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Abstract

Modern methods of multidimensional display are extremely limited in their depic-

tion of three dimensional environments. Improving upon modern integral imaging

displays with respect to viewing angle and angular resolution, a new method is pro-

posed consisting of spherical lenses to focus incident light to an imaging surface. A

theoretically exact model is provided in addition to a number of feasible physical

approximation alternatives for different components of the model. This model can

be extended for applications in multidimensional display and invisibility.
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Chapter 1

Introduction

1.1 Motivation

Throughout the course of history, human beings have attempted to capture and

preserve the world around them. Cave drawings, oil paintings, photographs, videos;

all provide an abstraction of the world that might seek to represent and reproduce

a moment or moments in time. However, even the most advanced of these current

methods of image archival have served only to represent the world as singularly

projected onto a two dimensional plane.

The limitation of these methods of image display is that the image portrayed

projects the same light information, regardless of the location of the viewer. If you

see a photograph hanging on a wall depicting the front of a house, and you move

ten degrees to the left, you still see the same image (albeit a distorted image) of the

front of the house. This thesis furthers the development of an image display system

that will be able to adapt to such angular perturbations from the viewing surface,

providing the viewer with the same information as if they were looking at a real three



dimensional object through a two dimensional window.

1.2 History

Multidimensional display is not a new concept. Holograms and 3D glasses are tech-

nologies which achieve parallax that have been in use for decades. However, holo-

grams are by nature passive, static devices, while the implementation of 3D glasses

is restrictive and limited. Other solutions to displaying three dimensional forms have

involved projecting onto rotating mirrors to simulate a three dimensional object [3],

though require large three dimensional volumes to display. Modern integral imaging

techniques come close to achieving true multidimensional display [1]. 3D televisions

implementing integral imaging technology have even become commercially available

[Philips WOW]. However these integral image displays have substantial flaws, and it

is solutions to these flaws which this paper will attempt to analyze.

1.3 Implementation: Discretizing the Problem

To implement a pixelated, multidimensional display, we must discretize the problem

into different linear and angular dimensions. Imagine a video screen. However,

instead of a regular two dimensional display, this screen is composed of many multi-

pixels that emit different light information (color and/or intensity) with respect to

the angle from which it is viewed. The information emitted for each individual pixel

now depends on four variables: the pixel's rectangular position (x, y) in space (in the

plane of the screen), and the angle (0, a) from which the pixel is viewed (see Figure

1-1). Creating such a four dimensional screen would be able to hold enough display

information to be able to sufficiently and fully represent a three dimensional space



Figure 1-1: In the proposed display, each pixel displays information in four dimen-
sions: the pixel's position (x, y) in the plane of the screen providing two dimensions,
and the angle (0, a) from which the pixel is viewed (in spherical coordinates).



viewed through a two dimensional window. This data structure is what integral

imaging strive to obtain but are unable not fully achieve.

1.4 Application

The seemingly simple idea of a single, multidimensional pixel or multi-pixel is in-

triguingly broad in application. A static multi-pixel array of light emitters could

become a window into another world. A multi-pixel array of lights sensors could

function as a three dimensional camera. Time-varying emission of light from an

array of multi-pixels would give rise to video, but in three dimensions. Combining

sensing and emitting capability into the same multi-pixel, where light sensed at a

given angle and location is emitted back from that same angle and location, would

emulate a mirror.

This idea of a combined sensing and emitting multi-pixel has much more in-

teresting uses then the implementation of a digital mirror, or a multidimensional

entertainment screen. There is the potential for military application in the field of

camouflage. Surrounding a body with such combined multi-pixels could conceivably

be programed to emit the same stream of light that struck the body on the opposite

side, thus rendering the object invisible.



Chapter 2

Choosing a Lens

2.1 Integral Imaging

In order for a single pixel to show different information with respect to different

viewing angles, it is necessary to find some way of uniquely mapping each element

of an information array to a corresponding viewing angle. Ideally, light information

must be produced, then modified, to project from the pixel in only the desired

direction.

Methods of focusing different angles of incident light to a discrete array exist.

Modern integral imaging devices are lenses made up of an array of curved surfaces

on one side and a flat plane on the other with some constant index of refraction [5].

