineering accomplishments of the industrial revolution.

Up to this point in history, it is noteworthy that the great engineering accom-

plishments come from men trained not as technologists or engineers, but as artists,

philosophers, and inventors. As engineering entered the Industrial Revolution, this

paradigm shifted. During the 19th century, engineers craved greater social standing

and differentiation from technicians, mechanics, and skilled craftsmen [15]. While sci-

ence and math training were already essential components of the engineering toolbox

[49], engineers sought to align themselves more tightly with science to capitalize upon

it's growing respectability within gentrified society [15]. While the shift in emphasis

ensured engineers' professional status, this transition came at the neglect of engineers'

social, political, and non-verbal skill sets [15, 49]. Culturally, "hard thinking" has

come to be seen as superior to soft skills because of its objectivity and transparency.

As a result, most engineering research in academia focuses on furthering analytic

tools and capabilities: the science of engineering [49]. Among the recent advances

in engineering analysis are computational fluid dynamics, finite element models for

structural analysis, optimization algorithms and complex system-level models. Most

engineering research addresses technical problems with technical solutions.

However, much of design is ill suited to verbal and mathematical expression [49].

Design, once taught through apprenticeships, has become only a small portion of

today's engineering curricula in part because much of design is not easily reduced

to words, but is better represented by pictures and visual images: art, not science

[49]. From this change in engineering education-this shift from emphasizing percep-

tion, mind experiments, and non-verbal communication as part of engineering to an

emphasis on objectivity and scientific analysis-come the two cultures of engineering

to which Griffin refers [59]. For centuries, engineering was both an art and science,

and only in the past 200 years has science trumped the role of art and creativity.

Advances in analysis have allowed for systems so complex that engineering's ability



to manage the design process is strained, resulting in miscommunication, team dy-

namics issues, and new and unanticipated modes of systems failure, often brought

about by a failure to consider the social aspects of a system. This is in part because

many of the intellectual components of technology are nonscientific and nonliterary

[49]. Only a small fraction of engineering decisions are based on analytic calculations,

the rest requiring consideration of social, political, and environmental issues that are

difficult to quantify [15].

Following the historical pattern that great engineering occurs at times when art,

science, and design merge, the next generation of engineers must bridge the science-

design gap in order to successfully address the difficult problems facing today's engi-

neers [15, 59].

2.1.2 The Development of Systems Engineering

Systems engineering is a set of engineering practices used to define a system config-

uration to meet an operational need: it is an evolutionary process that transforms

abstract notions into defined functions and forms [21]. Former NASA Administrator

Michael Griffin refers to systems engineering as the bridge between engineering sci-

ence and design [59], allowing for the use of creativity and intuition in the engineering

process.

First developed by scientists and engineers, systems engineering grew out of

the coordination of large-scale technology development projects [73]. Early prac-

tices were developed by scientists and engineers as a means to coordinate efforts

on large projects. These practices borrowed from those already in use at Bell Labs

and Western Electric, which defined formal specifications and structured relation-

ships between engineers and manufacturers [73]. Developed during World War II and

championed by the likes of Bernard Schriever, systems engineering was adopted by

the military [66, 72]. Previously, military aircraft were purchased and then retrofitted

with weapons and other modifications. It was Bernard Schriever who first thought

to design 'entire systems' [72]. This required close coordination between the military

and industry and exposed the need for a process to coordinate and standardize ef-



forts. Schriever found the solution in systems engineering, the benefits of which were

documented and recognized in the 1949 Ridenour Report [73]. The development of

systems engineering coincided with a period of dramatically increasing complexity.

The number of parts in a gas turbine engine increased 120% between 1946 and 1957,

while the engineering hours required to design a fighter aircraft increased by a factor

of 82 between 1940 and 1955 (from 17,000 hours to 1.4 million hours [72]). Systems

engineering offered a way to manage this complexity at a time when the increased

knowledge required for systems design was forcing a shift to multidisciplinary teams,

thus creating more social complexity in the design environment. This balance was

referred to by Simon Ramo as a race of "systems engineering versus the increasing

complexity of technological civilization" [72].

Schriever and his group adapted and improved upon systems engineering practices

throughout the intercontinental ballistic missile (ICBM) program, although it wasn't

until 1956 that the Air Force Western Development Division and contractor Ramo-

Woolridge came to an agreement about what systems engineering actually entailed

[73]. Despite this, the first courses in systems engineering were taught at MIT in

1950 and by 1962, several prominent colleges were offering graduate degrees in the

discipline. In 1957, the government mandated cost estimation as part of systems

engineering, establishing the practice as part of the entire product lifecycle [73], and

the first text on systems engineering was published by Harry Goode and Robert

Machol [72].

By the 1960's, there was a widespread consensus that design was poorly under-

stood and had become a bottleneck within system development, and research to

identify systematic procedures, or the first standard processes, began [19]. However,

adoption of systems engineering practices remained scattered at best. Wernher von

Braun and the Marshall Space Flight Center (MSFC) did not embrace systems en-

gineering methods until 1968 [73]. This close-knit group had worked together for

over 30 years and understood not only the technical component of their task, but

the social dynamics of their group. This made formal coordination unnecessary until

contractors were brought in to assist on the Saturn V project. At this point, von



Braun recognized the need for formal planning, and systems engineering practices

were integrated [73].

In 1991 the International Council on Systems Engineering (INCOSE) was founded

to advance the practice and knowledge of systems engineering. In 1997 and with in-

terest from the Office of the Under Secretary of Defense, one of the largest projects

to standardize and assess systems engineering process maturity was begun: the Ca-

pability Maturity Model Integrated (CMMI ® ) Project [23]. Even after the CMMI

maturity model became the standard for measuring systems engineering capability

maturity, one study estimated greater than 35% of cost growth and schedule slips in

the aerospace industry were due to failure to follow established systems engineering

practices [87] and the National Defense Industries Association cites an industry wide

failure to recognize the importance of systems engineering or use consistent definitions

and approaches [105].

Systems engineering is one of the most significant advancements in modern day

aerospace design [98]. Engineering science and design are not ends in of themselves,

but powerful components of the engineering process that are integrated by systems

engineering practices [98]. The framework provided by systems engineering focuses

engineering effort: emphasizing creativity and iteration early in design and structured

analysis and decision making during detail design. This 'normative' design process

runs counter to the reactive tendency of engineers, but has been shown to better

handle complexity in design [136].

2.2 Insights from the Literature

[Ajirplane design, in common with most modern engineering practice, must be

fundamentally viewed as a social activity wherein, technology, processes and people

must be treated as a unified whole a true "systems perspective".

-John McMasters and Russ Cummings

Engineering is a socio-technical activity [63]. While commonly viewed as a techni-

cal activity, the social component of engineering is an important contributor to how



decisions are made, new ideas accepted, and ultimately design is executed. This sec-

tion focuses on insights from the literature, many of which come from the intersection

of disciplines, and a framework for structuring further inquiry.

2.2.1 Contributing Factors to Engineering Team Performance

Team performance is linked to many variables. There is a positive relationship be-

tween the average abilities of a team's members and overall team performance [157].

Perhaps more important is that a team has members with differing and complemen-

tary skills and knowledge and a strategy to capitalize on those skills and knowledge

[86]. Teams also require support from the surrounding environment in the form of

clear delineations of authority, coaching, and clear and consequential goals [61]. Fi-

nally, teams must be motivated to perform. Fundamentally, individuals are motivated

by achievement and conformance [64]. In a team setting some level of conformance

motivation is required to get members to move in the same direction. However, en-

gineering culture is typified by achievement motivation, thus identifying a potential

cultural barrier to effective engineering teams [84].

Tools and processes also contribute to team performance. Teams are supported in

their work by a variety of information technologies. These enable greater access to in-

formation necessary to explore the solution space and make design decisions [91]. The

reduction in communication costs has enabled teams to more easily exchange informa-

tion and also enabled team membership to change more frequently [91]. Flexible team

membership has become one way in which knowledge is transferred between teams

[85]. While this membership transfer helps to spread knowledge between teams, for

any given team these comings and goings can negatively impact a team's transactive

memory, or shared pool of knowledge and references to with whom that knowledge

resides [151].

Some types of team knowledge can be standardized across teams. Often this

knowledge takes the form of processes that list expectations or specify in what order

steps occur. Such standards reduce the amount of team-specific knowledge and allow

individuals to quickly and efficiently transition between teams without the need to



learn new design practices. The movement of individuals across team boundaries

also allows for the sharing and testing of team-specific standards, which helps to

innovate and justify the existence of standards [61]. As such, standards facilitate

individuals working across multiple teams, and individuals working across multiple

teams facilitate identifying and sharing the best team practices.

Engineering Cultural Influences

There are many stereotypes about engineers, images that engineers themselves sub-

scribe to. These typologies form the basis for engineering culture, thus influencing

ways in which engineers interact with one another and affecting team performace.

The three main components of engineering culture are that it is technology centered,

that engineers equate success with organizational power, and that engineers have self-

centered tendencies [97]. The result is a group who is typified by non-communicative

members who prefer to work alone and yet recognize the need to work in teams and

communicate [84].

The five engineering archetypes are the Maverick, the Expert, the Macho, the

Technophile and the Non-Communicator [84]. These archetypes are discussed below.

The Maverick The maverick typifies the engineer's desire for autonomy and his

belief in the importance of the lone engineer. These beliefs defend late nights

at work, a preference for individual work over team work, and an ethic that

relies on the individual, making it at times difficult to rely on others' results

and contributions.

The Expert The expert typifies Griffin's engineering science culture. This archetype

is based on the belief that 'real engineering' requires a rigorous theoretical back-

ground and is expressed in the enjoyment engineers derive from talking about

their work in scientific terms. The pitfall of the expert is an inability to com-

municate with non-engineers, an inability to admit mistakes and a tendency to

engage in overt displays of their expertise. The "expert" archetype explains the

chain of events that led to the fateful decision to launch the Challenger in Jan-



uary 1986 [84]. Because the aerospace culture is comprised of many specialists

[17], the expert archetype explains why multi-disciplinary work is difficult in

the aerospace engineering culture. This tendency towards specializations makes

the transfer of tacit knowledge across boundaries (cultural or functional) more

difficult [156].

The Macho The macho archetype is linked to the "Right Stuff." Macho engineers

find strength in masculine ideals and believe there is only one "right" answer.

Tendencies towards dominance, aggression, and a constant need for respect

typify the macho and are linked to the evaluation of one's technical competency.

Macho's are achievement motivated, competitive, but also arrogant. Teamwork

is a large hurdle for the macho [84]. Because the aerospace culture is linked to

the military and defense [115], the macho best typifies the aerospace engineering

culture.

The Technophile The technophile experiences an inherent conflict between the

craft nature of engineering and the academic rigor of engineering. Technophiles

enjoy engineering in part because of the prestige that comes from working with

technology. In fact, their love for technology drives technophiles to work late

nights and to bring their work home with them, habits not widely accepted in

most professions [84].

The Non-Communicator The non-communicator does not value communication.

This archetype is closely related to the technophile, and as such, time spent

communicating is seen as negative because it is time away from technology.

Because non-communicators spend so much time with technology, they tend to

perceive human interaction as systematic and routine, much like the natural

laws that govern technology [84]. This archetype is linked to the prototypical

nerd as portrayed in movies and on television.

In his study of engineering culture, Paul Leonardi observed that while engineers

recognize process as an important part of being an engineer, they believe these rules



should be derived by the engineers, thus justifying their habitual tendency to deviate

from standard process [84]. This matches with the types of beliefs and behaviors

suggested by the predominate Myers-Briggs personality type within aerospace engi-

neering: Introverted-iNuitive-Thinking-Judging. Additionally, Leonardi found that

engineers are habitual procrastinators, tend to be achievement motivated, and derive

satisfaction not from the process, but from the final product and whether the "right

answer" was found [84]. Yet, engineers state preferences for completing work in ad-

vance, are often motivated by fear of failure, express a desire for ownership of their

results and recognition for their accomplishments [84], and state a preference to work

in an environment with moderate coordination [111].

In a world of increasing complexity, teamwork and standard process are essentially

mandated to cope with complexity. These archetypes suggest common beliefs and be-

haviors among engineers that are inconsistent with teamwork. For example, typical

engineering stereotypes emphasize working alone, working long hours, and promote a

sense of competition over finding the "right" answer. While much anecdotal evidence

exists to support these engineering cultural typologies, the fact is that many pro-

grams exhibit positive examples of teamwork and program success. Therefore these

typologies provide caricatures of a subset of perceived and self-identified engineering

behaviors. In actuality, many engineers embrace teamwork, willingly share data, and

recognize the importance of technical and social skills.

Examples of Engineering Team Failures

It has been said that more is learned through failure than success because it is easier

to identify reasons for failure. However the reasons for failure are often treated as

closely-held secrets; causes for embarrassment; liabilities. For these reasons, the best

analyses of aerospace failures come from NASA accident investigation reports. Being

a publicly funded entity with a congressional mandate to report out its failures,

NASA reports provide detailed information on the team and organizational dynamics

surrounding its three deadly system failures.



The Apollo 1 accident was technically caused by a spark that ignited a fire in a pure

oxygen environment. The fire was fueled by flammable materials within the capsule

and efforts to extinguish the fire were stymied by an inward opening capsule door [9].

From a design standpoint, the failure was caused by a failure to imagine what could

happen to the system. A pure oxygen environment and inward opening hatch were

used on both Mercury and Gemini. Because these programs succeeded, fundamental

assumptions in their design were not questioned [9]. Operationally, emergency test

procedures were not in place. Emergency fire, rescue, and medical teams were not

present at the test. Additionally, NASA had 'go-fever' and was willing to take greater

risks in order to achieve its goal. This meant there was a cultural pressure to not

ask important systems level questions if the answers to those questions might further

delay the program. A result of the accident was the creation of the Aerospace Safety

Advisory Panel to oversee human spaceflight systems procedures and management

policies [30].

In the case of the Challenger accident, the technical reason for failure was a

leak in the o-ring of the solid rocket booster. However, the Rogers Commission

Report cited the original o-ring design process and the NASA launch decision making

process as contributing factors. The shuttle o-ring design is based on the Titan

III. This successful and reliable design was 'improved upon' by the addition of a

second seal. This design change gave a false sense of improved reliability [114]. The

Rogers Commission Report cited a decision making culture at Marshall that sought

to "contain potentially serious problems...rather than communicate them forward."

This meant that initial Thiokol concerns about launching were not conveyed to the

final decision makers [116], thus inhibiting a decision made on complete systems

information. Another finding faulted the NASA team as a whole for failing to consider

the role of icing on crew safety. NASA put the burden of proof on showing that

conditions were unsafe, rather than safe. Despite hazardously icy crew evacuation

slide-wire baskets, this higher-level systems concern was ignored in favor of a go-for-

launch decision [116]. Again, a culture of 'go-fever' contributed to this system failure.

Strong pressure to launch enabled groupthink that led to a go-for-launch decision.
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Columbia is the most recent of the NASA accidents and had theoretically benefited

from the recommendations of previous accident reports. Yet, the Columbia Accident

Report cites a continued trend to underemphasize safety and risk management as

contributing to the Columbia accident [30]. Other contributing factors cited in the

report include 1970's design practices and a failure to investigate both why foam

separated from the main tank and any possible implications of foam impacts [30].

The 1970's design procedures depended on relative functional isolation with late-

stage design integration. As a result, issues in the main tank design were not identified

during design. Previous shuttle flights (80%) experienced foam loss. Engineers were

aware of the situation, but did not ask if this presented a threat to the orbiter. The

predominant issue then was not an over-eagerness to launch, but a failure to recognize

that a small failure could have such large systems implications.

A common theme across these examples is a myopic tendency to ignore higher-level

systems issues or to ignore lessons learned on past systems. This failure to learn from

past design paradigms is the reason that human error in anticipating design failure

is the single most important factor limiting systems reliability and safety [114]. It is

for this reason that systems thinking is important for engineering aerospace systems.

2.2.2 What is Systems Thinking?

Systems thinking is an age old concept. Eastern philosophies emphasize the im-

portance of wholes and the multitude of interconnections that exist in nature. In

the modern sense, systems thinking has its roots in the development of systems

theory in the 1930's. Systems dynamics, systems science, and systems engineer-

ing all lay claim to definitions of systems thinking. The commonalities between

these definitions include an emphasis on wholes, system-level issues, and some de-

rived ability to judge and choose between alternatives based on their system-wide

impact [1, 7, 70, 127, 133, 142, 149].

Generic definitions of systems thinking vary, defining the skill as the use of one's

abilities to apply sound reasoning in a given situation [42], to the application of



different types of thinking. Russell Ackoff defines systems thinking as a systemic

mode of thinking based on holistic as opposed to reductionistic methods [1]. By

his definitions, reductionistic thinking begins by analyzing the parts of a whole, and

from the properties of the parts, deriving the properties of the whole [1]. By contrast,

holistic thinking begins with the system, and derives the parts from the properties

of the whole [1]. Given that systems by their nature are greater than the sum of

their parts, this definition elucidates the benefits of applying systems thinking to

engineering systems. Another definition of systems thinking emphasizes the role

of understanding interactions within complex systems as a departure from linear

thinking rooted in simple cause and effect logic [149].

Systems thinking definitions derived from systems dynamics include and build

upon the components of the generic definitions, emphasizing the role of holism, in-

teractions, and dynamics. Definitions based in systems dynamics are typified by an

emphasis on identifying patterns of behavior and representing these patterns through

cause-effect relations [122]. To support exploration of these cause-effect relationships,

systems thinking is supported by "a body of knowledge and tools developed over the

past 50 years to make full patterns clearer and to help us see how to change them

effectively" [127]. One such tool is systems thinking diagrams, a method of visualizing

system behavior through a series of feedback loops, stocks (accumulations), and flows

(actions that influence stocks) [127].

Figure 2-4 shows five different systems thinking definitions and the common

themes among them: complexity, interrelationships, context, emergence (or dynam-

ics) and wholes.

Systems Thinking within Engineering

While systems thinking within the engineering community is still concerned with the

system as a whole and elucidating patterns of behavior and interactions, engineers'

goals are primarily to manipulate technology, manage systems with ill-understood

cause and effect relationships and to apply systems thinking before the system is

realized, thus limiting their ability to learn through observing the system. As such,
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Figure 2-4: Common themes across systems thinking definitions. [1, 28, 54, 127, 138]

the engineering definitions of systems thinking place a greater role on interactions

and interfaces because these contribute to emergence. 1

Dr. Moti Frank was one of the first people to identify systems thinking within engi-

neering as a concept distinct from systems thinking within systems science. Through

examination of literature and interviews with engineers, Frank derived 30 laws of

engineering systems thinking [52]. These laws, tailored to the challenges, tools and

context of engineering, include awareness of the implication'of breaking a problem or

systems into smaller parts, an emphasis on the interactions between systems elements,

and specifically mention the role of the designer and operator as critical components

of the system. Included in Frank's laws for engineering systems thinking is an ac-

knowledgement that multiple individuals are required to understand an entire system

[52]. This statement links the concepts of systems thinking and teams.

A second definition of systems thinking applied to engineering contexts was de-

veloped by Dr. Heidi Davidz through a series of interviews with over 200 practicing

engineers. Beginning with a baseline definition, Dr. Davidz solicited feedback on what

systems thinking meant in practice. The definition that emerged from her research

is that systems thinking is "utilizing modal elements to consider the componential,

1From this point onward, the term 'systems thinking' refers exclusively to systems thinking as a
skill expressed by a single engineer
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relational, contextual, and dynamic elements of the system of interest" [35]. In other

words, effective engineers use a variety of tools, methods, thinking styles, models and

processes to enable consideration of the context, interrelationships, and dynamics of

a system and its elements. Further, this research identified a set of enablers and

barriers to systems thinking development. Key among these are individual charac-

teristics, experiential learning, and an environment that values systems skills [35].

This research established that there exists consensus on these key enablers of systems

thinking development [35].

Traits of Systems Thinking in Practice

In modern engineering, social skills are just as important as technical skills. Systems

thinking, with its emphasis on social and technical interactions and influences, enables

engineers to better mobilize, organize, and coordinate resources (human, financial and

physical) towards the completion of systems design [15].

The skills and benefits of systems thinking enhance problem solving ability [70].

Traits of systems thinking include the ability to understand dynamic systems behav-

ior and to identify patterns resulting from interactions [122, 142]. The identification

of feedback processes, or closed-loop thinking, is used to explain the observed pat-

terns of behavior [122, 142], thus enabling action to influence behavior. The ability to

recognize stocks and flows, sometimes referred to as structural thinking, is also a skill

of systems thinking [122, 142]. Systems thinkers are also able to identify and under-

stand the impact of time delays between system inputs and reactions, enriching their

understanding of feedback loops [122, 142]. Recognizing the limits of assumptions

and presence of non-linearities in a system are also crucial to effective systems think-

ing [142]. Finally, to be an effective systems thinker, one must be familiar with the

specific knowledge required by the problem's context and have the ability to leverage

both quantitative and qualitative data towards its solution [142].

~il~-i'i:'- ----~iil-l i;j-"l''-:-; i*--; -;'-i-" :-~*~~"ii;i ~;~ -;;i-,-l -l~;;r--i;;-~ 1:.. i-;:i-i-ii-ri;i;r~r;i~~-~~~~~~~-~~~l_



Influences on Systems Thinking Development

It has been shown that environment affects an individual's perceptions and relation-

ships with the surroundings, thus impacting thinking style [110]. Within a given

context, an individual's thinking style can be influenced and modified through inter-

ventions [110]. Individual traits, such as personality type, are also thought to influence

behavior preferences [147] and therefore affect systems thinking ability [112]. Within

the personality-as-influence school of thought, intuitive thinkers are particulary suited

as systems thinkers. Intuitive thinkers prefer to work with abstract concepts, exhibit

creativity, enjoy complex problems and are considered 'big picture' thinkers [15]. By

this model, systems thinking is not a natural mode for engineers, who tend towards

rational thinking [149]. Within engineering rational thinking, dominated by analysis

and data, has a tendency to overrule intuitive thinking. In reality, both are necessary

for systems design [149]. Models, causal loops, interaction matrices, requirement nets

and behavioral diagrams are a few of the many tools developed to assist with systems

thinking within the context of engineering [64].

2.2.3 Extending Thinking to Team Settings

Thinking is a mental process, defined in large part by its outcomes: the actions and

positions that result from thought. According to the Merriam-Webster dictionary,

"to think is to form an opinion, or an intention to act." Within an engineering

context, thinking is purposeful, reasoned and goal-directed action towards the solving

of problems. The elements of thinking in this context are decision making, problem

exploration (creativity), judgement of alternatives, and ultimately problem solving [6].

The process begins with an ill-defined problem and uses recalled knowledge (memory)

and other inputs towards solving the problems.

Thinking can be a team activity, the result of social interactions through which

team members take in information, interpret that information, and recall past in-

formation as a group [6]. Because teams have multiple people contributing their

knowledge and interpretation of that knowledge, teams are deemed better at mak-



ing decisions, especially in safety critical situations. However, team skills are more

difficult to develop , requiring practice as a team [127].

Team thinking is like having parallel processors: it only works with communica-

tion between the processors [100]. Team thinking emerges from the intersection of

individual team members' thinking, their behaviors and team processes [31]. The re-

sult is greater than the sum of the individual thoughts [31], enabling a team to deliver

more value than a group of ,individuals. Throughout the process of problem solving,

teams use communication to stimulate their thinking and handle uncertainty inherent

in design. Brainstorming, team norms, and processes enable this communication [6].

While there are no agreed upon measures for team thinking, there is consensus

that process and culture are influences [47]. Shared mental models do not represent

an effective way to measure team thinking as the strength of team thinking is in

the heterogeneity of team member knowledge, and shared (or team) mental models

measure the level of shared knowledge [31]. Good measures of team thinking will

address its holistic nature, respect unique individual knowledge in deriving collective

knowledge, and address the dynamic nature of team knowledge [31].

Design Thinking in Teams

One focus of team thinking research is design thinking. Much research has focused on

the way in which groups execute design, noting the role of communication, process,

and behavior in enabling successful design.

The design process has five basic elements: analysis of the need of problem (explo-

ration of problem space), generating ideas to address this need (the creative process),

evaluation of those alternatives (comparison and selection), initial design, and final

detailed design [143]. Within engineering, this process is systematic and developed

by designers to aid in the design of systems or processes that satisfy an end user's

needs within a set of constraints [45].

During the design process, several types of thinking are engaged. Roughly, these

thinking types can be categorized as either divergent or convergent. Divergent think-

ing operates in the concept domain, encapsulating the steps of generation and explo-



ration [45, 136]. Convergent thinking operates in the knowledge domain and consists

of comparison and selection [45, 136].

While the creative process requires both divergent thinking to explore the problem

space and convergent thinking to act upon that exploration, the majority of engineers

express a preference for convergent thinking [44, 136]. This rush towards convergent

thinking is a natural thinking mode engaging heuristics to reduce complex situations

into manageable pieces and enable quick decisions despite uncertain information [55].

This situation is common in engineering even though purely convergent thinking can

lead to lower quality outcomes.

Therefore, effective design thinking includes both convergent and divergent com-

ponents, enabling the exploration of the problem space and critical analysis of the

solutions space [136]. Characteristics of effective design thinking include the ability to

tolerate uncertainty, keep sight of the big picture, make decisions despite ambiguity,

think and take action as a team, and to communicate using the multiple languages

of design [45]. The references to big picture thinking and tolerating uncertainty draw

clear parallels between design thinking and systems thinking. Further, design think-

ing specifically references the ability to think as a team, making it a logical bridge

between systems thinking and collaborative systems thinking. As such, the enablers,

barriers and traits of design thinking are extremely pertinent to research into collab-

orative systems thinking.

Normative Design Process as an Enabler of Design Thinking

Research into design theory and thinking follows three paths: normative, empirical

and design-as-art [136]. Normative research tends to propose systems methods for

engineering design: processes that are based in rational analysis. By contrast, empir-

ical research shows the methods prescribed by normative research are rarely followed

in practice, resulting in a rejection of the belief design can be modeled. The design-

as-art camp falls somewhere in the middle recognizing designers need flexibility in

approach to react to context, but gain efficiencies by borrowing from pre-established

procedures [136]. Which of these perspectives works best depends on the problem.



As Einstein said, imagination is more important than knowledge. Consistent

with this belief, Einstein advocated for an emphasis on capacity building rather than

information gathering [137]. Being creative is, after all, a skill or capacity; a way

of thinking rather than a knowledge base. Exploration and concept generation are

among the first steps in the design process, and both require divergent thinking

and creativity. A creative environment facilitates design by enabling teams to break

with previous patterns of thought to explore new regions of the goal space [143].

Yet, engineers often have a "them vs. us" attitude that inhibits their own creative

environment [152].

Observations of teams given design problems shed some light on effective patterns

and maintaining a creative environment for complex systems design. These teams

spent on average two-thirds of their time addressing the content of the design problem

and one-third addressing the process by which to address the design task [136]. The

most time was spent on analysis, or examining the elements of the design space and

their interrelationships. Consequently, very little time was spent generating solutions

based upon this analysis. Rather, following human tendencies towards satisficing,

some workable solution is quickly passed through analysis, and only after it fails is

the goal space further explored [136].

Out of these observations came two natural design processes. The first process

most resembles the natural thinking of an engineer. The process relies heavily on

convergent thinking, narrowing the design space early by failing to ask questions

early, thus maintaining harmony within the team. While the process is quick, it does

not handle complexity well because of a rush to evaluate the first design proposed

rather than engaging in analysis of the problem [136]. The second process more

resembles the processes defined by normative design theory. The second process is

more time consuming and requires more team interaction. However, because more

time is spent up front on analysis the quality of designs are better, and the process

can better deal with complexity [136].

The difference between the two processes is whether the team asks a lot of ques-

tions up front. Early questioning, in turn, is most likely in heterogeneous groups with



a culture that is receptive to questioning and divergent thinking styles [136]. This

example shows the constructs of team thinking, culture, and process usage are tightly

intertwined.

2.2.4 Frameworks Supporting Further Inquiry

Two frameworks are provided here; compilations of the above insights from literature.

These frameworks are used to focus the research instruments discussed in Chapter 3.

A Framework Linking Culture and Process

Culture is an abstraction used to describe and explain a group's behavior. Three

levels of characteristics can be used to describe a group's culture. These are a group's

artifacts, its jointly held and vocalized beliefs and values, and the assumptions, sub-

conscious or take-for-granted, that underly the group's behavior [126].

Supplementary to an organization's culture are its structures and procedures, or

processes. When these two together act in a consistent manner ambiguity within

the organization is reduced, and behavior is more predictable. However, when cul-

ture and process are inconsistent, the result is a weakened culture [126]. Within an

organization, a strong culture is important because it contributes to motivation, ori-

entation and control of the organization [38]. For example, individuals are motivated

by two goals: achievement and conformance [64]. Therefore a culture that stresses

achievement may find it more difficult to get engineers to follow strict processes, while

a culture that stresses conformance may not be as innovative.

A study of new product development showed that the difference between success-

ful products and those which failed was linked to the "organic" relationships formed

on the successful teams [43]. The organic relationships and subsequent changes in

communication norms and methods in the successful teams are an example of how

culture influenced a team's process and improved its success rate. The teams that

maintained traditional defined rules and limited themselves to the organization's es-

tablished process were less likely to succeed in part because the culture and process



did not enable enough transfer of information for the teams to design successful

products [43]. Because culture is deeply ingrained in groups, it is easier to change

processes than culture [150] and therefore links between culture and process help with

identifying leverage points when tailoring process to a given culture.

Organizational
Culture

Standardized
Technical Process

Figure 2-5: Framework linking aspects of culture and process.

Figure 2-5 shows a proposed set of ways in which culture and process are linked.

The left column of the figure is based on Schein's framework for cultural characteris-

tics: team norms, espoused beliefs and underlying assumptions. To these three traits

social networks have been added with the justification that culture is the result of

interactions between people. The right column represents those aspects of process

(both the artifacts and strategies) that parallel culture. These relationships between

culture and process are described below.

Undocumented team norms vs. Documented tasks and methods Norms,

tasks, and methods are all observable behaviors. Team norms are emergent



behavioral tendencies of groups, part of their culture. Process-related behav-

iors are specified top-down via required tasks and recommended methods for

completing those tasks. When behaviors on both sides are complementary, it

follows that teams should be successful. Likewise, if team norms are acting at

odds with the process's tasks and methods, the team will be dysfunctional.

Espoused beliefs vs. Vision statements/strategic goals Espoused beliefs are

shared and articulated values and beliefs a team has about its environment,

goals, etc. These beliefs develop within a group as a result of shared experiences.

Vision statements articulate the goals and beliefs of a group. In this research

context, the espoused beliefs of interest are those of the engineering culture and

unique team subculture. The vision statement is a product of the organizational

culture. When a team is operating with a set of goals and values that conflict

with the organization at large, the team is not likely to be effective. This is not

to say the team's beliefs must be the same as the organization's, just that they

should not conflict with the organizational values.

Underlying assumptions vs. Strategy for standardization The underlying

assumptions are difficult to observe, but inform team beliefs and behaviors.

Likewise, the reason an organization institutes standard design processes may

be multi-faceted and go far beyond the obvious reasons. Partnerships, contract

bids, and politics are all reasons why an organization might pursue process

standardization. While not inherently poor reasons, if employee stewardship

and a genuine desire to improve the product or service are not high among the

organization's reasons for standardizing process, the changes are likely to fail

to result in meaningful improvements.

Social networks vs. Process flow maps and organizational charts Culture

is the result of human interactions. Therefore the web of interconnections and

interactions within a group impact culture. Likewise, process flow maps and or-

ganizational charts are developed to explain the way people should interact both

from a social, hierarchical standpoint (org. charts) and in terms of completing



a task (process diagrams). As with the previous comparisons, the cultural el-

ement is emergent and bottom-up, while the process element is consciously

constructed and top-down. Process maps, while useful, cannot contain enough

specific information to drive all necessary design interactions. "Short-cutting"

a social network enables innovation within both the product and process.

Framework For Exploring Team Traits

In addition to the interactions between culture and process, insights from the liter-

ature suggest that team characteristics may influence team-level systems thinking.

