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Abstract

The sodium fast reactor (SFR) is currently being reconsidered as an instrument for
actinide management throughout the world, thanks in part to international programs such
as the Generation-IV and especially the Global Nuclear Energy Partnership (GNEP). The
success of these programs, in particular the GNEP, is dependent upon the ability of the
SFR to manage actinide inventory while remaining economically competitive. In order
to achieve these goals, the fuel must be able to operate reliably at high power densities.
However, the power density of the fuel is limited by fuel-clad chemical interaction
(FCCI) for metallic fuel, cladding thermal and irradiation strain, the fuel melting point,
sodium boiling, and to a lesser extent the sodium pressure drop in the fuel channels.

Therefore, innovative fuel configurations that reduce clad stresses, sodium
pressure drops, and fuel/clad temperatures could be applied to the SFR core to directly
improve the performance and economics. Two particular designs of interest that could
potentially improve the performance of the SFR core are the internally and externally
cooled annular fuel and the bottle-shaped fuel.

In order to evaluate the thermal-hydraulic performance of these fuels, the
capabilities of the RELAP5-3D code have been expanded to perform subchannel analysis
in sodium-cooled fuel assemblies with non-conventional geometries. This expansion was
enabled by the use of control variables in the code. When compared to the
SUPERENERGY II code, the prediction of core outlet temperature agreed within 2%. In
addition, the RELAP5-3D subchannel model was applied to the ORNL 19-pin test, and it
was found that the code could predict the measured outlet temperature distribution with a
maximum error of -8%. As an application of this subchannel model, duct ribs were
explored as a means of reducing core outlet temperature peaking within the fuel
assemblies. The performance of the annular and bottle-shaped fuel was also investigated
using this subchannel model.

The annular fuel configurations are best suited for low conversion ratio cores.
The magnitude of the power uprate enabled by metal annular fuel in the CR = 0.25 cores
is 20%, and is limited by the FCCI constraint during a hypothetical flow blockage of the
inner-annular channel due to the small diameters of the inner-annular flow channel (3.6
mm). On the other hand, a complete blockage of the hottest inner-annular flow channel



in the oxide fuel case results in sodium boiling, which renders the annular oxide fuel
concept unacceptable for use in a SFR. The bottle-shaped fuel configurations are best
suited for high conversion ratio cores. In the CR = 0.71 cores, the bottle-shaped fuel
configuration reduces the overall core pressure drop in the fuel channels by up to 36.3%.
The corresponding increase in core height with bottle-shaped fuel is between 15.6% and
18.3%.

A full-plant RELAP5-3D model was created to evaluate the transient performance
of the base and innovative fuel configurations during station blackout and UTOP
transients. The transient analysis confirmed the good thermal-hydraulic performance of
the annular and bottle-shaped fuel designs with respect to their respective solid fuel pin
cases.
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Chapter 1: Introduction

1.1 Motivation

The demand for clean, affordable energy is increasing throughout the world, and

nuclear energy may play a substantial role in meeting this demand. As of January 5th,

2009, there are 436 plants world-wide, which produce a total of 372 GWe. This

corresponds to about 15% of the world's electricity. Predictions for overall electricity

consumption increases, combined with the growing concern over fossil fuel stores,

indicate that nuclear power should play a larger role in electricity production through the

coming years [ 1.1]. In response to the growing need for clean, safe and economical

nuclear power, the Generation IV international forum selected six basic reactor design

concepts for potential development and commercialization [1.2]. The Global Nuclear

Energy partnership (GNEP), now the Advance Fuel Cycle Initiative (AFCI), with a focus

on actinide management, has selected the sodium-cooled fast reactor (SFR) as the reactor

of choice.

Sodium-cooled fast reactors have regained worldwide interest in recent years

thanks to international programs such as Generation IV and especially the Global Nuclear

Energy Partnership. The success of these reactors in accomplishing their mission of

improved actinide management, while attaining competitive economics, will largely

depend upon the ability of their fuel to operate reliably at high power density. Recent

focus has been placed upon the improvement of the thermal performance of the SFR

concept [1.3]. The purpose of this thesis is to propose and investigate two innovative fuel



configurations that aim to improve the thermal-hydraulic performance of the SFR while

maintaining both a similar neutronic performance and meeting the current safety margins.

These innovative fuel configurations consist of both internally/externally cooled annular

fuel and bottle-shaped fuel. The annular fuel configuration allows for an increase in the

power density of the SFR low conversion ratio core by reducing the peak clad and fuel

temperatures within the core. The bottle-shaped fuel configuration allows for a decrease

in the pump size of the reactor by decreasing the hydraulic flow resistance in the plenum

region of the core.

1.2 Objectives and Contributions

The objective of this thesis is to assess the thermal-hydraulic performance of both

internally/externally cooled annular fuel configurations and bottle-shaped fuel

configurations for both oxide and metal fuels at high and low conversion ratios. This

includes an assembly design study for each fuel configuration, a subchannel analysis of

each fuel configuration, and a safety analysis for each fuel configuration. The safety

analysis includes investigation of various accident conditions, including the station

blackout transient, using RELAP5-3D. It has been widely recognized that reactivity

feedbacks play a major role in the safety performance of the SFR fuel. The parameters

used in this thesis for safety analyses have been taken from previous SFR design reports.

Design of the core configuration was performed with assistance from MIT graduate

student Matthew Denman, who created annular and solid fuel models for neutronic

analysis using MCNP and evaluated key aspects of the neutronic performance.



A key point of this thesis is the investigation of the benefits derived from utilizing

a supercritical carbon dioxide (S-C0 2) cooled Brayton cycle for power conversion in the

SFR. These benefits include higher efficiencies and heat withdrawal without the use of

auxiliary feedwater system or steam dump to condenser system. A RELAP5-3D model

of a S-CO 2 power conversion system (PCS) was created in collaboration with MIT

graduate student Alexander Rockwell "Sandy" Ludington, who designed the 500 MW

thermal S-CO 2 PCS using CYCLES III.

The elements of this thesis include:

1. The development of an assembly design with annular fuel pins capable of

operating at 20% higher power density to be used in the low conversion ratio

SFR.

2. Creation of a RELAP5-based subchannel analysis model that can be used to

evaluate the steady state subchannel characteristics of annular and bottle-shaped

fuel assemblies.

3. Investigation of "duct ribs" as a method to reduce the core outlet temperature

nonuniformities seen in all standard hexagonal SFR fuel assemblies.

4. Development of an assembly design for bottle-shaped fuel configurations capable

of reducing the pressure drop in the SFR core by -33-36%.

5. Characterization of clad structural integrity at critical points of bottle-shaped and

annular fuel configurations.

6. Development of a full plant SFR RELAP5-3D model based upon the ABRL000

design parameters for future contributors to use in both thermal-hydraulic and

uncertainty propagation simulations.



7. Evaluation of the performance of the base, annular, and bottle-shaped fuel

configurations during station blackout and unprotected transient overpower

(UTOP) events.

8. Identification of neutronic, thermal-hydraulic, and structure aspects of the bottle-

shaped and annular fuel configurations that require further analysis or

improvement of the design.

9. Creation of an S-CO2 PCS RELAP5-3D model which utilizes radial compressors

rather than axial compressors for use with the SFR full plant RELAP5-3D model

by future contributors.

10. Evaluation of the performance of the S-CO2 PCS during an unprotected loss of

flow (ULOF) accident in the SFR.

The key original contributions are items # 1, 2, and 4.

1.3 The Sodium-Cooled Fast Reactor

The Department of Energy's (DOE's) Global Nuclear Energy Partnership was

announced February 6th , 2006 as part of the Advanced Energy Initiative [1.4]. One of the

key goals of GNEP was the development and deployment of advanced nuclear recycling

technology. Under the plan proposed by GNEP, a prototypical advanced burning reactor

was to be demonstrated and the concept was to be commercialized [1.5]. Currently,

reactor burner concept is under development within the framework of Advanced Fuel

Cycle Initiative (AFCI). This "burner" reactor will be a sodium-type reactor and will be



based upon the experience and knowledge derived from the S-PRISM reactor [1.6] and

the EBR II reactor [1.7].

The Argonne National Laboratory (ANL) developed a pre-conceptual design for a

burner reactor, known as the advanced burner test reactor (ABTR) [1.8], which is based

upon the S-PRISM and EBR II designs. The ABTR is a 250MWth pool-type sodium-

cooled fast reactor, which can be fitted with either a steam Rankine power conversion

system, or a super-critical carbon dioxide cooled Brayton power conversion system. The

size and parameters for this test reactor were selected to be representative of commercial

scale reactors, but small enough to avoid cost enhancements based upon the complex

designs and engineering required for larger reactors. The pool design was selected

because of past experience with this design, the inherent safety, and the improved

economics [1.8]. The ABTR, although too small for the current thesis analysis, paved the

way for the development of a 1000 MWth configuration, known as the ABRl000. The

ABR1000 is also a pool-type sodium reactor with four separate secondary loops, direct

reactor auxiliary cooling systems (DRACS), and 4x25% Rankine PCS trains.

The full plant model developed in Section 5 is based upon a combination of

engineering judgment and the current ABR1000 concepts. This reactor design is a scaled

up version of the ABTR, and is thus also based upon the S-PRISM and EBR II design

and operation experience. The success of commercially deployed SFRs depends upon

the economic performance of these reactors [1.9, 1.10]. In an attempt to improve SFR

economics, the capital cost can be reduced by minimizing the pump sizes and thus

minimizing the reactor vessel size. Additionally, the power density of the core can be

increased, resulting in a higher power output. The innovative fuel configurations



analyzed in this thesis attempt to improve these two aspects of the economic performance

of the ABR reactor.

1.4 SFR Safety

There is a large range of accidents that could occur within the SFR system. It is a

recent practice in SFR design, however, to focus on three primary accident scenarios that

encapsulate all the potential pathways to core damage. These accidents are the

unprotected loss of flow accident, the unprotected transient overpower accident, and the

unprotected loss of heat sink accident (ULOHS). These accidents are each unprotected, or

they do not include the scram of the control rods. If a core is not damaged in the course

of these events, it is considered suitable for use in the SFR system.

ULOF - In the unprotected loss of flow accident, the primary pumps stop,

resulting in a loss of forced convection flow through the core and intermediate heat

exchangers (IHX). The pumps can either coast down, based upon the inertia of a

flywheel (if they are mechanical pumps) or an electrical capacitor (if they are

electromagnetic pumps), or the pumps can seize, where the pump velocity

instantaneously drops to zero. In each of these accidents, natural circulation becomes the

only means of carrying heat away from the core. The heat is transferred through the IHX

to the secondary system where it is then transferred to the still-operational PCS. The

feedwater regulation in a Rankine PCS steam generator is accomplished using either

condensers or some type of safety-grade auxiliary feedwater system. If a S-CO2 PCS is

used, the turbine is on the same shaft as the compressors, and thus can drive the



compressors, which ensures a heat sink for the reactor decay heat. In order to prevent

overcooling (which could lead to large positive reactivity injection), the flow rates

through the turbine or steam generator must be carefully controlled.

UTOP - In the unprotected transient overpower accident, reactivity is inserted

into the core, typically by the ejection or slow removal of one or more control rods. As a

conservative estimate, it is generally considered that the rod with the highest worth in the

core is the rod that is withdrawn. In both cases, the increase in reactivity is balanced by

the negative core reactivity feedbacks; the power will peak and then attain a new steady

state level at some point higher than the power level prior to the reactivity insertion.

ULOHS - In the unprotected loss of heat sink accident, the heat sink fails, either

by a leak in the PCS coolant system or by a loss of pumps or feedwater. In each case, the

temperature difference across the core collapses, the core gradually shuts down due to

negative reactivity feedbacks, and the DRACS initiates. The coolant temperatures

steadily rise until the DRACS modules can withdraw an amount of heat equivalent to the

decay heat produced in the core, at which point temperatures in the core peak and begin

to decrease.

Unprotected Station Blackout - A station blackout is considered the most severe

of the SFR transients. This accident is a loss of all electrical power to the system and

assumes that backup electrical power also fails. In addition, scram is assumed to fail. In

essence, this transient is equivalent to a combined ULOHS and ULOF accident. In this

transient, the flow stops and the DRACS valves open upon initiation. The temperatures

increase, making the core subcritical, and then natural circulation becomes the primary

mode of transferring heat away from the core. Typically, it is assumed that only two out



of three DRACS valves open, while the third DRACS module remains inoperable (this is

the so-called "single failure criterion"). This transient is performed in the current thesis

as the design-basis accident and determines which fuel configurations are acceptable for

utilization in the SFR design discussed in this work.

1.5 Previous Work at MIT

A large degree of progress and contributions have been made before the work

described in the thesis was initiated. These works include several aspects of innovative

fuel and PCS contributions in addition to the SFR concepts and designs described above.

The major contributions at MIT that laid the groundwork for analyses performed in this

thesis are given below:

* In previous studies, the S-CO 2 was identified as an ideal candidate for a PCS

when the reactor system had an outlet temperature greater than -500 'C. A

RELAP5-3D model of a S-CO2 PCS was developed by Pope for use with the S-

CO 2 cooled GFR [1.11]. His work provided a RELAP5-3D template, including

pumps, turbines pipes, and branches in the S-CO2 system. Pope also developed

RELAP5-3D models for the HEATRIC PCHE exchangers that provided the

volumetric material property curves, heat length correlations, and multiplication

factors utilized in this thesis.

* CYCLES III, a code that designs and sizes a S-CO2 PCS loop given certain inlet

parameters, was developed, improved, and simplified into a user friendly code

[1.12, 1.13]. The results of a CYCLES III optimization run provides the sizes,



flow rates, and flow areas needed to modify the RELAP5-3D template created by

Pope for use in the ABR1000 plant model.

* A MCNP model for the ABR1000 core was created and verified by Denman

[1.14, 1.15]. This MCNP model could accommodate both annular and solid fuel

configurations and provided power peaking profiles utilized in the current thesis.

* A sodium subchannel analysis code known as SUPERENERGY II was created by

Todreas and Basehore [1.16]. This code can only perform analyses on hexagonal

assemblies of 8 rings or less, and does not evaluate fuel rods. It has been verified

against experimental EBR II data, however, and was used to verify the RELAP5-

3D subchannel analysis code developed in this thesis.

1.6 Organization of this Thesis

Chapter 2 introduces the reference fuel assembly design and performance

parameters of the SFR for both metal and oxide fuel configurations at high and low

conversion ratios. The annular and bottle-shaped fuel configurations are introduced, and

constraints and figures of merit in creating these configurations are presented. The

relations used to optimize both of the innovative fuel configurations are described, and

the most promising fuel configurations for high and low conversion ratios are discussed.

Chapter 3 describes the development of a subchannel analysis model using

RELAP5-3D that is capable of evaluating the innovative fuel configurations. The

assumptions and equations used to develop this model are found in this chapter as well.



As a first application of the subchannel model, the inclusion of duct ribs within the SFR

assemblies is discussed.

Chapter 4 presents the results of the subchannel analyses of the innovative fuel

configuration fuel assemblies. The fuel assembly geometries for annular fuel were

optimized based upon the results of the subchannel analyses. This chapter describes the

magnitude of the power uprate possible for annular fuel configurations. An analysis of an

inner-annular subchannel flow blockage accident is presented in this chapter in which

performance of an annular fuel assembly with the hottest channel blocked was modeled.

The reduction in core pressure drop, which is made possible by using bottle-shaped fuel

configurations, is presented, and a structural analysis for key aspects of the innovative

fuel configurations concludes each fuel discussion.

Chapter 5 develops a full plant RELAP5-3D SFR model based on the ABR1000.

This model includes the primary pool, the secondary system, the PCS boundary, the core,

and the DRACS modules. Assumptions, material properties, geometric relations, thermal

properties, and hydraulic properties are described, while details of each RELAP5-3D

component are listed. Alternate core configurations for each of the valid innovative core

configurations are developed. The steady-state performance of the full plant model with

each core configuration is detailed.

Chapter 6 analyzes the performance of each core configuration during station

blackout and UTOP transients. The key parameters and figures of merit for each

transient are presented. Optimization of the full plant model performance is discussed as

well as the safety limits and figures of merit for the transients. A comparison of each

innovative fuel configuration against the corresponding base configuration is also



provided as an assessment of the safety performance of the innovative fuel

configurations.

Chapter 7 describes the S-CO 2 PCS developed at MIT and the creation of a

RELAP5-3D plant model to simulate this system. The steady state performance of the

RELAP5-3D plant model is presented. An evaluation of the performance of the SFR

during an unprotected loss of flow (ULOF) accident with both a Rankine PCS boundary

and an S-CO2 PCS is included.

Chapter 8 includes a summary of the work performed in this thesis and a

description of areas where future work is required.



Chapter 2: Preliminary Scoping Studies

The innovative fuel configurations studied in this thesis aim to reduce clad

stresses, fuel and/or clad temperatures, and pumping requirements for the SFR core

designs. In turn, these improvements will have a direct positive impact on the achievable

power density in the sodium reactor core. To fully evaluate the performance of

innovative fuel configurations, a detailed subchannel model is needed, which has the

capacity to thermal-hydraulically investigate the temperature distributions, hot channels,

and hot spots within the fuel. Additionally, pressure gradients, turbulent flow patterns,

and coolant velocities should be assessed using this subchannel model.

In addition to subchannel analyses, safety analyses, which evaluate the

performance of the entire plant, must be performed to ensure that the fuel does not

negatively affect plant performance during key accident scenarios. As acceptance criteria

for these nuclear safety analyses, the innovative fuel must perform at least as well as, if

not better than, the standard fuel types currently used in the SFR designs. If the

innovative fuel meets this standard, they will be considered acceptable from a safety

point of view for use in the SFR.

Before the computationally and time intensive analyses described above are

initiated, it is important to ensure that the fuel design in question has the potential to

improve thermal hydraulic performance of the core in the SFR. Thus, a specific set of

SFR fuel designs was selected as the base case. Using these designs, simple, one-

dimensional, single rod and full assembly models were created using MathCAD [2.1] to

determine the thermal hydraulic performance of the simplified base fuel assembly. Then,



a similar model was created for each innovative fuel type, and the thermal hydraulic

performance was again calculated. The results of these preliminary studies served as the

basis for evaluating which designs merited further investigation using a subchannel and

full plant model.

2.1 Base Fuel Designs

A comprehensive analysis of potential fuel designs has been undertaken by

Hoffman et al. [2.2] in which several core and assembly designs are identified for both

metal and oxide fuels. As a fair amount of uncertainty remains as to which conversion

ratio (CR) will be utilized in the SFR, a wide range of conversion ratios are considered in

these core designs. The base cases for the scoping study are the breakeven (CR=1.0) and

low (CR=0.25) conversion ratio cores for both metal and oxide fuel. These fuel designs

are considered bounding conditions, as the low conversion ratio core would serve as a

burner reactor, while the high conversion ratio core would serve as a breakeven reactor.

Breeder reactors, (CR> 1.0) are not part of the current SFR programs in the US (e.g.,

GNEP), and thus are not considered in this thesis.

The Advanced Burner Reactor (ABR1000) is the reactor of choice for the GNEP

burner reactor. Thus, it is the reactor upon which the core and plant dimensions and

operating parameters are based. The ABR1000 reactor design is based upon the

SUPERPRISM (S-PRISM) reactor, which is a 1000 MWth pool reactor with a modular

design intended to operate at either breakeven or burning conditions [2.3].



2.1.1 High Conversion Ratio Cores

The breakeven core is the current core design of choice for the ABR1000. The

core consists of driver (fuel) assemblies, primary and secondary control assemblies,

reflector assemblies, and shield assemblies. The driver assemblies are divided into three

regions. The inner driver assemblies, which have the lowest fuel enrichment, the middle

driver assemblies, which have moderate enrichment, and the outer driver assemblies

which have the highest fuel enrichment. The design details of the core configurations for

each type of breakeven conversion ratio core can be found in Table 2.1, while an

illustration of the core layout can be found in Fig. 2.1.

Table 2.1: Design configuration of breakeven (CR = 1.0) cores [2.21
Metal Oxide

Driver assemblies 151 151
- Inner 19 19
-Middle 66 66
-Outer 66 66
Blanket assemblies 0 0
Primary control assemblies 9 9
Secondary control assemblies 3 3
Gas expansion modules 0 0
Reflector assemblies 90 138
Shield assemblies 60 60
Equivalent core diameter 2.18 2.18
Equivalent reactor diameter 3.02 3.24

Both oxide and metal fuel assemblies (FA) are wire-wrap spaced hexagonal FA

based upon the S-PRISM assembly design, and the key dimensions are maintained so as

to ensure interchangeability between different assembly designs in the core [2.2]. HT9 is

used as the primary material for the duct walls, clad, and wire wrap due to its satisfactory

performance in the high temperature, high flux environment of the fast reactor [2.4]. The



duct gap provides sufficient space to allow for assembly withdrawal, swelling, and

bending throughout the lifetime of the fuel. The key parameters of the assembly design

are found in Table 2.2.

Table 2.2.: Base assembly design parameters for high and low conversion ratio
cores based upon [2.2]

Assembly pitch (cm) 16.142
Inter-assembly gap (cm) 0.432
Duct outside flat-to-flat distance (cm) 15.71
Duct material HT9
Duct thickness (cm) 0.394

The fuel pin designs for both the oxide and metal assembly designs are found in

Table 2.3. The height of the fuel in the oxide fuel pins is 36 cm longer than in the metal

fuel pins, while the gas plenum of the oxide fuel pins is -20 cm shorter than the gas

plenum in the metal fuel pins. This difference was based upon a similar difference in the

S-PRISM design and was maintained for the reference designs. A potential challenge for

these breakeven fuel pin designs is the wire-wrap spacer. In order to reach CR = 1.0, a

very tight lattice is required within the assembly. This is accomplished through reducing

the pitch diameter ratio by decreasing the wire-wrap thickness. However, as seen in

Table 2.3, this results in very small wire-wrap diameters, which would certainly pose

fabrication challenges, as well as potential performance and structural issues. Thus,

ameliorating this problem was a factor in designing the innovative fuel configurations

considered in this thesis. The breakeven assembly and core designs, as described above,

serve as the basis for the investigation of innovative fuel designs for breakeven cores.
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Figure 2.1: Breakeven core design (both metal and oxide)

Table 2.3: Fuel rod design parameters for high conversion ratio cores [2.2]

Fuel pins per assembly 271 271
Bond material Na He
Height (core), cm 101.60 137.16
Height (plenum), cm 191.14 170.82
Overall pin length 407.04 422.28
Fuel smeared density, %TD 75.00 85.00
Fabrication density, %TD 100.00 89.40
Pin diameter, cm 0.852 0.868
Pin pitch-to-diameter ratio 1.163 1.023
Cladding thickness, cm 0.0559 0.0635
Wire-wrap diameter, cm 0.0805 0.0195

volume fraction, %
-fuel 31.02 49.29
-bond 10.34 2.55
-structure 24.16 28.58
-coolant 34.48 19.58
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2.1.2 Low Conversion Ratio Cores

The low CR assembly designs, as described by Hoffman et al. [2.2], have the

same assembly parameters, as found in Table 2.2. However, these assemblies contain

fuel rods that are spaced by triangular grid spacers rather than wire-wrap spacers. The

core layouts for both oxide and metal cores are quite different from the CR = 1.0 core

designs as well. The burnup reactivity swing is greater in the burner core designs, which

requires an increased number of control rods. Also, there is a greater number of inner

driver assemblies in the burner cores, while the number of middle and outer driver

assemblies is decreased in an attempt to flatten the power distribution. The design

characteristics of the low conversion ratio metal and oxide cores are found in Table 2.4,

while a layout of the metal and oxide burner cores are found in Figs. 2.2 and 2.3,

respectively.

Table 2.4: Design configuration of burner (CR = 0.25) cores [2.2]
Metal Oxide

Driver assemblies 144 144
-Inner 48 72
-Middle 54 36
-Outer 42 36
Blanket 0 0
Primary control assemblies 22 16
Secondary control assemblies 3 3
Gas expansion modules 0 0
Reflector assemblies 84 102
Shield assemblies 60 60
Equivalent core diameter 2.22 2.18
Equivalent reactor diameter 3.02 3.07
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Figure 2.3: Burner core design for oxide fuel [2.2]

As with the breakeven fuel pin designs, an inspection of the fuel rod properties, as

seen in Table 2.5, reveals that there is a major challenge in utilizing this low conversion

ratio fuel: the diameter of the fuel rods is very small. The thermal conductivity of the

fuel for the metal rods decreases as enrichment increases due to the increase in the

amount of Zirconium contained in the metal fuel at lower conversion ratios. Thus, to

maintain safety limits, decreased fuel rod diameters (with lower linear power) are

necessary. For both metal and oxide fuels, the pin diameter is decreased because such a

low CR requires that the fuel volume fraction and linear power be minimized. The

resulting burner assemblies, therefore, contain a very large number of very small pins.



Table 2.5: Fuel rod design parameters for low conversion ratio cores [2.2]
Metal Oxide

Fuel pins per assembly 540 324
Bond material Na He
Height (core), cm 101.6 137.16
Height (plenum), cm 191.14 170.82
Overall pin length 407.04 422.28
Fuel smeared density, %TD 75 85
Fabrication density, %TD 100 89.4
Pin diameter, cm 0.464 0.556
Pin pitch-to-diameter ratio 1.357 1.448
Cladding thickness, cm 0.0559 0.0635

volume fraction, %
-fuel 17.44 19.73
-bond 5.81 1.02
-structure 29.15 26.22
-coolant 47.60 53.02

These assemblies containing a large number of very small rods are challenging

designs for several reasons: 1) the fabrication of small diameter pins could prove

economically disadvantageous, 2) the structural integrity of the rod during operation

would need to be confirmed, as such small rods are more susceptible to vibration-induced

failure under operating coolant-flow conditions, and 3) this requires the inclusion of

"structure rods" in the assembly, which are basically solid HT9 rods used to support the

grid spacers. Inclusion of these rods reduces the number of fuel rod positions, and thus

reduces the effectiveness of the fuel overall. Therefore, the design of innovative fuel

configurations for the low conversion ratio fuel sought to eliminate the need for small

fuel rods. These low CR assembly configurations serve the other basis for comparison

with innovative fuel configuration rods.



2.1.3 Base Design MathCAD Model

Using the parameters of the CR = 0.25 FA and fuel rods, two simple, single-

assembly models were created using MathCAD to evaluate the geometric and thermal

hydraulic properties of the base FA. These calculated properties can then be used as a

point of reference for comparison with the innovative FA. For geometric and hydraulic

comparisons, a full assembly is modeled, and the area fractions for fuel, coolant,

structures, and bond are evaluated. These values directly correspond to the volume

fractions of the same materials, which is significant to note for neutronic purposes in the

core. Additionally, the pressure drop across the core is calculated using this "full

assembly" model.

Table 2.6: Fuel rod design parameters for low conversion ratio cores [2.2]
Metal Oxide

Core outlet temperature (oC) 510 510
Core inlet temperature (°C) 355 355
Rings 13 11
Assembly outer flat-to-flat length (cm) 15.71 15.71
Core height (cm) 101.6 137.16
Plenum height (cm) 191.14 170.82
Total Height (cm) 407.14 422.28
Fuel smear density (%) 75 85
Theoretical fabricated density (%) 100 89.4
Outer rod diameter (mm) 8.08 8.68
Clad thickness (mm) 0.559 0.635
Fuel assemblies 151 151
Total assemblies 163 163
Reactor power (MW) 1000 1000
Fuel thermal conductivity (WImoC) 11 4
Number of grid spacers (CR = 0.25) 11 11
Grid spacer thickness (mm) (CR = 0.25) 0.5 0.5



The MathCAD model is based upon the parameters described in sections 2.1.1-

2.1.2 and geometric relations found in [2.5]. A list of the parameters, which served as

input to the MathCAD model, is found in Table 2.6. A description of the full assembly

model for the base fuel is given below.

The number of rods per assembly (N) is calculated according to the equation:

N=1+3 R+3 R2, (2.1)

where R = the number of rings per assembly. The outer flat-to-flat diameter of the

hexagonal assembly (DHo) is an input parameter, and the inner flat-to-flat dimensions and

flow cell (including the bypass) flat-to-flat dimensions are found according to the

equations:

DHC = DHO + g 
(2.2)(2.2)

D, = DHO -2 td

where:

DHI = assembly flat-to-flat inner hexagonal distance (m)

DHC = flow cell flat-to-flat hexagonal distance (m)

glA = inter-assembly gap (m)

td = thickness of the fuel assembly duct wall (m).

The inner assembly, outer assembly, and hexagonal flow cell areas were found

using the basic geometric formula for the area of a hexagon with the inner flat-to-flat,

outer flat-to-flat, and assembly pitch lengths (as seen in Figure 2.4), respectively:
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AH = DH
2

where:

AH = hexagonal area of inner, outer, and flow cell areas (m2)

DH = hexagonal flat-to-flat distance of inner, outer, and flow cell areas (m2).

(2.3)

DHC .- HO

Figure 2.4: Hexagonal areas with their corresponding flat to flat distances (not to
scale)

The radii of the cladding inner surface and the fuel surface (as depicted in Figure

2.5) were calculated from the following equations:

* =AHI

L = AHo-AHI

D = AHC-AHO



D
2

Rf = RE

where:

Rci = radius at inner clad surface (m)

Rfo = radius at fuel outer surface (m)

ps = fuel smeared density (%)

pf = fuel theoretical fabricated density (%)

6 = clad thickness (m)

Do = fuel rod outer diameter (m).

(2.4)

(2.5)



Figure 2.5: Cross section of solid fuel pin with corresponding nomenclature

The area of fuel, clad, and bond in each pin is determined as follows:

A, = "R fo 2

Ab = x(Rc,2 -RI 2)

A= (2.6)

where:

Af = area of fuel per pin (m2)

Ab = area of bond per pin (m2)

Ac = area of clad per pin.



In the high conversion ratio cores, the fuel rods are separated by wire-wrap

spacers. The total equivalent area of the wire-wrap in the assembly is the sum equivalent

cross sectional areas of the wire-wraps around each pin. The cross-sectional equivalent

area of each individual wire-wrap is determined from the following equation suggested

by Chen & Todreas [2.6]:

Ir 
D

AW =_

cos( ) =
VH,2 +):(Do +D (2.7)(2.7)

where:

Aw = area of wire wrap per pin (m2)

D, = diameter of wire wrap (m)

Hw = helical pitch of wire wrap (m)

cos(<) = correction factor accounting for the ellipticity of the wire cross section.

When the grid spacers were used instead of wire-wrap spacers in the ANL model,

the area of grid spacers was simply assumed to be 2.5% of the total hexagonal cell area

[2.2]. This method was maintained for clarity of comparison in the current study.

The volume fractions in the FA are determined for fuel, coolant, bond, and

structure as follows:



F fFFuel AfN
Ac , (2.8)

AHc -(AHO - AH)-(Af + Ab + Ac + Aw)N
Coolant -A

AHC ,(2.9)

F _ Ab N
FBond

n c , (2.10)

Fstcture (AHo -AHI)+(Ac + A,)N
AHc (2.11)

where:

AHC = assembly hexagonal cell area (includes half of the inter-assembly gap) (m2)

AHO = outer area of hexagonal assembly (m2)

Am = inner area of hexagonal assembly (m2).

Finally, an important metric for each base fuel assembly is the fuel to coolant

ratio. This ratio dictates to a large degree the neutronic performance in the core. Because

the current thesis focuses on the thermal-hydraulic performance of innovative fuel

designs, the fuel to coolant ratio was kept constant across the various innovative fuel

configurations, so as to maintain, as much as possible, a similar neutronic performance as

what was found in the base fuel configurations.

To verify the accuracy of these calculations, the volume fractions obtained from

Eq. (2.8)-(2.11) were compared to the listed values from Hoffman et al. [2.2]. The

agreement was very reasonable, as can be seen in Table 2.7.



Table 2.7: Comparison of calculated volume fractions for ANL and current models
Metal CR=1.00 Metal CR = 0.25 Oxide CR = 1.00 Oxide CR = 0.25
ANL MathCAD ANL MathCAD ANL MathCAD ANL MathCAD
Paper Model Paper Model Paper Model Paper Model

Fuel
Fraction 34.26 34.29 17.44 17.49 49.29 49.24 19.73 19.73
(%)
Bond
Fraction 11.42 11.43 5.81 5.83 2.55 2.55 1.02 1.02
(%)
Structure
Fraction 25.73 25.74 29.15 28.55 28.58 28.58 26.22 25.51

Coolant
Fraction 28.59 28.54 47.6 48.14 19.58 19.63 53.02 53.74
(%)

Next, coolant flow rate through the core, the hydraulic resistance of the core, and

the pressure drop across the core was calculated using the MathCAD full assembly

model. The constant pressure heat capacity (Cp) of the sodium coolant was evaluated at

the mean temperature through the core according to property data obtained from Fink and

Leibowitz [2.7]. The coolant mass flow rate through the core was calculated according to

the relation:

Q
ou i

where:

me = coolant mass flow rate through the core (kg/s)

Q = total power generated in core (MW)

Tout = average coolant temperature at the core outlet (0C)
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Tin = average coolant temperature at the core inlet (oC),

and the average mass flow through each assembly (ma) is:

m cm - , (2.13)
Nat

where:

m, = coolant mass flow rate through a single assembly (kg/s)

Nat = total number of assemblies in the core region.

The pressure drop through the assembly channels is influenced by the height and

width of the wire-wrap, as well as the pitch and outer diameter of the fuel rods. The total

pressure drop due to friction (dP) in the assembly can be calculated according to the

equation:

dP = f " (2.14)

where

f = friction factor for turbulent flow

L = total length of axial flow through core (m)

Dh = hydraulic diameter of assembly (m)

Anlow = flow area of the hexagonal flow cell (m2)

p = average coolant density through core (kg/m3),
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and the hydraulic diameter is calculated using the following equation:

Dh = 4  Pow (2.15)
Pw

where Pw is the wetted perimeter of hexagonal flow cell in meters.

The friction factor is dependent primarily upon the geometry and flow conditions

through the assembly, and is calculated according to the equation:

Cf
f = (2.16)

Re 0.18

where Cft is the turbulent drag coefficient, and Re is the Reynolds number:

m Dh

Re= fow (2.17)

where g is the dynamic viscosity of the coolant (Pa-s).

The turbulent drag coefficient is highly dependant upon the geometric

configuration of the wire-wrap spacers and the fuel rods, and is determined using the

relations developed by Chen and Todreas [2.6]:



Cf, = 0.8063 - 0.9022 log + 0.3526 log H w '7  J 178-2 (2.18)

where P is the fuel rod pitch in the assembly in meters.

For the burner core configurations, the hexagonal assemblies do not contain wire-

wrap spacers. Rather, the fuel rods are spaced using triagonal grid spacers distributed

evenly along the axial length of the assembly. The total pressure drop, therefore, for the

axial assembly includes the frictional pressure drop and the pressure drop due to grid

spacers. The frictional pressure drop is calculated similarly to the assemblies with wire-

wrap grid spacers, save that the turbulent drag coefficient is calculated using the

correlation for bare rods, rather than for wire-wrapped rods. This correlation is:

P  P
C p =a+ b -1 + b2  -1 (2.19)

where Cfrp is the bare rod plenum drag coefficient. The coefficients a, b], and b2 are

taken from the Cheng and Todreas correlation for pressure drop in bare rod bundles [2.5]

and are:

a = 0.09378

b= 1.398 (2.20)

b2 = -8.664

for a pitch-to-diameter ratio between 1.0 and 1.1, and



a = 0.1458

b, = 0.03632 (2.21)
b2 = -0.03333

for a pitch-to-diameter ratio greater than 1.1.

The pressure drop across the spacers (Aps) was calculated using the Rehme

correlation for grid spacer pressure drops [2.5], which is:

Ap, = Cv p.-~2 4 , (2.22)

where:

Cv = modified drag coefficient, read from data in [2.5]

Vv = average bundle fluid velocity (m/s)

As = projected frontal area of spacer (m2)

AV = unrestricted flow area away from the grid spacer (m2).

In addition to the pressure drop due to friction and the grid spacers, entrance and exit

effects will increase the pressure drop across the core. These effects are not considered in

this simplified model, but in future models these effects should be included in the form of

minor or form losses.

For thermal considerations, a single rod model was created in which the fuel rod

was assumed to be bare (no clad or bond) with a single, uniform heat generation rate



(average rod conditions). The thermal conductivity of the bare pellet was assumed to be

constant, with approximate values. These assumptions were made to simplify the thermal

analysis, as well as to provide a clear basis for comparison between standard and

innovative fuel designs.

The power density of the core is calculated first. This will be used as a basis for

comparison with the innovative fuel configurations to compensate for changes in the size

of the assembly, however slight. The core power density (Q"') can be calculated using

the equation:

Q' = A, (2.23)
HC *Nat "H

where H, is the height of the core in meters. The linear heat rate (q') for the fuel rod can

then be calculated using the following equation:

'.Na Am.
q'= Q"' A (2.24)

Once the linear heat rate is known, the heat flux, fuel power density, and fuel

radial temperature distribution can be calculated from the following equations:

q"= (2.25)
rD

O



' 2 (2.26)

ATmax = (2.27)4nk

where:

q" = heat flux at fuel rod surface (W/m2)

q"' = fuel power density (kW/L)

ATmax = fuel radial maximum temperature difference (°C).

kf = thermal conductivity of the fuel, oxide or metal (W/moC).

The core-average thermal and hydraulic performance of all of the base FA can be found

in Table 2.8. These parameters will serve as figures of merit for the comparison between

innovative fuel designs and the standard solid pin fuel designs.

Table 2.8: Comparison of calculated thermal-hydraulic parameters for each type of
base fuel assembly

CR = 0.25 CR = 1.0
Metal Oxide Metal Oxide

Fuel/coolant volume ratio 0.366 0.372 1.198 2.517
Power density (kW/L) 258.09 191.18 267.59 198.22
Linear heat rate (kW/m) 12.66 15.63 24.05 17.82
q" (kW/m 2) 868.33 894.62 947.54 653.37
ATmax (OC) 91.57 310.88 174 354.45

q"' (Wcm3 ) 1732 1137 842.44 434.53
Core AP (kPa) 141.54 99.1 797.73 2885.9



2.2 Innovative Fuel Designs

In fast reactor systems, the clad operates at relatively high temperature (-6000 C),

fast neutron flux (>1015 n/cm 2), and mechanical stresses (>100 MPa); therefore, clad

thermal and irradiation creep limits the achievable burnup. On the other hand, the power

density is limited by the fuel melting point and fuel clad chemical interactions (FCCI)

(especially for metal fuel), fuel/clad mechanical interaction (especially for oxide fuel)

and, to a lesser extent, by the sodium pressure drop in the fuel channels. Therefore,

innovative fuel configurations that reduce clad stresses, fuel and/or clad temperatures will

have a direct positive impact on the achievable burnup and power density in the sodium

reactor core. The two innovative fuel designs studied in this work are internally and

externally cooled annular shaped fuel and bottle-shaped fuel.

The large heat transfer surface of the annular fuel configuration, attainable with

simultaneous internal and external cooling, reduces the fuel operating temperature and

the surface heat flux dramatically. If oxide fuel is used in a fast reactor, the benefit of

annular fuel would mainly be a reduction of the fission gas (FG) release and fuel

swelling, which will lower stresses in the clad, allowing for higher burnup. If a metal

fuel (with a thermal bond) is used, the main benefit would be an increase in the margin to

fuel melting, which may allow for higher power density.

The benefit of bottle shaped fuel is primarily a reduction in the core pressure

drop. In traditional fast-reactor cores, the FG plenum region above the active fuel

accounts for about half of the total coolant pressure drop. For a given coolant mass flow

rate, the pressure drop is directly proportional to the FG plenum length, but inversely



proportional to the cube of the flow area. Therefore, if the diameter of the FG plenum is

reduced, while increasing its length (thus maintaining the total FG plenum volume), a

very significant reduction of the total coolant pressure drop can be obtained. The

resulting fuel pin configuration has a "bottle" shape and will allow for higher sodium

mass flow rates in the core, thus opening the possibility of a power density increase.

Alternatively, for given mass flow rate, it will reduce the pumping power, thus cutting

operating costs somewhat. Furthermore, a lower pressure drop in the core should aid

natural circulation during transients and accidents.

2.3 Annular Fuel

Annular fuel is not a new concept. It has been suggested previously for use in a

range of reactors, including both PWRs and BWRs [2.8, 2.9]. Annular U0 2 fuel with

internal and external cooling has been studied at MIT for over 6 years and has been

shown to enable power density increases of up to 50% in PWR cores [2.9]. The large

heat transfer surface attainable with simultaneous internal and external cooling reduces

the fuel operating temperature and the surface heat flux dramatically. This approach is

expected to work for sodium reactors as well.

Annular fuel for the sodium fast reactor is made feasible by increasing the overall

fuel rod diameter and including an inner channel in the center of the fuel rod, which is

separated from the fuel by an additional clad and bond layer. A scale depiction of the

annular fuel rod design compared to the traditional solid fuel pin design is seen in Fig.

2.6. The fuel rod outer diameter is significantly larger. In order to maintain a nearly



constant assembly size, the number of fuel rods per assembly must be decreased. In Fig.

2.7, the transition from a solid fuel rod assembly to an annular fuel rod assembly is

shown.

Figure 2.6: Annular fuel rod cross section (left) vs traditional solid fuel rod (right)
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Figure 2.7: Annular fuel rod assembly (left) vs traditional solid fuel rod assembly
(right).
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2.3.1 Annular Fuel Constraints and Figures of Merit

For the purpose of the scoping study, certain variables remained unchanged

between the base and annular fuel assembly designs. This allowed for clarity and

simplicity in comparing the performance of the two fuel configurations. In the analysis

of the annular fuel assembly (FA) designs, the following parameters are held equal to the

corresponding ANL core designs:

- The fuel-to-coolant volume ratio and core height (101.6 cm for metal fuel, 137.2

cm for oxide fuel). This approximately preserves the overall neutronic

characteristics of the core, e.g., spectrum, reactivity coefficients, reactivity

letdown, etc.

- Smeared density (i.e., 75% for metal fuel, 85% for oxide fuel). This allows for

adequate accommodation of fuel swelling under irradiation.

- Inter-assembly gap (0.432 cm) and FA duct thickness (0.394 cm). These

parameters provide adequate FA clearance and mechanical robustness,

respectively.

- Core power density. This ensures the fairness of the comparison between solid

and annular FAs.

The gap between the FA duct and the adjacent fuel pins is set at a reasonable

value of 0.3 mm to enable sliding of the fuel pin bundle into the duct during fabrication

and to allow for swelling and thermal expansion. The wire helical pitch was held at



20.32 cm. Also, the inner diameter of the annular fuel pins is limited to >4 mm, as

smaller channels are deemed susceptible to clogging.

In comparing the annular FA designs to the ANL designs, the following two

figures of merit are adopted:

- Average heat flux at the clad surface, q".

- Radial temperature rise in the fuel, AT, i.e., the difference between the maximum

temperature in the fuel, Tmax, and the temperature on the fuel surface, Tfo.

Everything else being the same (i.e., sodium inlet temperature and flow rate,

power density), it is clear that FAs with lower q" and AT than the ANL designs will also

have lower clad and fuel temperatures. Therefore, it will be possible to uprate the core

power density.

2.3.2 Annular Fuel MathCAD Model

The geometric parameters of the annular FA are calculated in much the same way

as for the solid FA, as discussed in section 2.1.3. Equations (2.1) and (2.2) apply to the

annular fuel FA unchanged. The radii for fuel and clad surfaces (as shown in Figure 2.8)

are found by the following relations:



Rc,, = Rco, +

Reio = RCoo -6

Rfo = jRcio 21 f io2 _ Rc 2) (2.28)

Rfi = Rc2 + PS Rcio 2 Re, 2)

where:

Rcoi = clad outer surface radius of inner channel

REii = clad inner surface radius of inner channel

Rcoo = clad outer surface radius of outer channel

Rcio = clad inner surface radius of outer channel

Rfo = radius of fuel outer surface

Ri = radius of fuel inner surface

6 = clad thickness (assumed equal for the inner and outer clad)

The fuel, bond, and clad areas for each pin are then calculated as follows:

Af = (R fo 2 - R f2)

Ab = X(Rcio2 - R z2 -(Ro 2 - Rf2) (2.29)

AC = r(Rcoo2 +Rii2- Rcio2 R2)

The area of the wire can be calculated by means of Eq. (2.7). The volume fractions of the

fuel, coolant, bond, and structures are calculated from Eqs. (2.8)-(2.11).



Figure 2.8: Cross section of annular fuel with corresponding nomenclature

The thermal parameters are calculated for annular fuel pin assemblies similarly to

those calculated for solid fuel pin assemblies. The pin linear power is calculated for

annular fuel using Eq. (2.24). However, unlike solid fuel pin assemblies, the average

heat flux at the surface of the fuel rod is:

q"= q (2.30)
2,r(Roo + Ro,)

The fuel power density, q"' (W/cm3), is of interest as it relates to the fuel cycle

cost, and can be calculated as:



tq (R - R ) (2.31)

To calculate AT, we make use of the heat conduction equation and its boundary

conditions:

V o kfVT + q'"= 0

BC : T = T =To
Rp Rfi

(2.32)

Note that for simplicity it is assumed that the fuel temperature at the inner and

outer surface of the annular pins is the same. Solving Eq. (2.32) for both solid and

annular fuel provides the following solutions:

p 2T(r)=T + - I
4,c R2o

T(r) = T +
47k i

(2.33)

(2.34)
In Rf IJJ

respectively, where:

T(r) = temperature of the fuel as a function of the radius

r = radius at which the temperature is being evaluated



kf = thermal conductivity of the fuel (assumed independent of temperature for

simplicity). For oxide fuels this is 4 W/m-K and for metal fuels it is 11 W/m-K.

With these solutions, finding the maximum temperature is then accomplished by

taking the derivative of the temperature distribution and setting it equal to zero for the

annular fuel. Then we have:

AT- q1
41&f

(2.35)

Rmax =

where Rmax is the radius at which the temperature is the maximum within the annular

fuel. It can also be readily shown from Eq. (2.34) that the fraction of power going

towards the inner channel of an annular fuel pin is equal to:

Q 1 1

Q+~+o In(Rfo/R,) 2 (Ro/lR,) 2 - 1

where:

Q,= power to inner channel (kW)

Qo= power to outer channel (kW).

(2.36)



The flow split between the inner and outer channels is important because it

controls the coolant temperature rise in those channels. The flow split is determined by

the pressure drop (hydraulic resistance) in each channel. The pressure drop in the inner

channel is determined using the approximate relations:

mmr =-

mi = mr xi

A, = R oCi2

m A 2Rco,

Re, = Re,(2.37)

f = 0.182Re,-0.2

dP, L [A,1l2R 2p j
where:

mr = mass flow rate per rod

m/o = mass flow rate of inner/outer channel

Xio = fraction of flow in inner/outer channel

i/o = subscript denoting the inner/outer channel

A = flow area channel

Re = Reynolds number of fluid in channel

p = viscosity of fluid in channel

f = friction factor of channel

dP = pressure drop of channel



p = density of fluid in channel

L = channel length.

Again, the pressure drop for the outer channels is influenced by the height and

width of the wire-wrap, as well as the pitch and outer diameter of the fuel rods. The

equation for the turbulent drag coefficient for the outer channel of the annular fuel rod is

the same as Eq. (2.18). This pressure drop for the inner channel is determined using the

following equations:

mo = mr, (1- xi)

A o = AH -(A , + AC +Ab).N zRo,2.N

m Dho

Reo =

Dho =4 . A °

Pw (2.38)

C,
fo = 0.18

Reo

dP = f.L [K 1
Dho 2po

where:

Dho = hydraulic diameter of outer channel

Ct = coefficient of friction for turbulent flow.

The flow split is determined by finding the mass flow rate in the inner and outer

channels at which the pressure drops for each channel are the same. Obviously, it is



desirable that the inner channel flow fraction and the inner channel power fraction (Eq.

2.36) be as close as possible so that the coolant temperature rise in the inner and outer

channels is equalized.

2.3.3 Annular Fuel Model Results

Several different assembly designs were created for the annular FA based upon

the number of fuel rods, and hence the number of rings in each assembly. As discussed

in section 2.2.1, the fuel to coolant ratio was maintained so as to preserve the neutronic

properties of the assembly as much as possible. Also, it was desired to maintain the size

of the assembly as closely as possible. With these two constraints, annular fuel rod

assembly designs for the burner and breakeven core configurations were developed. For

the burner core configurations, the original assembly was sufficiently open so that no

additional adjustments to rod inner diameter (Roi) were necessary. However, for the

breakeven core configurations, the pitch was so tight, and the wire-wrap in the solid fuel

configuration so thin, that optimizing of the annular fuel design by adjusting wire-wrap

thickness and rod inner diameter was required in order to obtain a feasible annular fuel

rod assembly configuration. Tables (2.9)-(2.12) list the resulting parameters for the

annular fuel rod assembly configurations as well as the parameters for the solid fuel rod

assemblies. The most promising configurations are highlighted in yellow.

Table 2.9: Results for the metal annular fuel rod configurations (CR = 0.25)
Base Design Annular Fuel Designs

Rings 13 11 10 9 8
Pins 540 397 331 271 217
Flat to flat (cm) 15.71 21.32 19.57 17.83 16.23
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Pin inner diameter (mm) 5 5 5 5
P/Do 1.357 1.087 1.087 1.087 1.086
Dwire (mm) - 0.805 0.805 0.805 0.805
Clad thickness (mm) 0.559 0.559 0.559 0.559 0.559
Fuel volume fraction (%) 17.44 16.79 16.73 16.65 16.66
Bond volume fraction (%) 5.81 5.60 5.58 5.55 5.55
Structure volume fraction (%) 29.15 31.78 32.05 32.35 32.31
Coolant volume fraction (%) 47.6 45.83 45.65 45.45 45.48
Fuel/coolant volume ratio 0.366 0.366 0.366 0.366 0.366
Power density (kW/L) 258.09 258.09 258.09 258.09 258.09
Linear heat rate (kW/m) 12.66 31.27 31.72 32.27 33.54

q" (kW/m2) 868.33 696.31 705.41 716.52 740.92
AT (OC) 91.57 12.12 12.39 12.72 13.61
q"' (W/cm3) 1732.00 1803.94 1810.89 1819.14 1817.93
Inner channel flow (%) - 55.40 55.36 55.33 53.47
Inner channel power (%) - 46.43 46.40 46.37 46.26
Core AP (kPa) 141.54 188.85 193.49 199.41 201.01

Table 2.10: Results for the oxide annular fuel rod configurations (CR = 0.25)
Base Design Annular Fuel Designs

Rings 10 9 8 7 6
Pins 324 271 217 169 127
Flat to flat (cm) 15.71 17.66 15.93 14.20 12.47
Pin outer diameter (mm) 5.56 9.23 9.25 9.28 9.33
Pin inner diameter (mm) - 5 5 5 5
P/Do 1.45 1.09 1.09 1.09 1.09
Dwire (mm) - 0.805 0.805 0.805 0.805
Clad thickness (mm) 0.635 0.635 0.635 0.635 0.635
Fuel volume fraction (%) 19.73 17.13 17.05 16.95 16.83
Bond volume fraction (%) 1.02 0.89 0.88 0.88 0.87
Structure volume fraction (%) 26.22 36.95 36.25 36.61 37.06
Coolant volume fraction (%) 53.02 46.04 45.82 45.56 45.24
Fuel/coolant volume ratio 0.372 0.372 0.372 0.372 0.372
Power density (kW/L) 191.18 198.22 198.22 198.22 198.22
Linear heat rate (kW/m) 15.63 23.46 23.96 24.61 25.47
q" (kW/m 2)  894.62 524.93 535.25 548.45 565.98
AT (°C) 310.88 28.34 29.27 30.48 32.12
q"' (W/cm3) 1137.00 1309.74 1315.89 1323.42 1332.84
Inner channel flow (%) - 55.56 55.45 55.37 55.28
Inner channel power (%) - 46.25 46.20 46.13 46.05
Core AP (kPa) 99.10 201.32 208.39 218.06 231.34

Pin outer diameter (mm) 4.64 9.29 9.31 9.34 9.41



Table 2.11: Results for the metal annular fuel rod configurations (CR = 1.0)
Annular Fuel Designs

Base Di = 5 mm Di = 5 mm Di = 4.5 mm Di = 4
Design

Rings 9 8 7 6 7 6 7 6 7
Pins 271 217 169 127 169 127 169 127 169
Flat to flat 15.71 21.76 19.38 17.01 18.46 16.20 18.43 16.18 18.40(cm)
Pin outer
diameter 8.08 13.57 13.65 13.75 13.13 13.24 12.91 13.01 12.70
(mm)
Pin inner
diameter - 5 5 5 5 5 4.5 4.5 4
(mm)
P/Do 1.0996 1.062 1.062 1.062 1.008 1.008 1.008 1.008 1.008
Dwire (mm) 0.805 0.805 0.805 0.805 0.1 0.1 0.1 0.1 0.1
Clad
thickness 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559
(mm)
Fuel volume 34.26 35.20 34.99 34.72 34.42 34.15 34.71 34.42 34.99
fraction (%)
Bond
volume 11.42 11.73 11.66 11.57 11.47 11.38 11.57 11.47 11.66
fraction (%)
Structure
volume 25.73 23.68 24.15 24.74 25.39 25.97 24.76 25.37 24.14
fraction (%)
Coolant
volume 28.59 29.38 29.20 28.97 28.72 28.50 28.96 28.73 29.20
fraction (%)
F/C ratio 1.198 1.198 1.198 1.198 1.198 1.198 1.198 1.198 1.198
Power
density 267.59 267.59 267.59 267.59 267.59 267.59 267.59 267.59 267.59
(kW/L)
Linear heat 24.05 56.79 58.12 59.90 52.83 54.52 52.66 54.33 52.51
rate (kW/m)
Q" (kW/mz) 947.54 973.71 992.17 1016.68 927.53 951.64 963.03 987.45 1000.79
AT (oC) 174.00 50.16 51.71 53.82 44.69 46.63 48.18 50.18 51.93
q"' (W/cm3) 842.44 820.51 825.61 832.06 839.30 845.92 832.27 839.12 825.45
Inner
channel - 51.68 52.23 52.88 56.36 47.15 42.85 43.76 30.75
flow (%)
Inner
channel - 41.88 41.82 41.74 42.22 42.14 41.59 41.51 40.92
power (%)
Core
pressure 797.73 403.23 428.39 462.55 413.79 464.08 416.62 457.53 401.55
drop (kPa)



I aDle z.1 Kesults for the oxIle annular fuel rod configurations (CR = 1.0)
Annular Fuel Designs

ANL Di = 5 mm Di = 4.5 mm Di = 4
Design

Rings 9 7 6 5 7 6 7
Pins 271 169 127 91 169 127 169
Flat to flat (cm) 15.71 29.56 27.38 25.60 27.60 25.80 26.00
Pin outer diameterPin outer diameter 8.68 21.16 22.48 24.64 19.73 21.14 18.54(mm)

Pin inner diameter
(mm)- 5 5 5 4.5 4.5 4

P/Do 1.023 1.009 1.009 1.008 1.010 1.009 1.011
Dwire (mm) 0.198 0.198 0.198 0.198 0.198 0.198 0.198
Clad thickness 0.635 0.653 0.653 0.653 0.653 0.653 0.653(mm)
Fuel volume 49.29 57.44 57.84 58.46 56.72 57.26 56.11fraction (%)
Bond volume 2.55 2.97 2.99 3.03 2.94 2.96 2.90fraction (%)
Structure volume 28.58 16.76 16.19 15.30 17.81 17.04 18.70fraction (%)
Coolant volume 19.58 22.82 22.98 23.22 22.53 22.74 22.29fraction (%)
F/C ratio 2.517 2.517 2.517 2.517 2.517 2.517 2.517
Power density(kPower density 198.22 198.22 198.22 198.22 198.22 198.22 198.22(kW/L)
Linear heat rateLinearheatrate 17.82 98.62 112.87 138.01 86.16 100.41 76.60kW/m)
q" (kW/m2) 653.37 1199.85 1307.42 1481.90 1131.70 1246.42 1081.60
AT (oC) 354.45 174.83 208.75 270.42 153.56 187.74 138.68
q"' (W/cm3 ) 434.53 372.48 369.94 366.03 377.23 373.70 381.37
Inner channel flowInner channel flow - 25.49 21.67 17.09 23.25 16.29 20.22

Inner channel nnerchannel - 33.84 33.16 32.19 33.76 32.98 33.51power (%)
Core pressure drop(kCore pressure drop 2885.90 656.56 624.90 585.39 723.70 767.77 801.66(kPa) I . I I I

The annular fuel approach seems very promising for the low-conversion cores

(Tables 2.9 and 2.10), as their initially high P/Do value allows for easy accommodation of

the annular fuel pins. The most promising configurations are highlighted in the tables

and show a significant decrease of the average heat flux (-19.8% in the metal fuel core, -

m Al~ 1~ n r 1 I -1---



41.3% in the oxide core), an enormous decrease of the temperature rise in the fuel (-

86.76% in the metal core, -90.9% in the oxide core), and also a good match between the

fraction of power and flow into the inner channel of the annular fuel pins. The reduction

in average heat flux and fuel temperature can be used to increase the core power density

and/or operate with higher safety margins. Another attractive feature of the annular fuel

FAs is their much higher mechanical robustness with respect to the very small pins of the

ANL low conversion ratio designs.

