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Abstract

The implementation and performance of an algorithm that
identifies and removes clone tracks using the Kullback-Liebler

distance is discussed. For long tracks this algorithm reduces the
clone rate to the level of 3 per mille for a 2 per mille loss in efficency.
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1 Introduction

Often in combinatoric problems such as pattern recognition clones are cre-
ated. In track reconstruction one way to remove clones is by comparison of
hits. If a pair of tracks share hits they are considered to be clones and the
track with the lower quality is removed [1]. Such a a procedure is used to
identify clone tracks produced by the LHCb long track reconstruction algo-
rithms the forward tracking and the track matching [2, 3]. However, this
approach will fail to identify clones if they do not have hits in common. The
current VELO track reconstruction is known to create clones of this type.
In some cases the algorithm splits the clusters coming from one particle into
two tracks, one consisting of the hits from the forward stations and the other
the hits of the remaining stations. In this note an algorithm, based on the
Kullback-Liebler distance, to identify clones of this type is described.

This note is organized as follows. First, the Kullback-Liebler distance is
defined. Next the implementation of clone killing algorithm based on this is
in the LHCb software framework discussed. Finally, the performance of this
procedure is evaluated.

2 Definitions

In order to proceed it is helpful to define what we mean by a clone track.
Two tracks are clones if they provide the same information. A track i is
characterized by a state vector xi and an associated covariance matrix Ci at
a given z in the detector. The Shannon information content of the track is
[4]:

H(X) = −log(p(x)) (1)

where p(xi) is a multi-dimensional Gaussian probability density function that
represents the track state. The expectation of this quantity:

H(X) = −
∫
p(x) · log(p(x))dx (2)

2



is the entropy associated with the knowledge of the track parameters. The
relative entropy between the two tracks is then:

DKL(p1||p2) = H(p1, p2)−H(p1)

= −
∫
p1(x) · log(p2(x))dx+

∫
p1(x) · log(p1(x))dx

=

∫
p1(x) · log

(
p1(x)

p2(x)

)
dx (3)

The quantity DKL is also known as the Kullback-Liebler divergence [5] and
measures the difference in information content between p1 and p2. Therefore,
if this distance is small then two tracks are likely to be clones. Since this
quantity is not symmetric under the interchange of p1 and p2 it is not a true
distance metric. However, a distance measure can trivially be constructed:

D(p1, p2) = 2 · (DKL(p1||p2) +DKL(p2||p1)) (4)

For multi-dimensional Gaussian pdf it can be shown that D(p1, p2) is given
by [6]:

D(p1, p2) = tr[(C1 − C2)(G2 −G1)] + (x1 − x2)
T (G1 +G2)(x1 − x2) (5)

where Gi = C−1
i .

3 Implementation

Two algorithms have been implemented in the TrackUtils package to allow
the evaluation of the Kullback-Liebler distance. The first, TrackBuild-
CloneTable, builds from a container of tracks a linker table. This table
contains all pairs of tracks with a Kullback-Liebler distance below some value
that is defined via jobOptions. The comparison can be made at any position
along the track. Again this choice is driven by jobOptions. In order to ensure
the CPU performance of the algorithm is not prohibitive some optimizations
are performed. For example, for each track, the inverse covariance matrix Gi

that is needed in Eqn 5 is cached locally so that only one matrix inversion is
performed per track.

The second algorithm, TrackCloneCleaner, flags clone tracks for removal.
To choose between tracks identified as clones the numbers of hits is used.
In the case that the number of hits is equal the track with the lower χ2 is
considered to be the one of higher quality. At the end of this procedure all
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clone tracks are tagged and can trivially be removed from any subsequent
analysis by accessing the CloneDist flag in the ExtraInfo map of the Track
class. Since the Kullback-Liebler distance is stored in the map it is possible
to make stronger cuts on this quantity at a later stage.

4 Results

The performance of the algorithm was tested using a sample of 12000 Bd →
J/ψ(µ+µ−)KS(π

+π−) events generated at the default LHCb luminosity of
2 × 1032 cm−2s−1 and reconstructed with Brunel v31r11. The studies were
made for long tracks using the definitions of acceptance and efficiency and
ghost rate given in [7]. The clone rate is defined as:

clone rate =
N(reconstructed ∩ accepted)

N(accepted)
− 1 (6)

Fig. 1 shows the distribution of log(D(p1, p2)) for all possible two track com-
binations together with the distribution for pairs that are identified as clones
using Monte Carlo truth information. A clear separation between clone pairs
and random combinations can be seen on this plot. By cutting on this dis-
tribution at log(5000) = 8.52 the clone rate can be reduced from 2.2 % to
3 per mille with a loss in efficiency of 2 per mille. Applying this cut the
ghost rate is reduced from 14.6 % to 13.8 %. This is not suprising. First, it
is expected that the clone rate for ghosts is around 2%, as is the case for
real tracks, though in this case they can not be identified using the Monte
Carlo truth. In addition, as discussed in [8], around 10 % of the ghost rate
is due to processes such a photon conversion or hadronic interactions in the
detector which lead to the creation of particles that are close in space and
hence more likely to cause clones.

As a second test the standard clone killing algorithm was removed and the
output of the matching and the forward tracking merged into one container.
This procedure leads to a clone rate of 86.6 % for long tracks. Fig. 2 shows
the distribution of log(D(p1, p2)) in this case. Again clone pairs are easily
distinguished from random combinations of tracks. If a cut is applied on this
distribution at 8.52 the clone decreases to 5 per mille with a loss in efficiency
of 2 per mille. After applying this cut the ghost rate is again 13.8 %. The
performance numbers for the four runs described in this note are summarized
in Table 1.

4



))
2

,p
1

log(D(p
-10 -5 0 5 10 15 20 25 30

1

10

210

310

410

510
Cut

Figure 1: log(D(p1, p2)) for all pairs of long tracks (solid line) and those pairs
identified as clones using Monte Carlo truth (points).

The CPU performance of the algorithm has also been evaluated for the second
case. Running on a 64 bit 2.8 GHz Opteron processor the algorithm takes 7.1
ms per event. With further work it should be possible to reduce this time.

Run Efficiency (%) Ghost rate (%) Clone rate (%)

Standard 91.4 14.5 2.2

Standard + KL clone killer 91.2 13.8 0.3

No clone killer 91.4 10.3 86.6

KL clone killer 91.2 13.8 0.5

Table 1: Summary of the tests made. Nota Bene, the ghost rate in the run
with no clone killer is artificially reduced by the high clone rate.

5 Summary

In this note the performance of an algorithm that uses the Kullback-Liebler
distance to identify and remove clones has been presented. It has been shown
that that this approach easily removes clones that do not share hits for the
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Figure 2: log(D(p1, p2)) for all pairs of tracks (solid line) and those identified
as clones using Monte Carlo truth (points). In this case the standard clone
killing algorithm [1] was not run.

case of the long tracking. The approach is generic and can easily be extended
to other track types. Such studies will be described in a future note. As well
as removing clones this approach also reduces the ghost rate from 14.5 % to
13.8 %
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