Figure 2-6 shows team traits included in the exploration framework. Below is a

description of each component within the framework.

Team Diversity Heterogeneity is a team asset and is linked to better team perfor-

mance [61]. Diversity also limits the risks of groupthink [69]. Pertinent elements

of this concept are the diversity of degrees awarded to team members and the

number of different disciplines represented on the team.

Team Experience Experience is an enabler of systems thinking [35]. The ability

to leverage a greater body of past experiences is one reason teams are a better

decision making unit than individuals in safety critical situations [124]. This

research is focused on the relevant engineering experience of the team members.

Team Environment The concept of creativity is closely linked with systems think-

ing [143]. Tangible and intangible components of the work environment con-

tribute to creativity. Using multiple levels of abstraction to communicate within

a team is linked with good engineering design thinking [45]. The tools and phys-

ical spaces available to a team will dictate with what means they communicate

(e.g. 'war rooms' provide an informal venue to share and interact with pictures

and sketches whereas teams using virtual shared spaces may lack the ability to

jointly manipulate images and ideas).



Collaborative Systems Thinking
[Evaluated based on team self-

assessment and 3rd party assessment]

Figure 2-6: Framework showing team traits explored as possible contributors to col-
laborative systems thinking.



Team Cognition Collaborative systems thinking is an instantiation of team think-

ing. Team cognition is a logical pre-requisite with a set of literature-identified

traits [124]. Testing for the presence of these traits will help in evaluating

whether the observed behaviors are the result of team-level systems thinking or

strong individual systems thinking. Such traits include valuing teamwork, hav-

ing a strong sense of team, and good mutual awareness of other team members.

Technical Design Process Well designed, mature technical processes have certain

consistent components. A concentration on analysis before evaluation enables

better handling of complexity [136]. These processes also enable individual and

teams to identify and understand their place and role within the organization

and process as a whole. Additional research suggests the act of discussing and

agreeing upon additional communication processes within a team improves a

team's odds of success [43]. Metrics such as CMMI ® capability maturity are

an indicator of good process design, but not necessarily an indicator of good

process implementation. Measures of actual process usage, process tailoring,

and team-agreed upon practices round out the evaluation of technical process.

2.3 Critical Research Constructs

When undertaking exploratory research it is important to first identify, define and

explore key constructs pertinent to the topic. Within the context of a single disserta-

tion, only a small realm of aerospace engineering design can be addressed. Given the

recent industry emphasis on process and capability maturity, a growing realization

of the impact of 'soft' issues, and a desire to further explore systems thinking within

teams, the following four research constructs were identified: collaborative systems

thinking, teams, process, and culture.

A natural working unit within large, complex projects, teams may offer an oppor-

tunity to leverage scarce systems thinking resources more efficiently. By expanding

research on engineering systems thinking to the team level, additional knowledge will



be generated to help design more effective methods for fostering systems thinking

skills within the aerospace workforce.

The following are discussions of each of the four critical research constructs. In-

cluded in each discussion is a construct definition, examples of the construct in an

aerospace context, a brief treatment of any validity concerns, and a list of construct-

related metrics. The one exception is that no examples are provided for the col-

laborative systems thinking construct as this is a previously unexplored construct.

The three types of validity addressed are construct, convergent, and discriminant.

Construct validity is defined as the ability to clearly and unambiguously define a

construct. Convergent is defined as consistency in a construct definition across or-

ganizations. Discriminant validity is defined as the ability to clearly discriminate

between constructs. Additional threats to validity will be discussed relative to re-

search methodology in Chapter 3.

2.3.1 Construct 1: Collaborative Systems Thinking

Science is a way of thinking much more than it is a body of knowledge.

-Carl Sagan

Engineering is also more a way to think-an approach problem solving than a body

of knowledge. This premise is well illustrated in research showing that upwards of 70%

of the knowledge required for a relatively simple system is undocumented [41]. This

indicates the majority of knowledge required for systems development comes from

experience; experience that informs the way engineers approach and solve problems;

experience that is an important enabler of systems thinking development [35].

Defining Collaborative Systems Thinking

As established in Section 2.2, systems thinking is one mode of thinking engineers

engage in when designing complex systems. Systems thinking enables engineers to

better handle complexity, make better design decisions, and to consider the dynamic

interfaces and interrelationships of a system [35].



Recent empirical research resulted in the following definition of systems thinking:

Systems thinking is utilizing modal elements to consider the componential,

relational, contextual, and dynamic elements of the system of interest [35].

This definition applies to systems thinking in individual engineers and will be

used as a starting point for developing a definition for collaborative systems thinking.

Within this definition the words componential, relational, contextual, dynamic, and

system correspond to the five systems thinking definition themes of interrelationships,

component complexity, context, emergence and wholes.

Thinking is a mental process defined by the Merriam-Webster dictionary as form-

ing an opinion or an intention to act. Within an engineering context, the elements

of thinking are decision making, problem exploration, judging between alternatives,

and problem solving [6]. The process begins with an ill-defined problem and uses

recalled knowledge (memory) and other inputs towards solving the problem. Within

a team context, thinking occurs as the result of social interactions (transactions) by

which team members share knowledge, create pointers to knowledge held by others,

and interpret and recall information as a group [6, 151].

Successful design teams engage a variety of thinking styles and use a variety of

means to communicate [6, 45]. These teams show curiosity towards the problem

space, generate large numbers of alternative solutions and then engage in evaluation

[6], following the normative design process [136]. By engaging in analysis before evalu-

ation, these teams spend more time engaging in divergent thinking. As stated earlier,

cycling between divergent and convergent thinking is an enabler for team success

[45]. The willingness to ask questions, and thus engage in divergent thinking, is an

indicator of a culture that supports learning. Finally, for a team to effectively com-

municate, multiple design languages are needed. The languages of design include text

and speech, graphics (e.g. sketching and part drawings), shape grammars, executable

mathematical models, and numbers [45]. Communicating enables teams to keep a

clear vision of the mission [150]. While shared mental models are often touted as a

means to support system-level design, collaborative systems thinking aims to leverage



areas of expertise and knowledge not shared by the entire team. Thus shared mental

models, which have not been shown to positively impact team performance [101], are

not an effective vehicle for exploring collaborative systems thinking.

In addition to input from the literature discussed above and in Section 2.2, feed-

back from research interviews and case studies was used refine the collaborative sys-

tems thinking definition. The majority of feedback centered on the similarities in

goals and purpose between individual systems thinking and collaborative systems

thinking. The majority of respondents had simple, functional definitions for team-

based systems thinking; definitions that emphasized the whole, the entire lifecycle,

interfaces (technical and social), and context (which most defined as including the

engineers themselves). Among the few specific differences consistently cited is the

stipulation that while individuals contribute to a design, teams are responsible for

delivering products.

Taking these inputs, the following definition for collaborative systems thinking is

derived:

Collaborative systems thinking is an emergent behavior of teams resulting

from the interactions of team members and utilizing a variety of thinking

styles, design processes, tools, and communication media to consider systems

attributes, interrelationships, context and dynamics towards executing

systems design.

Like Davidz's definition of systems thinking [35], the definition of collaborative

systems thinking contains the five themes consistent across definitions of systems

thinking: complexity, interrelationships, context, dynamics, and wholes. The above

working definition was used to execute field research. Chapter 4 includes a detailed

analysis of how data collected influenced this definition.

Validity Concerns

Because collaborative systems thinking is a new construct introduced through this

research, validity is a concern. By starting from a definition of systems thinking



grounded in industry practice and modifying it to apply to teams based on discus-

sions with industry and literature on team-based thinking and design thinking, threats

to construct validity are minimized. Convergent validity, while a concern, is some-

what inapplicable to the construct of collaborative systems thinking. This construct

is not currently recognized within organizations, and therefore the definition cannot

vary between organizations. However, differences in the ways organizations react to,

interpret, or modify the definition may be threats to convergent validity. Finally,

discriminant validity will be addressed by asking each individual for his or her def-

inition of systems thinking and collaborative systems thinking to gauge the ways in

which collaborative systems thinking varies from similar constructs such as individual

systems thinking.

Proposed Collaborative Systems Thinking Metrics

The traits, processes, and cultural characteristics explored as potential enablers and

barriers to collaborative systems thinking are drawn from existing literature and

metrics on team thinking, design thinking, and multiplicity of literature on team per-

formance and management. These are areas that may influence collaborative systems

thinking and are therefore worth exploring. Analogous to the enablers and barriers

to individual systems thinking development (individual characteristics, experiential

learning, and supportive environment [35]), team preferences and behaviors, cumula-

tive experience, and environment (real and virtual) guide the inquiry into collabora-

tive systems thinking. The metrics and traits proposed below come from literature on

team cognition and team management. These represent existing theory on enablers

and barriers to team thinking and the behaviors of effective teams.

A Strong Team Cognition

Strong Team Identity Teams with a common goal better maintain their focus.

Shared beliefs that enable risk taking foster a climate characterized by trust and

mutual respect [147]. These traits enable free communication which reinforces

a team's goal. Teams with a strong and consistent identity may be said to have

a more well defined team culture.



Engage in Critical Analysis Empirical research has shown that teams engaging

in early analysis of the problem engage in early divergent thinking, ask more

questions, better explore the goal space and consequently are better able to deal

with system complexity [136]. As such, an ability to step back and analyze the

problem or need before rushing to find the "right answer" helps teams better

understand the system.

Leverage Multiple Thinking Styles Early in the design process divergent think-

ing results in a greater exploration of the problem space [136]. This is enabled

by processes that emphasize insightful questioning rather than seeking early an-

swers [92]. In later stages of design, convergent thinking is required to resolve

trade studies and drive design decisions.

Mutual Awareness Mutual awareness is a measure of how aware team members

are of each other's activities within the design context. Teams with a greater

mutual awareness communicate more efficiently [100].

Situation Awareness Teams that better understand their situation and the task at

hand perform better. Situational awareness measures a team's collective aware-

ness of their environment, tools, and procedures [31]. Situational awareness

may also include the ability to place the team's contribution, or component,

within the overall system. For instance, a team working on an impeller would

be explicitly aware of the engine type and interface with the impeller.

Implicit vs. Explicit Coordination Coordination is marked by the management

of dependencies between tasks, resources and people. Explicit coordination is

accomplished through process, consensus and top-down management. Implicit

coordination is more subtle and relies on leveraging social and knowledge net-

works within an organization to gain access to expertise, collective understand-

ings of team tasks and the anticipation of other's needs [31].

B Team Interaction Traits

Effective Team Communication Effective team communication is necessary to

keep teams moving in the same direction. As such, teams need to be aware of

how they are communicating. Teams with a majority of introverts need to be



cautious of an overreliance on email, because while email offers an efficient way

to transfer information, it is not an effective way to communicate [29]. Indica-

tors of mature and effective communication are the ability to clearly articulate

ideas, provide compelling reasons, listen to others, and provide constructive

feedback. Mature communications enable higher levels of team understanding

[147]. The use of sketches and other nonverbal communications improve this

common understanding [45, 49].

Interaction Styles Complement Team Preferences Studies have indicated that

most aerospace engineers have a Myers-Briggs2 type of ISTJ or INTJ [141]. The

result is that despite having long attention spans, engineers require time to digest

and assimilate new information. Situations that require engineers to act upon

new information without a period of reflection is stressful and unproductive

[29]. While measuring personality types is impractical in the context of this

research, individuals can be asked about their comfort with team processes and

interactions.

Mutual Respect and Trust among Team Members Trust is at the base of

successful interactions [86]. Mutual respect enables collaboration and commu-

nication within a team, thus facilitating knowledge sharing and team thinking.

Consensus Decision Making Ownership over a decision is a powerful empow-

erment mechanism [10]. The inclusion of many different voices in a decision

creates a sense that all have been heard and contributed to the final decision

[70]. This creates a sense of inclusion and collaborative progress. Experience

has shown collaborative multidisciplinary teams have worked rather well in the

aerospace industry [98].

Consistent Time Horizon Because teams work with schedule pressure, it is im-

portant for team members to operate on similar schedules. Differences in time

orientation among team members result in stress and conflict [126]. These differ-

2Myers-Briggs is a measure of personality type with four dimensions. Dimension 1: Extraverts
(E) vs Introverts (I). E's are oriented to the outer world, whereas I's are oriented to their own inner
world. Dimension 2: Sensing (S) vs Intuitive (N). S's are in touch with their five senses, whereas
N's are big picture thinkers who rely on their memory and associations. Dimension 3: Thinking (T)
vs Feeling (F). T's use logical analysis for decision making, whereas F's apply personal priorities to
decision making. Dimension 4: Judging (J) vs Perceiving (P). J's are goal oriented where as P's are
curious and open-minded.



ences are one of the key reason industry and academic collaborations fail [156].

The balance between short and long term visions also impacts decision making,

planning and goal setting [38].

Additional details into the methods used for determining collaborative systems

thinking ability are discussed in Chapter 3.

2.3.2 Construct 2: Team

Clearly no group can, as an entity, create ideas. Only individuals can do this. A

group of individuals may, however, stimulate one another in the creation of ideas.

-Estill I. Green, VP Bell Labs

Definition of Team

In its most simple incarnation, a team is a group of individuals working together.

As the quote above implies, the power of groups is in interactions that facilitate

creativity and better decision making. In most engineering organizations, teams are

an important organizational tool [61]. Teams bring to bear a greater breadth of

knowledge to a problem than can a single individual. This makes teams particularly

effective in situations where important decisions, such as safety critical decisions,

must be made [125].

There are many formal definition for teams. One such definition specifies four

necessary conditions: a team task, clear boundaries, specified authority, and mem-

bership stability [61]. Recognizing that group work can be designed to be decomposed

or integrated, Richard Hackman differentiates teams from co-acting groups by also

requiring the tasks to be integrated, thus involving team member interaction [61].

Within teams, traditions and values develop over time that facilitate members work-

ing together [104]. Another conceptualization of a team relies on blurred boundaries

and flexible membership to accomplish a task. These so-called "X-Teams" have the

benefits of scalability and leverage both strong and weak interpersonal bonds to gain



team visibility across an organization, obtain resources, and find necessary informa-

tion [8]. Whatever the definition, there are certain common factors within all teams.

These factors are the people who compose the team, the way tasks are designed (pro-

cess) and the norms that develop with the group to support interaction and task

completion (culture) [104].

The main function of teams is to execute work, or in engineering, to design systems

and their components. Within engineering, team design occurs when a group of indi-

viduals work together cooperatively and share their unique expertise, knowledge, and

ideas towards the design of products or processes [111]. Systems design is particularly

suited for teamwork because it requires coordinated inputs from several specialities

[61]. To be successful, teams require a clearly defined task or problem, sufficient time

and resources, the latitude to make decisions, and some means of feedback [61, 111].

Additionally, healthy debate and dialogue within a team is important to encourage

participation and ensure the solution space is well explored [111].

A diverse team membership is one way to ensure healthy debate [61]. A heteroge-

nous team is less likely to succumb to groupthink, a condition where team members'

desire for harmony blurs their ability to objectively and critically consider alterna-

tives [69]. There are several rules of thumb for team composition. At a minimum, the

team needs members representing the different disciplines required to design the sys-

tem. However, there are multiple ways to construct and analyze teams. One method

emphasizes the importance of team heterogeneity in addition to coaching on effective

team norms, which often run counter to human tendencies [61]. Effective team norms

emphasize proactively seeking less obvious causes and solutions and thinking criti-

cally when dealing with deadlines and political or social pressure in order to avoid

groupthink [61].

A second and more structured approach to team building is based on balancing

team composition in terms of set team roles. Clear team role assignment is important

for coordinating group efforts and for allowing individual team members to leverage

others' expertise [86]. Team roles may specify administrative or technical contribu-

tions. R. Meredith Belbin's nine team roles, shown in Figure 2-7 is an example of



one functional team role structure. Belbin's framework is based on the assertion that

individuals are more or less adept at certain roles and that team composition should

consider an individual's contribution to team functioning in addition to her technical

contribution [16].
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Deborah Ancona's 'X-Team' framework is a third take on team composition.

Within 'X-Teams' there are three tiers of team membership: core, operational, and

outer-net. Member of each tier have different roles and responsibilities relative to

team functioning. Core members are responsible for maintaining the team's history
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focused on some subset of the team's overall task [8]. The outer-net members are

generally specialists and others who are brought onto the team when needed either

for their experience or expertise [8]. While Hackman's definition of a team would

exclude outer-net members, this tier's membership contributes materially to a team's

ability to complete work.

Examples of Teams in Aerospace

The aerospace industry has a heritage of functional, or single discipline, teams [17].

As such, the move towards multi-disciplinary teams is representative of a change in

the way work is decomposed; shifting from linear, decoupled tasks to more iterative

and integrated tasks [19]. This shift follows a transition from concentrating on pri-

marily convergent methods towards including divergent-convergent cycles (e.g. spiral

development) that require a fundamental difference in the way teams work and relate

to each other.

Concurrent engineering is the umbrella term given to multi-disciplinary product

development teams and came into use in the 1980's [51]. The objective of concurrent

engineering is to get concurrent participation by a variety of disciplines throughout

product development: from conception through to realization [27]. Concurrent en-

gineering also places an emphasis on considering the entire product lifecycle during

initial design [33], motivated by studies showing 66% of the lifecycle costs are decided

by the end of conceptual design.

Integrated product teams (IPT's) are one instantiation of concurrent engineering

used within the aerospace industry. By bringing together different disciplines early in

design, system requirements are matured more quickly and the design space is opened

through cross-discipline discussion [117]. The result of this early interaction is greater

efficiency and shorter development times [62]. Both IPT's and concurrent engineering

practices reduce the likelihood of failures due to poor communication [109].

The following two examples of aerospace teams show dramatically different ways

of implementing concurrent engineering within the aerospace industry.



The first team is a high-performing software team responsible for writing and

maintaining code for the Space Shuttle [50]. This team is characterized by relatively

stable membership. The team is large (260 people), and members have individual

offices. The low error rates necessary for manned space flight are maintained by

following strict procedures and maintaining team stability and professionalism. The

team is split into two parts: coders and verifiers. A healthy competition between

the two drives programmers to find and fix problems at their root cause, rather than

superficially. Group meetings are held regularly and serve as a means to surface and

address issues as well as keep the team on schedule. There are no freelancers or heroic

coders on the Shuttle team. Rather, the team is structured and tasks split so as to

be dependent on no single person. This structure purposely limits creativity, because

creativity is not the team's core value, perfection is. The resulting team has been in

operation for decades producing the industry's most reliable code [50].

A striking contrast to the Shuttle software team is the Jet Propulsion Labora-

tory's (JPL's) use of integrated concurrent engineering (ICE) [25, 26]. ICE teams are

small by comparison, consisting of no more than 20 individuals representing several

disciplines, the customer, and a facilitator. These individuals are co-located in a sin-

gle room during the short and intense ICE sessions. The team hierarchy is flat, and

'sidebars' are used to resolve design issues while a number of independent tasks are

addressed simultaneously. The working environment subjects team members to mul-

tiple conversations at once, requiring them to filter and identify information pertinent

to their task. Because of the intense, psychologically draining atmosphere of ICE,

the sessions are short and the team members' ability to handle the environment must

be considered when building teams. The accelerated pace of ICE teams, finishing

early-phase design in one-tenth the time of most teams at JPL, leaves team members

susceptible to groupthink, which helps to accelerate the process at the cost of critical

evaluation of alternatives. ICE teams work together for no more than a few weeks,

and the format itself is relatively new. However, the proof is in the product and ICE

teams have proven successful at producing initial designs at substantial time and cost

savings over traditional IPTs [25, 26].



These teams differ in structure, size, and process; yet the basic knowledge under-

lying both teams' tasks (e.g. propulsion, orbital mechanics, and thermodynamics)

is the same. Because many teams are required for large complex systems, training,

standardization (of both processes and conventions), information technology and co-

location all offer benefits for teams working together [22]. The constructs of process

and culture are important components of this team-team interaction.

Validity Concerns

For the purposes of this research, a team is an 'established and defined group of

individuals working together on an integrated multi-disciplinary engineering task.'

This simple definition establishes construct validity. Because the form and function

of teams differ across organizations, the concepts of 'defined group' and 'integrated

multi-disciplinary task' will be used to enforce convergent validity. Teams of interest

will be working in the design phase, have at a minimum a core with identifiable and

stable membership, and be involved in cross-disciplinary work. Organizational charts

and survey and interview questions can be used to ensure these conditions are met.

The research-specific discriminant validity of the team construct is ensured in that

no competing or conflicting constructs are included in the research protocol.

Relevant Team Metrics

Teams can be described and quantified in a number of ways. Experience is an im-

portant contributor to systems thinking, and team heterogeneity is an enabler of

creativity. Therefore, measures of team diversity and experience are of greatest rel-

evance to an inquiry into collaborative systems thinking. The following proposed

metrics are accepted measures of team diversity and past experience. These metrics

provide an insight into those team traits identified in the literature as influencing

systems thinking.



A Team Diversity

Degree Concentration and Discipline Degree concentration and discipline are

indicators of the type and variety of specialized knowledge on a team.

Job Title Job title is an indication of the types of functional roles represented on

a team.

Personal Preferences Crude measures of team members' preferences give an in-

dication of team heterogeneity from a personality standpoint.

Team Roles Team roles, as defined by Belbin, show how well balanced a team is

from an functional/execution perspective.

Team Tenure The relative length of time team members have been together is an

indicator of team maturity and how long teams have had to form transactive

memory.

Individual Systems Thinking Capability Because it is unknown if individual

systems thinking is a prerequisite for collaborative systems thinking, first and

third party assessments of individual systems thinking capability will clarify the

relative importance of individual systems thinking for CST.

B Team Experience

Level of Education The number of advanced degrees on a team is indicative of

the depth of knowledge represented.

Corporate and Industry Tenure The number of years spent in the aerospace

industry and with the current company are proxies for depth of experience and

familiarity with corporate procedures.

Number of Past Similar Programs The number of past similar programs worked

is a direct indicator of the breadth of experience represented on the team.



2.3.3 Construct 3: Process

Most accidents are not the result of unknown scientific principles but rather of the

failure to apply well-known, standard engineering practices.

-Nancy Leveson in Safeware, 1995

Definition of Process

Process is a logical sequence of tasks performed to achieve an objective, a way of

decomposing a large task into smaller subtasks. Process defines what is to be done

without specifying how [93]. Processes take many forms. Processes may be standard-

ized across an organization, agreed upon within a smaller group, or unarticulated sets

of common assumptions [91]. Within engineering, standardized processes are used to

decompose large technical problems into smaller tasks and facilitate collaboration

(social interaction) among teams and individuals addressing each task. Facilitating

communication is one of the most important roles of process [119] and is accomplished

through rules and guidelines that ensure information is not lost or omitted [63].

Engineers are the most variable component of the design process [96]. Introducing

standard ways of executing tasks helps to reduce variability and facilitate scheduling

and cost estimating. Standards support engineering excellence by saving engineers

from 'reinventing the wheel,' and preserving their efforts for true innovation [56]. The

"art" of process standardization is to find the right level of standardization in order

to facilitate design without being overbearing. Rigid processes inhibit flexibility and

the ability to capitalize on new situations [91]. Some process advocates insist the

development process should be tailored to the specific product under development

[93]. Others promote more universal standards to facilitate collaboration among

disparate teams and organizations. Because engineering systems blends routine and

novel activities, no single process can cover every conceivable inevitability and some

amount of process tailoring is necessary [119]. The traits of well designed process

are therefore clear ownership and traceability [119] and promoting responsibility and

initiative rather than solely emphasizing compliance [56].



Within the context of systems thinking development, the systems engineering

process is the most relevant body of engineering processes. The goal of the systems

engineering process is to, in a systematic way, address problems across a system's

entire lifecycle. The basic steps in the systems engineering process are the following

[21]:

1 Define the problem

2 Perform feasibility an

3 Determine systems op

requirements

4 Develop the maintena

support concept

5 Identify and prioritize

performance measures

6 Perform functional an

Systems Engineering Process

7 Complete requirements analysis

alysis 8 Oversee design optimization

eration 9 Facilitate design integration

10 Conduct systems test and

nce and evaluation

11 Oversee production

technical 12 Support product during operation

(TPMs) 13 Plan for and execute systems

alysis retirement and disposal.

Despite the documented benefits of standardized system design processes, resis-

tance to their use still exists. Anecdotal evidence suggests that engineers feel re-

stricted by processes, preferring to instead work in their own ways. Others resist on

the basis that they and the tasks they complete are non-routine and therefore above

or outside the process [128]. Yet others use standard design processes as checklists, a

defined minimum of acceptable effort [128].

Even when standard processes are in place and used, design success is not guar-

anteed. Some say emphasis on process is misplaced and that process advocates are

confusing the abstract entity of the process with the actual execution of the process

by an individual or group, placing their emphasis on the object of documentation

rather than the act of execution [113]. While process aims to reduce the variability

introduced by engineers enacting design [96], engineering is inherently a creative pro-

cess, and the skills and contributions of the engineer cannot be separated from the

act of engineering. In one study of product development teams, those who interacted



beyond the process were more likely to succeed than those whose interactions closely

followed specified processes [43]. By this argument, process enables positive prac-

tices and behaviors, but the true success comes from teams who use the process and

innovate where necessary to ensure good communication during the design process.

Process standardization, like laws and rules, exist with tension between precision

and flexibility [139]. A rigid process enables the process to be independent of the

individual executing it, but too severely limits flexibility. This is especially true in

engineering where the problems faced are often not routine and require flexibility and

creativity to solve.

Examples of Standardized System Design Process in Aerospace

Systems engineering processes are standardized at several levels from enterprise-

specific handbooks to universally accepted process models such as ANSI\EIA 632

and process capability maturity models such as CMMI ® [93, 94, 129]. Most systems

engineering standards come from a common heritage, Military Standard (Mil-Std)

499; an early standard aimed at helping in the development of a project's systems

engineering management plan (SEMP) [94]. Modern standards are maintained by a

variety of organizations and provide varying levels of detail for processes spanning

the entire product lifecycle. One such modern standard is ANSI/EIA 632. Developed

by the Electronic Industries Association, ANSI/EIA 632 is an example of a standard

prescribing normative functionality-that is what processes, or steps, should be per-

formed during product development. Figure 2-8 shows a graphical interpretation of

the standard.

Other examples of well known systems engineering standards include the Interna-

tional Council on Systems Engineering (INCOSE) Handbook and the NASA systems

engineering handbook [93, 129]. The INCOSE systems engineering handbook is an

example of a standard, or process framework, developed by a professional society with

inputs from many organizations and industries. The handbook includes an overview

of the systems engineering process as well as in-depth 'how-to' information for the

types of analysis necessary to execute systems engineering [93]. The major steps in

-----------



Figure 2-8: Top level view of the ANSI/EIA process for systems engineering. (From
ANSI/EIA-632-1998)
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the systems engineering process as specified in the handbook are similar to those

in the ANSI/EIA 632 standard and include concept exploration, program definition,

engineering and manufacturing, and production and field support. In contrast, the

NASA systems engineering handbook is specifically tailored to the types of programs

NASA works on and the methods and artifacts in use at NASA. However, the main

steps remain the same: advanced studies, preliminary analysis, definition, design,

development, and operation.

While not a standard in its own right, maturity models such as the Software En-

gineering Institute's CMMI® provide frameworks for systems engineering standards

and specify practices and behaviors that should be in place for a systems engineering

process to be mature and effective. The belief is that a mature design process will

produce higher quality designs and mitigate risks such as cost and schedule [132].

Within the aerospace industry, the NASA systems design process is among the

most well documented of design processes. The following examples show that even

within a single set of design process guidelines, several different approaches are pos-

sible.

The first example comes from those who write software for the Space Shuttle. This

mission critical component of human space flight is kept safe and reliable through a

set of processes that include developing clear requirements and complete specifica-

tion, intense testing, validation, and verification, and maintaining a comprehensive

database so accurate and up-to-date information is always available [50]. The second

example is integrated concurrent engineering (ICE), a co-located, intense engineering

practice used on some projects at the Jet Propulsion Laboratory (JPL). ICE is nrot

only a set of procedures used to solve a design problem, ICE is an environment that

facilitates communication and the ability to solve problems rapidly [26]. The third

example also comes from JPL in the form of its systems engineering advancement

(SEA) initiative. SEA aims to go beyond just the process of systems engineering to

include education, training and communication as explicit components in its archi-

tecture [70]. Driven by recent high profile failures, the goal is to improve systems

engineering practices by addressing people and technology in addition to process [70].



Validity Concerns

Process is one of the most overused words within the engineering community. 'Pro-

cess' means many different things to different people, thus adversely affecting con-

struct validity. For purposes of exploring CST, process is defined as 'organizationally

standardized tasks or steps taken by the team (or its members) towards the comple-

tion of systems design.' The definition is precise enough to require that the process

be documented and utilized at a level higher than the team, while still allowing flex-

ibility in how individual organizations implement their process. Within the research

instruments, construct validity is addressed by using common touchstones such as the

process terminology used in CMMI® and the INCOSE systems engineering handbook.

Such steps will also ensure convergent validity. Clear terminology, and tightly worded

questions will be used to address discriminant validity. Questions will focus on key

elements of process (e.g. decision making, conflict resolution, and the degree of itera-

tion). By intelligently framing the question, ambiguous words can be removed while

maintaining sufficient generality to ensure the question is valid across organizations

and contexts.

Relevant Standard Design Process Metrics

Several traits of process may affect collaborative systems thinking. Process stan-

dards are often proprietary and may be highly tailored to the individual team's task.

The process metrics specified concentrate on more transcendent aspects of process to

enable comparison across teams and organizations.

Existence of Standard Process Not all organizations have a standard process as defined

above. The first step is to ascertain if the team is using a standard design process.

Use of Normative Process Structure While the details of individual design processes

vary, there are empirically validated rules of thumb for design processes. This metric

seeks to identify if the concepts of early design iteration and analysis before evaluation

are incorporated in the standard process.



Understanding Role of Process within System and Organization This question

should reveal information about a team's understanding of the role of standardization.

The extent of convergence or divergence in responses is of great interest.

Ability to Tailor Process This metric is based on the suggestion that successful product

development teams are such because they innovate beyond the standard process. This

metric gauges the ability of a team to tailor the standard process and the extent to

which the team does tailor the process.

Actual Rate of Process Usage A metric of team or individual process compliance. The

traits of a standard process are of no influence to a team's performance if the process

is not actually utilized.

Perception of Process This metric measures team member perceptions of the usefulness

and applicability of the standard process.

Usefulness of Process Artifacts (e.g. process flow maps and organizational

charts) Process flow maps and organizational charts are tools to help people make

the connections necessary to execute design and understand their role within the

overall task. A measure of how useful these artifacts are will gauge their effectiveness

at representing the actual design process.

2.3.4 Construct 4: Culture

The practices of engineering culture uphold the importance of the individual and of

autonomy, and such rituals appear in two important places: On the job and in the

engineers education.

Because of the nature of most rituals in engineering culture, rituals that emphasize

technical skill and individual work, engineers often understand themselves to be

autonomous individuals and regard themselves as mavericks.

In engineering culture showing strength is often linked to masculine ideals that

create a culture of the right answer.

-Paul M. Leonardi, excerpts from "The Mythos of Engineering Culture"



Definition of Culture

Culture is a property of groups; an abstraction for explaining group behavior [126]. In

a bid to take a systems approach to understanding the relationship between the social

and technical aspects of engineering, the environment and therefore the cultural values

of the team must be understood [61]. The following are commonly used definitions

of culture.

1 Detert, Schroeder and Mauriel define culture as a set of expressive symbols, codes,

values and beliefs. These are supported by information and cognitive schemata and

expressed through artifacts and practices [38].

2 Gerry Johnson sees culture as a web of values, norms, rules, beliefs, and taken for

granted assumptions that define the way the world is and should be [71].

3 Edgar Schein defines culture as a shared pattern of basic assumptions learned by a

group by interacting with its environment and working through internal group issues.

These shared assumptions are validated by the group's success and are taught to new

members as the "correct way to perceive, think, and feel in relation" to problems the

group encounters [126].

4 Paul DiMaggio sees culture existing in inter-personal interactions, shared cognitions,

and the tangible artifacts shared by a group [40].