Use of annular fuel in the high conversion ratio cores is more problematic. These

cores are very tight to begin with, so there is little room for accommodation of the

annular fuel pins. This results in a higher average heat flux than for the solid fuel base

case (e.g., first three columns to the right of the "Base Design" in Tables 2.11 and 2.12).

Tightening the P/Do to make room for more fuel pins does not seem to help much with

the heat flux and actually results in unrealistically low values of P/Do and Dwire (fourth

through eighth column to the right of the "Base Design" in Tables 2.11 and 2.12). In

fact, for these configurations, one should probably think of ribs vs. wire as the method for

spacing the pins. Finally, the match between flow and power in the inner channel of the

annular fuel pins is not good for the high conversion cores.

In the high CR annular FAs, the pressure drop across the core is lower than in the

solid FAs. The increased flow area in the annular FAs is the primary reason for this

decrease. In the low CR annular FAs, however, the pressure drop increases, as can be

seen in column two of Tables 2.9 and 2.10. This increased pressure drop is significantly

lower than pressure drops for typical tight cores with a high CR, and is subsequently of

little concern.



According to the results listed in this section, it was found that the low conversion

cores could readily accommodate the annular fuel pins and would greatly benefit in terms

of lower clad and fuel temperature, as well as enhanced mechanical robustness. On the

other hand, use of annular fuel pins in the high conversion cores would be problematic

due to the tightness of the fuel pin array, which does not allow for a good balance of flow

between the inner and outer channels.

The next logical step is to conduct a more thorough analysis of the thermal-

hydraulic performance of the promising FA configurations with annular fuel pins. This

will entail use of a subchannel analysis model to study the distribution of the sodium flow

within the FA and calculate the clad and fuel temperatures at the hot spot, as well as the

use of a physics code (e.g., MCODE) to verify the acceptability of the power distribution,

reactivity coefficients, and reactivity-limited burnup of the new FA designs. The

development of the subchannel analysis model is discussed in Chapter 5, while the

subchannel analysis itself is discussed in Chapter 6. For a brief discussion of the

verification of this MathCAD model, see Appendix A.

2.4 Bottle-Shaped Fuel

The fuel rod plenum accounts for up to ~40% of the overall fuel rod length, yet its

geometry is not subject to major neutronic restrictions. Bottle-shaped fuel refers to a fuel

pin whose diameter is smaller in the plenum region than in the active region, which

results in a significant decrease in the overall core pressure drop. To compensate for the



decrease in radial area of the gas plenum region of the fuel rod, the length of the gas

plenum region is increased, thus maintaining a constant gas plenum volume.

This reduction in fuel rod diameter in the plenum region opens up the core lattice,

resulting in less hydraulic resistance via a larger hydraulic diameter. In order to

implement this type of innovative fuel, there must be sufficient space to increase the

length of the fuel rods by moderate amounts (-10% to 20%). Additionally, the increased

gap width between fuel rods necessitates the use of a spacer other than wire-wrapped

spacers, so grid spacers are used in the plenum region for the bottle-shaped core. A

representation of such bottle-shaped fuel can be seen in Fig. 2.9.

The friction pressure drop in all axial regions (active core, shield, and plenum)

can be determined from Eq. (2.14). This relation indicates that the flow area and the

hydraulic diameter both contribute inversely to the pressure drop in the core. Therefore,

by decreasing the radius of the fuel rod in the plenum region (and simultaneously

increasing its length, thus maintaining the necessary plenum volume for fission gas

collection), the pressure drop in the plenum region can be decreased. The fuel rod pitch

remains constant in the fuel plenum region, so the gap between fuel rods is larger in the

plenum region. In order to ensure the stability of the fuel rods in the plenum region, it

was assumed that a grid spacer was needed for every 0.5 meters of plenum length, and

that the grid spacers were triagonal honey-combed spacers with a thickness of 0.5 mm.



Figure 2.9: Segments of the base (left) and bottle-shaped fuel pins (right) (drawing
to scale)

2.4.1 Bottle-Shaped Fuel Constraints and Figures of Merit

As with the annular fuel design, certain variables remains unchanged between the

base and bottle-shaped fuel assembly designs. In fact, the general core region remains

unchanged throughout the analysis of the bottle-shaped fuel, and only the plenum region

parameters are adjusted while investigating the effect that these changes have on core

pressure drop and overall core height. In the analysis of the bottle-shaped FA designs,

the following parameters are held equal to the corresponding ANL core designs:

- The core region geometric parameters including core height, core pitch, rod

diameters, core mass flow rate, wire-wrap dimensions, etc.
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- Core thermal and neutronic properties, such as power profiles (uniform), power

generation rate, and neutronic performance, e.g., spectrum, reactivity coefficients,

reactivity letdown, etc.

- Fuel assembly pitch in both core and gas plenum regions

- Shielding thickness and assembly entrance/exit configurations.

In comparing the annular FA designs to the ANL designs, the following two

figures of merit are adopted:

- Pressure drop across the core

- Total fuel rod length or core height.

Everything else being the same (i.e., sodium inlet temperature and flow rate,

pitch), it is clear that FAs with lower pressure drop across the plenum will also have a

lower pressure drop across the entire core and will thus allow for either lower pumping

costs or potentially power uprates. In addition to adjusting the plenum radius, further

investigations will center on the adjustment of the following parameters:

- Rate of change of rod radius, as a function of length (gradual or sudden

expansion)

- Length between grid spacers

- Number of grid spacers.



The most promising configurations will be considered the assemblies in which

large decreases in the overall core pressure drop are achieved (>15%) while the increase

in core height is minimized (<25%). Additionally, mechanical robustness of the bottle-

shaped fuel is a potential problem. Failure due to mechanical stresses induced at the

core/plenum interface of the rod could be a potential problem. These challenges are

investigated in Chapter 4.

2.4.2 Bottle-Shaped Fuel MathCAD Model

The total pressure drop for the bottle-shaped fuel rod, ZPb, is:

2(2.39)

where:

AP, = pressure drop across the grid spacers

APc = pressure drop in the (wire-wrapped) active core region of the fuel rod

APp = pressure drop across the plenum region of the fuel rod

K = minor loss coefficient for the subchannel expansion at the plenum bottom

vc = core average velocity.

The pressure drop across the core and shield regions is dominated by friction

losses, while the pressure drop across the plenum is both due to friction losses, and form

losses from the grid spacers. This is illustrated in the following equation:



AP, = APf + Ap, ,

where APpf represents the total pressure drop across the grid spacers and can be

calculated using Eq. (2.22) The turbulent drag coefficient for all regions can be

calculated using Eq. (2.18) in the core and lower shielding regions, and Eqs. (2.19) -

(2.21) in the gas plenum region.

Figure 2.10: Bottle-shaped fuel with sudden and gradual flow area expansions

(2.40)



The pressure drop across the subchannel flow area expansion at the bottom of the

plenum region depends on the 'rate' of expansion of the subchannel flow area. Two

types of expansions were explored in this study: a sudden expansion of the subchannel

area at the plenum base, and a gradual 30 degree expansion of the subchannel area at the

plenum base. Both of these expansion methods are shown in Fig. 2.10. As a simple and

conservative upper-bound estimate, the forward form loss coefficient, K, for the sudden

expansion is assumed to be 1 (in reality this is only true for an expansion to a plenum),

while the form loss coefficient for the gradual expansion of 300 is found by [2.10]:

K= 1
n

(2.41)

Af

where:

Ap = flow area in the plenum subchannels (post-expansion)

Afc = flow area in the core subchannels (pre-expansion).

If it is desired to investigate other angles of expansion than 300, tables and

correlations can be found in [4.10].

The pressure drop for bottle-shaped fuel over a wide range of plenum radii was

modeled for each of the four separate base design assembly models from Hoffman et al.

[2.2]: metal and oxide fuels for conversion ratios of 1.0 and 0.25 as found in Tables 2.3

and 2.5. Using the high conversion ratio metal fuel base assembly as an example, the



effects of reducing the plenum rod diameter for an unsupported gas plenum region is

investigated in Fig. 2.11. As grid spacers are added, the pressure drop increases

proportionally to the number of grid spaces. In the MathCAD model, the number of grid

spacers used was dependant upon the length of the gas plenum. It was assumed that for

each 50cm segment of gas plenum length, 1 grid spacer would be necessary. The
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Figure 2.11: Plot of pressure drops both across bare plenum (blue) segment of
assembly and the entire assembly (red) (no grid spacers) as a function of plenum

outer radius

resulting plot of grid-spacer pressure drop as a function of gas plenum outer rod diameter

is shown in Fig. 2.12. Additionally, in order to determine the influence of this "intra-

spacer" length exerted on the grid-spacer pressure drop, plots of the pressure drop across

the grid spacers are included for an intra-spacer length of 70cm, 20cm, and 10cm in Fig.



2.12. As can be seen in this plot, there are jagged discontinuities periodically seen in the

pressure drop curves. These sudden increases in pressure drop correspond to the

introduction of a new grid spacer (i.e. the plenum height has increased beyond the

marginal 50 cm gap required per spacer. As the inter-spacer length requirement

decreases, as expected, the discontinuities occur more frequently. For the inter-spacer

length of 10 cm, the discontinuities are very frequent, but also barely discernable from

the curve seen in Fig. 2.11. On the other hand, as the inter-spacer length increases, the

benefit obtained from having fewer grid-spacers is reduced. This is seen as the shift from

an inter-spacer length of 50 cm to 70cm produces a very small reduction in pressure drop,

while the shifts from 10cm to 20cm, or even from 20cm to 50 cm each produce larger

reductions in the total grid spacer pressure drop.
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Figure 2.12: Plot of pressure drop across grid spacers for various inter-spacer
lengths as a function of plenum outer radius

The overall influence that the grid spacers exert on core total pressure drop is seen

in Fig. 2.13. All the inter-spacer lengths plotted in Fig. 2.12 are also plotted in Fig. 2.13.

The additional pressure drop associated with the additional decreasing inter-spacer length

is quite small, and the jagged pattern seen so acutely in the Fig. 2.12 is effectively too

small to be seen in terms of the overall pressure drop. Thus, although the benefit of

utilized bottle shaped fuel is reduced as the inter-spacer length decreases, this effect is

small enough to be inconsequential. For the final results discussed in the next section, an

inter-spacer length of 50 cm is assumed, and the number of grid spacers included changes



accordingly. The patterns witnessed in the pressure drop vs. plenum rod radius plots

(Figs. 2.11 - 2.13) are identical for all assemblies modeled, and thus the plots for other

assembly types are not included.
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Figure 2.13: Plot of the total core pressure drop (with grid spacers) for various
inter-spacer lengths as a function of plenum outer radius

2.4.3 Bottle-Shaped Fuel Results

A plot of the total core pressure drop, APb, as a function of the plenum radius for each

assembly type is found in Figs. 2.14 - 2.17. The pressure drop decreases dramatically as

----- 10 cm spacer length
- - - - - - 20 cm spacer length
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the plenum radius is initially decreased for each model. The increase in the subchannel

flow area in FG plenum is proportional to the square of the reduction in gas plenum

radius. Therefore, as the radius of the fuel rod decreases, the increase in subchannel flow

area becomes marginally smaller. Additionally, by decreasing the FG plenum area, the

FG plenum height is increased to maintain a constant FG plenum volume. At very small

radii, the pressure drop due to the FG plenum length increase begins to dominate, and an

increased pressure drop is seen. Therefore, the ideal FG plenum radius would be found at

the design point indicated in Figs. 2.14 - 2.17, where the increase in FG plenum height is

small, but the resulting reduction in pressure drop is relatively high. Interestingly, the

sharp and gradual expansion configurations seem to differ minimally in all cases. The

optimal plenum radii for each model, as well as the resulting core pressure drop and

plenum height, are found in Table 2.13.

Table 2.13: Specifications of "optimal radius" bottle-shaped fuel
CR = 1.0 CR = 0.25

metal oxide metal Oxide
Optimal plenum radius (mm) 3.5 3.6 2 2.5
Plenum height (m) 2.547 2.483 2.572 2.112
Bottle-shaped to base plenum height
ratio 1.332 1.453 1.346 1.236
Bottle-shaped to base core height ratio 1.156 1.183 1.162 1.096
Plenum AP (kPa) 84.75 105.01 38.40 21.94
Core AP (kPa) 402.71 1299.28 138.94 95.21
Bottle-shaped to base core AP ratio 0.589 0.493 0.814 0.894

The breakeven cores (CR = 1.0) experience a large pressure drop reduction (40-

50%), due to the tightness of the original core. The burner cores (CR = 0.25) experience

much less benefit (10-20%) from the bottle-shaped fuel design, because the original core

flow areas were already quite large. In conclusion, the bottle-shaped fuel appears to be



most beneficial to high conversion (tight) ratio core designs, and less beneficial for low

conversion ratio core designs.
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Figure 2.14: Core pressure drop as a function of FG plenum radius for metal fuel
(CR = 1.0)
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Figure 2.15: Core pressure drop as a function of FG plenum radius
(CR = 1.0)
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Figure 2.16: Core pressure drop as a function of FG plenum radius for metal fuel
(CR = 0.25)
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Figure 2.17: Core pressure drop as a function of FG plenum radius for oxide fuel
(CR = 0.25)

2.5 Conclusions

Both bottle-shaped and oxide fuels were investigated using simplified, single rod

fuel cell and single assembly MathCAD models. The results of these models indicate

that the annular fuel configuration is best suited to low conversion ratio cores, while the

bottle-shaped design is best suited for high conversion ratio cores. In order to quantify

the benefits of utilizing these fuels, subchannel analyses must be performed for both the

base and innovative fuel configurations.



Chapter 3: Subchannel Analysis Model

The investigation of the innovative fuel types described in Chapter 4 required

adequate subchannel analysis codes to quantify the important thermal-hydraulic

parameters in the core, such as peak cladding temperature, centerline fuel temperature

and coolant velocities. However, traditional subchannel codes for sodium reactors, such

as SUPERENERGY II [1.16], can only evaluate hexagonal assemblies with wire-

wrapped fuel pins, but cannot be used for analysis of different fuel geometries or non-

hexagonal assembly configurations. Meanwhile, subchannel codes for water-cooled

reactors, such as VIPRE, are not suitable for analysis of liquid-metal systems. Therefore,

in this thesis we have expanded the capabilities of the RELAP5-3D code to perform

subchannel analysis in sodium-cooled fuel assemblies with non conventional geometries.

This expansion was enabled by the use of control variables in the code. Since it is the

first time that RELAP5 has been used for this type of analysis, extra care was taken in

validating it. First, the code was compared with the SUPERENERGY II code for the

case of solid fuel pins in a conventional hexagonal lattice. It was shown that the

temperature predictions from the two codes agreed within 2%. Second, the RELAP5

subchannel model was applied to the ORNL 19-pin test, and it was found that the code

could predict the measured outlet temperature distribution with a maximum error of -8%.

Using this new RELAP5-3D model, the geometry of a traditional hexagonal

assembly with wire-wrapped fuel was optimized first. This assembly exhibited large core

outlet temperature distributions, even with a uniform local power peaking profile. The

flow distribution was optimized through the utilization of semi-circular duct "ribs,"



which diverted flow from the edge subchannels and flattened the flow and temperature

profiles within the assembly. This model was then used to analyze the innovative core

designs described in Chapter 2. The details and results of this analysis are found in

Chapter 6.

3.1 Selection of RELAP5-3D as the Code for Subchannel Analysis

Several subchannel analysis codes have been used for both water and sodium

reactors over the past three decades [3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11,

3.12]. Traditional LWR subchannel analysis codes such as VIRPE [3.6] or COBRA IV

[3.10] have been successfully demonstrated using water systems, but are not suitable for

use with sodium, and in the case of VIPRE, cannot accurately or simply model the

geometry associated with the hexagonal wire-wrapped fuel assembly used in the SFR.

There are other codes that have been used to analyze SFR core performance in the

US, Korea, and the UK. These codes are based upon methods developed in the

SUPERENERGY II code, with various adaptations and adjustments in capability.

SUPERENERGY II, a simplified, steady-state subchannel code developed by Basehore

and Todreas [1.16], has been used to model both single assembly and multi-assembly

arrangements, however, the code does not include any type of fuel rod analysis. Rather,

the energy is deposited directly into the coolant. Additionally, there are severe

limitations to fuel configurations (only solid cylindrical pins with constant pitch and

diameter axially) and assembly geometries (only standard hexagonal, wire-wrapped fuel

assemblies) that can be modeled. Size limitations inherent in the code also prevent the



analysis of an assembly with more than 8 rings. As each of these conditions would be

breached in the application of innovative fuel types in subchannel modeling,

SUPERENERGY II was considered unsuitable for the modeling of innovative fuels.

SLTHEN (Steady-state LMR core Thermal-Hydraulics analysis code based on

ENERGY Model) [3.11] is based upon SUPERENERGY II code, but fuel and clad

calculations are incorporated, as well as the capability to more accurately model inter-

assembly convective flows. Despite these improvements, however, it is still unable to

model alternate fuel and assembly geometries. Other US codes used for SFR core

analysis, such as the SASSYS/SAS4 code, actually perform hot spot analyses, but not

full-scale subchannel analyses, and thus are not suitable for the study of alternative fuel

configurations, as described in this thesis.

Other codes are used for SFR subchannel analysis in the UK, France, and Japan,

and these codes were assessed to determine the capability of using them for the analysis

of innovative fuel types. SABRE4 [3.12] is capable of performing subchannel analyses

for both steady-state and transient conditions, but cannot accommodate annular fuel pin

designs. Subchannel analyses for SFR assemblies in JAPAN utilizes the ASFRE-III

code. This code is the standard code for use in analyzing fast breeder reactor (FBR)

thermal-hydraulics, but as with SABRE4, it is unable to accommodate innovative fuel

configurations. In France, the CADET code has been used to perform subchannel

analyses for SFR assemblies. This code can accommodate varying power profiles,

boundary conditions, and the standard SFR fuel assembly geometry (hexagonal assembly

with wire-wrapped fuel rods), but cannot accommodate innovative fuel configurations or

natural circulation flow conditions.



Therefore, none of these traditional subchannel codes are suitable for performing

subchannel analyses of sodium-cooled assemblies with annular or bottle-shaped fuel.

The Trio-U code [3.13] used in France can model various innovative fuel rod

configurations. However, this code is a full CFD code, the use of which is beyond the

scope of the simple subchannel analysis codes investigated here. A list of the major

subchannel analysis codes along with a summary of their capabilities and their limitations

is given in Table 3.1. Many of these codes implement the pressure drop correlations

developed by Basehore and Todreas. SUPERENERGY II [1.16] was utilized in SFR

modeling at ANL [3.14] and is an example of such a code.

As mentioned above, SUPERENERGY II is not suitable for analysis of the fuel

configurations explored in this project due to two primary limitations. The first limitation

is on the assembly and fuel rod geometry. The only type of assemblies that can be

analyzed utilizing SUPERENERGY II is hexagonal assemblies with wire-wrapped solid

fuel pins. Additionally, there is no allowance for adjusting the area of the edge channels,

nor is there the capacity to alter the type of spacer or to have differing pin diameters

within the same assembly. This lack of flexibility prevents investigation of innovative

design features into the assembly, such as the use of "ribs" in the edge subchannel to

flatten the power profile, as discussed later in this chapter. Furthermore, the fuel rods

must be solid pin-type fuel rods, with a single clad, fuel, and bond region for each rod.

This prevents the analysis of annular fuel because the coolant flow in the inner-annular

channel, as well as temperature distributions, heat splits, and even the distribution of flow

between the inner and outer fuel channels, cannot be modeled by SUPERENERGY II.



Table 3.1: Major codes used in LWR and sodium fast reactors subchannel analysis
CODE Country Description Limitations

Cobra IV USA Standard LWR subchannel
analysis code in US
Based on Chen/Todreas Up to only 8 hexagonal

SuperEnergy2 USA correlations, steady state, does rings in the assembly, only
not evaluate fuel rod temperatures cylindrical fuel rods allowed
Used for all French sodium
subchannel analyses, takes into

CADET FRANCE account power distributions, Only for nomnal pin
boundary conditions, and helical geometries, no natural

circulation or mixed flowwire-wrap, for forced and mixed
convection
CFD Code that can be used in anTRIO_U FRANCE CFD Code that can be used in an Complex, full CFD codeunstructured mesh treatment
Based on Cobra and MATRA,
benchmarked against SABRE4
and SLTHEN and found to be Only single assembly

MATRA-LMR KOREA comparable, with slightly different subchannel analysis +
prediction of pressure drop, cannot model annular fuel
implements Chen & Todreas
pressure drop correlations

SLTHEN US/KOREA Based on SE2 Same as SE2
Steady state or transient, 1 or 2

SABRE4 UK phase flow, blockage or bowed fuel pinspins fuel pins

System code, performs "hot
SASSYS/SAS4 USA channel" analysis, not actual not full subannel analysis

not full subchannel analysissubchannel analysis
US LWR subchannel analysis Water only, no correlations

VIPRE USA code, recently modified by MIT to for sodium-cooled wire-
analyze annular fuel wrapped assemblies
Japanese standard for fast
breeder reactor (FBR) Cannot model inner

ASFRE-III JAPAN development thermal-hydraulics; channel of annular fuel
can evaluate triangular pitched
sodium cooled assemblies

The second limitation of SUPERENERGY II relates to assembly size. Only up to

eight rings of fuel pins per assembly are allowed in the SUPERENERGY II subchannel

analysis. Because the base ABR design contains nine rings of fuel in the fuel assemblies,

SUPERENERGY II cannot be used to analyze even the base fuel designs for the ABR.

For these reasons, we decided to use RELAP5-3D to create a flexible subchannel

model, which could perform subchannel analyses for the fuel assemblies with annular

fuel pins and bottle shaped fuel pins, or any other assembly geometry that may be worth



studying in the future (e.g., vented fuel, cross-shaped fuel, etc.). Since RELAP5-3D has

not been used for subchannel analysis before, the development of these capabilities took a

good fraction of the project focus for this thesis. The RELAP5-3D subchannel model

combines several components, including sodium properties, wire-wrap correlations, and

control variables. A detailed description of the RELAP5-3D subchannel model is

reported in Section 3.2. The new RELAP5-3D model was verified by comparison with

the SUPERENERGY II code for a simple geometry and experimental data from the

ORNL 19 Pin test, as discussed in Section 3.3. Section 3.4 reports on the initial use of

the RELAP5-3D model for optimization of the fuel assembly geometries with traditional

solid fuel pins. The analysis and work for both bottle-shaped fuel and

internally/externally cooled annular fuel are discussed in Chapter 6.

3.2 Development of the RELAP5-3D Subchannel Model

Subchannel analyses provide detailed information regarding coolant and fuel

temperature, and coolant velocity and pressure distributions in the assembly of interest.

In subchannel analysis the flow is assumed to occur primarily in the axial direction, while

transverse flow is accounted for as a first order perturbation [3.15]. A coarse three-

dimensional model of sorts is then created by joining several subchannels together into a

single multi-ring assembly. If greater detail and accuracy is desired, this assumption can

be lifted through the use of a computational fluid dynamics (CFD) model, but this

approach is beyond the scope of the current study.



RELAP5-3D has the capacity to model 3-D geometries, but the computational

cost is significantly larger than for 2-D or l-D volumes. A "pseudo 3D" model can easily

be created in RELAP5-3D by creating a pipe, or a group of volumes, connected in series

through which the primary flow is in the axial direction. This pipe represents a single

subchannel. Junctions can then be added to the sides of this pipe to connect it to an

adjacent axial pipe, representing the cross-flow junctions. By connecting a series of

pipes via transverse flow junctions, a three dimensional subchannel mesh is created in

RELAP5-3D. Heat structures are created and joined to each pipe representing the fuel

rod adjacent to the subchannel. Because heat structures can only be connected to two

volumes (one on either side of the heat structure), each fuel rod is divided into six equal

segments azimuthally and connected to their respective subchannels, as seen in Fig. 3.1.

Finally, inlet and outlet plena are connected to the top and bottom of each subchannel,

and in turn are connected to a time dependent volume via a time dependent junction and

single junction, respectively. These allow for implementation of the assembly boundary

conditions, such total inlet flow and exit pressure.

The transverse flow due to pressure gradients, or cross-flow, can be modeled for

this subchannel geometry in RELAP5-3D utilizing form losses and junctions, but other

physical phenomena such as turbulent mixing and coolant conduction can not be

explicitly modeled by RELAP5-3D in the same way. Thus, a new approach must be

undertaken to include these important phenomena. In this report, the method used to

model these physical phenomena is outlined in detail. For each physical effect of

assembly flow, RELAP5-3D control variables were used to numerically model this

effect. Once an appropriate physical model was identified and the control variable



scheme was selected, these control variable schemes were then applied to each volume

within the subchannel geometry. This "brute force" method allows for RELAP5-3D to

perform subchannel analyses for fuel assemblies of any conceivable geometry.

Figure 3.1: Heat structure "split" for fuel rod

3.2.1 Subchannel Model Components

The assembly type initially investigated was a hexagonal wire-wrapped triangular

pitch fuel assembly, which can also be modeled by SUPERENERGY II. For the

RELAP5-3D subchannel model there are four basic components:

1. The geometry, which consists of various subchannels and fuel rods



2. The cross-flow model, which takes into account flow between subchannels

3. The conduction model, which accounts for conduction axially and radially

within the coolant

4. The turbulent mixing model, which accounts for coolant mixing and heat

transfer due to flow currents induced by the helical wire-wrap.

A description of these four elements is provided in the following sections.

3.2.2 Reference Geometry Model

The basic geometry of the fuel assembly is a hexagonal wire-wrapped fuel

assembly. The parameters used in the assembly model were adapted from an ANL report

on core layouts for the Advanced Burner Reactor with conversion ratios (CR) [2.2]. In

the ANL report, various cores are described for the ABR using a wide range of

conversion ratios for both oxide and metal fuel. The details of these assemblies are

discussed in Chapter 2, sections 2.1.1 and 2.1.2. The metal-fuel breakeven (CR=1)

assembly was used as the base model. The investigation of the conduction effects (see

Section 3.2.4 below) was completed using this model, which has nine rings. However, it

was subsequently found that SUPERENERGY II cannot model more than eight rings.

Therefore, the metal fuel breakeven assembly from [2.2] was scaled down directly to

have only eight rings, so that a direct benchmark between RELAP5-3D and

SUPENERGY II could be accomplished. The dimensions of both base assemblies are

given in Table 3.2. The pitch between rods is the wire-wrap thickness, while a small gap



between the wire-wrap at the outermost rods and the duct wall allows for thermal

expansion of the assembly and bundle insertion during fabrication. A scale model of the

eight ring assembly used for benchmarking is shown in Fig. 3.2.

Table 3.2: Dimensions of both 8 and 9 ring metal fuel assemblies
Parameter Value

Fuel type
CR

Rings
Fuel pins per assembly
Core inlet temperature (*C)
Linear heat rate (W/m)
Mass flow rate (kgls)
Flat to flat distance (cm)
Inter-assembly gap (mm)
Pin data
- Bond material
- Active core height, cm
- Height (plenum), cm
- Overall pin length, cm
- Fuel smeared density
- Fabrication density, % TD
- Pin diameter, cm
- Pin pitch-to-diameter ratio
- Cladding thickness, cm

Wire-wrap helical pitch (cm)

ANL original FA
design
Metal

1.00

9

271
355

33.71
37.44
15.71
3.94

Na
101.6

191.14
407.04

0.75
100

0.808
1.10

0.0559
20.32

Scaled down FA
design
Metal
1.00

8
217
355

33.71
30.04
13.28
3.94

Na
101.6

191.14
407.04

0.75
100

0.808
1.10

0.0559
20.32



Figure 3.2: Scale representation of 8-ring wire-wrapped fuel assembly

Because of symmetry in the hexagonal fuel assembly, only 1/12 of the assembly

needs to be explicitly modeled. A representative subchannel section indicative of an

eight ring subchannel model geometry can be seen in Fig. 3.3.



Interior

Figure 3.3: Portion of an 8-ring hexagonal assembly represented in a subchannel
model

The subchannels in each fuel assembly can be divided into three different types:

interior subchannels, edge subchannels, and corner subchannels (as shown in Fig. 3.3).

The number of each subchannel in each assembly is found according to the following

formulae:

N, = 6R2

N, = 6R (3.1)

N =6

where:

Ni = number of interior channels

Ne = number of edge channels

Nc = number of corner channels

R = number of rings.



The respective areas of each of these subchannels in the hexagonal assembly are

[3.16]:

2  2
Ai = P 2, TDo _ w

4 8 8

1 D2+D2
A " = P r D  (3.2)

Ac = ( 2 24

where:

Ai = area of interior channels

Ae = area of edge channels

A, = area of comer channels

Do = rod outer diameter

g = gap between rod bundle and duct wall

Dw = wire-wrap spacer diameter

P = fuel rod pitch.

The wetted perimeter for each type of subchannel is given by:



Pw = 7D° D 
2 2

Pw = 2 o + 2 +P (3.3)
2 2

W = (Dto + +D) + o

where:

Pwi = wetted perimeter of interior channels

Pwe = wetted perimeter of edge channels

PwC = wetted perimeter of comer channels.

The hydraulic diameter of each subchannel can then be calculated as:

A
Dh =4 , (3.4)

Pw

where Dh is the hydraulic diameter. The perimeter, area, and hydraulic diameter of each

type of subchannel are shown in Table 3.3. With these parameters, the subchannels can

then be adequately modeled as hydraulic components (pipes) in RELAP5-3D. Each

subchannel was created in RELAP5-3D by creating a pipe and dividing it into a sufficient

number of volumes in order to provide the required level of detail in the final model: one

each for the entrance and exit regions, five for the gas plenum, and 22 for the heated core

length. Each of these subchannel "pipes" is then connected to a heat structure

representing a fuel rod, and an inlet and outlet plenum at each end is created to connect

each of the subchannels. Fig. 3.4 is a side view of the basic subchannel geometry. Figs.

100



3.5 and 3.6 show top-down views of the subchannel model, including the RELAP5-3D

numbering scheme for the volumes and heat structures, respectively.

Table 3.3: Parameters of each of the subchannel types in the base study
Half-

Interior Edge Corner

Area (mm 2) 8.29 21.70 3.97
Wetted perimeter (mm) 12.71 21.59 5.20
Hydraulic diameter (mm) 2.61 4.02 3.05

950

900

rir r_ rj-r r-4 r

800

850I o50
Figure 3.4: Side view of subchannel model depicting pipe, heat structure, and

junction layouts for each subchannel
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Figure 3.5: Cross-sectional view of RELAP5-3D subchannel geometry including
volume numbering

For the interior channels, the numbering follows the
even digits of the listed 10, starting with 2 in the top,
and proceeding clockwise until 0, at which point 1 is
then used if there are 6 structures. 413

Figure 3.6: Cross-sectional view of RELAP5-3D subchannel geometry including
heat structure numbering
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The RELAP5-3D model described thus far constitutes the base geometry of a

hexagonal assembly with triangular-pitch fuel rods spaced using wire-wrap. Further

general additions to this model were needed, including localized (within the assembly)

pressure drop correlations, axial power distributions, and radial power distributions. The

pressure drop for each of the subchannels was calculated in RELAP5-3D by inputting the

turbulent or laminar drag coefficient correlation for wire-wrapped triangular-pitch fuel

subchannels developed by Chen and Todreas [3.17]:

C = 0.8063-0.90221-logHw +0.35261 log H rHw j )
SDo Do Do "DoJ.

,(3.5)

C = 974.6 +1612. -P 598.5 - 2  85

where:

Hw = the helical wire-wrap cycle height or axial lead of the wire-wrap

Cfr = the turbulent drag coefficient for flow through each subchannel.

The friction factor and pressure drops were then calculated in RELAP5-3D utilizing the

relations:

C f(TorL)

f Re , (3.6)
Renf
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H H G 2
AP =f JH , i (3.7)

where:

f = wire-wrapped subchannel friction factor

H = axial height of the subchannel

G = the axial max flux of the subchannel in question

AP = pressure drop of the subchannel in question

nf = Reynolds exponent; 0.18 for turbulent or 1.0 for laminar flow

CfrrorL = turbulent or laminar drag coefficient.

By programming these correlations and factors directly into the input deck, the

pressure drop for each subchannel is determined by RELAP5-3D. The axial and radial

power distributions can also be input directly into the RELAP5-3D input deck.

The base model contains 36 interior channels, 9 half-interior channels, 4.5 edge

channels, and 0.5 comer channels. The first set of calculations with RELAP5-3D did not

include cross-flow, turbulent mixing, and conduction; therefore, each subchannel was

effectively an isolated heated pipe. For simplicity, both the axial and radial power

distributions were assumed to be perfectly flat, i.e., local and axial peaking factors equal

to one. Under these assumptions, the outlet temperature for all subchannels with the

same geometry is expected to be the same. This expectation was confirmed by the

RELAP5-3D results, which are shown in Fig. 3.7.
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I Average T t = 510 "C

Figure 3.7: Outlet temperature distribution of RELAP5-3D basic model (no cross-
flow)

The edge and corner subchannel outlet temperatures are significantly lower than

the interior subchannel outlet temperatures, which was also expected because the edge

channels have a significantly larger cross-sectional flow area than the interior channels

(-2.1 time larger), and thus experience higher flow rates, but their heat rate is exactly the

same as for the interior subchannels (1/2 fuel rod per subchannel). This means that the

flow-to-power ratio (m/Q) is larger for the edge channels, resulting in a lower outlet

temperature. The comer channel has a smaller cross-sectional flow area than the interior

channels, but the power input is also 1/6 of the power input for the interior channels,

resulting in the decreased comer subchannel outlet temperature.

3.2.3 Cross-Flow Model

Next, the cross-flow model was added. In addition to axial flow in the

subchannel, each subchannel communicates via cross-flow due to pressure gradients
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between subchannels, which drive fluid flow from one subchannel to another in the

transverse direction. The degree of communication depends upon the magnitude of the

pressure gradients between subchannels, as well as the resistance to transverse flow. The

pressure gradients are calculated automatically within RELAP5-3D, while the resistances

to transverse flow were modeled explicitly as part of the cross-flow junctions.

These cross-flow junctions were modeled in RELAP5-3D by creating several

"multiple junction" components. These are simply single objects that consist of many

junctions. Each "multiple junction" component contains 22 junctions; these junctions

connect to the sides of the axial subchannel pipes at each of the corresponding 22

segments. These junctions have an area equal to the flow area of the respective volume

in the transverse direction (y and z), which represents the area between the closest point

between fuel rods, as seen in Fig. 3.8. These transverse junctions, as shown in Fig. 3.9,

allow fluid to flow from one subchannel to another. The magnitude of the flow between

subchannels also depends on the resistance to flow. This resistance to flow can be

modeled as a form loss, Kt, and this constant can be input directly into the junction

definition in RELAP5-3D. According to literature [3.18], an appropriate value for

transverse flow across staggered rod bundles can be found using the equations:

K, = Zr A. T. Re-0.27, (3.8)

A= 3.2 + 0.66a + 13.1-9.1 - (0.8+0.2a), (3.9)

S, (3.10)
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Where:

Zr = number of rows of tubes plus 1 divided by number of transverse junctions

' = Factor relating to bundle to flow angle (for 900 flow/rod angle, 'P = 1)

S2/S1 = bundle pattern factor (for a triangular bundle, S2/S1 = 1)

For the assembly configurations described in Chapter 2, Kt ranges from 0.21 to 0.67, and

these values were used in the respective assembly models.

The transverse area of the subchannel is related to the wire-wrap diameter, which

is small (0.805mm in the base case). The transverse flow area for each volume in the

subchannel, and thus for each cross-flow junction is then:

A = g. L,, (3.11)

where:

At = transverse flow area

L = volume axial length

g = gap between rods

i = volume type: c - core, e - entrance/exit, p - plenum.
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Figure 3.8: Cross-sectional and lateral views of the transverse (cross-flow) area for
a subchannel

Odd (red) = z-junctions

Even (blue) = y-junctions

Figure 3.9: Top-down view of RELAP5-3D subchannel geometry including junction
numbering
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Incorporating the above junction system and the cross-flow resistance, one obtains the

coolant temperature distribution (at the end of the heated length) seen in Fig. 3.10. In this

figure, it appears that there is no difference in temperatures upon addition of cross-flow.

There is indeed a slight change in the temperature profile, but the scale of this change is

on the order of l/10 0 C, which is too small to identify upon comparison between Figs. 3.8

and 3.10. This indicates that there is indeed communication between subchannels due to

cross- flow, but that it is almost imperceptible. This lower-than-expected influence of

cross-flow communication between subchannels is due to the very small transverse flow

area, as well as the small pressure gradients between subchannels through the heated

length of the core. To verify that these were the causes for the low transverse flow effect,

several cases were run in which the cross-flow resistance was adjusted from Kt = 0 to 1.0.

Each of these cases produced similarly small changes in the temperature distribution at

the core outlet for the subchannels, indicating that indeed the small amount of

communication between subchannels is due to small transverse areas and pressure

gradients, rather than an erroneously high transverse flow resistance.
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Average Tout = 510 OC

Figure 3.10: Core outlet temperatures for model containing cross-flow junctions

3.2.4 Fluid Conduction Model

Next, heat conduction in the sodium coolant was introduced in the subchannel

model. Conduction can occur within the assembly coolant in both the axial and radial

directions. Axial conduction increases the amount of energy transferred in the direction

of the flow, while radial conduction tends to flatten the core temperature non-

uniformities. RELAP5-3D does not account for conduction within the fluid, due to its

primary development for use with light water reactors (LWRs). However, the thermal

conductivity of sodium is nearly 100 times larger than that of water, and thus may in

principle affect heat transfer within the assembly. This influence is dependent upon flow

regime, flow rate, and the physical properties of the fluid. Methods for modeling the

effects of conduction within the coolant in RELAP5-3D have been previously

investigated [3.19] and a similar approach is used in this subchannel model. Yoo et. al.
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[3.20] state that as a simple rule, fluid conduction becomes important when the modified

Peclet number (Pe*) is less than 100. Their modified Peclet number is defined as:

, L
Pe* = RePr , (3.12)

Dh

where:

Pr = Prandtl number

L = length of the component,

Dh = hydraulic diameter of the component.

The modified Peclet number for the steady-state full-power model is much greater than

100, indicating that axial conduction should be negligible, but at lower flow rates, the

Reynolds number decreases, and this effect may become significant. Thus, the model

utilizing axial conduction was constructed as described below.

Control variables can be used to calculate the heat transfer due to conduction and

to add them to the fluid via "pseudo" heat structures. These pseudo heat structures are

small structures (less than 1% of the actual heat structure volume, so as to have negligible

thermal capacity), which are connected at the right side (as pertaining to the RELAP

metric for right and left sides of heat structures) to the appropriate volume, while the left

side of the heat structures remain adiabatic. These structures are then linked to the

control variables, which calculate heat due to conduction so that the conducted heat is

added directly to the fluid in the appropriate volume. Fourier's Law was used to

calculate the heat transfer due to conduction in the fluid:
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dT
q = -kA ,

dz

where:

q = heat rate transferred due to conduction

k = thermal conductivity of fluid

T = temperature of fluid

z = physical distance over which temperature gradient is measured.

'm+1

Km+l

Am+1
Tm

AZ Km
Am

m m+1

qm,m+1

Ay

Figure 3.11: Schematic of volume connections axially (left) and radially (right)

Control variables were created, which calculate conduction via Fourier's Law. Fig. 3.11

illustrates the schematics for volume connections both axially and radially. Utilizing the

nomenclature of Fig. 3.11, the axial heat conduction in the coolant from one volume,

volume m, to the next volume, volume m+l, can be calculated as:
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T+l - Tn (3.14)
qm,m+i = -kml Am 1 (3.14)

2 2

where:

qm,m+l = heat transferred from volume m to volume m+l

kml/2 = linear average of thermal conductivity of fluid in volumes m and m+1

Aml/2 = area of the junction connecting volumes m and m+ 1

Tm+1 = temperature in volume m+l

Tm = temperature in volume m

Az = distance between the midpoints of volumes m and m+1.

For simplicity, the physical constants of the model are lumped into a single term, Bm:

k IA I
m- m-

Bm = 2 2 (3.15)
Az

Thus, the equation used to calculate the heat transfer axially is:

q,,,+1 = B,, (Tm+ - T) . (3.16)

This same logic can be used to calculate the heat transfer due to conduction radially in the

fluid, merely by substituting Az for Ay, and by utilizing the appropriate volume

properties and conditions.
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Fig. 3.12 shows the core outlet temperatures for the subchannel model, which

contains cross-flow and axial conduction. As can be seen in this figure, the axial

conduction effects are extremely small (no difference up to two significant figures), and

can be considered negligible. To demonstrate the effect of conduction at reduced flow

conditions (where the modified Peclet number is significantly less than 100), a RELAP5-

3D conduction model was created, which has a flow and power level reduced to 4% of

the power/flow at steady state. Fig. 3.13 shows the axial temperature profile of the hot

channel for both the steady state conditions model and the reduced flow/power model,

both including conduction and cross-flow. At the end of the heated length of the channel,

and through the plenum, the temperature difference between the steady state model and

the reduced flow model is approximately 80 C. Though small, this number indicates that

at low flow, such as during transient conditions or conditions that would favor natural

circulation, conduction would indeed become significant. Perhaps more revealing is Fig.

3.14, which shows the comparison of temperatures at low flow/power conditions (4%

steady state flow and 4% power) with and without axial conduction. This demonstrates

the effect of decreasing the Reynolds number throughout the assembly coolant

subchannels. As the Reynolds number decreases, the modified Peclet number also

decreases, and the effect of conduction becomes increasingly significant.
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Average Tout = 510 oC
Red = conduction
Black = no conduction

Figure 3.12: Comparison of core outlet temperatures for the basic cross-flow
subchannel model with and without axial conduction at full flow/power

Axial Temperature Profile of Hot Channel
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- 4% Power/Flow
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Figure 3.13: Comparison of the hot channel axial temperature profile for a steady
state and low flow/power model, both with conduction effects
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Average Tout = 510 oC
Red = conduction
Black = no conduction

Figure 3.14: Comparison of core outlet temperatures for the basic cross-flow
subchannel model with and without axial conduction at 4% flow and power'

In addition to axial conduction, radial conduction can become significant through

the assembly at low flow conditions. Radial conduction effects were incorporated into

the RELAP5-3D input deck instead of axial conduction effects (including both effects is

quite expensive computationally, and for little benefit at this point), and the model was

run at both full power/flow conditions and 4% power/flow conditions. The resulting core

outlet temperature profiles for the full power/flow and 4% power/flow conditions as

compared to the basic cross-flow model can be seen in Figs. 3.15 and Fig. 3.16,

respectively. As seen in Fig. 3.15, radial conduction has no discernable influence on the

outlet temperatures for the inner subchannels, where temperature differences between

subchannels are quite small. Near the assembly edge, however, where the temperature

differences are quite large (-1260C), radial conduction influences the outlet temperature

profile. The temperatures in the interior channels immediately adjacent to the edge

1 Due to rounding the edge subchannels appear to have the same temperature with and without conduction.
In reality these subchannels have 0.1-0.3'C higher temperature when conduction is accounted for, which is
sufficient to compensate for the lower temperature in the other subchannels. Therefore, the average outlet
temperature is indeed 510 0C in both cases.
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channels are decreased, due to heat transfer via fluid conduction to the edge subchannels

while the temperatures of the edge subchannels are increased. Though the effects of

radial conduction at full power seem to be significant in this model, this is only for very

large temperature differences between subchannels. When turbulent mixing (as

described in the next section) is included, the largest temperature difference seen between

subchannels is about 210 C. This is nearly seven times less than in the model which does

not include turbulent mixing. Thus, the influence of radial conduction at high flow can

be neglected when turbulent mixing is included.

Fig. 3.16 shows the effects of radial conduction for a decreased modified Peclet

number. In this figure, the flow rate and power were decreased to 4% of the full power

levels and the radial conduction effects were again modeled. At these decreased flow

conditions, radial conduction begins to have a very large influence on the core outlet

temperatures. Due to the increased communication via fluid conduction, a temperature

distribution is created, which is quite similar to the distribution created when turbulent

mixing is included, as discussed later in this report. Therefore, for transients and other

low-flow (and thus low modified Peclet number) scenarios, both radial and axial

conduction should be included to maintain accuracy.
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Average Tout = 510 OC
Red = conduction
Black = no conduction

Figure 3.15: Comparison of core outlet temperatures for the basic cross-flow
subchannel model with and without radial conduction at full power/flow

Average Tout = 510 oC
Red = conduction
Black = no conduction

454

Figure 3.16: Comparison of core outlet temperatures for the basic cross-flow
subchannel model with and without radial conduction at 4% power/flow
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3.2.5 Turbulent Mixing Model

Significant mixing occurs between subchannels due to the random turbulence and

coherent swirl flow generated by the wire-wrap spacers around each rod. The helical

shape of the wire-wrap induces radial and azimuthal flow components in the coolant as it

flows upward through the core. There are two primary physical effects of having wire-

wrap spacers in the assembly. The first effect is experienced only in the interior

subchannels of the assembly. The axial flow hits the wire-wrap and begins to "swirl"

around the rod as it follows along the wire-wrap's helical shape. This phenomenon is

illustrated in Fig. 3.17. For the interior channels of the assembly, each subchannel's

transverse boundary experiences mass inflow and outflow. This transverse mass flow is

directly proportional to the axial mass flux in each of the adjacent channels. Thus, for the

interior channels where the mass flux is about the same for each channel, the net

transverse mass flux is zero. However, the edge subchannel axial mass flow rate is

substantially different from the interior triangular subchannels. Therefore, there is a

small amount of transverse mass flow between the triangular and the edge subchannels.

Because the net mass flow between interior channels is zero, mass flux between adjacent

subchannels is important only in determining the amount of energy transferred due to

mixing that occurs in this region. For the boundary between the edge and interior

subchannels, there is a net mass flux, but this mass flux cannot be modeled with

RELAP5-3D. This is because the only way to set a mass flow through a junction in

RELAP5-3D is to use time-dependent junction components, but these components cannot

dictate mass flow based upon control variable calculations in-situ. The mass flow can
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only be set at a predetermined amount (as a function of time) that is input prior to the

initiation of the run; this flow can vary with time, but only according to constant values

given in the input deck. Therefore, this introduces an error, estimated to be of-~3% to

4.5%, in the axial mass flow rates of the edge channels.

I
I 9I,

M M- M
b* ge

Figure 3.17: Swirl mixing in interior subchannels

The effects of this phenomenon have been investigated in depth by Chen and

Todreas [3.17]. The dimensionless effective eddy diffusivity, E*, is a measure of the

transverse mass flux induced by this physical mixing effect. The effective eddy

diffusivity is defined by the parameters of the fuel rod and wire-wrap only, and is found

by the following relation:
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__ D, ( 7CD0  0.5

* .14 o tan 0 (3.17)

4 8

where 0 is defined by:

cos0 = H (3.18)

Once E* has been determined, the transverse mass flow rate can be calculated as a

function of the axial mass flow and the transverse area, which is simply equal to the

junction area, as defined above. This relation is:

m, = e * GA (3.19)

where:

mT = transverse mass flow rate through each interior subchannel face.

The transverse mass flow rate due to the turbulence and swirl mixing is not

specifically input in the mass balance of the RELAP5-3D model. This is due to the fact

that sodium is, to a very good approximation, an incompressible fluid; therefore, a

turbulent eddy entering the subchannel displaces a volume of sodium equal to its own,

thus resulting in a zero net change of mass within the subchannel volume. However, the

energy balance is affected by mixing, and this effect was included in the RELAP5-3D

model, as follows. When the transverse mass flow rate has been determined, the energy
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transfer due to the turbulent and swirl mixing in from volume m to volume m+l1 can be

determined from the equation:

qT = mC, (T - T) (3.20)

where:

qT = the transverse energy transfer due to turbulent and swirl mixing

C, = heat capacity of the coolant.

The second effect that is derived from utilizing wire-wrap spacers is the flow

phenomenon that occurs in the edge subchannels of the assembly. All the wire-wrap

spacers in the assembly are wound in the same direction around the rods. When there are

only two rods per subchannel, there is an absence of countercurrent rotational flow. This

effect, when summed up over the edge rods, results in the production of a "swirl" flow

around each of the edge channels of the assembly. There is a net mass flux, which flows

in a single direction around the periphery of the assembly. This physical effect is

illustrated in Fig. 3.18. The swirl flow, measured by the dimensionless swirl ratio, C1L,

flattens the core outlet temperature distribution along the assembly duct (which would

otherwise be somewhat large due to the small heat input to mass flow ratio in the comer

channels with respect to the edge channels). The swirl ratio, CIL, is the ratio of the

transverse to axial flow velocities in the edge channels. It is also dependent only on fuel

rod and wire-wrap properties, and is defined as:
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-CL = 075HL'

V D

where:

vT = transverse velocity

v = axial velocity.
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Figure 3.18: Swirl mixing in edge and corner subchannels
Figure 3.18: Swirl mixing in edge and corner subehannels
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The energy transfer due to transverse flow induced in the edge channels can then

be determined from (3.17) where mT is:

m, = vTpAT, (3.22)

where p is the coolant density in the edge junction connecting the two volumes.

Once the control variables have been programmed into RELAP5-3D, the energy

must be added or subtracted to the control volume of relevance. This is done by creating

a "pseudo" heat structure, as described by Davis [3.19]. Again, this pseudo heat structure

is small (less than 1% of the actual heat structure volume, so as to not absorb significant

amounts of heat) and is connected to the appropriate volume. Therefore, as the model is

converging to steady state, there are actually 2 distinct "heat" sources/sinks connected to

each volume. The first heat source is fission in the fuel rods themselves. The second

source/sink is the pseudo heat structure which either adds or subtracts heat from the

volume based upon the dynamically determined turbulent and swirl mixing heat transfer,

as calculated by the control variable relations described above.

When both mixing flow phenomena are included in the subchannel model, the

overall effect is to flatten the core outlet temperature distribution. Fig. 3.19 shows the

subchannel model core outlet temperatures both with and without the turbulent mixing

system included. As can be seen in this figure, there is dramatic improvement in the core

outlet temperature profile when turbulent and swirl mixing (no conduction) is included.
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Figure 3.19: Comparison of core outlet temperatures for the basic cross-flow
subchannel model with and without turbulent and swirl mixing

3.2.6 Some Limitations of the RELAP5-3D Model

There are four limitations to using this model. These limitations pertain to the use

of the control variable scheme, scratch space availability, input deck creation time, and

heat transfer approximations. The first limitation is the amount of control variables

allowed in each input deck. The "brute force" method described above requires

approximately 5 to 7 control variables for each volume to model mixing and 4 to 6

variables to model coolant conduction. Therefore, using control variables to model

physical phenomena within the assembly is suitable for moderate-sized assemblies (up to

13 rings), but it cannot be done for larger assemblies. This is primarily due to the fact

that RELAP5-3D only allows 10,000 control variables, and the total number of control

variables utilized for the mixing model alone for a 13 ring model is around 9,600. Hence,

the subchannel model described in this report is limited to 1/12 assembly models of 13

rings or less (with turbulent mixing but without conduction).
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An additional limitation is the amount of scratch space allotted for RELAP5-3D

calculations. This space is limited, and a subchannel model of 10 or more rings cannot be

run using the RELAP5-3D executable 3.4.1.1.d., which is the current executable used at

MIT. The subchannel model is a massive model with 22 volumes per subchannel, and in

a 10 ring, 1/12 assembly model, there are 60 pipes, which means that there are over 1,320

volumes with corresponding heat structures and junctions. Therefore, the space required

to perform a RELAP5-3D run exceeds the scratch space in the 3.4.1.1.d. executable. To

overcome this limitation, a special version of the RELAP5-3D executable 3.4.2 was

created specifically with a larger scratch space [3.21]. This larger scratch space allows

for the modeling of larger assemblies, but the tradeoff is that a massive amount of data

will be dumped in the event of run failure, resulting in a computer freeze for a significant

time while the data is printed to a file.

The third limitation is the time investment required to create the subchannel

model. The basic geometry, while large, is not restrictive in scope. Creation of a

subchannel model that does not include any control variable schemes would require

approximately 15-30 hours from scratch, depending upon user experience and the size of

the model. However, the time required to create control variable schemes for each

volume is quite large. Because errors in control variables can be difficult to detect after

the completion of the subchannel model, careful attention must be given to each control

scheme to ensure that the physical effects are modeled correctly. Additionally, it is

difficult to create a macro which would adequately produce a control variable scheme for

differing volumes, as unique volume identifiers must be included in each and every

control variable. Therefore, the time required to create a subchannel model that includes
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control schemes and pseudo-heat structures is increased by a factor of around 3-5 times.

This is a substantial increase in required resources, and is the largest drawback of

utilizing RELAP5-3D as a subchannel modeling tool. This drawback has to be weighed

against the flexibility afforded by the RELAP5-3D approach.

The final limitation is the evaluation of azimuthal conduction within the fuel rods.

While the rods are divided into different segments azimuthally, our model does not

account for conduction of heat from one subchannel to another via fuel rods. This effect

is also neglected in SUPERENERGY II, which does not even evaluate the temperature of

the fuel rods.

3.3 Verification of the RELAP5-3D Subchannel Model

To gain confidence in the accuracy of RELAP5-3D as a subchannel analysis code,

we compared its performance to that of SUPERENERGY II, a traditional sodium-cooled

reactor subchannel code.

3.3.1 The SUPERENERGY II Code

SUPERENERGY II is a steady-state subchannel analysis code originally created

by Todreas et al. [1.16]. This code is specifically designed to accommodate sodium-

cooled, wire-wrapped, hexagonal fuel assemblies, and has been used extensively by

Argonne National Lab (ANL). In essence, the SUPERENERGY II code was adapted so

that flow data could be read from the EBRFLOLW code (an ANL internal code which
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determines the flow splits between the various assemblies of the EBR II reactor) and

neutronic data could be read from DIF3D. When incorporated with these codes, it

provided very accurate subchannel analysis (within 10% of the inlet-to-outlet coolant

temperature increase) for EBR II cores [3.22]. This result essentially verified

SUPERENERGY II as a code capable of producing accurate results for subchannel

analyses using wire-wrapped, triangular-pitch sodium-cooled assemblies.

An 8-ring 217-pin assembly was modeled in SUPERENERGY II with identical

dimensions to the 8-ring 217-pin RELAP5-3D model described in Section 3.2.2.

Unfortunately, SUPERENERGY II does not provide a map of the fluid velocities in the

channels. Rather, only the average velocity for each of the subchannel types is printed at

the given axial position. These velocities, as well as the average Reynolds number in the

subchannels, are found in Table 3.4. The agreement with RELAP5-3D is very

reasonable. The SUPERENERGY II core outlet temperatures are shown in Fig. 3.20.

This figure shows the subchannel coolant temperatures at the core exit (heated length) for

the entire assembly (although significant symmetry is present). The numbers shown each

indicate a subchannel coolant temperature, while the asterisks represent the duct wall.

The numbers immediately to the outside edge of the asterisks represent the duct wall

temperatures.

Table 3.4: SUPERENERGY II and RELAP5-3D single assembly parameters
Average Velocities (mis)

Interior Edge Corner Channel Re
SUPERENERGY 9.648 10.342 10.342 70810
RELAP5-3D 9.6 11.2 10.6 71093
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471 473 475 475 475 474 473 472 471 471
* A * * * * * * * * * * * *

* 471 473 475 475 475 474 473 472 471 471 *
* 491 497 498 498 498 497 496 491 *

471 * 471 491 503 506 507 507 507 506 502 491 473 * 473
* 502 515 518 519 519 519 518 514 503 *

472 * 472 496 514 521 523 523 523 523 521 515 497 475 * 475
* 506 521 526 528 528 528 528 526 521 506 *

473 * 473 497 518 526 529 530 530 530 529 526 518 498 475 * 475
* 507 523 529 531 531 531 531 531 529 523 507 *

474 * 474 498 519 528 531 532 532 532 532 531 528 519 498 475 * 475
* 507 523 530 532 532 532 532 532 532 530 523 507 *

475 * 475 498 519 528 531 532 532 532 532 532 531 528 519 498 474 * 474
* 507 523 530 532 532 532 532 532 532 532 530 523 507 *

475 * 475 498 519 528 531 532 532 532 532 532 532 531 528 519 497 473 * 473
* 506 523 530 532 532 532 532 532 532 532 532 530 523 506 *

475 * 475 497 518 528 531 532 532 532 532 532 532 532 531 528 518 496 472 * 472
* 503 521 529 532 532 532 532 532 532 532 532 532 529 521 502 *

473 * 473 491 515 526 531 532 532 532 532 532 532 532 532 531 526 514 491 471 * 471
471 * 471 A 471 * 471
471 * 471 491 514 526 531 532 532 532 532 532 532 532 532 531 526 515 491 473 * 473
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Figure 3.20: Core outlet temperatures for subchannel analysis using SUPERNERGY II
at the heated length outlet

3.3.2 SUPERENERGY II Results Comparison

For a more direct comparison of the SUPERENERGY II and the

RELAP5-3D models, Fig. 3.21 shows the core outlet temperatures predicted by both

codes. The agreement is rather good. Fig. 3.22 displays a one dimensional radial profile

comparison of the two models, so that trends and differences can be noted and identified.
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This plot indicates that the two codes predict a very similar distribution. Upon closer

inspection of the RELAP5-3D data, it can be seen that the innermost subchannel coolant

temperatures are slightly higher (-30 C) than the SUPERENERGY II innermost

subchannel coolant temperatures. At the same time, the edge subchannels and the

outermost interior channel coolant temperatures are slightly lower (-1-2°C) in the

RELAP5-3D model than the same channels in the SUPERENERGY II model. This trend

indicates that the wire-wrap induced turbulent mixing is over-predicted in the edge

channels of the RELAP5-3D model. This over-prediction indicates that the mixing

parameters at the edge have a smaller effect in the SUPERENERGY II model than in the

RELAP5-3D model. However, the maximum difference of 3.50C is quite small and

easily falls within the uncertainty band allowed for code verification. Additionally, it is

smaller than the 10% (coolant temperature increase) error experienced in the validation of

SUPERENERGY II using the EBR II reactor. Also, the temperature prediction in

RELAP5-3D is higher in the hot channels than for SUPERENERGY II. This difference,

therefore, errs on the side of conservatism, and is acceptable for the scope intended in

utilizing the RELAP5-3D model. An additional difference between the

SUPERENERGY II model and the RELAP5-3D model is the coolant properties.

