
Adaptive Swing-up and Balancing

Control of Acrobot Systems

by

Luke B. Johnson

Submitted to the Department of

Mechanical Engineering in Partial

Fulfillment of the Requirements for the

Degree of Bachelor of Science at the

Massachusetts Institute of Technology

June 2009

@ 2009 Massachusetts Institute of Technology

All rights reserved

MASSACHUSETTS INSTITUTE
OFTECHNOLOGY

SEP 1 6 2009

LIBRARIES

ARCHIVES

Signature of Author

Department of Mechanical Engineering

May 11, 2009/4 /3/

Certified by

John J. Leonard

Professor of Mechanical Engineering

- esis Supervisor

Accepted by

Professor J. Lienhard V

Collins Professor of Mechanical Engineering

Chairman, Undergraduate Thesis Committee

Adaptive Swing-up and Balancing
Control of Acrobot Systems

by

Luke B. Johnson

Submitted to the Department of Mechanical Engineering
on May 11, 2009 in Partial Fulfillment of the

Requirements for the Degree of Bachelors of Science in
Mechanical Engineering

Abstract

The field of underactuated robotics has become the core of agile mobile robotics research.
Significant past effort has been put into understanding the swing-up control of the
acrobot system. This thesis implements an online, adaptive swing-up and balancing
controller with no previous knowledge of the system's mass or geometric parameters. A
least squares method is used to identify the 5 parameters necessary to completely
characterize acrobot dynamics. Swing up is accomplished using partial feedback
linearization and a pump up strategy to add energy to the system. The controller then
catches the swung up system in the basin of attraction of an LQR controller computed
using the estimated parameter values generated from online system identification. These
results are then simulated using a MATLAB simulation environment.

Thesis Supervisor: John J. Leonard
Title: Professor of Mechanical Engineering

Introduction

Adaptive algorithms have been extensively successful in industrial applications

where arm mass parameters undoubtedly change when interacting with their

environments. This interaction forces control algorithms to adapt to these changes and

continuously update their estimated model of the system. The basic idea behind all types

of adaptive control is to create a skeleton model with some unknown parameters a m that

combine with some measureable quantities f, and y to form constraint equations. A

linear version of this constraint is shown below as Equation 1

y = a, f (q) + a2f,(q) + ... + am fm (q)" ()

Any number of update laws can be used to estimate the unknown parameters a m, and

given sufficiently diverse set of fm 's we can obtain an arbitrarily precise estimate of the

system's true dynamics.

There are a couple different "flavors" of adaptive control algorithms. This paper

specifically uses the model known as a self tuning controller. A block diagram of this

model is shown in Figure 1 below.

Control
Input Measurements

Controller Plant

Estimator

Figure 1: Block diagram of a self tuning controller, where i is defined as a vector of

the current best estimate of the system parameters

In the figure above the "controller" is the law that defines the control input, the "plant" is

the unchangeable system dynamics, the output of the plant is what is measurable, the

control input is the output of the controller, and both the measurements and the control

input are passed into an "estimator" that produces a vector of the current best guess of the

parameters, a.

The industrial implementation of adaptive control is slightly different because

control engineers are often interested in following specified trajectories for arms with

unknown parameters. This gives rise to a particularly elegant form of adaptive control

call Model-Reference Adaptive Control [1]. This implementation uses linear feedback

around the desired trajectory and generally leads to very fast convergence and excellent

performance. Unfortunately this method is not quite adequate to handle underactuated

robotics as it is defined. By the definition of underactuated systems, certain desired

accelerations are simply unattainable (in the acrobot case this is because there is no

actuator on one of the joints.) The controller in underactuated cases is more usually

concerned with reaching goals. The case study presented in this paper is specifically

attempting to swing up the acrobot and balance in the unstable vertical position. The

problem with doing simple trajectory planning is that we may not know ahead of time

what type of trajectories are possible, given the actuator limits. Thus we are left using the

slightly less profound self tuning model of adaptive control.

Why the acrobot?