These definitions share the common features of identifying culture through prop-

erties, tangible and intangible, that represent shared thoughts or assumptions within

a group, inform group member behavior, and result in some type of artifact visible to

members outside the group. These features are influenced by a group's history, are

socially constructed, and impact a wide range of group behavior at many levels (e.g.

national, regional, organizational, and inter-organizational) [38]. Culture can also be

considered at smaller levels. For instance, a team may have its own subculture within

an organization: heavily influenced by the overall organizational culture, but nuanced

by the individuals and experiences on a given team [126].



At each level of culture there are cultural characteristics with varying degrees

of visibility to outside observers. The most visible characteristics are the artifacts

to which the culture definitions refer. Artifacts may include visible organizational

structures and documented processes. The lesser visible characteristics consist of the

consciously supported beliefs and values within a group (e.g. strategic goals) [126].

While not directly visible, espoused beliefs and values may be uncovered through

observing and interacting with members of a group. The least visible characteristics

of culture are the basic underlying assumptions of a group. These include perceptions,

thoughts, feelings and taken-for-granted beliefs [126] and are difficult for a group

member to articulate, let alone for an observer to observe.

In addition to being a property of distinct social units, functionally aligned groups

may also be said to have a unique culture. Examples include groups aligned with

specific technologies (products or programs), corporate divisions, or professions (e.g.

operators, engineers, and executives) [126].

Within an organization, culture originates with the beliefs, values and assumptions

of the founder. Likewise, within a team, much of the tone is set by the team leader

and those who have been with the team the longest. Once established, a group's

culture is tempered by shared experiences and by the past experiences of those who

later join the group, bringing with them new beliefs, values and assumptions [126].

In the context of this research, the most significant cultural influences are likely

the organizational unit, the engineering culture, and any product or program specific

identity or culture.

Culture is both deep and broad within a group. Culture is a deep and often

unconscious influence on groups, covering nearly all of a group's functioning [126]. In

an engineering context, this means a team's culture impacts its creativity, problem

solving, and ability to generate new concepts [63]. In fact, group norms, one of

the characteristics of culture, are key to group performance [61]. However, efforts

to alter group norms can be confounded by culture. New behaviors or processes

introduced to a group will fail to catch on if they go against the prevailing culture

[61]. This is because one characteristic of culture is its stability within a group
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[126]. The formation of culture begins with the formation of a group, and mirrors

the stages of groups formation: forming, storming, norming and performing [144].

Once a group is formed, group norms begin to develop through conflicts, attempts to

achieve harmony, and the eventual focus on a mutual goal throughout the execution

of which the team matures, adapts, and innovates, constantly testing and updating

its behaviors, assumptions, and artifacts [126].

While culture is a powerful predictor of group behavior, it is also a barrier to

the introduction of new methods, tools and processes [17]. However, culture can

also be a motivator for change. So-called 'cultures of change' empower members

to seek out new methods and ideas to solve problems [36]. It is evident then that

organizational culture is a contributor to team success [111]. Because trust is at

the base of successful interactions [86], organizations can emphasize positive team

norms and create a cultural context that supports team success [92] by fostering and

sustaining intellectual curiosity, effective communications and the keeping of thorough

documentation, or artifacts [58].

Examples of Cultural Influences within Aerospace

The aerospace engineering culture is influenced by its origins (nonconformist bicycle

makers) and historic association with the defense industry. Borrowing from Leonardi's

engineering cultural archetypes, these suggest a tendency for aerospace engineers to

follow the 'maverick' and 'macho' engineering archetypes. Both archetypes are char-

acterized by a resistance to team work. In contrast, the NASA culture is more accu-

rately described by the 'technophile' archetype and is characterized by the tensions

between academic rigor and the craft nature of engineering. Technophiles enjoy the

prestige that comes from working with the technology (e.g. manned spaceflight).

Because culture affects the behavior and the way groups work, it ultimately im-

pacts the systems being developed [134]. The aerospace industry cultural heritage

shows a resistance to teamwork, while at the same time enjoying large and complex

engineering problems. The following are a few observations from the literature on

desirable cultural traits for aerospace engineering teams. From observations of inte-



grated concurrent engineering teams, it has been determined that successful design

teams have a culture that enables autonomy while facilitating frequent and detailed

team reviews of design choices[25, 26]. To enable this seeming dichotomy, a trusting,

respectful and egalitarian culture is needed [25, 26]. Within JPL's Team-X, these

traits are achieved by keeping a flat team hierarchy, using a team room, and engaging

in frequent sidebar conversations to resolve problems and avoid groupthink. In an

attempt to revise systems engineering practices at NASA's JPL, it has been recog-

nized that the inherent desire to focus on the technology must be balanced by an

increased emphasis on people. This necessitates a new look into the training and

behavior of the engineers in order to create a more people intensive culture [70]. This

JPL effort shows that even in highly technical organizations, systems engineering is

best executed in an environment that places equal emphasis on technical and social

skill development. The third insight comes from the space architecture community.

When balancing multiple divisions or disciplines (e.g. architects and engineers when

developing space habitats) it becomes more difficult to consciously steer a system's

development. In this situation, a culture that supports spatial communication and

transparency in decision making helps [149].

Validity Concerns

Cultural analysis is subjective and time consuming. Data collection constraints re-

quire that cultural data be collected primarily through surveys and interviews. The

sensitive and/or proprietary nature of most aerospace programs means direct team

observation is difficult. Because culture is an abstraction, construct validity is a con-

cern that must be addressed by carefully specifying what is meant by culture. As

such, this research will limit the construct of culture to more observable characteristics

such as group norms (e.g. decision making processes), artifacts (e.g. team documen-

tation), and espoused beliefs about the teams purpose and objectives. By focusing

on a well-defined subset of cultural traits, convergent validity is addressed. While a

vague term like 'culture' may have subtly different meanings across organizations, the

elements upon which this research focuses are consistent in form and definition across



organizations. There is no one universally accepted definition of culture, and some

explanatory data are likely lost by not considering the "unobservable" components

of culture. To address potential issues of discriminant validity, the word 'culture' is

not used in any of the case study instruments. Rather, the questions aimed at un-

derstanding an organization's and team's culture use more precise words that focus

on the observable characteristics of interest.

Relevant Aspects of Culture

The following cultural characteristics are based on the intersection of Detert's eight

dimensions of organizational culture, common behaviors and beliefs based in engi-

neering culture, and the behavior, value and structural components of the proposed

process-culture interaction framework, discussed in Section 2.2.4.

A Team Environment

Collocation Teams dynamics are affected by team geography. The further apart

team members are situated, the less likely they interact [22]. Collocation also

affects the types of media used to communicate.

Collaboration Tools Information sharing is central to the effectiveness of engineer-

ing teams. This metric identifies any special tools or communication methods

the team uses to complete its work.

Team Spaces Team spaces include any special team rooms or other team spaces,

virtual or physical, that aid the team in completing its tasks. The physical

environment of a team impacts the team's interactions as do functional, hierar-

chical and organizational levels and boundaries [32]. Team member impressions

of the role of environment gauge both the extent to which the environment is

an enabler or barrier and also the extent to which team members are aware of

the influence of their environment.

Enablers of Creativity A creative environment supports cycling between the di-

vergent and convergent thinking styles: valuable in engaging teams in early

analysis and critical questioning. In a review of creativity principles as applied

to engineering, the following enablers and barriers were identified [143].



Enablers to Engineering Creativity

1. Freedom to make meaningful decisions

2. Access to sufficient resources (physical, financial, and time)

3. Collaborative atmosphere

4. Recognition for accomplishments and contributions

5. Tasks and projects that provide a stimulating challenge

Barriers to Engineering Creativity

1. Misalignment between goals and rewards

2. Excessive constraints

3. Resistance to change, exploring new ideas and ways of doing things

4. External and critical evaluation

5. Bureaucracy and organizational disinterest

Communication Preferences A team's environment impacts the frequency and

means through which team members interact. As was discussed in Section 2.3.1

communication should engage the multiple design languages: verbal, mathe-

matical, pictorial, model, simulation, etc. Also, the medium of communication

is important. While email is great for transferring information, it does not

necessarily facilitate communication [29].

B Team Norms

Decision Making Decision making is an important team activity. While humans

tend towards satisficing solutions [130], engineering design is inherently about

finding good or optimal solutions. Descriptions of decision making processes

show perceptions of how inclusive team decisions are and how conflicts within

the team are resolved.

Team Atmosphere Teams with an egalitarian atmosphere where individual contri-

butions are well accepted and logical and reasoned discussions prevail are more

likely to elicit good ideas and support critical evaluation of ideas. This ability to

engage in free discussion encourages systems analysis [136]. By contrast, teams

that move quickly to conclusions may miss important aspects of the problem

and end up with a poorly optimized solution.



Team Role in Process Selection/Tailoring Many teams have the ability to

tailor existing standard processes. This metric is based on the assertion that

teams which 'own' their processes perform better.

Role of Social Networks A complement to process flow diagrams and organiza-

tional charts, social networks help people obtain information necessary for task

completion. This metric gets to the role informal social relationships play in ob-

taining necessary information and making new connections that facilitate work

within a team.

C Espoused Beliefs

Team Goals The consistency of team goals across team members is a good indicator

of how well a team understands its purpose and how unified the team is relative

to accomplishing that goal.

Team Identity Team identity gets to how a team sees itself. These metrics measure

how team members view each other in terms of perceptions of the heterogeneity

or homogeneity of the team, the extent to which team members share these

perceptions and the accuracy of these perceptions.

Value of Teamwork Attitudes towards teamwork will be influenced by the orga-

nization's culture and reward systems. Cultures that espouse teamwork, but

exclusively reward individuals will promote teams in name only. The complex

nature of engineering work requires true teamwork.
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Chapter 3

Research Methods

That's all very well in practice, but how does it work in theory?

-Groucho Marx

The nature of this research is such that established practices are being probed to

describe the phenomena of collaborative systems thinking. The logical outcome is a

theory. This type of research is different in nature than most engineering research,

which is deductive; starting with and testing a hypothesis based on existing theory.

While this research utilizes social science methods, grounded empirical research has

a rich heritage in science and engineering. In the 1 7 th century, Johannes Kepler de-

veloped the laws of planetary motion to explain his observations of planetary transits

and Sir Isaac Newton developed the laws of universal gravitation after purportedly

watching a falling apple. In modern research, genetics and biological engineering of-

ten utilize grounded empirical methods to gain insight into disease vectors and answer

other questions about human health and wellbeing.

3.1 Exploratory Research

Exploratory research methods offer a means to collate observations of practice into

new theory. Whereas traditional deductive research starts with a hypothesis and

then seeks evidence to prove or disprove the hypothesis, exploratory research starts



with an interesting question or area of inquiry and ends with a set of hypotheses

that form the basis for new theory [57]. Exploratory research is useful in situations

where the phenomena being observed are not well understood or insufficient theory

exists to form a testable hypothesis. Its strengths include examining the phenomena

in context towards generating explanations or theories [77, 123].

With the goal of uncovering new ideas and explanations, exploratory research

is inductive [135]. Unlike deductive inquiries, there are no control variables in ex-

ploratory research. Rather, such control variables, or 'handles,' are the outcome of

exploratory research and the inputs for future research [77]. These generalizations

help in understanding the teams and processes being studied [135].

A weakness of exploratory research is it sometimes fails to produce conclusive

results. Smart sampling that represents variation within the sample population helps

reduce inconclusiveness [135]. Validity is also a concern with exploratory research.

The inclusion of qualitative data allows for a more complete description of the phe-

nomena under consideration, but leaves room for researcher bias to enter during data

analysis. The use of recognized techniques and tools and a well designed research

structure helps address validity concerns. Grounded theory is one such method of

exploratory research wherein a well-established framework for interpreting results is

provided.

3.1.1 Grounded Theory Research

Scientific inquiry is predicated on empirical observation [131]. The scientific method

as taught in most science and engineering classes begins with a theory and ends with

a set of observations. The grounded theory method starts with observations out of

which generalizations are made and theory is formed. Figure 3-1 shows how both

paths of scientific inquiry combine to form the scientific process.

Grounded theory research is characterized by concurrent and systematic data

collection, analysis, and theory development [57, 140]. Grounded theory development

involves the collection of data from several sources including, but not limited to,

surveys, interviews, focus groups, field observations and primary documents. From
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Figure 3-1: The scientific process as defined by Singleton and Straits [131]

these sources, concepts, and categories are identified and linked to form patterns.

Theory is then formulated based on observations of the patterns [140]. The formal

coding process used in grounded theory builds up categories and constructs. Data

from several sources are compared and contrasted to find repeated patterns, apparent

contradictions, and holes within the data. Contradictions and holes in the data drive

further data gathering and subsequent analysis. This process is shown in Figure 3-2.

Because grounded theory research utilizes a systematic process to collect and analyze

data, it leads to a more accurate process of discovery; less influenced by researcher

biases.

The goal of theory is to provide explanatory power in a specific, practical situa-

tion. In researching systems engineering, the goal is to explain the process by which

engineers execute systems engineering and to predict and explain which behaviors

and activities are helpful or harmful. Grounded theory provides a rigorous frame-

work within which to collect and analyze data and avoid the pitfalls of revelation

and intuition which threaten to relegate systems engineering and related fields to a

philosophy rather than a science [146].

3.1.2 Grounded Theory Procedures

Grounded theory specifies a set of procedures and techniques for data collection and

analysis. These steps lead the researcher through decomposing the data, forming
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conceptualizations and then integrating to form theory [140]. The goal of these pro-

cedures is to inspire insights into the data while maintaining a level of objectivity in

the way the data are manipulated. While some advocate beginning with a clean slate

to avoid researcher bias, it is beneficial for the researcher to have some theoretical

insight into the phenomenon being explored [57].

Grounded theory procedures require the researcher to step back and critically

analyze the situation being explored, to recognize and avoid her own biases, to think

abstractly, and to have a vision that ultimately guides the research direction [140].

The researcher then must go into the field and sample until obtaining theoretical

saturation: the point at which new observations fail to add additional explanatory

power [57].

The steps taken along this journey include description, conceptual ordering, and

theory building.

Description Description is the use of words to describe a mental image of a person,

place, thing, experience, etc. [140]. In field work, descriptions may come from

the researcher's observations or participants' past experiences in the form of

interview transcripts or responses to survey questions.

Conceptual Ordering Conceptual ordering is the organizing of data according to

some specified set of properties and their dimensions [140]. Conceptual ordering

is a key component of data analysis in grounded theory. Coding and memo

writing are two techniques to manage conceptual ordering and stimulate the

researcher to see connections between concepts supported by the data.

Theory Building Theory is a set of related concepts which together provide a

framework suitable for explaining or predicting the phenomenon of interest

[140]. Theory is the end goal of grounded theory research. Just as coding and

memo writing facilitate conceptual ordering, the later stages of coding support

identifying and defining the relationships between concepts which ultimately

form theory.



3.1.3 Qualitative versus Quantitative Data Collection

One strength of the grounded theory method is that both qualitative and quantitative

data may be used [77, 135]. Using multiple types and sources of data facilitates trian-

gulation [123] and bolsters the validity of results. Additionally, different types of data

are suited for illuminating differing aspects of a phenomenon under observation. For

instance, quantitative data are better for structural aspects of observed phenomena

and qualitative data are better for flexible research designs and those dealing with

process. Combining the two may allow for statistical generalizing of results [123].

Traditional engineering research is dominated by quantitative research methods.

Numerical models and controlled experimental environments lend themselves to de-

scription by measures and statistics. These measures and statistics then inform or

validate a-priori hypotheses [77]. The relative strengths of quantitative research come

from its repeatability. Because the researcher controls the experimental environment,

the experiment can be re-produced to validate results. Quantitative data is also ob-

jective and able to support direct comparisons. The numerical nature makes results

easy to report and easy to verify. However, quantitative data collection is rigid, and

does not allow the flexibility often required for field data collection.

Qualitative research allows for a richer set of data, including verbal descriptions of

events. Additionally, qualitative research methods lend themselves to situations with

poor or no experimental control and use tools and techniques to develop a-posteriori

hypotheses to explain observed patterns of behavior [77]. Qualitative research meth-

ods are flexible, can accommodate uncontrolled environments, and are suited for

describing complex personal and interpersonal situations. However, qualitative data

require interpretation and are therefore subject to researcher bias [77].

Mixed methods combine the data collection flexibility and descriptive richness of

qualitative methods with efforts to objectively quantify results through the use of

surveys and coding interview data.
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Qualitative Data Analysis

Qualitative data may come from many different sources: e.g. interview transcripts,

surveys responses, and primary documentation. These are text-based sources. The

objective of qualitative data analysis is to extract data from text that supports com-

parisons and conclusions. These data are referred to as codes and memos. Several

commercially available software tools can be used for qualitative data analysis.1

Within the grounded theory framework, there are two important components of

qualitative data analysis: coding and memo writing. These are part of an iterative

process; refined with each new piece of data. The following is an introduction to both

coding and memo writing.

Qualitative analysis is by nature descriptive. The outputs of qualitative analysis

(e.g. code frequencies) may be quantified and used for descriptive and inferential

quantitative analysis.

Coding Coding can take many forms, but the common idea is to break down textual

data into a group of central ideas, eventually creating a relational structure that

supports interpreting the data and provides explanation for the observations [77,

140]. These textual data are interview transcripts, open-ended survey responses, and

primary documentation.

Concepts are the primary building block of theory, and their identification and

classification is the primary goal of coding. Categories are used to classify impor-

tant or major concepts. Subcategories delineate concepts that clarify and explain the

categories. Categories also have properties and dimensions that provide meaning to

the constructs and describe in what ways the properties vary [140]. Part of coding is

the identification of interesting and relevant material. Therefore, identified concepts

should contribute to the understanding of the phenomenon under investigation. Be-

cause coding recognizes variability within categories, case studies should be selected

to include variability on key concepts so that the resulting theory will include and

explain the impact of such variability [140].

'This research used the MaXQDA software package for qualitative data analysis.



Three types of coding are used to transition from raw textual data to structured

relationships between concepts. The first step is open coding, the step during which

categories and their properties are initially identified. The second step is axial coding.

In axial coding, concepts and categories are reordered to find the central phenomena

and identify potential causal conditions, contexts, and consequences. The final step is

selective coding during which the resulting categories of axial coding are integrated,

and an explanatory theory results [123]. The use of visual representations such as

matrices, network diagrams or other graphics are often used during axial and selective

coding to facilitate the identification of concept relationships [77]. The coding steps

are not discrete but overlap and repeat as necessary, driving both future data collec-

tion and theory generation. Figure 3-3 shows an example of open and axial coding

from the pilot interviews. The diagram shows the codes identified within the pilot

interviews and the frequency of occurrence of each code within each document. The

codes were then organized into a hierarchy of related groups of enablers and barriers

to collaborative systems thinking. The hierarchy groups similar codes and provides

context through which to interpret the results. Notice that some codes (e.g. Shared

Taxonomy) are cited many times within one interview and other codes (e.g. Creativ-

ity) are cited less often but appear in nearly all the interview transcripts. The names,

or titles, for the codes, come from the interview transcripts during open coding and

are condensed, integrated and renamed during axial coding.

Memo Writing Memo writing creates a second set of textual data that both drives

the research as well as shapes the theory generated. Memos contain a record of data

analysis as well as researcher thoughts, interpretations, and questions about the data.

Reviewing and sorting memos is another way to identify the central category [140].

These stream of consciousness commentaries about field observations push researcher

thinking by asking questions that identify 'holes' in the emerging theory and drive

theoretical sampling [46].

The basic types of memos include code notes, theoretical notes, operational notes,

and diagrams. Code notes contain the outcomes of coding. Theoretical notes sum-
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marize research thoughts and ideas about future sampling. Operational notes contain

procedural directions and reminders. Diagrams are the sketches and pictures used to

describe relationships between concepts [140].

Figure 3-4 shows two examples of theoretical memos used to drive data collection.

The first memo is a result of an interview from a case study in which it was suggested

that collaborative systems thinking teams had three membership categories. The

memo captures the concept in a question and accompanying diagram that were used

to drive conversation in subsequent case study interviews. The second memo is the

result of a comment that systems thinking serves differing purposes throughout the

design process. This memo captures the core of the idea and includes a diagram

based on several sketches by interviewees. Both memos resulted in new questions

being asked during subsequent interviews.

Quantitative Data Analysis

Quantitative methods are also used within grounded theory. Whereas qualitative

methods are primarily descriptive, quantitative methods are used both to describe

the observations and to make models to help infer relationships among observed

variables. Quantitative data come from surveys and include such parameters as years

of experience, number of past programs, and quantified data on perceptions in the

form of Likert scale responses to questions that gauge an individual's perception or

opinion.

Descriptive Analysis The purpose of descriptive analysis is to use quantitative

methods to characterize and describe the data collected. Descriptive analysis en-

ables further generalizations and quantitative modeling. Two types of descriptive

quantitative data analysis are used: descriptive statistics and cluster analysis.

Descriptive Statistics The ultimate objective of this research is to identify the

enabling conditions for collaborative systems thinking. To that end, a set of measures

were taken to describe the group and the individuals within the group. The objective
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of descriptive statistics is to smartly choose measures to represent pertinent group

properties. These descriptive statistics become the inputs to the cluster analysis and

regression analysis, discussed below.

Common descriptive statistics include measures of central tendency (e.g. mean,

mode, and median), measures of variability (e.g. range, standard deviation and vari-

ance), and measures of relationship (most commonly referred to as correlation) [77].

Measures of central tendency and variability are used to group individual responses

into team descriptions. The team surveys collect a mix of interval and ordinal data.

Interval data come from those questions with answers that represent numerical quan-

tities with equal intervals (e.g. years worked, number of past program experiences,

relative percentages). These data are also sometimes referred to as cardinal or ratio

data. Ordinal data come from questions with answers that represent represent or-

dered data (e.g. Likert scale responses and rank-ordered lists). While all the above

discussed measures of central tendency and variability are applicable to cardinal data,

only mode, median and range are suitable metrics for ordinal data. Likewise, the most

common measure of relations for cardinal data is the Pearson correlation coefficient,

whereas the Spearman's p correlation coefficient is more appropriate for ordinal, or

ranked order, data. These two measures of relationship are used as appropriate to

identify those team properties most correlated with collaborative systems thinking.

As with statistical analysis, the teams studied represent a small sample of a much

larger population-that of all aerospace engineering teams. As such, aggregate mea-

sures that seek to generalize across teams have an associated uncertainty relative to

the entire population. Aggregate measures describing the composition and traits of

one team do not have associated uncertainty as the team surveys sample the entire

(or near entire) population within a given team. The resultant descriptive statis-

tics therefore are not from a small sample of a larger population, but from an entire

population: the team membership.

The output of descriptive statistical analysis is a set of vectors of metrics describing

each team. From these vectors, the correlation coefficients are calculated between

each independent metric and a team's reported collaborative systems thinking ability.



From this, generalizations can be made as to which traits (i.e. metrics) best predict

a team's collaborative systems thinking.

Cluster Analysis Cluster analysis is a method by which to classify data.. The

cluster analysis used in this research is based on calculating the distance between case

studies and then using the complete linkage method to identify which cases are most

similar [14]. Equation 3.1 shows the distance matrix used for cluster analysis. The

distance between cases i and j, 4ji, is calculated using equation 3.2, where Xk is the

kth element of the vector of P case study parameters [14].

- 612 613 '" 6lj

621 - 623 '' 62j

631 632 - 6... 3j (3.1)

61 632 j3

P

64i = (ik x - jk 2 (3.2)
k=l

From the distance matrix, the closest cases are identified and grouped, and their

distance is noted. The process is repeated until there is only one cluster, as shown

in Figure 3-5. The complete linkage method is used, where the distance between

clusters is determined by the greatest distance between cases within those clusters.

The dendrogram is used to show that case studies cluster according to self-reported

collaborative systems thinking ability.

Inferential Analysis and Modeling Inferential analysis is a branch of statistics

used to reach conclusions beyond those from descriptive analysis. Using the vectors

of metrics identified during descriptive analysis, regression analysis is used to deter-

mine both the relationships between the regressor, or independent, variables and the

dependent variable, collaborative systems thinking, and the relative strength or im-
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Figure 3-5: A dendrogram shows similarity by showing the distance between case
studies and clusters of like case studies

portance of the regressor variables in terms of their ability to explain the observed

variance of a team's collaborative systems thinking self-assessment.

A Recap Regression Analysis The following description of regression analysis

is based on the following references: [14, 77, 123].

Equation 3.3 describes the linear relationship between the observed independent

and dependent variables, where a describes the line's intersect and P3 describes the

line's slope. The residual error, ei - N(O, o2 ), is the variability, or dispersion of the

observed value of the dependent variable (ye) relative to the fitted value (y). The

residual error of each observation is independent, but with constant variability.

Yi = a + 3xi + ej (3.3)

When using regression analysis, a few assumptions must be met. First, the obser-

vations need to be independent. Second, the observed variable (yi) must be linearly

related to the regressor variable(s) (xi). Finally, the conditional distribution of the

Ir



observed value (yi) about the fitted value (yi) given xi is assumed to be both normal,

with variance o2 , and constant.

Independence of observations is established through data collection protocol. Be-

cause data were taken from teams from different organizations and programs, the

observations can be assumed independent. A scatter plot of data can be used to

check that there exists an approximate linear relationship between variables. Finally

residual plots of the standard error, introduced in equation 3.7, can be used to check

that the residual error is normally distributed with constant variance.

In practice, the data used in regression analysis represent only a small sample of a

larger population. Thus, the regression equation is re-written to show the parameters

used to describe the regression relationship (a and b) are approximates of their actual

values (a and 0). This is shown in equation 3.4, where y represents the fitted, or

predicted, value of yi given xi. The constants of a and b are calculated by minimizing

the sum of the square of the errors between y, and yi.

iy = a + bzi (3.4)

The goodness of this estimate is represented by R 2 , a measure of how much of the

observed variability of yi is explained by the regression relationship.

E2n 1 (i _ V)2
R =1 i (3.5)
yi l(y, - 9_

Another indicator of the strength of the relationship comes from estimating the

variability about the regression line. The unbiased estimator, calculated in equation

3.6, is an estimate of the distribution of the residual error.

.2 _ _ 2 (y bxi (3.6)
S2 i= n 2 i=1

As stated above, b is an estimate of the actual regression slope, p. Presuming

a sampling distribution of b - N(, 01n (x)2) the standard error of b can be

estimated using the unbiased estimator, as shown in equation 3.7.



s(b) = (3.7)

Using the estimated standard error of b and t* (the upper 2.5 percent of the

Student's t-distribution) a 85% confidence interval for b is calculated as shown in

equation 3.8. Using this range, the null hypothesis(that 3 = 0 and there is no

relationship between y and xi) can be tested.

(b - t* x s6(b), b + t* x s (b)) (3.8)

Multivariate Regression Analysis In the above discussion of regression anal-

ysis, xi is presumed to be a one-dimensional variable. In practice, multiple variables

may contribute to the observed variance in yi, and by including multiple regressor

variables a better estimate of y can be obtained. As with single-variable regression,

the ideal relationship between the regressor variables and the observed variables is

described by equation 3.9.

Yi = ca + - lxil + /2Xi2 + ... + Okxik + Ci (3.9)

As with the single variable regression, estimates of the intercept of partial re-

gression coefficients are calculated by minimizing the sum of the square of the errors

between the observed and fitted values of y. The fitter, or predicted value of y is

calculated as shown in equation 3.10.

y = a + blxl + ... + bkxk (3.10)

In multivariate regression, the unbiased estimator, shown in equation 3.11, is

calculated as the sum of the square of the errors between the observed and fitted

value divided by the number of degrees of freedom in the model, n - k - 1, where

k represents the number of regressor variables used. This constrains the number of

regressor variables used to n - 2.
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2 (y_ )2 - (yi - a- bxi) 2  (3.11)
n-k- 1i-1 n 2 i-1

Likewise, the form of the goodness of fit measure is adjusted to account for the use

of multiple regressors. The adjusted R 2 (adjR 2 ) only increases with each additional

regressor variable if the extra regressor reduces the residual variance, a2 , and therefore

improves the accuracy of the regression model prediction.

adjR 2  1 k -1 (3.12)
n- 1 - k ( - y)2 /( - 1)

The assumptions and null hypothesis test described above apply to multivariate

regression analysis with xi replaced by the vector of values, i.

Selecting and Comparing Regressor Variables The number of regressors

used is constrained to n-2, e.g. for 10 case studies, a maximum of 8 regressor variables

may be used. When selecting regressor variables from a large pool of potentials,

it is best to use theory when applicable and to choose variables that show a high

independent correlation to the dependent variable, as visible through a simple scatter

plot. As there is no existing theory on collaborative systems thinking, correlations

identified in the descriptive analysis will be used to choose regressor variables.

When using multivariate regression analysis, it is also desirable to compare the

relative influence of each regressor variable. Equation 3.13 divides each regressor

variable by its estimated standard deviation and multiplies each coefficient by the

corresponding standard deviation, b = bj x sj. The resulting beta-weights, b, allow

for a more direct comparison of the contribution of each regressor variable.

xl , XkS= a+b1 +b2 +... + bk (3.13)
S1 S2 Sk

However, the beta-weights do not necessarily allow for conclusions to be drawn

about the relative importance of each regressor variable. If regressor variables are

correlated, their relative influence will also be correlated, and thus their beta-weights

are not independent. It is therefore desirable, when possible, to select regressor



variables that are uncorrelated or loosely correlated. The stipulation of weak or no

correlation will help when down-selecting regressor variables.

Limitations on Quantitative Analysis Quantitative methods are especially

useful for making comparisons between pre-identified groups. When groups are pre-

identified, statistical tests can be used to demonstrate differences between the groups

from which theory can be developed. Because the concept of collaborative systems

thinking is introduced through this research, it was not possible to pre-identify groups

based of differing collaborative systems thinking ability.

The other strength of numerical methods is the ability to calculate confidence

interval for results. Large sample sizes result in smaller confidence intervals, thus

strengthening the conclusions made. For example, Davidz used Chi-square tests to

show statistically significant differences between pre-identified groups of engineers

and scientists [35]. However, she had 200 data points upon which to draw. Given

the relatively much larger efforts required to gather data on one case study (5-10

interviews, 10+ surveys, plus primary documentation), including a large number of

case studies within the context of a single dissertation was infeasible. Therefore, tests

of statistical significance are difficult to use in the context of this research.

Given these caveats the quantitative analysis performed is best interpreted as de-

scribing the conditions and traits observed. These methods are well aligned with the

research objectives of exploring and identifying the traits of collaborative systems

thinking teams. More data and further numerical analysis are required to narrow the

bands of statistical confidence, thus allowing for more powerful statements of relation-

ship and the use of methods, such as path analysis, to identify causal relationships.

3.1.4 Threats to Validity

As with all research there are threats to validity, or strength of conclusions, that

must be addressed through the research methodology. In grounded theory research,

the primary threats are construct, convergent, discriminant, external, and internal

validity [146]. The first three types of validity concern the constructs used to build

iL~~2~;_~-;~;; ~- ;-;-;)(--=-ri,;;.--;-rr.:;_;;(_;.li-- i~-i~-i~L-2Ei~'ll-i~-i;ii---(_\-i~~:d~l~ ~~l--C^i~~;Tiiizi'l'3rr= ;.~i;-=lu~--~- ------l :1-z-;;;z~



theory and were addressed in Section 2.3. The remaining two types of validity are

external and internal validity.

External validity addresses whether or not results are generalizable. Choosing a

representative and adequately sized sample help with external validity [146]. For case

study based research, reaching saturation determines the necessary number of case

studies. Saturation occurs when with each new case study, the observed patterns

and concepts are the same as those observed in past case studies. For most research,

saturation occurs after -10 case studies [158]. Additional considerations taken to en-

sure a representative sample are discussed in Section 3.2. Internal validity is achieved

when a study eliminates extraneous variables as contributing to the phenomenon un-

der observation. Triangulation, or using multiple sources to corroborate a piece of

data, bolsters internal validity. Additional steps taken to validate this research are

discussion in Section 3.2 and Chapter 5.

3.2 Research Design

This research is based on data collected through interviews and case studies aimed

at exploring collaborative systems thinking within aerospace teams. This section de-

scribes the steps and tools used to gather these data. Figure 3-6 shows the data

collection methods in relation to each other temporally and in terms of theory gen-

eration. The following section describes the level and units of analysis and the four

phases that comprise the research design: the literature review, pilot interviews, case

studies, and validation activities.