SUPERENERGY II calculates the coolant properties at a single temperature input by the

user with which it performs the necessary heat balances. RELAP5-3D, however, utilizes

temperature-dependent coolant properties, improving the accuracy of the heat balances

performed by the code a small amount.
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Table 3.5 shows the change in the specific heat as a function of temperature for sodium.

The error for Cp (which is related to outlet T by Q=Cp*m*dT) for a change in temperature

of 100 C is approximately 1.2%. Therefore, a coolant temperature rise of 155 C (which

is the distribution in the core) yields a change in temperature of -2% due to the

differences in specific heat. This is consistent with RELAP5-3D predictions, which show

higher outlet temperatures in hotter inner channels, where the C, is the lowest.

Table 3.5: Change in sodium pro erties for a 100*C in temperature

Cp
T (oC) (J/kg*K)

513.12 1261.275

413.12 1276.448

T=1000C 1.189%

To ensure that the agreement between SUPERENERGY II and the RELAP5-3D

subchannel model holds for a reasonably broad range of conditions, comparisons between

the results of two codes were made for different flow/power conditions and for a

modified geometry. A 1-D temperature radial distribution for both models is plotted in

Fig. 3.22 for reduced flow conditions (80% flow) at full power and for a different

geometry (a larger edge gap) at full flow and power. As can be seen, the agreement

between the two subchannel models is maintained under each of these conditions.

Therefore, it is concluded that the RELAP5-3D model can be used for subchannel

analysis of sodium-cooled reactors.
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3.3.3 Benchmark: The ORNL 19-Pin Test

As a more robust benchmark, the RELAP5-3D subchannel analysis model was

compared to experimental data from the 19-pin heated rod experiment performed at Oak

Ridge National Laboratory (ORNL) [3.23]. The 19-pin ORNL experiment was

conducted in the fuel failure mockup (FFM), a large sodium high temperature facility

built specifically for testing liquid metal fast breeder reactor (LMFBR) fuel rod bundles.

Multiple runs were conducted at various flow and power conditions. Two of these runs

are of interest in the following benchmark: one at high flow and one at low flow

conditions (for which the effect of conduction is expected to be important). The

parameters of the test assembly are found in Table 3.6.

Table 3.6: Parameters for the ORNL 19-pin test assembly

Rod diameter (mm) 5.84

Rod pitch (mm) 7.26

Wire-wrap diameter (mm) 1.42

Rod pitch/rod diameter 1.24

Duct inside flat-to-flat distance (cm) 3.41

Total length (m) 1.02

Pressure (MPa) 0.101

Inlet temperature (oC) 315

Inlet mass flow (kg/s) (high/low) 3.0378 / 0.004087

Modified Peclet Number 57.236 / 4019.66

Average rod power (W) (high/low) 16975 / 263

Axial power distribution uniform

Radial power distribution uniform
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Figure 3.23: Normalized outlet temperatures for ORNL 19-pin test [3.2]

The subchannel numbering scheme for the ORNL 19-pin test assembly is shown in Fig.

3.23. Thermocouples were placed at the outlets of subchannels 41, 32, 18, 17, 4, 1, 9,

and 38, which form a diagonal "corner-to-corner" line across the hexagonal assembly.

The outlet temperatures from each of these subchannels were monitored and used to form

a steady-state ID core outlet temperature profile for the test assembly. The 1D outlet

temperature distribution for the high flow test is plotted in Fig. 3.24, along with

temperature predictions from subchannel codes MATRA-LMR, SABRE4, and SLTHEN.

It is interesting to note that SLTHEN is a slightly modified version of

SUPERENERGY II and thus the temperature predictions made by SLITHEN closely

resemble those that would have been made by SE2. As can be seen, there is reasonable
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agreement between SLTHEN and the test data, although the code over-predicts the

temperature in the center of the assembly. This indicates that SLTHEN (and thus

SUPERENERGY II) have good agreement with experimental data.
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Figure 3.24: Normalized outlet temperatures for ORNL 19-pin test [3.2]

The ORNL 19-pin test assembly was modeled using RELAP5-3D during high

flow conditions with a subchannel numbering scheme outlined in Fig. 3.25.
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Figure 3.25: RELAP5-3D subchannel numbering for ORNL 19-pin test model

The core normalized outlet temperature profile for this model is plotted in Fig. 3.26 along

with the actual test data from the ORNL 19-pin test. Here, the normalized outlet

temperature (Tnon) is represented by the equation:

(out - Tin)

where:

Tnorm = normalized outlet temperature

T = core outlet temperature of the individual subchannel in question

Tin = assembly temperature

Tout = outlet bulk temperature as measure by a thermocouple, (not calculated as the

average of all the subchannels)

Additionally, error bands at the 95% confidence interval based on 6 runs are included in

Fig. 3.26. As can be seen in this figure, RELAP5-3D can accurately predict the outlet
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temperature distribution within the test assembly with a maximum error of -8%.

Additionally, the temperature distribution predicted by RELAP5-3D is in good agreement

with, and well within the bounds of the predictions made by the other accepted sodium

subchannel analysis codes. Moreover, the RELAP5-3D provides conservative results.

Nevertheless, a critical assessment of the advantages and disadvantages of RELAP5-3D

with respect to other accepted sodium subchannel analysis codes is of interest, and is

discussed in the following section.
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The low flow ORNL 19 pin test was also modeled using RELAP5-3D, and is of

particular interest. Fig. 3.27 shows the core outlet temperature distribution across key

subchannels for the low flow case, in comparison with standard subchannel code

predictions [3.2]. Unlike the high flow case, the difference is significant; the actual test

results provide a line that is for all intents and purposes flat, while the subchannel models

still predict a peaked profile. This difference is due to fluid conduction, which is not

explicitly modeled in some of the other subchannel analysis codes.
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As discussed in section 3.2.4, the coolant conduction becomes significant when

the modified Prandtl number, as calculated in Eq. 3.12, is less than 100. The Reynolds
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number in the ORNL 19 pin test configuration subchannels at low flow is -1100 while

the Prandtl number is -0.005417. With the length and hydraulic diameter of each core

volume calculated from the data given in Table 3.6 (3.554 cm and 3.7 mm, respectively)

the modified Peclet number is -54.6. Thus, fluid conduction is significant at the low

flow conditions of the 19 pin FFM experiments, and should be incorporated. Fig. 3.28

shows the REALP5-3D 19-pin model core outlet temperatures for the low flow and

power conditions listed in Table 3.6. This figure includes both a model with axial only

conduction, axial and radial conduction, and the actual experimental data. Essentially,

the RELAP5-3D model that includes axial and radial conduction with turbulent mixing

effects underestimates the effects of conduction, but can still predict the outlet

temperature of the test assembly with a maximum error of only 6%. Thus, the

performance of the RELAP5-3D model is considered acceptable with respect to

predicting the outlet temperatures of the ORNL 19 pin test assembly at high and low

flow/power conditions.
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Figure 3.28: Normalized outlet temperatures for ORNL 19-pin test [3.23] and
RELAP5-3D subchannel model at low flow/power conditions

3.4 Critical assessment of the advantages and disadvantages of RELAP5-3D as a

subchannel analysis code with respect to SUPERENERGY II

Though RELAP5-3D is not typically used for subchannel analysis, this study

determines the feasibility of utilizing RELAP5-3D for such an analysis. The subchannel

model clearly produces reasonable results, as explained in Sections 3.3.3 and 3.3.4. In

the creation of the subchannel model, each of the individual and significant components

of single-assembly flow and heat transfer was included via control variables. Upon

comparison with SUPERENERGY II results for an identical assembly, it was determined

that the RELAP5-3D subchannel analysis model has been verified, with a conservative

difference between core outlet coolant temperatures of no greater than 3.5°C. Thus,

RELAP5-3D can be considered a suitable platform with which to perform subchannel
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analyses with accuracy comparable to SUPERENERGY II. In considering the

appropriate code to utilize for modeling subchannel analyses in SFR applications, the

following points are significant:

1. SUPERENERGY II is restricted to hexagonal fuel assemblies with wire-wrapped

fuel pins, while RELAP5-3D can model any lattice geometries, with any spacers

desired, or even a combination of grid spacers within an assembly, provided that

the right correlations are available.

2. RELAP5-3D has the capacity to model innovative fuel pin types such as annular

fuel, bottle-shaped fuel, and cross-shaped fuel, as well as other geometric

variations, such as the assembly duct ribs described in this report, if correlations

for turbulent mixing are available. SUPERENERGY II can only model cylindrical

fuel, without significant modification of the source code.

3. SUPERENERGY II requires a constant geometry throughout the axial length of

the assembly, while RELAP5-3D has the capacity to model an assembly of

varying dimensions (e.g. to model thermal expansion or blockage or bottle-shaped

fuel pins).

4. SUPERENERGY II does not have temperature dependent properties, while

RELAP5-3D calculates thermal properties of the fluid as a function of

temperature.

5. RELAP5-3D includes clad, fuel, and gap temperatures, while SUPERENERGY II

only calculates the temperature distribution in the coolant.
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6. The time required to create and debug a subchannel model from scratch using

RELAP5-3D ranges from 1-3 weeks, depending on the complexity of the fuel

assembly, while the model construction time for SUPERENERGY II ranges from

several hours to up to 3 days, depending on the complexity.

7. The runtime for RELAP5-3D subchannel models ranges from 1 to 24 hours, while

the SUPERENRGY II models require only a few minutes to complete.

8. SUPERENERGY II is a steady-state only code, while RELAP5-3D has the

capacity to perform both steady-state and transient analyses.

Thus, as listed above, the primary disadvantages of RELAP5-3D rest with the

time required to create a model and the runtime of the model itself. SUPERENERGY II

requires a 30-545 line input file for a single assembly requiring from two hours to three

days to create, depending on the size and complexity. RELAP5-3D, on the other hand,

requires an input file of about 31,000 lines of code, which requires from 1 to 3 weeks to

create and debug. This is not an insignificant time commitment, which gives RELAP5-

3D a distinct disadvantage. However, being able to perform subchannel analyses for

LMFR cores is a significant step towards making RELAP5-3D a more versatile,

comprehensive, and flexible program. The incorporation of the turbulent and swirl

mixing model capabilities directly into RELAP5-3D source code options would reduce

the time requirement of the input preparation by a factor of 10 or more. By including

mixing models for hexagonal wire-wrapped fuels, RELAP5-3D could become a code that

has the potential to perform subchannel analyses, with reasonable accuracy, for various

reactor types, which would further increase the scope and utility of the code at large in
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terms of LMFR modeling. Having confirmed the capability of RELAP5-3D to model rod

bundle flow in sodium-cooled assemblies and predict the coolant temperature distribution

with good accuracy in comparison with the validated SUPERENERGY II code, the

innovative rod geometries are analyzed next.
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3.5 APPLICATION OF THE RELAP5-3D SUBCHANNEL MODEL

3.5.1 Optimization of the traditional fuel assembly configuration using flow-

diverting ribs in edge subchannels

It is of interest to note that for the base fuel assembly design, the temperature

distribution is in not flat, even when cross-flow, turbulent and swirl mixing effects are

included (see Fig. 3.22). Rather, there is a 600 C temperature difference between the inner

and edge channels (300 C if hot dimensions are used). This large temperature difference

within a fuel assembly (particularly the hot fuel assembly) is undesirable because for a

given margin to the postulated thermal limits (i.e., maximum allowable fuel and clad

temperatures), it results in a lower core-average outlet temperature, which in turn

correlates to a lower thermal efficiency of the plant. Upon examination, it was found that

this large temperature non-uniformity at the core outlet was due to the magnitude of the

coolant flow in the edge subchannels. This coolant flow was significantly larger than the

coolant flow for the interior and corner subchannels, by a factor greater than 3 to 4, thus

resulting in lower temperature in the edge subchannels. This increased coolant flow in

the edge channels is a direct result of the hexagonal geometry; in order to accommodate

the hexagonal rod bundle, and also have sufficient room to include the wire-wrap spacers,

the area of the edge subchannel must be quite large. This problem is greatly exacerbated

if the "cold" assembly dimensions are utilized, as was the case for the model whose

results are shown in Fig. 3.21. This is because there is an additional gap between the

wire-wrap spacers of the outer rods and the assembly duct wall. This increased gap is
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included for two separate reasons; first, to accommodate the thermal expansion of the

rods during reactor heat up from cold conditions, and, second, to allow for easy insertion

of the fuel bundle into the assembly duct. Because the "hot" dimensions for the assembly

are not given, the conditions at operation are approximated for this model; in essence, the

rod bundle-wall gap was reduced to the size of the wire-wrap thickness. This assumes

that at normal operating conditions the rod bundle comes in contact with the duct wall

due to thermal expansion.

This approximation in the subchannel model design did indeed reduce the flow

area of the edge channels, but even with this adjustment corresponding to steady-state

operation, the edge channel flow area was larger than the interior channel area by a factor

of over two. Therefore, some investigations were made to determine the feasibility of

flattening the core outlet temperature distribution by reducing the edge channel flow area.

A model was created in which the assembly duct included "ribs", or long, semicircular

protrusions along the axial length of the assembly, which reduced the flow area in the,

edge channels, as shown in Fig. 3.29. This is similar to the approach used in the BOR-60

reactor [3.24, 3.25, 3.26], but instead of using cylinders (which would be limited by the

small size of the edge subchannels in the ABR1000 design) the semi-circular ribs used.

The resulting 1-D radial temperature profile, as given in Fig. 3.30, indicates that the rib-

based strategy can be very effective at flattening the outlet temperature profile of the base

assembly.

What is not seen in Fig. 3.30, however, is the impact that adding duct ribs has

upon the corner subchannels in the assembly. In adding these ribs, the corner subchannel

temperatures actually are lower than without the duct ribs. This is due primarily to two

145



effects: 1) there are no ribs to reduce the flow area in the comers. This results in a similar

mass flow through the comer channels whether or not duct ribs are included. 2) The

swirl flow heat transfer correlation was not included. This is because it is unclear what

effect the ribs would have on the swirl flow. As a conservative estimate, this parameter

was neglected and swirl flow was eliminated from the duct rib models. This resulted in a

lack of mixing in the edge and comer channels, which in turn caused a decrease core

outlet temperature for the corner channels. However, the mass flow through the comer

channels is small, and thus there is little effect on the temperatures in the other

subchannels; the profile is quite flat except for the comer channels for each assembly

design, as can be seen in the Figs. 4.17 - 4.18 in chapter 4. Therefore the use of ribs

should be seriously considered in the design of fuel assemblies in advanced sodium-

cooled reactors.
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Figure 3.29: Cross-sectional view of a "rib" (green semi-circle) along the duct wall
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Figure 3.30: 1-D radial temperature distribution within the assembly with and
without duct wall ribs

3.6. RELAP5-3D Subchannel Model Conclusions

The study of innovative fuel configurations for the SFR required that a

subchannel analysis code capable of modeling novel fuel and assembly geometries be

developed. RELAP5-3D was adapted through the utilization of control variables to

accomplish subchannel analyses for sodium-cooled assemblies. This model was verified

through comparison with the SUPERENERGY II subchannel code. A basic eight ring

assembly with metal fuel was modeled in both SUPERENERGY II and RELAP5-3D,
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and the comparison of the results revealed that the temperature distributions at the core

outlet according to RELAP5-3D and SUPERENERGY II are in agreement within about

3.50C.

The benefits of using RELAP5-3D rather than SUPERENERGY II to model

subchannel analyses include:

1. flexibility in fuel geometry (annular, vented, spiral cross, etc.)

2. temperature dependant coolant, duct, and clad property calculations

3. full fuel rod analyses (clad, bond, and fuel meat), as opposed to a coolant-only

approach

4. flexibility in assembly parameters and geometry (spacers other than wire-

wrap, duct ribs, axially varying geometries due to design and/or differential

thermal expansion, etc).

The primary disadvantages of using RELAP5-3D as a subchannel analysis code

rather than SUPERENERGY II are the model creation time and the model run time. To

create a RELAP5-3D subchannel model from scratch requires 1 to 3 weeks, while the

same model in SUPERENERGY II requires only a few hours to three days. Additionally,

a RELAP5-3D subchannel analysis run requires between 1 and 24 hours, while the same

run with SUPERENERGY II requires only a few minutes.

The RELAP5-3D subchannel analysis model was applied to a conventional design

of SFR hexagonal assemblies with wire-wrapped fuel pins. The model was used to

optimize the flow and temperature distributions by the addition of duct wall "ribs" which
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divert flow from the edge subchannels to the interior subchannels. The resulting

assembly design exhibited coolant temperature radial variations of 1 C -20 C at most. In

the following chapter, Chapter 6, this subchannel model will be applied to both annular

and bottle neck fuel designs, as described in Chapter 4, to determine the performance of

these fuels in steady-state, standard reactor operating conditions.
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Chapter 4: Subchannel Analysis of Innovative Fuel Configurations

Chapter 4 discussed in detail the innovative fuel configurations considered in this

thesis. The basic assembly and fuel rod designs for these configurations were established

through the utilization of simplified MathCAD single pin/single assembly models. For

convenience, the parameters of these fuel configurations, found in Sections 2.4.2 and

2.4.3, are displayed along with the base designs and adjusted annular designs in Table

4.2.

The internally and externally cooled annular fuel configuration is most effective

for low conversion ratio burner core designs due to the open assembly design and small

rod sizes. The bottle-shaped fuel configuration, on the other hand, is most suitable for

high conversion ratio core designs due to the very tight pitch and large pressure drops

associated with such a design. This chapter is devoted to detailed subchannel analyses of

both the annular and bottle-shaped fuel configurations.

4.1 Annular Fuel

As presented previously [4.1 ], annular fuel has the potential to increase power

density, decrease fuel costs, and provide structural robustness for the fuel of a SFR

burner. It is crucial that these claims be tested using subchannel analyses. The two most

promising annular fuel designs investigated were the burner reactor designs: one for

metal fuel, and one for oxide fuel, as explained in [4.2]. At first, the annular fuel

assemblies were assumed to have the same core average power density as the solid fuel
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assembly design, to facilitate the comparison of their thermal-hydraulic behavior. Also,

both flat power distributions within the assembly as well as the effects of realistic power

peaking factors were investigated for both solid and annular designs.

4.2 Annular Fuel Subchannel Model Development

The subchannel model described in Chapter 5 was adapted to accommodate

annular fuel. This was done by creating a series of 22 volume pipes that represent the

coolant channels enclosed by the fuel rods, or the inner-annular (IA) volumes. Next, the

heat structures were adjusted to accommodate a left boundary connection (as related to

RELAP5-3D definition of right and left heat structure boundaries) to the IA volumes. It

is important to realize that in annular flow the fraction of fission heat that goes to the IA

subchannels vs. the fraction that goes to the external subchannels (i.e., the so-called "heat

split") depends on the geometry of the fuel rod, but also on the coolant temperature and

heat transfer coefficient in the IA and external subchannels. In other words, the heat split

is not specified by the user, but is calculated by the code, based on the local coolant

conditions and fuel rod geometry.

Fig. 4.1 provides the volume numbering for the oxide fuel subchannel model,

while Fig. 4.2 shows the volume numbering for the metal fuel subchannel model. Note

that for each of these figures, the numbers within the circular rod are for the IA channels,

not for the fuel rod itself.
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Figure 4.1: Volume numbering for oxide annular fuel subchannel model
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Figure 4.2: Volume numbering for metal annular fuel subchannel model

A significant aspect of the annular fuel models is the flow split between the inner

and outer annular subchannels. The fraction of flow that enters the internal annular

subchannels is such that the pressure drops of the internal and external regions of the

annular fuel are equalized. The pressure drop for the external channels is calculated
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using Eq. (2.38), with a friction factor calculated from Eq. (2.18). The friction factor for

the inner channels is calculated using the Blasius correlation,

0.316
f = Re0 25  (4.1)

which applies if the Reynolds number is less than 30,000. If the Reynolds number is

greater than 30,000, then the McAdams correlation is utilized:

0.184
f = Re0 2 (4.2)

R e '2

This friction factor is then used with Eq. (2.14) to determine the overall pressure

drop in the IA subchannels. Because RELAP5-3D calculates pressure drops internally

once the above correlations are programmed into the input deck, the flow split is

calculated automatically by the code.

Conduction models within the fuel meat are also incorporated into these analyses.

For both metal and oxide fuels, the heat conduction equation is used to determine the

temperature distribution within the fuel rods. For oxide fuel, the default fuel and gap

properties included within the RELAP5-3D code are used, while the thermophysical

properties of stainless steel (SS316) were input to model the cladding. For metal fuel, the

gap is filled with a purely-conductive sodium bond with properties from [2.7], while the

U-Pu-Zr thermophysical properties from [4.3] are used for the fuel meat. The values

used for the metal fuel, as well as the other material properties used in the subchannel and

full plant models, are tabulated in Appendix B.
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Initially, the subchannel model consisted of vertical pipes with 22 nodes

representing each subchannel: 1 for the entrance and lower shield regions, 15 for the core

region, 5 for the gas plenum region, and 1 for the duct standoff/outlet regions. However,

with 15 core volumes, the number of control variables was excessively large, and the

model required large amounts of time (-12 hours) to reach steady state. In order to

ameliorate this, the number of volumes in the core was reduced to five volumes, and the

runs were repeated. With 5 core volumes, the results were exactly the same as with 15

core volumes. Thus, for all future subchannel analyses, the subchannel pipes contained

only 5 core volumes, bringing the total axial subchannel flow volumes to 12, rather than

22.

4.2.1 Annular Fuel Model Design Results - Oxide

The oxide fuel subchannel model was first run according to the parameters in

Table 2.10. The resulting core outlet temperature profile, for both inner and outer

channels, is found in Fig. 4.3. Note that the temperature at the outlet of all IA channels is

basically the same, as expected, since these are parallel identical channels connected only

at the inlet and outlet plena.

One major concern with the results of this run is the difference between the

regular subchannel outlet temperatures (inner, edge, and comer) and the IA subchannels

outlet temperatures. As can be seen in Fig. 4.3, this difference is as large as 60 0 C at the

hot channel outlet. This indicates that the IA channels, which have the lower

temperatures, are allowing for an excessively large fraction of the total coolant flow.

155



Large radial temperature gradients are unacceptable for two reasons. First, large

temperature gradients reduce the margins to failure specified by the design limits, thus

forcing the reactor to operate at lower power levels than is technically achievable.

Second, the recombination of two separate coolant flows with large temperature

differences produces thermal striping, i.e., the development of a cyclic thermal stresses

that can result in thermal fatigue failure [4.4]. This phenomenon is highly undesirable

and can be avoided by ensuring that the outlet temperatures in all channels are relatively

the same.
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Figure 4.3: Core outlet temperatures for initial configuration of annular oxide fuel
assembly

The mismatch in flow between the inner and outer channels was not predicted in

the simple (average-channel) analyses performed in Chapter 2. This is primarily due to

the mismatch flow distribution between the edge and inner flow channels. The edge

subchannels have a flow area of nearly twice the inner subchannel flow area. In the

single average-channel model performed previously, the entire flow area was distributed

evenly among the fuel pins. This artificially increases the flow area of the inner
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channels, since the edge channels are nearly twice the area of the interior channels. This

increase in area caused the flow splitting between the IA and inner channels to match the

heat flow split. This phenomenon is common to both metal and oxide fuels, since it is

caused primarily by the geometry of the hexagonal assembly design.

In an attempt to flatten the radial temperature distribution across the fuel

assembly, several changes were implemented in the design. Briefly, the assembly duct-

rib feature, described in Chapter 3, was added, which forced more flow from the outer

subchannels to the inner subchannels. The wire-wrap diameter was increased, allowing

for more flow to the through the inner subchannels, with the added benefit of more

realistic fabrication dimensions. Because too much flow was still entering the inner

channels, the inner diameter, Di, of the annular fuel rod was decreased until the flow

distribution was more even. This means that additional fuel was included in the annular

fuel pin in order to reduce Di. However, the P/Do ratio was kept constant. Fig. 4.4 shows

how this additional fuel was added in order to reduce the inner fuel diameter. This

additional fuel resulted in a higher fuel-to-coolant ratio in the core, which would decrease

the necessary TRU wt% for the fuel in a burner reactor, a neutronic (and thus economic)

advantage of this new design. The subchannel temperature distribution at the core outlet

of the oxide annular fuel for the optimized assembly design is shown in Fig. 4.5. The 1D

core outlet temperature profile for both the initial configuration and optimized oxide

annular fuel assemblies can be found in Fig. 4.6. It can be seen that a very flat

temperature profile is possible for annular fuel assemblies. The significant flow rates for

the subchannels of the oxide (and metal) models are found in Table 4.1.

157



Figure 4.4: Annular fuel rod (oxide) with large Di (5 mm) and with decreased Di
(3.7 mm). Di is decreased by increasing the fuel meat. (drawing not to scale)

Figure 4.5: Core outlet temperatures for the optimized annular oxide fuel assembly

Table 4.1: Coolant flow rates for metal and oxide annular fuel subchannels
Metal Fuel Oxide Fuel

Di = 5 Di = 3.4 Di = 5 Dj = 3.7
mm mm mm mm

Average Velocities (m/s)
IA 6.64 8.21 6.00 5.94
Inner 1.97 3.77 3.91 5.49
Edge 3.72 5.33 4.56 4.35
Corner 3.33 6.35 3.29 4.41
Average Mass Flow (gls)
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IA 110.7 64.12 90.73 53.89
Inner 16.36 40.49 31.90 58.34
Edge 53.02 67.75 77.85 71.42
Corner 7.82 21.34 15.14 26.74
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Figure 4.6: 1D outlet temperature distribution for initial configuration and
optimized configuration of oxide annular fuel

4.2.2 Annular Fuel Model Design Results - Metal

Subchannel analyses were completed also for a metal annular fuel assembly.

Figure 4.7 shows the coolant outlet temperature distribution for the initial annular metal

fuel assembly design; note the large temperature gradient across the fuel assembly.

Figure 4.8 shows the temperature distribution for the optimized design, including the use

of ribs on the duct wall. The parameters for the optimized annular metal fuel design are

found in Table 4.4, while the coolant flow rates are found in Table 4.1. The 1D core

outlet temperature profile for both the initial configuration and optimized metal annular
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fuel assemblies can be found in Fig. 4.9. Note that even in the "optimized" design, the

temperature distribution could not be made as flat as in the optimized oxide fuel case

discussed in Section 3.2.1. This is due primarily to differences in the base models of the

oxide and metal fuel assemblies, and constraints in decreasing the fuel inner diameter, as

described in the previous section.
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Figure 4.7: Core outlet temperatures for initial annular metal fuel assembly
configuration
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Figure 4.8: Core outlet temperatures for optimized annular metal fuel assembly
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Figure 4.9: 1D Core outlet temperature distribution for initial configuration and
optimized configuration of metal annular fuel

Upon further inspection of the "optimized" annular fuel configuration, however,

one reveals some unacceptable qualities for this method of moderating the flow split

between IA and inner subchannels. In the oxide fuel (and to a lesser degree, the metal

fuel), the decrease of fuel rod diameter by increasing fuel meat alters the neutronic

performance of the fuel assembly. As can be seen in Table 4.2, the fuel-to-coolant ratio

is nearly double the base ratio for the oxide annular fuel configuration. This change

significantly alters the neutronic performance of the core, which effects the conversion

ratio which would require significant neutronic analyses an possible changes of heavy

metal to diluent ratio. Because the focus of this thesis is on the thermal-hydraulic

performance of the fuel, such neutronic analyses were not made. It should be noted,

however, that it may be possible to develop an improved and optimal model should
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thermal-hydraulic and neutronic analyses be performed in tandem for the annular fuel

assemblies.

The metal fuel annular configuration also has a significantly increased fuel-to-

coolant ratio, but to a lesser degree than the oxide fuel design. This is due to the primary

geometric differences between the oxide and metal fuels. The annular fuel configuration

for oxide fuel has an outer diameter of 9.36 mm, as compared to the metal fuel outer

diameter of 8.71 mm. As the inner diameter is reduced, the amount of fuel added varies

with the square of the radius, so larger amounts of fuel are added relatively for larger

initial diameters. Additionally, the larger wire wrap in the metal annular optimized

configuration leads to a larger pitch, and subsequently larger inner flow area, and thus

larger coolant fraction, which helps to compensate for loss of coolant flow area in the IA

subchannels.

Table 4.2: Comparison of original and optimized annular fuel models
Optimized

Annular Fuel
Metal CR = 0.25 Oxide CR = 0.25 Assemblies

Solid Annular Solid Annular Metal Oxide
(ANL) (MIT) (ANL) (MIT) (MIT) (MIT)

Rings 13 11 10 9 11 9
Pins 540 397 324 271 397 271
Flat to flat (cm) 15.71 20.96 15.71 17.41 18.29 15.74
Pin outer diameter (mm) 4.64 9.21 5.56 9.17 7.67 7.85
Pin inner diameter (mm) - 5.00 - 5.00 3.6 3.6
PIDo 1.357 1.087 1.45 1.09 1.11 1.14
Dwire (mm) - 0.805 - 0.805 1.0 1.1
Clad thickness (mm) 0.559 0.559 0.635 0.635 0.559 0.635
Fuel volume fraction (%) 17.44 16.59 19.73 16.93 16.03 17.48
Bond volume fraction (%) 5.81 5.53 1.02 0.88 5.33 0.22
Structure volume fraction (%) 29.15 32.61 26.22 36.70 34.98 37.71
Coolant volume fraction (%) 47.6 45.28 53.02 45.49 43.68 43.91
Fuellcoolant volume ratio 0.366 0.366 0.372 0.372 0.366 0.398
Power density (kW/L) 258.09 258.09 198.22 198.22 258.09 198.22
Linear heat rate (kWIm) 12.66 29.16 15.63 22.83 26.80 18.76
q" (kW/m2) 868.33 653.01 894.62 521.94 756.50 521.55
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q'" (Wcm3) 1732 1761.13 1137 1325.38 2191 1284
AT within fuel (°C) 91.57 10.93 310.88 24.82 20.32 20.32
Rib diameter (mm) - - - - 1.2 1.2
Wire-wrap helical pitch (cm) - 20.32 - 20.32 1.10 1.16

Another difficulty concerning metal fuel in particular is thermal constraints on the

annular design. As described in section 2.3, the number of rods is decreased by removing

one or more rings. The loss of rings is then compensated by the increase of fuel rod

diameter. Recall that the metric for the development of the annular fuel assembly is

maintenance of a constant power density. For a large number of rings, as is found in the

metal base fuel assembly, the removal of a single ring in order to fit the annular fuel

within the assembly results in a large number of pins being removed. In order to

compensate for this loss of a large number of rings, the linear heat rate must be increased.

This can be seen in Table 4.2, where the optimal annular fuel configuration (2nd column)

has a linear heat rate of 29.16 kW/m, up from 12.66 kW/m, or an increase of 130.3%.

Thus, in order to reduce the size of the annular fuel configuration assembly to match the

assembly size of the base metal fuel assembly (15.71 cm), 8-9 rings must be used.

However, at this number of rings, the linear heat rate is so high that all benefit derived

from using annular fuel is eliminated. This challenge does not prohibit the use of annular

fuel, but it merits the relaxation of the constraint that the fuel assembly for the annular

fuel configuration matches the size of the fuel assembly for the base fuel configuration.

The consequences of relaxing this constraint are significant, and are discussed in Chapter

7 of this thesis.
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4.2.3 Final Annular Assembly Designs

Attempting to optimize the flow split between IA and inner subchannels by

adding fuel meat to the annular fuel rods has challenges that cannot be overcome, as

described in the previous section. As a result, a new optimized annular fuel assembly

configuration was designed for both metal and oxide fuel. This design was created by

relaxing the minimum fuel rod inner diameter constraint of 5 mm. In essence, the inner

diameter was reduced, as previously attempted, but without the addition of fuel. Thus,

the fuel-to-coolant ratio was maintained constant, which eliminates the problem of altered

neutronic performance for the fuel. The geometric parameters of the final annular fuel

configurations are found in Table 4.3.

Table 4.3: Comparison of original solid and optimized annular fuel models
Metal CR = 0.25 Oxide CR = 0.25

Solid Annular Solid Annular
(ANL)* (MIT) (ANL)* (MIT)

Rings 13 11 10 9
Pins 540 397 324 271
Flat to flat (cm) 15.71 18.29 15.71 15.74
Pin outer diameter (mm) 4.64 7.67 5.56 7.85
Pin inner diameter (mm) - 3.6 - 3.6
PIDo 1.357 1.11 1.45 1.14
Dwire (mm) - 1.0 - 1.1
Clad thickness (mm) 0.559 0.559 0.635 0.635
Fuel volume fraction (%) 17.48 16.03 19.73 17.48
Bond volume fraction (%) 5.83 5.33 1.02 0.22
Structure volume fraction
(%) 28.55 34.98 26.22 37.71
Coolant volume fraction (%) 48.13 43.68 53.02 43.91
Fuellcoolant volume ratio 0.366 0.366 0.372 0.398
Power density (kW/L) 258.09 258.09 198.22 198.22
Linear heat rate (kW/m) 15.19 26.80 15.63 18.76
q" (kW/m2) 1041.99 756.50 894.62 521.55
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Wire-wrap helical pitch (cm) - 20.32 - 20.32
Radial Power Peaking 1.2 1.2 1.2 1.2
Axial Power Peaking 1.10 1.10 1.16 1.16

4.2.3.1 Neutronic Parameters

The assumption of flat power profiles was relaxed at this point, and a rigorous

neutronic evaluation of the oxide fuel was performed by Matthew Denman using MCNP

[4.5]. For the oxide fuel, a two region core was used with inner and outer driver

assemblies, as with the ABR1000 base fuel. The beginning-of-cycle (BOC) and end-of-

first-cycle (EOFC) burnups are OMWD/kgU and 22.64 MWD/kgU, respectively. Figure

4.10 shows the nominal power distribution within the core at BOC, while Fig. 4.11 shows

the nominal power distribution within the core at EOC. The hot assembly occurs at EOC,

and has a power peaking of 1.22 +/- 1%. As an estimate, a radial power peaking factor of

1.2 was used. The resulting axial and local (within a single assembly) power peaking

factors are listed in Table 4.4.

165

Fuel q'" (Wlcm3) 2078 2191 12841137



Figure 4.10: BOC power distribution in oxide annular fuel core
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Figure 4.11: EOFC power distribution in oxide annular fuel core
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Table 4.4: Axial and local power peaking factors for EOFC hot channel
Axial
Power Local

Axial Peaking Peaking
Zone Power (per zone)

1 0.73 1.02
2 1.03 1.02
3 1.16 1.02
4 1.13 1.04
5 0.94 1.02

The local power peaking is quite small (<3% maximum) and thus is neglected for

simplicity in modeling the assembly. These power distributions were included in the

RELAP5-3D input deck, and used as the basis for the detailed power uprate analysis.

The axial and radial power peaking profiles for metal fuel were determined using

an MCNP model created by MIT student Matt Denman [1.15]. For the metal fuel core,

the enrichments and zoning described in [2.2] were used to evaluate an MCNP model of

the metal fuels. The axial peaking for both solid and annular metal fuel configurations

can be seen in Table 4.5. The axial peaking factors are similar for both solid and annular

fuel, with the annular fuel configuration having a slightly higher power at the bottom of

the core and the solid fuel having a slightly higher power at the top of the core.

Table 4.5: Axial peaking factors for CR = 0.25 solid metal fuel core configurations
(with a maximum error of ±0.5%)

Volume Number Solid Annular
1 0.92 1.00
2 1.19 1.20
3 1.23 1.23
4 1.03 1.02
5 0.64 0.56
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The radial power peaking profile for the metal solid fuel is depicted in Fig. 4.12

with an error of ±0.4%. The numbers on this plot represent the BOC power for each

assembly. The blackened assemblies with the word "out" on them represent the control

assemblies, while the green-blue, teal, and light green assemblies represent the inner,

middle, and outer driver regions. For the subchannel analysis considered in this chapter,

the hot assembly peaking is the most significant parameter derived from these studies.

The specific core layout for the annular fuel configuration requires special

consideration, since the fuel assemblies are not the size as in the base case. The details of

developing the annular fuel assembly layout are not given here, but can be found in

Section 5.3.3. The radial power profile for the metal annular fuel is depicted in Fig. 4.13

with an error of ±1%. Note that the radial power peaking for the annular fuel core

configuration is -4% less than the radial power peaking for the solid fuel core

configuration. For both metal fuel CR = 0.25 core configurations, a radial power peaking

of 1.2 is utilized, not only to provide some margin and to account for engineering and

modeling uncertainties, but to provide clarity of comparison between the annular and

solid fuel designs.
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Figure 4.12: Core-wide radial assembly power profile of the CR = 0.25 solid metal
fuel pin core configuration (±0.4%) [5.15]

Figure 4.13: Core-wide radial assembly power profile of the CR = 0.25 annular
metal fuel pin core configuration (±1%)
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4.2.3.2 Final Annular Fuel Assembly Configuration Results

Subchannel models were created for the hottest fuel assemblies both with and

without duct ribs. These ribs divert the coolant flow from the edge to the inner

subchannels, thus flattening the core outlet distribution, as described in Section 3.5. The

steady state, full power temperature profiles of the oxide and annular fuel assemblies

without duct ribs are found in Figs. 4.14 and 4.15, respectively. The steady state, full

power temperature profiles of the oxide and annular fuel assemblies with duct ribs

included are found in Figs. 4.16 and 4.17, respectively. The maximum clad and fuel

temperatures for each of these annular fuel configurations are found in Table 4.6.

Figure 4.14: Core outlet temperatures for annular oxide fuel assembly model. (The
#s within each circle represent the outlet coolant temperature of the corresponding

annular fuel rod inner channels)
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Figure 4.15: Core outlet temperatures for metal annular fuel assembly model. (The
#s within each circle represent the outlet coolant temperature of the corresponding

annular fuel rod inner channels)
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Figure 4.16: Core outlet temperatures for annular oxide fuel assembly model with
duct ribs included. (The #s within each circle represent the outlet coolant

temperature of the corresponding annular fuel rod inner channels)
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Figure 4.17: Core outlet temperatures for metal annular fuel assembly model with
duct ribs included. (The #s within each circle represent the outlet coolant

temperature of the corresponding annular fuel rod inner channels)

Table 4.6: Key parameters of annular fuel configurations
Oxide Metal

Ribs No Ribs Ribs No Ribs
Core AP (MPa) 0.2735 0.248 0.209 0.191
Max Clad Temperature (°C) 560.28 570.57 560.96 569.28
Max Fuel Temperature (°C) 688.22 698.3 578.02 584.45

Both metal and oxide fuel assembly designs demonstrate good balance of heat and

coolant flow: there is no longer a large difference between IA and inner subchannel core

outlet temperatures. However, for the assemblies with no duct ribs, the difference in

temperature between inner subchannels is rather large, and thus less acceptable. This

results in large (-30 'C to 50 OC) differences between the IA and inner/edge subchannels

at the outer edge of the assembly. However, when the duct ribs are included, the

temperature profile of the inner channels is much more flat, resulting in a very desirable

core outlet temperature profile. This allows for increased efficiency by increasing the

core-average outlet temperature, while keeping the same hot spot margins.

Note that as mentioned in Chapter 4, the comer channels of the assembly model

have lower temperatures when duct ribs are incorporated, due to the elimination of the
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swirl flow in the assembly. Relatively small amounts of coolant flow through these

channels however, and thus these low temperatures do not generator temperature

peaking, as do the edge channels without duct ribs.

4.2.4 Power Uprates

The fuel rods for a given core configuration must perform within an envelope of

acceptable conditions to avoid breaching safety limits. For the sodium fast reactors, fuel

must be designed so as to prevent excessive pellet-clad mechanical interaction, fuel clad

chemical interaction (FCCI) and over-pressure of the fuel rod due to excessive fission gas

release. Most of these phenomena are dependent, to varying degrees, on the temperature

of the cladding and fuel. Thus, the cladding and coolant temperature are the primary

figures of merit to consider when investigating the safety of fast reactor fuel. The base

fuel configurations were modeled using the RELAP5-3D subchannel analyses model, and

used as the standard for steady-state operating limits.

The core outlet temperature distributions for the metal and oxide fuel assemblies

are seen in Figs. 4.18 and 4.19. Although the base assemblies do not call for duct ribs, a

comparison of designs with duct ribs to those without would be inaccurate. Therefore,

base fuel assemblies which incorporate duct ribs were also modeled, for comparison

against the annular fuel assemblies with duct ribs. The core outlet temperatures for these

assemblies are shown in Figs. 4.20 and 4.21. Recall that these assemblies have very thin

fuel rods with grid spacers, and require structural rods (solid steel rods) to support the

grid spacers. These structural rods are depicted by red circles in Figs. 4.18 - 4.21. The
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maximum clad and fuel temperatures, as well as pressure drops for the base designs as

predicted by the RELAP5-3D subchannel model are shown in Table 4.7. The duct rib

radii and flow area ratio for edge to inner channels are shown in Table 4.8.

It is important to note that the inclusion of structural rods results in a large

temperature distribution in the assembly. The channels immediately surrounding the

structural rod have a lower heat-to-flow ratio, resulting in a significantly lower

temperature. As with the comer channels, however, this is a local depression of

temperature, rather than an assembly wide temperature peaking.

Figure 4.18: Core outlet temperatures for base oxide fuel assembly model (with
structural rods depicted in red)
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Figure 4.19: Core outlet temperatures for base metal fuel assembly model (with
structural rods depicted in red)

Figure 4.20: Core outlet temperatures for base oxide fuel assembly model with duct
ribs included
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Figure 4.21: Core outlet temperatures for base metal fuel assembly model with duct
ribs included

Table 4.7: Key parameters of the base (solid) fuel configurations
Oxide Metal

Ribs No Ribs Ribs No Ribs
Core AP (MPa) 0.078 0.072 0.108 0.0942
Max Clad Temperature (C) 579.63 622.6 578.73 590.99
Max Fuel Temperature (°C) 1821.25 1828.45 694.36 705.72

Table 4.8: Duct Rib Properties for annular and base fuel assembly designs (oxide
and metal)

Base Annular
Oxide Metal Oxide Metal

Rib Radius 2.10 1.85 1.69 1.65(rnm)
Edge to Inner
Subchannel 1.708 1.903 2.028 2.035Area Ratio

(no ribs)
Edge to Inner
Area Ratio 1.273 1.286 1.579 1.563With Duct
Ribs

A comparison of the maximum cladding and fuel temperatures dictates the

magnitude of the potential power uprate possible with each type of configuration. The

reduction of the maximum fuel temperatures realized in utilizing the annular fuel concept
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is -1-2 orders of magnitude larger than the reduction of the maximum clad temperatures,

thus suggesting that clad temperatures (not fuel temperatures) are the dominant thermal

limit, as the annular fuel concept is considered as a means to increase the power density

in the core. Such increase was quantified by increasing the rod linear power (and

proportionally the coolant flow rate, to maintain the same outlet temperature) until the

maximum clad temperature in the annular fuel assembly matches the maximum clad

temperature in the base fuel assembly. Another constraint to the magnitude of the power

uprate is imposed by the core pressure drop increase. In this analysis we have imposed

that core pressure drop increase for both metal and oxide fuels can at most double with

respect to the base case. Table 4.9 lists the resulting maximum cladding temperatures,

max fuel temperatures, potential magnitude of power uprate possible, and average

coolant velocities for the solid fuel (base) design and the annular design.

Table 4.9: Results of subchannel analyses for solid, nominal annular, and uprated
annular fuel designs (oxide and metal)

Oxide
Nominal Uprated

Solid Annular Annular
Ribs No Ribs Ribs No Ribs Ribs No Ribs

Core AP (MPa) 0.078 0.072 0.2735 0.248 0.547 0.496
Max CladMax Clad 579.63 622.60 560.28 570.57 564.67 577.19
Temperature (oC)
Max FuelMax Fuel 1821.25 1828.45 688.22 698.30 750.95 765.35
Temperature (oC)
Power Uprate (%) 40 44

Average Coolant Velocities (m/s)
Inner - - 5.17 5.20 7.72 7.55
Inner 3.93 3.72 4.54 4.56 6.70 6.52
Edge 2.98 3.49 4.75 4.77 5.26 6.84
Corner 3.07 2.92 3.60 3.60 5.31 5.17

Metal
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Nominal Uprated
Solid Annular Annular

Ribs No Ribs Ribs No Ribs Ribs No Ribs
Core AP (MPa) 0.108 0.0942 0.209 0.191 .414 0.379
Max Clad

578.73 590.99 560.96 569.28 568.04 575.93Temperature (oC)
Max Fuel

694.36 705.72 578.02 586.45 592.89 600.85Temperature (oC)
Power Uprate (%) - - - 45 45

Average Coolant Velocities (m/s)
Inner - - 5.35 5.10 7.83 7.47
Inner 4.31 4.05 4.52 4.27 6.52 6.17
Edge 3.27 4.07 3.44 4.84 4.95 5.86
Corner 3.67 3.45 3.49 3.29 5.02 4.74

As can be seen in Table 4.9, the potential power uprate for both oxide and metal

fuels is substantial. In both the metal and oxide fuel cases, the power uprates are limited

not by the clad temperature, but by the core pressure drop limitation. This limit is

exceeded far before the annular design max clad temperature matches the max clad

temperature of the solid fuel design.

The difference in magnitude of the decrease in core temperature for the oxide and

metal fuels is primarily due to the geometric differences between the two fuel designs, as

reflected in Table 4.3. The metal fuel has a lower fuel fraction and fuel/coolant ratio, plus

the fuel to flow area ratio is smaller for the metal fuel assembly. Thus, a decrease in clad

surface temperature will allow for a greater power uprate than in the oxide fuel

assemblies. Though a power uprate is possible for designs with and without the duct ribs,

the significantly non-uniform coolant temperature distribution in assemblies without duct

ribs for both fuel types is problematic. This large temperature difference within a fuel

assembly (particularly the hot fuel assembly) is undesirable, because, for a given margin
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to the postulated thermal limits (i.e., maximum allowable fuel and clad temperatures), it

results in a lower core-average outlet temperature. Also, it can cause structural problems

due to bending and thermal fatigue (thermal striping). Thus, the assemblies which

include the duct ribs provide the potential to uprate the core power, while at the same

time reducing the core outlet temperature distribution of the base assembly designs.

The max clad temperatures for both the solid fuel and the annular fuel assemblies

are decreased with the addition of the duct ribs. This is primarily due to the reduction of

the radial temperature gradients at the core outlet. This effect is very pronounced for the

base case assemblies, but somewhat less dramatic for the annular fuel, because of

restrictions on duct rib size directly resulting from the wire-wrap spacers in the edge

channels. The potential power uprate from using annular fuel however, is driven by the

pressure drop and velocity of the core, rather than the clad temperature.

Another interesting benefit from using the ribs is the potential for an increase in

the thermal efficiency of the SFR. As the outlet temperature distribution for all assembly

designs is flattened, a higher core average outlet temperature is possible at steady state

reactor operation. By maintaining a higher reactor outlet temperature while maintaining

a constant core inlet temperature, the thermal efficiency for the SFR can be increased,

though this effect has not been quantified

4.2.5 Annular Fuel IA Channel Blockage Analyses

Finally, it is significant to note the small inner diameter required to eliminate the

large temperature differences between inner and external subchannels. Having an inner
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diameter of only 3.4 or 3.7 mm introduces the concern of flow blockage. Debris filters

will be important for this design in order to ensure that complete blockage of a

subchannel is avoided. The potential for a complete blockage of an IA subchannel is a

major concern with the annular fuel assembly concept. Because the inner diameter of the

interior coolant channel is small (3.6 mm), the potential for blockage of the coolant

channels is significant. To determine whether the complete blockage of the flow through

the hot interior-annular coolant channel would be a limiting condition for annular fuel,

the hot fuel assembly for the metal and oxide uprated annular fuel was analyzed assuming

that no coolant would enter the inner channel of the hot pin in the assembly.

4.2.5.1 Max Temperatures During Complete IA Channel Blockage

The major concern for metal fuel annular design is that the blocked fuel rod

would fail because of excessive fuel-clad chemical interaction (FCCI). FCCI occurs

primarily at higher temperatures [4.6], and an upper temperature limit has been defined

for steady state or long term operation. This limit applies to the max temperature of the

clad at the inner surface, which cannot exceed a temperature of 650 'C (for steady-state)

and 725 'C (for transients) for safe operation of the fuel.

Therefore, in order to be a feasible design, the cladding temperature at the inner

surface of the inner-annular blocked channel must not exceed 650 'C for a prolonged

time period and 725 'C for a short duration. Fuel temperature limits are higher than this,

but are not discussed here, because the maximum temperature for the blocked channel

fuel rod occurs in the inner clad of the rod.
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The core-outlet temperature distributions for the blocked channel annular fuel

models are very similar to those seen in Figs. 4.15 and 4.16, except that the maximum

coolant temperature in the blocked channel is significantly higher, the adjacent inner

channels are at a slightly higher temperature (due to the additional heat conducted out of

the blocked channel rod) and the remaining channel are slightly lower in temperature

(due to higher coolant flows in the remaining channels, compensating for the loss of flow

in the blocked channel). This is shown in Fig. 4.22 which illustrates the blocked hot

channel for the metal annular fuel design.

The maximum coolant temperature for the uprated metal fuel in the blocked

channel is 674 'C (an increase of -129 °C). This is a relatively small increase, primarily

because all of the heat is efficiently conducted by the metal fuel to the outer surface of the

rod when the inner channel is blocked.
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Figure 4.22: Core Outlet Temperatures for Metal Annular Fuel Assembly Model
(duct ribs) with blocked hot channel (red). (The #s within each circle represent the
outlet coolant temperature of the corresponding annular fuel rod inner channels)

The coolant temperature profile for the blocked channel rod, as seen in Fig. 4.23,
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is thus similar to the standard parabolic temperature profile seen in a solid fuel rod. The

clad inner surface temperature for the metal fuel and the max fuel temperatures are both

around 674 'C. This temperature is above the limit, and is thus undesirable. In order to

maintain a blocked channel temperature that is below the long term clad temperature

limits, the potential uprate found in Table 4.8 was reduced until the max clad temperature

of the blocked channel was below the steady-state temperature limit. This new uprate

potential is -20% for the metal annular fuel design with duct ribs. However, the analysis

presented here does not include all the engineering uncertainty factors in either the base

case or the annular fuel case; therefore, the actual power uprate enabled by annular fuel

may be somewhat different from, possibly lower than 20%. For instance, a power uprate

of 10% would result in a maximum clad temperature of 640 'C should a complete

blockage of the hot inner channel occur. However, because of the high uncertainties

associated with the fuel thermal conductivities, and due to the lack of a margin for a 20%

power uprate, more detailed fuel property data should be used before a final uprate

magnitude can be decided upon. A plot of the axial temperature profile for the inner

coolant, inner clad, peak fuel, outer clad, and outer coolant regions as a function of core

height can be found in Fig. 4.21, while the radial temperature profile is found in Fig.

4.23.

182



550I

Radius (mm)

Figure 4.23: Radial temperature profile for hot blocked-flow channel at the core
outlet (includes coolant and fuel regions)

Figure 4.24 illustrates that throughout the clad, fuel, and inner coolant channel, during a

complete blockage at a 20% power uprate, the long term limit of 650 'C is not exceeded.

This indicates that even should a worst-case blockage of the inner channel in a hot pin

occur, there will not be damage to the fuel or cladding of the metal assembly during

steady state operation. It should be noted in this discussion that the fuel properties for the

metal CR = 0.25 fuel was taken from [2.2]. However, the thermal conductivity presented

there is only a single value, 9.1 W/mC, and it significantly underpredicts the thermal-

conductivity. In addition, no volumetric heat capacity data was presented, and thus the

volumetric heat capacity was assumed to be the same as for the metal CR = 0.71 fuel. It

is important to note that the lack of margin for the 20% uprate, and the high uncertainties

require that a more accurate thermal conductivity data be obtained before a final uprate

decision is made.

The maximum coolant temperature in the blocked inner channel of the oxide fuel,

however, is well over 1250 'C. This indicates that the sodium would completely boil in
however, is well over 1250 °C. This indicates that the sodium would completely boil in
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the hot channel, but also the clad would be severely damaged. The RELAP5-3D

subchannel model failed prior to completing the blocked channel analysis, due to that the

coolant boiling and the cladding failing. The fuel itself would not melt, but the clad

barrier would be lost and sodium boiling would increase reactivity, potentially resulting

in further damage. As such, the annular fuel concept is not feasible for oxide fuels.

Figure 4.24: Axial temperature profiles for hot rod with blocked flow channel. (the
inner coolant and inner clad curves perfectly overlap, as expected in the case of

blockage)

4.2.5.2 Fuel Rod Structural Integrity During Complete IA Channel Blockage

During steady state operation of the annular fuel core, the inner and outer clad is

at roughly the same temperature. This results in very little thermal stresses induced by

the annular fuel design. However, during a coolant channel blockage, the temperature
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differential between the inner and outer clad of the blocked channel could pose structural

problems. The inner clad, where the coolant channel is blocked, would expand more than

the outer channel, as depicted in Fig. 4.25. However, the end-cap restricts the differential

expansion, thus resulting in the development of axial compressive and tensile stresses in

the inner and outer clad, respectively. Additionally, shear stresses develop in the end-cap.

Thus, there are two potential mechanical failures introduced by the blockage of the hot

channel in annular fuel: buckling of the inner clad due to the increased axial stresses on

the clad surfaces, and end-cap failure due to the increased bending shear-stresses.

Buckling failure is fairly straightforward to evaluate. The average axial thermal

expansion is calculated for each volume according to the equation:

a (AT + AT) (4.3)
E 2 (4.3)2

where:

Favg = average thermal strain of the annular tube per volume

ATi/ATo = the inner and outer clad temperatures minus the reference temperature

(coolant inlet temperature) in the volume

a = linear thermal expansion coefficient (this is equal to 1.1E-5 for HT9) (1/K)
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Figure 4.25: Illustration of differential expansion of annular fuel cladding and
stresses induced upon cladding and end-cap

Therefore, the tube expands by the linear average of the inner and outer cladding

structures. The stress in the inner and outer clad can be then calculated from Hooke's

law as:

E(aATlo - C,) = Oilo. (4.4)

where oi/, = axial stress in the inner/outer clad structures.

Buckling is a form of elastic instability which can occur when the axial loading

exceeds a given buckling limit, which is based upon the material and the beam geometry.

According to literature [4.7], the buckling limit for a long thin circular tube is calculated

using the equation:
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,2E.I
P' 2 E- (4.6)

12

where 1 is the clad length, and I is the secondary moment of inertia for the tubular beam,

found by:

I = - R 4 
_R 4), (4.7)

4

and Rcii and Ri are the outer and inner radii of the inner cladding, respectively. Using the

properties for HT9 (E= 160GPa) and the annular fuel inner clad dimensions, axial strains

during an inner subchannel blockage accident are found in Table 4.10. The buckling

forces derived from Eq. (4.6) are divided by the cross sectional area of the tube:

A, =n r(R ,- R ), (4.8)

in order to determine the stresses associated with these force limits. These buckling

stress limits are found in Table 4.10.

Note the very small limit for buckling in the inner clad structures of the annular

fuel. These very small limits are due to the fact that the clad structures are very long and

thin with no support on the inner cladding, and only the wire-wrap as support for the

outer cladding. It is apparent from Table 4.10 that in the case of a subchannel blockage,

the inner cladding axial stresses far exceed the buckling limit, and thus buckling is

possible. This is primarily due to the large length of the inner clad without any support
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structures throughout. Initially, the bond is large enough that fuel pellets cannot be

considered a structural support to prevent buckling, but after 1-2% when fuel swells and

contact the cladding, the fuel can support cladding against buckling. Nevertheless,

buckling would still be an issue in plenum region. The wire-wrap may be considered a

structural support to prevent major rod buckling, but this possibility hasn't been

considered in detail. In addition, bucking may occur due to axial stresses induced by

coolant flow through the inner channel [4.9]. This potential for buckling instabilities

could be more severe than the thermal stresses during an IA blockage, since these axial

stresses are present throughout steady-state operation, while the thermal stresses are only

present during the rare case of a complete IA blockage. Thus, it is recommended that for

future work, buckling instabilities due to fluid flow forces and potential solutions should

be investigated, and that potential solutions to the annular fuel IA subchannel blockage

also be developed and investigated. If no feasible solutions are found, the issues of

buckling under either inner channel blockage conditions or buckling due to flow forces

could prevent the utilization of annular fuel.