Up until this point I have been generic about talking about "underactuated

systems." This thesis focuses on the case study of an acrobot system. The reasons behind

choosing this system are not completely arbitrary. 1) The acrobot has been extensively

studied and therefore there is extensive previous literature on the problem. 2) Part of the

convenient nature of the acrobot system is that it has a constrained state space on position.

An unstable acrobot system when system id is poor will not drive itself around the room

while learning to swing up like a cart-pole system might have to. 3) The acrobot system

is easy to reset after a failed attempt, a controller of virtual damping between links 1 and

2 will bring the system back to its stable equilibrium.

As was mentioned above, the swing up control of the acrobot has been

extensively explored. In [2], Spong outlines a swing up controller using already known

mass parameters. The method presented in Spong's paper for swing up is what this paper

uses as a base for its swing up controller. As will be explained later in the paper, this

choice was most likely not ideal for the purposes of this problem. The method as Spong

proposed it assumed a strict system identification before the controller will run. In [3]

calibration is addressed using an Unscented Kalman filter to obtain system parameters,

but it too is run offline ahead of time, in order to guarantee strict error tolerances on the

system parameters before the swing up attempt was run. One note about this paper is they

use a relatively new Lyaponov based scheduling procedure for the balancing controller

that may have solved some of the swing up to LQR switching instability that was

incurred under this paper's implementation.

Experimental Setup

The entire system was simulated in a MATLAB environment. Figure 2 below

outlines the geometry of the acrobot arm as well as the relevant system parameters.

1, \ q2 -0

4-I

mi

Figure 2: geometry of the acrobot arm as well as the relevant system parameters

As seen in the figure above, qi is the angle of the ith link, mi is the mass of the ith link,

1i is the length of the ith link, 1,i is the length from the base joint of link i to the center of

mass of length i, 1i is the moment of inertia of the ith link about the center of mass, and

010 q1

r is the input torque applied. The equations of motion of the system are listed below as

Equations 2 and 3 and are also verified in [2]:

dl lql + dl1 q2 + h1 + 0 = 0, (2)

d1 241 + d2q2 + h2 + 2 = 'r (3)

In these equations ij, is the second derivative of the ith angular measurement. The other

constants used in Equations 2 and 3 are defined in Equations 4-10

dl, = m,1(+ m 2 (1 + 1,2 2 + 21,1, 2 cos(q2))+ I 12 (4)

d22 = 21 22 + 1" (5)

dl 2 = 2 (2 + 11 c2 cos(q 2)) + I1 (6)

h, = -m1 1l,. 2 sin(q)c) - 2m2 1l. 2 sin(q 2)q2q1 (7)

h2 = m 211,.2 sin(q 2)A' (8)

0 = (m1 ,1 + m2l1)g cos(q) + m,1(.2g cos(q + q2) (9)

2 = m 212 g cos(q, + q 2) (10)

where g is the acceleration due to gravity, and), is the first derivative of the angular

position of the ith link.

The system is modeled as a continuous time system integrated with MATLAB's

ode45 implementation of Runga Kutta 4. The input torque is modeled as a continuous

input that is held constant during each sampling interval to help simulate how a physical

system would be controlled. The values for the simulation constants are shown below in

Table 1.

Table 1: values of simulation constants with their associated units

mi 1.0 (kg)

m2 1.0 (kg)

11 1.0 (m)

12 1.0 (m)

Ici 0.5 (m)

IC2 0.5 (m)

I1 0.2 (kg*m 2)

12 1.0 (kg*m 2)

g 9.8 (m/s)

dt 0.01 (s)

Max torque 5.0 (Nm)

In this simulation, q , 1 , q2 2 are assumed to be measureable and are treated as a the

complete set of state variables. If these quantities were not measurable we would have to

create an estimator. If this were the case it might be easiest to use an Unscented Kalman

Filter such as in [3], to perform both the state estimation and parameter estimation. For

the purposes of this paper this was assumed to be too complicated and thus the fully

observable assumption was maintained.