The latter three phases of the research design utilize interviews and surveys for

data collection. These were conducted in accordance with the MIT Committee On the

Use of Humans as Experimental Subjects (COUHES) guidelines and in accordance

with Federal mandate (The Common Rule 45 CFR 36). A copy of the consent form

signed by all participants is included in Appendix A.
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3.2.1 Level and Units of Analysis

Social research methods define four common levels of analysis: individuals, groups,

organizations and environments [95, 146]. Systems engineering research often deals

with inter-level interactions [146]. The primary level of interest and any inter-level

interactions are important to consider, both when choosing the constructs upon which

to focus and when designing research tools.

Collaborative systems thinking is by definition a team property, and therefore

this research focuses on the group level of analysis. The group level was chosen both

because of the recent focus on team-based design (e.g. [34, 45, 68, 111, 147]) and to

complement research on systems thinking at the individual level (e.g. [35, 52]).

Units of analysis may consist of individuals, roles, social artifacts, process models,

or relationships [95, 146]. The units of analysis are sources of data that support the

levels of analysis. Relevant units of analysis include individuals, their experiences

and perceptions of team performance, and primary documentation. Such data can

be collected both directly from team members and from team observers through

interviews and surveys. To facilitate triangulation and comparison across case studies,

it is important to define units of analysis that are comparable across organizations

and contexts [146].

3.2.2 Literature Review

The literature review, Chapter 2, served to both direct the final topic of research

and identify fruitful areas of exploration therein. The primary contributions of the

literature review are the identification of four critical research constructs (collabora-

tive systems thinking, team, process, and culture), definitions and metrics for these

four constructs, and two frameworks used to summarize literature-based relationships

between process and culture and team traits likely to influence collaborative systems

thinking.



3.2.3 Pilot Interviews

Pilot interviews offered an opportunity to gain insight into the constructs of interest

[146]. Pilot interviews occurred in parallel with the literature review, resulting in

an iterative process whereby pilot interviews helped identify additional sources for

inclusion in the literature review.

Eight pilot interviews were conducted to elicit feedback on the definition of collab-

orative systems thinking; to validate the emphasis placed on culture, process and team

as critical enablers of collaborative systems thinking; and to provide feedback on case

study tools. Participants in the pilot interviews were selected based on recommen-

dations from committee members. The majority of interviewees were management

or executive-level members of the aerospace industry with program oversight expe-

rience. Their backgrounds include experience in space, defense, and avionics. Their

work experiences cover industry and government organizations. One architect (i.e.

designer of buildings) was included to provide a breadth of perspective and because

he is a principal in a firm that emphasizes holistic design methods.

Pilot interviews consisted of a twelve question semi-structured interview with an

average duration of 60 minutes. The pilot interview questions may be found in Ap-

pendix B. Results of the pilot interviews are presented in Section 4.1.1.

3.2.4 Case Studies

Case studies were used to collect the majority of research data. Flexible and ef-

fective means to gather many types of information, case studies are well suited for

exploratory research [158]. Case studies utilize both structured (e.g. surveys) and

unstructured (e.g. open-ended interview questions and observations) data collection

methods. Smartly chosen case studies are helpful in establishing external validity and

ensuring results are generalizable [158].

Two types of case studies were used to explore collaborative systems thinking

within the aerospace industry and are aimed at gathering data with both breadth and

depth of detail. Full case studies consist of surveying and interviewing multiple people



Table 3.1: Case Study Selection Dimensions

Selection Dimension Allowable Values
Aircraft

Industry Sector
Spacecraft
Government

Customer Base Commercial
Private

Team Size Small (< 10)
Large (> 10)
Conceptual

Design Phase Conceptual
Detail

on the same engineering team. Ten full case studies were conducted. Abbreviated

case studies consist of interviewing one member of an engineering team about his or

her team experiences. Sixteen abbreviated case studies were conducted. Combined,

the data represent twenty-six different aerospace teams. These cases were chosen

along selection parameters discussed below.

Case Selection

This research uses a cross-section design, taking snapshots of several teams at a single

point in time. The objective when choosing case studies is to identify teams that are

representative of the entire population as determined by a few key dimensions, shown

in Table 3.1.

The four selection dimensions and allowable values were chosen based on appli-

cable literature. Systems thinking within a team requires communicating technical

information through multiple means and levels of abstraction. Because hardware and

software are engineered at different levels of abstraction, only teams working pre-

dominantly with flight hardware were considered. Both aircraft and spacecraft teams

were considered, but are differentiated between because the two industry sectors have

distinct cultural traits, visible even within a senior-level college design class. The

customer base is important because government customers exert influence via gov-

ernment regulations, some of which require a minimum level of demonstrated process



maturity. By contrast, private consumers have relatively little influence over how

the product is engineered. Companies selling to private consumers also tend to be

comparatively smaller organizations. Team size is important from a communication

standpoint. The objective of collaborative systems thinking is a communal systems

awareness, and the number of people participating in the team could have a large in-

fluence on the ability of the team to engage in collaborative systems thinking. Finally,

the program design phase is an important selection criteria because different types

of information flow and interactions occur in different design phases. For instance,

one might expect a conceptual design team to be engaging in more brainstorming,

sketching, and abstract thinking. By contrast, teams in detail design should be more

detail-oriented and may be using more detailed equations or models to convey design

information.

Theoretical sampling was used to select case studies along the above dimensions.

Within theoretical sampling, cases are chosen for their ability to help in formulating

theory. Cases are selected to provide variation along characteristics thought impor-

tant to the theory and to guarantee certain properties are explored [123]. Theoretical

sampling is superior to convenience sampling because the results are more general-

izable. Results can be made even more generalizable through the inclusion of an

extreme case [123].

Figure 3-7 shows the actual case studies completed relative to the selection pa-

rameters. Both full and abbreviated case studies are shown. There are no companies

currently selling spacecraft to private consumers, hence this combination is blocked

out in Figure 3-7.

Full Case Studies

Ten full case studies were conducted. These consisted of a survey administered to

all team members and interviews with a subset of team members and one non-team

member familiar with the team's work. The full case study was designed to be
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Figure 3-7: With ten full and 16 abbreviated case studies, the sample set of teams
well represent the selection parameters.

conducted in approximately two days and require no more than two hours of any

given engineer's time so as to comply with government time reporting requirements

where applicable.

A sample full case study agenda consisted of a ten minute presentation to the

team followed by ten minutes for team members to ask any questions they may have

about the research. At this point, the team survey was administered and completed

surveys were collected after about 30 minutes. On the second day of the case study,

three or four team members participated in a one-on-one interview and a third party

familiar with the team was also interviewed for purposes of obtaining another point

of view on the team's systems thinking abilities.

Influence of Literature on Case Study Tool Design The case study instru-

ments were designed around the literature frameworks presented in Section 2.2.4.

These frameworks were expanded upon using the proposed construct metrics in Sec-

tion 2.3. The case study survey and interview questions were designed to probe these

metrics.

Figure 3-8 shows the intersection of the research instruments and the Culture-

Process Framework proposed in Section 2.2.4. The matrix shows the tracing of each

survey and interview question to the framework metrics. Additionally, the matrix

shows how data from primary documentation (D) and observation (0) contribute to

the characterization of teams within the case studies.
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Figure 3-8: Matrix showing the links between the Culture-Process Framework proposed in Section 2.2.4 and the case study
instruments.



Figure 3-9 shows similar information for the Team Traits Framework described in

Section 2.2.4. As with Figure 3-8, Figure 3-9 shows how each survey and interview

question is used to gather pertinent data for the case studies.

The survey and interview questions and guidelines for gathering data from primary

documentation and observation provide multiple sources for each metric, facilitating

triangulation. In the case of the surveys and engineering interviews, these instruments

are administered to multiple people within each team, also facilitating triangulation.

The design of each case study instrument is discussed in more detail below.

Survey Design Surveys are an effective method for gathering data on demograph-

ics and short answer responses from large numbers of individuals. In the context of

this research, surveys was used to collect data driven by the Sections 2.3.2, 2.3.3, and

2.3.4 and the pilot interview results.

Within each case, a survey was used to collect data from all team members. Many

teams had ten or more members and the survey facilitated collecting demographic

data and individual opinions on aspects of team process usage and culture in an easily

reducible format. A combination of multiple choice, numerical answer, Likert scale

and short answer style questions are used. The survey was designed to last no more

than 30 minutes (with an average actual duration of 25 minutes). Survey questions

are shown in Appendix B.

Interview Selection and Design Interviews are an effective way to gather longer

responses to questions about more abstract topics like work environment and team

culture. Because interviews are more intensive, only a few engineers within each case

study were interviewed. In the context of this research, interviews were used to collect

data driven by Sections 2.3.1, 2.3.3, and 2.3.4. The interviews were especially useful

in fleshing out detail behind the survey trends for process usage, decision making,

and for obtaining an assessment of the team's collaborative systems thinking.

A semi-structured interview protocol with 11 questions was used. The average in-

terview lasted about 60 minutes. The first part of the interview gathered descriptive
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data to complement the survey results. The latter portion of the interview concen-

trated on systems thinking. Participants were asked to define systems thinking as

an individual and team property. If their definition lacked any of the important

components of the definition of collaborative systems thinking, a brief discussion en-

sued to sensitize the interviewee to the standard definition used in this research. At

that point, the interviewee was asked to rate his or her team's collaborative systems

thinking ability.

To avoid bias, interviewees were selected in advance by the case study contact. In

general, a sampling of more and less experienced team members was requested. One

interviewee familiar with, but not on, the team was also requested to participate in

a modified interview to obtain a 3 rd party perspective on the team.

The interview protocol for both engineering participants and 3 rd party participants

is shown in Appendix B.

Primary Documentation Primary documentation represents an artifact of the

values, structures, and behaviors an organizations wishes to encourage among its

employees. When considering the relationship between culture, process, and systems

thinking, artifacts such as process documentation, organizational charts, and training

materials are of interest. Primary documentation came from teams and from program

and organization websites. In the context of this research, primary documentation

was used to collect data driven by Sections 2.3.2 and 2.3.3.

Access to primary documentation was limited as many teams were not at liberty

to provide access to their organizational charts or process documentation. However,

valuable online documentation was found for each program, providing the researcher

with a reasonably good understanding of each team's task and the technical context

of their work.

Observation Because of the proprietary, and at times sensitive, nature of aerospace

work, few opportunities were provided to directly observe team members. The role

of observation is to provide baseline data to allow for comparisons between teams.
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Data from team members are the richest source of culture and process usage data.

However, these internally generated data may confound efforts to compare across

teams. Observation by a third party, in this case the researcher, provides the context

necessary to compare teams. Within the context of this research, observations were

driven by Sections 2.3.2 and 2.3.4.

The predominant observation time was while administering the survey. Notes

were taken on the team's physical surroundings and any observed team interactions.

A field notes guide, shown in Appendix B, was used to help organize and record

observations.

Abbreviated Case Studies

Abbreviated case studies were used to improve the distribution of samples within the

target population of aerospace engineering teams. One-hour semi-structured inter-

views, the abbreviated case studies offered an opportunity to question and explore

ideas captured in memos during the full case studies. The data from abbreviated

case studies are qualitative and anecdotal, but help in deciding which explanatory

variables are likely to be more generalizable across contexts. The abbreviated case

studies also provide data for vignettes to better illustrate the results and conclusions

of this work.

Questions asked in the abbreviated case study centered around an individual's

definition of systems thinking, discussion to introduce the interviewee to the work-

ing definition of collaborative systems thinking, questions about interviewee team

experiences, and reflection upon what traits enabled or prevented these teams from

engaging in collaborative systems thinking. Questions based on theoretical memos

from the full case studies were used when appropriate.

3.2.5 Validation Activities

Validation is difficult with grounded theory research. One method proposed by pro-

ponents of grounded theory is to take the resulting theory back into the field and
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to validate the results through testing the theory's explanatory power on a new case

[140]. While not a foolproof method of validation, using the results of additional case

studies to validate the regression model is a powerful way to show the results are rel-

evant and generalizable. As such, eight 'predictive' case studies were used to validate

this research. The case studies consisted of a survey and interview with individuals

from teams not involved in the initial research. These abbreviated cases addressed

the subset of measures found most important through regression analysis. A short in-

terview was then used to gauge the team's self-assessment of its collaborative systems

thinking ability and the results were be compared to the regression analysis. Results

falling within the 90% confidence range of the regression model provide further data

to support the generalizability of this research. Results falling outside of the 90%

confidence range point to limitations in generalizing this research. Validation case

studies were chosen from within the aerospace industry, but from combinations of

industry, customer, and program phase not seen in the full case studies so as to push

boundaries to which this research may be generalized.

Validation strategies employed by past similar research include the use of control

groups and 'blue chip.' While the use of control groups is considered desirable from a

validation standpoint, the number of case studies required is infeasible. 'Blue chips'

experts are individuals with backgrounds that place them in positions to knowledgably

comment on the phenomenon under observation. In this context, individuals in charge

of systems engineering training or development within large aerospace and defense

companies would be well suited to comment on the results. The use of 'blue chip'

experts is a viable way to circumvent the small sample size, but the opinions of 'blue

chip' experts are still subjective and do not demonstrate in a concrete manner the

relevancy and generalizability of results.

103



THIS PAGE INTENTIONALLY LEFT BLANK

104

:_~ ~~----~~-~~~;~;;;~.~~~~~~~_; _



Chapter 4

Analysis and Results

4.1 Analysis

The following are examples of data analysis for each data source: pilot interviews, full

case studies, and abbreviated case studies. The outputs of qualitative data analysis

and descriptive quantitative analysis are presented and discussed. These outputs,

combined with inferential analysis and modeling, are presented in Section 4.2 as

answers to the original research questions and objectives.

4.1.1 Pilot Interviews

Eight pilot interviews were conducted to elicit feedback on the definition of collabora-

tive systems thinking, to validate the emphasis placed on culture, process, and team

as critical enablers of collaborative systems thinking, and to provide feedback used in

development of case study tools.

The first step in analyzing the pilot interview data was entering the transcripts into

MaxQDA for text analysis. Commonly occurring phrases and ideas were tagged, or-

ganized, and combined when appropriate, resulting in a set of commonly cited codes.

After a set of unique codes was identified (open coding) the codes were reorganized

into categories (axial coding), grouping similar code constructs and providing greater

explanatory power. All codes identified are emergent, that is they emerged from
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the transcripts. Axial coding resulted in three main categories: definition-related,

enablers, and barriers. Within the enablers and barriers categories, codes were fur-

ther subdivided into subcategories of culture, standard process, and team traits as

informed by the critical constructs identified in the literature review. The construct

of leadership emerged as an important factor during the case studies and is included

within the team traits subcategory. Figure 4-1 shows the resulting code hierarchy

and code frequencies for each pilot interview.

As can be seen in Figure 4-1, far more enablers than barriers were identified.

Within the enabler category, the number of different codes identified are evenly split

among the subcategories. However, the majority of identified barriers to collabo-

rative systems thinking were cultural. As part of the pilot interviews, interviewees

were asked in what ways collaborative systems thinking differed from individual en-

gineering systems thinking. These responses are coded in the definition-related (and

general comments) category. These comments center on using a holistic approach to

understand the problem and achieve product success.

Table 4.1 shows examples of raw text supporting eleven of the most common codes

identified in the pilot interview transcripts. Each code was cited between 6 and 12

times across the 8 pilot interviews. Text supporting the remaining pilot interview

codes is included in Appendix C.

Figure 4-2 shows the codes organized by the number of times cited across all pilot

interviews. The six most frequently cited codes relate to those process and team

traits seen as enabling collaborative systems thinking. It is worth noting that many

of the most frequently cited codes refer to an engineer's (or team's) soft skills and

culture or environment. Nine of the 32 most frequently cited codes refer to technical

aspects of engineering a system: e.g. management, technical depth of teams, pro-

ducing a product, or finding interfaces and interconnections. The remaining 23 codes

(representing over two-thirds of commonly cited codes) refer to communication, team

interactions, and social leadership. This balance emphasizes the fact that collabora-

tive systems thinking is a social phenomena and is greatly influenced by the dynamics

and personalities on a given team.
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Table 4.1: Supporting Text for Selected Pilot Interview Codes

Definition Codes

"Teams must realize successful products"CST Involves
"The idea of producing a product is absent from the

Producing a Product
systems thinking definition"

CST Involves "In a group it is important to understand the problem
Understanding the at hand"
Problem "Program teams focus on understanding problems"

Culture-Related Codes

Creativity and "Metaphorical thinking allows for exploring and mak-
Multiple Thinking ing connections"
Styles Enable CST Teams need "innovative individual thinking"
A Supportive "Teams require constant reminders to stay in a sys-
Environment Valuing tems thinking mode"
Systems Thinking "Individual team members must listen, understand,
Enables CST and make value-add comments to the team"

"Teams must be constantly questioning"A Willingness to Ask
"A managerial culture where people can raise their

Enables CST hands and ask for help when in trouble"
"Teams must be willing to answer questions"

Process-Related Codes

Shared Language and "Process enables communication"
Taxonomy Enable "Process provides a mutually agreed upon taxonomy"
CST "Shared reference frame," "Shared framework"
Knowledge "Need to share experiences on a diverse set of mis-
Management Enables sions"
CST "Tools should support frictionless data flow"

"Standard process provides a tool to promote systemsTools to Promote
Systems Thinking thinking"

Process is a "reminder" and "companion" for systemsEnable CST
thinking

Team Trait Codes

Socialized Experts/ "Teams need many experts-well socialized"
Shared References "Mature teams have socialized members"
Enable CST "Groups need a shared view"

"You get better results when you can look someone
High Communication

in the face"
Bandwidth Enables

iCST "Teams need an environment that supports interac-
tions"

CST Requires "People are on teams because of their particular ex-
Technical Depth, not pertise"
Width "Teams need more areas of technical depth"
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Most Frequently Occuring Codes

Shared Language and Taxonomy
enable CST

Socialized Expert with Shared
References enable CST

Higher Communcation Bandwidth
enables CST

Knowledge Management enables CST

CST requires Technical Depth,
not Width

Collocation enables CST

CST Involves Producing a Product/
Understanding Success Criteria

Creativity and Multiple Thinking Styles
enable CST

Good Team Member
Awareness enable CST

Leaders with Strong Social Skills
enable CST

Systems Thinking Leadership is the Ability
to Find Interfaces and Interconnections

CST Involves Understanding
the Problem

A Supportive Environment Valuing
Systems Thinking enables CST

A Willingness to Ask and Answer
Questions enables CST

Tools to Promote Systems Thinking
enables CST

Individual Systems Thinkers
enable CST

Systems Thinking Leadership Required

CST Involves a Holistic Approach

Integrated Design; Bringing the
Disciplines Together enables CST

Face-to-Face Communication
enables CST

Process Obscures what Needs
to be Done

Process can Stagnate--Needs to
Constantly Evolve

Failure to Converge is a barrier to CST

Ad Hoc Organization I Unique Team
Cultures a bamer to CST

Using Consensus Building
enables CST

Being Aligned with Project
enables CST

A Willingness to use Process
enables CST

Hero Syndrome is a barrier to CST

Resistance to Change is a barrier to
CST

Process is a Bass from which to Start
and Interpret

Process Moderates Undesired
Behavior

Leadership is More Important than
Process

0 2 4 6 8 10 12

Number of Occurances in Pilot Interview

Figure 4-2: Codes that appeared most frequently within the pilot interviews.
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Figure 4-3 shows those codes cited in the greatest number of interviews. Compar-

ing and contrasting Figures 4-2 and 4-3 provides insight into which codes and con-

structs are most important: differentiating individual interviewee enthusiasm from

commonly held opinions. The process-related codes of 'integrated design' and 'face-

to-face' communication are more universally cited than frequently cited, emphasizing

the importance of bringing people together during the design process in a manner that

facilitates the exchange of technical information. The team trait codes of 'collocation

enables CST' and 'good team member awareness enables CST' have relatively lower

importance when viewed in terms of the number of interviews citing these codes-

indicating these are concepts worth exploring but are not universally recognized.

Figure 4-4 shows the proximity of codes cited within the pilot interviews. Within

this figure, dots indicate the number of times two codes appear one paragraph or

less apart. From the figure, it can be seen that codes along the diagonal (i.e., codes

within the same category) often appear in close proximity. For simplicity of presen-

tation, the codes have been clustered according to the critical research constructs.

Off diagonal clusters indicate possible relationships of interest between constructs.

Off-diagonal relationships with five or more links are circled in Figure 4-4. The figure

shows a link between cultural enablers and leadership enablers. This link is logical

within the context of applicable literature. Leaders have the capability to influence

a team's culture. Likewise, a team's culture will influence its choice of leader [126].

Another link identified is between cultural enablers and cultural barriers. This link is

logically obvious and an artifact of separating enablers and barriers during axial cod-

ing. The third and strongest off-diagonal link is between process enablers and team

trait enablers. Reviewing these codes indicates the relationship between process and

team traits centers about links between 'composing teams of individuals with shared

references' and the 'shared taxonomies provided by process' and between the team

trait of 'collocation' and the types of 'interaction facilitated by process.'

The results of pilot interview analysis were used, along with results of the literature

review, to inform a definition of collaborative systems thinking as discussed in Section

4.2.2.
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Most Universally Occuring Codes

Creativity and Multiple Thinking Styles
enable CST

Shared Language and Taxonomy
enable CST

Socialized Expert with Shared
References enable CST

CST requires Technical Depth,
not Width

Integrated Design; Bringing the
Disciplines Together enables CST

Face-to-Face Communication
enables CST

Knowledge Management enables CST

rn1
Higher Communication Bandwidth

enables CST

Leaders with Strong Social Skills
enable CST

CST Involves a Holistic Approach

A Willingness to Ask and Answer
Questions enables CST

Tools to Promote Systems Thinking
enables CST

Collocation enables CST

Systems Thinking Leadership is the Ability
to Find Interfaces and Interconnections

Systems Thinking Leadership Required

CST Involves Producing a Product/
Understanding Success Criteria

CST Involves Understanding
the Problem

Being Aligned with Project
enables CST

A Supportive Environment Valuing
Systems Thinking enables CST

Failure to Converge is a barrier to CST

Ad Hoc Organization I Unique Team
Cultures a barrier to CST

Resistance to Change is a
barrier to CST

Process is a Basis from which to Start
and Interpret

Process can Stagnate--Needs to
Constantly Evolve

Individual Systems Thinkers
enable CST

Good Team Member
Awareness enable CST

F

0 1 2 3 4 5 6 7 8

Number of Interview Referencing Code

Figure 4-3: Codes that appeared in the greatest number of pilot interviews.
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Definition Codes

Cultural Enablers

Process Enablers

Team Trait Enablers

Leadership Enablers

(L-

..

*

K

Cultural Barriers

Process Barriers
Team Trait Barriers

:~~~~ 0__ _
* ..
0*

Leadership Barriers I I 1 1
Figure 4-4: Links between off-diagonal code categories indicate possible links between constructs.
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4.1.2 Case Studies

Full Case Studies

This section contains results of descriptive analysis from the full case studies. For

brevity and clarity the results are graphically presented in the context of the literature

frameworks introduced in Section 3.2.4.

Quantitative and qualitative data from the surveys and interviews were used to

triangulate high-medium-low ratings for each team and component of the literature

framework.

Figure 4-5 shows an interpretation of data collected in support of the frame-

work linking process and culture. For comparison, each team's collaborative systems

thinking assessment ranking is included at the bottom of the framework. While both

positive and negative correlations were found between survey questions responses and

collaborative systems thinking, the graphical data have been adjusted to all represent

positive correlations with collaborative systems thinking. Bulk survey data, are re-

ported in Appendix C. The most interesting observation from Figure 4-5 is that those

cultural aspects of the framework show the best correlation to collaborative systems

thinking. Those metrics in the 'espoused beliefs' and 'social networks' categories show

the greatest alignment.

Figure 4-6 shows that measures of team experience and cognition are the team

traits most predictive of collaborative systems thinking. It is interesting to note that

some teams with low collaborative systems thinking rankings rated their environments

highly. On one case study in particular, J9, interviewees spoke about efforts to reach

out to younger engineers with open work spaces with sofas, wireless internet access,

and coffee makers. However, these types of environmental luxuries do not appear

to influence collaborative systems thinking. This raises the questions of whether

industry is misplacing efforts to attract and retain younger engineers. Past research

has shown shorter program lifecycles that provide a realistic expectation for seeing

the systems through to completion do help with workforce attraction and retention

[115].
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I) Team Norms

II) Espoused Beliefs

III) Underlying Assumptions

IV) Social Networks

AIM#

Case Studies
AO B1 C2 D3 E4 F5 G6 H7 18 J9

No consistent evidence of leadership intervention
or team training was found

I I

No consistent evidence of team training was found

M .....

Collaborative Systems Thinking Ranking

Legend: (High; Medium; Low; Unclear/NA)

Figure 4-5: Graphical representation of data collected within the framework linking
process and culture.
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Case Studies
AO B1 C2 D3 E4 F5 G6 H7 18 J9

F) Collaborative Systems Thinking
I 1. Assessment of collaborative systems thinking - I I Il I

Legend: (High; Medium; Low; Unclear/NA)

m 11 M
Figure 4-6: Graphical representation of data collected within the
ration framework.

team trait explo-
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In addition to the metrics included in the original frameworks, two team traits

emerged as important during full case studies: a three-level team structure and a

social and technical leadership style. These are included, along with case selection

parameters, in Figure 4-7. The existence of a three-level team structure and social

and technical leadership proved highly correlated to collaborative systems thinking.

Despite the strong predictive power of the emergent traits, these are subjective and

difficult to measure metrics.

Case Studies
Emergent Parameters/Selection Criteria AO B1 C2 D3 E4 F5 G6 H7 18 J9

Customer Base (Gov.; Comm.; Private)

Collaborative Systems Thinking Ranking (High; -; Low)

Legend: (Opt 1; Opt 2 Opt 3)

*0IIF]
Figure 4-7: Graphical representation of emergent metrics and case study selection
parameters.

Figure 4-8 shows the relative frequency of common codes from the full case studies.

The case studies were placed into two groups based on collaborative systems thinking

ranking. Higher collaborative systems thinking team interviews were more focused

than the lower collaborative systems thinking team interviews. This is further shown

by the figures in Section C.3, which show those codes comprising 60% of all comments

from each set of case studies. Within Figure 4-8, the top fifteen codes from each

group of case studies are shown. Codes representing concepts unique to a group are

shaded blue (darker gray). Concepts that are similar to each other are shaded in

yellow (lighter gray). Links between same/similar concepts in each group are shown

through linking lines. Differences between commonly cited codes in the higher and

lower collaborative systems thinking teams show that higher collaborative systems

thinking teams spoke about 'trusting and open cultures,' 'using consensus decision
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making,' the importance of 'past program experience,' and the use of 'design reviews

to stimulate cross-discipline communication.' These codes are absent from the lower

collaborative systems thinking teams interview transcripts.

Given the data collected above, clustering analysis was used to gauge which teams

were most similar. A collection of average and median survey responses were used.

Medians were used whenever a metric had significant outliers (e.g. number of years

in industry) or the data are ordinal. In addition to the survey data, the emergent

parameters were included (1=present, 0=not present / inconclusive). Each vector of

metrics (with one value for each case study) was normalized to ensure no single mea-

surement would overwhelm the distance calculations. Collaborative systems thinking

rankings were not used in the clustering analysis except as a point of comparison.

Figure 4-9 shows the results of cluster analysis. Teams group, or cluster, according

to higher and lower collaborative systems thinking rankings. This gives credence

to the effectiveness of the measures used for differentiating collaborative systems

thinking teams.

Measuring Collaborative Systems Thinking There are no universally accepted

measures of team thinking, let alone collaborative systems thinking. As such, a tri-

angulation method was used in which the opinions of multiple people were compared

and combined to compile a rating of a team's collaborative systems thinking.

Because the concept of collaborative systems thinking is new to this thesis, steps

were taken to ensure people across different teams were providing their evaluation of

the same concept. To try and standardize responses, individuals were first asked to

provide their own definition of systems thinking. This was followed by a researcher

facilitated conversation highlighting any aspects of the collaborative systems think-

ing definition absent from the individual's definition. Usually individual definitions

included the the five themes derived from common systems thinking definition iden-

tified in Section 2.2.2, but may have lacked an appreciation for the role of social

interactions and effective communication-despite both these themes being prevalent

in responses to other interview questions. After this discission, individuals were asked
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Codes form Higher Collaborative
Systems Thinking Teams

CST

Good Team Member Awareness
enables CST

Frequent Meetings enable CST

A Willingness to Ask and Answer
Questions enables CST

Creativity and Multiple Thinking
Styles enable CST

Effective Communication is an
enabler to CST

Codes from Lower Collaborative
Systems Thinking Teams

14 Informal Social Connections enable
4 CST

CST Involves Product a Product/
Understanding Success Criteria

Knowledge Management enables
CST

Team Leaders Must be Willing to
Make Decisions

Figure 4-8: Comparison of the code frequencies from higher and lower collaborative
systems thinking teams.
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'Distance' between
case studies and
groupings

3.75

2.56-2.59

2.31
2.24
2.15

1.76

1.67

1.34

I 49 OO O ) (
Legend
*Lower CST teams
OHigher CST teams

Figure 4-9: The grouping of case studies shows the measured data do effectively
distinguish between higher and lower collaborative systems thinking teams.
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Table 4.2: Examples Showing Consistency Within Team Collaborative Systems
Thinking Ratings

Case ID Mean Team StdDev of
Self-Rating Team Ratings

B1 7.9 0.9

C2 5.6 0.9

F5 5.5 2.3

to rate their team's collaborative systems thinking on a 1-10 scale and to provide sup-

porting examples upon which they based their assessment. Individuals were coached

that a rating of '5' would be average. An argument is made for treating these initial

data as interval on the basis of allowing for triangulation to obtain a more accurate

assessment of a team's collaborative systems thinking ranking.

The above process was repeated with multiple people on a single team plus one

leader / supervisor with insight into the team's interactions and performance. The

standard deviations for team ratings was less than the difference between the higher

and lower clusters of ratings, substantiating the differences between higher and lower

collaborative systems thinking teams.

Data for three case studies, those with the greatest number of individual obser-

vations, are shown in Table 4.2. Case study F5 is included because it showed the

greatest observed variability in collaborative systems thinking rankings.

Abbreviated Case Studies

Sixteen abbreviated case studies were conducted to provide insight from a greater

cross section of the industry than was feasible to include in the full case studies.

These approximately one-hour interviews explored individuals' team experiences and

their opinions on which conditions were enablers or barriers to collaborative systems

thinking within those team experiences.
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As was describe previously, text analysis was conducted in MaxQDA. Commonly

occurring phrases and ideas were tagged and organized. Codes identified in the pilot

interviews and full case study interviews were used to seed the code list, and additional

codes emerged from the texts. Because of the greater number of interviews and variety

of topics covered, data presentation is limited to the most common and most universal

codes from these interviews.

Table 4.3 shows examples of raw text supporting eleven of the most common codes

from abbreviated case study interviews. Each code was cited between 8 and 16 times

across the 16 abbreviated case study interviews. Text supporting the remaining codes

is included in Appendix C.

Figure 4-10 shows the codes organized by the number of times cited across all

abbreviated case studies. Six of the ten most common codes are the same as those

from the pilot interviews. The four new concepts, also seen in the full case study

interviews, are 'effective communication,' 'using consensus building,' 'recognizing the

social component of engineering,' and having an 'open and trusting culture.' These

codes deal with the cultural and social components of engineering teams. As with

the pilot interviews, the prevalence of 'soft skill' codes emphasizes that collaborative

systems thinking is a social phenomena and is greatly influenced by the dynamics of

and personalities on a given team.