Table 4.10: Key Parameters of annular fuel blockage structural analysis
Inner Clad

Inner Radius, R (mm) 1.8
Outer Radius, RcH (mm) 2.359
E (GPa) 160
Length (m) 4.071
Moment of Inertia (m') 1.61 E-11
Axial Stress (MPa) 8.78
Buckling Limit 0.21
End-cap Shear-Stress (MPa) 0.17
ASME secondary local membrane stress limit (MPa) -630.0
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The differential expansion of the inner and outer clad structures during an IA

subchannel blockage accident, as shown in Fig. 4.25, results in the addition of shear

stresses in the fuel end-cap. A simplified method for evaluating the magnitude of these

stresses is performing a force balance on a control volume surrounding a section of the

end-cap, as seen in Fig. 4.26. The axial force exerted by the expanding inner clad is

balanced by the shear stress at a given point within the clad:

Fz = F,, (4.9)

where Fs is the applied force due to shear stress in the end-cap. The applied force is the

shear stress times the cross sectional area:

Fs(r)= 2 -r .r. te, ,  (4.10)

where T is the shear stress in the end-cap and r is the radius at which the stress force is

evaluated. This shear stress is a function of radius, and is calculated using the equation:

(r) F (4.11)
2g .r -te

where:

Fz = axial force due to thermal expansion

te = end cap thickness.
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Figure 4.26: Force balance for control volume surrounding a segment of the end-cap
of the annular fuel rod with a completely blocked IA channel

The axial thermal expansion force is calculated from Eq. 4.4 using the inner cladding

parameters. The radially-dependent axial force due to shear-stress is plotted in Fig. 4.27.

The radius of maximum shear stress is clearly at the outer edge of the inner clad, with a

magnitude of 0.172 MPa. According to ASME code, this stress is considered a

secondary local membrane stress. This stress cannot exceed the design limit (Sm) times a

factor of 3.0. The design stress as a function of temperature for HT9 can be found in Fig.

4.28 [4.10], and the overall secondary moment stress limit can be found along with the

maximum end-cap stress in Table 4.10.
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Figure 4.27: Shear-stresses in end cap as a function of radius during a blocked IA
channel accident for metal annular CR = 0.25 fuel
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Figure 4.28: HT9 design stress based upon the ASME code [4.9]
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4.3 Bottle-Shaped Fuel

The preliminary studies performed in Chapter 4 reveal that bottle-shaped fuel

designs have the potential to reduce the total pressure drop across the core, while

maintaining similar neutronic performances. Although these scoping studies indicated

that large decreases in the plenum region is possible, it is worthwhile to determine the

detailed performance of the bottle shape fuel configuration via subchannel analysis of the

fuel assemblies. These analyses are described in the following sections.

4.3.1 Bottle-Shaped Fuel Subchannel Configuration

Chapter 4 includes scoping analyses of the bottle-shaped fuel configurations.

These preliminary calculations revealed that a high conversion ratio core is best suited for

the use of bottle-shaped fuel, due to the tight fuel rod pitch in the assembly designs for

high CR cores. Previously a breakeven core (CR = 1.0) was used as the base design.

However, because the innovative fuel configurations described in this thesis are intended

for use in the ABR1000, it is worthwhile to utilize the core design and fuel configurations

utilized in the ABR1000 as the base fuel configuration. Because there is no very low

conversion ratio fuel design for the ABR 1000, the configuration described in Chapter 4

has been maintained as the base fuel configuration [2.2]. The ABR1000 standard fuel

configuration for both metal and oxide fuels however, is a higher CR fuel, with CR =
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0.71. This higher CR fuel configuration is therefore used as the base configuration for

comparison with bottle shaped fuels throughout the bottle-shaped subchannel analyses.

Table 4.11 lists the design parameters of the high conversion ratio fuel, while Table 4.12

lists the optimum plenum radii and other parameters based on calculations similar to

those described in section 2.4.2. An axial power profile similar to that found in the low

conversion ratio cores is employed. Additionally, there are four grid spacers supporting

the plenum region of the core. The details and assumptions for these grid spacers as

described in 2.4.2.

Table 4.11: Design Parameters of the ABR1000 Base Fuel Assemblies (CR = 0.71)

Rings 9 9
Pins 271 271
Flat to flat (cm) 15.71 15.71
Pin outer diameter (mm) 7.55 7.55
Pin inner diameter (mm) - -
P/Do 1.18 1.18
Dwire (mm) 1.31 1.31
Clad thickness (mm) 0.56 0.56
Fuel volume fraction (%) 29.2 37.0
Bond volume fraction (%) 9.8 2.0
Structure volume fraction (%) 25.7 25.7
Coolant volume fraction (%) 35.3 35.3
Fuellcoolant volume ratio 0.827 1.048

Power density (kWIL) 303 231
Linear heat rate (kWIm) 23.3 18.8
Heated Length (cm) 81.29 106.68
Plenum Height (cm) 124.40 160.02
Total Core Height (cm) 477.52 477.52

Table 4.12: Design Parameters of the Optimized Bottle-Shaped Fuel Assemblies
(CR = 0.71)

I I CR= 1.0
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Optimal plenum radius (mm) 3.5 3.5
Plenum height (m) 2.547 2.483
Bottle-shaped to base plenum 1.332 1.453
height ratio
Bottle-shaped to base core heightratio1.156 1.183ratio

4.3.2 Bottle-Shaped Fuel Subchannel Results

Because the core dimensions are identical for the bottle-shape and base fuel

assemblies, the temperature distribution is also identical, and thus a core outlet

temperature profile is no included here. The most significant performance metric is the

pressure drop across the core for each fuel type in both base and bottle-shaped fuel

assemblies. These values are shown in Table 4.13. The cumulative core pressure drops

as a function of axial assembly length for both the base and bottle-shaped fuel assemblies

are plotted for both oxide and metal fuel types in Figs. 4.29 and 4.30, respectively. As

can be seen in these figures, the pressure drop through the core region of the assembly is

identical for both oxide and metal fuels. However, in the plenum region of the assembly

the pressure drop is significantly less through the bottle-shaped plenum than for the base

fuel plenum. Significant pressure drop reductions can be realized with relatively small

increases in overall core length.

Though this large reduction in pressure drop is a worthwhile benefit for a SFR,

there are other aspects to consider for the bottle shaped fuel. The first has been briefly

mentioned, and that is considering the design and manufacturing feasibility for increasing

the core height by 5%-18% for the bottle-shaped fuel. If this proves to be too costly, or if
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it cannot be included without adjusting the pool design (in particular increase of vessel

height), this configuration may prove unacceptable. Significant vessel height increase

would most certainly cancel any benefit gained from decreasing the core pressure drop.

The fabrication complexity is also increased by the need to include both wire-wrap

spacers and grid spacers in the bottle-shaped fuel assembly. The wire-wrap spacers are

needed in the lower shield/core regions of the fuel rods, while grid spacers are required in

the plenum region of the fuel rods. This increase in fabrication complexity should also be

considered when evaluating bottle-shaped fuel.

In addition to the fabrication and manufacturing considerations, there is an

additional safety consideration for the bottle-shaped fuel that needs further analysis. The

core radial expansion reactivity coefficient is a key reactivity feedback making possible

core shutdown in events without scram. The impact of bottle-shape fuel on the value of

this coefficient needs to be investigated, but it is expected that the effect will be small

since this coefficient is primarily determined by the design of above the core load pads

that are placed on the duct walls. These additional considerations are not considered in

this thesis, since the primary focus is thermal-hydraulic performance, but they should be

evaluated carefully in future work.

Table 4.13: Core Pressure Drop for Bottle-Shaped and Base Fuel Assemblies for
both Metal and Oxide Fuels

Pressure Drop Oxide Metal
Pressure Drop in Base 227.85 209.55
Assembly (kPa)
Pressure Drop in Bottle- 156.31 133.45
Shaped Assembly (kPa)
Reduction (%) 31.4 36.3

195



3.00E+02

- Base Fuel
O 2.50E+02

o- Bottle Shaped

S2.00E+02 F

1a .50E+02

2 1.00E+02
E

5.00E+01

0.00E+00
0 0.2 0.4 0.6 0.8 1

z/L

Figure 4.29: Cumulative pressure drop across the core as a function of nominal
assembly length for both the base and bottle-shape oxide assembly designs
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Figure 4.30: Cumulative pressure drop across the core as a function of nominal
assembly length for both the base and bottle-shape metal assembly designs
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4.3.3 Mechanical Stresses on Cladding at Plenum/Core Interface

As with annular fuel, the structural integrity of the clad for the bottle-shaped fuel

must be verified. The bottle-shaped fuel configuration has a gradual reduction in the fuel

rod radius at the onset of the gas plenum in order to minimize the pressure drop across

the core. However, the original design was an abrupt area change, and this design is

more conservative, as the bending moments will be larger across a sudden change in

cross-sectional area. As with the annular fuel end-cap, the maximum shear-stress in the

bottle shaped fuel can be estimated using a simplified force balance calculation.

II
II

II

P= Pi-Po oI R IR I

I fuel rod radius

| reduction
annular disc

I

Figure 4.31: Illustration of bottle-shaped fuel rod radius reduction annular disc and
balance of forces due to internal pressure and shear-stress

Fig. 4.31 illustrates the "radius reduction annular disc" or the annular disc that

connects the plenum and core portions of the fuel rod. It is in this disc that the control
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volume for the force balance is located. Unlike the annular fuel end-cap, the axial force

is not due to thermal expansion, but is due to the internal pressure, and thus the shear

stress is a primary local membrane stress. This stress can be evaluated according to the

equation:

() - (4.12)
2te

where

(Po).

P = net pressure on the annular disc, or inner pressure (Pi) minus outer pressure

The internal pressure of the fuel rod in a sodium fast reactor depends on many

factors, but a reasonable range for metal and oxide fuels is between 5 MPa and 15 MPa.

Fig. 4.32 plots the shear-stress of the annular radius-reduction disc for both these

bounding cases. According to ASME limits, the primary local membrane stresses are

not so exceed 1.5 Sm, which is -315 MPa for HT9.

Figure 4.32: Shear-stress as a function of radius within the bottle-shaped fuel
annular disc during steady state-operation
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Table 4.14 lists the parameters of the bottle-shaped fuel annular disc, as well as

the maximum shear stress in the annular disc. This value is significantly less than the

ASME secondary bending stress limit also listed in Table 4.13. Because the sudden

contraction of the bottle-shaped fuel is the most conservative case with the largest

bending stresses, the more conservative bottle-shaped fuel configuration with a gradual

reduction in rod radius at the bottom of the gas plenum will also be structurally stable.

Table 4.14: Key Parameters of bottle-shaped fuel rod reduction point annular disc
Metal

Inner radius (mm) 2.941
Outer radius (mm) 3.775
Modulus of elasticity (GPa) 160
Disc Thickness (same as clad) (mm) 0.559
Bottle-shape restriction bending stress (MPa) 12.46- 41.22
ASME primary local membrane stress limit (MPa) -315.0

4.4 Conclusions

The innovative fuel configurations were analyzed with a RELAP5-3D based

subchannel model to evaluate their potential to improve the thermal-hydraulic

performance of the SFR. The use of internally and externally-cooled annular fuel in a

low CR core with oxide fuel reduces the clad temperature of oxide fuel by up to 62 'C.

This leads to a possible power uprate of 44%. Annular fuel could reduce the clad

temperature of the metal fuel by about 18 'C, and this results in a 43% power uprate.

If a complete blockage of the hot interior-annular subchannel were to occur in the

hot assembly, clad failure would occur in the oxide fuel annular assembly, while for the
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metal fuel annular assembly, complete blockage of an interior-annular subchannel should

not result in significant clad or fuel damage so long as the power uprate remains below

20%. This does not provide for much margin to clad failure. However, this uprate

potential was determined base upon fuel properties from [2.2], which are estimated, and

have a high degree of uncertainty. These properties may be inaccurate, and future work

should be done in which more accurate fuel properties be utilized to determine the

amount of margin possible during a blockage accident. Annular fuel is not a feasible

design for oxide fuel due to the potential for cladding damage should complete blockage

of the hot channel occur.

Additionally, if a complete blockage of the hottest inner-annular subchannel were

to occur, buckling of the inner clad would be a potential problem, although the

subsequent shear stresses in the end-cap would not result in mechanical failure. Future

work for annular fuel should focus on the investigation of this potential buckling

problem.

The bottle-neck fuel configurations allow for a reduction in core pressure drop.

For oxide fuel configurations at CR = 0.71, the pressure drop is reduced by 31%, while

for metal fuel configurations, the core pressure drop is reduced by 36% with core height

increases of 16% and 18%, respectively. The thermal expansion of the clad in the core

region results in bending moment stresses upon the annular disc located at the fuel rod

reduction area, but these additional secondary stresses are far below the ASME limit for

such stresses. As such, the bottle-shaped fuel is structurally sound during standard

operating conditions. Potential future work should include a detailed investigation of the

structural integrity of bottle-shaped fuel through various accident scenarios.
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Chapter 5: SFR Full-plant Model

As discussed in Chapter 4, the annular fuel configurations allowed for sizable

power uprates in CR = 0.25 cores with both metal and oxide fuel, while the bottle-shaped

fuel configurations provided a -31% - 36% decrease in pressure drop across the core for

CR=0.71 cores. These innovative fuel configurations cannot be utilized, however, if their

performance during postulated SFR transients is worse than the standard base fuel.

Therefore, a SFR full-plant model was created using RELAP5-3D in order to evaluate the

performance of the base, annular, and bottle-shaped fuel configurations during steady

state operation and key transients. This chapter describes the creation of this full-plant

model, along with the assumptions associated with the material properties, kinetic

parameters, and geometric relations.

Initially, the steady-state solution runtime was on the order of 72 hours, due to the

very small volume lengths in the direct reactor auxiliary cooling system (DRACS)

models, as well as the explicit modeling of all four secondary loops. The time step limits

were increased through secondary loop and IHX lumping and Courant limit manipulation

via the adjusting of volume lengths in the core and DRACS systems. The completed full-

plant model operation conditions were obtained after -15,000 seconds of runtime; a

comparison of these parameters (obtained with a metal CR = 0.71 core) against the

ABR1000 steady-state operating parameters (based on the configuration described in

[5.1]) is included in Section 5.3. Finally, the innovative core configurations along with

their respective base fuel configurations were incorporated into the RELAP5-3D model

through direct adjustment of the core component in the RELAP5-3D model. A
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description of the various core models for the CR = 0.25 solid fuel and annular fuel and

the CR = 0.71 base fuel is included in section 5.4 of this chapter.

5.1 Full-plant RELAP5-3D Model

The full-plant design parameters for the SFR* model are based upon a concept for

the ABR1000 described in [5.1]. The full-plant model was constructed using RELAP5-

3D, based upon a previous RELAP5-3D input deck created by the author for the

Advanced Burner Test Reactor (ABTR) concept in Spring 2007. This model consists of

5 separate components that were created individually and then combined to create the

full-plant model. These components are:

1. The Core

2. The Primary System

3. The Secondary Loop

4. The Power Conversion System (PCS) Boundary

5. The DRACS

A description of each of these systems, along with the assumptions and calculations

required for each system are provided in the following sections.

* The sodium reactor primarily addressed in this report is the advanced burner reactor (ABR), though for

simplicity, the term SFR will be continue to be used to reference this reactor
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5.1.1 SFR Core Model

There are two major components that need to be included in the SFR full-plant

model in order to accurately portray the physics involved in the steady state operation of

the full-plant. The first component is the geometry and thermal-hydraulic characteristics.

This broad category includes the assembly parameters, the core layout, the drag

coefficients for both laminar and turbulent regimes (which are used by RELAP5-3D to

evaluate the friction factors), and the bypass flow characteristics. The heat transfer

coefficients are calculated by the RELAP5-3D code based upon geometric and hydraulic

characteristics of the model. The RELAP5-3D model of the SFR core was created by

Dustin Langewisch [5.2] by scaling up the RELAP5-3D core model developed by the

author for the ABTR. The second component of complete SFR core design is the

neutronic characteristics. This includes both axial and core-wide power profiles,

reactivity feedback mechanisms, and neutronic properties. The design parameters for

both components of the SFR core model were inspired by the ABR1000 concept

described in [5.1], and these parameters are detailed in the following sections.

5.1.1.1 SFR Core Geometric Parameters [5.2]

The SFR core inspired by the ABR1000 concept described in [5.1] consists of 180

driver assemblies divided into two primary segments. The inner driver assemblies (78),

which have a lower enrichment, are located in the center of the core, and the outer driver

assemblies (102), which have a higher enrichment, are located around the inner driver
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assemblies in the core. The outer drivers are surrounded by 114 reflector assemblies in

order to reduce neutron leakage, and the outermost ring of the core consists of 66 shield

assemblies. The control mechanism for this SFR core consists of 15 primary control rods

throughout the inner and outer core with four secondary control rods, which are located

primarily in the inner core region. A top down view of the core (both metal and oxide, as

they are identical) that illustrates the placement of these assemblies is found in Fig. 5.1.

Each of these assemblies is similar to the assembly design described in Chapter 4: a

hexagonal duct with a flat-to-flat diameter of 15.71 cm with cylindrical rods arranged in a

triangular pitch. The rods in the driver assemblies and control assemblies are all wire

wrapped.

In addition, the assemblies are separated by a 0.432 cm gap to allow for assembly

expansion during irradiation as well as to allow assembly insertion and withdrawal during

fuel reloading. This gap or "bypass flow" provides an additional flow path allowing

some sodium coolant to bypass the core. Table 5.1 summarizes typical design parameters

for the SFR core assemblies, including the assembly and pin geometry and composition,

while Fig. 5.2 illustrates the typical axial profiles for an assembly and pin in a SFR metal

fuel assembly (the pin and assembly layouts are similar for oxide fuel assemblies, though

with different lengths). The fuel pins are composed of three axial zones: a shield region at

the bottom of the pin composed entirely of HT9, the active core region (which includes

the U-TRU-Zr or MOX fuel pellets and sodium bond or He gap), and the gas plenum to

capture released fission gases.
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Figure 5.1: Core assembly layout for typical SFR core (metal or oxide) as described
in [5.1]

Table 5.1: Assembly design parameters for a typical SFR core
Fuel assembl
Fuel assembly Reflector Shield ControlOxide Metal

Assembly data
- Number of pins 271 271 91 19 7
- Assembly pitch, cm 16.142 16.142 16.142 16.142 16.142
- Inter-assembly gap, cm 0.432 0.432 0.432 0.432 0.432
- Duct outside flat-to flat Distance,

cm 15.710 15.710 15.710 15.710 15.710
- Duct thickness, cm 0.394 0.394 0.394 0.394 0.394
- Gap between duct and interior Duct,

cm - - - - 0.400
- Interior duct thickness, cm - - - - 0.394
- Interior duct inside flat-to-flat

Distance, cm - - - - 13.334
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- Overall duct height, cm 477.52 477.52 477.52 477.52 477.52

Pin data U-TRU-
- Pin material and type MOX Zr HT9 a) B4C b) B4C
- Bond/gap material He Na - He He
- Overall pin length, cm 400.1 332.7 c) 400.1/332.7 400.1/332.7 119.3/86.3
- Active core height, cm 114.3 81.3
- Pellet smeared density, % TD 85.0 75.0 - 81.0 85.0
- Pellet diameter, cm 0.625 0.557 1.541 2.553 4.193
- Cladding material HT9 HT9 - HT9 HT9
- Clad outer diameter, cm 0.745 0.755 - 3.337 4.688
- Pin pitch-to-diameter ratio 1.190 1.180 1.001 1.001 1.029
- Cladding thickness, cm 0.060 0.056 - 0.250 0.070
- Wire wrap diameter, cm 0.140 0.131 - - 0.133

Volume fraction at fabrication, %
- Fuel or absorber- Fuel or absorber 35.0 29.2 - 43.1 42.8
- Bond 1.9 9.8 - 10.1 7.6
- Structure 26.6 25.7 84.5 29.7 20.8

36.5 35.3 15.5 17.1 28.8
a) Natural boron was used.

b) Natural and 60% enriched boron was used for 4th and 7t row primary control assemblies, respectively.

c) Data for oxide and metal core

The power rating of the SFR is 1000MWth with a coolant inlet temperature of

355 0 C. The sodium coolant flow rate is chosen such that the average temperature rise

across the core is 155 0C, thus having a core outlet average temperature of 5 100 C; the

corresponding flow rate has been determined to be approximately 5024 kg/s. This flow is

maintained by electromagnetic (EM) pumps in the primary system cold pool. In order to

ensure that an adequate amount of coolant flows through each assembly, the assemblies

are orificed; this provides a measure of control by which the core designers can equalize

the outlet temperature across assemblies. The maximum allowable coolant temperature
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difference across the assembly outlets was taken as 44°C. Through careful orificing, the

actual difference between the coolant outlet temperatures for the various assemblies is

-15 'C for the metal fuel core, and -3 0 °C for the oxide core (the larger oxide core

temperature difference is due primarily to a larger power peaking, as described in the

following section).

O 7.5
5
00 mm

0 6.4300 nmm

0 5.5686 mm

S.301 mm

Fuel pin

Assem

Figure 5.2: Axial profile for assembly duct and fuel pin in typical metal SFR core as
shown in ABTR design report [5.3]
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5.1.1.2 ABR1000 Neutronic Parameters

The neutronic parameters of the metal and oxide core fuel assemblies used in the

full-plant model were also inspired by the ABR1000 configuration referenced by

Chikazawa and Grandy [5.1 ]. The power generation per assembly is dependant upon the

neutronic characteristics of the fuel and changes throughout the life of the core. As a

conservative estimate, the beginning of equilibrium cycle (BOEC) power profile is used

for both the metal and oxide fuels. The BOEC power profiles for typical SFR (both

oxide fuel and metal fuel) were derived by scaling up the power profiles for the ABTR

core [5.3] and are shown in Figs. 5.3 and 5.4, respectively. The axial power profiles for

the SFR fuel were assumed to be chopped cosine profiles, with peaking factors matching

the peaking profiles described in Section 4.2.3.1.
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Figure 5.4: Oxide fuel startup core power pofile at BOC and EOC, where the
numbers are the power in MW as scaled up from [5.3]

In addition to the power profiles, typical fast reactor reactivity feedbacks were

incorporated into the full-plant core model. These included the fuel expansion
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coefficient, the Doppler coefficient, sodium density coefficient, the axial expansion

coefficient, the radial core-expansion coefficient, the vessel expansion coefficient, and

the control rod drive-line expansion (CRDLE) coefficient.

The Doppler coefficient and the fuel density coefficients reflect the change in

reactivity due to, respectively, temperature-induced fuel resonance broadening and axial

and radial leakage from thermal expansion (axial and radial) of the fuel. These are

combined into a single fuel/temperature coefficient for the purposes of this model. The

sodium temperature coefficient takes into account the reactivity effect of the varying

sodium temperature (and thus density) as a temperature changes in the core.

The radial expansion coefficient refers to the "core flowering" effect, which is

seen during reactor operation. As the coolant temperature increases as it axially flows

through the assembly, the temperature of the structural components of the assemblies also

increases, particularly at the core outlet. Because the temperatures of the core structural

components are higher at the core outlet than the core entrance, the thermal expansion of

the two regions is quite different. The expansion at the core outlet is considerably higher,

resulting in an "opening" of the coolant channels at the top of the core, which increases

neutron leakage.

The axial expansion coefficient reflects the changes in the fuel rod dimensions

(axially and radially) due to thermal expansion. At higher burnups, the fuel contacts the

clad, and the thermal expansion of the fuel is limited by the thermal expansion of the

clad. Thus the axial expansion coefficient is determined using the average clad

temperatures.
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The CRDLE coefficient describes the negative reactivity insertion associated with

an expanding control rod drive shaft. As the core effluent sodium temperature increases,

the control rod drive-line temperature also increases. This induces expansion of the

control rod drive-lines, which pushes the control rods further into the core. This

introduces a large negative reactivity as every control rod in the core is subsequently

partially inserted in the core, reducing reactivity. The CRDLE coefficient is given in

terms of $/cm instead of $/oC as are the other reactivity coefficients due to its derivation.

This will be described in more detail in Chapter 6. Table 5.2 describes the reactivity

feedback coefficients used in the reference core configuration.

The vessel expansion coefficient is a positive coefficient, relating to the effect of

thermal expansion on the reactor vessel. As the reactor vessel (which supports the core

and internals) expands downward, the core is lowered relative to its original position.

The length of rod in-core for all the control rods in the core is thus decreased. This

reduces control rod worth, and injects positive reactivity into the core.

Table 5.2: Kinetic and reactivity parameters for a typical SFR core
Metal Startup Oxide Startup
Core (BOEC Core (BOEC)

Effective delayed neutron fraction 0.00335 0.00316
Prompt neutron lifetime (ps) 0.36 0.48
Radial expansion coefficient (Ol°C) -0.39 -0.32
Axial expansion coefficient (0I0C) -0.05 -0.05
Fuel density coefficient (0I*C) -0.71 -0.46
Vessel expansion coefficient ( rC) 0.06 0.07
Sodium temperature coefficient (oPC) 0.11 0.10
Doppler coefficient (0PC) -0.13 -0.16
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5.1.1.3 RELAP5-3D Full Core Model

A simplified RELAP5-3D model has been developed to evaluate the thermal-

hydraulic performance of a typical SFR core, as described in 5.1.1.1 and 5.1.1.2. For

simplicity, the various assembly types were "lumped" into a single flow geometry for

each assembly type. Thus, the core model has seven separate channels, with a single

channel representing each of the six assembly types: inner driver, outer driver, control,

reflector, shield, plus a bypass flow channel and the "hottest" fuel assembly flow channel.

This core layout is illustrated in Fig. 5.5 (not to scale), which is a side-view of the core

channels. The seven channels illustrated in Fig. 5.5 represent, respectively, the 19 control

assemblies (primary and secondary) and the thimble bypass region, the 66 shield

assemblies, the 114 reflector assemblies, the 102 outer driver assemblies, 77 inner driver

assemblies (excluding the hottest channel), the single hottest driver assembly, and the

core bypass discussed previously. The colored segments to the right of each flow

channel represent a heat structure that was created to model the core (pink), plenum

(teal), and shield (gray) regions. The colored segment to the left of each channel

represents the assembly duct walls attached to the flow channels on one side and the

bypass flow on the other. Note that a partial flow channel has been created to represent

the "thimble" or outer flow region of the control assemblies. This segment is attached to

the main assembly flow, as illustrated in Fig. 5.5.

A description of the volumes and their labeling scheme is given in Table 5.3.

Because of the large computational cost of modeling cross-flow and mixing within a

single subchannel, the subchannel model is not included in the full-plant RELAP5-3D
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model. Thus, the hot assembly is included as a flow channel in the current full-plant core

model, and this flow channel is where the maximum clad, coolant, and core temperatures

are found throughout both steady state and transient operation of the SFR. Each of the

assemblies modeled in the SFR full plant model are assumed to include the duct ribs

described in Chapter 4, which results in a nearly flat (-±30 C) radial temperature

distribution within each assembly. Thus no hot channel factor is required to model the

temperature peaking within the hot assembly.

Each of the seven channels has been axially divided into 26 axial segments of

varying length and type. The first two segments represent the flow volume through the

nosepiece region, the second two represent the flow volume through lower shielding

regions, the next 15 segments represent the flow volume through the core region, the next

represent the flow volume through the gas plenum region, and the final two segments

represent the flow volume through the duct standoff and handling socket regions.

Table 5.3: Channel description and labeling for the RELAP5-3D core model
Volume Number Description

001 Flow source
002 Inlet plenum
201 Outlet plenum
202 Flow sink
110 Control assemblies (15 primary / 4 secondary)
190 Thimble bypass (one per control assembly)
132 Shield assemblies (66 assemblies)
131 Reflector assemblies (114 assemblies)
123 Outer driver assemblies (102 assemblies)
111 Inner driver assemblies (77 assemblies)
150 Single hottest assembly
180 Core bypass
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Each segment of the fuel channel is linked to appropriate heat structures that represent the

assembly duct walls and fuel/absorber/reflector pins.

The RELAP5-3D reactor point kinetics model was employed for the full-core

model. A separable point kinetics block was input, and the reference core power of

1000MWth was input as the power generation rate. The heat generation rates for each

heat structure were evaluated based on the power distributions depicted in Figs. 5.3 and

5.4 by adding the heat generated by each individual assembly. This summed power

generation rate was then divided by the total power of the core and inserted into each

individual heat structure input. This fractional value was then used to reference how

much of the total power generated in the core (according to the kinetics/power model) is

generated within each heat structure. Based on MCNP calculations, the assembly peaking

factor (or radial peaking factor) was taken to be 1.28 and 1.31 for metal and oxide core

configurations, respectively. The local peaking factor within each assembly was

approximated at 1.03 for both metal and oxide fuels. Thus, the power generation in the

hottest assembly was conservatively taken to be 1.308 (= 1.28x 1.03) times the average

power generated in the other driver assemblies. This approximation was made to

guarantee that the cladding temperature calculated in the hot channel would correspond to

the hottest rod. In addition, a chopped cosine axial power profile was assumed with a

peaking factor of 1.19. The power generation rates used for each channel are summarized

in Table 5.4.

The axial expansion, radial expansion, CRDLE and vessel expansion reactivity

feedbacks were insert directly into the RELAP5-3D reactor kinetics block. For the radial

expansion, control variables were used to evaluate the average core outlet coolant
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temperature, and this multiplied by the radial expansion coefficient to determine the

reactivity insertion due to radial expansion. The time delay for heat transfer from coolant

to above core load pads was neglected. This same procedure was used for axial and

vessel expansions, but the temperatures used were the core average clad and the average

vessel wall temperatures, respectively. The CRDLE feedback coefficient is based upon

the thermal expansion of the control rod drive shaft, and is discussed in more detail in

Section 6.2.3. The temperature used to evaluate the thermal expansion was the average

temperature along the affected region of the drive shaft, and was determined using

control variables within the code.

The Doppler coefficient is required by the code if the reactor kinetics block is

used. Both the Doppler coefficient and the fuel density coefficient were summed, and

then input in the form of a temperature table. A reference temperature was selected

(26.850 C) at which the Doppler and fuel density coefficient combination was 0.0 ¢/oC.

The change in Doppler and fuel density reactivity insertions are then entered for each

change in temperature. These reactivity insertions are then applied to each individual

fuel rod structure segment based upon heat structure weighting factors, which are

essentially the fraction of power generated in the relevant heat structure. The sodium

temperature coefficient is also required by the RELAP5-3D code, and is evaluated by

multiplying the feedback coefficient by the power fraction weight in each volume
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Figure 5.5: RELAP5-3D nodalization diagram for the reference core

Table 5.4: Heat generation rates in the reference metal fuel SFR core
Assembly Power (MW)

Control 7.35
Inner driver 481.16
Outer driver 492.27
Hot channel 7.18
Reflector 8.37
Shield 3.39
Total: 999.69
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Orificing of the channels was accomplished by introducing restricted junctions

between the inlet plenum and the individual channels. The flow area for each junction

was iteratively determined such that the outlet coolant temperature difference was as

small as possible. For the metal fueled CR=0.71 core, the difference was -15 'C, while

in the oxide fueled core, this difference was -33 'C. Both of these temperature gradients

are within the generally accepted limit of 44 0 C [5.4]. The orifice junction was assumed to

represent a sudden area contraction with a rounded edge, and was hence modeled as a

form loss coefficient applied to the appropriate junction, with a value of KL=0.2. The

type of restriction was unchanged from orifice to orifice; only the area of each orifice was

adjusted. Table 5.5 lists the orifice areas required to produce the core outlet distributions

listed above.

Table 5.5: Orificing areas required to minimize the assembly outlet temperature
distributions in both metal and oxide core designs

Area (m2

Metal Oxide
Orifice Area (m2) Fuel Fuel

Hot assembly -

Inner driver 0.0900 -
Outer driver 0.2200 0.2000
Control 0.0022 0.0073
Reflector 0.0016 0.0012
Shield 0.0007 0.0006
Bypass 0.0025 0.001

The clad properties were based upon ss-316, which was used as a surrogate from

HT9. The sodium properties in the full-plant model were the same as those used for the

subchannel analysis model [2.2], while the fuel model was taken from property tables

calculated by Billone et al. [5.6] (where the unirradiated material thermal conductivities
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are multiplied by 0.7 to account for the long term effects of radiation. The bond

properties (conductance, etc) for the metal fuel are the same as the sodium properties,

while the gap properties for the oxide fuel were evaluated in RELAP5-3D base upon the

code's internal gap properties model [5.5]. Finally, the decay power curve was

estimated by assuming that the fission decay power was generated by only Pu-239,

according to the ANSI standard [5.7]. In the analysis of fast reactors, this assumption

produces a more appropriate decay power curve than the standard LWR model included

in RELAP5-3D. The reasoning for selecting this decay power curve rather than

calculating a decay power curve specific to each core is discussed in Section 6.2.2.

The hydraulic resistance of the flow channels for turbulent flow conditions is

calculated using the same methodology as was described in Section 2.1.3, only the

hydraulic diameter and flow areas correspond to the entire assembly, rather than a single

subchannel. For laminar flow, however, a different friction factor must be used. The

laminar shape factor, OD, defined as [5.8]:

64
(D = 6, (5.4)

CA

where CfL is defined as the laminar drag coefficient, defined as:

P 2 H (0.06-0085D)
CA = -974.6+1612. -598.5. (5.5)

Do D D

The laminar shape factor, fL is then calculated by the equation:
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64
fL = 64 (5.6)

S-Re

Both the laminar shape factor and the turbulent friction factor were used in the

RELAP5-3D full-plant core model to evaluate the hydraulic resistances, and thus

pressure drop across the core.

Steady-state calculations of the standalone core model described in this section

were run to verify that the model was working as expected. Fig. 5.6 illustrates the axial

temperature profile for the sodium coolant in each channel of the model. As should be

expected, the sodium temperature rises steadily along the length of the active core (nodes

4-19). Once the sodium enters the gas plenum region, the temperature profile largely

levels off. A notable exception is seen for the reflector assemblies and the bypass

channel; the sodium in these channels continues to heat up as heat is transferred from the

hotter channels to these cooler channels by conduction. As expected, the highest outlet

temperature is found in the hot assembly. For this assembly, the outlet temperature is

computed to be 636.35 'C. The peak cladding temperature in the hot assembly is

computed to be 546.9 0 C, well below the assumed safety limit of 650 0 C. In addition, the

peak centerline temperature in the fuel rod is 758.4'C. The pressure drop across the core

has been computed as 0.376 MPa, and the maximum outlet temperature difference is

37.7 0 C, which is below the design limit of 44°C.
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Figure 5.6: RELAP5-3D nodalization diagram for a typical SFR core

Having verified the general performance of the standalone core model against

basic engineering judgment (using the metal fuel core), this complete core model was

then utilized in combination with the other four components described later in this

chapter to create the full-plant model.

5.1.2 Primary Pool System

The SFR full-plant design is a pool-type, 1000MWth plant with minimal piping in

the primary system. This design minimizes potential sodium leakage through extensive

sodium piping networks. The primary pool is several meters below the secondary loop,

so as to maintain a large enough head that any break in the IHX tubing will result in

secondary sodium draining into the primary pool, rather than primary sodium draining
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into the secondary system. The details of the primary pool utilized in the modeling are

described below.

5.1.2.1 Primary Pool Sodium Flow Path

The reactor vessel is divided by a steel shroud (called the redan) into hot and cold

pools. Fig. 5.7 gives a simple schematic of the primary pool system of the SFR full-plant

model. In steady-state full power operation, the coolant flows into the core from the inlet

plenum (depicted as a blue rounded rectangle at the bottom of the core barrel in Fig. 5.7),

where it is heated by the fuel rods in the core. The hot sodium leaves the core with a

temperature of 510 'C, and flows up through the Upper Internals System (UIS). The

distance between the core outlet and the UIS is -7.62 cm.
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Figure 5.7: Schematic of the key components of the SFR pool-type primary system,
including DRACS emergency systems

The UIS is a large, 2.2 meter diameter cylinder with a total length of -6.467 m

and is composed of 1cm thick ss-316 steel surrounding the primary and secondary control

rod drivelines, along with the instrumentation needed to maintain steady-state core

operation. The UIS also serves as a location for the core effluent sodium to mix

thoroughly so as to prevent thermal striping or other mixing induced effects further

downstream, particularly in the intermediate heat exchangers (IHX's). The coolant flows
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upward through the UIS, past a series of three perforated baffles (surface porosity of

75%, where the surface porosity is the area of holes to total surface area), at which point

a solid baffle plate prevents further upward flow. Each of these baffles contain

perforations for the control rod guide tubes and instrumentation tubes. The UIS shroud is

perforated with over 1370 different 20cm diameter holes, resulting in an overall surface

porosity of -50%. These holes allow for the flow of hot sodium from the UIS into the

sodium hot pool. The solid baffle plate is located high in the UIS structure, at which

point all of the hot sodium flow is forced into the hot pool. This is to ensure that the

surface of the hot pool is quiescent and ripple free.
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Figure 5.8: Schematic of primary pool IHX including baffle plate detail

The hot sodium in the hot pool then flows into one of the four IHX's via a series

of eight different 20 cm diameter inlet holes surrounding the top outer wall of the IHX.

The hot sodium then flows through the shell side of the tube and shell IHX, heating the

tube-side secondary sodium. There are five perforated baffles spaced evenly throughout
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the IHX shell, which partially divert the sodium flow, enhancing heat transfer in the shell

side. A perforated baffle profile, along with other aspects of the IHX design, are shown

in Fig. 5.8, while key design parameters of the IHX are found in Table 5.6. The primary

sodium then exits the IHX by flowing downward through the 61 cm diameter IHX outlet

nozzle into the primary cold pool. The temperature of the IHX effluent entering the cold

pool is -355 'C.

The secondary side sodium flows through a downcomer and enters the IHX at a

temperature of 333 'C, where it flows (still in the downcomer) through the entire length

of the IHX. At the bottom of the IHX, the secondary sodium flow enters a plenum where

it turns 1800 and flows upwards through a series of tubes. This is where the primary heat

transfer takes place in the IHX to the secondary sodium. The secondary sodium enters a

plenum above the upper tube sheet where it flows into an annular pipe surrounding the

downcomer with an outlet temperature of 488 'C.

Table 5.6: Key design parameters of the IHX's in the primary system
Parameter Value

Heat transfer capacity (MWt) 250
Heat exchanger design Straight tube,

Heat exchanger design counter-flow

Heat transfer area (m2) 1074
Primary sodium temperature inlet (*C) 510
Primary sodium temperature outlet (°C) 355
Primary sodium mass flowrate (kgls) 1256
Secondary sodium temperature outlet (°C) 488
Secondary sodium temperature inlet (°C) 333
Secondary side sodium mass flowrate (kgls) 1256
Tube outer diameter (cm) 1.59
Tube wall thickness (mm) 0.889
Tube pitch (cm) 2.23
Active tube length (m) 4.78
Number of tubes 4500
Upper tube sheet - area (m2) 2.25
Upper tube sheet - thickness (cm) 10
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Lower tube sheet - thickness (cm) 10
Downcomer piping - OD (cm) 61
Downcomer piping - thickness (mm) 12.7
Downcomer piping - length (m) 10.8
Outlet piping - OD (cm) 86.4
Outlet piping - thickness (mm) 12.7
Outlet piping - length (m) 6.6
Shell baffle plates -thickness (mm) 6.4
Shell baffle plates- number (spacing-cm) 5 (91)
Baffle plate cut (transverse dist. across IHX not occluded by 50
plates) (%)
Baffle plat perforation (open flow area/ total axial flow area) (%) 45
Perforation hole diameter (mm) 8.12
Number of perforation holes per IHX tube 2
Shell (primary) side pressure drop (kPa) 18.2
Tube (secondary) side pressure drop (kPa) 14.8
Shell height (m) 5.88
Shell outside circumference (m) 5.4
Shell thickness (cm) 1.3
Shell cross-sectional area (m2) 2.32
Tube material 9Cr-1Mo

Within the cold pool, just below the conical portion of the redan, there are three

protrusions into the redan into which are inserted the DRACS exchangers. In the middle

portion of the cold pool, below the IHX outlet, are four electro-magnetic (EM) double

stator annular linear induction pumps (ALIP). These pumps by necessity have entrance

and exit in the bottom side of the pump. These pumps have been designed for use in the

advanced burner test reactor (ABTR) and further details of their operation can be found

in the design report for the ABTR [5.3]. The EM ALIP pumps used in the full-plant

model described here are a scaled up version of the EM ALIP pumps designed for the

ABTR. A schematic of these pumps can be seen in Fig. 5.9. Key parameters of the EM

ALIP pumps can be found in Table 5.7. These pumps are suspended by a shaft connected

to the rotating plug at the reactor vessel head. The cold pool liquid sodium is drawn in to
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the pump inlet where it flows the length of the pump through the return duct, at which

point it turns 180 degrees and flows through the central duct of the EM ALIP pump. The

pump effluent is piped directly into the core inlet plenum, where it enters the core.

Duct wall (may incIude colng path) stator S
/f Statcorre If r StaMWrtCoth

SStator coil

Ii I1Yrr P nl[l IIi ITtiC~C;C~ ;tZ~SaAil;~il2~r

I Is/sr, It II ,I I r
i I i

r jrp

Figure 5.9: Schematic of a double stator ALIP EM pump[5.3]

Table 5.7: Key design parameters of the EM double stator ALIP pumps
EM Pump Parameters

Power (kW) 2315
Efficiency (%) 48.6
Mass (kg) 6176
Number of poles 8
Number of coils 24
Temperature (°C) 355
Flow rate, (m3Is) 1.51
Discharge pressure (kPa) 758.423
Length (m) 1.6
Pump diameter (m) 1.18
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5.1.2.2 Primary Pool RELAP5-3D Model

The sodium pool RELAP5-3D model is composed of several pipes and branches

representing the cold and hot pools with separate components representing the IHX and

pump components. A complete nodalization of the primary system RELAP5-3D model

is shown in Fig. 5.10. Table 5.8 lists descriptions of each of the components in the

primary model, along with their labeling scheme. The hot pool is composed of three pipe

components and two branch components. The branch components represent the core

outlet and IHX inlets, while the pipe components represent the lower, middle, and upper

hot pool segments. These segments represent the spent fuel storage region, the hot pool

below the IHX inlet, and the hot pool above the IHX, respectively.
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Figure 5.10: Nodalization diagram of primary system (cold and hot pools)
RELAP5-3D model

The IHX model consists of a pipe component representing the primary shell side

of the exchanger and two pipe components representing the downcomer and exchanger

tubes on the secondary side. The IHX baffles were modeled in RELAP5-3D using

junction restrictions. In essence, the baffle occludes 50% of the shell side flow area,
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while the baffle surface perforation is 45%. Thus, the total flow area at each baffle

(represented by a junction between the relevant pipe modules) is reduced to 72.5% of the

flow area of the shell side. The RELAP5-3D abrupt area option is used in tandem with

this area change to approximate the effect of the baffles, as depicted in Fig. 5.11. In this

figure, the red lines represent either the IHX inlet junction, or the flow area at each baffle.

The volume segments are numbered sequentially from top to bottom. At the bottom of

the exchanger, a thin duct allows flow past the lower tube sheet, and this is reflected in

the decrease flow area in segments 58-51 of the IHX nodalization. Finally, after entering

the lower plenum segment (segment 52), the sodium exits the IHX via the outlet nozzles,

represented by segments 53-54. The pressure drop correlation in the first 47 segments is

based upon the pressure drop across a bare rod bundle, with abrupt constrictions at the

key junctions representing a baffle. The pressure drop in the lower segments is calculated

by RELAP5-3D as open geometries with abrupt area change models where needed. This

approach is a simplifying approximation of the effect of the baffles and duct flow in the

IHX; a detailed depiction of the flow path through and around the baffles approach would

require a CFD model, and is beyond the scope of this thesis. The heat transfer coefficient

in this region was calculated by the code based upon the vertical bundle boundary

condition option for the geometry described in Section 5.1.2.1.
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Figure 5.11: Detailed nodalization diagram of IHX model including baffle and inlet
junctions (depicted as red lines), lower tube sheet bypass flow, lower plenum, and

IHX outlet nozzles

Note that a single junction leads serves as the IHX inlet. This junction is a

lumped representation of each of the inlet holes described in section 5.1.2. 1, with a cross

sectional flow area equal to the combined area of the inlet holes. The junction height is

20 cm, and since the inlet holes are all at the same vertical height along the IHX tube, this

accurately represents the vertical height of each inlet hole.

The upper cold pool and lower cold pools are each represented by a pipe

component, while a single branch serves as the IHX outlet and pump inlets. The pumps

are composed of a pipe representing the return duct, with a mechanical pump component
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as the pump itself. A pipe component represents the piping into the core inlet plenum,

while the inlet plenum itself is modeled using a branch. Flow is then directed from the

inlet plenum into either the core bypass channel or one of the seven flow channels

described in section 5.1.1. The flow through each channel is determined by the flow rate

that equalizes the pressure drop across all the channels.

Table 5.8: Channel description and labeling for the RELAP5-3D primary system
model (cold and hot pools)

Component Number Type Description
201 Branch Core outlet branch
202 Pipe Lower hot pool/spent fuel storage
204 Pipe Middle hot pool
205 Branch IHX inlet branch
206 Pipe Upper hot pool

240,250,260,270 Pipe Shell side of IHX 1, 2, 3, and 4
220 Pipe Upper cold pool
222 Branch IHX outlet and EM pump inlet branch
224 Pipe Lower cold pool

260, 270 Pipe Pump inlet return duct
262, 272 Pump EM pump
264, 274 Pipe Pump outlet piping

290 Pipe Inlet plenum
293 Junction Junction to core inlet
294 Branch Core inlet path

Multiple
295 Junction Connection to 7 flow paths in core
297 Junction Connection to core bypass flow path

410, 460, 510, 560 Pipe IHX secondary side downcomer
414, 464, 514, 564 Pipe IHX secondary side flow tubes

The sodium free surfaces for the hot and cold pool were not modeled explicitly in

this RELAP5-3D model. The sodium pool surface elevations do play a role in natural

circulation flows, however, and future work should develop a model to evaluate the

levels of these pools. In order to prevent artificial pressure increases due to thermal

expansion of sodium coolant in primary system, an inventory control volume was
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modeled above the hot sodium pool. This volume is a time dependent volume connected

to the upper surface of the hot pool (volume 206, segment 3) via a standard junction.

This allows for free flow of sodium in order to maintain a constant pressure at the surface

of the sodium hot pool. Even though the free level changes were not explicitly modeled

for the hot and cold pools, they can be approximated using the code output by measuring

the mass flow through this junction. A negative flow through the junction corresponds to

a decrease in the elevation of the free level, and the change in the elevation of the sodium

pool surface can be calculated based upon the total amount of sodium that flowed through

the junction and the hot pool cross sectional area positive flow through the junction

corresponds to an increase in the elevation of the free level, and the net change can again

be calculated based upon the total volume of sodium that has flowed through the junction

and the hot pool cross sectional area. For simplicity, the control volume was connected

only to the hot pool. This is acceptable for the current investigation, since the primary

purpose is to provide a comparison of innovative fuels to standard fuels, not to provide a

detailed evaluation of the ABR1000 reference design. However, future work should

focus on incorporating an in code system for evaluating the sodium surface level for both

hot and cold pools.

Heat structures representing the redan, vessel wall, core barrel, pump walls, and

inlet plenum walls were connected to the corresponding volumes. The heat transfer

between primary and secondary sodium flows is calculated using RELAP5-3D heat

structure models. The primary inputs to the heat structure models include the material

properties and the heated lengths. It is assumed that each structure in the primary pool is

234



composed of SS-316. The heated length (LH) for each component is calculated using the

equation:

L =L N, (5.7)

where L is the heat structure segment length and N is the number of structures associated

with each segment. The dimensions of the heat structure input into RELAP5-3D

correspond to the dimensions of the individual structures within the segment. For

example, in the IHX, the heated length is calculated by multiplying the segment length by

the number of secondary tubes in the heat structure. The inner and outer radii of the heat

structure then correspond to the inner and outer radii of the individual heat exchanger

tubes. This procedure is then repeated for every heat structure in the full-plant model.

Table 5.9 summarizes the key parameters of each heat structure in the primary pool of the

full-plant model.

Table 5.9: Key parameters of the RELAP5-3D heat structures in the primary pool
portion of the full-plant model

Inner Outer Heated
Heat Radius Radius Length
Structure Description Segments (m) (m) (m)
12011 Middle redan 1 2.213 2.233 0.861

2 2.213 2.233 1.627
12021 Lower redan 1 2.503 2.603 1.723
12041 Upper redan 2 6.599 6.699 1.123
12051 Upper redan 1 6.599 6.699 0.200
12061 Upper redan 1 6.599 6.699 0.850

- 2 6.599 6.699 0.763
12021 Spent fuel rods - shield 2 0.000 0.004 65.100
12031 Spent fuel rods - plenum 5 0.348 0.004 52.080
12041 Spent fuel rods - core 15 0.000 0.004 11.573
12101 IHX tubes 1 0.493 0.495 0.300

- 1 0.493 0.495 0.200
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45 0.493 0.495 0.092

- 1 0.493 0.495 0.100
- 1 0.493 0.495 0.190
- 1 0.493 0.495 0.130

1 0.493 0.495 0.100
2.000 0.493 0.495 0.315

12501 Reactor vessel 2.000 7.030 7.081 0.100
- 1.000 7.030 7.081 1.123

1.000 7.030 7.081 2.584
1.000 7.030 7.081 0.630
1.000 7.030 7.081 0.297
1.000 7.030 7.081 0.969
1.000 7.030 7.081 0.321

- 1.000 7.030 7.081 0.963
1.000 7.030 7.081 0.963

- 1.000 7.030 7.081 1.605
12601,
12701 EM pump outer wall 1.000 0.588 0.590 0.297

- 1.000 0.588 0.590 0.630
- 1.000 0.588 0.590 0.673

12621,
12721 EM pump duct wall 1.000 0.215 0.488 1.600
12641,
12741 EM pump inner core 1.000 0.314 0.331 0.969

- 1.000 0.588 0.590 0.321
1.000 0.588 0.590 0.963

- 1.000 0.588 0.590 0.563
12901 Core inlet plenum wall 1.000 2.368 2.408 0.100

- 1.000 2.368 2.408 0.790
1.000 2.368 2.408 0.200

11804 Core barrel wall 2.000 1.776 1.801 0.178
2.000 1.776 1.801 0.622
15.000 1.776 1.801 0.054
2.000 1.776 1.801 0.302

- 2.000 1.776 1.801 0.546

Each pipe segment requires a set of inputs that includes, but is not limited to: the

number of volumes, the length of each volume, the hydraulic diameter of each volume,

and the flow area of each volume. The length and number of volumes is adjusted

arbitrarily to accurately represent the overall length of the pipe while optimizing the
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steady state and transient runtimes of the model. This will be discussed further in Section

5.2. The flow area and hydraulic diameter of each volume are dictated by the flow

properties of each individual component. The hydraulic diameter for each pipe is

calculated using Eq. (4.15), while the flow area for each component is calculated using

simple geometric relations. For example, the total actual volume of sodium (VsT) in the

conical section of the hot pool, which accounts for sodium displaced by the DRACS,

IHX, UIS, and Instrumentation and controls, is calculated using the equation:

Vs = VCR - VPs - VDRACS - - vs - V , (5.8)

where:

VCR = total volume within the conical segment of the hot pool

VPs = total volume occupied by the pump shafts within the cone region

VDRACS = total volume occupied by the DRACS protrusions within the cone region

VIHX = total volume occupied by the IHX within the cone region

Vuis = total volume occupied by the UIS within the cone region

VI = total volume occupied by the instrumentation/controls within the cone region.

Once the total volume for the conical section of the hot pool is calculated, a pipe

segment is created to represent this portion of the hot pool in the RELAP5-3D full-plant

model. The height of the pipe segment (HCR) is equivalent to the height of the conical
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segment of the hot pool, while the flow area (Aflow) of this pipe segment is calculated by

the equation:

AFlow = sT (5.9)

HR

This process is repeated for every pipe in the RELAP5-3D full-plant model. Table 5.10

summarizes the key parameters of each pipe in the primary pool of the full-plant model.

Table 5.10: Key parameters of the RELAP5-3D pipe segments included in the
primary pool portion of the full-plant model

Flow Hydraulic
Area Length Diameter

Component Volumes (m2) () (m)
201 1 84.499 1.405 4.764
202 2 3.747 1.627 0.483

1 8.967 0.861 0.483
1 84.499 0.242 4.766

204 2 132.031 1.123 6.483
205 1 132.216 0.200 1.322
206 1 132.761 0.820 6.647

- 2 132.761 0.763 6.647
210, 260,
410, 440 1 4.537 0.300 0.195

- 1 4.537 0.200 0.195
1 4.537 0.054 0.195

- 31 4.537 0.917 0.195
- 14 6.822 0.917 0.029

1 2.285 0.100 0.200
1 2.285 0.190 0.200
1 2.285 0.130 0.379
1 9.280 0.100 1.540
2 4.676 0.315 0.610

220 1 13.859 0.100 0.642
2 13.859 1.123 0.642

- 1 81.347 2.584 3.916
1 132.537 0.630 6.257

224 1 138.219 0.969 7.338
1 138.219 0.321 7.338

- 1 138.219 0.963 7.338
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- 1 50.458 1.605 0.992
222 1 134.910 0.297 7.338
260, 270 1 0.676 1.600 0.200
262, 272 1 0.405 1.600 -
264, 274 1 0.618 0.969 0.627

- 1 0.618 0.321 0.627
1 0.618 0.963 0.627
1 0.618 0.963 0.627

290 1 70.466 0.079 -
1 70.466 0.100

The EM ALIP pump is modeled in RELAP5-3D using the standard mechanical

pump model. Though this model is not typically utilized for EM pumps, the RELAP5-

3D mechanical pump model can adequately model the performance of an EM ALIP

pump, so long as appropriate EM characteristic curves (pressure head vs. flow rate) and

parameters are input into the model [5.9]. The parameters and characteristic curves of the

EM pump found in the ABTR report [5.3] were scaled up to create pumps for the SFR

full-plant model. For the primary pool model, there are four EM ALIP pumps, but for

simplicity in modeling, these were lumped into two separate pumps. Lumping the pumps

is similar to lumping volumes using RELAP5-3D, except that the rated torque and flow

rates are doubled. The characteristic curves for the primary EM pumps are found in Fig.

5.12. For standard pump modeling, several empirically derived performance curves

known as homologous curves are created using dimensionless parameters defined by

pump operation. The formulation of these homologous pump curves requires a

description of the efficiency of the pump and the head generated at various flow rates.

There are eight separate homologous curves, each curve corresponding to the pump

performance for given condition of operation. There are two homologous pump curves

for each of four conditions of pump operation, defined by the pump head and shaft speed:
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two curves representing normal pump operation (positive pump head and positive pump

speed), two curves representing pump dissipation (negative pump head and positive

pump speed), two curves representing turbine operation (negative pump head and

negative pump speed), and two curves representing reverse pump operation (positive

pump head and negative pump speed) [5.10]. In each region, the two curves are

differentiated by dependence on either flow or speed. Table 5.11 summarizes each of the

variables associated with the eight homologous pump curves. Each of these curves for all

regions of pump operation except for the turbine operation region must be input into

RELAP5-3D in order to ensure appropriate operation of the EM ALIP pumps. Thus,

using the data from the EM pump curves in Fig. 5.12 and the rated conditions described

in Table 5.7, homologous curves were generated to describe the performance of the EM

pumps in various regimes [5.9].

11 Pump operating -
flow rate

0.9

0.8
0 - Efficiency

o. -Pressure

, 0.2

o.:j

0 200 400 600 800 1000 1200 1400 1800

Flow Ratle (kgls)

Figure 5.12: Empirical pump and efficiency curves based upon EM ALIP pumps as
a function of mass flow rate through the pump
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The homologous pump curves are based upon four primary dimensionless

parameters: rotational ratio (a), flow ratio (v), head ratio (h), and torque ratio (13). These

dimensionless parameters are calculated using the equations:

a = , (5.10)
NR

eR

H
h= , (5.12)

HR

f = -, (5.13)

where:

N = pump shaft speed (rad/s)

NR = rated pump shaft speed (rad/s)

Q = flow rate (m3/s)

QR = rated flow rate (m3 /s)

H = pump head (m)

HR = rated pump head (m)

T = pump torque (N-m)

TR = rated pump torque (N-m).