Swing up implementation

The design purpose of the swing up controller is to move the acrobot system into

a state contained within the basin of attraction of the LQR controller for successful

balancing. In order to decrease the complexity of the swing up controller we use partial

feedback linearization (PFL) on link 2 in or order to decouple the influence of link 1 on

link 2's dynamics. This derivation is shown in [2] but an abridged version is shown here

for completeness. If we rearrange Equation 2 we obtain Equation 11 shown as

41= -d I (d2q, +h, + 1), (11)

Equation 11 can then be substituted into Equation 3 to produce Equation 12,

dzzq2 + h, + 02 = , (12)

where d 22 , h, 02 are defined in Equations 12-15 as

d 2 =d 22 - d21 - d-'d1 , (13)

h2 = h2 - d 1d d'h, (14)

02 = 2 - d 2 1d 1 . (15)

This is a convenient form for implementing PFL because with the assumption that we

have sufficiently large torque allowances, we can define the input r in Equation 12 as

Equation 16,

S= d,,v, + h, + , (16)

where v2 is the desired link 2 angular acceleration. This completely decouples the actions

of link 1 with link 2. (Note the actions of link 2 still influence link 1 but not vice-versa)

This result in illustrated in the Equations 17 and 18 below as

d,1lq + h, + 01 = -d1 2v 2 , (17)

2 v2". (18)

It is notable that although the motions on link 1 do not affect link 2 with this

control strategy (all the inertial coupling is canceled out through the PFL), the control

input v2 does and must affect the motion of link 1. It is this inertial coupling that we use

to swing up the acrobot, all the while maintaining complete control authority of12 . After

this PFL we must decide what control input we do want to implement such that q, swings

up, while keeping q2 under control. [2] proposes the following desired trajectory of link

2, as shown in Equation 19

2a
q = - tan (c), (19)

What this desired trajectory effectively does is smoothly keep q2 between the angles of

+a . More importantly, the net torque required to follow this desired input forces energy

into the system (this is only necessarily true if there is sufficient torque to hold the PFL

constraints.) This way of pumping energy into the system turns out to be both convenient

and troublesome as will be described later in the paper. The controller to obtain this

desired trajectory is then a PD controller as shown in Equation 20,

v2 = k,, (q" - q2) - kd,2 , (20)

where k, is the proportional gain and kd is the derivative gain. If the arm parameters

where known a priori, a method such as stochastic gradient descent could be used to tune

these gains for optimal performance. Since the controller needs to adapt to a wide range

of arm parameters, they are kept constant. The parameters used in this simulation are

shown in table 2 below

Table 2: swing up simulation parameters

k, 400

kd 10

U 0.75

Adaptation techniques

As has been mentioned above there are many ways to perform online system

identification. The method that was used in this implementation is least squares

estimation. The final implementation combines a batch least squares method when the

input is non-rich, with a recursive update that takes over when the input is sufficiently

rich to effectively update every time step. The initial batch data was necessary to give

legitimate initial conditions to the recursive least squares (RLS) algorithm. For non-rich

data, the RLS algorithm was converging to significantly wrong local minima when

random initial conditions were given. In order to frame the dynamic equations to be

compatible with least squares estimation, the state equations were parameterized using 5

variables as shown below in Equations 21-25 as:

a1 = m212 +mzl + mlc + 1I + 12 (21)

a2 = mzll1, 2 (22)

a3 = m2 22 (23)

a4 = (m1l,1. + mzl)g (24)

a5 = m21,2g (25)

These 5 parameters are then plugged into Equations 2 and 3 and using the shorthand

defined in Equations 26-29 below

c12 = cos(q, + q2), (26)

C1 = cos(ql), (27)

c2 = cos(q 2), (28)

s2 = sin(q 2), (29)

the dynamic equations of the acrobot system become Equations 30 and 31,

alj1 + a2 (2c,2q + C2 2 -S - 2S2q42 + a 3 2 a4c + a 5c1 2 = 0, (30)

a, (0) + a2 (c2i1 + S2l) + a3(q 9 + 41) + a4 (0)+ a5c12 = r. (31)

