
Compass SPMD: a SPMD vectorized tracking algorithm

Placido Fernandez Declara1,2,∗ and J. Daniel Garcia2 on behalf the RTA LHCb project.
1EP-LBC, CERN, 1211–Geneve 23, Switzerland
2Department of Computer Science and Engineering, University Carlos III of Madrid, Madrid, Spain

Abstract. Compass is a SPMD (Single Program Multiple Data) tracking algo-
rithm for the upcoming LHCb upgrade in 2021. 40 Tb/s need to be processed
in real-time to select events. Alternative frameworks, algorithms and architec-
tures are being tested to cope with the deluge of data. Allen is a research and
development project aiming to run the full HLT1 (High Level Trigger) on GPUs
(Graphics Processing Units). Allen’s architecture focuses on data-oriented lay-
out and algorithms to better exploit parallel architectures. GPUs already proved
to exploit the framework efficiently with the algorithms developed for Allen,
implemented and optimized for GPU architectures. We explore opportunities
for the SIMD (Single Instruction Multiple Data) paradigm in CPUs through
the Compass algorithm. We use the Intel SPMD Program Compiler (ISPC) to
achieve good readability, maintainability and performance writing "GPU-like"
source code, preserving the main design of the algorithm.

1 Introduction

LHCb is one of the large four experiments in the LHC at CERN. From 2019 it started an
upgrade of its components and software for the physics data-taking period that will start in
2021. Its software will need to compute a collision rate of 30 MHz which generates a data
throughput of 40 Tb/s that needs to processed in real-time [1]. As a novelty its event filter
farm will be powered solely by general purpose computing resources: a software trigger. The
software trigger source code is being updated to cope with the increased throughput rate, as
an increased compute power is needed to better exploit the hardware. As part of it, various
hardware alternatives are being considered, with multi- and many-core CPUs, co-processors
and accelerators included.

2 UT tracking

The Compass algorithm computes the tracking for the UT (Upstream Tracker) sub-detector.
UT tracking receives input data from the VELO (Vertex Locator) as reconstructed tracks, and
hit information from the UT. The UT is located between the VELO and SciFi tracking sub-
detectors as depicted in Figure 1, which shows the tracking subdetectors and associated track
types.

It is composed by four planes, where each plane is a single sided silicon strip detector.
Each UT plane is composed of micro-strip sensors arranged in vertical staves. A UT plane
∗e-mail: placido.fernandez@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 01006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501006



X

Z

VELO UT

SciFi

Tracker

Magnet

VELO track

Upstream track

Downstream track

Long track

Figure 1. UT tracking subdetectors and tracks

can be divided into three regions with different geometry, where the inner-most region has
a finer granularity. Tracks that traverse the UT can be slightly bent by the magnetic field,
which poses a computing multiplicity problem to match VELO tracks to UT hit candidates
for every event, as shown in Figure 2.

VELO: 
Vertex Locator

UT: 
4-layer tracking station in front 

of magnet

VELO+UT Track Extrapolations

X

Z

Figure 2. UT tracks extrapolation

2

EPJ Web of Conferences 245, 01006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501006



1 typedef float<3> float3;
2

3 export void chi2_ispc (
4 uniform const size_t N, uniform float chi2 [],
5 uniform float3 x [], uniform float3 y [],
6 uniform const float m, uniform const float q) {
7 foreach(i = 0 ... N) {
8 varying float3 expected_y = m * x[i] + q;
9 chi2[i] = (y[i].x - expected_y.x) + (y[i].x - expected_y.x) +

10 (y[i].y - expected_y.y) + (y[i].y - expected_y.y) +
11 (y[i].z - expected_y.z) + (y[i].z - expected_y.z);
12 }
13 }

Listing .1: ISPC source code sample

UT serves various purposes in the LHCb experiment, being the main ones: reconstructing
charged particle trajectory that decay after the VELO sub-detector, reconstructing low mo-
mentum particles that are bent by the magnetic field and go out of acceptance before reaching
the SciFi tracker, providing additional hit information used in conjunction with VELO and
SciFi sub-detectors to reject tracks, providing momentum resolution for charged particles and
decreasing the time needed to extrapolate VELO tracks to SciFi tracker by at least a factor
three.