Table 5.11: Summary of homologous pump curves describing various regions of
pump performance [5.101

Regime Regime U v v/U Independent Dependenta Dependenta
number mode variablea variable variable

ID name head torque

1 HAN BAN 0 0 < 1 v/i. hC 2  ;U

Normal
pump

HVN B0 0 > 1 h

Normal
pump

3 HAD BAD :0 '0 >-1 vi. hw cp-
Energy

dissipation

4 HVD BVD 0 < 0 < -1 v v2 /v2

Energyv
dissipation

5 HATBAT 0 < 0 < vi/ h 2  p,'-
Normal
rurbinle

6 HVT BVT < 0 0 ' 1 2/v h/v

Normal
turbine

HAR BAR 0 > 0 -1 h

Reverse
pump

8 HVR BVR 0 > 0 < -1 cv hv .2

Reverse

a., = rotational ratio: v = volumetric flow ratio: h = head ratio: and P = torque ratio. Note: For the case a= 0

and v = 0 in regime 2, h = 0 and p = 0.

The pump flow rates and corresponding pump heads and pump efficiencies (rq)

are taken directly from pump performance curves. The pump head and torque are

calculated using the equations:



H = (5.14)
pg

PRQgH
r = , (5.15)

Nil

where g is the gravitational constant, p is the density of fluid in the pump, and pR is the

rated density of fluid in the pump. The head and torque homologous pump curves

representing normal pump operation of the primary EM pumps are found in Fig. 5.13.

Each of the four bounding homologous pump curves (curves 3, 4, 7, and 8) must be input,

however, in order for RELAP5-3D to correctly initialize the pumps. Therefore, simple

curves consisting of constant values taken from the boundaries of curves 1 and 2 have

extrapolated constant values. These curves are thus not accurate depictions of pump

operation in the various regions. Only the pump curves that represent normal operation

(regions 1 & 2) are utilized in the actual operation of the full-plant SFR model, however,

and thus this approximation is sufficient for the current thesis. These curves are included

in the full-plant SFR model only as placeholders required by RELAP5-3D, and should be

calculated if pump performance in dissipation or reverse regions is to be investigated.
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Figure 5.13: Head and torque homologous pump curves for normal pump
operation of the EM ALIP primary pumps

Each of these basic component models were created and input into RELAP5-3D,

then were combined to create the full-plant primary pool model. The performance and

capabilities of the primary pool component of the full-plant model are described as part

of the full-plant model in Section 5.2.

5.1.3 Secondary Loop

The secondary system consists of four separate loops, which thermally connect

the primary system to the steam generator and serve as buffers between the radioactive

sodium in the primary system and the water in the PCS. The secondary loop is

significantly elevated above the reactor vessel and primary system to provide a head in
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the secondary side of the IHX sufficient that any crack in the IHX tubing would result in

leakage from the secondary system (tubes) into the primary system (shell) rather than

leakage from the primary system into the secondary system. The secondary loops also

contain additional sodium inventory, pump tanks, and sodium purification systems,

though these components are not explicitly included in the RELAP5-3D model.

5.1.3.1 Secondary Loop Flow Path

The secondary sodium heated to a IHX outlet temperature of 488 'C by the

primary sodium exits the IHX via an annular riser pipe surrounding the downcomer pipe.

This piping extends upward for -6.6 m. The sodium then flows through circular piping

to the top of the steam generator. The steam generator is an -1 1.6 m high shell and tube

helical coil heat exchanger. The design parameters of the steam generator are found in

Table 5.12. Note the very high pressure drop on the water side of the steam generator;

this large pressure drop is due to the introduction of a flow orifice in the SG. The

purpose of this orifice is to prevent density wave oscillation instabilities since the exit

steam is superheated. The secondary sodium flows down through the shell side of the

steam generator, and out into the cold leg of the secondary loop.

Table 5.12: Key design parameters of the four helical coil steam generators for a
standard SFR design

Heat transfer capacity (MWt) 250
Number of tubes 184
Tube OD (cm) 3.18
Tube ID (cm) 2
Overall tube length (m) 98.5
Overall tube heat transfer surface (m2 ) 1806
Heat transfer surface area margin (%) 20
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Tube bundle longitudinal pitch (cm) 4.76
Tube pitch angle (0) 7.55
Number of tube coil rows 6
Helical coil bundle height (m) 11.6
Vessel outside diameter (cm) 281
Inner shroud outside diameter (cm) 137
Steam generator height (m) 20.72
Water side tube pressure drop (MPa) 1.172
Inlet restrictor pressure drop (MPa) 0.655
Sodium side pressure drop (MPa) 0.019
Shell thickness (cm) 3.81
Elliptical head thickness (cm) 4.45
Tube sheet thickness (cm) 8.89

The cold leg piping flows from the bottom of the steam generator horizontally to

the location of the pump tanks and purification systems, where the flow enters into the

secondary EM ALIP pumps. These pumps are similar to the pumps found in the primary

system, but are slightly smaller. The design parameters of the four secondary EM ALIP

pumps are found in Table 5.13. Primary sodium then flows through the cold leg piping

until it is directly above the IHX inlet, where it then flows downward through the 10.8m

downcomer pipe into the IHX.

Table 5.13: Key design parameters of the four secondary system EM ALIP pumps
for a standard SFR design

Pump diameter (m) 0.585
Power (kW) 609
Efficiency (%) 46
Mass, kg 2271
# of poles 14
# of coils 42
Temp (°C) 355
Vol. flow rate (m3Is) 0.369
Discharge pressure (psig) 110
Length (m) 2.4
Rated efficiency (%) 48.59
Rated power (kW) 2315
Rated pressure (MPa) 0.23
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Rated flow rate (kg/s) 8 290
Rated flow rate (m3/s) 1.476

Rated torque (N-m) 2779.889
Rated head (m) 26.834

5.1.3.2 Secondary Loop RELAP5-3D Model

The secondary loop RELAP5-3D model consists of pipe and pump components,

composed similarly to those contained in the primary pool model. Additionally, heat

exchangers representing the tubes of the steam generator are also included. A summary

of the key parameters for the flow components in the secondary loop is found in Table

5.14, while a similar summary for the heat structures is found in Table 5.15. A

nodalization diagram of the secondary loop is seen in Fig. 5.14.

Table 5.14: Key parameters of the RELAP5-3D pipe segments included in the
secondary loop of the full-plant model

Flow Hydraulic
Area Length Diameter

Component Description Volumes (m2  (m) (m)
302, 352, IHX downcomer (depicted
402, 452 in Fig. 5.11) 1 1.074 1.104 0.585

1 1.074 2.292 0.585
1 1.074 1.934 0.585
1 9.280 0.190 1.719

304, 354, IHX tubes (depicted in Fig.
404, 454 5.11) 1 2.819 0.100 0.247

15 2.819 0.092 0.012
31 2.819 0.092 0.020
1 2.819 0.300 0.020
1 8.111 0.550 1.172

318, 368,
418, 468 Riser 6 1.040 1.219 0.485

8 1.039 0.750 0.575
320, 370,
420, 470 Hot leg piping 10 1.039 1.565 0.575
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1.3 1.3 .7

322, 372,
422, 472 Steam generator head 3 1.039 1.017 0.575
340, 390, Steam generator (shell
440, 490 side) 50 12.619 0.232 0.090
326, 376,
426, 476 Cold leg piping 3 1.039 1.017 0.575

1 1.039 1.000 0.575
4 1.039 1.250 0.575
3 1.039 1.184 0.575

328, 378,
428, 478 Pump inlet piping 2 1.039 0.800 0.575
334, 384,
434, 484 Secondary pump 1 1.621 1.600
338, 388, Cold leg
438, 488 piping/downcomer 3 1.039 1.717 0.575

7 1.039 1.250 0.575
17 1.039 1.197 0.575

Key parameters of the RELAP5-3D heat strucl
secondary loo, of the full-plant model

tures included in the

Heat Inner Outer Heated
Structure Description Segments Radius (m) Radius(m) Length(m)
13021 IHX downcomer 1 0.290 0.310 0.520

1 0.290 0.310 1.680
1 0.290 0.310 1.2
1 0.290 0.310 0.8
1 0.290 0.310 2.160

25 0.290 0.310 0.367

20 0.290 0.310 0.367

1 0.290 0.310 0.4
1 0.290 0.310 0.760

13041 IHX tubes 1 0.007 0.008 1800.0
45 0.007 0.008 1650.4

1 0.007 0.008 972.0
1 0.007 0.008 3600.0
1 0.007 0.008 5024.0

13181 Hot leg piping 6 0.288 0.305 4.877
8 0.288 0.305 3.00

13201 Steam generator inlet 10 0.288 0.305 6.260
3 0.288 0.305 5.320
1 0.288 0.305 4.0

13221 Steam generator head 3 0.288 0.305 4.067
13401 Steam generator tubes 50 0.010 0.016 344.000
13261 Cold leg piping 3 0.190 0.203 4.067

1 0.190 0.203 4.0
4 0.190 0.203 5.0
3 0.190 0.203 4.737
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13281
Secondary pump inlet
piping
Secondary pump

13441 structures 1 0.290 0.293 6.4
13381 Cold leg piping 3 0.190 0.203 4.737

4 0.190 0.203 5.0
10 0.190 0.203 4.788

Steam
Generator

Figure 5.14: Nodalization diagram of secondary loop system
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5.1.4 Power Conversion System Boundary

The power conversion system for a typical SFRs consists of a steam Rankine

cycle with generator connected to the electrical grid. The Rankine cycle utilized in the

current full-plant design is a scaled-up version of the steam PCS described in the ABTR

report [5.3]. Including a complete Rankine cycle as part of the full-plant RELAP5-3D

model, however, dramatically increases runtime and reduces the maximum time step

limit (as dictated by mass errors) on the time-step size. The entire PCS system is not

necessary, as the transient scenarios of interest do not include detailed behavior of the

turbine, condenser and feedwater system. Thus, a simple steam generator boundary with

adjustable conditions matching the conditions of the PCS is sufficient for investigating

the suitability of innovative fuel configurations in fast reactor applications.

The steam generator is not explicitly modeled, as are the other components in the

full plant model. This is primarily due to a lack of design parameters for the stem

generator design. However, modeling the steam generator details is not necessary; it is

only necessary for the purposes of this thesis for certain critical parameters, the total heat

transferred, the mass flow rates, and the inlet/outlet fluid conditions (particular the

temperature and pressure) to match the critical parameters of the reference reactor.

Therefore, the steam generator was modeled as a "black box" where the heat transfer and

hydraulic parameters were adjusted until the critical parameters as described above

matched those of the reference reactor.
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Figure 5.15: Nodalization diagram of the PCS boundary condition

A nodalization diagram of the PCS boundary is shown in Fig. 5.15. The inlet

flow conditions are defined by a time-dependent inlet volume. This component of

RELAP5-3D allows for the definition of the feedwater temperature and pressure as a

function of time, and thus can be used to model in detail the boundary of steady state and

transient conditions in the PCS. The flow rate is controlled by a time-dependent junction,

which allows a set mass flow rate as a function of time. By careful manipulation of these

two volumes, the behavior of the PCS during any transient scenario can be modeled.

During steady state operation of the SFR, water at 216 OC and 167 bars enter the

steam generator through the bottom at a rate of 111.8 kg/s per generator and flows
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upward through a series of tubes that spiral circumferentially through the length of the

steam generator shell. Hot secondary sodium at 488 'C flows through the shell side of

the steam generator and is cooled to 333 'C. The steam flows upward out of the steam

generator at 454 'C and 155 bars. The outlet steam is super-heated, with a saturation

temperature of 345 'C at the exit pressure. The thermal efficiency of the PCS Rankine

cycle with these steam parameters is estimated to be 38%.

For the three most limiting transients or accidents investigated in this thesis

(UTOP, ULOF, and station blackout), the only accident that does not require the

manipulation of the time-dependent boundaries (i.e. the pressure temperature and mass

flow rate) is the UTOP transient. In the station blackout accident, the transfer of heat

from the secondary system to the PCS via the steam generator is conservatively assumed

to be instantaneously lost. This is modeled in the RELAP5-3D model by deleting the

heat structure representing the heat steam generator tubes, effectively making the steam

generator an insulated flow path. In the ULOF transient, the PCS flow must be adjusted

to prevent overcooling. The details of this transient, including the magnitude of the PCS

steam flow rates as a function of time, are discussed in Chapter 7.

5.1.5 DRACS Operation

The direct reactor auxiliary cooling system (DRACS) serves as the emergency

safety-grade cooling system for the SFR. A DRACS has been selected as the emergency

cooling system rather than reactor vessel auxiliary cooling (RVACS) due to potential

limitations on reactor vessel size, and thus reactor power rating [5.11], lower vessel
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temperatures during anticipated transients without scram (ATWS), and new NRC

regulations against aircraft impact against the reactor containment. In particular, as the

reactor vessel size increases, less fractional heat can be removed by RVACS systems,

which imposes a limit on the power rating of the reactor. In order to prevent this

limitation, and to allow for potential increases in the SFR size beyond 1000MWth,

DRACS are included in the SFR full-plant model.

5.1.5.1. Physical Description of DRACS

A schematic of the DRACS, as designed for the ABTR, can be seen in Fig. 5.16.

There are three heat exchangers and three separate flow loops. The first loop is the loop

created by the primary sodium coolant flowing from the cold pool into the primary

DRACS heat exchanger and then back into the cold pool. There are three vertical

protrusions in the redan structure from the cold pool into which the DRACS exchangers

are placed, as seen in Fig. 5.17. Sodium from the cold pool can then flow upward

through the gap between the redan wall and the DRACS outer surface. At the top of the

redan-DRACS exchanger gap, the sodium flows into the DRACS exchanger through a

series of holes designed to minimize the hydraulic resistance, and then flows downward

as it is cooled through the shell side of the primary DRACS exchanger. Heat flows

through tubes to cold sodium-potassium eutectic coolant (NaK) in an intermediate loop of

the primary DRACS heat exchanger. The cold sodium then flows downward through an

exit hole into the cold pool. The driving mechanism for this flow is buoyancy due to the
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temperature difference between the rising and sinking sodium. The design parameters of

the three DRACS primary exchangers can be found in Table 5.16.

The second flow loop is a liquid NaK flow loop, which is heated by the primary

system sodium in the primary DRACS exchanger. This hot NaK then rises via buoyant

forces and at the top of the DRACS secondary piping loop is cooled by air in a shell and

tube multiple pass heat exchanger, the NDHX. The NaK flows through horizontal tube

bundles cooled by air flowing cross-wise across the tube bundles. This cooled NaK then

flows downward to the primary DRACS exchanger, completing the secondary flow loop.

The key parameters of the secondary NaK/air heat exchanger are listed in Table 5.17.
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Figure 5.16: Schematic of DRACS found in the ABTR, which is scaled up for use in
the SFR full-plant model [5.3]

Table 5.16: Key design parameters of DRACS primary heat exchanger (NaK/Na)
Heat transfer capacity (MW) 2.5

Heat transfer area (m2) 17.4
Primary sodium inlet temperature (°C) 355
Primary sodium outlet temperature (°C) 510
Primary sodium flow rate (kg/s) 12.6
Secondary NaK inlet temperature (,C) 328
Secondary NaK outlet temperature (°C) 484
Secondary NaK flowrate (kgl/s) 17.5
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Tube wall thickness (mm) 0.9
Tube pitch (cm) 3.79
Active tube length (m) 2.5
Number of tubes 100

Upper tube sheet area (m2)  0.125

Lower tube sheet area (m2) 0.125
Annular width of gap (riser) between redan and DRACS
exchanger (cm) 6.9
OD of unit including riser (cm) 46.9
Shell thickness (mm) 6.4
Material 9Cr-1 Mo
Height between Na/NaK and NaKlair exchangers (m) 5.92

The final flow loop consists of outside air, which is drawn through the DRACS

valves via natural circulation. This air flows upward across the horizontal NaK tubes,

then upward through an air stack, where it is vented to the atmosphere. The width and

height of the stacks control the air flow rate and are sized so as to provide 2.5MW of heat

removal (0.25% of the total reactor power) per DRACS loop. The air flow rate

corresponding to full DRACS operation is -402kg/s air, which can be derived when the

air stack is designed with a height of 5m and a cross sectional area of 8.25m2 .
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Figure 5.17: Schematic of DRACS primary exchanger inlet and outlet from the cold
pool (not-adjusted)

The DRACS system is initiated upon loss of electrical power when the magnetic

DRACS valves fail open, initiating the full circulation of outside air. When the DRACS

valves are closed, approximately 4.02kg/s, or 1% of the nominal DRACS air flow passes

through the secondary air/NaK heat exchanger. This flow helps to ensure that the correct

direction of flow for natural circulation is established upon initiation of the system, as

well as to prevent localized freezing of the NaK loop. This small air flow results in

minor parasitic losses of heat from the SFR system during steady-state, full power

operation (-0.3 1MW per module). Additionally, in case of the need for increased heat

removal, two of the three DRACS loops have blowers and pumps installed within the air

and NaK loops, respectively, so that forced circulation is possible. This allows the

DRACS systems to operate as completely passive or active safety systems. However, in
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this study the blowers and pumps were assumed not to be safety-grade, so no credit was

taken for forced circulation in the DRACS during accidents.

It is of interest to note that the flow path of the DRACS is quite complex with

several reversals in the direction of flow. The hot sodium must still flow through the

core, IHX, and then up through the DRACS. However, the flow areas along each

segment of the coolant flow path are large, and hydraulic resistances are low with the

exception of the IHX and core. These segments have relatively high hydraulic

resistances and serve as the flow limiting components during transient natural circulation

flow. The general design of the DRACS was taken from [5.3]. Design of an optimized

DRACS is beyond the scope of this thesis.

Table 5.17: Key design parameters of DRACS primary heat exchanger (NaK/Na)
Heat transfer capacity (MW) 2.5

Design Finned tube cross-flow,
four pass

Active tube length (m) 9.55
Material ss-304
HX tube OD (without fins) (cm) 4.22
Tube wall thickness (mm) 3.55
Fin height (mm) 3.2
Fin spacing (mm) 3.2
Fin thickness (mm) 1
Number of tubes 72
Tube horizontal center-to-center spacing (cm) 7.62
Tube vertical center-to-center spacing (between 10.2passes) (cm)

Stack riser cross-sectional area (m2)  8.25

Stack height (m) 5
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5.1.5.2 DRACS Loops RELAP5-3D Model

The piping and heat exchangers of the DRACS were modeled in RELAP5-3D

using the same procedures as for the other systems: a series of pipes and heat structures

with appropriate parameters were joined to create an accurate thermal-hydraulic model of

the DRACS. Table 5.18 lists the key modeling parameters of each hydraulic component

in the DRACS model, while Table 5.19 lists the key modeling parameters for each heat

structure in the DRACS model. Perfect insulation was assumed in order to simplify the

DRACS models. Thus, heat structures for the piping between the Na/NaK and the

NaK/air exchangers were not included in this model. However, the parasitic losses in

these pipes may prove significant; these structures should be included in future models so

that these losses can be quantified. Two of the three loops have the capacity to run via

forced circulation, and these loops were lumped into a single large loop for modeling

purposes. This lumping is accomplished by doubling the area, the heated lengths, and the

flow rates, while maintaining the hydraulic diameters of each pipe. For transient

scenarios where two out of three DRACS are operational, the lumped loop is used to

represent the two operational loops, while the third loop remains inoperable. Recall that

although two of the three loops have the capacity to operate using forced convection,

neither pumps nor blowers are used in these analyses; all DRACS modules operate only

via natural circulation flow. A full nodalization diagram of the DRACS loops can be

found in Fig. 5.18.
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Figure 5.18: Nodalization diagram of the DRACS loop used in the SFR

It is of interest to note the additional volume, volume 721, found in both Table

5.18 and Fig. 5.18. Originally, the DRACS model was created to match explicitly the

DRACS primary exchanger design shown in Fig. 5.17. However, in this design, the inlet

and outlet of the DRACS exchanger connect to the same hydrodynamic model. This

would prevent the use of natural circulation, as each volume within the RELAP5-3D

model has a single volume-average temperature. In order to prevent this difficulty, an

extension to the DRACS exchanger was created, which is simply a pipe that surrounds
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the annular outlet hole of the DRACS exchanger as indicated by the translucent volumes

in Fig. 5.17. The pipe below the DRACS has similar geometric parameters as the

DRACS primary exchanger shell side (and is thus effectively a simply extension of the

DRACS), while the outlet ring was modeled as a junction with the appropriate cross-

sectional flow area and an abrupt area change. This pipe extends downward for an

additional -3.2 m. This eliminated the modeling difficulty of having a single volume

represent the inlet and outlet of the DRACS exchanger, while maintaining a viable flow

path of the naturally circulating sodium coolant. The length of this extender does not

alter the properties of the DRACS system, so long as its discharge elevation is not below

the core inlet plenum. The difficulty encountered with the DRACS outlet is not a

modeling complication; rather this difficulty is a direct result of the current DRACS

design: the close proximity of the inlet and outlet regions would inhibit successful

operation of the DRACS modules in reality, and thus future work should focus on

improving and optimizing the DRACS inlet/outlet flow design, so that this difficulty can

be avoided.

Table 5.18: Key design parameters of the RELAP5-3D DRACS model volumes
Flow Hydraulic
Area Length Diameter

Component Description Volumes (m2) (M) (M)

701, 751* Riser 5 0.0867 0.5000 0.1380
DRACS primary exchanger (hot

703, 753 side) 40 0.2314 0.0625 0.0110
721, 771 DRACS outlet extension 5 0.0231 0.6428 0.0110
706, 767 NaK cold leg 9 0.0898 0.5800 0.0853
620, 670 NaK inventory control 1 0.9416 1.0000 -

Primary exchanger downcomer
708, 758 (NaK) 10 0.0167 0.2500 0.1460

DRACS primary exchanger (cold
710, 760 side) 40 0.0327 0.0625 0.0204
712, 762 NaK hot leg 9 0.0898 0.5800 0.0853
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714, 764 NDHX tube (hot) side 10 0.0697 0.2388 0.0351

1 0.0697 0.1750 0.0351

10 0.0697 0.2388 0.0351

1 0.0697 0.1750 0.0351

10 0.0697 0.2388 0.0351

1 0.0697 0.1750 0.0351

10 0.0697 0.2388 0.0351

1 0.0697 0.1750 0.0351

704, 754 Air inlet volume 1 1.0000 1.0000 -

717, 767 NDHX shell (cold) side 4 4.4769 2.0000 1.1938

719, 769 Air stack 5 8.2500 1.0000 0.2000

749, 799 Air outlet volume 1 2.7500 0.3000
*the second component number indicates the lumped 2nd and 3 rd DRACS loops; the length, volume

number, and hydraulic diameter are the same, but the flow area is double the listed value

It is also of interest to discuss the ratings of the DRACS systems. The rated

power of each DRACS loop is 2.5MW. This rating is the power that the DRACS

withdraws when the DRACS power matches the reactor decay power at the long-term

peak during the station blackout transient. Because the power withdrawn by the DRACS

is driven by the sodium temperature in the cold pool, the power actually withdrawn by

the DRACS loops at any given time varies for each transient type.

Table 5.19: Key design parameters of the RELAP5-3D DRACS model heat
structures

Heat Inner Outer Heated
Structure Description Segments Radius Radius Length

DRACS primary exchanger outer
17011 wall 40 0.1591 0.1655 0.0625
17031 DRACS tubes 40 0.0102 0.0111 6.25

17141 NDHX tubes 40 0.01755 0.0211 18.145
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5.2 Full-plant Model Performance

This section outlines the performance of the full-plant SFR RELAP5-3D model.

The performance of this model is verified against previous SFR concepts to ensure

accurate performance of the RELAP5-3D model. The results of the RELAP5-3D full-

plant model were tabulated and compared to the design specifications of a standard SFR

model, as described by Grandy et al. [5.12].

5.2.1 RELAP5-3D SFR vs. ABR1000

The standard operating parameters of the SFR design described by Grandy et al.

are for the ABR1000, which is a scaled up version of the ABTR [5.3]. The operating

parameters of the ABR1000 are fairly standard for most pool-type moderate sized (1000

MW) SFR concepts and are based upon a combination of detailed modeling and

engineering judgment. A comparison of these parameters with those derived from the

RELAP5-3D full-plant model is found in Table 5.20. The numbers that represent the

DRACS performance in this table were calculated assuming that the cold pool

temperature was 5 100 C, as this is the condition used in the ABR1000 design to estimate

DRACS performance.

Table 5.20: Results of the RELAP5-3D full-plant model compared to the same
operating parameters for the ABR1000

Model ABR1000 Model ABRI000
Primary inventory (MT) 1445 1309 DRACS
Secondary inventory
(MT) 533 - Na Tin (OC) 510 510
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IHX Tin (OC) 520.09 510 NaK Tin (OC) 489.62 484

IHX Tout (°C) 365.18 355 NaK Tout (°C) 314.87 328

IHX AP primary (kPa) 9.58 18.2 NaK H (m) 5.22 -

Core Tin (oC) 365.18 355 Air Tin (0C) 30

Core Tout (oC) 520.09 510 Air Tout (C) 48.36 -

Core AP (MPa) 0.323384 0.314 Stack A (m2) 8.25 8.25

mdot (kg/s) 1269.1 1256 Stack H (m) 5 5
Secondary Side Na mdot (kg/s) 12.6 12.6

IHX Tin (OC) 335.85 333 Nak mdot (kg/s) 17.5 17.5

IHX Tout (OC) 491.81 488 air mdot (kg/s) 110
IHX AP secondary
(kPa) 22.1975 14.8 PCS System

mdot (kg/s) 1253.5 1256 H20 Tin (OC) 216 216
SG Tin (*C) 488.837 477 H20 Tout (0C) 453.987 454

PCS Pressure
SG Tout (OC) 330.955 326 (MPa) 2.26 1.17

The numbers that represent the DRACS segment of this model were taken

assuming that the cold pool temperature is 510 0 C, as this is the condition used in the

ABR1000 design to estimate DRACS performance. As can be seen, there is good

agreement between most parameters, but the core outlet and inlet temperatures are -10

'C higher for the RELAP5-3D model than for the ABR1000. However, the overall

change in temperature across the core and intermediate heat exchangers is the same as for

the ABR1000 design. In addition, the temperatures across the secondary loop for the

RELAP5-3D model are nearly identical to those found in the ABR1000 design. These

comparisons indicate that the correct flow and heat sources are present, but that the heat

transfer resistance between the primary and secondary systems is high resulting in a 10

'C higher temperature drop across the IHX boundary at the operational temperatures

indicated in the ABR1000 description.
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The discrepancy is due to RELAP5 underestimating the heat transfer coefficient

on the primary side of the IHX. As can be seen in Fig. 5.8, the baffle design of the IHX

instigates additional transverse flow and mixing, which enhances heat transfer, an effect

that was not modeled with RELAP5-3D. It is possible to couple RELAP5-3D with

computational fluid dynamics (CFD) codes to investigate complex mixing effects [5.13,

14], but this was beyond the scope of the current thesis.

An additional option in the RELAP5-3D heat structures is to add a "fouling

factor," or a multiplier, to the heat transfer coefficient of the heat structure right or left

boundary. By implementing a factor of less than one, the heat transfer through the heat

structure is mitigated, while implementing a factor of greater than one provides for

enhanced heat transfer. Therefore, to mimic the additional heat transfer effects for the

IHXs, the fouling factor for the full-plant model was increased until the temperatures of

the primary system matched those of the ABR1000 design concept. This occurred for a

fouling factor of -3.45.

The new comparison between the RELAP5-3D model and the ABR1000 design is

found in Table 5.21. The temperature rise across the core is slightly lower in the

RELAP5-3D model (< 0.50 C), which corresponds to the parasitic losses of the DRACS

system during steady-state operation. The primary sodium inventory of the RELAP5-3D

model is approximately 10% higher than the ABR1000 primary sodium inventory due

primarily to assumptions and simplifications for the RELAP5-3D model, but the

difference is small enough that the RELAP5-3D model can be considered sufficient. The

secondary sodium inventory was not clearly given by Grandy et al., but this inventory is

only important for transients in which the thermal inertia of the secondary coolant is
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important, such as an accident that involves loss of flow in the secondary system and

retention of the PCS as a heat sink.

A significant different in temperature is witnessed between the IHX and the SG

entrance of the ABR1000 design. There is nothing between the IHX and the SG that

would remove such a significant amount of heat from this system, and thus the cause for

difference between these state points in the ABR1000 is unknown. The RELAP5-3D

model does not reflect this difference, and because the reason remains unknown, no

attempt was made to match this drop in pressure with the RELAP5-3D model

Finally, the pressure drop in the IHX of the RELAP5-3D model is 50% that of the

pressure drop estimated for the ABR1000, again primarily due to modeling

simplifications. The pressure drop across the core, however, is larger in the RELAP5-3D

model by the same amount that the IHX is deficient, thus producing the same overall

pressure drop for the loop. This provides a nearly equivalent mass flow rate through the

primary pool and is considered acceptable for model verification purposes. Now that a

full-plant SFR model has been created and loosely verified using RELAP5-3D, the

various core models need to be constructed. The core models utilized thus far are the

metal fuel and oxide fuel CR = 0.71 cores described in section 5.1.1.1. The following

section describes the adaptations made to the SFR RELAP5-3D full-plant core model to

incorporate also the bottle-shaped fuel assembly configurations (both oxide and metal)

and the annular fuel configurations (only metal).

Table 5.21: Final comparison of the RELAP5-3D full-plant model results and the
same operating parameters for the ABR1000

Model Report Model Report
Primary inventory (MT) 1445 1309 DRACS
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Secondary inventory
(MT) 533 1 Na Ti. (oC) 510 510

Na Tout
Primary Side Na tout ("C) 355.85 (°C)

IHX Tin (OC) 508.189 510 NaK Ti, (OC) 489.62 484

IHX Tout (°C) 353.848 355 NaK Tout ("C) 314.87 328

IHX AP primary (kPa) 9.58 18.2 NaK H (m) 5.22 -

Core Tin (0C) 353.006 355 Air Tin (C) 30 -

Core Tout (OC) 508.35 510 Air Tout (°C) 48.36 -

Core AP (MPa) 0.323384 0.314 Stack A (m2)  8.25 8.25

mdot (kg/s) 1267.7 1256 Stack H (m) 5 5
Na mdot

Secondary Side Na mdot (kg/s) 12.6 (kg/s)

IHX Tin (OC) 333.014 333 Nak mdot (kg/s) 17.5 17.5

IHX Tout (0C) 488.871 488 air mdot (kg/s) 110
IHX AP secondary
(kPa) 22.1975 14.8 PCS System

mdot (kg/s) 1253.5 1256 H20Tin (OC) 216 216

SG Tin (OC) 488.837 477 H20 Tout (CC) 453.987 454
PCS Pressure

SG Tout (°C) 330.955 326 (MPa) 2.31 1.17

5.3 Full-Plant Alternate Core Configuration Models

This section describes the RELAP5-3D core models created for the bottle-shaped

and internally/externally cooled annular fuel assemblies. For the bottle-shaped

configurations, both metal and oxide fuel cores are described, while for the annular fuel,

only the metal fuel core is included. This is because the oxide fuel has already been

considered unacceptable for use in the SFR due to the potential for fuel and clad damage

during an IA subchannel blockage accident. In the following core models, only the fuel

assembly models have been altered for the CR = 0.71 core models and the base CR =

0.71; the assembly design parameters for control, shield, and reflector assemblies are the

same. The assembly sizes are similar for the CR = 0.71 cases and base CR = 0.25 cores,
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but not for the CR = 0.25 annular core, as described in section 5.1.1.1. For the annular

CR = 0.25 metal fuel core, the assemblies flat-to-flat distance is larger than for other core

configurations, so this required an adjustment of the core and assembly parameters, as

described in Section 5.3.3.

5.3.1 Bottle-Shaped Fuel Core Models

The full-plant core model remains nearly unchanged for bottle-shaped fuel

configurations. The core segments (volumes 4-9) for each pipe in the core remain

unchanged. In the plenum region (volumes 10-14), the lengths, flow areas, and hydraulic

diameters for the flow channel pipes are altered to reflect the reduced fuel rod plenum

diameters. In order to compensate for the increased fuel rod lengths, the height of the

core and core barrel heights were increased by the same amount as the fuel rods. The

core outlet branch component was shortened by the same amount to compensate for the

increased core length. The lower plenum volume was manipulated by adding an

additional volume with the same properties as the core outlet branch, which represents

the additional hot pool volume adjacent to the taller core barrel. Table 5.22 lists the

changes implemented in the RELAP5-3D model for both oxide and metal core

configurations.

Table 5.22: Adjustments to components of RELAP5-3D model from base
and bottle-shaped fuel cores

Oxide Metal
Base Bottle- Base Bottle-
Fuel Shaped Fuel Shaped

Plenum rod volume lengths (m) 0.32004 0.38891 0.254 0.30234
Core outlet volume length (m) 1.64658 1.30223 1.64658 1.40488
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Lower hot pool number of
volumes 3 4 3 4
Plenum flow area per assembly
(m2 ) 0.00678 0.008854 0.00678 0.008854
Plenum hydraulic diameter (m) 0.003361 0.005468 0.003361 0.005468
Plenum turbulent drag
coefficient 0.175 0.1531 0.175 0.1531
Plenum laminar drag coefficient 0.7757 0.59716 0.7757 0.59716

The orificing at the core entrance was the same for the bottle-shaped and base fuel

configurations so as to maintain clarity in the comparison; any adjustments to the orifice

sizes could offset the gains from utilizing a reduced plenum rod diameter. The bottle-

shaped design has a slightly higher mass flow rate, which results in a small decrease in

the core average outlet temperature (-0.50C - 1 C). Because this decrease is so small, no

effort was made to correct it by adjusting the pumping power. The pressure drops across

the core for steady state operation in the full-plant model for both bottle-shaped

configurations and base configurations can be found in Table 5.23.

Table 5.23: Core pressure drop for bottle-shaped and solid cores for both
metal and oxide fuel configurations

Metal Oxide
Fuel Fuel

Solid fuel core AP (kPa) 294.4788 399.6515
Bottle-shaped fuel core AP (kPa) 223.6985 336.2784
Reduction of core AP (%) 24.04% 15.86%

The final bottle-shaped fuel configurations have a reduced pressure drop across

the core during steady state operation, but this reduction in pressure drop is not as large

as predicted according to the preliminary and subchannel analyses. This is because of the

addition of several non-fuel assemblies, which, like the bottle-shaped fuel, have increased

assembly lengths (in order to have a uniform height across the core at the core outlet).

The flow area in these assemblies, however, is not adjusted in the plenum region. This
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results in a slight increase in pressure drop across the core for these assemblies. The net

result is a reduction in pressure drop across the core, but a more moderate drop than for

fuel assemblies alone. Future work should include resolving this problem by increasing

the plenum region flow area and thus reduce the hydraulic resistance in the reflector,

control, and shield assemblies.

5.3.2 CR = 0.25 Base Metal Fuel Core Model

A new full-plant core model was adjusted to accommodate the low CR metal fuel,

as described in Section 2.1.2. Because the CR = 0.25 core is divided into three different

regions, a seven channel core model is used. These channels represent the inner driver,

middle driver, outer driver, hottest assembly, shield, reflector, and control assemblies, as

depicted in the nodalization diagram found in Fig. 5.19. The fuel is still a U-Pu-Zr fuel,

but the enrichment (TRU/HM) of the inner, middle, and outer driver zones is 46.2%,

57.8%, and 69.3%, respectively. This enrichment is maintained for all CR = 0.25 metal

fuel core configurations as well.

Initially, core radial and axial power profiles based upon the high conversion ratio

(CR = 0.71) SFR cores were used, as described in section 4.2.3.1. However, these

profiles are not accurate, considering the highly different configuration of the fuel at low

conversion ratios. The reactivity feedback coefficients provided by Hoffman et al. were

used in the low CR = 0.25 cores, while the axial and radial power peaking profiles were

calculated using MCNP. This neutronic analysis was performed by Matt Denman [1.14,

1.15] for the solid and annular fuel cores in order to provide the power peaking profiles.
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The feedback coefficients therefore utilized for the low CR metal core were

provided by Hoffman et al. [2.2] and are listed in Table 5.24. These reactivity feedback

coefficients are assumed to be valid for the annular fuel core as well, as the fuel-to-

coolant ratio and core height were maintained from the solid to the annular fuel

configurations.

Table 5.24: Reactivity coefficients for the metal CR 0.25 core [2.21
Metal Metal
(BOEC) (EOEC)

Effective delayed neutron fraction 0.0027 0.0027
Prompt neutron lifetime (ps) 0.44 0.44
Radial expansion coefficient (0l°C) -0.48 -0.48
Axial expansion coefficient (€/iC) -0.63 -0.63
Fuel density coefficient (¢PC) -0.93 -0.93
Vessel expansion coefficient (1 0C) 0.10 0.10
Sodium density coefficient ( 0 C) 0.18 0.18
Doppler coefficient (e/C) -0.06 -0.06

The axial peaking for both solid were taken from Table 4.5, while the radial

peaking was assumed to be 1.2, as with the other core radial peaking. Though this is

higher than the predicted radial peaking, this provides a small margin to account for

various uncertainties.
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Figure 5.19: Nodalization diagram of the metal CR = 0.25 core RELAP5-3D model

The hydraulic resistance across the fuel assemblies in the CR = 0.25 core layout is

considerably less than the CR = 0.71 core due to the larger pitch and hydraulic diameters.
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This would result in a larger flow rate through the fuel assemblies and lower core outlet

temperatures in general. Therefore, the primary pump rated volumetric flow rate and

rated head were slightly reduced to 2.92 m3/s and 90.06 m, respectively, in order to

maintain a similar coolant temperature increase across the core as was seen in the higher

conversion ratio core configurations.

The fuel rod and assembly lengths were adjusted so that the metal fuel assemblies

would fit inside the current SFR full-plant model. The new fuel lengths and the old fuel

lengths are listed together for comparison in Table 5.25. The CRDLE reactivity feedback

is not included in [2.2], but as a simplifying assumption, the feedback coefficients are

assumed to be the same as for the CR=0.71 metal core. A complete listing of the

RELAP5-3D hydraulic component parameters for the CR = 0.25 metal fuel core can be

found in Table 5.26, while a complete listing of the heat structure parameters can be

found in Table 5.27.

The hydraulic resistance of the CR = 0.25 metal fuel core configuration is lower

than CR = 0.71 metal fuel core configuration. Thus, the pumping power was decreased

while maintaining pump performance, as dictated by the homologous pumping curves,

until the flow rate matched the flow rate of the higher CR core configurations. At this

point, the parameters for the CR = 0.25 metal fuel core full-plant model matched those of

the base model described in this chapter. The orificing required to minimize the core

outlet temperature distribution, while at the same time minimizing additional hydraulic

resistance, is found in Table 5.28

The CR = 0.25 solid metal fuel core model was combined with the balance of the

full-plant RELAP5-3D model and together was the basis against which the annular fuel
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core performance was compared. The next section focuses on the RELAP5-3D core

model for the metal annular fuel core.

Table 5.25: Pin and assembly lengths for the metal CR = 0.25 and CR = 0.71 cores
Lengths (m) CR = 0.71 CR = 0.25

Nosepiece 0.3556 0.3556
Lower Shield 1.2446 1.07
Core 0.8128 1.016
Gas plenum 1.2446 1.9114
End cap and duct standoff 0.8128 0.11745
Handling socket 0.30485 0.3048

Total 4.77525 4.77525

Table 5.26: Hydraulic components of the CR = 0.25 solid fuel pins core RELAP5-
3D model

Flow Hydraulic
Area Diameter

Component Description Volumes (m) (mm)
110 Control 12 0.083 8.677
111 Inner driver 12 0.46719 4.552
121 Middle driver 12 0.52559 4.552
123 Outer driver 12 0.40879 4.552
131 Reflector 12 0.19415 1.878
132 Shield 12 0.15998 4.251

Hottest
150 assembly 12 0.00973 4.552

Table 5.27: Heat structure components of the CR = 0.25 solid fuel pins core
RELAP5-3D model

Heated
Outer Length

Heat Inner Radius (Core
Structure Description Segments Radius (mm) Segment)
11102 Control core 5 0.00 20.965 35.560
11112 Inner driver core 5 0.00 2.32 5925.312
11212 Middle driver core 5 0.00 2.32 5925.312
11232 Outer driver core 5 0.00 2.32 4608.576
11312 Reflector core 5 0.00 7.705 1553.261
11322 Shield core 5 0.00 16.685 231.648

Hottest assembly
11502 core 5 0.00 2.32 109.728
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Table 5.28: Orifice diameters required to flatten the outlet temperature profile and
minimize the core pressure drop

CR=0.25
orifice area

(m2)

110 0.0025
111
121 0.035
123 0.05
131 0.0021
132 0.0009
150

5.3.3 Annular Metal Fuel CR = 0.25 Core Model

The internally and externally cooled annular fuel assemblies for metal fuel do not

translate as easily to the SFR full-plant model as does the annular oxide fuel

configuration. Because of the larger assembly size required for metal annular fuel (18.29

cm vs. 15.71 cm), it is not possible to preserve the same core layout without a large

increase in the effective core diameter. Therefore, a new core layout was created to

approximately preserve the core effective diameter, allowing direct application of the

annular fuel core into the SFR full-plant model. Because the metal annular fuel

assemblies are larger in size, fewer of them are needed to constitute a 1000 MW core, but

including fewer, higher power assemblies also alters the neutronic performance of the

core. The constraints for developing an annular fuel CR = 0.25 core layout are that the

core must:

1. Produce 1000 MWth
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2. Maintain a similar control worth as the base core layout

3. Have a core effective diameter that approximately matches the effective diameter

of the solid fuel core effective diameter (2.22m).

The average assembly parameters described in Chapter 2 for the metal annular

fuel assembly were used to determine the number of fuel assemblies required in order to

match the core power of the solid fuel core layout. Approximately 111 fuel assemblies

are needed to provide a power of 1000 MWth in the annular fuel core. However, it is

impossible to have 111 fuel assemblies while keeping all 25 control rod assemblies and

maintaining a similar neutronic behavior in the core. Thus, without performing detailed

neutronic evaluations on possible annular fuel core configurations, two options were

possible for proceeding with the annular fuel configuration: 1) the number of control

assemblies could be reduced, and 2) the number of fuel assemblies could be reduced.

Neither of these options is a perfect alternative, but rather each would provide a way to

thermal-hydraulically evaluate an acceptable core design without diverting to thorough

neutronic analyses of various core configurations, which is beyond the scope of this

thesis.

The first option indicates a decrease in core control worth, while the second

option indicates a decrease in power, and thus a decrease in the benefit of utilizing

annular fuel. It is not desirable to adjust the control rod worth, particularly to decrease

the worth of control rod assemblies, without a detailed neutronic analysis. For the

purposes of this study, the power was decreased, and nine fuel assemblies were removed

from the core layout in order to keep all 25 control assemblies.
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Because this core configuration is not ideal, future work should focus on a

careful analysis of core design in order to determine a layout and control rod assembly

design that does not require a loss of control or power. For the current study, the decision

was made to maintain the number of control assemblies in the core. This could

potentially provide too much control rod worth to the more compact core. If future

studies reveal that this is the case, the control rod worth in the core could be adjusted by

decreasing the B4C concentration in the control rods.

The potential power uprate achievable by utilizing annular fuel was decreased

because of the loss of nine fuel assemblies, but was still sizable enough to be considered

worthwhile at -14.3%. The final core layout consisted of 102 fuel assemblies, 86

reflector assemblies, 54 shield assemblies, and 25 fuel assemblies. Fig. 5.20 shows the

final core layout of the annular fuel core.
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*= shield
*= reflector
1 = primary control
*= secondary control
d= outer driver

O= middle driver
= inner driver

Reflector = 84

Shield = 54

Control= 25

Inner Fuel = 48

Outer Fuel =24

Mid Fuel = 30

Total Fuel = 102

Figure 5.20: Core layout for annular fuel metal CR = 0.25 core

With only 102 fuel assemblies, the power generated by this core is only 952.7

MWth. Considering a power uprate of -20%, as discussed in Chapter 6, the power

generated in the annular fuel core is 1143.32MWth. Thus, the overall power uprate of an

annular fuel core when considering core layout limitations is -11.4%. Should a more

desirable and accurate core configuration be developed, the size of the net uprate could

be increased. For transparency of comparison with the solid metal fuel core, the core

coolant temperature increase was maintained at -155 'C. The required flow rate to
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maintain the core average outlet temperature of 510 'C is -5744 kg/s, and the primary

pumps rated flow and head were increased to provide this flow rate through the core.

The flow rates through the secondary and PCS systems were also increased by 11.4%, so

that similar temperatures are seen for the uprated annular fuel full-plant model. Finally,

the DRACS modules were resized so that the heat withdrawn was also increased by

11.4%. A nodalization diagram of the SFR annular metal fuel core is found in Fig. 5.21.

The axial peaking for the metal annular fuel is taken from Table 4.5, while the

radial peaking was assumed to be 1.2. Again, this is larger than the peaking of 1.07

predicted by Fig. 4.13, but as with the solid fuel, this elevated peaking not only provides

some margin to account for engineering and modeling uncertainties, but it helps to

provide clarity of comparison between the annular and solid fuel designs.
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Figure 5.21: Nodalization diagram for annular fuel CR = 0.25 core RELAP5-3D
model

The fuel assemblies in the annular fuel core are based upon the design developed

in Chapter 4, and include both internally/externally cooled fuel rods and assembly duct

ribs. Table 5.29 contains a complete listing of the RELAP5-3D hydraulic component

parameters for the CR = 0.25 metal fuel annular core, while the corresponding heat

280

--I



structure parameters can be seen in Table 5.30. These parameters were derived similarly

to the core parameters in section 5.1.1.1.

Table 5.29: Hydraulic components of the CR = 0.25 annular fuel pins core
RELAP5-3D model

Flow Hydraulic
Area Diameter

Component Description Volumes (m2) (mm)
110 Control 12 0.0826 8.677
111 Inner driver 12 0.3490 2.600
112 Inner driver IA 12 0.1967 3.625
121 Middle driver 12 0.2182 2.600
122 Middle driver IA 12 0.1229 3.625
123 Outer driver 12 0.1821 2.600
124 Outer driver IA 12 0.0983 3.625
131 Reflector 12 0.1942 1.878
132 Shield 12 0.1600 4.251
150 Hottest assembly 12 0.0073 2.600

Hottest assembly
151 IA 12 0.0043 3.625

Table 5.30: Heat structure components of the CR = 0.25 annular fuel pins core
RELAP5-3D model

Heated
Inner Outer Length

Heat Radius Radius (Core
Structure Description Segments (mm) (mm) Segment)
11102 Control core 5 0.00 20.965 35.560
11112 Inner driver core 5 1.80 3.835 3872.179
11212 Middle driver core 5 1.80 3.835 2420.112
11232 Outer driver core 5 1.80 3.835 1936.09
11312 Reflector core 5 0.00 7.705 1553.261
11322 Shield core 5 0.00 16.685 231.648

Hottest assembly
11502 core 5 1.80 3.835 80.6704

The steady state operation of the annular fuel core is similar to the steady state

operation of the solid fuel core, with one primary difference: the hydraulic resistance for

the annular fuel design is higher than for the solid fuel design. This requires a larger
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pump, and results in a larger pressure drop across the core. This increased hydraulic

resistance across the core results in a slightly worse performance during a long term

station blackout transient, as the natural circulation flow rate will be less. This will be

discussed in more detail in Chapter 6. In order to maintain the steady state performance,

the pumping power was increased (while maintaining the same homologous curves) until

the temperature rise across the core matched that of the solid fuel core model. At this

point, both core power and flow rate were increased by 20.0% (a net increase of power

density of 11.4%) to simulate an uprated metal annular fuel core. The temperatures at

key points for this steady state model match that of the base model within -1%.

5.4 Conclusions

A RELAP5-3D model representing the entire SFR plant was created, using scaled

up ABTR parameters and best engineering judgment. Certain comparisons were made

against the ABR1000 concept described by Grandy et al., and the final performance of

the RELAP5-3D model was found to be acceptable. This RELAP5-3D model includes

the primary pool (including hot and cold regions, the core, the primary IHXs, and the

primary pumps), the secondary loops (including the secondary pumps, secondary IHXs

and the steam generators), and a PCS boundary representing water flow through a steam

generator. Also included is the DRACS safety system, which actuates upon either

operator action or loss of electrical power to the DRACS control valves. The steady state

performance of this model matches the expected performance of a typical SFR.
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Three additional core models were created to represent the bottle-shaped, low

conversion ratio, and annular fuel cores. These cores were included in the full-plant

model. With minor adjustments to the pumping power of the CR = 0.25 full-plant

models, all steady state runs with these cores matched the expected steady state operating

parameters. These full-plant models were then used to model the three transients of

interest: the station blackout transient, the ULOF transient, and the UTOP transient. A

description and analysis of each of the transients with respect to the relevant core

configurations can be found in Chapter 6.
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Chapter 6: Transient Analyses

The innovative fuel configurations described in Chapter 4 must perform as well as

or better than the base fuel configurations during the three postulated SFR transient

scenarios if they are to be feasible fuel designs. These "design basis" SFR transient

scenarios are the loss of heat sink transient, the loss of flow transient, and the transient

overpower. Because it is more conservative, the loss of heat sink and the loss of flow

accidents were combined into the more severe station blackout transient. As a

conservative assumption, each of these transients are considered unprotected, or in other

words, the control rods do not scram at any time during the accident, so as to verify that

the SFR is potentially walk-away safe.

Also, unique benefits of utilizing supercritical carbon dioxide (S-C0 2) during a

loss of flow accident merit further investigation. Therefore, a loss of flow transient

without scram, also known as an unprotected loss of flow (ULOF) transient, was

simulated for the full plant model utilizing metal CR = 0.71 solid fuel and a Rankine PCS

for use as a comparison against the same transient using a S-CO 2 PCS. This is discussed

in detail in Chapter 7.

Throughout the station blackout and transient overpower accidents, certain

thermal limits must not be exceeded. For metal fuel, the primary figures of merit are the

peak clad and maximum fuel temperatures. Fuel-clad chemical interaction (FCCI) is the

primary clad failure mechanism, and thus should be avoided. Many factors affect the

clad-fuel eutectic attack rate and depth, such as time at the given temperature, fuel

composition, and rate of clad-fuel eutectic attack [4.6]. A current standard for FCCI
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avoidance is that the clad temperature must remain below a generally accepted limit of

725 0 C for very short time-frames (minutes) and under 650 'C for the long time-frames

consistent with normal operation.

For oxide fuel, the fuel and clad must avoid melting temperatures. The first

constraint is that of the clad temperature. HT9 is not a very creep resistance material

above around 630 'C. This severely limits the use of HT9 with oxide fuel, as PCMI at

the top of the fuel results in potential creep failure due to large straining [6.1] in both

steady state and transient operation. Thus, it is recommended that oxide dispersed steels

(ODS) be used when they become available [6.2], but at this point, these materials are not

yet ready for use as cladding in the SFR. Thus, HT9 is used as cladding in the model as

described in Chapter 5. As an additional limitation, sodium coolant boiling must be

avoided due to the positive void coefficient; if coolant in the hot channel boils at any time

throughout the transients, super-criticality could be achieved, which is considered

unacceptable. However, the boiling point of sodium is significantly higher than the clad

limit of 630 0C, and thus this limit will be used as the limiting temperature for the oxide

fuel cladding, and oxide fuel transients where the clad temperatures exceed this value will

be considered unacceptable.

The first transient modeled with the RELAP5-3D full plant model was an

unprotected loss of heat sink (ULOHS) transient. This transient aided in identifying two

potential complications, which limited the ability of the model to perform the station

blackout transient completely; these issues were the model size and the maximum time-

step limitations.
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6.1. Full Plant Model Runtime and Time Step Optimization

Prior to the running of a station blackout transient, an unprotected loss of heat

sink (ULOHS) transient was initiated in order to evaluate the transient performance of the

SFR full plant model. The full plant model described in Chapter 5 included four

explicitly modeled secondary loops and PCS trains. This resulted in a larger than

necessary model, which required large amounts of time in order to run a transient

scenario. Additionally, the core volume to coolant velocity ratio in certain hydrodynamic

volumes was so small that the Courant limit prevented the use of time steps greater than

0.0007 seconds. The courant limit is a stability limit, which dictates that a time step

cannot be larger than the time it takes the coolant to cross one volume length. Thus, short

volumes that sustain high coolant velocities often limit the time step size of the model.

The initial LOHS run provided results that indicated reasonable performance of the full

plant model. However, these results were only short term, (-1000 seconds) and required

-1.5 days of runtime. Because some of the station blackout transients required nearly

60,000 seconds of runtime, this limitation prevented the complete analysis of the station

blackout transient.

Because none of the three standard SFR transients relate to a secondary loop

failure, it was not necessary to include 4 separate trains. Thus, each of the 4 secondary

loops was lumped into a single loop with areas and flow rates increased appropriately.

In addition, the number of core nodes was reduced similarly to the reduction made in the

subchannel model, as described in Section 4.2. With these adjustments, the courant limit

was increased to 0.03 seconds, allowing for a time step of -0.007 seconds. The overall
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model runtime was therefore decreased by a factor of 40 and was determined suitable for

the evaluation of station blackout transients.

6.2 Station Blackout Transient

The station blackout transient is a loss of electrical power accident. It is assumed

that all electrical power to the plant is lost and that emergency backup power fails. Under

these conditions, the heat sink (PCS) is lost, the pumps stop working, and the fail-open

valves of the DRACS open. For the station blackout transients performed here, the PCS

is lost instantly upon accident initiation, while the pumps continue to operate at

progressively decreasing speeds for a period of time. This gradual decrease in pump

speed after accident initiation is called the pump "coast-down." The core continues to

produce decay heat at a larger rate than natural circulation can remove the heat via

DRACS, therefore it is important to consider the long term, as well as the short term,

results of the station blackout. The RELAP5-3D station blackout transients, therefore,

are run for -60,000 seconds to ensure that decay heat has indeed fallen below the power

removal capabilities of the safety systems.

There are four separate phases of an unprotected station blackout transient. The

first phase of the station blackout transient consists of sharply increasing core

temperatures, as the pumps trip and begin to slow down. The reactor power is reduced

due to the net negative reactivity coefficients, but it remains higher than the heat removed

by the flow through the core, causing an increase in coolant temperature. The coolant

temperature increases until the core power drops below the heat removed by the coolant
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flow. The second phase of the station blackout accident is a decrease in core

temperatures (clad, fuel, and coolant) as the reactor power continues to decrease. The

third phase of the station blackout transient begins as the pump completely stops and

natural circulation flow is established. The natural circulation flow rate carries heat from

the core to the DRACS exchanger, where the heat is rejected, and then returns to the core

inlet. The heat removed from the DRACS is less than the decay heat produced by the

core, so the coolant and clad and fuel temperatures slowly increase. A second peak is

seen after a large time has elapsed from the initiation of the transient. This occurs when

the decay heat from the core matches the decay heat removed by the DRACS systems.

The fourth and final phase is where the DRACS systems effectively cool the pool by

removing more heat than is generated in the core.

The length, magnitude, and location of these phases on the accident timescale are

dependent upon several parameters, as well as the fuel configuration of the core itself.

Since both oxide and metal fuels will be investigated separately, it is useful to first

identify and investigate the primary universal parameters that define the length and

severity of each phase of the unprotected station blackout accident. These parameters are

the pump coast-down curves, the control rod drive-line expansion feedback, the DRACS

performance, and the decay heat curve. A parametric study of these factors with respect

to a solid metal fuel CR = 0.71 core configuration is found in the following sections.
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6.2.1 Pump Coast-down Model

The location and height of the first temperature peak depends primarily upon the

fuel type and the rate at which the pump coasts down. Typically, pump coast-down is

driven by the momentum of an external flywheel, but the pumps contained in the SFR

described in this thesis are EM pumps, and thus do not have flywheels. However, in

order to utilize EM pumps, a major requirement is that they must perform similarly to

mechanical pumps in term of sufficient coast-down time. Thus, it is assumed that the EM

pumps in the SFR model operate after having been tripped via a capacitor, whose

discharge would allow an EM pump coast-down similar to a mechanical pump in the

same application. The pump mass flow rate coast-down is an exponential decay curve,

typically with a "halving time" of between 5 and 20 seconds for SFR applications. In

RELAP5-3D, the option is available to either specify the velocity of the pump, or to

evaluate the pump velocity due to both pump inertia and the frictional torque within the

pump, utilize the torque and inertia equations during coast-down. The frictional torque

and inertia equations can be defined as [6.3]:

Sl x2 x3

r - "  ft o + Tf i  2 -R fr3 -fr for - S pF (6.1)

p = Ip du (6.2)dt
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respectively, where:

T = pump torque

Ip = pump inertia

co = pump speed

OR = pump rated speed

fr = pump frictional torque

frO = constant frictional torque coefficient

Tfrl = first frictional torque coefficient

Tfr2 = second frictional torque coefficient

Tfr3 = third frictional torque coefficient

xl = first frictional torque exponent

X2 = first frictional torque exponent

x3 = first frictional torque exponent

SPF = pump critical speed ratio.

Table 6.1: Pump frictional coefficient/exponent values for ABTR pumps [5.3]

Pump inertia (kg/m 2) 160.0
Second frictional
coefficient 0.1
Constant frictional
coefficient 21.5
First frictional coefficient 21.5
Third frictional coefficient
First frictional exponent 1.0
Second frictional exponent 2.0
Third frictional exponent

A scoping analysis of the influence of pump coast-down on the first temperature

peak for the metal CR = 0.71 base configuration was performed in which four separate
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pump coast-down curves were modeled: an exponential coast-down with halving time of

5 seconds, an exponential coast-down with halving time of 20 seconds, a logarithmic

coast-down, and a coast-down utilizing the inertia and frictional relations, with values

derived from the ABTR EM pumps [5.3], as seen in Table 6.1. The logarithmic coast-

down curve is simply the pump velocity fitted to a logarithmic curve with similar starting

and 150 second finishing flows, to explore the validity of this type of flow coast-down.