Figure 4-11 shows those codes cited in the greatest number of abbreviated case

studies. Comparing and contrasting Figures 4-10 and 4-11 provides insight into which

codes and constructs are most important. The primary different between the most

common and most universal codes is that the leadership trait of providing 'appropriate

guidance' appears more universally than common. Codes prevalent in the abbreviated

case studies but not in the pilot interviews include a set of codes that group into four

meta-categories: product orientation, the Socratic method of questioning, leadership

facilitated consensus-based decision making, and the importance of a diversity of

thinking styles. These codes are listed in Table 4.4 and are addressed in greater

detail in Section 4.2.3.
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Table 4.3: Supporting Text for Selected Abbreviated Case Study Codes

Culture-Related Codes

Effective "Someone can be a genius, but his intelligence is lost
ec i of it cannot be communicated to others"Communication is an

Enabler to CST "Communication is listening to not only what is said,
but what is not said. Body language is important"
"Information has to flow freely; without hesitation"Trusting, Open

Cultures Enable CST "Groups must have trust, must treat each person in-
dividually"

Process-Related Codes

"The difference between decision making on systems
and non-systems is that systems require everyone to
understand the points being considered through dis-
cussion and consensus building"Using Consensus
"Good systems thinking leaders ask other for their
input before expressing their own opinions"
"The common denominator in achieving consensus is
that all participants have an opportunity to provide
input and be heard"

CST Teams Use "Effective systems thinking teams ask high level
Intelligent

questions, then drill down to the right level of detail"
Questioning to
Facilitate SystemsThFacilitate Systems "Using the Socratic method leads to a better ends"
Thinking

"We had weekly meetings to keep people aware of hot

Frequent Meetings topics"
Enable CST "Regular meetings were instituted to improve inter-

actions between the specialists and analysts-to get
them communicating"

Team Trait Codes

CST Team Leadership "Leadership should know when to lead, when to back
Provides Appropriate off, when to allow people to make mistakes"

oLevels of Guidance "When necessary, leaders should drive teams towardsLevels of Guidance
central goals"

Individuals with "Not everyone can be worrying about the entire
Different Levels of process/program"
Systems Thinking "Everyone should understand some amount of the
Facilitate CST context-at least one level up in the block diagram"

"Leaders should solicit multiple inputs, but are stillTeam Leaders Must
be Wiling to Make responsible for the final decision "
bDecisions "A strong leader gathers information from the team

in order to make a decision"
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Common Themes from Abbreviated Case Studies

Effective Communication is an
enabler to CST

A Willingness to Ask and Answer
Questions enables CST

CST Involves a Holistic Approach

Process is a Basis from which
to Start and Interpret

Using Consensus Building
enables CST

Systems Thinking Leadership Required

Recognizing the Social Component
of Engineering enables CST

CST Involves Producing a Product/
Understanding Success Criteria

Trusting, Open Culture enables
CST

Being Aligned with Project enables
CST

CST requires Individuals with
Technical Depth, not Width

CST Teams Use Intelligent Questioning
to Facilitate Systems Thinking

Vertical Integration: A Connection to
Customer and Requirements enables CST

CST Team Leadership Provides
Appropriate Levels of Guidance

Shared Language and Taxonomy
enables CST

Knowledge Management enables CST

Frequent Meetings enable CST

Design Reviews Stimulate Cross-Discipline
Communication/ Grater Systems Awareness

Individuals with Diffenng Levels of
Systems Thinking Facilitates CST

Team Leaders Must be Willing
to Make Decisions

Legend

Definition Codes

SCulture-related
Codes

SProcess-related
Codes

STeam Trait
Codes

Specific Team
Trait Codes

0 2 4 6 8 10 12 14

Most Common Themes from Abbreviated Case Studies

Figure 4-10: Codes that appeared most frequently within the abbreviated case studies.
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Universal Themes from Abbreviated Case Studies

CST Involves a Holistic Approach

Process is a Basis from which
to Start and Interpret

A Willingness to Ask and Answer
Questions enables CST

Effective Communication is an
enabler to CST

Recognizing the Social Component
of Engineering enables CST

CST Involves Producing a Product!
Understanding Success Criteria

CST Team Leadership Provides
Appropriate Levels of Guidance

Using Consensus Building
enables CST

Systems Thinking Leadership Required

Being Aligned with Project enables
CST

CST requires Individuals with
Technical Depth, not Width

CST Teams Use Intelligent Questioning
to Facilitate Systems Thinking

Vertical Integration: A Connection to
Customer and Requirements enables CST

Shared Language and Taxonomy
enables CST

Frequent Meetings enable CST

Individuals with Differing Levels of
Systems Thinking Facilitates CST

CST Teams have Consistent
Team Structure

Trusting, Open Culture enables
CST

Knowledge Management enables CST

Design Reviews Stimulate Cross-Discipline
Communication/ Grater Systems Awareness

Team Leaders Must be Willing
to Make Decisions

CST Team Leaders Must have
Technical Credibility

Socialized Experts with Shared
References enable CST

CST Team Balance Changes with
Program Phase

Smaller Teams are More Able
to Engage in CST

Too Many Systems Thinkers on a
Single Team is a barrier

Failure to Converge is a barrier to CST

CST Involves Understanding
the Problem
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i Definition Codes

SCulture-related
Codes

Process-related
Codes

D Team Trait
Codes

Leadership-
Specific Team
Trait Codes

0 2 4 6 8 10 12 14

Most Universal Themes from Abbreviated Case Studies

Figure 4-11: Codes that appeared in the greatest number of abbreviated case studies.
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Table 4.4: Codes from the Abbreviated Case Studies not Found in the Pilot Interviews

Abbreviated Case Study Codes

1 A connection to the customer and origin of requirements
enables collaborative systems thinking

2 Collaborative systems thinking teams use intelligent lines
of questioning to facilitate systems thinking

3 Design reviews stimulate cross-discipline communication
and create systems awareness

4 Consensus building enables collaborative systems thinking
5 Collaborative systems thinking team leaders must be willing

to make decisions
6 Individuals with differing levels of systems thinking

facilitate collaborative systems thinking
7 Too many systems thinkers on a single team is a barrier

to collaborative systems thinking

4.2 Results

This research began with a single question: What is the structure and behavior of

systems thinking teams within the aerospace industry? From this question three

objectives and three formal research questions were formulated. This section inte-

grates the results of analysis to show how the objectives were met and questions were

answered.

4.2.1 Research Objectives and Questions

This research was guided by three objectives.

1. To define collaborative systems thinking by combining insights from existing literature

with observations of aerospace teams and interviews with aerospace engineers about

their team experiences.

2. To identify heuristics for promoting collaborative systems thinking teams in the

aerospace industry.

3. To develop a first pass theory explaining the influence of teams traits (e.g. demo-

graphics and culture) and process usage in enabling collaborative systems thinking.
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The questions asked to support these objectives were as follows:

1. What is collaborative systems thinking and how does it differ from individual systems

thinking?

2. What are the empirically generalized (i.e. commonly observed) traits of systems

thinking teams within the context of the aerospace industry?

3. What observed mechanisms best predict collaborative systems thinking?

4.2.2 Defining Collaborative Systems Thinking

The term collaborative systems thinking was introduced in this research to differenti-

ate individuals and teams engaging in systems thinking. Whereas systems thinking, or

engineering systems thinking, is an individual skill and activity; collaborative systems

thinking is a team skill and activity. As there is no universally accepted definition for

systems thinking, the first research question and objective was to develop a grounded

definition for collaborative systems thinking.

Common themes from literature and pilot interviews were used to construct a

working definition of collaborative systems thinking. As discussed in Section 2.2.2,

these themes include component complexity, interrelationships (interfaces), context,

emergence, and wholes. The grounded research by Davidz developed an engineering

specific definition of systems thinking that incorporates the five themes [35]. From

these example definitions it was determined that a definition for collaborative systems

thinking should also incorporate the five definition-related themes of systems thinking.

Table 4.5 shows how excerpts from literature and common pilot interview codes

were combined to identify central concepts used in defining collaborative systems

thinking (CST). The following is a discussion of each resulting concept for the col-

laborative systems thinking definition.

Because collaborative systems thinking is a property of teams and not individuals,

it follows logically that collaborative systems thinking is itself an 'emergent behav-

ior.' The first definition theme then comes from literature on team thinking and

interactions and points to the importance of shared processing of information [124] as
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Table 4.5: Integration of Concepts from Literature and the Pilot Interviews towards
a Definition of Collaborative Systems Thinking

Literature Concepts
Pilot Interview
Concepts

Central Concept
for CST Definition

Team thinking is a valid concept 'A willingness to
based on shared processing of ask and answer
information [124] questions' Team
Team thinking is facilitated by 'Socialized experts Interaction
interactions that create pointers with shared
to knowledge held by individuals references enable
within the team [151] CST'

Creative environments and multiple 'Creativity and
perspectives support systems multiple thinking Multiple
thinking [143] styles enable CST'

'Process provides a
Normative design processes that shared language
utilize divergent and convergent and taxonomy' Design
thinking are superior for handing 'Process provides a Processes
complexity [136] starting place for

executing design'

Multiple design languages (e.g. 'High Multiple
sketching, prototypes, etc.) are communication

Communication
required to communicate design bandwidth enables

Media
knowledge [45] CST'

Emphasis on end product is a 'CST involves
differentiator between successful Importance of
and failed product development an End Product
teams [43]
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facilitated by team interactions that help members of a team learn what areas of ex-

pertise and experience are represented within the team [151]. The 'willingness to ask

and answer questions' and to be 'aware of interactions among multiple disciplines'

are complementary concepts identified through the pilot interviews as enablers for

collaborative systems thinking. From these literature references and pilot interview

codes, the central concept of 'Team Interaction' was identified as important to the

definition of collaborative systems thinking.

From the literature a link between creativity and systems thinking was identified.

Specifically, creative environments allow for multiple perspectives and good idea ex-

change [44, 45, 143]. This theme from literature was reinforced by the pilot interview

code emphasizing the 'importance of creativity' as an enabler for collaborative sys-

tems thinking. These were combined to form a definition concept of using 'Multiple

Thinking Styles.'

The processes followed during design can also influence information exchange and

affect a team's ability to handle complexity [136]. Additional pilot interview codes

reinforce the concept that process provides a 'framework' and 'shared language for de-

sign.' These concepts were combined to form a definition theme emphasizing 'Design

Processes.'

The importance of communication was evident in both the literature and pilot

interviews. The literature pointed to the importance of using multiple levels of ab-

straction, or design languages, to communication technical information within a team

[25, 45, 63]. This was complemented by the pilot interview code of 'high communi-

cation bandwidth enables CST.' Using multiple types of media to communication

enables high-bandwidth communication and therefore the theme of 'Multiple Com-

munication Media' was added to the definition for collaborative systems thinking.

The four definition themes presented above are related to interpersonal interac-

tions. The fifth, and final, definition theme gets at a more fundamental difference

between systems thinking and collaborative systems thinking: the concept of produc-

ing a product. The literature shows that in a study of product development teams,

those teams that succeeded, were more focused on the end product in contrast to
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being focused on the design process [32, 43, 61]. This theme also appeared in the

pilot interviews as an emphasis on role of teams in producing products. Whereas in-

dividuals contribute to a team, the team must deliver a final product or component.

These complementary ideas inform the final concept of the 'Importance of an End

Product.'

When combining these definition-related concepts, Davidz's definition of systems

thinking was used as a template. Davidz's definition for systems thinking is 'utilizing

modal elements to consider the componential, relational, contextual and dynamic ele-

ments of the system of interest [35].' This definition was chosen as a starting point for

composing the definition of collaborative systems thinking because it incorporates the

five universal themes of systems thinking definitions into one engineering-specific def-

inition. Further, the above definition for engineering systems thinking. was developed

in the context of the aerospace industry, matching the context of this research.

Using the above definition as a template, and integrating the themes from litera-

ture and the pilot interviews, the following definition of collaborative systems thinking

was compiled, as first proposed in [80] and further discussed in [81]

Collaborative systems thinking is an emergent behavior of teams resulting from

the interactions of team members and utilizing a variety of thinking styles, de-

sign processes, tools, and communication media to consider systems attributes,

interrelationships, context and dynamics towards executing systems design.

This definition was used throughout the case study portion of research and was

well received.

4.2.3 Generalized Traits of Collaborative Systems Thinking

Teams

Based on survey and interview results, a set of generalized traits of collaborative

systems thinking teams was identified. Some of these traits (e.g. engaging in con-

sensus decision making) are based on quantified survey data reinforced by qualitative
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Table 4.6: A List of Generalized Traits of Collaborative Systems Thinking Teams

Generalized Traits of Collaborative Systems Thinking (CST) Teams

1: CST teams engage in more consensus decision making
2: CST teams have three categories of membership
3: CST team communication preferences are for real-time group

interactions
4: CST team members have higher number of past and concurrent

program experience
5: CST team members rate their team environment more favorably
6: CST teams have more creative environments
7: CST teams require both technical and social leadership
8: Conceptual design teams are more likely to engage in CST

interview data. Other traits (e.g. three categories of team membership) are based

on qualitative interview data. Table 4.6 shows a list of generalized traits, which is

followed by a discussion of each trait with a presentation of supporting data. In

addition to the traits presented in Table 4.6, moderate correlation was also found be-

tween collaborative systems thinking and team industry sector. Those teams in the

aircraft industry have higher collaborative systems thinking rankings than teams in

the spacecraft industry. The apparent industry dependency is not seen as significant

because of the relatively small sample size of this study, but may be worth exploring

in future research.

In addition to learning from the generalized traits, those traits that did not differ-

entiate collaborative systems thinking teams also provide useful information. Table

4.7 shows five traits that surprisingly do not correlate to team collaborative systems

thinking ranking. The first 'non'-trait is team size. The teams surveyed varied in

size from four to twenty team members. This is a relatively small range. Perhaps the

effects of team size would be more pronounced with larger teams, but it is difficult

to think of teams much larger than 20 people really interacting as a single team as

opposed to an amalgam of smaller teams. The second 'non'-trait, customer base, was

included as a dimension of interest because government customers, especially within

the United States, often require minimum levels of process capability maturity. It

was thought that these teams would be more process oriented and therefore more sys-
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Table 4.7: A List of Team Traits that Do Not Differentiate Collaborative Systems
Thinking Teams

Team Traits not Impacting Collaborative Systems Thinking

1: Team size
2: Customer base (government or commercial)
3: Measures of technical process use and/or tailoring
4: Self-reported team member systems thinking
5: Team collocation

tems aware. However, measures of process use and tailoring were also extremely poor

predictors of collaborative systems thinking ranking (with Spearman's p correlations

of a 0.11 - 0.12). The fourth 'non'-trait is self-reported individual systems thinking

capability. Team members consistently rated themselves as better systems thinkers

than did team leaders and supervisors rate the same individuals. Systems thinking is

an abstract concept, and some individuals were not familiar with the term, inhibiting

their ability to rank themselves. The final 'non'-trait is team collocation. Despite a

strong emphasis on the importance of effective communication and real-time group

interactions, the percentage of team members located at the main site was not a good

predictor of collaborative systems thinking. Several of the barriers to distributed col-

laborative systems engineering [145] were present on the distributed teams, but these

appear to be surmountable with good tools and leadership.

Team Decision Making

Indicating a preference for group decision making was the greatest single predictor of

collaborative systems thinking. Figure 4-12 shows a plot of team collaborative sys-

tems thinking versus team decision making preference. Data regarding team decision

making preferences come from the team survey question #24 in which individuals

were asked to rate the relative frequency with which design decisions are made by

groups versus individuals. Individuals were asked to indicating their response by

making a mark along a continuum from 0 to 100%. The data are therefore considered

interval, and a Pearson correlation coefficient of -0.82 was obtained. A lower re-
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Figure 4-12: Data show that teams with higher collaborative systems thinking ratings
utilize more group decision making (DM). Pearson Corr(CST, DM) = -0.80

sponse indicates decisions are more frequently made by groups. The data show teams

engaging in more consensus decision making are rating themselves higher for collab-

orative systems thinking. The median of each team's responses is plotted against a

team's collaborative systems thinking, calculated as described in Section 4.1.2.

Qualitative descriptions from interviews indicate that individuals perceive the

group is engaging in group decision making when they as individuals feel their ideas

have been heard by the team leader, and they understand the reasoning or rationale

for decisions made. It should be pointed out that the group decision making process

does not appear to resemble a democratic polling process, but is indicative of teams

discussing decision alternatives and coming to an agreement on how to proceed. The

leaders of these groups appear to control these conversations and to determine when

the team has converged on a preferred path forward. Within the abbreviated case

study transcripts this concept is reinforced with the code 'Leadership must be willing

to make a decision.' One participant in the abbreviated case studies described an
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instantiation of consensus decision making that allowed for individual team members

to both approve of the team's decision and indicate that team's choice is not their first

choice. This method recognizes there are often multiple valid options and encourages

team members to reflect upon the validity of those options rather than focusing on

their specific solution.

One unusual aspect of the team decision making data is the apparent dependency

of decision making perceptions on team collocation. While the fraction of team mem-

bers seated together shows little correlation to collaborative systems thinking, there

is an apparent secondary effect. Shown in Figure 4-13 are two examples where those

team members at the central team location had different perceptions of team decision

making as compared to those team members at distributed locations.

In Figure 4-13(a), team members 'A,' 'E,' and 'J' were contractors working with

the team. They are full team members and were among those team members who

had been with the program the longest. While they indicated that decisions were

most often made by the team leader, their qualitative description of the decision

making process was near identical to those collocated team members who perceived

the decisions were made by the group. For context, Case AO was among those teams

with high collaborative systems thinking ratings.

In Figure 4-13(b), team members 'K'-'S' were working together as a separate lo-

cation and organization. The two groups interacted regularly via teleconferences and

shared file systems. In this case, Case F5, the two components of the team are of

similar size and appear to have differing perceptions on team interaction influenced

by their distinct organizational cultures. Team members 'A'-'J' are in a more hierar-

chical and process oriented organization whereas team members 'K'-'S' are in a more

collegiate and research based organization. For context, Case F5 was among those

teams with low collaborative systems thinking ratings.

The above two vignettes point to the added effort required to make distance team

members feel a part of the 'process' and the ease with which a non-collocated team

can develop subcultures that have different expectations of team interactions.
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Figure 4-14: Interview and organizational chart data indicate collaborative systems

thinking teams have three consistent levels of team membership. The results are

statistically significant, p = 0.004.

Three Categories of Team Membership

A second strong indicator of collaborative systems thinking was team structure. This

observation emerged from the interview data, and when available, organizational

charts. This is a qualitative indicator of collaborative systems thinking. Figure 4-14

is a two-by-two diagram showing the relationships between observations of this team

structure and collaborative systems thinking. In this figure, the shaded cells indicate

those combinations of team-structure and collaborative systems thinking that are

consistent with the team structure being an enabling characteristic of collaborative

systems thinking.

The observed structure consists of three informal categories, or levels, of team

membership. Initially observed on Case B1, the three tier structure was retroactively

pieced together from data for Case CA0 and was included as an interview question

on subsequent full and abbreviated case studies. Interviewees were asked to comment

on the structure and to present examples to reinforce or contradict the pattern.
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The categories observed are systems leadership, functional experts, and an in-

between category of 'technical translators.' Characteristics of each category are as

follows [81]:

Systems Leadership The systems leadership of a team is composed of one or

more individuals, all strong individual systems thinkers, who balance both the

technical and social interactions of the team. These individuals guide the team

and adjust their interaction style to best serve their purpose and audience. They

excel at communicating at multiple levels of abstractions and multiple levels of

system detail. These traits align with those of the 'highly regarded' systems

engineers characterized from a study of effective systems engineers at NASA

and include the ability to influence others, utilize strong communication skills,

engage in mentoring, critical thinking, risk management, and the ability to lead

others to new insight using analogy and insightful questioning [153].

'Technical Translators' This intermediary group represents a team's developing

systems professionals and consists of individuals with function responsibilities

(e.g. subsystem leads or representatives of different functions) who interact

closely and have an appreciation for systems issues. These individuals act as

an interface between functional experts and the systems leadership. They excel

at presenting detailed technical information at the right level of abstraction to

permit system-level knowledge interchange and decision making. By nature of

their role within the team, these individuals are well poised to develop strong

systems skills.

Functional Experts The functional experts bring detailed specialized knowledge

to the team. These individuals are less involved in the day-to-day interactions

and decision making of any single team as they often contribute to several teams

simultaneously. As such, the functional experts are less aware of systems issues

and the greater systems picture. The functional experts bring much of the past

and concurrent program experience to the team.
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Figure 4-15: Examples of three-category team membership structures

A team lacking any one of these membership levels experiences a lack of leadership

and/or a failure to obtain and communicate the information necessary to support

decision making.

Figure 4-15 shows two examples of team organizational charts translated into

membership levels on the basis of interview feedback. Figure 4-15(a) shows Case B1,

a team with a high collaborative systems thinking rating. Lines between team mem-

bers represent relationships from the organizational chart. It was this team's leader

who first proposed the concept and functionality of the three categories. The systems

leadership of this team consists of two individuals. Both have technical credibility

within the team, but one was also seen as providing social leadership. Team members

commented on the efficiency and effectiveness with which she ran meetings and de-

scribed her as nurturing. Young team members spoke of her as a role model; someone

to emulate. The 'technical translators' of B1 were younger engineers whose interviews

reflect an awareness and curiosity for subsystem interactions, manufacturing issues,

and lifecycle concerns. Finally, within Case B1 there were several functional experts

contributing to the systems design. While formally part of the team these experts
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attended few system-level meetings and admitted that they were not always as aware

as they might like of the overall system and specific design decisions. One individual

cited a situation in which he made a recommendation to the team only to find out

later the data he used were outdated, and therefore invalid.

Figure 4-15(b) shows the team structure of Case F5. While both teams were

working on systems in the same industry and with the same customer category, their

team structures were markedly different. Both teams had system-level responsibilities,

but Case F5 represented a far larger and more complex system. The F5 team consists

primarily of leaders and technical translators. For such a large program, the team

was relatively recently formed and still in the process of identifying individuals to

provide functional expertise. As with B1, F5 has two leaders, one more technical and

one more social. However, the coordination between these two leaders did not appear

to be as seamless as in B1. Further, the team's unique structure leaves many of the

'technical translators' without specific functional or subsystem responsibility. This

led to some confusion as to individual responsibilities on the team.

As stated above, the concept of three team membership categories emerged from

the case studies. It is therefore worth taking a moment to explore team and engineer-

ing literature for theories and past research supporting this observation. Two such

examples are Ancona's X-Teams [8] and McMasters and Cummings's writings on the

future of airplane design [98]. In the X-Teams framework, there are three expandable

tiers: core, operation, and outer net. From a knowledge management and hierarchy

standpoint, the expandable tiers are similar to the three categories of collaborative

systems thinking teams. The core members and systems leaders are both coordinators

and keepers of overall system knowledge. Operational members carry out much of the

ongoing work, similar to the central role of 'technical translators.' Finally, outer net

members within the X-Team framework are specialized and part-time. They therefore

fulfill the same role as functional experts on collaborative systems thinking teams.

The second framework of comparison comes from McMasters and Cummings [98].

Their framework shows architects, general contractors, and specialist craftsmen as

the three kinds of people required to build airplanes. The architects, or synthesiz-
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ers and systems thinkers, correlate to the above systems leadership. The specialist

craftsmen, or technical specialists, correlate to the above functional experts. The

third kind of person, general contractors, doesn't translate well to the collaborative

systems thinking team categories. General contractors are responsible for budget

and schedule-traditional management responsibilities [98]. Within the collaborative

systems thinking team framework, budget and schedule responsibilities lie with the

systems leadership. McMasters and Cummings identify a group of individuals called

analysts as precursors to either the specialist craftsmen or architects. This category

of analysts most closely reflects the 'technical translators' on collaborative systems

thinking teams.

Based on these comparisons to literature, the three-level collaborative systems

thinking team structure provides new and complementary insights into engineering

team structure.

Team Communication Preferences

Question #14 on the team survey explored the conditions under which teams inter-

acted. Specifically, team members were asked to identify common interactions along

three axes: 1-on-1 vs. groups; in-person vs. virtual; and real-time vs. delayed. Re-

sponses were marked along a continuum indicating the relative percent of interactions

along each dipole of interaction types from 0 to 100%. These data are interval, and

the Pearson correlation coefficient for each trait is displayed in the following three

figures.

Given the above discussed preference for group decision making, it comes as no

surprise that collaborative systems thinking teams are more likely to interact in groups

rather than pairs. The trend is illustrated in Figure 4-16. This relatively strong

correlation is reinforced by abbreviated case study emphasis on the importance of

frequent team meetings and design reviews.

The second dimension of team interaction is in-person versus virtual interactions.

Examples of virtual interactions include teleconferences, web-based meetings, and

email or other electronic communication. While nearly every team mentioned some
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Figure 4-16: Collaborative systems thinking teams express a preference to meet in
groups (G) versus one-on-one. Pearson Corr(CST, G) = 0.71
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Figure 4-17: Collaborative systems thinking teams have a weak preference for inter-

acting in-person (IP) versus virtually. Pearson Corr(CST, IP) = -0.42

type of online collaboration, collaborative systems thinking teams indicated a weak

preference for in-person interactions as shown in Figure 4-17. As with the group

interaction preference, this is consistent with the emphasis on frequent meetings and

design reviews. Comments from all case study interviews showed that email has a

important role in documenting decisions and action items resulting from more casual

interactions, but face-to-face interactions are invaluable for improving communication

and establishing trust within a team. As one individual from Case J9 stated, it is

'hard to delete a walk-in.' Face-to-face communication facilitates the use of sketching,

gesturing, and interacting with prototypes and physical models: all shown to improve

technical communication [45].

The third dimension of team interaction is real-time versus delayed interactions.

Examples of delayed interactions include email, editing documents on a shared server,

and phone messages. When teams are geographically distributed and span multiple

time zones, delayed (or asynchronous) interactions are near unavoidable. Given the
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Figure 4-18: Collaborative systems thinking teams have a preference for interacting
in real-time (RT). Pearson Corr(CST, RT) = -0.48

prior two preferences for in-person and group interactions, it is consistent that collab-

orative systems thinking teams prefer in-person interactions, shown in Figure 4-18.

Importance of Past and Concurrent Program Experience

Past research indicates that experiential learning is an enabler for engineers developing

individual systems thinking [35]. It is logical that teams with a greater number of

past program experiences would therefore be more likely to express collaborative

systems thinking. This relationship is shown in Figure 4-19. There is a moderate

correlation between collaborative systems thinking and both past program experience

and concurrent program participation, shown in Figure 4-20. These correlations are

both stronger than that between collaborative systems thinking and the number of

years of industry experience (Corr = 0.42). This underlies the importance of going

through the system design process as a critical enabler of systems thinking at both the

individual and team levels, as has been suggested by past research into engineering

systems thinking development [35].
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Figure 4-19: Data show that teams whose members have more past program
experience (PPE) have higher collaborative systems thinking ratings. Pearson
Corr(CST, PPE) = 0.59

Both graphics represent a limited range of past and concurrent program expe-

rience. It is expected that the positive correlation between collaborative systems

thinking and past program experience will hold when extrapolated to larger num-

bers of past program experience. The same is not likely true for concurrent program

participation. A common rule of thumb is that most people cannot remember lists

longer than seven items long, and recent research in multiple fields has shown that

multitasking reduces performance on even simple tasks. As such, a team median of

three concurrent programs is probably an upper limit past which further concurrent

program participation would results in distractions and time demands that would

detract from individuals' abilities to actively contribute on any given team.

There is much support for the benefits of past and concurrent program experience.

Many organizations have some type of job rotation program for new hires. These

programs seek to rapidly introduce individuals to several programs, design phases,

and functions. Some programs go one step further and use smaller programs or
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Figure 4-20: Data show that teams whose members work on more concur-

rent programs (CP) have higher collaborative systems thinking ratings. Pearson
Corr(CST, CP) = 0.57

research initiatives to expose new career hires to multiple program lifecycles [48].

The purpose of these programs is both to expose young engineers to entire systems

and to the process by which those systems are designed.

Concurrent program participation likely improves collaborative systems thinking

both by exposing individuals to more systems and systems experiences and by in-

creasing the number of weak links into other programs. These weak links provide

shortcuts to information outside the purview of the core team members [13]. These

links provide insight into new knowledge, methods, and resources. Within the X-

Team framework, these weak links help programs gain greater visibility within* an

organization and result in a social network that can be leveraged for knowledge and

resources [8].
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Supportive Team Environment

Team members were asked to rate their agreement with a set of statements about

team environment. These statements were influenced by a variety of sources within

the literature (e.g. [124, 126]) and focus on aspects of shared team identity, team

awareness, and mutual respect and trust among team members. The majority of

these statements showed weak correlation with collaborative system thinking. Three

statements regarding team environment stood out as moderate predictors of collabo-

rative systems thinking. Each statement regarding team environment was measured

through a Likert scale response. The median response of each team was chosen as

representative of the team. These data are ordinal, and their correlation with collabo-

rative systems thinking was calculated using the Spearman's p correlation coefficient.

The first enabling aspect of team environment is trust among team members in

their mutual ability to meet deadlines. Competence-based trust is an important com-

ponent of information exchanges [32]. Schedule pressure adversely affects a team's

creativity and environment [143]. It is therefore logical that trust in others' abili-

ties to meet deadlines works to reduce schedule uncertainty and improve the team

environment. Trust in general reduces the need to inspect or replicate other team

members' work, thus improving team efficiency. Survey data suggesting a moderate

to strong correlation between trust and collaborative systems thinking are shown in

Figure 4-21. Interview data reinforce this pattern through codes emphasizing that

collaborative systems thinking team members are aware of each other's activities and

perceive each other as technically credible. Interviews from teams with lower col-

laborative systems thinking rankings showed confusion over individual team member

contributions and technical backgrounds. Explanations for this difference could be

the relative length of time a team has been to together or the quality of their inter-

actions. However, the data collected are insufficient to make this generalization as

system size and complexity are potential confounding variables.

The second enabling team environment trait is a shared understanding of team

purpose. The purpose of teams is to work towards an end: a common goal. Com-
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Figure 4-21: Data show that teams who trust (T) each other's abilities to
meet deadlines have higher collaborative systems thinking ratings. Spearman's p
Corr(CST, T) = 0.63

pelling vision and a belief in the end goal are two parameters that energize teams

[32]. Figure 4-22 shows a moderate correlation between higher collaborative systems

thinking teams and team agreement with the statement that 'the team understands

its purpose within the overall system design.' The team survey included a question

about team identity. Of those indicating a unique team identity, the most common re-

sponse was that team identity is centered about the product. This theme was present

in both the pilot interviews and abbreviated case studies.

The third enabling team environment trait is engaging in team discussions that

stimulate good ideas. This team environment trait is rooted in the concept that good

design processes utilize brainstorming, trade studies, and other aids to fully explore

the problem space before downselecting a design for evaluation [136]. These methods

better handle complexity and are therefore thought to enable systems thinking. The

survey data show a weak to moderate correlation between collaborative system think-

ing and engaging in stimulating team discussion, shown in Figure 4-23. There is some
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Figure 4-22: Data show that teams who understand their purpose (P) have higher

collaborative systems thinking ratings. Spearman's p Corr(CST, P) = 0.57

evidence in the case study interviews to reinforce the survey data. The frequently

cited codes of 'willingness to ask and answer questions,' is related to the concept of

stimulating discussion. The importance of a creative team environment, discussed

below, is also linked to stimulating team discussion.

Creative Team Environment

The team survey included a series of questions based on a creativity framework de-

scribed in [143]. The following nine parameters of team creativity were queried:

1 Project Management 6 Team Incentive / Recognition

2 Access to Resources 7 Interesting and Challenging

3 Decision Freedom Work

4 Realistic Schedule 8 Collaborative Environment

5 Individual Incentives 9 Organizational Interest in

and Recognition Mission of Team
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Figure 4-23: Data show that teams whose discussion (D) stimulate good ideas have
higher collaborative systems thinking ratings. Spearman's p Corr(CST, D) = 0.51

Of these nine parameters, three showed a moderate correlation to collaborative

systems thinking. Other parameters (e.g. interesting and challenging work) proved

poor indicators because every team indicated their work was challenging and interest-

ing. Questions gauging the creativity of a team's environment were measured through

a Likert scale response. The median response of each team was chosen as represen-

tative of the team. These data are ordinal, and their correlation with collaborative

systems thinking was calculated using the Spearman's p correlation coefficient.