Incident light refracts with respect to the curved upper surface and is 'semi-focused'

onto the planar surface below. This image is 'semi-focused' because the resulting

projection is not focused precisely to a point for all angles and contains spherical

aberrations.

Another distinct problem with modern integral imaging setups is that their func-



Figure 2-1: Integral imaging arrays can successfully map incident angles to areas on
a planar surface, but have significant spherical aberration and limited viewing angle.

tional viewing angle is confined to a tight cone. This is due to two properties of

modern integral imaging arrays. First, the incident surface is not symmetric with

respect to the angle of incidence causing an increase of spherical aberration with

large deviation from the normal direction. Multiple different lens types and shapes

have been proposed to address the problem of spherical aberration [4]. This paper

address a few specific shapes.

Second, modern integral imaging is not able to fully encode an entire hemisphere

of viewing angles. At steep viewing angles, the lens will map not to the image below

the specified lens, but instead to the image of an adjacent pixel. This paper will also

address some possible solutions to mapping a full hemisphere of light information to

a two dimensional data structure.

2.2 Elliptical Lens

Optical solutions exists which perfectly focus light from a given direction down to

some unique location, thus mapping an incident angle to a specific point in space.

A lens bends light rays depending on the proportional change in index of refraction

over an interface. For a single direction and uniform index of refraction, the solution



Figure 2-2: Creating an elliptical lens of eccentricity compatible with the material's
index of refraction, all light incident from the normal direction will focus directly onto
the opposite focus of the ellipse. The ellipse shown has an eccentricity compatible
with the index of refraction of acrylic glass (1.490).

Figure 2-3: Creating a elliptical lens of eccentricity compatible with the material's
index of refraction, all light incident from the normal direction will focus directly
onto the opposite focus of the ellipse. However, if the incident light is angularly
offset the light will no longer converge to a single point.



is fairly straight forward. Creating an elliptical lens, as shown in Figure 2-2, of

eccentricity compatible with the material's index of refraction, all light incident from

the normal direction will focus directly onto the opposite focus of the ellipse.

However, such focusing precision only holds true for this particular incident direc-

tion. If the incident light is angularly offset as in Figure 2-3, the light will no longer

converge to a single point and will thus be of little use to the proposed application.

Surely, a desirable property of a suitable lens would be to look geometrically similar

to incident light, regardless of the viewing angle. A spherical boundary surface would

be a natural selection considering its perfect symmetry. All calculations can be made

with respect to a single direction, and may then be guaranteed to apply to any other

incident angle due to symmetry.

2.3 Liineburg's Lens

A solution to the focusing problem actually exists for the spherical case. Liineburg's

Lens [2] is a well known gradient-index lens which in theory focuses planar incident

light directly to a point on the opposite side. Such a lens with a radius of ro would

have a varying index of refraction as a function of radius r given by Equation 2.1.

As can be seen from the equation, the sphere has an index of refraction of 1 at the

surface of the sphere and an index of refraction of V2 at the center.

n 2- (2.1)



Figure 2-4: Liineburg's Lens

2.4 Sphere: Uniform Index of Refraction

While Liineburg's solution is a mathematically possibility, the task of making a true

Liineburg lens has remained an elusive task and is beyond the scope of this paper.

However, one can approximate Liineburg's lens by focusing light using a sphere of

some uniform optimal index of refraction. Figure 2-5 depicts the refraction of incident

light through a spherical lens for different indices of refraction (air has an index of

refraction of 1.00). The incident light rays refract through the surface according to

Snell's law:

sin O8 n,
sin 0, ni

The ratio of the sines of the incident to the refracted angles is equal to the inverted

ratio of their indices of refraction. Note that symmetry maintains that the center of



the focused area will reside on the opposite side of the sphere at the point marked

by the ray that runs through the center of the sphere. This ray does not change

direction as it is normal to the lens surface upon incidence. The refracted rays are

focused differently with respect to different indices of refraction.

Figure 2-5: The refraction of incident light for different lens indices of refraction.
The refracted rays are focused into a tighter area as the index of refraction increases.



2.5 Tightness

In order to chose the optimal index of refraction, a measure of tightness must be

established. Consider a sphere of some uniform index of refraction n. Light is

incident on the surface at some angle 0 from the vertical. The light refracts through

the sphere and terminates at some angle E from the desired location. c is given by

Equation 2.3.