3 SPMD and ISPC

Allen’s framework design allows the chain of algorithms that computes the full HLT1 to
compile for both GPU and CPU architectures [2]. Allen is designed and optimized for GPUs;
compilation for CPUs in Allen supports basic multithreading and does not vectorize the algo-
rithms. The same target source code in Allen is able to exploit all threads in a GPUs through
its warps1 in an efficient manner, but when compiled for CPUs these won’t map to vector
lanes and the vectorization units will be underutilized. Explicit support in the form of vector
instructions, intermediate libraries or directives is needed to exploit these resources.

The Intel SPMD Program Compiler (ISPC) [3] uses a variant of the C language to write
sequential-like algorithms, but its execution model executes various program instances that
run in parallel through the vector lanes. It presents an alternative way to exploit vectorization
units by writing algorithms in a similar way as for GPUs. When implementing an ISPC
program the variables that will run with different values across the vector lanes are explicitly
indicated through the keywords uniform and variant, allowing the compiler to reason about
the source code and produced a vectorized version. ISPC includes other constructs that allow
to compute efficiently with the SPMD model. An ISPC example is depicted in Figure .1 which
shows what appears to be a C language program with extra reserved words. In this example,
input variables are marked as uniform to indicate that these will hold the same value for all
the vector lanes. The foreach construct indicates a parallel loop that will compute a different
result for the variable expected_y and populate the chi2 array with different values for each
vector lane.

A key concept to ISPC are gangs. These are analogous to warps in the CUDA language,
and are a group of program instances that run in parallel through the vector lanes. As shown
in Figure 3 the way a gang interprets variables differs from it being uniform or varying. For

1A warp is a group of 32 threads that run the same instruction.

3

EPJ Web of Conferences 245, 01006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501006



Figure 3. ISPC gangs

varying variables a gang will apply operations with the vector instructions for all the elements
in parallel. This applies to control flow elements like an if, where if an element of the gang
does not meet the condition it is masked to not take the result into account, even if it will be
computed. ISPC adds a series of special constructs for control flow like foreach, foreach_tiled
or cif among others. It is interoperable with C/C++ which allows to compile an algorithm
with ISPC and use it with a C/C++ regular source code. It features compilation for SSE2,
SSE4, AVX, AVX1, AVX2, AVX-512 and NEON instruction sets.

4 SPMD Compass tracking

The Compass algorithm is optimized for GPUs [4]. For this algorithm to run in a different
architecture all GPU-specific optimizations need to be removed. Compass utilizes shared
memory to cache hits that indicate the search windows used to find compatible hits. As CPU
cache memory is not manually managed this optimization is removed and the main memory
is used instead; hits are directly accessed as they are stored and the CPU will cache them. The
ISPC compiler supports C language features with some extra extensions for the vectorization
support, but C++ features are not supported. All C++ features used in the original algorithm
are changed to be supported for the ISPC compiler, such as template metaprogramming used
for various methods and types are specifically implemented for all the necessary cases that the
templates were generating. Memory barriers used in the GPU to synchronize running threads
and guarantee correct execution in parallel are not needed for the Compass algorithm; gangs
run in parallel but these use the vector instructions of the processor which are forced to run all
the elements at the same time, removing the need for synchronization in these cases. Memory
barriers are offered by ISPC, but these are used to avoid data races between threads.

Gangs run in parallel using the vector lanes. Basic math operations are computed for
all the elements, but when control flow structures are introduced inside a gang the flow of

4

EPJ Web of Conferences 245, 01006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501006



the program can diverge leading to different instructions needed to be applied; the same
problem applies for GPUs. ISPC compiler computes the values that do not meet a condition
if at least one element of the gang meets it. For most cases this is not a problem other that
the performance implications of divergence. For some cases as the instruction is actually
computing the value for a case that did not meet a condition, these can lead to arithmetic
exceptions. This cases are implemented specifically for the corner cases that showed during
the Compass SPMD implementation were divisions by zero.