These equations are not especially convenient to perform least squares on separately

because equation 31 especially gives rise to a notably insufficiently rich set of inputs

values to the least squares algorithm. In an attempt to resolve this, Equations 30 and 31

above are combined to create Equation 32,

a, 1q + a, (3c 2 1 + S2q2+ c2 2 - Sq4 - 2s 2q2 1)+
a3(2q, + ,)+a 4c1 +2ac 12 =r

(32)

a significantly more diverse input equation which also maintains the final linear form that

will be used in the least squares parameter estimation of a...a5. Equation 33 below

aiu1 + a 2u, +... + amm = y (33)

is the basic linear form required for least squares estimation. Our simulation environment

assumes q ,q1,q,,q2 are all known, so if we estimate q,1,q 2 as Equation 34 below

i (t)- 4 (t -1)(34)

Then we have all of the information to needed to compute the lease squares inputs u ...u5 .

The formula for least squares estimation then requires that we define a vector of

parameters as Equation 35 below

a = [al...am T , (35)

as well as a vector of inputs, shown as Equation 36

(36)

then we can rewrite Equation 33 in its companion vector form as Equation 37,

y = (pTa. (37)

From this form we can refer to the formula for Least Squares approximation batch

processing from [4] and this becomes Equation 38 below

a = PB (38)

where P is defined below as Equation 39

P = ((p(t)' (t)), (39)
t=1

and B is defined as Equation 40

N

B = , y(t)p(t).. (40)
t=1

This batch algorithm is very good a building up a P- matrix with sparse data (as it occurs

when the system is either near its relaxed vertical or is stabilizing at the top.) During

early swing up the parameters remain at their initial conditions as defined (all l's). The

algorithm decides when the determinant of the P matrix is greater than 1 to seed the RLS

algorithm with this batch computation.

The RLS algorithm creates a refined parameter estimate every time step. The

parameter update equation is shown below as Equation 40 is derived in [4]

a(t) = i(t -1)+ ((p (t)p y(t)- (t)(t-1)) (40)

This update also requires an update in P matrix as shown below as Equation 41 which is

also derived in [4]

P,_ ((t)(p T (t)p_lP, = P,_ (41)

The initial parameter estimates are the result of the batch estimate shown in Equation 42,

^(O) = PB (42)

The initial condition for P is just a 5x5 identity matrix.

Figure 3 below shows plots of estimated parameters (solid line) versus the true

value of the parameters (dotted line) with respect to time. As we can see from Figure 3,

the first fraction of a second is very chaotic with respect to the parameter estimates. This

corresponds to when the acrobot has just started moving and the least squares algorithm

has yet to measure a diverse enough set of inputs to warrant a precise measurement. In

well under a second we can see the estimated value of the parameters jump to somewhat

consistent values and slowly begin to converge to near their true values. Each of the

parameters converges to their true value within 5%. This is more than enough accuracy to

accurately perform PFL, and as we will see in Figure 4, this is good enough to suggest

complete convergence of the LQR controller.

4

3 ----

2

0 5 10 15 20 25

0.6

0.55
0.5

0.5 ------ -------- --

0.45

0 5 10 15 20 25

2

1.5

1

0 5 10 15 20 25

25

20

15

10

0 5 10 15 20 25

0 5 10 15 20 25
Time (s)

Figure 3: Plots of estimated parameter values versus true value of the parameter

values with respect to time. The dotted line represents the true parameter values

and the solid line represents the time history of the estimated parameter values.

A note about this method is that it will not handle time varying parameters well, but an

adaptation of the Recursive least squares method using a decaying exponential of

previous estimate can be used. The equations for this process are shown below as

Equations 43 and 44 and are documented in [4],

0,(t) = O(t - 1) + ((,T ((t) y(t)-'(t)(t 1 (43)

1 P + (t) (t)P1

P t (a +p ((t)p (44)

This exponential weighting method is not implemented but could be substituted if

the arm parameters are expected to vary in time continuously or in an undetectable way

such that we would need to autonomously pick up the change. It is worth note that this

method is slightly complicated by the nature that P decreases exponentially fast

depending on the value of 8. This requires a Pt resetting every 20 or so steps, so

complications may arise with resetting P matrices during a series of insufficiently rich

data collections. For these reasons this addition is not implemented in the final model.