Figure 2-6: Incident light hits a spherical pixel, refracting through, and terminates
at some angle e from the desired location. Here, a is the refracted angle through the
material interface given by Snell's Law, a = arcsin (sin )

S= 2 arcsin sin -
n

(2.3)

The spherical aberration that occurs due to the imperfect focusing of the lens

can be seen in Figure 2-7 which shows the angular error c profiles as a function of



location of incidence 0 at different indices of refraction n. For small 0, the spherical

aberration is positive, while at higher 0, the spherical aberration is negative. Positive

angular error corresponds to a distorted magnified image while negative error results

in a distorted and inverted magnified image. The indices of refraction shown include

those for Crown Glass (n = 1.55), Bromine (n = 1.65), Sapphire (n = 1.77), and

LaSFN9 Glass (n = 1.88).

10
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-20-

-25
0 10 20 30 40 50 60 70 80 90

Theta [deg]

Figure 2-7: Angular error E profiles with respect to location of incidence 0 at different

indices of refraction n.

Ideally, a tightness parameter would be a measure of the total error flux that the

viewer would observe. In other words, angular error should be weighted less if the

angle between the sphere's surface normal and the viewing direction is large. We



define a tightness parameter 7 to be the sum over the viewing surface of the sphere
of the square of the error in the direction of incidence. The surface normal in the
direction of incidence is proportional to cos 0.

T = f 2 cos OdS = 62 cos (sin Or2dOd4)

w = E2 cos 0 sin 0

(2.4)

(2.5)

a 0.4

E
O

0.3 n = 1

0.2

n= 1.722
0.1

n =1.77

n =1.85
0

0 10 20 30 40 50
Theta [deg]

60 70 80 90

Figure 2-8: Weighted squared angular error w profiles with respect to location of
incidence 0 at different indices of refraction n.



This normalized error can be represented by a parameter w defined by Equation

2.5. A plot of weighted squared angular error w profiles with respect to location of

incidence 0 at different indices of refraction n can be found in Figure 2-8. Tightness

7 would then be the integral of w over the surface of the sphere.

0.35

0.3

0.25

0.15

0.1

0.05

n = 1.722

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Index of Refraction (n)

Figure 2-9: Tightness area T

minimized for n = 1.786.
with respect to index of refraction n. Tightness area is

0 = d d 0 - 2 arcsin n cos sin Od (2.6)
dn dn 1 n

By taking the derivative of 7 with respect to the index of refraction n, we can

minimize the total weighted squared angular error to achieve the optimal index of

refraction for uniform spherical balls. This index of refraction is In=1.722 ].



Figure 2-10 can give some reference as to what this optimization achieves. Figure

2-10 shows one spherical pixel viewed in the direction of light incidence. The inner

set of circles represent the area on the opposite sphere that is magnified by a spherical

lens with respective uniform indices of refraction. The outer set of circles represent

the perceived location of the boundary between positive and negative angular error,

i.e. the point at which the spherical aberration of the magnified area becomes so

great as the invert the image. The circles at n = 1.722 minimizes the total weighted

squared angular error. This index of refraction essentially balances the maximization

of magnification ratio while still keeping inverted spherical aberration to a minimum.



Lens Diameter

1.65

n = 1.722

n = 1.55 n = 1.77
n = 1.65

n = 1.722 n = 1.85
n = 1.77

n = 1.85

Figure 2-10: A spherical pixel viewed in the direction of light incidence with circles
representing magnification and the limit of negative angular error. Inner set of circles
represent the area on the opposite sphere that is magnified by a spherical lens with
respective uniform indices of refraction. The outer set of circles represent the in
plane location of the boundary between positive and negative angular error.



Chapter 3

Mapping the lens to a surface

Assuming that a spherical lens can be obtained that can focus incident rays from a

specific angle to a singular point, it is then necessary to map the back of the spherical

lens to a surface that can accurately store the complete hemisphere light information.

This chapter proposes two possible solutions to this problem.