As a data-oriented algorithm, types that do not need to use more space than necessary in
variables are in some cases saved as half types. The UT Pre Decode kernel benefits from this
optimization, where the ISPC compiler offers support for half types with specific functions
to convert from float_to_half() or half_to_float using the IEEE 16-bit floating-point
format. The half type does not exist in the ISPC compiler and math operations over it is
not possible, needing a conversion to float to operate and then converting back to half.
A composed value is used to store two half types in a 16-bit type. For the ISPC compiler
the supported types for this operation is int16, where the float 32-bit types can be stored in
the regular way. Less precise functions are offered by ISPC as _fast functions, but for this
implementation the higher precision result is preferred. A type casting issue is highlighted
when doing this conversion as explicit type casts are needed when operating over the int16
type holding the half value. For bit comparisons these need to be cast to int32 to avoid
precision problems.

Figure 4. Performance comparison

All UT kernels are implemented with the SPMD model. Some kernels were found to run
faster in the non-vectorized implementation compared to the SPMD vectorized implemen-
tation. Kernels with a naturally sequential algorithm, like the prefix sum, result in a faster
computation being compiled with the GCC compiler. A selection of the faster kernels is used

5

EPJ Web of Conferences 245, 01006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501006



to run the performance benchmarks that are shown in Figure 4. All instances run the same
number of events and threads. An Intel Xeon(R) E5-2687X is used for the CPU measure-
ments, where the GCC 9 and ISPC 1.12 are used as compilers for the different kernels. The
figure shows the CPU measurements on the left in blue color; the base measurement shows the
scalar implementation where all the kernels are compiled without ISPC. Different instruction
sets targets are used to compared the performance benefits of these. More than 2× speedup
is achieved with AVX2 target instruction set. Some performance is lost due to early track fil-
tering and multiple branching, where the vector instructions are affected performance-wise.
The usage of the gangs is lowered due to the candidate finding kernel where many conditional
clauses are introduced and vector lanes are not used. The throughput achieved with different
GPUs is highlighted for comparison: the GPUs achieve higher throughput for the Compass
implementation.2

5 Conclusions and future work

UT tracking performance is improved by more than a factor 2 compared to the non-vectorized
version. The Compass algorithm is used as a base, implementing it with the SPMD model
to exploit the data-parallel characteristics of the original algorithm in CPU architectures.
The resulting algorithm achieves better throughput while maintaining a highly readable and
maintainability by using the ISPC compiler. It allows to write a vectorized algorithm without
writing intrinsics or intermediate libraries, keeping a sequential-like source code that trans-
lates to vectorization. It allows to better reason about the algorithm and how it is parallelized
for the vector units. Various levels of performance are achieved by compiling for different in-
structions sets, where the results match the expected increase in throughput with the increased
vector width of the instructions.

Some SPMD kernels are not included in the throughput measurements and the sequential
ones are used instead; these achieved better performance on the original version. As a future
work extra speedup and vector lane usage may be achieved by fine tuning the algorithms to
better meet the CPU architecture design.

6 Acknowledgement

This work has been partially supported by project "CABAHLA-CM: ConvergenciA Big dAta-Hpc: de
Los sensores a las Aplicaciones" S2018/TCS-4423 from Madrid Regional Government.

References

[1] Collaboration LHCb (LHCb collaboration), Tech. Rep. CERN-LHCC-2012-007. LHCb-
TDR-12, CERN (2012), http://cds.cern.ch/record/1443882

[2] R. Aaij, J. Albrecht, M. Belous, P. Billoir, T. Boettcher, A.B. Rodríguez, D.v. Bruch,
D. Pérez, A.C. Vidal, D. Craik et al., Computing and Software for Big Science 4 (2020)

[3] M. Pharr, W.R. Mark, ispc: A SPMD compiler for high-performance CPU programming,
in 2012 Innovative Parallel Computing (InPar) (IEEE, 2012), pp. 1–13

[4] P. Fernandez Declara, D.H. Perez Campora, J. Garcia-Blas, D. Vom Bruch, J.D. Garcia,
N. Neufeld, IEEE Access 7, 91612 (2019)

2Allen SPMD source code is available at: https://gitlab.cern.ch/plfernan/Allen_SPMD

6

EPJ Web of Conferences 245, 01006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501006