The resulting temperatures and fractional mass flow rates can be seen in Figs. 6.1 and

6.2, respectively.

Figure 6.1: Maximum coolant temperature for various pump coast-down curves
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Figure 6.2: Fractional core coolant flow for various pump coast-down curves

For the slower pump coast-down curves, the initial temperature peaks are smaller,

and they occur later on in the transient because the pump fractional flow decreases at a

lower rate and takes longer to drop below the fractional power curve. The fractional core

power curves for all cases can be seen in Fig. 6.3.

292



1

0 9 -5 Seond Castdown

-Torque EquIRon

20 Second Coastdown

Q0.7 Log-curve Coastdnw

a 06

O_
0.2

0

0 50 100 150

Time (s)

Figure 6.3: Fractional core power for various pump coast-down curves

Based upon these findings, engineering judgment was enforced to select a

conservative pump coast-down standard halving time of 5 seconds for the station

blackout transient runs. It was found that in some cases, 5 second halving times resulted

in initial peak cladding temperatures that were above the short term FCCI and PCMI

limits. However, in each of these cases, the halving time was increased to an upper

bound of 20 seconds to determine if a longer pump coast-down would prevent the breach

of the transient temperature limits.

6.2.3 Control Rod Drive-Line Expansion (CRDLE) Model
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The core kinetic reactivity feedback coefficients play a large role in determining

the height and location of the first peak, along with the pump coast-down curve. The

feedbacks utilized for the full plant model, as described in Section 5.1.1.2 are used for all

of the transient analyses performed in this thesis. However, the CRDLE feedback was

not clearly defined in this section because of the uncertainties associated with this

feedback. The CRDLE feedback was calculated explicitly from known design

parameters of the SFR model. The CRDLE reactivity insertion (ACRDLE )in o/PC was

calculated according to the following equation:

APCRDLE = a ATRDL -Lo . ac(R, (6.3)

where:

a = thermal expansion coefficient of the control rod drive-line

ATCRDL = change in temperature of the control rod drive-line

Lo = initial control rod drive-line length submerged in sodium

aCR = control rod worth in ¢/cm.

The control rod drive-line was assumed to be made of stainless steel (ss-316), and

thus a thermal expansion coefficient of 1.9x10-5 was used. The change in temperature of

the control rod drive-line is calculated directly by the RELAP5-3D model, and is thus not

an input to the model. This temperature represents the average temperature of the sodium

in the hot pool region adjacent to where the control rod drive-line would be. The CRDL

is not explicitly modeled as a heat structure in RELAP5-3D due to lack of a concrete
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design in the reference plant model. Thus, as a simplifying assumption, the temperature

of the core outlet was used instead of the actual CRDL temperature. It should be noted

that such an assumption neglects the time required to heat the driveline, and thus the

CRDLE is encountered earlier than in reality. The third parameter, the control rod drive-

line length submerged in sodium pool, is assumed to be 6.0 m, according to engineering

judgment. This leaves only the control rod worth as an uncertainty.
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Figure 6.4: Maximum coolant temperature for given values of control rod worth in
the CRDLE model (assuming BOL conditions)

For a single rod, the worth associated with control rod drive-line expansion is

negligible, but it is quite significant for all the control rods being withdrawn together.

Thus, a sensitivity analysis of the CRDLE feedback in the full plant CR = 0.71 metal fuel

core model was conducted in order to evaluate the influence of control rod worth on the

max coolant temperature during the first 150 seconds of the station blackout transient.
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Figure 6.4 shows the short term influence of the CRDLE. The temperature peak is

smaller for a larger CRDLE because the added worth shuts down the reactor more

quickly. However, there is a potential problem if too much rod worth is claimed, as large

reactivity swings as a function of temperature are possible.
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Figure 6.5: Maximum coolant, clad, and fuel temperatures for a high value of
control rod worth in the CRDLE model (assuming BOL conditions)
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Figure 6.6: Fractional power and mass flow curves for a high value of control rod
worth in the CRDLE model (assuming BOL conditions)

A plot of maximum coolant temperature for very high CRDLE feedback is shown

in Fig. 6.5, while the fractional power and flow curves are plotted in Fig. 6.6. The

corresponding reactivity is shown in Fig. 6.7. Note that at very high values of the control

rod worth, the temperature begins to oscillate during the second phase of the transient.

This is primarily due to reactivity oscillations resulting in periodic re-criticality of the

core. This occurs as the control rod drive-line cools and positive reactivity is essentially

inserted as the rods withdraw relative to the core. The core then increases in temperature,

which in turn heats the CRDL, which expands and re-inserts the rods. This then reduces

the reactor power again, causing a decrease in power and temperature. These oscillations

become more severe as the control rod worth increases. Thus, to mitigate such severe

responses, a reasonable control rod worth of 490/cm for the metal fueled cores, and

350/cm for the oxide fueled cores was assumed.

297



It is of importance to note that the CRDLE influence described in this section is

only valid at BOL. At EOL, the CRDLE feedback will be significantly smaller, and

could lead to clad failure in the case of a station blackout transient with a 5 second

halving time pump coast-down. One possible solution to this is to impose a condition that

the control rods always be inserted, which requires a higher initial keff and higher

enrichment, which leads to decreased economic performance. A different solution is to

incorporate a passive scram device that inserts negativity if an increase in power or

temperature is detected [6.4]. These devices could potentially be used to provide

additional negative reactivity at EOL.
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Figure 6.7: Selected reactivity feedbacksas a function of time for a high aCR case
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6.2.4 DRACS System

The DRACS system is one of two components that determines the time and

height of the second temperature peak. Each DRACS loop, as described in Section

5.1.5.2, is capable of removing 2.5MW, or 0.25%, of steady-state power. All three

DRACS are thus capable of removing 0.75% of steady-state full power. For all three

transient scenarios investigated in this thesis, however, only two of the three DRACS are

assumed to operate, according to the so-called "single-failure criterion". Thus, in the

RELAP5-3D model, the DRACS valve is only opened for 2 of the DRACS loops,

resulting in 5 MW total power removal. Note that the rated DRACS power is the power

removed at the second peak, or in other words, the power removed by the DRACS

system when the DRACS power equals the reactor decay power.

The DRACS size remains constant for all the transients except for the uprated

annular fuel transients. The models in these transients have a core power uprated by

11.4%, and thus the DRACS system is uprated by 14.3% as well so that a constant heat

withdrawal of 0.25% of steady-state full power can be removed.

6.2.5 Decay Power Curve

The second parameter that determines the height and time at which the second

temperature peak occurs is the decay power of the core. The decay power for fast

reactors is quite different from the decay power for light water reactors. In previous fast

reactor applications [5.2, 5.3], a decay curve was assumed to be 100% of the ANSI 5.1
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standard [6.5] for Pu-239. Although this is more acceptable than assuming the same

decay curve as light water reactor cores, it is still not entirely accurate. A rigorous

calculation of the decay heat for a lead-bismuth eutectic reactor was performed

previously [6.6] for a CR = 1.0 core. A comparison of this decay curve with the 100%

Pu-239 decay curve and the LWR decay heat curve is found in Fig. 6.8.
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Figure 6.8: Comparison of CR = 1.0 lead-bismuth and 100% Pu-239 decay curves

A decay heat curve for CR = 0.71 fuel has not been calculated to date, but the CR

= 1.0 curve serves as a conservative approximation. However, this curve is not utilized in

this thesis, primarily so that a clear comparison can be made between the current station

blackout runs, and those modeled in the reference design [5.12], as the decay heat curve

utilized in those studies is 100% of the ANSI 5.1 standard for Pu-239. A more accurate

curve should be used in future work to determine actual performance of the reactor,

however. The CR = 1.0 decay heat curve was included in initial runs (not shown here)
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but the SFR DRACS systems were not appropriately sized to remove the heat generated

with the CR =1.0. It is beyond the scope of this thesis to design a new DRACS systems

that can remove the additional heat generated by the CR = 1.0 decay heat curve, however.

For these reasons, therefore, the convention of utilizing the decay heat curve for 100% of

the ANSI 5.1 standard for Pu-239 was followed for all of the transients modeled in this

study.

Since the purpose of this thesis is to compare the innovative fuel designs to the

traditional fuel design, not to verify the feasibility of the DRACS design, it is acceptable

to use a reasonable, albeit not conservative, curve, such as that for Pu-239. However,

future work should focus on resizing the DRACS systems to successfully remove the

decay heat generated in the CR = 1.0 curve.

6.3 Station Blackout Results

There are six different core configurations for which the station blackout transient

was run: the CR = 0.71 base fuel configurations (both metal and oxide), the CR = 0.71

bottle-shaped fuel configurations (both metal and oxide), the CR = 0.25 metal base fuel

configuration, and the CR = 0.25 metal annular fuel configuration. The results of each of

these transients are presented and discussed in the following sections.
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6.3.1 Base Fuel Configurations (CR = 0.71)

The base fuel configurations of the higher conversion ratio core serve as the

standard by which the innovative fuel designs are to be compared. The metal and oxide

fuels both undergo similar blackout transients, with 2/3 DRACS systems operable, a

100% Pu-239 decay curve, and a pump curve defined by a 5 second halving time. Both

short and long term results are plotted for each fuel configuration, as significant trends

are present in each. The results for the metal fuel CR = 0.71 base fuel configuration

station blackout transient are found in Figs. 6.9 - 6.13.
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Figure 6.9: Selected reactivity feedbacks for metal CR = 0.71 base fuel
configuration during the station blackout
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Figure 6.10: Fractional core power and coolant flow rate for the metal CR = 0.71
base fuel configuration during the station blackout
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Figure 6.11: Short term key temperatures for the metal CR = 0.71 base fuel
configuration during the station blackout

303

20%

18%

16%

14% - Fractional Power

12% - Fractional Flow

O 10%

8%

6%

4%

2%

0%

0 2000 4000 6000 8000 10000

Time (s)



Figure 6.12: Long term DRACS and core power withdrawn for the metal CR = 0.71
base fuel configuration during the station blackout

Figure 6.13: Long term key temperatures for the metal CR = 0.71 base fuel
configuration during the station blackout
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The radial, Doppler, and CRDLE feedback mechanism all drop with the initial

increase in temperature resulting in the power reduction of the reactor. As the

temperatures begin to drop off, so do these negative feedbacks. It should be noticed that

the positive reactivity resulting from vessel expansion gradually begins to increase as the

vessel temperature increases, but this is more than compensated for by the CRDL

expansion, and thus re-criticality is never achieved.

The maximum clad temperature occurs at the hottest assembly core outlet, and is

695 'C at -25.2 seconds. The fuel temperature decreases as the reactor power decreases

below the power removable by the coolant flow, and through the second temperature

peak it never reaches the operating temperature, and thus is not a safety concern during a

station blackout transient. Neither the clad nor fuel temperatures exceed the safety limits

in the second peak, further bolstering the performance of the metal CR = 0.71 base fuel

configuration during a station blackout transient. Note that our analysis does not include

all the engineering uncertainty factors required in a rigorous quantitative core analysis, so

the feasibility of the reference core design is yet to be proven. However, since the

purpose of this thesis is simply to compare the innovative fuel designs to the reference

design, this simpler approach is deemed acceptable.

The fractional coolant flow drops proportionally with the pump velocity during

the early time periods of the station blackout. After -90 seconds, however, natural

circulation velocity is established, and the fractional flow (-6% at this point) begins to

decay much more slowly, eventually leveling off at -2%. This fractional flow is driven
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by the difference in the hot and cold pool temperatures, and these changes in natural

circulation reflect the changes in these temperatures.

The oxide CR = 0.71 base fuel configuration station blackout transient results are

plotted in Figs. 6.14-6.18. Unlike the metal fuel configuration, the clad temperature

increases dramatically, such that the clad temperature limit of 630'C is breached not only

for the initial peak, but for the entirety of the transient. The max temperature of the

cladding in the initial peak is 1063 'C and occurs at -37 seconds, while the max clad

temperature of the second peak was not ascertained, as the code failed due to instabilities

introduced from sodium boiling before the end of the transient, as the current model is

not capable of modeling the core during coolant boiling.
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Figure 6.14: Selected reactivity feedbacks for oxide CR = 0.71 base fuel
configuration during the station blackout
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Figure 6.15: Fractional core power and coolant flow rate for the oxide CR = 0.71
base fuel configuration during the station blackout
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Figure 6.16: Short term key temperatures for the oxide CR = 0.71 base fuel
configuration during the station blackout
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Figure 6.17: Long term DRACS and core power withdrawn for the oxide CR = 0.71
base fuel configuration during the station blackout

Figure 6.18: Long term key temperatures for the oxide CR = 0.71 base fuel
configuration during the station blackout
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It can be seen from these figures that the oxide fuel PCMI clad creep temperature

limit of -63 0 'C is exceeded in the early seconds of the station blackout accident, as well

as in the long term transients. The power coast-down is slower than in the metal CR =

0.71 base fuel transient, and the natural circulation takes slightly longer to be established

and drops to lower flow rates more quickly. This is due to the elevated temperatures of

both the hot and cold pools fairly early in the transient.

Considering the performance of the oxide fuel configuration during a station

blackout transient, it is doubtful that oxide fuel will perform adequately in unprotected

events as a fast reactor fuel. However, the bottle-shaped comparison will still be

investigated in the following section to determine if the improvements seen in the metal

designs hold for the oxide designs.

6.3.2. Bottle-Shaped Fuel Configurations (CR = 0.71)

The metal CR = 0.71 bottle-shaped fuel model station blackout transient was run

using the exact same parameters as the metal CR = 0.71 base fuel. Figs. 6.19 - 6.23 plot

the long and short term results of the metal bottle-shaped fuel station blackout transient.

The performance of the oxide CR = 0.71 bottle-shaped fuel is nearly the same as the

oxide CR = 0.71 base fuel configuration in shape and magnitude, though a clear

comparison of the two configurations will be made in Section 6.4.
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Figure 6.19: Selected reactivity feedbacks for metal CR = 0.71 bottle-shaped fuel
configuration during the station blackout

Figure 6.20: Fractional core power and coolant flow rate for the metal CR = 0.71
bottle-shaped fuel configuration during the station blackout
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Figure 6.21: Short term key temperatures for the metal CR = 0.71 bottle-shaped
fuel configuration during the station blackout

Figure 6.22: Long term DRACS and core power withdrawn for the metal CR = 0.71
bottle-shaped fuel configuration during the station blackout
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Figure 6.23: Long Term key temperatures for the metal CR = 0.71 bottle-shaped
fuel configuration during the station blackout

The metal bottle-shaped fuel performs similarly to the metal base fuel in terms of

both peaks and the maximum temperatures. The max clad temperature is 689 'C and

occurs after -39.6 seconds. As with the metal base fuel, natural circulation begins at -54

seconds with a fractional flow rate of -6%. This flow decays more slowly than the

initial pump coast-down, being driven primarily by the temperature difference between

the cold and hot pools. The second clad temperature peak occurs at -44000 seconds, but

is significantly smaller than the clad temperature limits at 593 "C.

The oxide CR = 0.71 bottle-shaped fuel model station blackout transient was run

using the exact same parameters as the oxide CR = 0.71 base fuel. Figs. 6.24 - 6.28 plot

the long and short term results of the oxide CR = 0.71 bottle-shaped fuel. The bottle-

shaped fuel performance shows considerable improvement over the base fuel

configuration. However, as with the oxide CR = 0.71 base fuel configuration, the clad
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temperature exceeds the clad temperature limit of 630 'C from the beginning of the

transient, resulting in potential PCMI induced clad-creep failure. This again indicates

that the performance of the oxide CR = 0.71 bottle-shaped fuel is still unacceptable. The

station blackout transient does not run to completion for the oxide fuel cores, as the onset

of core-wide boiling produces code instabilities which cause the code to fail.

Figure 6.24: Selected reactivity feedbacks for oxide CR = 0.71 bottle-shaped fuel
configuration during the station blackout
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Figure 6.25: Fractional core power and coolant flow rate for the oxide CR = 0.71
bottle-shaped fuel configuration during the station blackout
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Figure 6.26: Short term key temperatures for the oxide CR = 0.71 bottle-shaped
fuel configuration during the station blackout
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Figure 6.27: Long term DRACS and core power withdrawn for the oxide CR = 0.71
bottle-shaped fuel configuration during the station blackout
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Figure 6.28: Long term key temperatures for the oxide CR = 0.71 bottle-shaped fuel
configuration during the station blackout

In order to determine if a longer pump coast-down would ameliorate the oxide

base and bottle-shaped fuel transient performances, a station blackout transient was

repeated for each of these fuels configurations, but with a pump coast-down relating to a
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20 second halving time instead of a 5 second halving time. The short term results are

plotted together in Fig. 6.29. The peak temperatures are still too high, and the sodium

would still boil. Note that the effect of decreasing the rate of pump coast-down is smaller

for bottle-shaped fuel, since the flow rates are naturally higher in the bottle-shaped fuel

configuration. A possible solution to this problem is to increase control rod worth, thus

effectively increasing the CRDLE feedbacks. However, as discussed in Section 6.1.3,

this instigates potential problems with reactor re-criticality and temperature/flow

oscillations. For this reason, this method was not investigated, and oxide fuel is deemed

unacceptable for use in a SFR due to its performance during an unprotected station

blackout transient.
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Figure 6.29: Short term key temperatures for the metal CR = 0.71 base fuel
configuration during the station blackout
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6.3.3 Metal CR = 0.25 Fuel Configurations

A CR = 0.25 model station blackout transient with the exact same parameters as

the CR = 0.71 fuel configurations was run for both the solid and annular fuel

configurations. The short term performance is noticeably worse for low conversion ratio

cores, primarily due to the different reactivity feedbacks. The power level, and thus the

size of the peak for both clad and fuel temperatures in the earliest stage of the station

blackout transient (-70 seconds), is driven primarily by three reactivity feedbacks: the

Doppler coefficient, the fuel density coefficient, and the sodium density coefficient. The

sodium density coefficient is nearly 64% higher in the CR = 0.25 cores, while the

Doppler coefficient is 50% lower in magnitude, and the fuel density coefficient is 31%

higher in magnitude. These changes result in a decrease in the net negative reactivity

inserted, which result in a slower decrease in reactor power, and thus a higher

temperature peak for the CR = 0.25 fuel configurations. The metal CR = 0.25 base case

fuel station blackout transient results for the long and short term are found in Figs. 6.30 -

6.34. During the earlier time-frames of the transient, the short term FCCI clad

temperature limit is exceeded. With the pump coast-down curve corresponding to an

exponential decay with a 5 second halving time, the initial peak is too high for this core

configuration to be acceptable with a peak clad temperature of 764 'C.

During the later time-frames of the transient, the peak fuel temperature is only

slightly higher than the peak clad temperatures, as can be seen in Fig. 6.34. The long

term peak clad temperature for the CR = 0.25 metal fuel cores is also significantly lower
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than the short term peak clad temperature (and well below the long term FCCI clad

temperature limit). Similarly to the CR = 0.71 metal fuel cores, this indicates again that

the second temperature peak is insignificant relative to the first temperature peak.

Time (s) I

Figure 6.30: Selected reactivity feedbacks for metal CR = 0.25 base fuel
configuration during the station blackout
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Figure 6.31: Fractional core power and coolant flow rate for the metal CR = 0.25
base fuel configuration during the station blackout

Figure 6.32: Short term key temperatures for the metal CR = 0.25 base fuel
configuration during the station blackout
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Figure 6.33: Long term DRACS and core power withdrawn for the metal CR = 0.25
base fuel configuration during the station blackout

Figure 6.34: Long term key temperatures for the metal CR = 0.25 base fuel
configuration during the station blackout

320

9

8

7

6

' 5

0 4 - DRACS Power

3 ---- Reactor Power

2

1

0

0 20000 40000 60000

Time (s)

655

605

555

1.505
D~- - MaxFuel Temperature

455 1 Max Clad Temperature

Max Coolant Temperature

405 / I Max Vessel Temperature

0 10000 20000 30000 40000 50000 60000

Time (s)



The metal CR = 0.25 annular fuel core model station blackout transient results are

found in Figs. 6.35-6.39. Again, the trends for the metal CR = 0.25 annular fuel are very

similar to the metal CR = 0.25 base fuel, with slight differences in magnitude and peak

location. As with the metal CR = 0.25 base fuel configuration, the initial peak clad

temperature for metal CR = 0.25 annular fuel exceeds the FCCI short term limit with a

peak clad temperature of-768.3 'C. The second temperature peak, at 608.9 'C, is well

below the long term FCCI limit. Thus, as with the solid fuel configuration, it is the initial

peak that is of most concern for the station blackout transient. A comparison of the

performance of annular and solid CR = 0.25 core configurations is located in next

section.

It is significant to note that in the annular fuel configuration, the max fuel

temperature is very close to the max clad temperature (-3 OC higher than the max clad

temperature). This makes the max fuel temperature very difficult to discern from the

max clad temperature in Fig. 6.37. As with the metal CR = 0.25 base fuel, in the

secondary peak, the fuel, coolant, and clad temperatures are all very close and difficult to

differentiate on the plot in Fig. 6.39.
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Figure 6.35: Selected reactivity feedbacks for metal CR = 0.25 annular fuel
configuration during the station blackout
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Figure 6.36: Fractional core power and coolant flow rate for the metal CR= 0.25
annular fuel configuration during the station blackout
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Figure 6.37: Short term key temperatures for the metal CR = 0.25 annular fuel
configuration during the station blackout
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Figure 6.38: Long term DRACS and core power withdrawn for the metal CR = 0.25
annular fuel configuration during the station blackout

Figure 6.39: Long term key temperatures for the metal CR = 0.25 annular fuel
configuration during the station blackout
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6.4 Innovative Fuel Configuration Performance (Station Blackout)

The figures of merit for the innovative fuel configurations during the station

blackout transient are the maximum cladding temperature and the maximum fuel

temperature. If these temperatures are close to or less than the base fuel configurations,

then the innovative fuel configurations can be considered acceptable for use in the SFR in

terms of safety. The maximum cladding and fuel temperatures for the metal CR = 0.71

fuel configurations are found in Figs. 6.40-6.41 while the fractional flow for each

configuration is plotted in Fig. 6.42. The maximum cladding and fuel temperatures for

the oxide CR = 0.71 fuel configurations are found in Figs. 6.43-6.44 while the fractional

flow for each configuration is plotted in Fig. 6.45.
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Figure 6.40: Maximum clad and fuel temperatures for the metal CR = 0.71 fuel
configurations during a station blackout transient (short term)
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Figure 6.41: Maximum clad and fuel temperatures for the metal CR = 0.71 fuel
configurations during a station blackout transient (long term)

Figure 6.42: Fractional flow rates for the metal CR = 0.71 fuel configurations
during a station blackout transient
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Figure 6.43: Maximum clad and fuel temperatures for the oxide CR = 0.71 fuel

configurations during a station blackout transient (short term)

Figure 6.44: Maximum clad and fuel temperatures for the oxide CR = 0.71 fuel

configurations during a station blackout transient (long term)
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Figure 6.45: Fractional flow rates for the oxide CR = 0.71 fuel configurations
during a station blackout transient

The bottle-shaped fuel max temperatures for both metal and oxide have exactly

the same short term trends as the base fuel configurations, but shifted down by ~10 oC for

the metal fuel and -90 oC in the oxide fuel due to a lower hydraulic flow resistance and

thus a higher natural circulation flow rate. In the long term, the second peak is lower and

occurs sooner for the bottle-shaped fuels, again due to the increased natural circulation

mass flow rates through the core. This is not explicitly seen in the oxide fuel transients

due to the code failure at the onset of boiling in the hot channel. The trend is identical to

the metal fuel configuration, however, and an extrapolation indicates that the similarity in

these trends will continue. For both configurations, the lower hydraulic resistance across
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the core results in a significantly lower short term temperature peak due to the higher

flow rate as the pump is coasting down.

The annular fuel (uprated case) comparison with solid fuel for the CR = 0.25 fuel

configurations are found in Figs. 6.46-6.48. The annular fuel max temperatures in the

annular fuel are -4 'C higher (in the first peak) than for the metal base fuel. Note that

initially, (during steady-state operation) the annular peak fuel temperature is lower than

the base fuel temperature. However, with the loss of flow in the hottest assembly, the

heat transfer coefficient deteriorates. This results in an increasing temperature of the clad

and fuel. The fuel temperature in the annular fuel is nearly the same as the clad

temperature because of the very low thermal resistance across the fuel. The heat transfer

coefficient deteriorates faster for the annular fuel due to thigh higher hydraulic resistance,

and thus the fuel/clad temperatures exceed those of the base configuration in the initial

clad/fuel temperature peak. Although it is undesirable to have a higher temperature in the

annular fuel configurations, the magnitude of the increase is rather small, and thus the

performance of the annular fuel is considered acceptable relative to the solid fuel for the

purposes of this study. The long term temperature trends indicate that less fractional heat

is withdrawn from the annular fuel configuration than for the solid fuel configuration;

this is manifested in a higher and later temperature peak in the annular fuel configuration.

The long term temperature trends correspond to the increased hydraulic resistance for the

annular fuel core and a higher power rating for the annular fuel (this core is uprated by

11.4%), and it is verified by a decreased fractional flow rate through the core in the

annular fuel configuration, as seen in Fig. 6.48. Although the peak temperatures are

slightly higher in the annular fuel peaks, this difference is very small, and both of the
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second peak temperatures are significantly less than the FCCI long term limit. Thus, the

most limiting constraint of CR = 0.25 fuel configuration performance is the peak clad

temperature of the initial higher peak. The annular fuel peak clad temperature is slightly

higher than the solid fuel peak clad temperature, but this amount is not enough to

consider the annular fuel configuration performance unacceptable.

Figure 6.46:
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Short term maximum clad temperatures for the metal CR = 0.25 fuel
configurations during a station blackout transient
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Figure 6.47: Long term maximum clad temperatures for the metal CR = 0.25 fuel

configurations during a station blackout transient

Figure 6.48: Fractional flow rates for the metal CR = 0.25 fuel configurations
during a station blackout transient
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Because both metal CR = 0.25 fuel configurations have unacceptable

performances in the short term temperature peak, it is of interest to note the influence of

having a longer pump coast-down, as was investigated with the oxide CR = 0.71 fuel in

Section 6.3.2. Fig. 6.49 plots the max fuel and clad temperatures for both solid and

annular metal CR = 0.25 fuel configurations for a pump coast-down halving time of 20

seconds, which represents the upper bound of the pump coast-down. As can be seen in

this plot, the slower pump coast-down greatly decreases the max fuel temperature so that

a max clad temperature for the uprated annular fuel is 651.3 'C, while the max clad

temperature for the solid fuel is 647.3 'C. Thus, the low conversion ratio fuel

configurations can still be utilized, but at the cost of slightly larger capacitors or

flywheels and thus slightly longer pump coast-downs.
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Figure 6.49: Short term maximum clad temperatures for the metal CR = 0.25 fuel
configurations during a station blackout transient with a pump coast-down halving

time of 20 seconds
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6.5 UTOP Accident

The unprotected transient overpower accident represents the insertion of reactivity

due to the removal of a control rod with the highest worth. This results in an upward

ramp of the core power until the negative feedbacks push the core power back down.

The core power reaches an equilibrium value that is slightly higher than the fractional

core power. The UTOP transient is modeled for two separate scenarios: a moderate rod

removal, and a sudden ejection. Under the first accident, the rod is assumed to be

withdrawn at the same rate as the maximum rod insertion rate, due to rod drive stop

systems. The second case is a worst-case conservative estimate in which the rod is

completely rejected within 0.5 seconds2 . Each of these cases was applied to the CR =

0.71 base fuel configurations as well as the CR = 0.25 fuel configurations. The bottle-

shaped fuel configurations were not included in the UTOP analysis, because the bottle-

shaped core region is identical to the solid fuel core region. This indicates that the bottle-

shaped fuel configurations will thus perform similarly to the solid fuels.

The maximum rod insertion rate for typical fast reactors is -0.3cm/s. In the metal

and oxide CR = 0.71 base fuel configurations, the total worth of the highest worth control

rod bundle is $4.4. In the metal fuel, this bundle is inserted 23.28 cm into the core at

BOEC. This relates to a reactivity insertion rate of 0.9021¢/s as the rod is withdrawn.

The maximum reactivity insertion from the removal of the rod is $0.70, and occurs at

77.6 seconds. In the oxide CR = 0.71 fuel configuration, the bundle is inserted 39.68 cm

2 It may be argued that rod ejection is a physically impossible event in a system operating at near-
atmospheric pressure. However, it is analyzed here as a bounding event.

333



at BOEC. This relates to a reactivity insertion rate of 0.52920/s to a maximum value of

$0.70 at 132.3 seconds. In both fuel configurations, the rod ejection accident is simulated

by adding all $0.70 of control rod worth in the course of 0.5 seconds. The reactivity

feedbacks for each fuel configuration are the same as for the station blackout transients.

The pumps do no stop, but continue to operate at rated conditions, and the DRACS

valves do not open.

For the CR = 0.25 cores, previous studies have placed a desirable rod ejection

reactivity insertion at below $1.0 [2.2]. Therefore, the withdrawal rate, maximum worth

insertion, and time to complete withdrawal of the highest worth rod bundle for the metal

CR = 0.71 base configuration was used for the CR = 0.25 configurations as well.

6.6 UTOP Results

The primary figures of merit for the UTOP transient are the maximum clad and

fuel temperatures. It is also of interest to note the contributions to reactivity and the

fractional core power for each event. A discussion of these parameters for each fuel

configuration is found in each of the following sections.

6.6.1 Base Fuel Configurations (CR = 0.71)

The metal CR = 0.71 base fuel configuration UTOP results are plotted in Figs.

6.50 - 6.53. These include both the moderate rod withdrawal and the sudden rod ejection
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accidents. The oxide CR = 0.71 base fuel configuration UTOP results are plotted in Figs.

6.54 - 6.57. Again, these plots include both the moderate rod withdrawal and the sudden

rod ejection accidents. For metal fuel, the FCCI long term clad temperature limit of 650

'C is also plotted in each of the temperature plots in order to demonstrate the margin to

failure for each accident. For oxide fuel, the PCMI temperature limit is plotted as the

limiting temperature.
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Figure 6.50: Fractional core power for the metal CR = 0.71 base fuel configuration
during both slow withdrawal and rod ejection UTOP accidents
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Figure 6.51: Selected
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reactivity feedbacks for the metal CR = 0.71 base fuel
during a slow rod withdrawal UTOP accident
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Figure 6.52: Selected reactivity feedbacks for the metal CR = 0.71 base fuel
configuration during a rod ejection UTOP accident
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Figure 6.53: Maximum cladding and fuel temperatures for the metal CR = 0.71
base fuel configuration during both slow withdrawal and rod ejection UTOP

accidents
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Figure 6.54: Fractional core power for the oxide CR = 0.71 base fuel configuration
during both slow withdrawal and rod ejection UTOP accidents

Figure 6.55: Selected reactivity feedbacks for the oxide CR = 0.71 base fuel
configuration during a slow rod withdrawal UTOP accident
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Figure 6.56: Selected reactivity feedbacks for the oxide CR = 0.71 base fuel
configuration during a rod ejection UTOP accident
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Figure 6.57: Maximum cladding and fuel temperatures for the oxide CR = 0.71
base fuel configuration during both slow withdrawal and rod ejection UTOP

accidents
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In both the rod ejection and slow rod withdrawal accidents for metal CR = 0.71

base fuel, a maximum cladding temperature of-6000 C was reached. The rod ejection

accident resulted in a longer temperature peak; however, the maximum clad temperature

is well below the FCCI long term limit, and the amount of time at the higher clad

temperature is irrelevant. In both cases, additional reactivity inserted by the withdrawal

of the rod results in a power increase of -25%. The negative reactivity coefficients then

reduce the core power until a new steady state level of -108% of the fractional power is

reached. In both cases, the temperature consistently remains well below the long term

FCCI limit, indicating that the metal CR = 0.71 base fuel configuration performs

adequately during a UTOP transient.

In the oxide CR = 0.71 base fuel configuration, the maximum cladding and fuel

temperatures for both slow rod withdrawal and rod ejection accidents peaked at -607 0C.

The rod ejection accident produced a wider, longer lasting peak, but this temperature is

well below the sodium boiling point, thus verifying the safety of the oxide CR = 0.71

base fuel configuration in a UTOP accident. The peak fractional power was 113%, at

which point the negative reactivity feedbacks reduced the core power to a quasi-steady

state limit of 107% fractional core power.

Note that for both oxide and metal max clad temperatures, it appears that the

temperature remains flat throughout the transient. However, the temperature of the clad

follows a similar pattern to the temperature of the fuel, however, this trend is much less

exaggerated: the fuel increases initially corresponding to the fuel temperature increase,
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and then slightly decreases, at which point a very slight and slow increase in temperature

is apparent.

6.6.2 Metal CR = 0.25 Base Fuel Configuration

The metal CR = 0.25 base fuel configuration UTOP results are plotted in Figs.

6.58 - 6.61, including both the slow control rod withdrawal and sudden ejection

accidents. The FCCI long term maximum cladding temperature limit of 6500 C is also

plotted Fig. 6.61.

Figure 6.58: Fractional core power for the metal CR = 0.25 base fuel configuration
during both slow withdrawal and rod ejection UTOP accidents
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Figure 6.59: Selected reactivity feedbacks for the metal CR = 0.25 base fuel
configuration during a slow withdrawal UTOP accident

Figure 6.60: Selected reactivity feedbacks for the metal CR = 0.25 base fuel
configuration during a rod ejection UTOP accident
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Figure 6.61: Maximum cladding and fuel temperatures for the metal CR = 0.25
base fuel configuration during both slow withdrawal and rod ejection UTOP

accidents

For both the rod ejection accident and the slow withdrawal accident, the max clad

temperature remains well below long term FCCI limit of 650 'C. In both cases, the

reactivity insertion causes an increase in core power, which peaks at 124%, but then the

other reactivity feedbacks drive the power back to a level slightly above the fractional

power (- 105%). In the rod ejection accident, the core fractional power peaks at a slightly

larger value than the slow rod ejection, which results in a slightly higher peak clad (602

°C) and fuel temperature for the ejection accident (-722 'C). This difference is small

(0.4 IC) and thus is considered negligible. Because the peak clad temperature is slightly

higher in the rod ejection accidents, they were used as the point of comparison between

solid and annular fuel configurations, as discussed in the next section.
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6.6.3 Metal CR = 0.25 Annular Fuel Configuration

The metal CR = 0.25 annular fuel configuration (with a power uprate of 20%)

UTOP results are plotted in Figs. 6.62 - 6.65, including both the slow control rod

withdrawal and sudden ejection accidents. The FCCI long term maximum cladding

temperature limit of 650 0 C is also plotted Fig. 6.65.

Figure 6.62: Fractional core power for the metal CR = 0.25 annular fuel
configuration during both slow withdrawal and rod ejection UTOP accidents
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Figure 6.63: Selected reactivity feedbacks for the metal CR = 0.25 annular fuel
configuration during a slow withdrawal UTOP accident
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Figure 6.64: Selected reactivity feedbacks for the metal CR = 0.25 annular fuel
configuration during a rod ejection UTOP accident
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Figure 6.65: Maximum cladding and fuel temperatures for metal CR = 0.25
annular fuel configuration during both slow withdrawal and rod ejection UTOP

accidents

Unlike the solid base fuel configuration, the annular fuel configuration rod

ejection fractional power initially reaches a higher level of 127%, as compared to the

slow ejection fractional power of 124%. This is quickly reduced by the core reactivity

feedbacks, until a new steady state power of 105% fractional power is attained. This

higher peak in power for the rod ejection accident is reflected in the max clad

temperature, which reaches a short term maximum of 622.6 'C instead of the peak clad

temperature of 616.2 'C reached in the slow withdrawal accident. Even with a 6.4 'C

increase in initial temperature, the max clad temperature is well below the short term

FCCI clad temperature limit.
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6.7 Annular Fuel Configuration Performance

To be considered a viable fuel option, the annular fuel must perform similarly to

or better than the base fuel. A comparison of the annular and base fuel maximum

cladding and maximum fuel temperatures are plotted in Fig. 6.66. Also included in this

plot is the FCCI long term temperature limit of 650 "C.

Figure 6.66: Maximum cladding and fuel temperatures for the CR = 0.25
annular and solid metal fuel core configurations a rod ejection UTOP accident

The largest benefit of the annular fuel configuration in a UTOP rod ejection

accident is the decrease in max fuel temperature. This parameter is reduced by nearly

100 "C. As with the station blackout accident, however, annular fuel cladding max
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temperatures are slightly higher than the solid fuel cladding max temperatures. This

difference of -13 'C is relatively small, and not of major concern in the comparison of

the fuel performances. Both annular and solid max clad temperatures at the onset of the

UTOP rod ejection accident are significantly lower than the short term FCCI limits and

are 27.4 'C - 47.4 'C lower than the long term FCCI temperature limits. Thus, both solid

and annular fuel configurations maintain adequate safety margins during a UTOP rod

ejection accident.

6.8. Conclusions

A summary of the transient analyses performed in this thesis and the key points of

the corresponding results can be found in Table 6.2. The metal CR = 0.71 base fuel

configuration performs adequately during a station blackout accident, but the oxide CR =

0.71 base fuel configuration fails via sodium coolant boiling. Thus, oxide fuel is not

suitable for use in the SFR, if inherent shutdown in unprotected events is required, due to

its poor safety performance. The bottle-shaped fuels for both oxide and metal fuel types

perform satisfactorily in reducing the maximum clad and fuel temperatures by allowing

higher natural circulation flow rates. However, the performance improvement during

accidents is marginal, so the main advantage for the bottle-shaped fuel concept remains

the substantial reduction of pressure drop and pumping power at steady-state conditions.

The metal CR = 0.25 base fuel does not breach clad or fuel temperature limits during a

station blackout transient. The metal annular fuel also does not breach clad or fuel

temperature limits, although the peak temperatures for both long and short time frames
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are - 4.3 'C higher than those of the metal base fuel. Both innovative fuel configurations

for the metal fuel are acceptable in terms of a station blackout accident.

Table 6.2: Transient analyses performed with summary of results

* = base I = safe UTOP Station

- = worse than base X = safe w/ changes Slow rod Rod ejection blackout

+ = better than base = unsafe withdrawal

Metal Base CR = 0.25 * * *
CR = 0.71

Bottle-shaped CR = 0.25
CR = 0.71

Annular CR = 0.25 -/+
CR = 0.71

Oxide Base CR = 0.25
CR = 0.71

Bottle-shaped CR = 0.25
CR = 0.71

Annular CR = 0.25
CR = 0.71

Both metal and oxide CR = 0.71 fuel configurations do not breach safety margins

during UTOP transients. The maximum clad temperature is well below the FCCI long

term limit for metal fuel and the PCMI limiting temperature for oxide fuel.

The metal CR = 0.25 base and annular configurations were modeled using the

same decay power curve, pump coast-down curve, and CRDLE reactivity feedback

coefficient as the CR = 0.71 station blackout models. The peak clad temperatures of the

metal CR = 0.25 base and annular fuel configurations were 768.30 C and 764 OC,

respectively, during a station blackout accident. Both of these temperatures were above

the FCCI short term temperature limit of 725 oC. When the pump coast-down halving

time was increased to 20 seconds (upper bound), the max clad temperatures for the solid

and annular fuels were 647.30C and 651.3°C, respectively. Thus, the metal CR = 0.25
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base and annular fuel configurations could be considered suitably safe during station

blackout accidents, but a longer pump coast-down is required.

The clad temperature of the annular fuel configuration is slightly higher than the

base fuel clad temperature with a difference of -4.3 'C. This difference is small, and

likely within the uncertainties of the analysis. Thus, the 20% uprated-power annular fuel

configuration is performing at approximately the same level during station blackout

transients as the base fuel configuration.

During a UTOP transient, both the metal CR = 0.25 base and annular

configurations perform adequately. The max clad temperatures of616 OC and 603 'C are

well below the short and long term FCCI clad temperature limits. The annular fuel

configuration max clad temperatures are slightly higher than the base fuel configuration

max clad temperatures (- 13 'C), but this value is small and can be considered within the

uncertainties allowed for safety modeling.
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Chapter 7: Super-Critical Carbon Dioxide (S-C0 2) PCS

7.1. Introduction

The thermal-hydraulic performance of the innovative fuel configurations has been

evaluated as the primary focus of this thesis. The safety analysis of these fuel

configurations, as described in Chapter 6, necessitated the creation of a full plant model

using RELAP5-3D. This full plant model was coupled with a water/steam PCS boundary

rather than a complete PCS. This was done to simplify the model and reduce transient

analysis runtime, since a detailed view of the Rankine PCS was not necessary for the

standard transients evaluated in this thesis.

Previous SFR concepts have included a Rankine PCS [5.2, 5.3]. However, recent

interest has developed in utilizing a super-critical carbon dioxide (S-C0 2) PCS for

advanced reactors [7.1, 1.11]. Recent studies have shown that a S-CO2 PCS can provide

some unique benefits during a ULOF transient [6.6]. Thus, a S-CO 2 PCS system was

developed and modeled using RELAP5-3D to be coupled with the full plant model

described in Chapter 5. A ULOF accident was then simulated for the combined SFR/S-

CO 2 PCS model.

The S-CO2 PCS is a Brayton recompression cycle that utilizes carbon dioxide at

high temperatures and pressures as the working fluid. It has been shown that very high

efficiencies can be achieved when using this cycle at temperatures above -500 0 C [7.2].

The full plant model described in Chapter 5 has a max PCS temperature of -472 0 C,

however, so the efficiency is lower (-40%) than those achieved in the gas-cooled fast
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reactor [7.2]. Nevertheless, S-CO2 cycle is extremely compact offering significant capital

cost savings and CO2 reaction with sodium has slow kinetics and does not generate

hydrogen, making this cycle an interesting candidate for SFRs. Of particular interest is

the potential for the S-CO2 PCS to provide a heat sink during a ULOF transient. This

would eliminate the need for a safety-grade auxiliary coolant control system, such as the

auxiliary feedwater system utilized in typical PWR Rankine cycles. The following

chapter describes the S-CO2 PCS and the S-CO 2 PCS RELAP5-3D model with its steady

state results. In addition, the performance of the SFR with a Rankine cycle PCS during a

ULOF transient and the performance of the SFR with an S-CO 2 Brayton cycle PCS

during a ULOF transient are discussed.

7.2. S-CO 2 Cycle Description

The S-CO2 PCS used with the SFR is a two loop recompression Brayton cycle

with each loop rated at 500MW thermal. Each loop is powered by two 250MW thermal

secondary sodium loops. An illustration of the cycle is shown in Fig. 7.1. The CO 2

coolant enters the IHX printed circuit heat exchanger (PCHE) at ~20MPa and is heated to

the high cycle temperature. The CO 2 then enters a turbine where it expands and flows

into the high temperature recuperator (HTR) PCHE. The HTR effluent enters the hot

side of the low temperature recuperator (LTR) where it is cooled further. A portion of

the coolant flow is diverted to the recompressing compressor (RC) while the remainder of

the coolant flows through the precooler (PC) where it is cooled further by cold water at

32 'C. The cold, post PC CO2 is then compressed in the main compressor (MC) and
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subsequently flows through the cold side of the LTR. The LTR effluent then merges with

the portion of the fluid that was diverted to the recompressing compressor. The

combined fluid then flows through the cold side of the HTR where it is heated by the

turbine exhaust, and then flows into the IHX.
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Figure 7.1: Schematic of the S-C02 recompression cycle [7.1]

The PCHEs are a heat exchanger design developed by HEATRIC, a subsidiary of

Meggitt (UK), Ltd [7.3]. These compact heat exchangers are designed to provide highly

efficient heat transfer (reaching a thermal effectiveness of 98% [7.3]) at potentially high
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pressure and temperature conditions). They consist of a number of thin plates, each

chemically etched with zig-zag semi-circular channels, as depicted in Fig. 7.2. These

plates are then stacked and diffusion bonded, as seen in Fig. 7.3. The coolant flow

configuration through the plates is essentially counter-current with hot and cold plates

alternating in the stack.

Figure 7.2: Depiction of zig-zag channels etched into PCHE plate - image from
HEATRIC
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The zig-zag shape of the channels enhances laminar and transitional heat transfer

coefficients, but also increases the pressure drop across the channel. The friction factor

through each PCHE channel can be approximated if the zig-zag angle is -1270 by the

following equation [7.4]:

f = 4.8. Re-0 36 . 2b , (7.1)

where:

f = the fanning friction factor

b = the channel width (2mm)

p = zig-zag pitch (23mm).

For the heat transfer through the zig-zag channels, there is no publicly available

correlation to predict the heat transfer enhancement. However, a "fouling factor" can be

applied to approximate the enhanced heat transfer in the zig-zag channels, as described in

Section 5.2.1.
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Figure 7.3: Depiction of stacked plates in PCHE core - image from HEATRIC

The compressors are axial compressors and are on the same shaft as the turbine,

as depicted in Fig. 7.1. These compressors were designed and sized using Real Gas

Radial Compressor (RGRC), an MIT in-house compressor design code [7.5], and the

design parameters for 500MWth PCS loop are found in Table 7.1. The code is a mean-

line compressor model with losses modeled after Aungier [7.6]. In order to adapt the

compressor models to use in RELAP5-3D, the dimensions of the compressor were

simplified to determine approximate values for flow path length, average hydraulic

diameter, and flow area. The main compressor is a single stage design, but the

recompressing compressor is a two-stage design, due to the higher specific volume of the

gas.

Table 7.1: Flow geometry of the S-CO 2 compressors [7.7]
MC RC - Stage I RC2 - Stage 2

Inlet flow area (m2) 0.2138 0.2039 0.1444
Flow path length in 0.625 0.839 0.624
impeller(m)
Flow path length in 0.50 0.630 0.603
diffuser (m)
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Average Dh (cm) in 7.12 7.49 4.75
impeller
Average Dh (cm) in 3.21 4.15 3.18
diffuser
Number of blades 19 21 35
Number of vanes 35 30 20

The hydraulic diameters utilized were a flow path length weighted average of the

hydraulic diameters in the impeller and diffuser regions, respectively. The total flow path

length was considered to be equal to the sum of the impeller and diffuser flow paths.

This assumption under-predicts the volume in the pumps, but this approximation is

necessary for inputting these pumps into the RELAP5-3D model, since only a single

volume/length combination is allowed for the pump component in RELAP5-3D.

Table 7.2: Performance parameters of the S-SO 2 PCS compressors [7.7]
MC RC

Mass flow rate (kg/s) 1580.9 989.6

Static pressure (kPa) 7658.1 7670.9

Temperature (kPa) 304.74 344.4

Density (kg/m 3 ) 616.68 161.62

Enthalpy (kJ/kg) 302.66 481.65

Entropy (J/kg*K) 1334.8 1904.6

Velocity (m/s) 12 30

Pressure ratio 2.61 2.61

Operating speed (RPM) 3600 3600

The hydraulic diameters listed in Table 7.1 are the

passage, based on the inlet and outlet. The inlet flow area

averages in each blade

is just determined from the hub

and tip diameters at the impeller inlet. Due to pretty large density and velocity changes,

the total flow area throughout the machine does change, but these changes cannot be

modeled in RELAP5-3D, and thus are neglected. This approach is reasonable (especially

since this will tend to over-estimate the flow area, thus countering the effects of the flow
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path length in under-predicting total machine volume) [7.7]. Table 7.2 lists the

performance parameters of the main compressor and the recompressing compressor, and

Fig. 7.4 - 7.7 show the performance curves for the MC and RC, respectively (static-to-

static pressure ratio is simply the compressor inlet-outlet pressure ratio, while the total-to-

static efficiency is the performance efficiency of the compressor at the given pressure

ratio. An extrapolation of the surge and choke conditions flow and head is plotted on

Figs. 7.4 and 7.6 via the red dotted line (note that extrapolations to high pressure ratios

are required for these components to initialize correctly in RELAP5-3D). These

extrapolations were used in the creation of homologous pump curves, so that pump

performance was correctly modeled by RELAP5-3D in the case of these conditions

occurring.
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Figure 7.4: Pressure ratio performance curve for main compressor at nominal

operating speeds of 0.7 to 1.2 [7.8] (with choke and surge extrapolations for the
100% speed case included)
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Figure 7.5:
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Efficiency performance curve for main compressor at nominal
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Figure 7.6: Pressure ratio performance curve for recompressing compressor at
nominal operating speeds of 0.7 to 1.2 [7.8] (with choke and surge extrapolations for

the 100% speed case included)
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Figure 7.7: Efficiency performance curve for recompressing compressor at nominal
operating speeds of 0.7 to 1.2 [7.8]

There was no design code readily available for developing a turbine model

(CYCLES III does not include turbine parameters), and thus a detailed turbine model

specific to the SFR model was not created. However, the simplistic representation of a

turbine in RELAP5-3D negates the need for specific design data. Thus, the turbine was

scaled from a 300MW turbine utilized by Pope in S-CO2 Brayton cycles [ 1.11] while

using parameters from the S-CO 2 turbine designs developed at MIT [7.9]. The turbine

RELAP5-3D input parameters are listed along with the other cycle RELAP5-3D input

parameters in Section 7.3.

The details of each of the 500 MWth S-CO2 PCS loops were developed using the

code CYCLES III, (adapted from CYCLES II by Ludington [7.6, 1.12, 1.13]). This code

calculates the specific dimensions for the PCHEs in the cycle, as well as the various

coolant state-points throughout the cycle. CYCLES III can "optimize" the efficiency of

the S-CO2 PCS by adjusting the sizes of the PCHEs until the highest efficiency is
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obtained. The input parameters to CYCLES III include, but are not limited to, the hot

and cold conditions of the IHX, as well as guess values for PCHE sizes and piping

between components. Key CYCLES III inputs for the overall cycle can be found in

Table 7.3, while the key parameters for each of the PCHE exchangers can be found in

Table 7.4.

Key parameters for each of the 500 MWth S-CO 2 PCS
III input)

Main compressor outlet pressure (MPa) 20.0

Cycle thermal power (MWth) 500.0

Net thermal efficiency (%) 39.9
Pressure ratio of the main compressor
(maximum cycle pressure ratio) 2.6
IHX outlet temperature (0C) (maximum cycle
temperature) 472.0

Precooler outlet temperature (oC) 32.0
Main compressor efficiency in dimensionless
form 0.89
Recompressing compressor efficiency in
dimensionless form 0.86

Turbine efficiency in dimensionless form 0.94

Mechanical efficiency (couplings) 0.99

Generator efficiency 0.98
Frequency converter efficiency (including
switchyard losses) 1.0

Cooling water inlet temperature (0C) 20.0

IHX pressure drop (kPa) 60.0

loops (CYCLES

Table 7.4: Key parameters for each PCHE in the 500MW loop S-CO2 PCS
HX type HTR LTR pre IHX

Channel type zig-zag zig-zag zig-zag zig-zag
Hot-to-cold plate frequency (h:c) (h:c:he [IHX]) 1:1 1:1 1:1 1:1:1
Channel diameter (mm) 2.0 2.0 2.0 2.5

Total number of channels (hot and cold) 6963664 5299898 2340657 1505904

Plate thickness (mm) 1.5 1.5 1.5 1.5

Module height (m) 1 1 1 11

Module width (m) 1.666667 1.190476 1.538462 0.60000
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Heat exchanger volume (m3) 30 28 11 52.2496
Number of axial nodes 40 40 40 40
Precision 0.005 0.005 0.0005 0.0005
Hot side pressure drop (kPa) 43.612 62.917 7.216 2.432
Cold side pressure drop (kPa) 31.954 12.080 - 137.5

The state points and results of the CYCLES III calculation will be listed in

Section 7.3. A comparison of these results along with the RELAP5-3D model results will

be given as well. It is of interest to note that for the secondary IHX, there is a helium

plate for CO 2 leak detection between the hot and cold plates by design, which is the

purpose for the additional number in the plate ratio row in Table 4.7. The height of this

module was adjusted to match the height of the steam generator in the SFR model for

easy insertion of the new PCS boundary.

7.3 RELAP5-3D S-CO 2 PCS Model

The RELAP5-3D model for the S-CO2 PCS loops is constructed similarly to

model of the SFR secondary loops. Fig. 7.8 is a nodalization diagram of the S-CO2 PCS

loops, including the turbine trip valves. This model consists of a series of pipes

representing each PCHE, with branch components connecting each pipe. A turbine and

two pump components were included to represent the turbo-machinery of the loop. The

turbine flow control was incorporated by including a servo and a motor valve component

representing the turbine trip valves. Finally, pipe components were used to simulate the

zig-zag channel flow with heat structures representing the PCHE core. This heat

362

Module length (m) 0.6 0.75 0.65 1.97915



structure was used to model the transfer of heat between cold and hot streams in each

PCHE.

Turbine

Turtine
Vdteru nu

315 410

404

recooersor

Contro

Figure 7.8: Nodalization diagram of RELAP5-3D S-COz PCS loops model

The PCHE model pipe components represent the lumping of all the semi-circular

channels into a single flow area. The number of channels is multiplied by the area of
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each channel, providing the total flow area. The length of each PCHE node is slightly

different from the node length of the IHX exchangers. Because the PCHE consists of

zig-zag channels with a zig-zag angle (defined as the angle of deflection for the channel

at the top and bottom of each zig-zag) of 2"0, each node length is equal to:

L = LPHE 1(7.2)
N, sin(20)'

where:

Ln = flow length per node

LPCHE = length of the PCHE unit

Nn = number of nodes.

The PCHE design used in this model, 0 = 63.40, means that the node length is

increased by a factor of 1.25. The hydraulic diameter of the channels is used as the pipe

hydraulic diameter and is unaffected by the zig-zag pattern of the channels. The friction

factor is calculated in-situ by RELAP5-3D via Eq. (7.1). The branch components

connecting the pipe and compressor components utilize minor friction coefficients to

provide sufficient piping hydraulic resistance. Determining the minor loss coefficients

for each branch was an iterative process that involved adjusting the coefficient until the

pressure losses predicted by CYCLES III were achieved. Key parameters of the pipe and

compressor components are found in Table 7.5.

Table 7.5: Key parameters of RELAP5-3D S-C02-PCS components
Flow Length Hydraulic

Number Description Type Volumes Area (m2) (m) Diameter
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(m)

Time
dependent

400 Control volume volume 1 1000 1 1.07047

402 Turbine bypass Valve 0.6 -

404 IHX inlet Branch 1 19.74 0.4 0.001833

406 Turbine shutoff Valve 1 0.6 -

405 IHX Pipe 40 19.74 0.412 0.001833

410 Turbine inlet Branch 1 19.74 0.1 1.07047

415 Turbine Turbine 1 1.8 0.6 1.07047
Turbine outlet

425 (pipe) Branch 1 21.877 1.8

430 HTR hot side Pipe 40 21.877 0.0188 0.001222

431 HTR hot out Branch 1 21.877 0.4 0.001222

435 LTR hot inlet Branch 1 16.65 2.05

440 LTR hot side Pipe 40 16.65 0.0234 0.001222

441 LTR hot outlet Branch 1 16.65 0.4 0.001222
Precooler

445 entrance Branch 1 16.65 1.2
Recompressing
compressor

446 entrance Branch 1 17.22 1.498 2.28976
Recompressing

450 compressor Pump 1 0.3834 1.3143
Recompressing

455 compressor Outlet Branch 1 17.22 0.1 2.28976

460 Precooler Pipe 40 7.353 0.01625 0.001222

461 Precooler exit Branch 1 7.353 0.4 -

465 Main compressor Pump 1 0.4276 1.125

Main compressor
470 outlet Branch 1 13.333 1.2 2.91849

474 LTR cold inlet Branch 1 16.65 0.4 -

475 LTR cold side Pipe 40 16.65 0.234 0.001222

476 LTR outlet Branch 1 16.65 0.4 -

480 Point 3 Branch 1 13.333 1.65 0

484 HTR cold inlet Branch 1 21.877 0.4 0.001222

485 HTR cold side Pipe 40 21.877 0.0188 0.001222

486 HTR cold outlet Branch 1 21.877 0.4 0.001222
Time

Cooling water dependent
850 source volume 1 400 1 11.28

Precooler cold
860 side Pipe 40 7.353 0.01625 0.001222
870 Cooling water sink Time 1 400 1 11.28

365



dependent
volume

The PCHE heat structures were modeled as flat plates with an effective heat

conduction thickness of -60% of the actual plate thickness, which is supported by

FLUENT calculations of the PCHE channels [7.10]. In reality, the heat transfer through

the PCHE channels is multi-dimensional, but this heat transfer is approximated using the

single flat plate exchangers. The recuperators in the RELAP5-3D model were composed

of stainless steel 316, while the precooler was composed of titanium.