First, the back surface of the spherical lens could be mapped to a trivial and

known surface that is easily manipulated. For instance, mapping the sphere down

to a plane would yield a convenient solution. To make a static multidimensional

image, one would only need to place behind the lenses a sheet of paper with a

correctly encoded image pattern. For a dynamic multidimensional image, a time

variant screen such as an LCD display could be utilized. While this solution is

desirable from a image encoding standpoint, it encounters some difficult optical and

physical limitations.

Alternatively, the back surface of the spherical lens could be mapped to a surface

approximating the spherical curvature of the lens. Folding multiple planes containing

the correctly encoded light information around the spherical lens could yield a solu-



tion where no interface between the lens and light information would be necessary.

While this solution is optically and physically conceivable, implementing the folded

surface and image encoding is nontrivial.

3.1 Fiber Optics

Figure 3-1: Using fiber optics could map the back surface of the spherical surface to
a plane, but would not solve the problem of limited viewing angle.

One possible solution to mapping the back surface of the spherical lens to a

plane would involve the use of fiber optics. Making a fiber optic faceplate of high

resolution could potentially map the light focused upon each point along the spherical

surface down to a common plane. However, fiber optics unfortunately have a limited

acceptance angle for incoming light.

For a light ray to successfully propagate through the fiber, it must enter within a

specific acceptance cone related to the difference in refractive index between the core

and sleeve materials of the fiber. Thus, while packing vertical optical fibers into a



faceplate and cutting out spherical sockets might map most of the center area of each

lens correctly to the plane, the outer edges of the sphere, and thus larger viewing

angles will not be mapped by the fiber optic array because the incident ligtht will

fall outside of the fiber's acceptance cone. This solution fails to solve the problem of

a restricted viewing angle.

Potentially, optical fiber faceplates might be able to be constructed with a very

high numerical aperture using materials of vastly different index of refraction. Such

construction may yield an acceptance cone wide enough for practical purposes. How-

ever, such high numerical aperture faceplates do not yet exist and would be pro-

hibitively expensive to custom build. Alternatively, one might be able to devise a

way of packing fiber optics non-vertically such that each fiber is normal to both the

surface of the sphere on one end and the surface of the plan on the other. This

solution also yields tremendous problems for fabrication thus will be discarded for

the moment.

3.2 Ulexite

Ulexite is a naturally occurring mineral of interesting optical properties. It is com-

posed of long, parallel, tightly-packed crystalline structures that act like a fiber optic

baseplate with fibers on the molecular scale. Just like a faceplate made from fiber

optics, this material transmits light from one surface to the other along its fibrous

structure. However, just like optical fibers, it will not transmit light when observed

from steep angles. None the less, this material is readily available and is of higher

resolution than fiber optic baseplates. A ulexite baseplate was machined with spher-

ical cavities to project light information up from the lower plane to an array of

hemispherical surfaces.



and the initial ten
merature is T.fmti

Figure 3-2: Ulexite

Figure 3-3: A hemispherical array machined from Ulexite. The same limitations for

the fiber optical acceptance cone was experimentally observed in this ulexite sample.



However, due to a combination of large imperfections in the ulexite and the

natural attenuation of light through the slightly milky mineral, the test plate was

able to project only a very faint and unrecognizable image. Potentially, if ulexite

could be grown synthetically with fewer imperfections and greater transparency, such

a material might be more useful as a solution to the mapping problem.

3.3 Folding the plane to the surface

Figure 3-4: An example folded structure to approximate the sphere.

Instead of mapping the surface of the sphere down to a plane, it might be pos-

sible to instead wrap the imaging surface around the sphere. While it would be

very difficult to print or transmit to a spherical surface, it would be plausible to

approximate the sphere with a number of folded, planar surfaces. Triangulating the

hemisphere could yield quite a good approximation, even with only some small num-

ber of surfaces. As long as the normal distance between the surface of the sphere

and the imaging plane is small, the spherical aberration observed will remain negli-



gible. However, encoding graphics for such a surface proves nontrivial and was not

pursued. While this paper will not continue to examine this specific implementation,

it is presented here as the most reasonable solution to the mapping problem.