Teams that rated their decision freedom highly were also more likely to have

high collaborative systems thinking rankings. Having the latitude to make important

decisions as a team provides both a sense of contribution and progress: both are

shown to energize teams [32]. Figure 4-24 shows the moderate to strong correlation

between collaborative systems thinking and decision freedom.

A correlation between collaborative systems thinking and collaborative team en-

vironment seems quite obvious. The moderate to strong correlation shown in Figure

4-25 is likely a result of the greater team and organizational emphasis on teamwork.
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Figure 4-24: Data show that teams who perceive they have greater decision

freedom (DF) have higher collaborative systems thinking ratings. Spearman's p
Corr(CST, DF) = 0.57

Team responses to survey questions on the value placed on teamwork did show weak

to moderate correlation with collaborative systems thinking. More basically, though,

a collaborative environment implies more team interaction, and therefore more op-

portunities to share experience and knowledge within the team. These interactions

and basic team member awareness form the basis for team thinking [124, 151]

Figure 4-26 shows a weak to moderate correlation between collaborative systems

thinking and a team's perception that their schedule is realistic. The importance of

a realistic schedule also appeared in interviews with members of seven of the full case

study teams. Individuals commented that schedule pressures inhibited collaborative

systems thinking. In a separate case study, schedules were looked at as enablers that

counterbalanced the engineering tendency to wait until the last minute to complete

work. In this case, a realistic schedule contained sufficient milestones to drive progress

on tasks that might otherwise languish. These two viewpoints provide two reasons
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Figure 4-25: Data show that teams that rate their environments as more collab-

orative (CE) have higher collaborative systems thinking ratings. Spearman's p

Corr(CST, CE) = 0.65

that realistic schedules can help by providing structure and ensuring that sufficient

time and resources are allocated to each engineering task.

Social and Technical Leadership are Required

Another outcome of the case study interviews is the concept that leadership is an

important enabler of collaborative systems thinking and that this leadership must

provide both technical and social structure and guidance. An expansion of the systems

leadership level of collaborative systems thinking team membership, the importance of

both technical and social leadership is supported by several codes from the case study

interviews. These codes include 'recognizing the social component of engineering,'

'leaders with strong social skills enable collaborative systems thinking,' 'nurturing

leaders are an enabler,' 'technical credible leadership is required,' and 'leadership must

provide appropriate levels of guidance to a team.' Each of these codes appeared with

similar frequency in both the full and abbreviated case study interviews. Figure 4-27
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Figure 4-26: Data show that teams that perceive their schedules as more realistic (RS)
have higher collaborative systems thinking ratings. Spearman's p Corr(CST, RS) =
0.58

shows how the presence of both social and technical leadership relates to collaborative

systems thinking. The shaded boxes indicate which pairings support the proposed

pattern of social and technical leadership enabling collaborative systems thinking
teams. Future research should look more closely at team leadership traits and compare

observations with the vast literature on team management and leadership.

Collaborative Systems Thinking Teams have People-Oriented Members
The emphasis on social leadership is in contrast to stereotypical views that engineers

are overly technically oriented. While a full battery of personality preference ques-

tions was infeasible because of time and privacy concerns, a small set of questions

loosely based on the Myers-Briggs personality types was asked in the surveys. When

asked to choose between two statements indicating a preference to interact and dis-

cuss new ideas with others or to form new ideas through abstraction and personal

reflection, participants in the team survey overwhelmingly indicated a preference to
discuss new ideas with others. Because this observation was consistent across all
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Figure 4-27: Interview data suggest that leaders of collaborative systems thinking

teams provide both strong social and technical leadership to team members. The

results are statistically significant, p = 0.004.

teams, regardless of collaborative systems thinking ranking, this does not provide in-

formation valuable to predicting collaborative systems thinking teams. However, this

expressed preference to interact with people goes against the typical engineering per-

sonality preference for introversion [29]. Interviewing and interacting with these team

members reinforced that these were articulate individuals, comfortable in communi-

cating with others. This data provides hope that the reforms in engineering education

(e.g. CDIO initiative [241) are helping to reverse the typical isolated stereotype often

associated with engineers as discussed in Section 2.2.1.

Conceptual Design Teams Engage in More Collaborative Systems Thinking

Figure 4-28 shows a two-by-two comparison of design phase and collaborative systems

thinking ability. It appears that conceptual design teams are more likely to engage in

collaborative systems thinking, with those pairings supporting the pattern shaded in

grey. Teams in conceptual design have greater latitude to affect the design, and may
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Figure 4-28: Conceptual design teams appear more likely than detail design teams to
express collaborative systems thinking. The results are intriguing, but not statistically
significant, p = 0.067.

therefore be more aware of what trades are available and the impact of those trades.

Comments from some case study interviews support the idea that the emphasis of

systems thinking shifts with program phase. The theoretical memo shown in Figure

3-4 captures these comments.

The proposed differences between design phases were identified through case study

interviews. The patterns suggested are reinforced by research into engineering de-

sign process, specifically the relative roles of divergent and convergent thinking [136].

Comments from the case study interviews suggest the emphasis of systems thinking

changes from the conceptual design to detail design to testing and integration. Com-

ments suggest that conceptual design is dominated by divergent, creative thinking.

During conceptual design, leadership is more important than process in terms of keep-

ing a team focused and productive. 'Technical translators,' or generalists, dominate

the team membership during conceptual design because having a systems perspective

is more important than specific technical detail. Systems thinking during conceptual

design is best described as out-of-the-box and architecture oriented. When the pro-

153



gram shifts to detail design, convergent thinking and decision making become more

important. At this phase, systems thinking becomes detail and execution oriented.

More functional experts participate in detail design. Also, process becomes more im-

portant for coordinating trade studies, information flow, and decision making. The

final phase of systems development mentioned during case study interviews is the

integration and test phase. Because the purpose of integration and test is to verify

system requirements are met, process is very important. Yet, the types of issues en-

countered during integration and test require creative thinking and problem solving

skills. Integration and test are characterized by constrained divergent thinking, and

the teams appear to have members who are generalists and confer with functional

experts as required.

While this progression of collaborative systems thinking and team composition

make logical sense, the theory emerged later in the interview progression and therefore

only a handful of interviews explicitly asked about this concept. Yet, a code indicating

'team balance changes with program phase' was among the most universally cited in

the abbreviated case studies. This is an area worthy of further research.

4.2.4 Heuristics for Collaborative Systems Thinking

Heuristics are metaphors; abstractions of experience into rules-of-thumb [90]. These

snapshots of codified knowledge with broad applicability are qualitative phenomeno-

logical theories that provide insight into complex phenomena for which there is no

rigorous theory [148]. Cognitive psychologist Gerd Gigerenzer describes heuristics as

a method through which complexity is reduced, enabling for quicker action based on

fuzzy (and inexact) information [55].

Within engineering practice, heuristics provide insights into common patterns of

action. Heuristics fall squarely into the camp of engineering art. These are sayings,

sometimes witty, based on anecdotes and stories that provide some self-evident truths

[90] about context and problems encountered during engineering.

Heuristics that prove useful across multiple systems and contexts provide insights

that inform new theories and help integrate the art and science of engineering. Within
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the context of collaborative systems thinking, heuristics provide insight into the types

of team environments and practices that enable teams to leverage systems thinking.

The following is a discussion of heuristics that emerged from the interview tran-

scripts. Those tidbits of knowledge chosen as heuristics either appeared in multiple

interviews or are comments from one interview that expand upon an insight from

literature. Each heuristic is presented and followed by a short discussion linking the

heuristic to the generalized traits of collaborative systems thinking, other supporting

data, and relevant literature. Some of the insights provided in these heuristics provide

the qualitative 'glue' that ties together the propose theory of collaborative systems

thinking as presented in Section 4.2.5.

Heuristic 1: Concentrate on the System

The following two heuristics are closely related and concentrate on product orientation

as enabling collaborative systems thinking.

Collahorative sstems thinkin team oen imo thn utovtfing ant

elegant solution. Requ nts are seodi k r.

Teamse engage in systes ethinking when the individ es tiinnt e sted

and engaged in the task. Atda nty444tie i tom,, es i et when we

are concentrating on the constroints, but, when we beome en resse4 th the

problem -at hand.

These heuristics show that successful design is more than putting requirements

into a black box and turning the crank. Teams whose members relate to their systems

and become engaged in its success do a better job of systems thinking. The literature

backs these assertions. The meaningfulness of any teams is improved by having a task

identity [61]. Being actively engaged in and contributing to that goal and ways in

which team members are energized [32]. Curiosity into customer needs and wants has
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Table 4.8: Heuristics Identified During Research

Heuristics for Enabling Collaborative Systems Thinking

1 A product orientation is important to team success.
1.A Collaborative systems thinking teams concentrate on the system, on finding an elegant solution. Requirements

are secondary to that design.
1.B Teams engage in systems thinking when the individuals are genuinely interested and engaged in the task.

Fundamentally, the solution comes not when we are concentrating on the constraints, but when we become
engrossed with the problems at hand.

2 Clear communication is critical to collaborative systems thinking. Teams tend to over-use email and other IT tools.
Sometimes you just need to walk around and speak with others. After all, you can't delete a walk-in.

3 The asking and answering of questions brings both parties to new realizations. It helps teams and individuals
identify built-in assumptions and move away from "what we've always done." A team needs the leader to ask the
right questions; an individual who is curious, imaginative, knowledgable, and can help others look at the problem
from outside of the box.

4 Many people are comfortable following guidelines and rules, but process can become brittle. Teams require a balance
of individuals that follow the letter of the law and individuals who follow the 'spirit' of rules; who reframe problems
to get around rules. This is how we innovate and improve.

5 In a team setting there must be a balance between experience and analysis. Experience feeds the team's intuition
and frames how each new problem is faced. However, in innovative situations intuition can be a liability, and teams
must use tools to find new knowledge and overcome the inertia of past experience.

6 Engineering mistakes repeat every 7-10 years. This is the time it takes for critical people to rotate off a program and
for important knowledge to be lost and rediscovered through failure. Successful programs have a line of succession: a
continuity of knowledge through awareness of the past, present, and future. When this continuity is broken is when
teams are doomed to repeat failures of the past.

7 Team members, especially the smart and innovative, come with 'warts.' Team leaders cannot tolerate disruptive
behavior, but need to treat each person individually to get their best work and to help them become better
engineers and team members.



been proposed an an indicator of team thinking on product development teams [6],

supporting the heuristics assertion that teams must before engrossed in their design

problems.

Comments on the definition of collaborative systems thinking show the impor-

tance of a product orientation both for its benefits on a team's ability to see the

entire system, but also on their motivation. Having a product orientation provides a

sense of accomplishment and feedback at the end of a program. The product orienta-

tion was further emphasized by several comments that suggest concentrating on the

system's operation, end user, and maintainer help a team maintain a system lifecycle

perspective that can be obscured by written requirements.

Heuristic 2: Communicate Effectively for the Context

The literature and case study data support the importance of communication within

teams. This heuristic gets the heart of facilitating that communication.

0ear cimsicaion is ritical to collaborative systems, d

to oeex-ue zemail and other IT toklq e oo

anad seiak vith others. After -At, Jou U 7t dekte aM A!

Electronic communication provides teams multiple ways to communicate techni-

cal information: CAD models, email, and shared document stores. This technology

facilitates communication in many of the languages of design (e.g. text and dynamic

models) [45]. However, teams too often put an overemphasis on communicating via

email. This delayed, virtual interaction goes against the empirically-based character-

istics of collaborative systems thinking teams, which prefer to interact in real-time

groups.

Research has shown that communication is improved with good coaching and

close proximity [26] and when individuals can hear each other clearly and jointly

manipulate sketches and notes [63]. These characteristics are all met by face-to-face
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interactions; by engineers walking down the hall to speak with co-workers instead of

sending broadcast emails.

Within the case study interviews, the code of effective communication represents

the single most frequently touched-upon concept. The interviews transcripts highlight

not only the obvious importance of communication as necessary for transmitting

knowledge and ideas, but also on the importance of subtleties such as body language,

passing sketches, and the creative energy that comes from having several people

together in one room. Other comments from the interviews spoke to the complexity

of IT tools used within teams. Shared digital storage spaces have such vast capacity

that data can quickly become disorganized and near useless. Email allows people

to share their thoughts with several people for marginal additional effort, failing to

tailor their message to what each receiver value or requires. As one individual stated,

'We are mired in process and IT overload..but as we learn to better use these tools

we will see an improvement in productivity.'

Heuristic 3: Ask Lots of Questions

Questions can spark curiosity. Guided questions can help team members come to new

realizations and avoid 'not invented here' syndrome.

The asking and arswerivig of question brings both pris to 1ei reaizat"on.

It helps team"s a d iod viduals identi'fy bult-in assu'mptions and mrnove Iawati

fro " what In, ollays done." A tcam needs Hu lcuder to ak the right ques

tons an rndindiahlho i s cumious, i.aginative, knowledqablec and can kelp

othcrs' look at 1he problem from ollt.ide of thejx ho

The willing of teams to ask and answer questions was a powerful theme across

every phase of this research. Pilot interview results indicate teams can quickly quell

this openness by 'shooting the messenger' and creating a cultural expectation that it

is better not to ask questions. Likewise, an overly hierarchical environment can result
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in a power structure that makes it difficult for concerns at the bottom to be heard at

the top.

Case study themes supporting this heuristic include identifying the 'benefits of

bringing disciplines together early in the design process,' using 'design reviews to

encourage cross-discipline interactions,' and using 'intelligent lines of questioning to

facilitate systems thinking.' The benefits of these patterns of behavior are reinforced

by NASA research characterizing 'highly regarded' systems engineers. This study

showed that these systems engineers used questions to seek information and guide the

team; they often asked series of questions to bring the team to an end realization; and

that by asking these questions they were more effective at communicating technical

information [153].

Heuristic 4: Good Process Execution Needs Both Standardization and

Innovation

This heuristic addresses the delicate balance process must find between enabling and

stifling collaborative systems thinking. Interestingly, the balance has less to do with

the specific process and more to do with the people interpreting the process.

Many people are comfortaile folloi g ideliues and Wles, bst pecess can

become brittle. Teams require a balance of inditiduals that P"o the I etter of

the law and individuals who follow the 'spirit' of rules; who refame problems

to get around rules. This is how we innovate and improve.

To quote Charles Darwin: "It is not the strongest of the species that survive, nor

the most intelligent, but the one most responsive to change." Darwin's observations

on the evolution of species apply equally well to engineering teams. Teams are a part

of a dynamic ecosystem in which they must constantly adapt and innovate. Having

a small number of team members reframing problems and working around rules tests
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the process and helps the team operate more efficiently when faced with a problem

for which the existing process is inappropriate of inadequate [60].

One abbreviated case study interviewee expressed this concept in terms of the

kinds of people needed for a balanced team. His experience showed that some number

of intelligent, curious and motivated individuals are required to drive progress and

push boundaries. While every human resources representative will say they want

teams full of these winning individuals, the interviewee insisted this would not result

in a balanced team. Rather teams need intelligent individuals with average motivation

to work on the hard problems identified by those leading the team and people of

average intelligence and motivation who are content to carry out more routine tasks.

Heuristic 5: Both Experience and Analysis are Important

Experience is an important indicator of collaborative-systems thinking, but even ex-

perience has drawbacks. This heuristic speaks to the situation under which experience

can be a liability for a team.

This heuristic speaks to the organizational inertia that can sweep up a team.

In contrast to some opinions that standard process is best suited for routine tasks

and that greater creativity and leeway should be allowed for non-routine tasks, this

heuristic suggests that more rigor and analysis is required during non-routine tasks to

avoid relying on potentially misleading or inapplicable past experiences. Specifically,

utilizing analysis will help identify and quantify those aspects of a team's intuition

that need adjusting.
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While there are specific examples in the literature upon which to ground this

heuristic, the process of engaging in thorough analysis before making important design

decisions is grounded in normative deign practices [136].

Heuristic 6: History Tends to Repeat Itself

Given the impending 'silver tsunami' within the aerospace industry, experience is an

important commodity. This heuristic addresses cycle of engineering mistakes and

knowledge.

This heuristic emphasizes the importance of knowledge management within a

team or program. If knowledge resides within individuals and is not shared and kept

alive through experience, then that knowledge is easily lost and often rediscovered

only after a mistake is repeated. Such knowledge was referred to in the case study

interviews as 'tribal knowledge' and was associated with experienced team members,

often called 'gray beards.'

The literature shows that teams are more likely to reuse knowledge to innova-

tive ends when 1) the team and organizational encourages reuse and exchange of

knowledge, 2) team members were open to asking questions and examining the appli-

cability of past knowledge to solve current problems, and 3) there was an imperative

(e.g. performance gap or need to reduce risk) that motivated people to seek out past

knowledge [108]. These observations get to what is meant by 'continuity of knowl-

edge.' It is not sufficient to have the large knowledge stores available, but there must



be a motivation to access and reuse that knowledge in order for continuity to be

maintained. On one case study, such a mechanism for continuity was suggested. This

individual suggested the use of small intermediary programs, placed between larger

programs, and designed to keep important individuals and knowledge in place. While

such programs come with costs, they seem complementary to the goal of exposing

team members to several system design cycles, and thus increasing the workforce

average number of past program experiences, a powerful predictor of collaborative

systems thinking.

Heuristic 7: Engineers are Unique Individuals

Process seeks to reduce variability in engineering execution: to capture the best

practices and avoid relearning and reinventing that which is known and perfected.

Engineers are the most variable component of the design process [96]. While process

reduces the downside of variability through standardization, this heuristic addresses

an opportunity to maximize the upside by working individually with engineers.

Teami mcbrs especil th smat WII ovat c w arts.' T

leaders cannotto rate dismtptit / beharor bt 'need to treot eal1chso' ioi-

v7 iduqly to get their b'est oork and to help therim 6ecoe bettcr engineers ood

This heuristic gets to the central reasons some engineers resist using standard

process. One of the primary purposes of standard process isito control variability in

executing design and to create standard expectations of how engineers work and in-

teract during design [96]. This philosophy recognizes the engineers as highly variable

components within the design process, components whose expected performance can

be improved through standardization. Detractors from process say that simply mim-

icking past successful behaviors does not in itself guarantee success. This mindset

confuses the process and the execution of said process [113].
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This heuristic suggests that what really makes great systems teams is the individ-

ual coaching and mentoring that helps each individual engineer find his or her own

way to best contribute to the team.

4.2.5 A Proposed Theory of Collaborative Systems Thinking

No fact is really respectable until there's a theory to account for it. The theory may

turn out to be wrong it usually is, in some details at least-but it must provide a

working hypothesis.

-Dr. van der Berg, in Arthur C. Clarke's 2061: Odyssey Three

The primary purposes of compiling a theory of collaborative systems thinking is to

test the generalizability of the theory and formulate hypotheses for future testing. In

this section, data are combined into a numerical model that provides a more objective

vehicle for validation and a basis upon which to develop a set of hypotheses for future

research.

From the complete set of team metrics, five parameters were chosen from which

to compile a multi-variate regression model. These parameters were chosen based on

ability to explain the observed variability in collaborative systems thinking rankings.

The five traits shown in Table 4.9 account for 85% of the variability observed in

the team collaborative systems thinking rankings. Equation 4.1 shows the equation

derived to explain the observed variability.

The model incorporates interval data (e.g. Concurrent program experience, Rel-

ative Frequency of Delayed Interactions, and Relative Frequency of Non-Consensus

Decision Making) and ordinal data (e.g. Measures of Creativity and Perception of a

Realistic Schedule). Both types of data are treated as interval data following a prece-

dent set by Labovitz [78, 79]. By treating the ordinal data as interval, it is possible to

gain insights that would be otherwise difficult to identify. While there are errors in-

troduced by treating ordinal data as interval, there is evidence to suggest these errors
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are small and acceptable for an exploratory model [18, 67, 75, 159]. Detractors from

using ordinal data in regression models refute these claims, saying that ordinal data

may only be used to make weak claims of inference in theoretical frameworks [154].

Because this research is exploratory, and the model is not proposed as an accurate

tool but rather as a tool to identify those areas most fruitful for future research, the

errors associated with treating ordinal data as interval are acceptable.

Components of Equation 4.1

Variable Survey Question Unit Scale

CP: Concurrent Program Integer
#7 Number of Programs

Experience > 0

DI: Relative Frequency Percent of Interactions
#14C (0,1)

Delayed Interactions that are Asynchronous

CY: Measure of Creativity #17 Likert Scale Response 1,5

RS: Perception of a
#17D Likert Scale Response (1,5)

Realistic Schedule

DM: Relative Frequency Percent of Decisions

of Non-Consensus #24 that are (0,1)

Decision Making Non-Consensus

CST = 0.50(CP) - 1.87(DI) + 1.38(CY) + 1.11(RS) - 4.31(DM) (4.1)

Figure 4-29 shows a plot of predicted (ij) versus observed (yi) collaborative sys-

tems thinking ranking. Also shown on the figure is the approximate range of values

corresponding to the 90% confidence interval as calculated using the lower and upper

estimates of each trait slope as shown in Table 4.9.

Using the regression equations discussed in Section 3.1.3, the standard error (sik),

90% confidence bounds, and weighted slope (b*) for each trait slope (bk) were calcu-

lated and are shown in Table 4.9. The model has five degrees of freedom (10 case
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Figure 4-29: Plot of model-predicted collaborative systems thinking vs. team-
generated ranking.

165

II ~ _ -M



Table 4.9: Properties of
Thinking

the Five Traits that Best Predict Collaborative Systems

Trait bk Skk 90% Confidence Bounds Beta-Weights

CP: Concurrent
0.50 0.09 (0.37) - (0.62) 0.55Program Experience

DI: Relative
Frequency Delayed -1.87 0.66 (-2.85) - (-0.90) -0.27
Interactions

CY: Measure ofCY: Measure of 1.38 0.36 (0.84) - (1.92) 0.36
Creativity

RS: Perception of a 1.11 0.26 (0.73) - (1.49) 0.41
Realistic Schedule

DM: Relative
Frequency of -4.31 0.62 (-5.22) - (-3.40) -0.66
Non-Consensus
Decision Making

studies, minus five predictor variables and no intercept). This corresponds to a Stu-

dent's T-distribution value of 1.476 for a 90% confidence bound [155]. From these

calculations, it can be said with 90% confidence that there is a relationships between

collaborative systems thinking and each of the five traits. This can be said because

the confidence bounds do not include a slope of 0, which would correspond to no

relationship between the variables.

From the weighted slopes shown in Table 4.9, it can be seen that Consensus De-

cision Making and Concurrent Program experience are the two largest predictors of

variability in collaborative systems thinking ranking. While the weighted slopes pro-

vide some insight, it must be remembered that correlations among the variables result

in correlations between the weighted slopes. Correlations among the five top traits

are shown in Table 4.10. Specifically, multiple program participation and measures of

a creative environment are highly correlated, indicating they are likely of near-equal

importance despite differences in their relative weighted slopes.
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Table 4.10: Correlation Among the Five Traits that Best Predict Collaborative Sys-
tems Thinking

Trait CP CY DM

CP: Concurrent ProgramCP: Concurrent Program 1.00 -0.14 0.92 0.01 0.04
Experience

DI: Relative Frequency -0.14 1.00 -0.11 -0.17 0.43
Delayed Interactions

CY: Measure of Creativity 0.92 -0.11 1.00 -0.12 -0.04

RS: Perception of a 0.01 -0.17 -0.12 1.00 -0.52
Realistic Schedule

DM: Relative Frequency of
Non-Consensus Decision
Making

0.04 0.43 0.04 -0.52 1.00

The combination of the five traits explains 85% of the observed

the resulting model has a regression coefficient of adjR 2 = 0.99.

variability and

From the model, five hypotheses were generated and form the basis for a initial

theory of collaborative systems thinking. These hypotheses are shown in Table 4.11.

In each hypothesis, one team trait from the model is linked to a specific component of

the definition for collaborative systems thinking. The ways in which these hypotheses

may be used to direct future research are discussed in Section 6.3.
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Table 4.11: Hypotheses Derived from the Model Explaining Collaborative Systems Thinking
Hypothesis About Collaborative Systems Thinking

1
Teams that engage in consensus decision making will have teams members with a greater
awareness of systems attributes, interrelationships, and the design motivation and purpose.

2 Teams whose members concurrently participate on multiple programs will be more aware
of of available deign processes, tools, and resources than teams whose members do not
contribute to other programs. This relationship holds only to approximately three
concurrent programs, past which point team member attention will be too divided to
support collaborative systems thinking.

oo

3 Programs with more realistic schedules (neither too optimistic or pessimistic), will be
better able to properly utilize the design process to consider the entire systems and its
context when making decisions.

Teams with more creative environments, who engage in more collaboration and have
greater decision freedom, will interact more, utilize both divergent and convergent thinking
styles, and subsequently engage in more collaborative systems thinking.

5 Teams whose interactions are primarily in real-time will communicate technical
information more effectively and using a greater number of design abstractions (e.g.
sketches, prototypes, gesticulation) as compared to teams who primarily communicate
asynchronously.



Chapter 5

Validation

5.1 Validation Case Studies

Validation is difficult with grounded theory research. Within the grounded theory

methodology, one method to prove external validity is to take the results from a set

of case studies and test those explanations on a new set of case studies [140]. If the

results hold true and have explanatory power over the phenomena observed within

the new case studies, then generalizability is established and the ground is set for

future causal research.

A subset of the full case study survey questions were asked during the validation

case studies. This abbreviated survey focused on those measures found most impor-

tant during regression analysis. A copy of this survey is shown in Appendix B. A

follow up conversation was used to assign each team a collaborative systems think-

ing ranking. Eight validation, or 'predictive,' case studies were conducted, and the

results were combined using the regression weights determined by the multi-variate

regression mode discussion in Section 4.2.5.

In this chapter, the selection criteria for validation case studies are put forth, and

the results and insights gained from the validation activity are discussed.
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5.1.1 Validation Case Study Selection

Validation case studies were selected to push the theoretical limitations of observa-

tions made from the full case studies. Case studies were selected so as to expand

the original selection criteria (by including software teams and integration and test

teams).

The validation case studies used on one individual to provide team data. As

such, additional selection criteria were enforced. The validation case studies utilized

individuals who are themselves individual systems thinkers, have been with their

current team for several years, and are in a position to have insight into their team (i.e.

several of these individuals were team leaders). An additional criterium for selection

was that individuals chosen to participate in the validation case studies not be familiar

with the research results so as to avoid bias in their answers. These individuals were

asked to provide estimates of average team member past experience and concurrent

program participation. They were also asked to answer survey questions on team

interaction preferences, decision making preferences, and aspects of team environment

including those traits from the creativity framework discussed in [143].

As shown in Figure 5-1, the eight validation case studies were selected along sim-

ilar criteria as the full and abbreviated case studies. These teams included advanced

concepts teams, an aerospace component supplier, integration and test teams work-

ing in both industry and academia, and a team working in general aviation design.

Additionally, two of the teams included worked primarily on software products for

the aerospace industry. These teams provide a contrast to the original case study set

which was heavily concentrated on hardware-oriented teams.

The literature emphasized communicating technical information using multiple

level of abstraction (or design languages). Because hardware and software teams work

on products that exist at different levels of abstractions (i.e. hardware is tangible and

software is not), only hardware teams were included in the initial case study sample

set. The concept arose during abbreviated case study interviews that the conclusions

and concepts of this research were applicable to software teams, and therefore two
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software teams were included in the validation case study sample. Finally, by choosing

teams with a different industry sector and program phase, it is possible to explore

the apparent dependencies on industry sector and design phase 1

5.2 Results of Validation Activity

Outputs from the validation case study survey were compared to those from the

original case studies using the regression model put forth in Section 4.2.5. These

results are shown in Figure 5-2. The regression model developed using the original

case study data accounts for 60% of the variability in collaborative systems thinking

ratings observed in the validation case studies, as compared to 85% of the variability

in the original case study set. The predicted values for collaborative systems thinking

fall well within the 90% confidence bounds of the regression model, thus validating

the predictive capability of the these five team traits.

5.2.1 Predictive Results of the Regression Model

While the traits do prove effective predictors for collaborative systems thinking, there

are differences in the strength of correlation between the predictive traits and collab-

orative systems thinking, as shown in Table 5.1. The traits are listed in order of

weighted contribution to the regression relationships, from high to low.

As can be seen in Table 5.1, the observed correlations for the first two traits,

Consensus Decision Making and Concurrent Program Experience, are about equiva-

lent to those observed int he original case study set. The next two traits, Realistic

Schedule and Overall Creativity, have stronger correlations with collaborative systems

thinking than were observed in the original case study set. Because both the original

case study set and validation case study set represent small samples, the important

'Initial case study data suggest that conceptual design teams are more likely to engage in col-
laborative systems thinking than detail design teams. Additionally, teams working in the aviation
hardware sector were more likely to engage in collaborative systems thinking than teams working in
the space hardware industry sector
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Figure 5-1: The sample set of eight validation case studies compared to the full and abbreviated case study sample sets.
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Figure 5-2: Plot of model-predicted collaborative systems thinking vs. team rating.
Diamonds mark the validation case study data in comparison to the full case study
data, marked by blue dots.
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Table 5.1: Correlation of Case Study Results with 'Predictor' Traits

Full Case Study
Correlation

Validation Case Study
Correlation

Relative Frequency -0.80 -0.88
of Non-Consensus
Decision Making
Concurrent Program 0.57 0.56
Experience
Perception of a 0.58 0.92
Realistic Schedule
Measure of 0.59 0.83
Creativity
Relative Frequency -0.48 0.65
Delayed Interactions

observation is that the sign of the correlation is the same. The final trait, concerning

team interactions, has a different correlation in the validation case studies than was

observed in the initial case study set. When all three interaction questions are consid-

ered, the validation case study teams appear to have different interaction preferences

than the full case study teams. Table 5.2 shows the three dimensions of interactions

preferences in the full and validation case studies. Whereas the original case study set

teams show a preference for real-time and in-person group interactions, the validation

case study teams show a preference for asynchronous and virtual team interactions.

These differences may be due to the inclusion of software teams (which by nature of

their work utilize more virtual and asynchronous communication) and the inclusion

of teams in the integration and test phase (which engage in more problem solving

than design).

When the interaction trait is removed from the regression model, then the re-

gression model based on the original accounts for 67% of the variation observed in

collaborative systems thinking rankings. This value was calculated by comparing the

root mean square (RMS) of the differences between the team's self rating and the

mean of those ratings and the predicted ratings.
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Table 5.2: Comparison of Team Interaction Preferences Between Full and Validation
Case Studies

Interaction Trait Full Case Study Validation Case Study
Correlation Correlation

Individual vs. Group 0.71 0.46
In-Person vs. Virtual -0.42 0.37
Real-Time vs. Asynchronous -0.48 0.65

As a matter of curiosity, the validation survey also included a question about the

average number of past similar programs worked. The responses to this question

have a correlation of -0.16 with collaborative systems thinking (as compared to 0.59

in the full case studies). This significant deviation from the original data appears to

be the result of one outlying validation case study data point. One team reported

an average of 10-20 previous program experiences per team member. All of the full

case study data and remaining validation case study data suggest that 1-5 previous

program experiences is the norm. When this data point is removed, the correlation

between collaborative systems thinking and previous program experience is 0.28: less

than the correlation with concurrent program experience, but more reflective of the

importance of systems experience as an enabler for collaborative systems thinking.

Team size did not appear as an important indicator of collaborative systems think-

ing within the full case studies (Corr = -0.17). However, the validation case studies

do show some dependency on team size. The correlation between collaborative sys-

tems thinking and team size observed in the validation case studies is Corr = -0.66.

This contrast to the original data suggest that additional research is required to de-

termine the effect of team size on collaborative systems thinking.

5.2.2 Qualitative Results of Validation

In addition to the numerical data shown above, qualitative data were also collected as

part of the validation case studies. A followup question was included in the validation

case studies: to describe and provide examples supporting the team's collaborative
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systems thinking ranking. These responses provide qualitative data that can be com-

pared to the codes and concepts identified within the full case studies.

The initial case study set suggested a that aircraft teams were more likely to

engage in collaborative systems thinking than are spacecraft teams. This pattern was

not continued in the validation case studies. Of the three validation teams with low

collaborative systems thinking ratings, all were aircraft hardware teams. The teams

with higher collaborative systems thinking ratings included missile teams, software

teams, and spacecraft hardware teams. These data, taken in concert with the original

case study data, suggest there is no relationship between team industry sector and

collaborative systems thinking rating.