The PCHE heat structure could be considered a solid rectangular block with

thousands of hollow channels within this block. Thus, a simple way to derive a

reasonable volumetric heat capacity coefficient is to start with the volumetric heat

transfer coefficient for the solid PCHE block, and then multiply this value by a factor

representing the hollow spaces representing the channels. For the PCHEs, the channels

take up roughly 14% of the PCHE block. Thus, in order to compensate for the abnormal

shape of the plate and channel design, the volume properties were modified by dividing

the volumetric heat capacity by 1.14 [1.11]. Table 7.6 tabulates the material properties

(volumetric heat capacity and thermal conductivity) used for the PCHEs, while Table 7.7

lists the key parameters of the heat structures for these volumes. The zig-zag channels in

the PCHE modules facilitate a higher heat transfer coefficient than straight channels.

There is currently no correlation that predicts this enhancement, but previous work has

found that a multiplication factor of 2.4 will accurately account for the enhanced heat

transfer [6.6].
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Table 7.6: Material properties (adjusted for volume distortion) of ss-316 and
titanium as utilized in the HTR, LTR, and PC [1.11]

SS-316 Titanium

Volumetric Thermal Volumetric Thermal
Temperature Heat Conductivity Temperature Heat Conductivity

(0C) Capacity (W/m-K) (°C) Capacity (W/m-K)
10 3.12E+06 13.7 -73.15 1.64E+06 20.0

37.78 3.24E+06 14.14 21.85 1.64E+06 20.0

260 3.73E+06 17.63 26.85 1.67E+06 20.0

426.67 3.87E+06 20.24 126.85 2.26E+06 20.0

537.78 3.96E+06 21.99 226.85 2.53E+06 20.0
815.56 4.31E+06 26.35 326.85 2.68E+06 20.0

526.85 2.84E+06 20.0
826.85 2.92E+06 20.0

Table 7.7: Key parameters of RELAP5-3D S-C02-PCS heat structures
Heated

Heat Thickness Length
Structure Description Segments (mm) m

14301 HTR 40 1.2 1342.6

14302 LTR 40 1.2 1342.6

14303 PC 40 0.9 195.6

14304 IHX 40 1.5 407.0

The compressor component model utilized in RELAP5-3D is dependent upon

performance curves that indicate the pressure ratio and efficiencies at given shaft speeds.

However, the work previously performed at MIT revealed that compressor over-speed

and under-speed performances are significant. For example, in the ULOF transient

described in Section 7.5, the turbine and generator are decoupled from the grid, thus

experiencing a sudden loss of load in the generator. This loss of resistance causes a

ramp-up of turbine shaft speed. In order to model accurately the wide range of over-speed

and under-speed performances (since the current compressor curves only reach to an
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over-speed of 20%) the compressors are modeled as pumps, as was done by Pope and

Nikiforova [1.11, 6.6]. Utilizing RELAP5-3D pump components requires the conversion

of the compressor properties and performance curves to pump homologous curves and

rated parameters. This conversion introduces a small error, but this is acceptable

considering the preliminary stages of investigation for such conversions.

The homologous pump curves for the main compressor and recompressing

compressor were created using the same method as described in Section 5.1.2.2, with a

couple of key differences. First, the head curve and efficiency curves were taken from

the compressor performance curves described in Figs. 7.4 - 7.7. The pressure ratio for

each compressor was converted to pump head according to the equation:

H = P, -(r - 1), (7.3)

where:

Ps = compressor static pressure

r = pressure ratio.

Because the RELAP5-3D model consists of two lumped 500MW S-CO2 PCS loops, the

rated flow through each compressor (pump component) is double the flow listed in Table

7.2. Using this method for converting the compressors to pump components, the

resulting homologous curves can be found in Figs. 7.9 - 7.10. Note that the extrapolation

beyond choke and surge points of the compressors in the RELAP5-3D pump homologous

curves is required for initiation in RELAP5-3D and these extrapolations are indicated by
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the red lines on the homologous curves. Note that a large positive extrapolation was

needed in the recompressing compressor for a stable flow to be established by RELAP5-

3D. Thus, compressor performance was monitored to determine if either of these

conditions were instigated within the compressors during the transient, as described in

section 7.5.3.
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Figure 7.9: Homologous pump curves for the main compressor (radial)
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Figure 7.10: Homologous pump curves for the recompressing compressor (radial)

The turbine model in RELAP5-3D requires input of the efficiency, pressure ratio,

and flow parameters, as well as the inlet flow area. The efficiency for the 500 MW loop

turbine design is 94%, and the pressure ratio is 0.397147. The flow parameters are listed

in Table 7.5, while the inlet and outlet flow areas were adjusted, due to lack of a specific

design parameter, in order to better match the RELAP5-3D and CYCLES III state points.

The final inlet flow area, which provides the closest match to the state-points, is 0.675

2

7.4 RELAP5-3D S-CO 2 PCS Model Results
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The performance of the RELAP5-3D model is best rated by comparing key state-

points and parameters with the CYCLES III model. The RELAP5-3D model consists of

two lumped 500MW loops, and thus the flow rates in the CYCLES III model are doubled

to account for the two lumped loops. The most important points to match are the high

and low temperatures and the mass flow rates as these parameters are considered the key

figures of merit for the RELAP5-3D steady state S-CO2 PCS model. These important

parameters have a strong influence on the cycle efficiency, and thus must match in order

for the RELAP5-3D model to be considered sufficient. Other key state-points include the

inlet and outlet temperatures and pressures for each component in the S-CO 2 PCS. A

comparison of the various state-points of the S-CO2 PCS cycle can be found in Table 7.8,

while the significant parameters of interest are highlighted in yellow.

Table 7.8: Key state-point properties of the CYLES III and RELAP5-3D S-C02
PCS model (figures of merit highlighted)

CYCLES III RELAP

CYCLES III Pressure Pressure CYCLES III RELAP

Temperature RELAP Drop Drop Flow Flow

("C) Temps (*C) (kPa) (kPa) (kg/s) (kg/s)

Control
volume - 350.824

IHX in 331.68 317.376 5803.4 5815.1

IHX out 472 471.504 414 872.8 5803.4 5815.1

Turbine in 471.92 465.589 5803.4 5815.1

Turbine out 367.16 367.256 11531.1 10734.8 5803.4 5815.1

HTR hot in 367.07 367.256 5803.4 5815.1

HTR hot out 165.36 123.079 43.6 4.56 5803.4 5815.1

LTR hot in 164.97 123 5803.4 5815.1

LTR hot out 70.11 67.223 62.9 5.47 5803.4 5815.1

Recomp in 68.42 67.21 2504.6 2519

Recomp out 159.73 122.259 -12486.4 -11631.7 2504.6 2519

Precool in 69.94 67.207 3298.8 3296.1

Precool out 32 33.713 7.2 11633.67 3298.8 3296.1
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Precool H20
in 20 20 15612.2 15612
Precool H20
out 28.73 27.22 - 15612.2 15612
Mcomp in 31.61 33.713 3298.8 3296.1
Mcomp out 60.16 60.541 -12373.6 -11634.3 3298.8 3296.1
LTR cold in 60.12 60.541 3298.8 3296.1
LTR cold out 159.11 116.334 12.1 0.6 3298.8 3296.1
HTR cold in 159.38 118.9 5803.4 5815.1
HTR cold out 331.99 316.736 32 2.9 5803.4 5815.1
RELAP CYCLES III
efficiency 39.1% efficiency 39.9%

As can be seen in Table 7.8, the key figures of merit match closely between the

CYCLES III and RELAP5-3D PCS models. The other state-points vary by up to -350 C.

This is primarily due to uncertainties in the turbine design and enthalpy-to-temperature

conversions in the codes. In addition, the pressure drops across each of the PCHE's

(except for the IHX) are underpredicted by nearly an order of magnitude in the RELAP5-

3D model. This indicates that the friction correlation given in Eq. 7.1 underpredicts the

pressure drop through the PCHE's. However, the key parameters match very well, and

so does the cycle efficiency thus the RELAP5-3D model of the S-CO 2 PCS is considered

acceptable for use in the ULOF transients.

7.5 ULOF Transients

It has been shown that utilizing an S-CO2 PCS can provide for a self-powering

heat removal system [7.2], although no actual credit can be claimed for this as a safety

system since the cost of making the entire PCS safety-grade is prohibitive [6.6]. It is of

interest to investigate the performance of the S-CO 2 PCS as a heat sink during a ULOF
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transient in the SFR, because of the potential for this system to remove decay heat

without the use of a dedicated auxiliary CO2 injection system. The performance of the S-

CO 2 PCS coupled to the SFR during ULOF transient is compared to the performance of a

Rankine PCS boundary coupled to the SFR. The constraints and results of these analyses

are discussed below.

7.5.1 ULOF Constraints

The primary difference between the ULOF and the station blackout transients is

that during a ULOF the heat sink (PCS) remains operable. The constraints for the ULOF

transients are similar to those selected for the station blackout. The primary pump coast-

down is an exponential decay with a halving time of 5 seconds. The CRDLE feedback is

based upon a 6m long CRDL shaft, and the rod worth is 49 $/cm. The DRACS does not

initiate throughout this transient, and all cooling is accomplished via natural circulation,

with the PCS (not the DRACS) being the heat sink. The first ULOF transient run is the

ULOF for a metal CR = 0.71 base fuel configuration with a Rankine PCS boundary. The

second ULOF transient run is the ULOF for the metal CR = 0.71 base fuel configuration

with a completed S-CO2 PCS. As with the station blackout and UTOP transients, the

max cladding temperature must remain below the short term FCCI limit of 725 'C during

the initial peak and below the FCCI long term limit of 650 'C after the initial peak.

7.5.2 Rankine Cycle PCS Boundary ULOF Results
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Typically, feedwater regulation in the steam generator is accomplished using the

auxiliary feedwater system. This is typically a safety-grade system. Rather than

explicitly modeling the steam generator and auxiliary feedwater system, the SG inlet flow

is regulated at the PCS boundary; in other words, the water flow into the steam generator

is controlled by a time dependant junction. When the primary pumps are tripped, the

water flow to the SG is linearly decreased by 0.6% per second to a final flow rate of 10%

of the nominal flow. The results of the steam PCS ULOF transient are plotted in Figs.

7.11 to 7.13.
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Figure 7.11: Reactivity feedbacks for a ULOF transient with a Rankine PCS
boundary (fuel and moderator coefficients not shown)
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Figure 7.12: Nominal core power and coolant flow rate for a ULOF transient with a
Rankine PCS boundary

Figure 7.13: Key temperatures for a ULOF transient with a Rankine PCS
boundary
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It can be seen from Fig. 7.11 that at 10% PCS flow, the overall core reactivity is

positive, and the core power increases. However, the natural circulation flow is sufficient

to cool the core and prevent major temperature increases. The clad temperature during

the initial temperature peak is below the short term FCCI temperature limit at 693.3 'C.

Note in Fig. 7.12 the high fractional flow through the core during a ULOF transient. This

is noticeably higher than the fractional flow through the core during a station blackout

transient (as plotted in Fig. 6.10).

7.5.3 S-C02 PCS ULOF Results

Upon initiation of the ULOF, the compressors and turbine trip, and the generator

decouples from the grid. Because the compressors and turbine are on the same shaft, the

energy generated by the turbine turns the shaft and drives the compressors, thus allowing

for prolonged operation of the PCS. This prolonged heat withdrawal (assuming cooling

water is available to the precooler) allows for decay heat removal without activation of

the DRACS units.

376



C02 from IHX

Turbine ..
bypass C02 to IHX

High
Temperature
Recuperator

HTR hot side HTR cold side

Figure 7.14: Schematic of turbine bypass valve [6.6]

It is critical, however, that a control scheme be implemented to prevent both core

overcooling and turbine over-speed accidents. A control scheme based upon actuation of

turbine shutoff and turbine bypass trips was developed for the flexible conversion lead-

bismuth reactor [6.6]. For this control scheme, a turbine bypass valve, as pictured in Fig.

7.14, opens when the generator is disconnected from the grid. This prevents turbine

over-speed, since the imbalance in shaft torque upon loss of electrical load would lead to a

rapid increase in shaft speed. The acceleration of the turbine is dependent upon the inertia

of the shaft and its components, and these values were scaled directly from the shafts

used in the gas-cooled fast reactor [1.11]. Table 7.9 lists the inertia values used in the

current S-CO 2 PCS model.
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Table 7.9: Inertia of S-CO 2 shaft and components

Moment of Inertia (kg/m 2)
PCS rating 500MWth 600MWth*
Recompressing
compressor 254.7 305.6
main Compressor 94.3 113.1
turbine 708.3 850.0
generator 1666.7 2000.0
shaft 310.0 372.0

*This is the inertia used for the GFR S-CO 2 PCS components

Once the turbine speed decreases below the nominal value, the flow to the turbine

can be controlled by the turbine bypass valve. This is accomplished by using a shaft

speed signal proportional-integral (PI) controller, which acts on the turbine bypass valve.

The PI controller measures the "error," or the difference between the shaft speed and a

shaft speed set-point. A diagram of the PI controller is shown in Fig. 7.15.

Figure 7.15: PI controller diagram [6.6]

The initial response of the control is due to the proportional component, while the

remaining responses are driven primarily by the integral component. It is crucial that

appropriate estimated factors (S) and weights (Al and A2) be selected to ensure smooth
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performance of the PI controller. If the proportional weight is too high, significant

overshoot can occur, resulting in instabilities in the PCS flow, where if it is too long, it

may take a long time for the control to converge upon the desired set-point. The integral

component relates to the speed and duration of adjustments. If the integral weight is too

high, oscillations may hamper the performance of the controller, while if it is too low, the

controller may under-respond to changes in shaft speed. Because of the slow changes in

reactor power during a ULOF, a low integral weight was selected. The weights and set-

point used in the S-CO 2 PCS shaft speed controller are given in Table 7.10. For a more

detailed discussion of using a PI controller for turbine shaft speed control in a S-CO2

PCS, see the flexible conversion ratio lead-bismuth reactor report [6.6].

Table 7.10: PI controller wei hts and set-point for turbine shaft speed control
Setpoint
(Rad/s) 36.7

A, 2.9

A2  0.06

S 0.01

The results of the S-CO 2 PCS ULOF are plotted in Figs. 7.16 - 7.19. As with the

Rankine PCS boundary ULOF, the clad temperatures are well below the FCCI limits,

with a peak temperature of 693.4 'C. The initial peak ends at a slightly higher value than

in the Rankine PCS ULOF, but the max clad temperature then steadily decreases in the S-

C02 cooled ULOF, where in the Rankine PCS transient, this post-peak temperature is a

quasi-steady state value that remains constant without noticeable decay for up to at least

2000 seconds.
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Figure 7.16: Reactivity feedbacks for a ULOF transient with a full S-CO 2 PCS and
turbine shaft speed controller (fuel and coolant coefficients not shown)

Figure 7.17: Nominal core power and coolant flow rate for a ULOF transient with a
full S-CO 2 PCS and turbine shaft speed controller
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Figure 7.18: Key temperatures for a ULOF transient with a full S-CO2 PCS and
turbine shaft speed controller

Figure 7.19: Turbine shaft-speed for a ULOF transient with a full S-CO 2 PCS and
turbine shaft speed controller

381

750 - Max fuel temperature

- Max clad temperature

,.700 - Max Coolant Temperature

650

E 600

550

500

0 500 1000 1500 2000

Time (s)

400

350

" 300

250

200

A 150

C
3 100

50

0

0 500 1000 1500 2000

Time (s)



A direct comparison of the peak clad temperature for both Rankine PCS and S-

CO2 PCS is plotted in Fig. 7.20. It can be seen that the S-CO2 system can effectively

remove decay heat from the primary system without the use of a dedicated CO 2 safety

injection system. It is only necessary that cooling water be provided to the precooler to

maintain the PCS cooling. The performance of the S-CO 2 PCS is dependent upon the use

of a turbine shutoff valve control system, and can be fine-tuned through adjustment of the

PI controller parameters.
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Figure 7.20: Comparison of the maximum clad temperature during a ULOF for a
full plant model coupled with a PCS boundary and a full S-CO 2 PCS

However, it is important to investigate the performance of the radial compressors

through this transient. These compressors cannot reliably operate if they surge. In

addition, if they reach the choke point, then no higher flow rate can be attained regardless
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of the head. Thus, the compressor speed was plotted against the mass flow rate for the

main compressor and the recompressing compressor in Figs. 7.21 and 7.22, respectively.

The approximate surge and choke points as a function of compressor mass flow rates are

also plotted in these figures.
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Figure 7.21: Performance of the main compressor through the ULOF transient
with surge and choke points
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Figure 7.22: Performance of the recompressing compressor through the ULOF
transient with surge and choke points

As can be seen, the main compressor operates without crossing the surge line

initially, but it comes very close to the choke line and eventually crosses at low

compressor speeds, but only slightly. The recompressing compressor, however, crosses

the choke line very early in the transient, and remains in the choked region throughout.

Thus, S-C02 PCS is capable of cooling the SFR during a ULOF transient, since the surge

point is never crossed for these compressors (since operating over the choke point only

indicates that no further flow can be pushed through the compressor). These compressors

do not even approach the surge line. This is surprising since flow decay is expected as

the transient progresses. The primary reason for this lack of compressor surge is the

initial increase in flow rate seen at the beginning of the transient. As the generator and

turbomachinery trips, the decrease in resistance results in a sudden but brief increase in

mass flow rate. As the turbine bypass valve closes, the loop flow rate begins the
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expected decay. However, because this flow decay begins after the initial surge in mass

flow rate (and thus at a mass flow higher than the nominal mass flow through each

compressor), the surge point in the compressors is never reached. As can be seen in

Figure 7.22, however, the flow rate exceeds the choke point despite the manual insertion

of this point via the homologous pump curves. Future work should investigate the reason

for this anomalous compressor behavior, so as to guarantee that the choke flow is a

condition that is accurately modeled by the RELAP5-3D homologous curves. This

would then verify that the performance of these compressors is considered acceptable.

7.6 Conclusion

A S-CO2 PCS model was attached to the full plant model using the metal CR =

0.71 fuel described in Chapter 5. The steady state performance of this cycle was

adequate for safety modeling purposes, with very little difference between the CYCLES

III and RELAP5-3D values in flow rate, high/low coolant temperatures, and efficiencies.

Other state-point values did vary, but are not crucial to match for the current study. A

ULOF transient was simulated for a metal CR = 0.71 full plant model with both a

Rankine PCS and a S-CO2 PCS. The purpose of this comparison was to determine if the

S-CO2 PCS could provide necessary cooling without the use of auxiliary feedwater

system or steam dump to condenser.

Throughout both ULOF transients, the peak clad temperature is never reached.

This indicates that the S-CO2 PCS can remove the decay heat from the primary system

without the use of CO2 safety injection systems during a ULOF comparably to a Rankine
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cycle PCS with condensers and auxiliary feedwater systems. The decay heat removal by

the S-CO 2 PCS requires only a turbine bypass valve system with a well calibrated PI

controller and water pumps to maintain cooling water flows in the precooler. These

results demonstrate that there would be no need for condensers or an auxiliary CO 2

injection safety-grade system component for a S-CO2 PCS. The amount of heat removed

by the S-CO2 PCS can be adjusted by altering the PI controller parameters and the set-

point for the turbine flow.
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Chapter 8: Summary, Conclusions, and Future Work

8.1 Summary

The sodium fast reactor (SFR) is currently being reconsidered as an instrument for

actinide management throughout the world, thanks in part to international programs such

as the Generation-IV and especially the Global Nuclear Energy Partnership (GNEP). The

success of these programs, in particular the GNEP, currently the Advanced Fuel Cycle

Initiative (AFCI) program, is dependent upon the ability of the SFR to manage actinide

inventory while remaining economically competitive. In order to achieve these goals, the

fuel must be able to operate reliably at high burnup and power densities. The primary

candidates for the SFR are oxide and metal fuels, each with unique benefits and

challenges. In fast reactor systems, the cladding and fuel must perform adequately while

experiencing relatively high temperatures (550 0 C - 6000 C), fast neutron flux (>1015

n/cm2), and mechanical stresses (> 100MPa). Therefore, the power density of the fuel is

limited by fuel-clad chemical interaction (FCCI), the fuel melting point, fuel clad

mechanical interaction, sodium boiling, and to a lesser extent the sodium pressure drop in

the fuel channels. The first two limitations relate primarily to metal fuel, while the third

and fourth relate primarily to oxide fuel, and the last relates to both fuel types. Therefore,

innovative fuel configurations that reduce clad stresses, sodium pressure drops, and

fuel/clad temperatures could be applied to the SFR core to directly improve the

performance and economics. Two particular designs of interest that could potentially
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improve the performance of the SFR core are the internally and externally cooled annular

fuel and the bottle-shaped fuel.

The general objective of this thesis is to investigate the benefit that can be

provided by utilizing these fuel configurations from a thermal-hydraulic standpoint. This

includes the development of a detailed assembly design for these fuel configurations, the

optimization of the geometric and hydraulic parameters of the fuel configurations through

subchannel analyses, and the quantification of the thermal hydraulic benefit derived.

Additionally, a safety analysis of the innovate fuel configurations is accomplished in

which the performance of these fuels during a station blackout and unprotected transient

overpower accidents is compared to the performance of the respective standard "base"

solid fuel configurations. Finally, utilizing a RELAP5-3D model of the SFR, the

performance of a supercritical carbon dioxide (S-CO2) power conversion system (PCS)

coupled to the secondary loops during an unprotected loss of flow accident (ULOF) is

compared to the performance of a Rankine cycle PCS coupled to the secondary loops.

8.1.1 Innovative Fuel Configurations

Chapter 2 of this thesis focuses on the development of the assembly design for the

bottle-shaped and internally/externally cooled annular fuel. The results of this chapter

are summarized in the following sections.

8.1.1.1 Base Fuel Configurations for SFR
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The reference fuel configurations were taken from a fuel design study by

Hoffman et al. [2.2]. In this study, core and assembly designs were developed for a wide

range of conversion ratios (CR), though not for breeding conversion ratios (CR>1), since

breeder reactors are not part of the GNEP/AFCI program. Because there is a large degree

of uncertainty as to what conversion ratio will be utilized in future SFRs, both high (CR =

1.0) and low (CR = 0.25) conversion ratio designs are included for the base core

configurations in this section and are considered bounding conditions for future core

configurations.

Both CR = 1.0 and CR = 0.25 configurations consist of hexagonal fuel assemblies

(FA) with wire-wrap spacers in the CR = 1.0 configurations and grid spacers in the CR =

0.25 configurations. Both core layouts consist of three enrichment (defined as TRU/HM)

zones within the fuel. For the CR = 1.0 configurations, the inner, middle, and outer

driver enrichments are 10.7%, 13.3%, and 16.0%, respectively, with an average charge

enrichment of 14% for the metal fuel, In the oxide fuel, these enrichments are 13.0%,

16.3%, and 19.5%, respectively, with an average charge enrichment of 17%. For the CR

= 0.25 configurations, the inner, middle, and outer driver enrichments are 46.2%, 57.8%,

and 69.3%, respectively, with an average charge enrichment of 56% for the metal fuel.

For the oxide fuel, these same enrichments are and 50.7%, 63.4%, and 76.1%,

respectively, with an average charge enrichment of 60%. The geometric and thermal

parameters of each of these fuel configurations are listed in Table 8.1.

8.1.1.2 Annular Fuel Configurations for SFR
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Annular fuel is not a new concept. It has been suggested for use previously in a

range of reactors, including both PWRs and BWRs [2.8, 2.9]. Annular U0 2 fuel with

internal and external cooling has been studied at MIT for over 6 years and has been

shown to enable power density increases of up to 50% in PWR cores [2.9]. The large

heat transfer surface attainable with simultaneous internal and external cooling reduces

the fuel operating temperature and the surface heat flux dramatically. Annular fuel for the

sodium fast reactor is made feasible by increasing the overall fuel rod diameter and

includes an inner channel in the center of the fuel rod, which is separated from the fuel by

an additional clad and bond layer. A scale depiction of the annular fuel rod design

compared to the traditional solid fuel pin design is seen in Fig. 8.1. In order to maintain a

nearly constant assembly size, the number of fuel rods per assembly must be decreased.

Figure 8.1: Annular fuel rod cross section (left) vs traditional solid fuel rod (right)

In order to maintain clarity of comparison, the following parameters were

maintained from the solid to annular fuel configurations:
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- The fuel-to-coolant volume ratio and core height: this approximately preserves

the overall neutronic characteristics of the core, e.g., spectrum, reactivity

coefficients, reactivity letdown, etc.

- Smeared density: this allows for adequate accommodation of fuel swelling under

irradiation.

- Inter-assembly gap and FA duct thickness: these parameters provide adequate FA

clearance and mechanical robustness, respectively.

- Core power density. This ensures the fairness of the comparison between solid

and annular FAs when the assembly size changes.

In comparing the annular FA designs to the ANL designs, the average heat flux at

the clad surface and the radial temperature increase in the fuel serve as the primary

figures of merit. It is clear that FAs with lower q" and AT than the ANL designs will also

have lower clad and fuel temperatures, all else being equal. Therefore, it would be

possible to uprate the core power density and/or increase the discharge burnup. The

design parameters for each annular fuel configuration can be found in Table 8.1. Note

the very high pressure drop across the CR = 1.0 oxide base fuel core due to the tight pitch

(the wire wrap is only 0.1 mm thick) and thus high hydraulic resistance.

Table 8.1: Design parameters for base and annular fuel configurations
Metal CR = 0.25 Metal CR = 1.0 Oxide CR = 0.25 Oxide CR = 1.0
Base Annular Base Annular Base Annular Base Annular

Rings 13 11 9 8 10 9 9 7
Pins 540 397 271 217 324 271 271 169
Flat to flat (cm) 15.71 21.32 15.71 21.76 15.71 17.66 15.71 29.56
Pin outer
diameter (mm) 4.64 9.29 8.08 13.57 5.56 9.23 8.68 21.16
Pin inner - 5 -5 5 - 5
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diameter (mm)

P/Do 1.357 1.087 1.0996 1.062 1.45 1.09 1.023 1.009

Dwire (mm) - 0.805 0.805 0.805 - 0.805 0.198 0.198
Clad thickness
(mm) 0.559 0.559 0.559 0.559 0.635 0.635 0.635 0.653
Fuel volume
fraction (%) 17.44 16.79 34.26 35.2 19.73 17.13 49.29 57.44
Bond volume
fraction (%) 5.81 5.6 11.42 11.73 1.02 0.89 2.55 2.97
Structure
volume fraction
(%) 29.15 31.78 25.73 23.68 26.22 35.95 28.58 16.76
Coolant volume
fraction (%) 47.6 45.83 28.59 29.38 53.02 46.04 19.58 22.82
Fuel/coolant
volume ratio 0.366 0.366 1.198 1.198 0.372 0.372 2.517 2.517
Power density
(kW/L) 258.09 258.09 267.59 267.59 191.18 198.22 198.22 198.22
Linear heat rate
(kW/m) 12.66 31.27 24.05 56.79 15.63 23.46 17.82 98.62

q" (kW/m2) 868.33 696.31 947.54 973.71 894.62 524.93 653.37 1199.9

AT (°C) 91.57 12.12 174.00 50.16 310.88 28.34 354.45 174.83

q"' (W/cm3 ) 1732 1803.9 842.44 820.51 1137 1309.74 434.53 372.48
Inner channel
flow (%) - 55.4 - 51.68 - 55.56 - 25.49
Inner channel
power(%) - 46.43 - 41.88 - 46.25 - 33.84

Core AP (kPa) 141.54 188.85 797.73 403.23 99.1 201.32 2885.9 656.56

The annular fuel approach seems very promising for the low-conversion cores, as

their initially high P/Do value allows for easy accommodation of the annular fuel pins.

The heat flux at the clad surface for annular fuel is decreased by 19.8% in the metal fuel

core and 15.19% in the oxide core, while the radial temperature profile across the fuel

pellets is decreased by 86.76% in the metal fuel and 90.9% in the oxide fuel. On the

other hand, use of annular fuel pins in the high conversion cores would be problematic

due to the tightness of the fuel pin array. The radial temperature profile across the fuel

pellets is decreased by 71.17% in the metal fuel and 50.68% in the oxide fuel, but the

heat flux at the clad surface is actually increased by 2.67% in the metal fuel and 83.65%
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in the oxide fuel. Thus, high CR core configurations are best suited to bottle-shaped fuel,

while low CR core configurations are best suited to annular fuel.

8.1.1.3 Bottle Shaped Fuel Configurations for SFR

Bottle-shaped fuel refers to a fuel pin whose diameter is smaller in the plenum

region than in the active region, which results in a significant decrease in the overall core

pressure drop. To compensate for the decrease in radial area of the gas plenum region of

the fuel rod, the length of the gas plenum region is increased, thus maintaining a constant

gas plenum volume. The gas plenum region has a larger P/D, so grid spacers are used

rather than the wire-wrap spacers used in the active core region. In order to utilize this

type of innovative fuel, there must be sufficient space in the hot pool above the core to

increase the length of the fuel rods by moderate amounts (-10% to 20%). A

representation of such bottle-shaped fuel can be seen in Fig. 8.2.

Figure 8.2: Segments of the base (left) and bottle-shaped fuel pins (right) (drawing
to scale)

In the bottle-shaped fuel configuration, the active core geometry was maintained

from the base fuel configuration, and the pitch of the active region was kept the same in
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the plenum portion of the fuel rods. The figures of merit for this fuel were the pressure

drop across the core and the total length of the fuel rods. In the high CR fuel, the ratio of

bottle-shaped to base fuel pin heights is 1.156 for the metal fuel, and 1.183 for oxide fuel.

The ratio of bottle-shaped to base core pressure drops is 0.589 for metal fuel and 0.493

for oxide fuel. In the low CR fuel, the ratio of bottle-shaped to base fuel pin heights is

1.162 for the metal fuel, and 1.096 for oxide fuel. The ratio of bottle-shaped to base core

pressure drops is 0.814 for metal fuel and 0.894 for oxide fuel. The bottle-shaped fuel

configuration is most promising for the high conversion ratios (with pressure drop

reductions of up to 60%), since the base fuel has a very tight pitch, while the low

conversion ratio cores already have a large P/D, and thus do not benefit from using

bottle-shaped fuel rods as much as the CR = 1.0 cores.

8.1.2 RELAP5-3D Subchannel Analysis Model

Chapter 3 describes the creation of the subchannel analysis model and is

summarized in this section. Current subchannel codes are not suitable for modeling

sodium-cooled assemblies with annular or bottle-shaped fuel. A subchannel model was

therefore created using RELAP5-3D to evaluated the performance of innovative fuels.

Control variables were used to calculate the transverse heat transfer due to cross flow

(pressure induced) and turbulent mixing (wire-wrap induced), using the models by Cheng

and Todreas [2.6].
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Figure 8.3: 1-D Radial temperature distribution comparison for SE2 and RELAP5-
3D

The mass transfer due to these effects cannot be simulated in RELAP5-3D, so a 1-

3% error (depending on configuration) is introduced in the edge boundary mass flow

values. In the interior channels, the net transverse mass flow is zero due to fluid

incompressibility and symmetry. Heat transfer due to axial and radial conduction was

simulated, but this effect is negligible during full power, steady-state operation. This

model was verified against SUPERENERGY II (SE2) by modeling an 8 ring assembly in

both RELAP5-3D and SE2. The resulting 1-D comparison of core outlet temperature can

be seen in Fig. 8.3.

As a more robust benchmark, the RELAP5-3D subchannel model was compared

to experimental data from the Oak Ridge National Lab (ORNL) 19 pin test [3.23]. The

normalized core outlet temperatures, defined as (T - Tin)/(Tout-Tin), where Tout is the
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outlet bulk temperature measured by the thermocouples. The core outlet temperatures

predicted by the RELAP5-3D subchannel model are plotted with the data from the 19-pin

test in Fig. 8.4. It can be seen that there is good agreement between the 19-pin test data

and the RELAP5-3D subchannel model.
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Figure 8.4: Normalized outlet temperatures for ORNL 19-pin test [5.24] and
RELAP5-3D subchannel model (left) with subchannel numbering diagram

(right)

Though RELAP5-3D is not typically used for subchannel analysis, the subchannel

model clearly produces reasonable results. The primary benefits of using the RELAP5-

3D subchannel model include flexibility in modeling pin, assembly, and spacer

geometries, steady-state and transient modeling capabilities, an analysis of the fuel rods

in addition to the coolant, and the inclusion of temperature dependent coolant/clad/fuel

properties. The disadvantages include a long runtime (1-24 hours) and a large input deck

construction time (-1-3 weeks).

The core outlet temperature distributions across a single assembly in an SFR core

are quite large (-300C at hot conditions). In attempt to flatten this profile, the concept of
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duct ribs (semi-circular protrusions on the inner walls of the assemblies) was investigated

using the RELAP5-3D subchannel analysis model. These duct ribs were successful in

reducing the peak outlet temperature within the assembly by -5-100C. It is significant to

note, however, that the six comer subchannels within the assembly were unaffected by

the duct ribs, and thus have a cooler core outlet temperature (-30'C). Future work could

investigate a flow area inhibitor in the comer channels to ameliorate this problem. The

flattened coolant outlet temperature distribution enables an increase of core-average

outlet temperatures while keeping the same margins to the hot spot limit, making possible

higher plant efficiency.

8.1.3 RELAP5-3D Subchannel Analysis Model Results

Chapter 4 presents the results of the subchannel analyses for the innovative fuel

assembly configurations and is summarized in this section. The core outlet temperature

distributions of the annular fuel assemblies for both oxide and metal fuels (with duct ribs

included) are shown in Figs. 5 and 6, respectively. The power uprate that can be

achieved using annular fuel is 40% for oxide fuel and 45% for metal fuel. This uprate is

determined by increasing the power and flow to maintain a constant average core outlet

temperature. The limiting parameter of these uprates was the core pressure drop; it was

assumed that the pressure drop could not exceed two times the non-uprated value.
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Figure 8.5: Core outlet temperatures for annular oxide fuel assembly model with duct
ribs included (the #s within each circle represent the outlet coolant temperature

of the corresponding annular fuel rod inner channels)

Figure 8.6:
ribs

Core outlet temperatures for metal annular fuel assembly model with duct
included (the #s within each circle represent the outlet coolant temperature

of the corresponding annular fuel rod inner channels)

The small inner diameter of the annular fuel configurations (3.6 mm) leaves the

assembly susceptible to an inner-annular channel flow blockage accident. The hot

channel is assumed to be completely blocked. During this accident, the clad temperature

cannot exceed the fuel clad chemical interaction (FCCI) limit of 650'C in the metal fuel,
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while the sodium must not boil in the oxide fuel. In the oxide annular fuel

configurations, the sodium boiled during a blockage accident, thus making the oxide

annular fuel configuration unfeasible. In the metal annular fuel configurations, a power

uprate of 20% results in a blocked channel max clad temperature of 639 0 C, which is

below the FCCI limit with an - 1 C margin. Thus, a power uprate of 20% is possible for

metal annular fuel.

A simplified structural analysis of the annular fuel reveals that during a blockage

accident, the inner clad thermally expands about 0.45 mm more than the outer clad. This

results in a compressive axial stress on the inner cladding of ~8.78MPa, well above the

buckling stress limit, due to the long, thin nature of the inner clad. This means that

buckling is a concern during a blockage accident and future work should focus on finding

a solution to this problem. On the other hand, shear stresses in the end-cap due to this

differential cladding expansion are very low. Therefore, the main structural concern

during the complete blockage accident is buckling of the inner clad.

The subchannel analysis of the bottle-shape fuel was performed for the ABR 1000

base fuel configuration, which is a CR = 0.71 core configuration. The subchannel

analyses of the bottle-shaped fuel configurations revealed that core performance is

similar to the base fuel, as expected. The increase in core height is 15.6% in the metal

fuel and 18.3% in the oxide fuel, which corresponds to a reduction in core pressure drop

of 31.5% for oxide fuel and 36.3% in metal fuel. The maximum primary membrane local

shear stress on the core/plenum interface (in the limiting scenario of an abrupt transition

from the core to the plenum regions) is 7.602 MPa for metal fuel, and 2.298 MPa for

oxide fuel, which is well below the limit of 315MPa for both.
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8.1.4 Full Plant Model

Chapter 5 describes the creation of the RELAP5-3D full plant model. The

following sections summarize the full plant reference design and the RELAP5-3D model

created to simulate the full plant performance during station blackout and UTOP

transients.

8.1.4.1 Reference SFR Design

The ABR1000 is a scaled up version of the ABTR, and is the reference design for

the safety analyses of the various fuel types [5.3]. This is a pool-type reactor with four

25% secondary loops, four 25% Rankine PCSs, and three 2.5MW direct reactor auxiliary

cooling systems (DRACS). A schematic of the pool and sodium flow is found in Fig.

8.7, while a layout of the core is depicted in Fig. 8.8. The radial power peaking within

the core is 1.2, while the axial peaking is 1.19 for the oxide fuel core and 1.13 for the

metal fuel core. The total power generated in the core is 1000MW.
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Figure 8.7: Schematic of the key components of the SFR pool-type primary system,
including DRACS emergency systems

The intermediate heat exchangers (IHX) are single pass, counter-flow, vertical

shell and tube heat exchangers with cold secondary sodium flowing on the tube side. The

primary (and secondary) pumps are electromagnetic (EM) double stator annular linear
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induction pumps (ALIP). The DRACS exchangers are vertical, shell and tube heat

exchangers, with a sodium-potassium (NaK) salt flowing through the tubes. This NaK is

cooled by outside air flow, which is initiated by the opening of the DRACS valves upon

the loss of electrical power.

SInner core (78) Pimary control (15) Reflector (114)

Outer core (102) 1 Secondary ctrol (4) SeIId 166)

Figure 8.8: Core assembly layout for typical SFR core (metal or oxide) as described
in [5.12]

Two of the three DRACS have pumps and compressors to provide optional forced

convection for the NaK and air, but this forced convection option was not investigated in

this thesis. The secondary loops consist of secondary sodium piping with secondary

pumps, purification systems, IHXs, and stream generators.

8.1.4.2 RELAP5-3D Model of Reference SFR Design

402

00 00 00
'0 01 0 i 0 ON

0 00

NO
0

ON@ 0 0 0 0
10 %



A RELAP5-3D model of the full plant was created, with nodalization diagrams

found in Figs. 9-11. For simplicity, the four secondary and PCS trains were lumped into

a single representative loop. Each of the pumps in the model are modeled using

homologous pump curves and the RELAP5-3D centrifugal pump component as if the

pumps were mechanical pumps. The heat transfer in the IHXs is enhanced to due baffles

and cross flow through the shell, and this is reflected in RELAP5-3D through the use of a

multiplication factor of -3.45.
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Figure 8.11: Nodalization diagram of the DRACS loop used in the SFR

The core model is created by modeling six flow pipes: the inner driver assemblies,

the outer driver assemblies, the hottest assembly, the control assemblies, the shield

assemblies, and the reflector assemblies. The flow areas and the heat structures for each

of these flow paths were lumped to simplify the core model. The four secondary loops

and PCSs were lumped to reduce model runtime so that none of the transients

investigated in this thesis involved the secondary loops or PCS system.

In lieu of a full Rankine PCS system, a simple time dependent flow boundary was

modeled in which the inlet flow and temperature could be adjusted as a function of time.

This allowed for the approximation of accident conditions during either a ULOF or

station blackout transient.

Six total core models were created in RELAP5-3D to represent the six fuel

configurations to be investigated via transient analyses: the metal CR = 0.71 base fuel,

the oxide CR = 0.71 base fuel, the metal CR = 0.71 bottle-shaped fuel, the oxide CR =

0.71 bottle-shaped fuel, the metal CR = 0.25 base fuel, and the metal CR = 0.25 annular

fuel. These core models can each be incorporated into the full plant model. In the

annular CR = 0.25 core, the assemblies are larger, and thus a new core layout was

designed in which the power generation was only 950 MW. Thus a 20 % power uprate

results in a power of 1140 MW, or 11.4% over the base core configuration. The

reactivity feedbacks for each of the core models (except the bottle-shaped cores, which

have the same reactivity feedbacks as the solid CR = 0.71 cores) are listed in Table 8.2.

The steady-state performance of the full plant model with each core matches the
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performance of the reference plant with <1% error in the total mass flow rates and

temperatures.

Table 8.2: BOEC core reactivity feedback coefficients for each core model

Metal Oxide Metal Metal
CR = 0.71 CR = 0.71 CR = 0.25 CR = 0.25

core core base core annular core

Effective delayed neutron fraction 0.00335 0.00316 0.0027 0.0027

Prompt neutron lifetime (ps) 0.36 0.48 0.44 0.44

Radial expansion coefficient (1"C) -0.39 -0.32 -0.48 -0.48

Axial expansion coefficient (Ol*C) -0.05 -0.05 -0.63 -0.63

Fuel density coefficient (l 0*C) -0.71 -0.46 -0.93 -0.93

Vessel expansion coefficient (l 0*C) 0.06 0.07 0.1 0.1
Sodium temperature coefficient
(01"C) 0.11 0.1 0.18 0.18
Doppler coefficient (€1"C) -0.13 -0.16 -0.06 -0.12

8.1.5 Safety Analysis Results

Chapter 6 describes the results of the station blackout and UTOP transient

analyses for both base and innovative fuel configurations. The following sections

summarize the results of these analyses. The limiting parameter for each transient is the

FCCI limit in metal fuel, and the sodium saturation temperature in the oxide fuel. The

FCCI limit is 6500C if the time at the peak temperature is large (hours +), but 725 'C if

the time at the peak temperature is small (minutes). The control rod drive line expansion

(CRDLE) worth is 490/cm for the metal fuel and 350/cm for the oxide fuel, and the

DRACS are sized to remove 0.25% of the rated core power per loop (two of three loops

operating total). The decay power curve is assumed to be 100% Pu-239, similar to

reference ABR1000 safety analyses [5.12].
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In the station blackout accident, the pump coast-down curve was an exponential

decay with a 5 second halving time for each case, while in the UTOP accident, the

reactivity insertion simulated a rod ejection, and was 0.70$ in 0.5 seconds.

8.1.5.1 Station Blackout Transient Results

The station blackout long and short term max clad and max fuel temperatures for

the metal CR = 0.71 fuel configurations are plotted in Fig. 8.12. Both fuel configurations

have clad temperatures well below the FCCI limits, and the bottle-shaped fuel has a

slightly lower temperature than the base fuel due to increased natural circulation flow

rates.
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Figure 8.12: Short (left) and long (right) term maximum clad and fuel temperatures
for the metal CR = 0.71 fuel configurations during a station blackout transient

The station blackout long and short term max clad and max fuel temperatures for

the oxide CR = 0.71 fuel configurations are plotted in Fig. 8.13. Both configurations
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have coolant temperatures that exceed the sodium saturation temperature, and thus are

unacceptable for use in a SFR. However, the bottle-shaped fuel has a significantly lower

temperature than the base fuel due to increased natural circulation flow rates.

The station blackout long and short term max clad and max fuel temperatures for

the metal CR = 0.25 fuel configurations are plotted in Fig. 8.14. The annular fuel

configuration investigated in this analysis has an uprated power and flow rate (11.4%.)

and thus the DRACS was uprated by 11.4% as well. Both configurations (base and

annular) have max cladding temperatures that do not exceed the FCCI short term limit,

but this required the use of a 20 second halving time exponential pump coast-down curve.

The annular fuel has a slightly higher temperature than the base fuel (-4°C) due to

decreased natural circulation flow rates, and has a higher second peak, though this peak is

still well below the clad temperature limit
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Figure 8.13: Short (left) and long (right) term maximum clad and fuel temperatures
for the oxide CR = 0.71 fuel configurations along with the PCMI clad temperature

limit (black dotted line) during a station blackout transient
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Figure 8.14: Short (left) and long (right) term maximum clad and fuel
temperatures for the metal CR = 0.25 fuel configurations during a station blackout

transient with a 20 second pump coast-down halving time

8.1.5.2 UTOP Results

The UTOP transients for all the fuel configurations are below the safety limits

described above. The annular max clad and max fuel temperatures are plotted in Fig.

8.15. The fuel temperature is greatly reduced in the annular fuel, while the clad

temperature is slightly higher, as with the station blackout transients; but this increase is

small enough to fall within the acceptable uncertainty range of the transient modeling.
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Figure 8.15: Maximum clad and fuel temperatures for the metal CR = 0.25 fuel
configurations during a UTOP accident

8.1.5.3 Supercritical Carbon Dioxide Power Conversion System

Chapter 7 of this thesis focuses on the development of a S-CO2 PCS RELAP5-3D

model and of the ULOF results for plants coupled to either a Rankine PCS boundary (as

in Chapter 6) or a full S-CO 2 PCS to the full plant model. A similar performance of the

SFR using both boundary conditions would verify that an S-CO 2 PCS can be used to

withdraw decay heat during a ULOF without resorting to "safety-grade" auxiliary cooling

systems [6.6].

411

- Max Clad Temperature (annula)
140 - Max Fuel Temperature (ainular)

- - - - FCCI Long Term Limit
720 Max Clad Temperatire (solid)

700 Max Fuel Temperature (solid)

- 680

. 660

. 640
E
1. 620

600

580

560

0 500 1000

Time (s)



Figure 8.16: Schematic of the S-C02 recompression cycle [7.1]

The S-C02 system is nearly identical to the one created for the lead-bismuth

flexible conversion reactor [7.2], except that it is sized for 500MW rather than 600 MW.

Thus, two S-C02 PCS are used for our 1000 MWth reactor. The compressors are all

modeled as pumps, and the printed circuit heat exchangers (PCHE), turbines, and

compressors were all sized using CYCLES III [7.5]. A schematic of the S-CO 2 PCS and

the nodalization diagram of the RELAP5-3D model are found in Figs. 8.16 and 8.17,

respectively.
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Figure 8.17: Nodalization diagram of RELAP5-3D S-CO 2 PCS loops model

A PI controller and turbine bypass valve were used to moderate the fluid flow

through the turbine during the ULOF to prevent turbine overspeed. The setpoint for the

PI controller was 36.7 rad/s, or 10% of the nominal speed. In the Rankine PCS boundary,

the fluid flow was linearly decreased upon initiation of the ULOF transient to a value of

10% of the nominal flow at 150 seconds. The resulting maximum clad temperatures for
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both cycles during a ULOF are potted in Fig. 8.18. These runs demonstrate that the S-

CO 2 PCS can safely remove the decay heat from the core of the SFR during a ULOF

accident without the need for safety-grade auxiliary cooling components.

Figure 8.18: Comparison of the maximum clad temperature during a ULOF for a
full plant model coupled with a PCS boundary and a full S-CO 2 PCS

8.2 Conclusions

The concepts of annular and bottle-shaped fuel were explored for the SFR fuel

assemblies, and optimal parameters for these innovative fuel configurations were

described in this thesis. In order to determine the thermal-hydraulic performance of these

innovative fuel configurations, a RELAP5-3D subchannel model was created. This

model shows great promise in being able to perform subchannel analyses on a wide
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variety of assembly configurations. The accuracy of the RELAP5-3D subchannel

analysis model was verified against other codes and ORNL 19-pin test data.

The annular fuel configurations are best suited for low conversion ratio cores.

The magnitude of the power uprate enabled by metal annular fuel in the CR = 0.25 cores

is 20%, and is limited by the FCCI constraint during a hypothetical flow blockage of the

inner-annular channel blockage due to the small diameters in of the inner-annular flow

channel (3.6 mm). On the other hand, a complete blockage of the hottest inner-annular

flow channel in the oxide fuel case results in sodium boiling, which renders the annular

oxide fuel concept unacceptable for use in a SFR.

The bottle shaped fuel configurations are best suited for high conversion ratio

cores. In the CR = 0.71 cores, the bottle-shaped fuel configuration reduced the overall

core pressure drop in the fuel channels by -36.3% in the metal fuel and by -31.5% in the

oxide fuel. The corresponding increase in core height with bottle-shaped fuel is -15.6%

for the metal fuel and -18.3% for the oxide fuel.

A full plant RELAP5-3D model was created to evaluate the transient performance

of the base and innovative fuel configurations during station blackout and UTOP

transients. The transient analysis confirmed the good thermal-hydraulic performance of

the annular and bottle-shaped fuel designs with respect to their respective solid fuel pin

cases, but also revealed the unacceptably high clad temperatures reached during an

unprotected station blackout for the oxide fuelled core, in both its solid-fuel-pin and

annular-fuel-pin versions.

Finally, an S-CO2 PCS RELAP5-3D model was created to verify if an S-CO 2 PCS

could remove decay heat from a SFR without the use of safety-grade auxiliary cooling
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systems during a ULOF transient. The max clad temperatures of the SFR fuel when an

S-CO 2 PCS is used are nearly the same as those in the SFR cooled by a Rankine PCS.

This verifies that the S-CO 2 PCS can remove decay heat from the SFR core during a

ULOF accident without the use of safety-grade systems.

8.3 Recommendations for Future Work

The application of internally and externally cooled annular fuel was introduced in

this thesis. Some simplifying assumptions were made to allow the modeling of the full

CR = 0.25 metal annular fuel core. In order to determine a more optimal configuration,

however, a complete neutronic investigation should be undertaken. This should include a

more detailed investigation of the ideal assembly layout, an investigation of the

appropriate number of control assemblies, and an appropriate rod worth for these control

assemblies.

The DRACS used in these analyses were based upon the DRACS designed for the

ABR1000. This report assumed a decay heat curve based on 100% Pu-239 fuel, but in

reality other TRU nuclides and their fission products contribute to the decay heat curve.

The CR = 1.0 decay curve developed under another MIT project [6.6] should be used,

which requires an increase in the DRACS heat withdrawal capacity. A more detailed

investigation of the DRACS design would be important for this uprate. This

investigation should focus particularly on design limits for the DRACS, such as parasitic

losses in the steady-state primary pool and size limits of the NaK and air loops.
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The structural integrity of the annular fuel configuration is acceptable during

steady-state performance. However, should a complete blockage of the hottest

subchannel occur, the differential thermal expansion between the inner and outer

cladding will result in a compressive force on the inner cladding. This compressive force

is larger than the buckling limit, thus indicating that buckling could pose a problem for

annular fuel configurations in a SFR. Future work should focus on improving the design

of the annular fuel inner cladding or end-cap to prevent buckling. This could include

changes to the end-cap design or material or adding supports for the inner cladding or

pre-pressurizing the pin to create tensile stresses that compensate for the compressive

stresses.

A cover gas system should be incorporated into the system in which the sodium

liquid levels of both the cold and hot pools in the primary system are modeled and

tracked. The same volume should be used to represent the cover gas for both the hot and

cold pools. This will allow for a more accurate modeling of natural circulation and

potential spillover of the different pools.

A more accurate property table for CR = 0.25 metal fuel should be used to

evaluate the blockage of the IA channel of the annular fuel configuration. This may

potentially lead to an increased margin to the FCCI clad limit than the current properties

do.

The bottle-shaped fuel configurations resulted in large pressure drop reductions

across the core. However, when these fuel configurations were used in the full plant

model, the reduction in pressure drop was countered by the increasing height of the

control, shield, and reflector assemblies. A better core design should be established that
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would allow for the core outlet height to be uniform without decreasing the benefit of the

bottle-shaped fuel through extension of the non-fuel assemblies. In addition, there are

other considerations that were only qualitatively mention in this thesis that must be

included to evaluate the feasibility of utilizing bottle-shaped fuel in a SFR. These include

the evaluation of the impact of new design on core flowering, the alterations to the

reference plant design required for installation, and the increased complexity of both the

fuel pins and the assembly design. These considerations should be investigated in detail

in order to provide a clear picture of the benefit afforded bottle-shaped fuel and the costs

associated with its implementation.
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Appendix A

The results of annular fuel scoping analysis were benchmarked against two other

sources. The basic thermal-hydraulic properties of the most promising cores were

compared generally to the properties of the SUPERPRISM core [2.3]. The basic

geometric parameters of the most promising annular fuel designs were also input into an

annular fuel code developed by Pavel Hejzlar, and similar properties were calculated.

This code, designated TAFIX, was originally developed for PWR annular fuel and was

modified for sodium coolant by Pavel Hejzlar. It will be hereafter referred to as TAFIX-

NA, and is a single fuel pin cell analysis for annular fuel. This code includes gap and

clad, however, the thermal analyses described in 2.3.3 do not. This contributes to the

differences between the two analyses. Key parameters for both of these benchmarks can

be found in Table A.1.

It can readily be seen that the pressure drop in the SUPERPRISM core is

substantially larger than in the annular designs. This could be due to the inclusion of

form losses (primarily orifices), which were not included in this scoping analysis for

simplicity. Additionally, support grids and entrance/exit nozzles could account for some

of the increased pressure drop, since none of these were accommodated in the current

study. The pressure drop according to TAFIX-NA, which also does not include pressure

drops outside the active core, is on the same order of magnitude as this preliminary

MathCAD analysis.

Table A.1: Comparison of key parameters from SUPERPRISM design and the
same parameters calculated using MathCAD and TAFIX-NA

I MathCAD I TAFIX-NA Superprism
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Do (mm) 9.29 9.23 9.29 9.23 7.44

Average
Linear Heat 28.76 22.37 28.76 22.37 18.90
Rate (kW/m)
Assembly 407.14 422.28 407.14 422.28 477.52
Length (cm)
Core Power 1752 1256 1752 1256 1000

Pressure Drop 184.60 178.60 172.79 184.76 410.00
(kPa)
Flow Split (%) 51.58 47.43 55.40 55.55 -

431

Metal Oxide Metal Oxide Metal



Appendix B

This appendix lists the material properties used in the RELAP5-3D subchannel

models. Each different material is found in a separate table, and is recorded exactly as

input into RELAP5-3D. The oxide fuel and helium gap properties are not included in this

appendix, as they are computed within the code. The tables for the metal fuel properties

are for irradiated fuel values; the thermal conductivity in these metal fuels is multiplied

by 70% in order to account for the loss in thermal conductivity due to porosity. This 30%

reduction is commonly accepted, and was used in previous metal fuel models [5.3, B.1]

It should be noted that the thermal conductivity for the CR = 0.25 fuel was taken

from [2.2], and is a function of zirconium enrichment, as seen in Fig. B.1. Rather than

utilizing the porosity multiplication of 0.5 that is listed in this report, a porosity factor of

0.7 was deemed to be more appropriate [B.1]. In addition, the volumetric heat capacity

was not supplied in this reference, and thus the volumetric heat capacity of the 10% Zr

fuel was used. In future work, a more accurate correlation for the CR = 0.25 fuel should

be used to determine blockage temperatures.

Table B.1: Material properties table for U-16.5Pu-10Zr (inner zone) fuel of the
metal CR = 0.71 core [4.3]

Volumetric
Thermal Heat

Temperature Conductivity Temperature Capacity
(K) (W/m -K) (K) (J/m3 K)

293.15 6.42 300 2.23E+06
373.15 7.49 500 2.49E+06
473.15 8.9 800 3.03E+06
573.15 10.37 1000 3.09E+06
673.15 11.92 1300 3.14E+06
773.15 13.54 1600 3.19E+06
873.15 15.23 1873.15 3.23E+06
973.15 17
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1073.15 18.84

1173.15 20.75
1273.15 22.74

1873.15 36.17

Table B.2: Material properties table for U-20.7Pu-10Zr (outer zone) fuel of the
metal CR = 0.71 core [4.3]

Volumetric
Thermal Heat

Temperature Conductivity Temperature Capacity
(K) (W/m K) (K) (J/m3 .K)

293.15 5.13 300 2.25E+06
373.15 6.19 500 2.50E+06
473.15 7.57 800 3.02E+06
573.15 9.01 1000 3.08E+06
673.15 10.51 1300 3.12E+06
773.15 12.06 1600 3.17E+06
873.15 13.67 1873.15 3.21E+06
973.15 15.34
1073.15 17.07
1173.15 18.86

1273.15 20.7
1873.15 32.98

Table B.3: Material properties table for liquid sodium (bond) [2.7]
Volumetric

Thermal Heat
Temperature Conductivity Temperature Capacity

(K) (W/m -K) (K) (J/m3 K)
371 89.44 371 1.28E+06
400 87.22 400 1.26E+06
500 80.09 500 1.20E+06
600 73.7 600 1.14E+06
700 68 700 1.09E+06
800 62.9 800 1.04E+06
900 58.34 900 1.01 E+06
1000 54.24 1000 9.78E+05
1100 50.24 1100 9.54E+05
1200 47.16 1200 9.36E+05
1300 44.03 1300 9.22E+05
1400 41.08 1400 9.11E+05
1500 38.25 1500 9.04E+05
1600 35.45 1600 8.99E+05
1800 29.68 1800 8.93E+05
2000 23.22 2000 8.89E+05

terial properties table for SS-316 (surr
Temperature Thermal Volumetric

(K) I Conductivity I Heat

)gate for HT9)
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(W/m-K) Capacity
Conductivity

J/m 3'K)
310.93 14.143 3.69E+06
533.15 17.632 4.26E+06
699.82 20.249 4.41 E+06
810.93 21.994 4.51E+06
1088.71 26.355 4.91E+06

Table B.5: Material properties table for B4C [B.2]
Volumetric

Heat
Thermal Capacity

Temperature Conductivity Temperature Conductivity
(K) (W/m K) (K) (J/m 3-K)
300 30.45 294.3 2.34E+06
400 26.44 481.48 2.95E+06
500 23.36 624.82 3.43E+06
600 20.93 800.37 3.97E+06
700 18.95 915.93 4.30E+06
800 17.32 1049.26 4.66E+06
900 15.94 1092.04 4.76E+06

1000 14.77 4092.04 4.76E+06
1100 13.76
1200 12.88
1300 12.1
1400 11.41
1500 10.8
1600 10.25
1700 9.75
4000 9.75

Table B.6: Material properties table for helium gas in reflector [B.3]
Volumetric

Heat
Thermal Capacity

Temperature Conductivity Conductivity
(K) (W/m-K) (J/m3-K)
300 0.15 0.1787
400 0.184 0.2198
500 0.216 0.2709
600 0.245 0.3326
700 0.274 0.4128
800 0.301 0.5144
900 0.327 0.6431

1000 0.352 0.8039
1100 0.377 1.0025
1200 0.401 1.2428
1300 0.424 1.5296
1400 0.447 1.8687
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1600 0.492 2.7222
1700 0.513 3.2453
1800 0.534 3.8401
1900 0.555 4.5114
2000 0.576 5.2639

Table B.7: Material properties table for SS-304 [1.11]
Volumetric

Heat
Thermal Capacity

Temperature Conductivity Conductivity
(K) (W/m-K) (J/m3-K)

283.15 13.7 3.12E+06
310.93 14.14 3.24E+06
533.15 17.63 3.73E+06
699.82 20.24 3.87E+06
810.93 21.99 3.96E+06
1088.71 26.35 4.31E+06

Table B.8: Material properties table for Titanium [1.11]
Volumetric

Heat
Thermal Capacity

Temperature Conductivity Conductivity
(K) (W/m-K) (J/m3 -K)

200 1.64E+06 20
295 1.64E+06 20
300 1.67E+06 20
400 2.26E+06 20
500 2.53E+06 20
600 2.68E+06 20
800 2.84E+06 20

1100 2.92E+06 20

Table B.8: Material properties table for CR = 0.25 metal fuel [2.2, B.1, 4.3]
Volumetric

Heat
Thermal Capacity

Temperature Conductivity Conductivity
(K) (W/m-K) (J/m 3.K)
300 2.23E+06 9.1
500 2.49E+06 9.1
800 3.03E+06 9.1
1000 3.09E+06 9.1
1300 3.14E+06 9.1
1600 3.19E+06 9.1

1873.15 3.23E+06 9.1
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t,500 501,500 - Fuel Solidus Temperature 50

1,400 - - Fuel Conductivity (850 C) 45
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Figure B.1: Material Thermal Conductivity of CR = 0.25 metal fuel as a function of
zirconium fraction [2.2]

436



APPENDIX C

This appendix includes a small sample of the RELAP5-3D code, intended to

assist in creating the turbulent mixing heat transfer control variables. In this sample,

three internal (triangular) subchannels are modeled (volumes 204, 220, and 222.). Figure

Al indicates the placement of these volumes. The appropriate heat structures are also

included, as are the junctions between these volumes. Finally, the control variables

which instigate mixing and the "pseudo" heat structures which incorporate this heat

exchange are also included. Note that these control variables utilize the junction

properties between the two subchannels, and a separate variable is needed to add up the

junction effects. For more details concerning the input of pipes, junctions, heat

structures, and control variables, see the RELAP5-3D User's manual, Appendix A.