Chapter 4

Encoding graphics

Suppose a multidimensional display of the proposed specifications were successfully

built. This chapter attempts to propose an algorithm for encoding multidimensional

graphics for the display. Encoding methods for a spherical lens system mapped to

a plane will be considered, while the proposed spherical lens system mapped to the

folded approximated spherical surface will not. For examples of fully encoded images

for the fabricated displays, refer to Appendix C.

4.1 The planar solution

For the planar solution, each pixel can be considered separately. The algorithm given

essentially acts like a fisheye lens to incoming light, mapping the entire hemisphere

of light information to a circle on the plane. Assuming an ideal mapping from the

back surface of a spherical lens to a plane, the encoding of multidimensional display

information can be readily calculated. Consider a single point (xo, Yo, zo) in three

dimensional space that is to be projected onto a single spherical pixel located at



(xp, yp, 0) (let the pixel array lie in the plane z = 0). The projection of this three

dimensional point can be expressed in terms of two angular parameters 0 and a along

with the known radius of the sphere and coordinates of the pixel.

r r /\z

(x,,y,) (x,,y,) x

\ (x0,y,zo)

Top View Side View

Figure 4-1: Geometry of graphics projection calculations.

0 = atan2(y - yo, xp - x0 ) (4.1)

a = arctan - (4.2)

In this case, 0 is calculated using the function atan2 which is the two argument

version of the inverse tangent which returns the angle in the correct quadrant. The

projected off-axis distance L is the radius of the pixel projected onto the plane from

an offset angle a, thus,



L = r cosa (4.3)

and the projected point corresponds to the x and y coordinates:

(x', y') = (xp + L cos O, yp + L sin O) (4.4)

4.2 Out of the frame

Such a multidimensional display does not have to be confined to projection into the

frame. Instead, one might just as easily create the illusion of a three dimensional

object extending out of the frame. In order to accomplish this task for three dimen-

sional data points with zo > 0, it must be recognized that the data point is closer to

the upper hemisphere of the pixel, thus the point on the imaging surface is directly

opposite on the sphere. This is equivalent to saying that when zo > 0, 0 increases

by 7r, or in other words, L becomes negative.

4.3 Front/Back sorting algorithm

When inputing large amounts of three dimensional data points connected to make

complex surfaces, it then becomes necessary to adopt some sort of algorithm to throw

out data points that reside behind other data points. A brute force algorithm can

be adopted. First calculate the vector vi between each data point and the pixel.

Compare each pair of data points. If the dot product between to data vectors is

less then some small finite tolerance v, then throw out the data point with larger

magnitude vil. In this way, only the data points in direct line of sight to the pixel

in question will be considered.



Chapter 5

Experimental Results

For a bench level confirmation of the preceding theory, cursory multidimensional

displays were made using 1/8" acrylic spheres. Since acrylic has an index of refraction

less than the ideal calculated in Chapter 2, it should be expected that the spherical

aberration will be larger and magnification of the encoded image to be smaller than

in the ideal case. The first fabricated array was rectangular composed of a 13 x 13

grid of spheres. An outline stencil for the balls was laser printed from clear 1/8"

acrylic in addition to 1/16" front and back casings to contain the balls.

Acrylic spheres were aligned within the acrylic stencil. In actuality, this packing

proved difficult as spheres do not naturally pack into a rectangular grid. The encoded

image was aligned in direct contact with the spherical lenses so as to minimize the

spherical aberration due to air between the lens and encoded image. This was a first

order model to test the viability of using spherical lenses, so no method was used

to map the surface of the spherical lenses down to the plane. This approximation

proved extremely accurate for angles within 150, though deviated from the calculated

at higher angles.



Figure 5-1: 13x13 Rectangular spherical pixel array

Due to the unnecessary difficulty in packing spheres along a rectangular grid, a

hexagonal grid was adopted for subsequent displays. A hexagonal grid also yields the

largest possible spatial density of in plane spheres thereby increasing our perceived

two dimensional planar resolution. For the first hexagonal array, a side length of 8

pixels was used to yield the same number of pixels used for the 13 x 13 rectangular

array. The number of pixels h, in a hexagonal array with side length n can be given

by the recursive formula,

hi = 1 (5.1)
h,= hn- 1 + 6(n - 1)

For the small hexagonal display, 1/8" glass spheres were used with an index

of refraction slightly higher than that of acrylic. In addition to the image being

much crisper than the acrylic, the higher index of refraction yielded a higher overall



Figure 5-2: Small hexagonal spherical pixel array, 8 pixels on a side

magnification, translating a smaller area on the imaging sphere surface to the upper

projection surface.