The inclusion of integration and test teams allowed for comparison between the

conceptual design and test program phases. The original set of case studies suggested

conceptual design teams were more able than detail design teams to engage in collab-

orative systems thinking. The validation case studies suggest that conceptual design

teams are also more able than integration and test teams.

As with the full case studies, the system customer did not influence a team's

likelihood of engaging in collaborative systems thinking.

Comments from the higher collaborative systems thinking teams support the orig-

inal case study findings that frequent meetings, open communication, and effective

leadership are important enablers of collaborative systems thinking. These teams also

refer the the use of domain experts and well-documented knowledge. One team with

a high rating is distributed across the entire country, reinforcing the concept that

non-collocation is not a barrier to collaborative systems thinking. One team with a

higher collaborative systems thinking rating described an organizational environment

where all individuals were encouraged to think about interactions, thus emphasizing

the role culture plays in enabling collaborative systems thinking.

Comments from the lower collaborative systems thinking teams suggest that func-

tional silos, an absence of leadership, and a failure to ask question are barriers to

collaborative systems thinking. These data reinforce qualitative results from the

original case study sample population. One individual commented on the specific
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need to have more than just the project manager engaging in systems thinking. This

individual identified the systems exchange between different components as critical

to breaking down program silos. Two of the three validation case studies specifically

mentioning the importance of culture were the lower rated teams. This suggests that

a collaborative culture is an necessary enabler of collaborative systems thinking.

Finally, one individual provided a concise description of the 'fine line his team

walks between collaborative systems thinking and individual systems thinking.' He

described a context in which individuals leading different subsystems engage in indi-

vidual systems thinking relative to their own realms and then 'marry' their individual

thoughts together in the act of group discussion and compromise. This discussion pro-

vides insight into the multi-level systems thinking interactions. The comment also

further supports the three-categories team membership model wherein the individuals

leading different subsystems represent the 'technical translator' category. These indi-

viduals are responsible for much of the individual systems thinking at the component

or subsystem level. They then enable collaborative systems thinking in system-level

meetings by 'marrying' their individual thoughts into group discussion.

In conclusion, the validation case studies support both the quantitative and quali-

tative findings from the original case study set. This suggests the results are applicable

to all program lifecycle phases, to large and small programs, and may be extensible

to software programs as well.
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Chapter 6

Conclusions

The demand for systems engineering practitioners has increased at the same time the

engineering workforce is declining in the US and other countries [20, 137]. Several

studies cite an acute erosion of engineering competency within the government and

aerospace/defense industry. The development of systems competencies is critical

given the challenges faced; yet the communities affected lack the empirical basis for

developing a well-informed, data driven strategy to develop new systems expertise

[119]. The increasing demand for systems leaders coupled with the growing need to

address socio-technical challenges motivates research in engineering systems thinking

and practice [120].

Within the aerospace industry, the need for systems skill development is partic-

ularly urgent given that more than 25% of aerospace industry professionals will be

eligible for retirement before 2013 [20]. This predicted 'silver tsunami' is in addition to

the large post-coldwar reductions in workforce the aerospace industy has already seen.

The result is an aerospace industry that is being asked to produce more advanced

systems with fewer resources, fewer experienced engineers, and fewer programs from

which to learn. It is therefore important to understand how systems skills develop

and to explore new ways in which to leverage systems skills and to thus avoid having

even more artifacts in museums for which we no longer possess the requisite systems

knowledge [121].
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This dissertation addresses the systems skill shortage within the aerospace in-

dustry by looking to engineering teams as a unit of systems thinking. Team level

systems thinking has been termed "collaborative systems thinking" because of the

collaborative team member interactions required to facilitate systems thinking at the

team level. Little is known about how engineers or teams of engineers develop sys-

tems thinking. What literature does exist is based on empirical studies of individual

engineers [35] or teams of engineering students [88]. This thesis focuses on teams of

practicing engineers working on complex real-world aerospace systems. As aerospace

systems have increased in complexity and lifecycles grown longer, individual engineers

are no longer with a program for its duration, and the team has become the stable

unit of knowledge within programs. It is therefore important to understand how these

real-world teams engage in systems thinking.

This area of research requires empirical studies and case-based research for the

purpose of understanding how to enable more effective systems thinking development

within aerospace teams. Through surveying these teams, interviewing team members,

and making field observations when possible, a diverse set of qualitative and quan-

titative data were used to identify those traits most closely linked to collaborative

systems thinking. The exploratory nature of this research resulted in a set of initial

generalizations about collaborative systems thinking teams and a set of hypotheses

for future directed research.

By its nature, this research does not fit neatly into traditional academic engi-

neering departments. Empirical research into engineering teams requires both an

in-depth understanding of engineering practice and the use of social science methods

for empirical observations. Grounded theory methods informed the research frame-

work because the methods are well suited for exploratory, empirically-based research

[140]. Interviews and case studies were used for data collection, as case studies are

flexible and effective ways to gather many types of information and are helpful in

establishing external validity of the data collected. Case studies are also valuable in

increasing the domain over which results may be generalized [158].
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From the data presented in Chapter 4, a few conclusions may be drawn. First,

collaborative systems thinking is a team property distinct from individual systems

thinking. Second, collaborative systems thinking teams have differentiating charac-

teristics, grounded in data, that may help to explain why some teams are better at

handling systems issues. These characteristics include easily quantifiable traits (e.g.

past program experience) and fuzzier structural and cultural traits (e.g. the presence

of social and technical leadership). Finally, these characteristics proved generalizable

to teams outside of the initial full case study set as shown through the abbreviated

case studies and validation case studies.

The following sections outline the contributions of this thesis to practice, the im-

plications for academia, industry and government, and suggestions for future research

into collaborative systems thinking.

6.1 Contributions to Practice

This research has produced four distinct contributions to the practice: a definition

of collaborative systems thinking, a set of generalized collaborative systems think-

ing team traits, a set of heuristics for enabling collaborative systems thinking, and

hypotheses for directing future research.

6.1.1 A Definition of 'Collaborative Systems Thinking'

The first contribution is a working definition for collaborative systems thinking:

Collaborative systems thinking is an emergent behavior of teams resulting from

the interactions of team members and utilizing a variety of thinking styles, de-

sign processes, tools, and communication media to consider systems attributes,

interrelationships, context and dynamics towards executing systems design.

This definition is grounded in past definitions of systems thinking, research on

engineering systems thinking, literature on engineering design teams, and concepts

from pilot interviews.
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6.1.2 Generalized Traits of Collaborative Systems Thinking

Teams

The second contribution is a list of empirically generalized traits of systems thinking

teams, shown in Table 6.1. These traits were identified through surveys and interviews

from ten case studies. Some of these traits (e.g. engaging in consensus decision

making) are based on quantified survey data reinforced by qualitative interview data.

Other traits (e.g. three categories of team membership) are based on qualitative

interview data. Those teams in the aircraft industry have higher collaborative systems

thinking rankings than teams in the spacecraft industry. The apparent industry

dependency is not significant because of the relatively small sample size of this study,

but may be worth exploring in future research.

The generalized traits reinforce patterns from the literature and past empirical re-

search on engineering systems thinking development. Experiential learning (past and

concurrent program experience) is an important indicator of collaborative systems

thinking just as experiential learning is one of the three main enablers of engineering

systems thinking development [35]. Effective team leadership in combination with

team norms facilitating interaction and team member buy-in are also important en-

ablers of collaborative systems thinking. These effective team norms are part of the

enabling framework for superior team performance [60]. Finally, creative team envi-

ronments appear to better foster collaborative systems thinking. This in reinforced

by literature on both systems thinking and engineering design teams [44, 45].

Equally important is the list of traits that appear not to affect collaborative sys-

tems thinking, shown in Table 6.2. In particular, non-collocation does not appear

to be a major barrier to collaborative systems thinking despite initial pilot interview

comments to the contrary. Immediate team size, program customer base, measures

of technical process use, and self-reported individual systems thinking are all poor

predictors of team collaborative systems thinking. Further research is needed to de-

termine if these traits are in fact independent of collaborative systems thinking. The

emphasis on real-time group interactions points as an enabler suggests that collocation
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Table 6.1: Empirically Generalized Traits of Collaborative Systems Thinking Teams

Generalized Traits of Collaborative Systems Thinking Teams

1 Collaborative systems thinking teams engage in more
consensus decision making

2 Collaborative systems thinking teams have three
categories of membership

3 Collaborative systems thinking team communication
preferences are for real-time group interactions

4 Collaborative systems thinking team members have
higher number of past and concurrent program
experience

5 Collaborative systems thinking team members rate their
team environment more favorably

6 Collaborative systems thinking teams have more
creative environments

7 Collaborative systems thinking teams require both
technical and social leadership

8 Conceptual design teams are more likely to engage in
collaborative systems thinking
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Table 6.2: Empirically Identified 'Non-Traits' of Collaborative Systems Thinking
Teams

Team Traits not Impacting Collaborative Systems Thinking

1 Team size
2 Customer base (government or commercial)
3 Measures of technical process use and/or tailoring
4 Self-reported team member systems thinking
5 Team collocation

should be a barrier. Do these teams simply have better procedures for communicat-

ing with their non-collocated team members? Or is there an additional variable at

work? Similarly, research has shown that larger teams incur communication losses

as more time must be spent coordinating dependent tasks [60]. Perhaps there was

insufficient variation in team size within the sample to view this phenomena. Finally,

the customer base was chosen as a variable of interest because of varying customer

requirements on process use and maturity. It is therefore not surprising to find both

the metrics of customer based and technical process usage on the same list. How-

ever, effectively designed and used processes have been shown in other research to

dramatically improve the design process [136, 26]. Perhaps having greater access to

the processes used by each team would provide insights into differences between their

processes that act as enablers or barriers to collaborative systems thinking.

6.1.3 Heuristics for Collaborative Systems Thinking

The third contribution is the set of heuristics gathered from the interview transcripts.

The heuristics listed in Table 6.3 emerged from the full and abbreviated case study

interviews and represent snapshots of wisdom for composing, leading, and working

in engineering teams. Each heuristic represents an insight from multiple interviews

(both from the full and abbreviated case studies). These insights were chosen because

of their ability to either highlight a generalized trait of collaborative systems thinking

teams or complement existing literature.
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Table 6.3: Heuristics Identified During Research

Heuristics for Enabling Collaborative Systems Thinking

1 A product orientation is important to team success.
1.A Collaborative systems thinking teams concentrate on the system, on finding an elegant solution. Requirements

are secondary to that design.
1.B Teams engage in systems thinking when the individuals are genuinely interested and engaged in the task.

Fundamentally, the solution comes not when we are concentrating on the constraints, but when we become
engrossed with the problems at hand.

2 Clear communication is critical to collaborative systems thinking. Teams tend to over-use email and other IT tools.
Sometimes you just need to walk around and speak with others. After all, you can't delete a walk-in.

3 The asking and answering of questions brings both parties to new realizations. It helps teams and individuals
identify built-in assumptions and move away from "what we've always done." A team needs the leader to ask the
right questions; an individual who is curious, imaginative, knowledgable, and can help others look at the problem

Sfrom outside of the box.
4 Many people are comfortable following guidelines and rules, but process can become brittle. Teams require a balance

of individuals that follow the letter of the law and individuals who follow the 'spirit' of rules; who reframe problems
to get around rules. This is how we innovate and improve.

5 In a team setting there must be a balance between experience and analysis. Experience feeds the team's intuition
and frames how each new problem is faced. However, in innovative situations intuition can be a liability, and teams
must use tools to find new knowledge and overcome the inertia of past experience.

6 Engineering mistakes repeat every 7-10 years. This is the time it takes for critical people to rotate off a program and
for important knowledge to be lost and rediscovered through failure. Successful programs have a line of succession: a
continuity of knowledge through awareness of the past, present, and future. When this continuity is broken is when
teams are doomed to repeat failures of the past.

7 Team members, especially the smart and innovative, come with 'warts.' Team leaders cannot tolerate disruptive
behavior, but need to treat each person individually to get their best work and to help them become better
engineers and team members.



Table 6.4: Hypotheses for Future Research
Hypothesis About Collaborative Systems Thinking

1 Teams that engage in consensus decision making will have teams members
with a greater awareness of systems attributes, interrelationships, and the
design motivation and purpose.

2 Teams whose members concurrently participate on multiple programs will be
more aware of available deign processes, tools, and resources than teams
whose members do not contribute to other programs. This relationship hold
only to approximately three concurrent programs, past which point team
member attention will be too divided to support collaborative systems
thinking.

3 Programs with more realistic schedules (neither too optimistic or
pessimistic), will be better able to properly utilize the design process to
consider the entire systems and its context when making decisions.

4 Teams with more creative environments, who engage in more collaboration
and have greater decision freedom, will interact more, utilize both divergent
and convergent thinking styles, and subsequently engage in more
collaborative systems thinking.

5 Teams whose interactions are primarily in real-time will communicate
technical information more effectively and using a greater number of design
abstractions (e.g. sketches, prototypes, gesticulation) as compared to teams
who primarily communicate asynchronously.

6.1.4 Hypotheses for Future Research

The fourth and final contribution is a first-attempt model and theory for predicting

collaborative systems thinking from a subset of team traits. The model was used

to demonstrate, through the validation case studies, that the observations may be

generalized beyond the initial set of case studies. From this model, five hypotheses

are proposed as theory to spur future research. These hypotheses are centered on the

role of team environment, team decision making process, team member experience

and links to outside programs, and team communication preferences.
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6.2 Implications for Practice

From this research three sets of recommendations are put forth: for the aerospace

industry, academia, and government policy.

6.2.1 Recommendations for Industry

Data from this research support past research emphasizing the role of systems ex-

perience as an enabler for engineering systems thinking [35]. Industry should use

internal research and development (IR&D) funding to establish smaller, higher-risk

programs to provide systems experience to the workforce. As a secondary benefit,

such shorter-term, cutting edge programs have been shown to improve workforce

retention, especially among women within the aerospace industry [115]. Anecdotal

evidence suggests these program experiences are also pivotal in learning how to man-

age risk and uncertainty and provide the confidence necessary for decision making.

The wide number of industry-sponsored rotation programs are a good first step to-

ward providing systems experience to younger engineers, but more small systems

design-based programs (e.g. JPL's Phaeton [48]) should be pursued to provide sys-

tem experience crossing multiple disciplines and lifecycle phases. Such programs pair

younger engineers with experienced engineers in a setting that provides both practical

training and mentoring: a type of 'whole' training experience. If such programs are

looked at from both research and development and training perspectives, the cost is

more easily justified.

This research provided no conclusive results on the role of traditional training

activities as an enabler or barrier to collaborative systems thinking. Teams did speak

to a disconnect in process as currently implemented within large companies. Better

feedback channels are needed to improve existing processes based on program expe-

rience. Other teams expressed a desire for more latitude in process tailoring. They

indicated that process tailoring used to be more informal but has now become more

bureaucratic, limiting the decision freedom of the team and team leader. These in-

dividuals spoke to an indifference that was developing towards documented process
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because 'no program can actually afford to complete all the recommended processes.'

This indifference to process undermines its effectiveness and the feedback mechanism

for improvements. Training individuals to modify the process and providing them

the authority to do so should help improve several of the metrics of creativity that

were effective predictors of collaborative systems thinking.

Finally, industry needs to do more to develop strong team leaders. Interviews

indicate that most believe leaders are chosen solely on technical ability, but that more

needs to be done to either identify leaders with both social and technical ability or to

provide training to develop such future leaders. By contrast, one individual expressed

frustration with non-technical leaders. These comments emphasize the importance of

leaders having both technical credibility and good people skills, a pattern reinforced

by past leaders within the industry who have been charismatic individuals with a

compelling technical story.

Recommendations for Industry

1 Use IR&D funds for small development programs that

provide employees with pertinent systems experience

2 Encourage informal mentoring relationships, in

combination with real program experience, as a way to

train the future workforce

3 Emphasize both technical and social skills when

selecting team leadership

6.2.2 Recommendations for Academia

Academia provides future engineers with their first exposure to engineering practice.

Aerospace engineering programs across the country have already embraced this role

through partnerships with industry that aim to update coursework and ensure its

relevance to contemporary industry needs. One prominent example of this new cur-

riculum method is CDIO [24, 65]. Central to these new curricula are hands-on design

projects. Such projects provide a connection between engineering science and design.
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Placing students, especially teams of students, in a non-deterministic design environ-

ment helps develop communication and decision making skills. Exposure to real-world

design decisions also help teach students to deal with uncertainty. Examples of such

real-world design projects include senior capstone projects [65] and sponsored design

programs (e.g. the AIAA Design-Build-Fly competition). Participation in systems

projects such as the FIRST Robotics Competition have been shown to triple the

likelihood of a student pursuing an engineering degree and a career in engineering

[99]. These data apply to high-school age students, and no similar longitudinal data

is currently available for college age engineering students. However, the improvement

in retention is likely to be similar. Currently, nearly 50% of aerospace engineering de-

gree holder work outside of the industry [106]. Retaining those individuals, especially

young professionals, trained in aerospace engineering will help address the industry's

'silver-tsunami' and help assure a sufficient number of individuals are in the pipeline

and developing systems skills.

Capstone projects and design competitions provide an opportunity to introduce

students to accepted design practices (e.g. gate reviews and requirements manage-

ment). While employers utilize specifically tailored processes, educating engineering

students in good design procedures is as important as teaching science students the

scientific method. Teaching the design process will encourage creativity and the out-

of-the-box thinking central to past advancements within the aerospace industry.

Technical communication skills (e.g. sketching and modeling) are also reinforced

through capstone projects and design competitions. Writing and speech course re-

quirements at schools such as MIT show that academia already understand the im-

portance of communication. However, classes on drawing, drafting, and modeling

would help to round out a student's technical communication toolbox. Such drawing

and drafting classes were traditionally taught at the high school level, but anecdotal

evidence suggests that high schools are both eliminating these programs due to bud-

get cuts and dissuading college-bound students from enrolling in such 'vocational'

education courses. Such moves only work to solidify the gap between the art and

science of good engineering.
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Recommendations for Academia

1 Universities should provides systems experiences for

students

2 Schools should encourage team activities and provide

guidance on how to work effectively in teams

3 Engineering students need engineering courses that

integrate technical writing and speaking, emphasizing

the importance of both technical and social skills

4 Engineering coursework should introduce students to

drawing, drafting and model making as a way to

encourage communication using multiple design

languages and more creative team environments

6.2.3 Recommendations for Government

This research extends the recommendation of the American Institute of Aeronau-

tics and Astronautics Workforce and Education subcommittee that more spending is

needed in research and development to counter the decline in industry R&D spend-

ing since 1998 [3]. 1 This funding is critical to providing systems experience to the

current and future workforce. Especially now, during an economic downturn, these

investments in the future workforce are extremely important. While R&D funding

may appear an easy place to cut overhead expenses, the benefits of R&D are long-

term, and the government should establish policies that encourage such positive and

long-sighted behavior. Speakers in the "Rebuilding the Nation's Image of Aerospace

Contributions to Society" session at the 2009 AIAA Inside Aerospace conference spoke

to the need to not only hire more people into the industry, but to train these individu-

als. Reinforcing the need to hire and train young workers, Dr. Charles Vest, president

of the National Academy of Engineering, spoke at the same conference and opened

his presentation with the statistic that the average age of an Apollo program engineer

1The author is a member of the AIAA Public Policy Subcommittee on Workforce and Education
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was 27. The average NASA employee is now over 49 years old [83]. This dramatic

aging of the workforce speaks to a need to revitalize the workforce and to provide

opportunities for younger engineers to contribute meaningfully to programs. Two

mechanisms enabling this change are policies that provide incentives for corporate

IR&D funding and increased funding of graduate engineering education.

Two comments (from a pilot interview and abbreviated case study interview)

specifically mentioned black programs as vehicles that allowed for greater risk taking,

and therefore greater systems learning. By classifying small high-risk programs, the

government could use a 'portfolio' approach to both develop new technologies and

provide formative systems experience to younger engineers.

Further, government should support the use of small business grants to foster

small, agile, and creative organizations with the capabilities and flexibility to address

new problems facing the industry. Most aerospace organizations have large 'marching

armies' and lack the agility to respond quickly to new challenges. Smaller organiza-

tions can support tight-knit communities, based on interpersonal trust, that are more

readily able to handle new and innovative problems.

Recommendations for Government

1 Support policies that incentivize corporate IR&D funding

to provide systems experience to the industry workforce

2 Support research funding within academia to ensure a

sufficient number of students are in the systems skills

development pipeline

3 Use black program environments, or similar, to allow

teams the opportunity to take greater risks and work in

environments with greater uncertainty and more latitude

to make decisions

4 Promote entrepreneurship through small business grants to

encourage creativity, innovation, and reasonable risk taking



6.3 Future Work

There are significant challenges to conducting research on engineering systems think-

ing and collaborative systems thinking. These challenges lie both in the relative

immaturity of the area of study and in gaining access to the necessary data [121].

Because research into engineering systems thinking and collaborative systems think-

ing is relatively new, research to this date has been largely exploratory in nature.

These studies have focused on niches of interest (e.g. the aerospace industry), but

encompass phenomena that are likely applicable to much larger realms. The second

issue, access to data, is a product of the many types and depth of data required to

investigate a social and technical phenomena such as collaborative systems thinking.

To truly understand the impact of culture (unarticulated and unobservable traits of

culture) an ethnography must be completed. Such a study would require unfettered

access to a team and more time than is feasible in the course of a single dissertation.

Being imbedded within a team would also provide higher fidelity data on process use

and process design. These steps are necessary to move future work from the descrip-

tive realm to the prescriptive realm and to build upon the foundational research that

will lead to more scientific and rigorous studies [121].

Table 6.5 shows suggested paths for future research into collaborative systems

thinking

Establishing a Link Between Collaborative Systems Thinking and Perfor-

mance Aerospace industry leaders have identified a need for more systems skills.

Research has identified systems thinking as a necessary skill for senior systems en-

gineers [35]. However, the concept of systems thinking teams is new, and no data

exist to support the assertion that systems thinking teams perform better. If orga-

nizations must invest in promoting collaborative systems thinking, there must be a

demonstrated payback on that investment. A cross-sectional study, such as the one

described in this dissertation, cannot draw conclusions about the impact of collabo-

rative systems thinking on team performance for two reasons: 1) many of the systems

under design cannot yet be labeled as successes or failures and 2) companies closely
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Table 6.5: Areas Proposed for Future Collaborative Systems Thinking Research

Suggested Future Work

1 Use a larger sample size and longitudinal study to identify what relationship
exists, if any, between collaborative systems thinking and team performance
on program measurables (e.g. schedule, budget, requirements met)

2 Use hypothesis-based research to test the five hypotheses developed based on
those five team traits that best predict collaborative systems thinking

3 Conduct more in-depth exploratory research to better understand the

three-level team structure identified through case study interviews and the

role of both technical and social leadership as enabling collaborative systems
thinking

4 Develop simulations or games to more accurately assess (and promote)
collaborative systems thinking

5 Use longitudinal studies to determine the effects of interventions (e.g.
training or team building activities) on collaborative systems thinking

development

guard data on performance metrics such as cost and schedule. In order to identify a

link between collaborative systems thinking and team performance, these obstacles

must be overcome. The first obstacle can be overcome by a longitudinal study that

follows several teams over a period of years. The time period is required to determine

the success or failure of the systems. The large sample size is required to exclude

other extraneous variables (e.g. politics, program cancelation, etc.) that will also

impact program success.

Hypothesis-Based Prescriptive Research Exploratory research attempts to ex-

plain observations. It cannot establish cause and effect relationships. Hypothesis-

based research tests a link between a perceived cause and effect. By varying the

input variable (e.g. average number of past program experiences) and controlling for

other variables through careful case selection, cause and effect relationships can be

inferred between the generalized traits and collaborative systems thinking. Without

such testing, it is difficult to say if creative teams are more likely to engage in collab-

orative systems thinking or if collaborative systems thinking teams are more creative.

Research to better understand these cause and effect relationships will result in more
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precise recommendations to organizations seeking to promote collaborative systems

thinking.

Additional Research to Explore Team Structure and Leadership The traits

of three-level team structure and social and technical leadership emerged from the case

study interviews. As such, the understanding of these traits is less developed. Both

traits have precedence in existing literature, but it is unclear how specifically each

support a team's collaborative systems thinking. Additional interviews and greater

access to organizational charts and team rosters is required to validate the impor-

tance of these traits and to better explain why these appear to enable collaborative

systems thinking. Such an understanding will help organizations develop strategies

and interventions to promote these culture and leadership-based traits within teams.

Develop Simulations to Assess and Promote Collaborative Systems Think-

ing Similar to the Lean Enterprise Value Simulation [82], an interactive simulation

or game could be developed and used to demonstrate the need for collaborative sys-

tems thinking, assess a team's ability to engage in collaborative systems thinking,

and/or as a tool to enable its development. If such a simulation could be developed,

it would be invaluable for hypothesis-based research. Much like flight simulators have

proven an effective means for teaming research, a simulation designed around col-

laborative systems thinking would facilitate controlled experiments to identify the

relationships between collaborative systems thinking and the generalized traits iden-

tified within this research. For instance, the rules of the simulation could be varied to

create more or less creative environments. Likewise, teams with individuals who have

played the game multiple times could be compared to teams with no prior simulation

experience. The difficulty with this path is in developing and testing a simulation that

actually tests collaborative systems thinking. Guidance on this task could come from

systems thinking interventions (e.g. [142]) and development on the Lean Enterprise

Value Simulation [82].
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Impacts of Interventions on Collaborative Systems Thinking Presuming

collaborative systems thinking improves team performance and organizations value

this performance improvement, the question is then how to actively promote collab-

orative systems thinking. The results of hypothesis-based research combined with a

simulation would provide a way to intervene in a team collaborative systems thinking

development. To establish the effectiveness of such an intervention, a longitudinal

study would be required to prove a cause and effect link between the team's interven-

tion and any subsequent improvement in collaborative systems thinking. This path

of future research is listed last because of its dependence on the other paths for future

research.
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Appendix A

MIT COUHES Approval

CONSENT TO PARTICIPATE IN INTERVIEW

Collaborative Systems Thinking

You have been asked to participate in a research study conducted by Caroline Lamb from

the Lean Advancement Initiative (LAI) at the Massachusetts Institute of Technology

(MIT). The purpose of the study is to gather information about the role of organizational

culture and standard technical process in promoting team-level systems thinking:

collaborative systems thinking. The results of this study will be included in Caroline

Lamb's doctoral thesis. You were selected as a possible participant in this study because

you are involved/ have been involved in a large aerospace or defense project. You should

read the information below and ask questions about anything you do not understand

before deciding whether or not to participate.

o This interview is voluntary. You have the right not to answer any question and to stop the

interview at any time. This interview is expected to take about 1 hour.

o You will not be compensated for this interview.

o Unless you give permission for the use of your name, title, and / or to quote you in any

publications that may result from this research, the information you provide will be

confidential.

o Notes will be taken during this interview. All notes taken will be stored in a secure work

space until the completed of this research project (12/2009). At that time, all notes taken

during this interview will be destroyed.
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I understand the procedures described above. My questions have been answered to my

satisfaction, and I agree to participate in this study. I have been given a copy of this form.

I give permission for the following information to be included in publications resulting

from this study: (Please check all that apply)

[] my name [] my title [] direct quotes from this interview

Name of Subject

Signature of Subject Date

Signature of Investigator Date

Please contact Caroline Lamb, by email at cmtwomey@mit.edu, or by phone at 617-308-0954 with

any questions or concerns.

If you feel you have been treated unfairly, or you have questions regarding your rights as a research

subject, you may contact the Chairman of the Committee on the Use of Humans as Experimental

Subjects, M.I.T., Room E32-335, 77 Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253

6787.
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Appendix B

Research Instruments

B.1 Pilot Interview Protocol

The following 12 questions comprise the pilot interview protocol.

1. Given the following definition of systems thinking, how would you change or

modify this definition for systems thinking when perceived as a property of a

group or organization?

"The ability to understand technical interdependencies in a system,

the ability to understand social interdependencies in a system.

the ability to think about feedback dynamics in a systems, and

the ability to understand multi-level enterprise dynamics."

2. Have you participated in a group you would describe as possessing systems

thinking characteristics? What steps were taken within this group to promote

team systems thinking? [Referred to as collaborative systems thinking (CST)]

3. What enablers, barriers, and/or precursors exist to the development of CST?

4. What is the role of culture in CST?
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5. What is the role of standardized process (standard work) in CST?

6. What is the role of a group's physical environment in CST?

7. Do you have a high-performing group you would describe as thinking and acting

systematically?

8. How did the group develop these traits?

9. Do the individual members of this team embody systems thinking characteris-

tics? Is individual systems thinking a necessary condition for CST?

10. How does CST develop within a team over time?

11. Can you recommend any relevant references or sources?

12. May I contact you later with questions related to this conversation?

B.2 Case Study Protocol

B.2.1 Full Case Study Protocol

The full case study protocol consists of a survey administered to all team members,

an engineering interview administered to a subset of team members, and an interview

administered to an individual not on the team, but familiar with the team's work.

Additional forms were generated to guide field notes.

Team Survey

Collaborative Systems Thinking Questionnaire

Background: This survey is in support of research exploring the role of organizational

culture and standard technical process usage in the existence and development of

team-level systems thinking.

216



Your Rights: Your participation in this survey is voluntary; you many decline to answer

any or all questions; you may decline further participation in this survey at any time

without adverse consequences; and your confidentiality and/or anonymity are assured.

1. What is your job title?

2. What function or discipline do you represent on this team? (e.g. aero, structures,

etc.)

3. What is your highest level of education? (Check one)

High School

Associates Degree

Bachelor of Art or Science

Master of Art or Science

Doctorate

Other

4. In what field is your degree?

(e.g. mechanical eng., math, physics, aerospace eng., etc.)

5. How long have you been with

this team?

this company?

the aerospace industry?

6. On how many similar projects have you worked in the past?

7. On how many different teams (projects) do you currently contribute as a member?

8. With what fraction of your current team members have you previously worked?

No one (0%) Everyone (100%)

217



9. With which THREE (3) of the following team roles do you personally identify on

this team?

Creative, unorthodox problem solver

Good communicator, finds team new opportunities, well-connected

Coordinator, clarifies team goals, facilitates decision making

Performs well under pressure, tenacity to overcome obstacles, dynamic

Strategic individual, carefully weighs options, good judgement

Team player, diplomatic, builds consensus, avoids team friction

Reliable, disciplined, gets things done, conservative, practical

Detail oriented, focused on completion, time/schedule conscious

Specialist, narrow focus, technical focus

10. In each of the following four statement pairs, please circle the statement with which

you most identify.

1.a) I form new ideas through discussion

with others and relate well to people

and things.

1.b) I form new ideas through internal

monologue and relate well to concepts

and abstract ideas

2.a) I am interested in concrete ideas and 2.b) I am imaginative and enjoy exploring

prefer to interact with my surroundings future possibilities and gaining new insights

3.a) I make decisions based on 3.b) I make decisions based on my

objective analysis and logic values, what feels right

4.a) I plan far into the future, preferring

to have life planned and orderly

4.b) I am spontaneous, flexible with my plans

and don't want to miss anything

11. Has your team received training as a team? (Circle one) Yes No

If YES, which of the following topics did team training include?

Was the training effective?
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Process Usage Low 1 2 3 4 5 High

Technical Knowledge Low 1 2 3 4 5 High

Team Development Low 1 2 3 4 5 High

Human Resources Training Low 1 2 3 4 5 High

Other Low 1 2 3 4 5 High

12. Is your team collocated (same office space, building, campus)?

(Circle one) Yes No

If NO, please rate the impact on team's ability to communicate technical information.

Negative - I- I No Impact 1- 1- Positive

13. What tools and space (real or virtual) does the team use to communicate and interact?

14. How do you most commonly interact with other team members?

Place an 'X' one the line between the two options to indicate the relative frequency of the

two interaction styles. E.g. an 'X' placed in the middle would indicate both type of

interactions occur with equal frequency.

A) Do you interact one-on-one (face-to-face, telephone calls, IM) or in groups (team

meeting, conference calls, WebX)?