LQR stabilization

The above swing up methods will only get the acrobot near its upright balancing

position. When the acrobot is close to stabilizing near the top an LQR method is used to

converge the system to balancing upright in the configuration q, = --. , q, = 0, q2 = 0,2

and)2 = 0. In order to create this LQR controller, the non-linear dynamics need to be

linearized around the upright position. To do this, we first change variables defining q, *

in Equation 45 below as

q* = q, (45)
2

The non-linear terms there then linearized. This means that all of the second order terms

are considered zero and the trigonometric functions are then converted via Equations 46

and 47 shown below

cos(q,) = -q, *

cos(q, + q2) = -[q 2 + ql*]

(46)

(47)

When the original non-linear equations (Equations 30 and 31) are linearized, we obtain

the following differential equations shown as Equations 48 and 49

(a3a 4 -a 2a 5)q *-a 2a 5q 2 - (a 3 + a2)zr
2 2

a1a3 - 3 a2

(aia5 + a2 a5 -a 3a4 -a 2 a4 -a 3a 5)q * +(ala5 + a 2a 5 -a 3 a5)q 2 (al + 2a 2) r
q2 2 2

a1 a 3 - a 3 - a 2

We can then define our state space as shown in Equation 50 as

q = (qj*,4 ,,q2, q2)

(48)

(49)

(50)

Then transforming the above differential equations into a state space representation we

get an equation shown below, Equation 51

(51)

Where the A matrix is defined in Equation 52,

0
(a 2a3 -a 2 a 5)

2 2
ala3 - a3 2

(aa 5, + a2 a 5 - a 3 a 4 -a 2a 4 -a 3a 5)

aa 3 -2

and the B matrix is defined in Equation 53 as

0 - a2 a 5
2 2

a1 3 - 3 - a 2

0 0
0 (a as +a 2a5 -a 3a5)

S2 2
a1 d3 -a 3 -a

(52)

4 = Aq + Br

0
- a 3a 2

2 2

B= a1a3 - 3 -a 2 (53)
0

(a + 2a 2)
2 2

a1a 3 -a 3 -a 2

The weighting matrices used for the optimization were based on those from [2], where

the Q weighting matrix is defined as Qw in Equation 54

1000 0 - 500 0

0 1000 0 - 500
Qw = (54)- 500 0 1000 0

0 -500 0 1000

and the R matrix is defined in Equation 55 as

Rw = 0.5. (55)

The Qw matrix penalizes deviations from the stabilization point as well as penalizing the

cross coupling terms of q, * q2 and c1t42 for being negative.

The actual implementation in code uses the MATLAB function lqrd which takes

the continuous time Equation 51 and transforms it into a discrete time function with the

simulation time step dt. This helps the optimal gains to be more successful because of the

discrete nature of the input update.

Figure 4 below shows a plot containing the error's of estimated parameters in

percent along the x versus the probability of convergence of the LQR controller on the y

axis; for statistical sample sizes of 30. What this chart effectively shows is that the LQR

gains work as if they were ideal until the estimated parameter value errors become about

6%. The data shown in figure 3 showed an estimated error of around 5% maintaining a

theoretical 100% probability of convergence on the LQR controller within its basin of

attraction even with the non-ideal parameter updates.

1

0.8 -

> .6

0.4

0.2 -

0II I

0 5 10 15 20

% error in estimated

parameters

Figure 4: Plot showing the errors of estimated parameters in percent along the x

versus the probability of convergence of the LQR controller; for a statistical sample

size of 30.