Lastly, a much larger hexagonal array was built using 16 spherical pixels on a

side. While the two previous displays only required 169 each, this larger display

required 721. Here, the projected four color ball image was made twice as large as

the previous images. As such, equivalent points on this image were set twice as far

back as in the smaller hexagonal display.

Here, the desirability of having a very tight focal point as discussed in Chapter

2 was observed; for larger imaging distances from the pixel plane, larger blur was

experienced by the viewer. This is consistent with our theory, as some measure of

blur 3 must be proportional to sin cmax where emax is the maximum positive angular

error over the surface as defined in Equation 2.3. For the case of Liineburg's Lens,

Emax = 0, thus no blurring effect would be observed.



As was mentioned in Chapter 5, for the produced displays, the lower surface of the

spherical lens was not mapped to the plane. The error for this approximation can be
readily seen in Figure 5-3. As the angle of viewing incidence increases, the projected

image breaks down. As can be seen in c), the observer begins to observe the black

line boundary between pixel images, while at even higher viewing angles shown in
d), the observer begins to see the image of the adjacent sphere image creating a kind

of reflection of the original image.

Figure 5-3: Large hexagonal spherical pixel array viewed from a) directly above, b)
approximately 150 off axis, c) 30' off axis, and d) 45' off axis.



Chapter 6

Conclusion

Theoretically, a multidimensional display could be constructed from ideal multi-

pixels. These multi-pixels would be composed of two components: a Liineburg's lens

to focus incident light to a point on the opposite side of the sphere, and an encoded

image printed on a hemispherical surface. In reality both of these two components

are very difficult to make. Thus approximations can be made.

For the first component, spheres of uniform index of refraction can be utilized

instead of a gradient-index lens. The ideal index of refraction to minimize the total

weighted squared angular error of the incident light is 1.722, very close to that of

the material sapphire along with other specialty glasses. The limitations due to this

approximation are that there will be an intrinsic blur associated with displaying

three dimensional data at large distances from the lens plane. However, this error

may become negligible when pixel sizes decreases and the angular blur approaches

the possible printable resolution of the projected image.

For the second component, the hemispherical surface can be approximated using

a folded set of planar surfaces that approximate the sphere. The encoded image could



be printed on a pattern of the unfolded surface, then subsequently folded up. Alter-

natively, further approximations could be made by mapping the back surface of the

spherical lens to a plane using fiber optics of the mineral ulexite. This approximation

would limit the viewable angle allowable for such a display.

Thus there is mathematical basis for both exact and approximated multi-pixels

that can map the two angular parameters of incident angular light to a finite two

dimensional image surface. The existence of such a pixel makes the applications of

multidimensional dimensional display and invisibility optically feasible undertakings.

Further research would be needed to verify the plausibility of the amount of data

manipulation and real-time distribution of light information that would be involved

for the case of invisibility.



Appendix A

Optimal index of refraction

calculation

A MATLAB script to study index of refraction for spherical lenses.

close all; clear all

YEpsilon function definition

Epsilon=O(theta,n) (2*asin(sin(theta)/n)-theta);

%Omega function definiton

Omega=O(theta,n) (((2*asin(sin(theta)/n)-theta).*cos(theta)).^2.*sin(theta));

%Tau function definition

Tau=O(n) (quad((M(theta) (((2*asin(sin(theta)/n)-theta).acos(theta)).-2.*sin(theta))),0,pi/2))

%Counters

n=1000; index=1l:/n*2:3;

theta=0:1/n*pi/2:pi/2;

% Figure 1: Tau vs. index of refraction

figure(l); hold on

for j=l:n+l

out(j)=Tau(index(j));

end

plot(index,out,'-b')

[m,i]=min(out);

% Optimal index of refraction



optl0R=index(i)

plot([optIOR,optIOR],[0O,max(out)],'-k')

xlabel('Index of Refraction (n)'); ylabel('Tau [m^21')