1-on-1 - 1 _ I Groups

B) Do you interact in person or virtually (telephone calls, email, WebX)?

In person __ ___ Virtual

C) Are your interactions real-time or delayed response (e.g. email)?

Synchronous I | Asynchronous

15. Which of the following are most commonly used to communicate technical information

within the team? (Circle three)

A Verbal (written or spoken) E Sketches

B Mathematical equations F Part drawings

C Computer models (static) G Scale models

D Computer models (dynamic) H Prototyping
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16. Does your team have an established identity or culture that distinguishes your team

from other teams? (Circle one) Yes No

If YES, is the team identity focused more on product, process, or people?

Product Process

People Other

Please describe briefly.

17. Please rate each of the following aspects of team environment (1-Poor to 5-Excellent)

Project management Poor 1 2 3 4 5 Excellent

Access to resources Poor 1 2 3 4 5 Excellent

Decision freedom Poor 1 2 3 4 5 Excellent

Realistic schedule for deliverables Poor 1 2 3 4 5 Excellent

Individual incentives and recognition Poor 1 2 3 4 5 Excellent

Team incentives and recognition Poor 1 2 3 4 5 Excellent

Interesting/challenging work Poor 1 2 3 4 5 Excellent

Collaborative environment Poor 1 2 3 4 5 Excellent

Organizational interest in mission of team Poor 1 2 3 4 5 Excellent

18. Is teamwork valued within your team?

Not Valued 1 2 3 4 5 Highly Valued

19. Is teamwork valued within your organization?

Not Valued 1 2 3 4 5 Highly Valued

20. Do rewards and incentives promote individual or team-level accomplishment?

Individual I I- Team

21. Does your organization have a standardized technical design process?

(Circle one) Yes No

If YES, to what extent do you, as an individual, comply with the standard process?

Non-Compliance 1 2 3 4 5 Full Compliance
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If YES, to what extent does the team as a whole comply with the standard process?

Non-Compliance 1 2 3 4 5 Full Compliance

22. How relevant and easy to use is the standard process?

The standard process is relevant and useful on this program.

Disagree 1 2 3 4 5 Agree

The standard process is easy to use and understand.

Disagree 1 2 3 4 5 Agree

23. Did your team have the opportunity to tailor or modify the organization's standard

process to help better complete your tasks?

(Circle one) Yes No

If YES, to what extent was the standard process modified?

Minor Modifications I I I Major Modifications

24. Are design decisions within the team more often made by an individual or team

consensus?

Team consensus Individual

If INDIVIDUAL decision making is more

common, are most decisions made by..

A) the same individual

B) the team leader

C) one of a rotating set of individuals

If CONSENSUS decision making is more

common, are decisions made...

A) when the supporting information is presented

and with little or no time for discussion or reflection

B) after a period of reflection and discussion.

25. How aware are you of other team members' design tasks?

Not Aware ___ -- Fully Aware

26. How aware are you of other team members' relevant expertise and knowledge?

Not Aware I- Fully Aware

27. Please rate your agreement with each of the following statements.

(1-Strongly Disagree to 5-Strongly Agree)
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Strongly Disagree I Strongly Agree

I respect other team members' technical knowledge 1 2 3 4 5

and expertise

I trust other team members' abilities to meet deadlines 1 2 3 4 5

I trust other team members to deliver high quality 1 2 3 4 5

work products

Team discussion stimulates the generation of good ideas 1 2 3 4 5

The team environment is fair and egalitarian 1 2 3 4 5

The team encourage critical questioning and analysis 1 2 3 4 5

The team is accepting of new ideas 1 2 3 4 5

The team has a clear and mutual goal 1 2 3 4 5

The team understands its purpose within the overall 1 2 3 4 5

systems design

The team has a shared vision for meeting milestones 1 2 3 4 5

and requirements

28. Systems thinking is one of many recognized engineering skills.

definition of engineering systems thinking...

Given the following

Systems thinking is utilizing tools, models, processes and different thinking'

styles to consider the componential, relational, contextual, and dynamic

elements of the system of interest.

How do you rate your systems thinking ability? (On a scale of 1-7 with 7 representing

strong systems thinking)

End of Survey.

Thank you for your time and participation in my research.

Engineering Interview

1. What is your teams role within the organization? within the standard process?

within the overall system under design?

2. How useful are artifacts like process maps and organizational charts in helping you

determine what needs to be done and who to involve?
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3. What is your perception of the standard process? What benefits and drawbacks are

inherent in its use? Why does your organization have a standard technical process

in place?

4. To what extent does the team alter or tailor the organization-level standard

process? Up to what level may the team choose its own processes, tools, and

methods for design

5. Engaging in analysis of the problem space and critical discussion are recognized

ways of managing complexity and improving system design. How does your team

discuss new ideas? Does your team analyze the design problem before proposing

specific designs for evaluation?

6. What do your teammates contribute to the overall design? What are they currently

working on? What past experience do team members have that is relevant to the

current design project?

7. In what ways do your informal social connections help you complete tasks? Please

compare and contrast the role of social connections with the usefulness of

organizational titles and formal channels of communication.

8. Does the team rely more on formal or informal coordination? Please give an

illustrative example?

* Formal coordination is top-down, articulated, documented management.

* Informal coordination is more spontaneous, bottom-up coordination. It utilizes

team member knowledge about where expertise and resources are within the

company, team member awareness of each others tasks to anticipate and meet

team members needs.

9. How far ahead is the team is planning? What is the average delivery date for open

action items? This is not addressing long-range planning documents, but gaging

how far into the future the teams is actively thinking on a daily basis.

10. How do you define systems thinking?
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11. In what ways does your team engage in systems thinking? Would you consider your

team a strong systems thinking team? Please rate your team's CST on a 1-10 scale.

Third Party Interview

1. How technologically complicated is the teams task? (1-5 scale)

2. How logistically complicated is the teams task? (1-5 scale)

3. What fraction of the team members would you describe as individual systems thinkers?

4. What considerations are made when forming teams? Functional contribution? Per-

sonality? Team roles? Past team interaction? Past experience on similar projects?

Establishing mentoring relationships?

5. Does the organization use standardized technical processes? If yes, why?

6. What are the goals of team training? Technical enrichment? Team development?

Addressing human resource concerns?

7. How process compliant is the team under consideration?

8. To what extent may and has the team under consideration tailored the standard

process for current usage?

9. Where in the organization does this team fit? Where within the system under design?

10. How good is team at meeting deadlines, working within budget, and producing defect-

free work?

11. How would you rate the teams collaborative systems thinking capability? (1-10 scale)

What examples or properties do you use to make this evaluation?

Field Note Guides
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1. How long has the team been working together? How stable is the team's membership

(how frequently are members added/removed)?

2. At what level of the system (system, subsystem, component, R&D) is the team op-

erating?

3. How does the team fit within the organizational structure?

4. Is the team co-located?

5. Are members in offices, cubicles, shared spaces?

6. Are special teams rooms or spaces visibly utilized?

7. Observations of design artifacts within design space: posters, bulletin boards for

sharing ideas.

8. Does the organization or team have a formal measure of process or capability matu-

rity? (Externally or internally measured) If yes, how mature is the process?

9. Why does the organization have a standard process?

10. If possible, find a copy of the organization's process documentation or flow chart to

review in advance of the case study?

11. Observe whether individuals are familiar with org-chart and process-flow diagram.

12. What is the corporate vision statement?

13. What programs or initiatives are in place to promote team work?

14. What type of leadership style is in use?

15. How are questions phrased, do others support lines of questioning, interrupt each

other, etc?

B.2.2 Abbreviated Case Study Protocol

The abbreviated case study utilized an open ended interview protocol. The following

questions were used to start the conversation.
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1. Please tell me about your education and work background.

2. How do you define systems thinking? How does you definition change if applied to a

team of engineers?

3. Please describe your experiences with high and low systems thinking teams. What

traits and conditions differentiated these teams?

Additional questions were asked as appropriate. Here are examples of two common

lines of followup questioning.

4. How would you describe your team's organization? Does your team have three levels

of membership (leadership, go-between, and functional experts)? If yes, what fraction

of the team is in each level?

5. Does the type of systems thinking change with program phase? If yes, can the same

leaders lead during conceptual and detail design?

B.3 Validation Protocol

Collaborative Systems Thinking Validation Survey

Background: This survey is in support of research exploring the role of organizational

culture and standard technical process usage in the existence and development of

team-level systems thinking.

Your Rights: Your participation in this survey is voluntary; you many decline to answer

any or all questions; you may decline further participation in this survey at any time

without adverse consequences; and your confidentiality and/or anonymity are assured.

1. What industry sector(s) best describe your current program?

Space Aviation

Hardware Software

2. How many individuals contribute on your program team?
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3. What lifecycle phase best describes our program?

Conceptual Design

Detail Design

Integration and Test

Operational Support

4. Which category best describes the customer for your program?

Government Commercial Private

5. On how many similar projects has the average team member worked in the past?

6. On how many different teams (projects) does the average team member currently

contribute?

7. How do team members most commonly interact with each other?

Place an 'X' one the line between the two options to indicate the relative frequency of the

two interaction styles. E.g. an 'X' placed in the middle would indicate both type of

interactions occur with equal frequency.

A) Do you interact one-on-one (face-to-face, telephone calls, IM) or in groups (team

meeting, conference calls, WebX)?

1-on-1 | Groups

B) Do you interact in person or virtually (telephone calls, email, WebX)?

In person __ Virtual

C) Are your interactions real-time or delayed response (e.g. email)?

Synchronous Asynchronous

8. Please rate each of the following aspects of team environment (1-Poor to 5-Excellent)
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Project management Poor 1 2 3 4 5 Excellent

Access to resources Poor 1 2 3 4 5 Excellent

Decision freedom Poor 1 2 3 4 5 Excellent

Realistic schedule for deliverables Poor 1 2 3 4 5 Excellent

Individual incentives and recognition Poor 1 2 3 4 5 Excellent

Team incentives and recognition Poor 1 2 3 4 5 Excellent

Interesting/challenging work Poor 1 2 3 4 5 Excellent

Collaborative environment Poor 1 2 3 4 5 Excellent

Organizational interest in mission of team Poor 1 2 3 4 5 Excellent

9. Are design decisions within the team more often made by an individual or team

consensus?

Team consensus _ I I Individual

End of Survey.

Thank you for your time and participation in my research.
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Appendix C

Supplemental Analysis

C.1 Pilot Interview Analysis

The following three tables shows examples of supporting text for each code cited

multiple times during the pilot interviews.

C.2 Full Case Study Analysis

The following is a report of the numerical data supporting the summary graphics in

Section 4.1.2, the correlation relationships in Section 4.2.3, and the regression model

in Section 4.2.5.

To protect the anonymity of participating companies, excerpts from the full case

study interviews are not included in the reported data.

Note: Case studies H7 and 18 were based entirely on interviews and extensive

observation. Interviewees were asked as many survey questions as possible during the

interviews. Interview data was used to fill in responses to as many survey questions

as possible. When insufficient data were available, 'NA' is indicated.
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Table C.1: Supporting Text for All Pilot Interview Codes: Part 1

Definition Codes

CST Involves
Producing a Product

CST Involves
Understanding the
Problem

CST Involves a
Holistic Approach

'Teams must realize successful products'
'The idea of producing a product is absent from the
systems thinking definition'

'In a group it is important to understand the problem
at hand'
'Program teams focus on understanding problems'
'Must constantly have the systems view in mind'
'It is important to have peripheral vision, to see what
lies out of focus'

Culture-Related Codes

Creativity and
Multiple Thinking
Styles Enable CST
Alignment with
Project Enables CST
A Supportive
Environment Valuing
Systems Thinking
Enables CST
A Willingness to Use
Process Enables CST

A Willingness to Ask
and Answer Questions
Enables CST

'Problem Families'
that Fail to Converge
are a Barrier to CST

Ad Hoc Organization
is a Barrier to CST

Hero Syndrome is a
Barrier to CST

Resistance to Change
is a Barrier to CST

'Metaphorical thinking allows for exploring and mak-
ing connections'
Teams need 'innovative individual thinking'
'A shared identity forms in alignment with the
project'
'Teams require constant reminders to stay in a sys-
tems thinking mode'
'Individual team members must listen, understand,
and make value-add comments to the team'
'The desired culture is one where people are willing
to use standard process'
'Teams must be constantly questioning'
'A managerial culture where people can raise their
hands and ask for help when in trouble'
'Teams must be willing to answer questions'
'Long standing teams can become insular'
'They burrow into one problem at the detriment of
others'
'Ad how teams are error prone'
'Each site develops different culture; this is an issue
with collaboration across the organization'
'Current culture rewards he outcome when everything
turns out well, irregardless of path taken'
'We are still dealing with the myth of the lone de-
signer'

'There is often a cultural resistance to change'

230

Cutr-eae oe



Table C.2: Supporting Text for All Pilot Interview Codes: Part 2

Process-Related Codes

Integrated Design:
Bringing the
Disciplines Together
Enables CST
Process Provides a
Starting Point from
which To Start and
Interpret
Shared Language and
Taxonomy Enable
CST

Tools to Promote
Systems Thinking
Enable CST

'Get important people and disciplines involved early
in design'

'Teams need to interpret process'

'Process enforces a program lifecycle through clear
gates'
'Process enables communication'
'Process provides a mutually agreed upon taxonomy'
'Shared reference frame,' 'Shared framework'
'Standard process provides a tool to promote systems
thinking'
Process is a 'reminder' and 'companion' for systems
thinking

Process Moderates
Undesired Behavior, 'Process provides guidance for group behavior'
Enabling CST

'The maturity of teams depends on the type and fre-
Face-to-Face
Communication quency of communication'

'When you want to get something done, go and meet
Enables CST face-to-face'

Using Consensus
'Decisions should be made in teams'

Building Enables CST
A Knowledge 'Need to share experiences on a diverse set of mis-
Management Enables sions'
CST 'Tools should support frictionless data flow'
Process can Stagnate, 'Process can become too rigid'
Act as a Barrier toAct as a Barrier to 'Rigid process squelches innovation'
CST
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Table C.3: Supporting Text for All Pilot Interview Codes: Part 3

Team Trait Codes

Individual Systems
Thinkers Enable CST

Socialized Experts/
Shared References
Enable CST

'Having a great number of people with systems think-
ing is a success factor'
'Everyone on the team needs some minimal level of
systems thinking'
'Teams need many experts-well socialized'
'Mature teams have socialized members'
'Groups need a shared view'

CST Requires 'People are on teams because of their particular ex-
Technical Depth, not pertise'
Width 'Teams need more areas of technical depth'

'Collocated teams are more efficient'
Collocation Enables
CST 'Distributed teams must spend more effort to over-

come disadvantage of being apart'

'You get better results when you can look someone in
High Communication the face'
Bandwidth Enable

iCST 'Teams need an environment that supports interac-
tions'

Leadership Codes

Leaders with Strong 'Leaders must know how to influence people'
Social Skills Enable 'Good team leaders and technically competent indi-
CST viduals who know how to lead'

'Collaborative systems thinking is facilitated by
Systems Thinking strong systems thinking leadership'
Leadership is 'Non-systems thinking leaders need to work closely
Required for CST with a systems thinker'

'Teams need an influential systems thinking member'
Systems Thinking 'Systems thinking leaders must tease out intercon-
Leadership is the nectedness of disciplines and decisions'
Ability to FindAbility to Find 'Systems thinking leaders must be influential and
Interfaces and

able to pull people into the problem'
Interconnections
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Table C.4: Full Case Study Supporting Data, Part 1

Metric Supporting Survey Summary Case Study Data

(and how Calculated) Question #'s AO B1 C2 D3 E4 F5 G6 H7 18 J9

Job Titles (Number of 7 4 6
different job titles)

Function / Discipline
(Number represented on #2 7 9 4 4 4 11 5 7 6 9
team)

Highest Degree EarnedHighest Degree Earned #3 4 4 4 3.5 3.5 4 3.5 3.5 3.5 3.5
(Median: B.S.=3; M.S.=4)

Degree Concentration
(Number of different #4 5 4 2 3 4 7 4 4 4 5
degrees earned)

Years at Company (Team #5B 26 7 3 28 13 18 18 20 NA 18
average)

Time in Industry (Median #5C 25-30 5-10 0-5 30-35 15-20 20-25 20-25 25-30 15-20 20-25
range in years)

Past Program Experience #6 2 0 5 23
(Mode of team)

Concurrent Team
Membership (Median of #7 2 3 1 2.5 2 0 0 2 1 0
team)
Team Roles (RMS deviation
from uniform distribution #9 3.4 4.1 1.0 1.7 2.6 3.7 4.2 3.0 NA 3.2
across Belbin team roles)



Table C.5: Full Case Study Supporting Data, Part 2

Metric Supporting Survey Summary Case Study Data

(and how Calculated) Question #'s AO B1 C2 D3 E4 F5 G6 H7 I8 J9
Personality Preference
(Percent Identifying with #10 72% 67% 50% 74% 89% 67% 67% 86% NA 73%
People vs. Abstractions)
Team Training #11 Responses to the question on team training were too varied,

indicating the responses are invalid
Leadership Influence on #11, Interview The data for this parameter are inconclusive
Team Norm Development
Stated Goals for Team De- #11, Documentation The data for this parameter are inconclusive
velopment

Collocation (Percent of
team collocated) #12, Observation 70% 90% 50% 100% 100% 60% 100% 100% 80% 100%team collocated)

Collaboration Tools
(Number tools cited) #13 8 8 7 9 6 8 9 8 14 12
(Number tools cited)

Team Space (Number of
spaces, real or virtual, cited #13, Observations 6 6 5 3 4 6 6 6 8 9
or observed)
Effective Communication / #14A (1-7 scale) 5.0 3.5 3.5 5.7 3.7 4.3 4.0 6.0 5.0 3.4
Design Languages #14B (1-7 scale) 3.3 3.9 2.3 2.5 3.7 4.2 1.5 2.0 1.0 3.7
(Weighted sum of team #14C (1-7 scale) 3.5 3.7 3.3 2.8 4.2 3.7 4.2 2.0 1.0 3.6
averages) #15 (RMS) 10 14 5 4 9 17 7 NA NA 10

Strong Team Identity #16 (Percentage) 63% 40% 100% 100% 60% 7% 0% 80% 100% 50%

tr #27H (1-5 scale) 4.2 4.3 4.3 4.8 4.5 3.1 4.0 4.3 5.0 3.8
(Weighted sum of team
averages) #271 (1-5 scale) 4.3 4.1 3.3 4.8 4.3 2.9 4.2 4.5 5.0 4.0

#27J (1-5 scale) 3.6 3.6 2.8 3.8 4.0 2.8 3.2 4.0 5.0 3.4



Table C.6: Full Case Study Supporting Data, Part 3
Metric Supporting Survey Summary Case Study Data

(and how Calculated) Question #'s AO B1 C2 D3 E4 F5 G6 H7 18 J9
Measures of a Creative
Environment (Average of #17 (1-5 scale) 3.6 3.9 3.5 4.0 3.7 3.2 3.4 3.5 3.6 3.2
team responses)

Ability to Engage in #17H (1-5 scale) 4.5 4.0 4.0 4.5 4.0 4.0 4.5 4.5 5.0 4.0

Critical Analysis (Median) #24 (1-7 scale) 2.0 3.0 3.5 1.5 5.0 3.0 1.5 2.0 2.0 3.0
#27D (1-5 scale) 4.5 4.0 3.5 5.0 4.5 4.0 4.0 4.5 5.0 4.0

Value of Teamwork within #18 (1-5 scale) 5.0 5.0 4.0 5.0 5.0 4.0 4.5 4.5 5.0 5.0
Team and Organization #19 (1-5 scale) 4.0 4.0 3.5 5.0 4.0 4.0 3.5 4.5 5.0 3.0
(Median) #20 (1-5 scale) 4.0 5.0 5.0 3.5 4.0 5.0 3.0 NA NA 6.0

Organizational EmphasisOrganizational Emphasis #19 (1-5 scale) 4.0 4.0 3.5 5.0 4.0 4.0 3.5 4.5 5.0 3.0
on Teamwork (Median)

Rewards and Incentives
(Median) #20 (1-5 scale) 4.0 5.0 5.0 3.5 4.0 5.0 3.0 NA NA 5.0
(Median)

Existence of Standard
Design Process (Percent #21 100% 60% 50% 100% 100% 80% 80% 100% 100% 80%
Indicator Process In Place)
Metrics of Process Use #21A (1-5 scale) 4.0 4.0 3.5 4.5 4.0 4.5 4.0 4.0 4.0 4.0
(Median) #21B (1-5 scale) 4.0 3.0 2.5 5.0 4.5 4.5 4.0 4.0 5.0 4.0
Perception of Process #22A (1-5 scale) 3.0 3.0 4.0 4.0 4.0 4.0 3.0 3.0 4.0 3.5
Usefulness (Median) #22B (1-5 scale) 4.0 3.0 3.0 4.0 3.5 4.0 3.0 3.0 4.0 3.0

Extent of Process TailoringExtent of Process Tailoring #23B (1-7 scale) 3.0 5.5 4.0 3.0 3.5 3.5 4.0 4.0 5.0 4.0
(Median)



Table C.7: Full Case Study Supporting Data, Part 4
Metric Supporting Survey Summary Case Study Data
(and how Calculated) Question #'s AO B1 C2 D3 E4 F5 G6 H7 18 J9

Consensus Decision MakingConsensus Decision Making #24 (1-7 scale) 2.0 3.0 3.5 1.5 5.0 3.0 1.5 2.0 2.0 3.0
(Median)

Mutual Awareness #25 (1-7 scale) 5.0 4.5 6.0 6.0 4.5 5.0 5.0 NA NA 4.0
(Median) #26 (1-7 scale) 6.0 5.5 6.0 6.5 5.0 5.0 4.5 NA NA 4.0
Mutual Respect and Trust #27A (1-5 scale) 4.5 4.5 4.5 5.0 5.0 4.0 4.5 4.5 5.0 4.0
(Median) #27 (1-5 scale) 4.0 3.5 3.0 4.5 3.5 4.0 3.5 4.0 4.0 3.5

#27C (1-5 scale) 4.0 4.5 3.0 4.5 4.5 4.0 3.5 4.0 4.0 4.0
#27H (1-5 scale) 4.0 4.5 4.5 5.0 4.5 3.0 4.0 4.5 5.0 4.0

Common Team Goals #271 (1-5 scale) 4.5 4.0 3.5 5.0 4.5 3.0 4.0 4.5 5.0 4.0

#27J (1-5 scale) 3.5 3.5 3.0 4.0 4.0 3.0 3.0 4.0 5.0 3.5
Individual Systems
Thinking Ability (Team #28 (1-7 scale) 6 5 5 6 5 6 5 6 4 5
median)



Table C.8: Full Case Study Supporting Data, Part 5
Metric Summary Case Study Data

(and how Calculated) Source(s) AO B1 C2 D3 E4 F5 G6 H7 18 J9
Use of Informal Interview
Connections for Identifying Transcripts (Number 4 5 2 2 0 7 NA 3 1 5
Resources of Code Citations)

Interview
Use of Normative Design IUse of Normative Design Transcripts / Yes Yes Yes Yes Yes No NA NA NA Yes

Documentation

Understanding Role withinUnderstanding Role within Interview Transcripts Insufficient data obtained for comparison
System

Interview
Collaborative Systems Interview

Transcripts 8.1 7.9 5.7 8.3 4.7 5.6 7.0 8.1 7.5 4.9
(Average)
Documentation /
Website (looking for Strong

Systems Emphasis in wording with social Systems Weak Systems Wording
Corporate Vision Statement and technical Wording

and technical Wording
systems emphasis)
Interview

Organizational Emphasis Interview
on Process Standardization Transcripts / Yes No No Yes Yes Yes Yes Yes Yes Yes

Documentation
Interview Transcripts

Usefulness of Process Flow Interview Transcripts
Observation M L M L H L NA M H M
(Low-Mediurn-High)

Interview
Value of Organizational Interview

Transcripts (Number 0 0 0 2 2 1 0 0 0 3
of Code Citations



C.3 Abbreviated Case Study Analysis

The following two figures shows the most commonly cited codes arranged by high

and low collaborative systems thinking teams. Figures C-1 and C-2 show the most

common themes from full case studies interviews, sorted by higher and lower col-

laborative systems thinking teams. Between the two graphics it can be seen that

'product alignment,' and 'past program experience' are important in the higher col-

laborative systems thinking case studies, but do not appear among the most common

codes in the lower collaborative systems thinking case studies. Similarly, the codes

for a 'trusting and open culture' and 'consensus building' appear significantly less

frequently in the lower collaborative systems thinking case studies as compared to

the higher collaborative systems thinking case studies. The final notable difference

is that frequent meetings were seen as both an enabler and barrier to collaborative

systems thinking on the lower collaborative systems thinking teams. This concept

was absent from higher collaborative systems thinking team interview transcripts.

The following tables (C.9, C.10, and C.11) show examples of supporting text for

each code cited more than four times during the abbreviated case studies (excluding

those already characterized in the Pilot Interview Analysis).
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Common Themes from Teams with Higher Collaborative
Systems Thinking Ranking

Trusting, Open Culture
enables CST

Informal Social Connections
enable CST

Good Team Member
Awareness enables CST

Using Consensus Building
enables CST

Frequent Meetings enable
CST

A Willingness to Ask and Answer
Questions enables CST

Past Program Experience
enables CST

Creativity and Multiple Thinking
Styles enable CST

Design Reviews Stimulate Cross-
Discipline Communication/ Grater

Systems Awareness

Effective Communication is an
enabler to CST

Knowledge Management enables
CST

CST Leaders Must Manage Risk
and Uncertainty

Process is a Basis from
which to Start and interpret

Being Aligned with the Project
enables CST

CST Teams have Consistent
Team Structure

Team Leaders Must be
Willing to Make Decisions

CST requires Individuals
with Technical Depth, not

Width

Having a Realistic
Schedule enables CST

Team Diversity enables
CST

Legen

Definit

Culture
Codes

Proces
Codes

Team

0 2 4 6 8 10

d

on Codes

-related

s-related

Trait

adership-
ecific Team
ait Codes

I 12 14 16 18

Most Cbmmon Codes From H-gher Collabora ive Stems ThinWng Cam Studier

Figure C-1: Codes that appear most frequently in the higher collaborative systems

thinking case studies
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Common Themes from Teams with Lower Collaborative
Systems Thinking Ranking

Informal Social Connections
enable CST

Good Team Member
Awareness enables CST

Frequent Meetings enable
CST

A Willingness to Ask and Answer
Questions enables CST

Effective Communication is an
enabler to CST

CST Leaders Must Manage Risk
and Uncertainty

Shared Language and
Taxonomy enables CST

Creativity and Multiple Thinking
Styles enable CST

CST Teams have Consistent
Team Structure

CST Involves Producing a Productf
Understanding Success Criteria

Organizational Charts are Useful

Knowledge Management enables
CST

Process is a Basis from
which to Start and Interpret

Team Leaders Must be
Willing to Make Decisions

CST Involves a Holistic
Approach

Trusting, Open Culture
enables CST

Using Consensus Building
enables CST

CST requires Individuals with
Technical Depth, not Width

Having a Realistic
Schedule enables CST

Team Continuity enables
CST

Face-to-Face Communication
enables CST

Recognizing the Social Component of
Engineering Enables CST

CST Team Balance Changes
with Program Phase

Higher Communication
Bandwidth enables CST

Frequent Meetings are a
barrier to CST

Ad Hoc Organization and unique
Team Cultures are a barrier

Education Background is
Important

I
p

IzI

III

U
2

I

EILI

I i 

0 2, 4 6 8 1

I

Most Common Codes from Lower Collaborative Systems Thinking Case Studies

Figure C-2: Codes that appear most frequently in the lower collaborative systems
thinking case studies
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Table C.9: Supporting Text for All Abbreviated Case Study Codes: Part 1

Culture-Related Codes

"Someone can be a genius, but his intelligence is lost
Effective

ui i of it cannot be communicated to others"
Communication is an

"Communication is listening to not only what is said,Enabler to CST but what is not said. Body language is important"

"My journey has switched over to social side in con-
trast to what was taught in engineering school "

Component of "Engineering is taking the social aspect and marrying
CST Engineeringit to the technical. The result is a better informed

team. "
"Information has to flow freely; without hesitation"

Trusting, Openut En"Groups must have trust, must treat each person in-
Cultures Enable CST dividually"dividually"

"Many engineers get caught up in the details, lose big
Failing to Converge on picture of efforts"
a Solution is a Barrier

"Team have to avoid analysis paralysis"
"Personal agendas and external pressures get in the

Political Influences
Deter CST way"Politics lead to poor systems thinking"
A Reluctance to "Problems occur when organizations have a culture
Communicate is a where engineers don't talk to each other"
Barrier to CST
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Table C.10: Supporting Text for All Abbreviated Case Study Codes: Part 2

Using Consensus
Building Enables CST

CST Teams Use
Intelligent
Questioning to
Facilitate Systems
Thinking
A Connection to the
Customer and
Requirements Origin
is an Enabler

Frequent Meetings
Enable CST

Process-Related Codes

"The difference between decision making on systems
and non-systems is that systems require everyone to
understand the points being considered through dis-
cussion and consensus building"
"Good systems thinking leaders ask other for their
input before expressing their own opinions"
"The common denominator in achieving consensus is
that all participants have an opportunity to provide
input and be heard"

"Effective systems thinking teams ask high level
questions, then drill down to the right level of detail"

"Using the Socratic method leads to a better ends"

"Teams need a high level understanding of why the
end users need the systems"
"Teams must consider the user, maintainer, trouble
shooter and assembler"
"We had weekly meetings to keep people aware of hot
topics"
"Regular meetings were instituted to improve inter-
actions between the specialists and analysts-to get
them communicating"

Design ReviewsDeStimulate Crosgn Reviews "Gate reviews bring together people operating at
Stimulate Cross multiple levels within the system"
Discipline

Communication andCommunication and "Design reviews may be the only time theAwareater ystems representatives of the entire system get together"
Awareness

"We need to use IT correctly. We currently send too
emails and this hurts us; we do not think through our

IT Tools is a Barrier thoughts before sending an email"
to CST "The job is so complex, the tools should make us moreproductivebut they are weighing us down. We are

mired in process and IT overload"
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Table C.11: Supporting Text for All Abbreviated Case Study Codes: Part 3

Team Trait Codes

"Leadership should know when to lead, when to back
CST Team Leadership

off, when to allow people to make mistakes"
Provides Appropriate "When necessary, leaders should drive teams towards
Levels of Guidance

central goals"
Individuals with "Not everyone can be worrying about the entire
Different Levels of process/program"
Systems Thinking "Everyone should understand some amount of the
Facilitate CST context at least one level up in the block diagram"

"Leaders should solicit multiple inputs, but is still
Team Leaders Must
be Wiling to Make responsible for the final decision "

"A strong leader gather information from the team in
Decisions

order to make a decision"
"15% of my team is leadership; 50% are occasional

systems thinkers; the remaining 35% are function ex-
CST Teams have a

pert who take the boundaries given them and don't
Consistent Team a s

ask questions"Structure
"System teams cannot be all systems people-we need
specialists"
"There is not substitute for a level of personal credi-

CST Team Leaders bility"
must have Credibility "Leaders must have sufficient credibility to be per-

ceived as being believable: it comes down to trust."
"Systems thinking across the design cycles depends

CST Team Balance on the role."
Changes with "The people required for architectural systems think-
Program Phase ing and detailed systems thinking are rarely the same

people"
"Small teams have more opportunity for Zen mo-

Smaller Teams are
ments, for batting ideas around"

bin CST "In my experience size has been an indicator: smaller
in CST

teams are better at systems thinking"
"Not everyone can be worrying about the entire pro-

Too Many Systems cess/program"
Thinkers on a Single "When you get more than 2 systems thinkers on a
Team is a Barrier team, you need a strong leader to manage the circus

that follows"
"The balance is starting to shift towards recognizing

Challenging Work isa len o people want to think and have more opportunity to
apply their own judgement within their jobs"

Personality "On large programs there are lots of 'verbose experts'
Gaps/Mismatches on and we get head butting"
a Team are a Barrier "Coping with difficult people is a barrier to systems
to CST thinking"
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