222

S 220 I/ %

Figure C.1: Top-down view of volumes and heat structures included in Appendix A

Interior or Triangular Subchannels

2040000 scedge pipe
2040001 22
2040102 4.1455e-6 22 * shield, core, gas plenum
2040202 0.0 21
2040301 0.286 1 *shield
2040302 0.06773 16 * core
2040303 0.38223 21 *gas plenum
2040304 0.286 22 * shield
2040601 90. 22
2040802 0.0 0.00261 22 * shield, core, gas plenum
2040902 0.0 0.0 21
2041001 0000000 22
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2041103 00000000 21
2041201 003 5.e5 628.150 0.0 0.0 0.0 22
2041300 1
2041301 0.0 0.0 0.0 21
2042501 0.8571 0.0 1.0 0.0 1.0 0.0 22 * laminar shape factor
2042601 0.0 0.15233 0.18 0.0 0.0 0.0 0.0 0.0 0.0 22 * Chen & Todreas
* * y direction **
2041801 7.69e-3 22
2042301 0.0 8.05e-3 22
2042701 0000010 22
** z direction **
2041901 3.85e-3 22
2042401 0.0 1.61e-3 22
2042801 0000010 22

2200000 scedge pipe
2200001 22
2200102 8.291e-6 22 * shield, core, gas plenum
2200202 0.0 21
2200301 0.286 1 *shield
2200302 0.06773 16 * core
2200303 0.38223 21 *gas plenum
2200304 0.286 22 * shield
2200601 90. 22
2200802 0.0 0.00261 22 * shield, core, gas plenum
22009020.0 0.0 21
2201001 0000000 22
2201103 00000000 21
2201201 003 5.e5 628.150 0.0 0.0 0.0 22
2201300 1
2201301 0.0 0.0 0.0 21
2202501 0.8571 0.0 1.0 0.0 1.0 0.0 22 * laminar shape factor
2202601 0.0 0.15233 0.18 0.0 0.0 0.0 0.0 0.0 0.0 22 * Chen & Todreas
** y direction **
2201801 7.69e-3 22
2202301 0.0 1.61e-3 22
2202701 0000010 22
** z direction **
2201901 7.69e-3 22
2202401 0.0 1.61e-3 22
2202801 0000010 22

2220000
2220001
2220102
2220202
2220301
2220302
2220303
2220304
2220601
2220802
2220902
2221001
2221103
2221201

scedge pipe
22
8.291e-6 22 * shield, core, gas plenum
0.0 21
0.286 1 * shield
0.06773 16 * core
0.38223 21 *gasplenum
0.286 22 * shield
90. 22
0.0 0.00261 22 * shield, core, gas plenum
0.0 0.0 21
0000000 22
00000000 21
003 5.e5 628.150 0.0 0.0 0.0 22
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2221300 1
2221301 0.0 0.0 0.0 21
2222501 0.8571 0.0 1.0 0.0 1.0 0.0 22 * laminar shape factor
2222601 0.0 0.15233 0.18 0.0 0.0 0.0 0.0 0.0 0.0 22 * Chen & Todreas
** y direction **
2221801 7.69e-3 22
2222301 0.0 1.61e-3 22
2222701 0000010 22
** z direction **
2221901 7.69e-3 22
2222401 0.0 1.61e-3 22
2222801 0000010 22

Transverse Junctions

3010000jzl mtpljun
301000122 0
3010011 204010006 220010005 2.302e-4 0.57 0.57 00000003 1.0 1.0 1.0
3010012 000010000 000010000 0 1
3010021 204020006 220020005 5.453e-5 0.57 0.57 00000003 1.0 1.0 1.0
3010022 000010000 000010000 0 16
3010031 204170006 220170005 3.077e-4 0.57 0.57 00000003 1.0 1.0 1.0
3010032 000010000 000010000 0 21
3010041 204220006 220220005 2.302e-4 0.57 0.57 00000003 1.0 1.0 1.0
3010042 000000000 000000000 0 22
30110110.0 0.0 22

3200000jy9 mtpljun
320000122 0
3200011 220010004 222010003 2.302e-4 0.57 0.57 00000003 1.0 1.0 1.0
3200012 000010000 000010000 0 1
3200021 220020004 222020003 5.453e-5 0.57 0.57 00000003 1.0 1.0 1.0
3200022 000010000 000010000 0 16
3200031 220170004 222170003 3.077e-4 0.57 0.57 00000003 1.0 1.0 1.0
3200032 000010000 000010000 0 21
3200041 220220004 222220003 2.302e-4 0.57 0.57 00000003 1.0 1.0 1.0
3200042 000000000 000000000 0 22
32010110.0 0.0 22

Fuel Rod Heat Structures

* ROD2
140110001 5210.0
140111000 1
14011101 4 0.004040
14011201 003 4
14011301 0.4
140114000
14011401 375.15 5
140115010 0 0 1 0.02383 1
14011601 204010000 00000 111 1 0.02383 1
14011701 0 0.0 0.0. 1
14011900 1
14011901 0.0 100. 100.0. 0.0.0. 1.0 3.4994 1.1 1. 1
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14012000 1592 10.
14012100 0 1
14012101 5 0.003015
14012102 1 0.003481
14012103 2 0.004040
14012201 001 5
14012202 002 6
14012203 003 8
14012301 1. 5
14012302 0. 8
14012400 0
14012401 375.15 9
14012501 0 0 0 1 0.00564 15
14012601 204020000 10000 111 1 0.00564 1
14012701 111 0.00556 0. 0. 15
14012900 1
14012901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994
14013000 5 3 2 1 0.003481
14013100 0 1
14013101 2 0.004040
14013201 003 2
14013301 0. 2
14013400 0
14013401 375.15 3
14013501 0 0 0 1 0.03186 5
14013601 204170000 10000 111 1 0.03186 5
14013701 0 0.0 0.0. 5
14013900 1
14013901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994
14014000 1 52 10.0
14014100 0 1
14014101 4 0.004040
14014201 003 4
14014301 0. 4
14014400 0
14014401 375.15 5
14014501 0 0 0 1 0.02383 1
14014601 204220000 00000 111 1 0.02383 1
14014701 0 0.0 0.0. 1
14014900 1
14014901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994

1.1

1.1

1.1

* ROD2
14021000 1 5 2 10.0
14021100 0 1
14021101 4 0.004040
14021201 003 4
14021301 0. 4
14021400 0
14021401 375.15 5
14021501 0 0 0 1 0.04767 1
14021601 220010000 00000 111 1 0.04767 1
14021701 0 0.0 0.0. 1
14021900 1
14021901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994 1.1
14022000 1592 1 0.

1. 15

1. 5

1. 1

1. 1
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14022100 0 1
14022101 5 0.003015
14022102 1 0.003481
14022103 2 0.004040
14022201 001 5
14022202 002 6
14022203 003 8
14022301 1.5
14022302 0. 8
14022400 0
14022401 375.15 9
140225010 0 0 10.01129 15
14022601 220020000 10000 111 1 0.01129 15
14022701 111 0.01111 0.0. 15
14022900 1
14022901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994
14023000 5 3 2 1 0.003481
140231000 1
14023101 2 0.004040
14023201 003 2
14023301 0. 2
14023400 0
14023401 375.15 3
140235010 0 0 1 0.06371 5
14023601 220170000 10000 111 1 0.06371 5
140237010 0.0 0.0. 5
14023900 1
14023901 0.0 100. 100.0. 0.0.0. 1.0 3.4994
14024000 1 5 2 1 0.0
14024100 0 1
140241014 0.004040
14024201 003 4
14024301 0.4
14024400 0
14024401 375.15 5
14024501 0 0 0 1 0.04767 1
14024601 220220000 00000 111 1 0.04767 1
14024701 0 0.0 0.0. 1
14024900 1
14024901 0.0 100. 100. 0. 0.0.0. 1.0 3.4994

1.1

1.1

1.1

* ROD2
14031000 1 52 10.0
140311000 1
140311014 0.004040
14031201 003 4
14031301 0. 4
140314000
14031401 375.15 5
14031501 0 0 0 1 0.04767 1
14031601 222010000 00000 111 1 0.04767 1
14031701 0 0.0 0.0. 1
14031900 1
14031901 0.0 100.100.0. 0.0.0. 1.0 3.4994 1.1
14032000 1592 1 0.
14032100 0 1

1.15

1. 5

1. 1

1. 1
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14032101 5 0.003015
14032102 1 0.003481
14032103 2 0.004040
14032201 001 5
14032202 002 6
14032203 003 8
14032301 1.5
14032302 0. 8
14032400 0
14032401 375.15 9
140325010 0 0 10.01129 15
14032601 222020000 10000 111 1 0.01129 15
14032701 111 0.01111 0. 0. 15
14032900 1
14032901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994
14033000 5 3 2 1 0.003481
14033100 0 1
14033101 2 0.004040
14033201 003 2
14033301 0. 2
14033400 0
14033401 375.15 3
14033501 0 0 0 1 0.06371 5
14033601 222170000 10000 111 1 0.06371 5
14033701 0 0.0 0. 0. 5
14033900 1
14033901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994
14034000 1 521 0.0
140341000 1
14034101 4 0.004040
14034201 003 4
14034301 0. 4
14034400 0

1.1

1.1

14034401 375.15 5
140345010 0 0 1 0.04767 1
14034601 222220000 00000 111 1 0.04767 1
14034701 0 0.0 0. 0. 1
14034900 1
14034901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994 1.1

* ROD6
14181000 1 52 10.0
14181100 0 1
14181101 4 0.004040
14181201 003 4
14181301 0.4
14181400 0
14181401 375.15 5
14181501 0 0 0 1 0.04767 1
14181601 204010000 00000 111 1 0.04767 1
14181701 00.0 0.0. 1
14181900 1
14181901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994 1.1
14182000 1592 1 0.
141821000 1
14182101 5 0.003015

1. 15

1. 5

1. 1

1. 1
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14182102 1 0.003481
14182103 2 0.004040
14182201 001 5
14182202 002 6
14182203 003 8
14182301 1. 5
14182302 0. 8
14182400 0
14182401 375.15 9
141825010 0 0 10.01129 15
14182601 204020000 10000 111 1 0.01129 15
14182701 111 0.01111 0.0. 15
14182900 1
14182901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994
14183000 5 3 2 1 0.003481
141831000 1
141831012 0.004040
14183201 003 2
14183301 0.2
14183400 0
14183401 375.15 3
141835010 0 0 1 0.06371 5
14183601 204170000 10000 111 1 0.06371 5
14183701 0 0.0 0.0. 5
14183900 1
14183901 0.0 100. 100.0. 0.0. 0. 1.0 3.4994
141840001 5210.0
141841000 1
141841014 0.004040
14184201 003 4
14184301 0.4
14184400 0
14184401 375.15 5
141845010 0 0 1 0.04767 1
14184601 204220000 00000 111 1 0.04767 1
14184701 0 0.0 0.0. 1
14184900 1
14184901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994

1.1

1.1

1.1

1.15

1. 5

1. 1

* ROD6
14191000 1 52 10.0
141911000 1
14191101 4 0.004040
14191201 003 4
14191301 0. 4
141914000
14191401 375.15 5
141915010 0 0 1 0.04767 1
14191601 220010000 00000 111 1 0.04767 1
14191701 0 0.0 0.0. 1
14191900 1
14191901 0.0 100. 100.0. 0.0.0.1.03.4994 1.1 1. 1
14192000 15 9 2 1 0.
141921000 1
14192101 5 0.003015
14192102 1 0.003481
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14192103 2 0.004040
14192201 001 5
14192202 002 6
14192203 003 8
14192301 1.5
14192302 0. 8
14192400 0
14192401 375.15 9
14192501 0 0 0 10.01129 15
14192601 220020000 10000 111 1 0.01129 15
14192701 111 0.01111 0. 0. 15
14192900 1
14192901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994 1.1 1. 15
14193000 5 3 2 1 0.003481
14193100 0 1
141931012 0.004040
14193201 003 2
14193301 0. 2
14193400 0
14193401 375.15 3
14193501 0 0 0 1 0.06371 5
14193601 220170000 10000 111 1 0.06371 5
14193701 0 0.0 0. 0. 5
14193900 1
14193901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994 1.1 1. 5
14194000 1 52 10.0
14194100 0 1
14194101 4 0.004040
14194201 003 4
14194301 0. 4
14194400 0
14194401 375.15 5
14194501 0 0 0 1 0.04767 1
14194601 220220000 00000 111 1 0.04767 1
14194701 0 0.0 0.0. 1
14194900 1
14194901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994 1.1 1. 1

* ROD11
14201000 1 52 10.0
14201100 0 1
14201101 4 0.004040
14201201 003 4
14201301 0. 4
14201400 0
14201401 375.15 5
14201501 0 0 0 1 0.04767 1
14201601 220010000 00000 111 1 0.04767 1
14201701 0 0.0 0. 0. 1
14201900 1
14201901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994 1.1 1. 1
14202000 15 92 1 0.
14202100 0 1
14202101 5 0.003015
14202102 1 0.003481
14202103 2 0.004040
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14202201 001 5
14202202 002 6
14202203 003 8
14202301 1. 5
14202302 0. 8
14202400 0
14202401 375.15 9
142025010 0 0 10.01129 15
14202601 220020000 10000 111 1 0.01129 15
14202701 111 0.01111 0.0. 15
14202900 1
14202901 0.0 100. 100.0. 0.0.0.1.0 3.4994 1.1
14203000 5 3 2 1 0.003481
142031000 1
14203101 2 0.004040
14203201 003 2
14203301 0.2
14203400 0
14203401 375.15 3
142035010 0 0 1 0.06371 5
14203601 220170000 10000 111 1 0.06371 5
14203701 0 0.0 0.0. 5
14203900 1
14203901 0.0 100. 100.0. 0.0.0.1.0 3.4994 1.1
14204000 1 5 2 1 0.0
14204100 0 1
142041014 0.004040
14204201 003 4
14204301 0. 4
14204400 0
14204401 375.15 5
14204501 0 0 0 1 0.04767 1
14204601 220220000 00000 1111 0.04767 1
14204701 0 0.0 0.0. 1
14204900 1
14204901 0.0 100.100.0. 0.0.0.1.0 3.4994 1.1
*

* ROD11
14211000 1 5 2 10.0
142111000 1
142111014 0.004040
14211201 003 4
14211301 0.4
142114000
14211401 375.15 5
142115010 0
14211601 222010000
14211701 0 0.0 0.4
14211900 1
14211901 0.0 100. 10(
14212000 15 9 2 1 0.
14212100 0 1
14212101 5 0.003015
14212102 1 0.003481
14212103 2 0.004040
14212201 001 5

0 1 0.04767 1
00000 111 1 0.04767 1
0. 1

0.0. 0.0.0.1.0 3.4994 1.1

1.15

1. 5

1. 1

1. 1
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14212202 002 6
14212203 003 8
14212301 1.5
14212302 0. 8
14212400 0
14212401 375.15 9
142125010 0 0 1 0.01129 15
14212601 222020000 10000 111 1 0.01129 15
14212701 111 0.01111 0. 0. 15
14212900 1
14212901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994
14213000 5 3 2 1 0.003481
14213100 0 1
14213101 2 0.004040
14213201 003 2
14213301 0. 2
14213400 0
14213401 375.15 3
14213501 0 0 0 1 0.06371 5
14213601 222170000 10000 111 1 0.06371 5
14213701 0 0.0 0. 0. 5
14213900 1
14213901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994
14214000 1 521 0.0
14214100 0 1
14214101 4 0.004040
14214201 003 4
14214301 0. 4
14214400 0
14214401 375.15 5
14214501 0 0 0 1 0.04767 1
14214601 222220000 00000 111 1 0.04767 1
14214701 0 0.0 0.0. 1
14214900 1
14214901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994

1.1

1.1

1.1

1. 15

1. 5

1. 1

Mixing Control Variables

This first group of control variables determines the axial mass flux of the coolant

in each volume of the subchannel pipe. The multiplier represents 1/Aes, where A,, is the

cross sectional flow area of the respective subchannel.

20500230 G20401 sum 0.5 0.0 1
20500231 0.0 2.41422E+05 mflowj 201020100 2.41422E+05 mflowj 204010000
20500240 G20402 sum 0.5 0.0 1
20500241 0.0 2.41422E+05 mflowj 204010000 2.41422E+05 mflowj 204020000
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20500250 G20403 sum 0.5 0.0 1
20500251 0.0 2.41422E+05 mflowj 204020000
20500260 G20404 sum 0.5 0.0 1
20500261 0.0 2.41422E+05 mflowj 204030000
20500270 G20405 sum 0.5 0.0 1
20500271 0.0 2.41422E+05 mflowj 204040000
20500280 G20406 sum 0.5 0.0 1
20500281 0.0 2.41422E+05 mflowj 204050000
20500290 G20407 sum 0.5 0.0 1
20500291 0.0 2.41422E+05 mflowj 204060000
20500300 G20408 sum 0.5 0.0 1
20500301 0.0 2.41422E+05 mflowj 204070000
20500310 G20409 sum 0.5 0.0 1
20500311 0.0 2.41422E+05 mflowj 204080000
20500320 G20410 sum 0.5 0.0 1
20500321 0.0 2.41422E+05 mflowj 204090000
20500330 G20411 sum 0.5 0.0 1
20500331 0.0 2.41422E+05 mflowj 204100000
20500340 G20412 sum 0.5 0.0 1
20500341 0.0 2.41422E+05 mflowj 204110000
20500350 G20413 sum 0.5 0.0 1
20500351 0.0 2.41422E+05 mflowj 204120000
20500360 G20414 sum 0.5 0.0 1
20500361 0.0 2.41422E+05 mflowj 204130000
20500370 G20415 sum 0.5 0.0 1
20500371 0.0 2.41422E+05 mflowj 204140000
20500380 G20416 sum 0.5 0.0 1
20500381 0.0 2.41422E+05 mflowj 204150000
20500390 G20417 sum 0.5 0.0 1
20500391 0.0 2.41422E+05 mflowj 204160000
20500400 G20418 sum 0.5 0.0 1
20500401 0.0 2.41422E+05 mflowj 204170000
20500410 G20419 sum 0.5 0.0 1
20500411 0.0 2.41422E+05 mflowj 204180000
20500420 G20420 sum 0.5 0.0 1
20500421 0.0 2.41422E+05 mflowj 204190000
20500430 G20421 sum 0.5 0.0 1
20500431 0.0 2.41422E+05 mflowj 204200000
20500440 G20422 sum 0.5 0.0 1
20500441 0.0 2.41422E+05 mflowj 204210000
20501990 G22001 sum 0.5 0.0 1
20501991 0.0 1.20612E+05 mflowj 203010100
20502000 G22002 sum 0.5 0.0 1
20502001 0.0 1.20612E+05 mflowj 220010000
20502010 G22003 sum 0.5 0.0 1
20502011 0.0 1.20612E+05 mflowj 220020000
20502020 G22004 sum 0.5 0.0 1
20502021 0.0 1.20612E+05 mflowj 220030000
20502030 G22005 sum 0.5 0.0 1
20502031 0.0 1.20612E+05 mflowj 220040000
20502040 G22006 sum 0.5 0.0 1
20502041 0.0 1.20612E+05 mflowj 220050000
20502050 G22007 sum 0.5 0.0 1
20502051 0.0 1.20612E+05 mflowj 220060000
20502060 G22008 sum 0.5 0.0 1
20502061 0.0 1.20612E+05 mflowj 220070000

2.41422E+05 mflowj 204030000

2.41422E+05 mflowj 204040000

2.41422E+05 mflowj 204050000

2.41422E+05 mflowj 204060000

2.41422E+05 mflowj 204070000

2.41422E+05 mflowj 204080000

2.41422E+05 mflowj 204090000

2.41422E+05 mflowj 204100000

2.41422E+05 mflowj 204110000

2.41422E+05 mflowj 204120000

2.41422E+05 mflowj 204130000

2.41422E+05 mflowj 204140000

2.41422E+05 mflowj 204150000

2.41422E+05 mflowj 204160000

2.41422E+05 mflowj 204170000

2.41422E+05 mflowj 204180000

2.41422E+05 mflowj 204190000

2.41422E+05 mflowj 204200000

2.41422E+05 mflowj 204210000

2.41422E+05 mflowj 293020100

1.20612E+05 mflowj 220010000

1.20612E+05 mflowj 220020000

1.20612E+05 mflowj 220030000

1.20612E+05 mflowj 220040000

1.20612E+05 mflowj 220050000

1.20612E+05 mflowj 220060000

1.20612E+05 mflowj 220070000

1.20612E+05 mflowj 220080000
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20502070 G22009 sum 0.5 0.0 1
20502071 0.0 1.20612E+05 mflowj 220080000

G22010 sum
0.0 1.20612E+05
G22011 sum
0.0 1.20612E+05
G22012 sum
0.0 1.20612E+05
G22013 sum
0.0 1.20612E+05
G22014 sum
0.0 1.20612E+05
G22015 sum
0.0 1.20612E+05
G22016 sum
0.0 1.20612E+05
G22017 sum

0.5 0.0 1
mflowj 220090000

0.5 0.0 1
mflowj 220100000

0.5 0.0 1
mflowj 220110000

0.5 0.0 1
mflowj 220120000

0.5 0.0 1
mflowj 220130000

0.5 0.0 1
mflowj 220140000

0.5 0.0 1
mflowj 220150000

0.5 0.0 1

20502080
20502081
20502090
20502091
20502100
20502101
20502110
20502111
20502120
20502121
20502130
20502131
20502140
20502141
20502150
20502151
20502160
20502161
20502170
20502171
20502180
20502181
20502190
20502191
20502200
20502201
20502210
20502211
20502220
20502221
20502230
20502231
20502240
20502241
20502250
20502251
20502260
20502261
20502270
20502271
20502280
20502281
20502290
20502291
20502300
20502301
20502310
20502311
20502320
20502321
20502330
20502331
20502340
20502341

1.20612E+05 mflowj 220090000

1.20612E+05 mflowj 220100000

1.20612E+05 mflowj 220110000

1.20612E+05 mflowj 220120000

1.20612E+05 mflowj 220130000

1.20612E+05 mflowj 220140000

1.20612E+05 mflowj 220150000

1.20612E+05 mflowj 220160000

1.20612E+05 mflowj 220170000

1.20612E+05 mflowj 220180000

1.20612E+05 mflowj 220190000

1.20612E+05 mflowj 220200000

1.20612E+05 mflowj 220210000

1.20612E+05 mflowj 295010100

1.20612E+05 mflowj 222010000

1.20612E+05 mflowj 222020000

1.20612E+05 mflowj 222030000

1.20612E+05 mflowj 222040000

1.20612E+05 mflowj 222050000

1.20612E+05 mflowj 222060000

1.20612E+05 mflowj 222070000

1.20612E+05 mflowj 222080000

1.20612E+05 mflowj 222090000

1.20612E+05 mflowj 222100000

1.20612E+05 mflowj 222110000

1.20612E+05 mflowj 222120000

1.20612E+05 mflowj 222130000

1.20612E+05 mflowj 222140000
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0.0 1.20612E+05 mflowj 220160000
G22018 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 220170000
G22019 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 220180000
G22020 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 220190000
G22021 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 220200000
G22022 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 220210000
G22201 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 203020100
G22202 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222010000
G22203 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222020000
G22204 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222030000
G22205 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222040000
G22206 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222050000
G22207 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222060000
G22208 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222070000
G22209 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222080000
G22210 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222090000
G22211 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222100000
G22212 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222110000
G22213 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222120000
G22214 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222130000



20502350
20502351
20502360
20502361
20502370
20502371
20502380
20502381
20502390
20502391
20502400
20502401
20502410
20502411
20502420
20502421

G22215 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222140000
G22216 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222150000
G22217 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222160000
G22218 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222170000
G22219 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222180000
G22220 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222190000
G22221 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222200000
G22222 sum 0.5 0.0 1
0.0 1.20612E+05 mflowj 222210000

Heat Flow Calculation Control Variables

There are 4 such control variables per volume in the subchannel pipe (each pipe

contains 22 volumes). The first volume determines the heat capacity in the transverse

junction as the arithmetic average the heat capacity in the two adjacent volumes. The

second control variable determines the mass flow based upon the transverse area, E*, and

the axial mass flux calculated in the previous control variables. The multiplier represents

the product of the transverse area and e*. The third variable determines the temperature

difference between the two adjacent volumes. The fourth and final variable per volume

determines the heat transfer between variables by multiplying the previous 3.

* Junction 301

20555010 Cp30101 sum 0.5 0.0 1
20555011 0.0 1.0 csubpf204010000 1.0 csubpf220010000
20555020 mT30101 sum 9.28610E-6 0.0 1
20555021 0.0 1.0 cntrlvar 0023 1.0 cntrlvar 0199
20555030 dT30101 sum 1.0 0.0 1
20555031 0.0 1.0 tempf 204010000 -1.0 tempf 220010000
20555040 QJ30101 mult 1.0 0.0 1
20555041 cntrlvar 5501 cntrivar 5502 cntrlvar 5503
20555050 Cp30102 sum 0.5 0.0 1

449

1.20612E+05 mflowj 222150000

1.20612E+05 mflowj 222160000

1.20612E+05 mflowj 222170000

1.20612E+05 mflowj 222180000

1.20612E+05 mflowj 222190000

1.20612E+05 mflowj 222200000

1.20612E+05 mflowj 222210000

1.20612E+05 mflowj 295020100



20555051 0.0 1.0 csubpf204020000 1.0 csubpf220020000
20555060 mT30102 sum 2.19923E-6 0.0 1
20555061 0.0 1.0 cntrlvar 0024 1.0 cntrlvar 0200
20555070 dT30102 sum 1.0 0.0 1
20555071 0.0 1.0 tempf 204020000 -1.0 tempf 220020000
20555080 QJ30102 mult 1.0 0.0 1
20555081 cntrlvar 5505 cntrlvar 5506 cntrlvar 5507
20555090 Cp30103 sum 0.5 0.0 1
20555091 0.0 1.0 csubpf204030000 1.0 csubpf220030000
20555100 mT30103 sum 2.19923E-6 0.0 1
20555101 0.0 1.0 cntrlvar 0025 1.0 cntrlvar 0201
20555110 dT30103 sum 1.0 0.0 1
20555111 0.0 1.0 tempf 204030000 -1.0 tempf 220030000
20555120 QJ30103 mult 1.0 0.0 1
20555121 cntrlvar 5509 cntrlvar 5510 cntrlvar 5511
20555130 Cp30104 sum 0.5 0.0 1
20555131 0.0 1.0 csubpf204040000 1.0 csubpf220040000
20555140 mT30104 sum 2.19923E-6 0.0 1
20555141 0.0 1.0 cntrlvar 0026 1.0 cntrlvar 0202
20555150 dT30104 sum 1.0 0.0 1
20555151 0.0 1.0 tempf 204040000 -1.0 tempf 220040000
20555160 QJ30104 mult 1.0 0.0 1
20555161 cntrlvar 5513 cntrlvar 5514 cntrlvar 5515
20555170 Cp30105 sum 0.5 0.0 1
20555171 0.0 1.0 csubpf204050000 1.0 csubpf220050000
20555180 mT30105 sum 2.19923E-6 0.0 1
20555181 0.0 1.0 cntrlvar 0027 1.0 cntrlvar 0203
20555190 dT30105 sum 1.0 0.0 1
20555191 0.0 1.0 tempf 204050000 -1.0 tempf 220050000
20555200 QJ30105 mult 1.0 0.0 1
20555201 cntrlvar 5517 cntrlvar 5518 cntrlvar 5519
20555210 Cp30106 sum 0.5 0.0 1
20555211 0.0 1.0 csubpf204060000 1.0 csubpf220060000
20555220 mT30106 sum 2.19923E-6 0.0 1
20555221 0.0 1.0 cntrlvar 0028 1.0 cntrlvar 0204
20555230 dT30106 sum 1.0 0.0 1
20555231 0.0 1.0 tempf 204060000 -1.0 tempf 220060000
20555240 QJ30106 mult 1.0 0.0 1
20555241 cntrlvar 5521 cntrlvar 5522 cntrlvar 5523
20555250 Cp30107 sum 0.5 0.0 1
20555251 0.0 1.0 csubpf204070000 1.0 csubpf220070000
20555260 mT30107 sum 2.19923E-6 0.0 1
20555261 0.0 1.0 cntrlvar 0029 1.0 cntrlvar 0205
20555270 dT30107 sum 1.0 0.0 1
20555271 0.0 1.0 tempf 204070000 -1.0 tempf 220070000
20555280 QJ30107 mult 1.0 0.0 1
20555281 cntrlvar 5525 cntrlvar 5526 cntrlvar 5527
20555290 Cp30108 sum 0.5 0.0 1
20555291 0.0 1.0 csubpf204080000 1.0 csubpf220080000
20555300 mT30108 sum 2.19923E-6 0.0 1
20555301 0.0 1.0 cntrlvar 0030 1.0 cntrlvar 0206
20555310 dT30108 sum 1.0 0.0 1
20555311 0.0 1.0 tempf 204080000 -1.0 tempf 220080000
20555320 QJ30108 mult 1.0 0.0 1
20555321 cntrlvar 5529 cntrlvar 5530 cntrlvar 5531
20555330 Cp30109 sum 0.5 0.0 1
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20555331 0.0 1.0 csubpf204090000 1.0 csubpf220090000
20555340 mT30109 sum 2.19923E-6 0.0 1
20555341 0.0 1.0 cntrlvar 0031 1.0 cntrlvar 0207
20555350 dT30109 sum 1.0 0.0 1
20555351 0.0 1.0 tempf 204090000 -1.0 tempf 220090000
20555360 QJ30109 mult 1.0 0.0 1
20555361 cntrlvar 5533 cntrivar 5534 cntrlvar 5535
20555370 Cp30110 sum 0.5 0.0 1
20555371 0.0 1.0 csubpf204100000 1.0 csubpf220100000
20555380 mT30110 sum 2.19923E-6 0.0 1
20555381 0.0 1.0 cntrlvar 0032 1.0 cntrlvar 0208
20555390 dT30110 sum 1.0 0.0 1
20555391 0.0 1.0 tempf 204100000 -1.0 tempf 220100000
20555400 QJ30110 mult 1.0 0.0 1
20555401 cntrlvar 5537 cntrlvar 5538 cntrlvar 5539
20555410 Cp30111 sum 0.5 0.0 1
20555411 0.0 1.0 csubpf204110000 1.0 csubpf220110000
20555420 mT30111 sum 2.19923E-6 0.0 1
20555421 0.0 1.0 cntrlvar 0033 1.0 cntrlvar 0209
20555430 dT30111 sum 1.0 0.0 1
20555431 0.0 1.0 tempf 204110000 -1.0 tempf 220110000
20555440 QJ30111 mult 1.0 0.0 1
20555441 cntrlvar 5541 cntrlvar 5542 cntrlvar 5543
20555450 Cp30112 sum 0.5 0.0 1
20555451 0.0 1.0 csubpf204120000 1.0 csubpf220120000
20555460 mT30112 sum 2.19923E-6 0.0 1
20555461 0.0 1.0 cntrlvar 0034 1.0 cntrlvar 0210
20555470 dT30112 sum 1.0 0.0 1
20555471 0.0 1.0 tempf 204120000 -1.0 tempf 220120000
20555480 QJ30112 mult 1.0 0.0 1
20555481 cntrlvar 5545 cntrlvar 5546 cntrlvar 5547
20555490 Cp30113 sum 0.5 0.0 1
20555491 0.0 1.0 csubpf204130000 1.0 csubpf220130000
20555500 mT30113 sum 2.19923E-6 0.0 1
20555501 0.0 1.0 cntrlvar 0035 1.0 cntrlvar 0211
20555510 dT30113 sum 1.0 0.0 1
20555511 0.0 1.0 tempf 204130000 -1.0 tempf 220130000
20555520 QJ30113 mult 1.0 0.0 1
20555521 cntrlvar 5549 cntrlvar 5550 cntrlvar 5551
20555530 Cp30114 sum 0.5 0.0 1
20555531 0.0 1.0 csubpf204140000 1.0 csubpf220140000
20555540 mT30114 sum 2.19923E-6 0.0 1
20555541 0.0 1.0 cntrlvar 0036 1.0 cntrlvar 0212
20555550 dT30114 sum 1.0 0.0 1
20555551 0.0 1.0 tempf 204140000 -1.0 tempf 220140000
20555560 QJ30114 mult 1.0 0.0 1
20555561 cntrlvar 5553 cntrlvar 5554 cntrlvar 5555
20555570 Cp30115 sum 0.5 0.0 1
20555571 0.0 1.0 csubpf204150000 1.0 csubpf220150000
20555580 mT30115 sum 2.19923E-6 0.0 1
20555581 0.0 1.0 cntrlvar 0037 1.0 cntrlvar 0213
20555590 dT30115 sum 1.0 0.0 1
20555591 0.0 1.0 tempf 204150000 -1.0 tempf 220150000
20555600 QJ30115 mult 1.0 0.0 1
20555601 cntrlvar 5557 cntrlvar 5558 cntrlvar 5559
20555610 Cp30116 sum 0.5 0.0 1

451



20555611 0.0 1.0 csubpf204160000 1.0 csubpf220160000
20555620 mT30116 sum 2.19923E-6 0.0 1
20555621 0.0 1.0 cntrlvar 0038 1.0 cntrlvar 0214
20555630 dT30116 sum 1.0 0.0 1
20555631 0.0 1.0 tempf 204160000 -1.0 tempf 220160000
20555640 QJ30116 mult 1.0 0.0 1
20555641 cntrlvar 5561 cntrlvar 5562 cntrlvar 5563
20555650 Cp30117 sum 0.5 0.0 1
20555651 0.0 1.0 csubpf204170000 1.0 csubpf220170000
20555660 mT30117 sum 1.24122E-5 0.0 1
20555661 0.0 1.0 cntrlvar 0039 1.0 cntrlvar 0215
20555670 dT30117 sum 1.0 0.0 1
20555671 0.0 1.0 tempf 204170000 -1.0 tempf 220170000
20555680 QJ30117 mult 1.0 0.0 1
20555681 cntrlvar 5565 cntrlvar 5566 cntrlvar 5567
20555690 Cp30118 sum 0.5 0.0 1
20555691 0.0 1.0 csubpf204180000 1.0 csubpf220180000
20555700 mT30118 sum 1.24122E-5 0.0 1
20555701 0.0 1.0 cntrlvar 0040 1.0 cntrlvar 0216
20555710 dT30118 sum 1.0 0.0 1
20555711 0.0 1.0 tempf 204180000 -1.0 tempf 220180000
20555720 QJ30118 mult 1.0 0.0 1
20555721 cntrlvar 5569 cntrlvar 5570 cntrlvar 5571
20555730 Cp30119 sum 0.5 0.0 1
20555731 0.0 1.0 csubpf204190000 1.0 csubpf220190000
20555740 mT30119 sum 1.24122E-5 0.0 1
20555741 0.0 1.0 cntrlvar 0041 1.0 cntrlvar 0217
20555750 dT30119 sum 1.0 0.0 1
20555751 0.0 1.0 tempf 204190000 -1.0 tempf 220190000
20555760 QJ30119 mult 1.0 0.0 1
20555761 cntrlvar 5573 cntrlvar 5574 cntrlvar 5575
20555770 Cp30120 sum 0.5 0.0 1
20555771 0.0 1.0 csubpf204200000 1.0 csubpf220200000
20555780 mT30120 sum 1.24122E-5 0.0 1
20555781 0.0 1.0 cntrlvar 0042 1.0 cntrlvar 0218
20555790 dT30120 sum 1.0 0.0 1
20555791 0.0 1.0 tempf 204200000 -1.0 tempf 220200000
20555800 QJ30120 mult 1.0 0.0 1
20555801 cntrlvar 5577 cntrlvar 5578 cntrlvar 5579
20555810 Cp30121 sum 0.5 0.0 1
20555811 0.0 1.0 csubpf204210000 1.0 csubpf220210000
20555820 mT30121 sum 1.24122E-5 0.0 1
20555821 0.0 1.0 cntrlvar 0043 1.0 cntrlvar 0219
20555830 dT30121 sum 1.0 0.0 1
20555831 0.0 1.0 tempf 204210000 -1.0 tempf 220210000
20555840 QJ30121 mult 1.0 0.0 1
20555841 cntrlvar 5581 cntrlvar 5582 cntrlvar 5583
20555850 Cp30122 sum 0.5 0.0 1
20555851 0.0 1.0 csubpf204220000 1.0 csubpf220220000
20555860 mT30122 sum 9.28610E-6 0.0 1
20555861 0.0 1.0 cntrlvar 0044 1.0 cntrlvar 0220
20555870 dT30122 sum 1.0 0.0 1
20555871 0.0 1.0 tempf 204220000 -1.0 tempf 220220000
20555880 QJ30122 mult 1.0 0.0 1
20555881 cntrlvar 5585 cntrlvar 5586 cntrlvar 5587
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* Junction 320

20518010 Cp32001 sum 0.5 0.0 1
20518011 0.0 1.0 csubpf220010000 1.0 csubpf222010000
20518020 mT32001 sum 9.28610E-6 0.0 1
20518021 0.0 1.0 cntrlvar 0199 1.0 cntrlvar 0221
20518030 dT32001 sum 1.0 0.0 1
20518031 0.0 1.0 tempf 220010000 -1.0 tempf 222010000
20518040 QJ32001 mult 1.0 0.0 1
20518041 cntrlvar 1801 cntrlvar 1802 cntrlvar 1803
20518050 Cp32002 sum 0.5 0.0 1
20518051 0.0 1.0 csubpf220020000 1.0 csubpf222020000
20518060 mT32002 sum 2.19923E-6 0.0 1
20518061 0.0 1.0 cntrlvar 0200 1.0 cntrlvar 0222
20518070 dT32002 sum 1.0 0.0 1
20518071 0.0 1.0 tempf 220020000 -1.0 tempf 222020000
20518080 QJ32002 mult 1.0 0.0 1
20518081 cntrlvar 1805 cntrlvar 1806 cntrlvar 1807
20518090 Cp32003 sum 0.5 0.0 1
20518091 0.0 1.0 csubpf220030000 1.0 csubpf222030000
20518100 mT32003 sum 2.19923E-6 0.0 1
20518101 0.0 1.0 cntrlvar 0201 1.0 cntrlvar 0223
20518110 dT32003 sum 1.0 0.0 1
20518111 0.0 1.0 tempf 220030000 -1.0 tempf 222030000
20518120 QJ32003 mult 1.0 0.0 1
20518121 cntrlvar 1809 cntrlvar 1810 cntrlvar 1811
20518130 Cp32004 sum 0.5 0.0 1
20518131 0.0 1.0 csubpf220040000 1.0 csubpf222040000
20518140 mT32004 sum 2.19923E-6 0.0 1
20518141 0.0 1.0 cntrlvar 0202 1.0 cntrlvar 0224
20518150 dT32004 sum 1.0 0.0 1
20518151 0.0 1.0 tempf 220040000 -1.0 tempf 222040000
20518160 QJ32004 mult 1.0 0.0 1
20518161 cntrlvar 1813 cntrlvar 1814 cntrlvar 1815
20518170 Cp32005 sum 0.5 0.0 1
20518171 0.0 1.0 csubpf220050000 1.0 csubpf222050000
20518180 mT32005 sum 2.19923E-6 0.0 1
20518181 0.0 1.0cntrlvar 0203 1.0 cntrlvar 0225
20518190 dT32005 sum 1.0 0.0 1
20518191 0.0 1.0 tempf 220050000 -1.0 tempf 222050000
20518200 QJ32005 mult 1.0 0.0 1
20518201 cntrlvar 1817 cntrlvar 1818 cntrlvar 1819
20518210 Cp32006 sum 0.5 0.0 1
20518211 0.0 1.0 csubpf220060000 1.0 csubpf222060000
20518220 mT32006 sum 2.19923E-6 0.0 1
20518221 0.0 1.0 cntrlvar 0204 1.0 cntrlvar 0226
20518230 dT32006 sum 1.0 0.0 1
20518231 0.0 1.0 tempf 220060000 -1.0 tempf 222060000
20518240 QJ32006 mult 1.0 0.0 1
20518241 cntrlvar 1821 cntrlvar 1822 cntrlvar 1823
20518250 Cp32007 sum 0.5 0.0 1
20518251 0.0 1.0 csubpf220070000 1.0 csubpf222070000
20518260 mT32007 sum 2.19923E-6 0.0 1
20518261 0.0 1.0 cntrlvar 0205 1.0 cntrlvar 0227
20518270 dT32007 sum 1.0 0.0 1
20518271 0.0 1.0 tempf 220070000 -1.0 tempf 222070000
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20518280 QJ32007 mult 1.0 0.0 1
20518281 cntrlvar 1825 cntrlvar 1826 cntrlvar 1827
20518290 Cp32008 sum 0.5 0.0 1
20518291 0.0 1.0 csubpf220080000 1.0 csubpf222080000
20518300 mT32008 sum 2.19923E-6 0.0 1
20518301 0.0 1.0 cntrlvar 0206 1.0 cntrlvar 0228
20518310 dT32008 sum 1.0 0.0 1
20518311 0.0 1.0 tempf 220080000 -1.0 tempf 222080000
20518320 QJ32008 mult 1.0 0.0 1
20518321 cntrlvar 1829 cntrlvar 1830 cntrlvar 1831
20518330 Cp32009 sum 0.5 0.0 1
20518331 0.0 1.0 csubpf220090000 1.0 csubpf222090000
20518340 mT32009 sum 2.19923E-6 0.0 1
20518341 0.0 1.0 cntrlvar 0207 1.0 cntrlvar 0229
20518350 dT32009 sum 1.0 0.0 1
20518351 0.0 1.0 tempf 220090000 -1.0 tempf 222090000
20518360 QJ32009 mult 1.0 0.0 1
20518361 cntrlvar 1833 cntrlvar 1834 cntrlvar 1835
20518370 Cp32010 sum 0.5 0.0 1
20518371 0.0 1.0 csubpf220100000 1.0 csubpf222100000
20518380 mT32010 sum 2.19923E-6 0.0 1
20518381 0.0 1.0 cntrlvar 0208 1.0 cntrlvar 0230
20518390 dT32010 sum 1.0 0.0 1
20518391 0.0 1.0 tempf 220100000 -1.0 tempf 222100000
20518400 QJ32010 mult 1.0 0.0 1
20518401 cntrlvar 1837 cntrlvar 1838 cntrlvar 1839
20518410 Cp32011 sum 0.5 0.0 1
20518411 0.0 1.0 csubpf220110000 1.0 csubpf222110000
20518420 mT32011 sum 2.19923E-6 0.0 1
20518421 0.0 1.0 cntrlvar 0209 1.0 cntrlvar 0231
20518430 dT32011 sum 1.0 0.0 1
20518431 0.0 1.0 tempf 220110000 -1.0 tempf 222110000
20518440 QJ32011 mult 1.0 0.0 1
20518441 cntrlvar 1841 cntrlvar 1842 cntrlvar 1843
20518450 Cp32012 sum 0.5 0.0 1
20518451 0.0 1.0 csubpf220120000 1.0 csubpf222120000
20518460 mT32012 sum 2.19923E-6 0.0 1
20518461 0.0 1.0 cntrlvar 0210 1.0 cntrlvar 0232
20518470 dT32012 sum 1.0 0.0 1
20518471 0.0 1.0 tempf 220120000 -1.0 tempf 222120000
20518480 QJ32012 mult 1.0 0.0 1
20518481 cntrlvar 1845 cntrlvar 1846 cntrlvar 1847
20518490 Cp32013 sum 0.5 0.0 1
20518491 0.0 1.0 csubpf220130000 1.0 csubpf222130000
20518500 mT32013 sum 2.19923E-6 0.0 1
20518501 0.0 1.0 cntrlvar 0211 1.0 cntrlvar 0233
20518510 dT32013 sum 1.0 0.0 1
20518511 0.0 1.0 tempf 220130000 -1.0 tempf 222130000
20518520 QJ32013 mult 1.0 0.0 1
20518521 cntrlvar 1849 cntrlvar 1850 cntrlvar 1851
20518530 Cp32014 sum 0.5 0.0 1
20518531 0.0 1.0 csubpf220140000 1.0 csubpf222140000
20518540 mT32014 sum 2.19923E-6 0.0 1
20518541 0.0 1.0 cntrlvar 0212 1.0 cntrlvar 0234
20518550 dT32014 sum 1.0 0.0 1
20518551 0.0 1.0 tempf 220140000 -1.0 tempf 222140000
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20518560 QJ32014 mult 1.0 0.0 1
20518561 cntrlvar 1853 cntrlvar 1854 cntrlvar 1855
20518570 Cp32015 sum 0.5 0.0 1
20518571 0.0 1.0 csubpf220150000 1.0 csubpf222150000
20518580 mT32015 sum 2.19923E-6 0.0 1
20518581 0.0 1.0 cntrlvar 0213 1.0 cntrlvar 0235
20518590 dT32015 sum 1.0 0.0 1
20518591 0.0 1.0 tempf 220150000 -1.0 tempf 222150000
20518600 QJ32015 mult 1.0 0.0 1
20518601 cntrlvar 1857 cntrlvar 1858 cntrlvar 1859
20518610 Cp32016 sum 0.5 0.0 1
20518611 0.0 1.0 csubpf220160000 1.0 csubpf222160000
20518620 mT32016 sum 2.19923E-6 0.0 1
20518621 0.0 1.0 cntrlvar 0214 1.0 cntrlvar 0236
20518630 dT32016 sum 1.0 0.0 1
20518631 0.0 1.0 tempf 220160000 -1.0 tempf 222160000
20518640 QJ32016 mult 1.0 0.0 1
20518641 cntrlvar 1861 cntrlvar 1862 cntrlvar 1863
20518650 Cp32017 sum 0.5 0.0 1
20518651 0.0 1.0 csubpf220170000 1.0 csubpf222170000
20518660 mT32017 sum 1.24122E-5 0.0 1
20518661 0.0 1.0 cntrlvar 0215 1.0 cntrlvar 0237
20518670 dT32017 sum 1.0 0.0 1
20518671 0.0 1.0 tempf 220170000 -1.0 tempf 222170000
20518680 QJ32017 mult 1.0 0.0 1
20518681 cntrlvar 1865 cntrlvar 1866 cntrlvar 1867
20518690 Cp32018 sum 0.5 0.0 1
20518691 0.0 1.0 csubpf220180000 1.0 csubpf222180000
20518700 mT32018 sum 1.24122E-5 0.0 1
20518701 0.0 1.0 cntrlvar 0216 1.0 cntrlvar 0238
20518710 dT32018 sum 1.0 0.0 1
20518711 0.0 1.0 tempf 220180000 -1.0 tempf 222180000
20518720 QJ32018 mult 1.0 0.0 1
20518721 cntrlvar 1869 cntrlvar 1870 cntrlvar 1871
20518730 Cp32019 sum 0.5 0.0 1
20518731 0.0 1.0 csubpf220190000 1.0 csubpf222190000
20518740 mT32019 sum 1.24122E-5 0.0 1
20518741 0.0 1.0 cntrlvar 0217 1.0 cntrlvar 0239
20518750 dT32019 sum 1.0 0.0 1
20518751 0.0 1.0 tempf 220190000 -1.0 tempf 222190000
20518760 QJ32019 mult 1.0 0.0 1
20518761 cntrlvar 1873 cntrlvar 1874 cntrlvar 1875
20518770 Cp32020 sum 0.5 0.0 1
20518771 0.0 1.0 csubpf220200000 1.0 csubpf222200000
20518780 mT32020 sum 1.24122E-5 0.0 1
20518781 0.0 1.0cntrlvar 0218 1.0 cntrlvar 0240
20518790 dT32020 sum 1.0 0.0 1
20518791 0.0 1.0 tempf 220200000 -1.0 tempf 222200000
20518800 QJ32020 mult 1.0 0.0 1
20518801 cntrlvar 1877 cntrlvar 1878 cntrlvar 1879
20518810 Cp32021 sum 0.5 0.0 1
20518811 0.0 1.0 csubpf220210000 1.0 csubpf222210000
20518820 mT32021 sum 1.24122E-5 0.0 1
20518821 0.0 1.0 cntrlvar 0219 1.0 cntrlvar 0241
20518830 dT32021 sum 1.0 0.0 1
20518831 0.0 1.0 tempf 220210000 -1.0 tempf 222210000
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20518840 QJ32021 mult 1.0 0.0 1
20518841 cntrlvar 1881 cntrlvar 1882 cntrlvar 1883
20518850 Cp32022 sum 0.5 0.0 1
20518851 0.0 1.0 csubpf220220000 1.0 csubpf222220000
20518860 mT32022 sum 9.28610E-6 0.0 1
20518861 0.0 1.0 cntrlvar 0220 1.0 cntrlvar 0242
20518870 dT32022 sum 1.0 0.0 1
20518871 0.0 1.0 tempf 220220000 -1.0 tempf 222220000
20518880 QJ32022 mult 1.0 0.0 1
20518881 cntrlvar 1885 cntrlvar 1886 cntrivar 1887

Volume heat addition/subtraction Control Variables

These control variables evaluate the net heat added to/subtracted from each

segment within the subchannel pipe. It is the sum of the heat transfer via the inlet

transverse junctions less the sum of the heat transfer via the outlet transverse junctions.

In the current example there are only 2 junctions, 1 inlet and I outlet. However,

depending on the location in the assembly other volumes may have 1, 2, or 3 junctions,

with no more than 2 inlet or outlet junctions in the same volume.

* Volume 220
*

QJ22001 sum
0.0 1.0 cntrlvar 55
QJ22002 sum
0.0 1.0 cntrlvar55
QJ22003 sum
0.0 1.0 cntrlvar55
QJ22004 sum
0.0 1.0 cntrlvar5516
QJ22005 sum 1.0
0.0 1.0 cntrlvar5520
QJ22006 sum 1.0
0.0 1.0 cntrlvar 5524
QJ22007 sum 1.0
0.0 1.0 cntrlvar 5528
QJ22008 sum 1.0
0.0 1.0 cntrlvar 5532
QJ22009 sum 1.0
0.0 1.0 cntrlvar 5536
QJ22010 sum 1.0
0.0 1.0 cntrlvar 5540
QJ22011 sum 1.0

1.0 0.0 1
04 -1.0 cntrlvar 1804
1.0 0.0 1

08 -1.0 cntrlvar 1808
1.0 0.0 1
12 -1.0 cntrlvar 1812
1.0 0.0 1

-1.0 cn
0.0 1

trlvar 1816

-1.0 cntrlvar 1820
0.0 1

-1.0 cntrlvar 1824
0.0 1

-1.0 cntrlvar 1828
0.0 1

-1.0 cntrlvar 1832
0.0 1

-1.0 cntrlvar 1836
0.0 1

-1.0 cntrlvar 1840
0.0 1

20583230
20583231
20583240
20583241
20583250
20583251
20583260
20583261
20583270
20583271
20583280
20583281
20583290
20583291
20583300
20583301
20583310
20583311
20583320
20583321
20583330

456



20583331
20583340
20583341
20583350
20583351
20583360
20583361
20583370
20583371
20583380
20583381
20583390
20583391
20583400
20583401
20583410
20583411
20583420
20583421
20583430
20583431
20583440
20583441

0.0 1.0 cntrlvar5544 -1.0 cntrlvar 1844
QJ22012 sum 1.0 0.0 1
0.0 1.0 cntrlvar5548 -1.0 cntrlvar 1848
QJ22013 sum 1.0 0.0 1
0.0 1.0 cntrlvar5552 -1.0 cntrlvar 1852
QJ22014 sum 1.0 0.0 1
0.0 1.0 cntrlvar5556 -1.0 cntrlvar 1856
QJ22015 sum 1.0 0.0 1
0.0 1.0 cntrlvar5560 -1.0 cntrlvar 1860
QJ22016 sum 1.0 0.0 1
0.0 1.0 cntrlvar5564 -1.0 cntrlvar 1864
QJ22017 sum 1.0 0.0 1
0.0 1.0 cntrlvar5568 -1.0 cntrlvar 1868
QJ22018 sum 1.0 0.0 1
0.0 1.0 cntrlvar5572 -1.0 cntrlvar 1872
QJ22019 sum 1.0 0.0 1
0.0 1.0 cntrlvar5576 -1.0 cntrlvar 1876
QJ22020 sum 1.0 0.0 1
0.0 1.0 cntrlvar5580 -1.0 cntrlvar 1880
QJ22021 sum 1.0 0.0 1
0.0 1.0 cntrlvar5584 -1.0 cntrlvar 1884
QJ22022 sum 1.0 0.0 1
0.0 1.0 cntrlvar5588 -1.0 cntrlvar 1888

Pseudo Heat Structures

These heat structures are used to add the heat transfer due to mixing to each

volume. By referencing a control variable instead of a heating table, the code will input

this amount of heating calculated by the given control variable into the fluid each time

step. Additionally, the heat for these structures is deposited directly into the fluid, so that

no heat is absorbed into the structure itself.

10021000 22 2 2 1 0.001905
100211000 1
10021101 1 0.001908
10021201 003 1
10021301 0. 1
10021400 0
10021401628.15 2
100215010 0 0 10.01129 22
10021601220020000 00000 111 10.01129 22
10021701 18323 0.0 0.0 1. 1
10021702 18324 0.0 0.0 1.2
10021703 18325 0.0 0.0 1.3
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10021704 18326 0.0 0.0
10021705 18327 0.0 0.0
10021706 18328 0.0 0.0
10021707 18329 0.0 0.0
10021708 18330 0.0 0.0
10021709 18331 0.0 0.0
10021710 18332 0.0 0.0
10021711 18333 0.0 0.0
10021712 18134 0.0 0.0
10021713 18135 0.0 0.0
10021714 18136 0.0 0.0
10021715 18137 0.0 0.0
10021716 18338 0.0 0.0
10021717 18339 0.0 0.0
10021718 18340 0.0 0.0
10021719 18141 0.0 0.0
10021720 18142 0.0 0.0
10021721 18143 0.0 0.0
10021722 18144 0.0 0.0

1.4
1. 5
1.6
1.7
1.8
1.9
1. 10
1. 11
1. 12
1. 13
1. 14
1. 15
1. 16
1. 17
1. 18
1. 19
1. 20
1.21
1. 22

10021900 1
10021901 0.0 100. 100. 0. 0. 0. 0. 1.0 3.4994 1.1 1. 22
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