%Figure 2: Epsilon vs. Theta

figure(2); hold on

for j=l:n+l

out(j)=Epsilon(theta(j),index(i));

end

plot(theta*180/pi,out*180/pi, '-k')

M(1)=max(out); plot([0,90],[0,O],'-k')

for j=l:n+l

out(j)=Epsilon(theta(j),1.77);

end

M(2)=max(out); plot(theta*180/pi,out*180/pi,'-r')

for j=l:n+l

out(j)=Epsilon(theta(j),1i.85);

end

M(3)=max(out); plot(theta*180/pi,out*180/pi,'-g')

for j=l:n+l

out(j)=Epsilon(theta(j),1.55);

end

M(4)=max(out); plot(theta*180/pi,out*180/pi,'-b')

for j=l:n+l

out(j)=Epsilon(theta(j),1.65);

end

M(5)=max(out); plot(theta*180/pi,out*180/pi, '-m')

xlabel('Theta [deg]'); ylabel('Epsilon [deg]')

D(1)=fsolve(@(theta) Epsilon(theta,index(i)),pi/2);

D(2)=fsolve(@(theta) Epsilon(theta,l.77),pi/2);

D(3)=fsolve(@(theta) Epsilon(theta,1.85),pi/2);

D(4)=fsolve(@(theta) Epsilon(theta,1.55),pi/2);

D(5)=fsolve(@(theta) Epsilon(theta,l.65),pi/2);

%M(i) is the largest angular error

%D(i) is the theta at which the angular error becomes negative

%Figure 3: Omega vs. Theta

figure(3); hold on

for j=l:n+l



out(j)=Omega(theta(j),index(i));

end

plot(theta*180/pi,out*180/pi,'-k')

for j=l:n+1

out(j)=Omega(theta(j),1.77);

end

plot(theta*180/pi,out*180/pi,'-r')

for j=l:n+l

out(j)=Omega(theta(j),1.85);

end

plot(theta*180/pi,out*180/pi,'-g')

for j=l:n+l

out(j)=Omega(theta(j),1.55);

end

plot(theta*180/pi,out*180/pi,'-b')

for j=l:n+l

out(j)=Omega(theta(j),1.65);

end

plot(theta*180/pi,out*180/pi,'-m')

xlabel('Theta [deg]'); ylabel('Omega [deg^2]')

% Figure 4: Projected Areas

figure(4); hold on

axis equal; axis off

theta=0:l/n*2*pi:2*pi;

r=1; plot(r*sin(theta),r*cos(theta),'-k')

r=cos(pi/2-D(1)); plot(r*sin(theta),r*cos(theta),'-k')

r=cos(pi/2-D(2)); plot(r*sin(theta),r*cos(theta),'-r')

r=cos(pi/2-D(3)); plot(r*sin(theta),r*cos(theta),'-g')

r=cos(pi/2-D(4)); plot(r*sin(theta),r*cos(theta),'-b')

r=cos(pi/2-D(5)); plot(r*sin(theta),r*cos(theta), '-m')

r=cos(pi/2+M(1)); plot(r*sin(theta),r*cos(theta),'-k')

r=cos(pi/2+M(2)); plot(r*sin(theta),r*cos(theta),'-r')

r=cos(pi/2+M(3)); plot(r*sin(theta),r*cos(theta),'-g')

r=cos(pi/2+M(4)); plot(r*sin(theta),r*cos(theta),'-b')

r=cos(pi/2+M(5)); plot(r*sin(theta),r*cos(theta),'-m')



Appendix B

Multidimensional image encoding

A set of MATLAB scripts and functions encode three dimensional images.

B.1 Main Script

close all; clear all; figure(i); axis equal; axis off; hold on
Y, - - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - - - -

n=8; % pixel array parameter

pD = 0.125; X pixel diameter in inches

pR = pD/2; % pixel radius in inches

bD = 1; % ball diameter in inches

bR = bD/2; X ball radius in inches

bH = -1.5*bR; X distance between the screen and the ball center

Expts,ypts,k]=pixH(n,pD); X Calculate pixel locations (Hex)
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

p=le2;

q=(0: 1 :p)/p*2*pi;

t=0.5;

grey=[0.3 0.3 0.3];