Results

The overall results of the effort were positive but there are definitely

optimizations that can be made with this approach and during the course of the project

some possible improved methods were revealed. As can be seen in the state trajectory of

Figures 5-8, the system is able to converge marginally well. It is pretty clear in the plots

that the LQR controller kicks in around 22 (s) and only requires some small corrections

to get the system onto a stabilization trajectory.

0 5 10 15 20 25 30

Time (s)

Figure 5: Trajectory of qi for a successful capture (time versus angular

displacement)

10 15

Time (s)

Figure 6: Time

versus angular

20 25 30

trajectory of the first derivative of qi for a successful capture (time

rate).

-0.4 -

-0.68
-0 . 8I I I

0 5 10 15 20 25 30

Time (s)

Figure 7: Time trajectory of qz for a successful capture (time versus angular

displacement.)

14

12

10

8

23Cl 4

0

-2

-4

-6
0 5 10 15 20 25 30

Time (s)

Figure 8: Time trajectory of the first derivative of q2 for

versus angular rate.)

a successful capture (time

In 32 of 180 trials from random initial conditions the entire system managed to swing up.

This is a 22% success rate which seems acceptable with the implemented modest torque

limits and now seemingly naive swing up controller.

Looking back over the project the parameter estimation worked very well, the

swing up controller worked well by itself and the LQR controller necessarily worked

given the initial conditions were within the basin of attraction of the discrete time, torque

limited system. The biggest hole in the approach was the transition between the swing up

controller and the LQR stabilizer. All that the swing up controller was trying to

accomplish was to continuously pump energy into the system. This only works well if the

controller pumps the correct amount of energy into the system such that it enters the

basin of attraction of the LQR system. The majority of the random initial condition trials

were plagued by a swing just under the energy of the LQR basin, followed by a swing

just over the energy of the LQR basin. Giving the swing up controller more knowledge of

its goal once it was close would have been a huge improvement here.

It still seems prudent to use this swing up controller when the acrobot is beginning

to swing up because this is when parameter estimates are poor and energy based swing up

methods would be prone to getting stuck in in-escapable loops near the stable equilibrium

state.

Another thing that would have made the problem easier but less interesting would

be to allow much higher torques in the LQR controller. With sufficient torque an LQR

controller can even power its way through a non-linear region to balance. An attempt that

I used to find a basin of attraction of the LQR controller was to store the entrance state

into the LQR stabilizer for both the cases when the system failed and when it managed to

converge well. Using a least squares parameter estimation technique similar to the one

used to estimate the dynamic parameters I was able to obtain the following Equations 56

and 57 for if the system was in the basin of attraction of the LQR controller

all((q,*, 4,, q 2, 2)< 0.4) (56)

isBasin = round(sign(q, *)(q, *, 4, q2 q2)(.32,-.55,-.35,-. 19)') (57)

Given a large number of trials this method would never give any false positives, and

would only give false negatives around 30% of the time. Unfortunately, the swing up

controller would almost never get the system into the regime required for these

convergence criteria.

Conclusion

This thesis implements an online, adaptive swing-up and balancing controller

with no previous knowledge of the system's mass or geometric parameters. A least

squares method then successfully identifies the 5 parameters necessary to completely

characterize acrobot dynamics. Swing up is accomplished using partial feedback

linearization and a pump up strategy to add energy to the system. The controller then

22% of the time catches the swung up system in the basin of attraction of an LQR

controller computed using the estimated parameter values generated from the online

system identification.

References

[1] Slotine, J., Li, W., Applied Nonlinear Control, Prentice-Hall, Inc., New Jersey, 1991
[2] Spong, M.W., "Swing Up Control of the Acrobot," 1994 IEEE Int. Conf
on Robotics and Automation, pp. 2356-2361, San Diego, CA, May, 1994.
[3] Araki, N.; Okada, M.; Konishi, Y.; Ishigaki, and H.;. "Parameter identification and
swing-up control of an acrobot system." International Conference on International
Technology, 2005.
[4] Asada, H. "2.160 Identification, Estimation, and Learning: Lecture Notes No. 2:
February 9, 2009". Department of Mechanical Engineering, MIT 2009