% number of points per object

% map points between 0 and 2*pi

% line thickness for graphs

X grey color RGB



% graph bounding box with width of (width+pD) and height of (height+pD)

% centered on the origin (fill black)

% graph the circular pixel boundries (fill black)

for i=l:k

x=xpts(i)+pD/2*cos(q);

y=ypts(i)+pD/2*sin(q);

fill(x,y, 'w');

end

% -------------------------------------------------------

X draw objects

%define surface (full sphere)

for i=1:k

p=le2; % number of points per object

[fillx,filly,fillzl=fullSphere(bD,bH,p);

T=sqrt(xpts(i)^2+ypts(i)^2+bH-2-bR^2); % define acceptance limit

[xplot,yplot]=angles4(fillx,filly,fillz,xpts(i),ypts(i),pR,T);

h=convhull(xplot,yplot);

xplot=xplot(h);

yplot=yplot(h);

plot(xplot,yplot,'Color','k');

end

for count=1:4

% define surface (quarter sphere)

p=le2/2; % number of points per object

[fillx,filly,fillz]=quartSphere(bD,bH,count,p);

% map object to pixel and plot



for i=l:k

T=sqrt(xpts(i)^2+ypts(i)^2+bH^2-bR^2); % define acceptance limit

% project object onto pixel

[xplot,yplot]=angles4(fillx,filly,fillz,xpts(i),ypts(i),pR,T);

X draw projection in different colors

if count==l

fill(xplot,yplot,[1 0 0],'LineStyle','none');

else if count==2

fill(xplot,yplot,[l 1 0],'LineStyle','none');

else if count==3

fill(xplot,yplot, [O 0 11,'LineStyle','none');

else

fill(xplot,yplot, [0 1 0],'LineStyle','none');

end

end

end

end

end

B.2 Function array4: Mapping Data to Imaging

Plane

function [xnew,ynew] = angles4(xpts,ypts,zpts,x,y,pR,1)

k=[];

theta=atan((y-ypts)./(x-xpts));

for i=l:length(xpts)

if xpts(i)-x<=0

theta(i)=theta(i)+pi;

end

if sqrt((xpts(i)-x)^2+(ypts(i)-y)-2+zpts(i)-2)<=l && zpts(i)<=0



k= [k i];

end

if sqrt((xpts(i)-x)^2+(ypts(i)-y)^2+zpts(i) 2)>=l && zpts(i)>=O

k=[k i];

end

end

alpha=atan(zpts./sqrt((xpts-x).^2+(ypts-y).-2));

for i=l:length(xpts)

if zpts(i)>=0

alpha(i)=alpha(i)+pi;

end

end

1=pR.*cos (alpha);

xnew=x+l.*cos(theta);

ynew=y+l. *sin (theta);

xnew=xnew(k);

ynew=ynew(k);

B.3 Function pixH: Hexagonal Grid Layout

function [xpts,ypts,k]=pixH(n,pD)

k=hexn(n);

xpts=zeros(1,k);

ypts=zeros(1,k);

a=0;

for i=l:n

for j=l:(n+i-1)

ypts(i,a+j)=pD*(n-i)*sqrt(3)/2;

ypts(l,end+1-a-j)=-ypts(1,a+j);

xpts(1,a+j)=pD*(n+i-2)*(j-i)/(n+i-2)-pD*(n+i-2)/2;

xpts(1,end+l-a-j)=-xpts(i,a+j);

end

a=a+(n+i-1);

end



Appendix C

Encoded Arrays

Test graphics encoding was done for three different arrays, a rectangular array 13

x 13 pixels and two hexagonal arrays with side length 8 and 16 respectively. An

inset ball in four colors was used as a test model and was modeled using a variety of

depths. Given a 1/8" pixel size, the ball was typically made to be 1" in diameter,

2" for the large hexagonal grid.



Figure C-l: Encoded image of inset sphere

for rectangular grid, center one radius

from the viewing plane.

Figure C-2: Encoded image of inset sphere

for rectangular grid, center one and a half

radiuses from the viewing plane.

Figure C-3: Encoded image of inset sphere for a small hexagonal grid with center

one and a half radii from the viewing plane.



Figure C-4: Encoded image of inset sphere for a large hexagonal grid with center
one and a half radii from the viewing plane.
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