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Abstract

Mitochondria are cellular compartments that perform essential roles in energy metabolism, ion
homeostasis, and apoptosis. Mitochondrial dysfunction causes disease in 1 in 5,000 live births and
also has been associated with aging, neurodegeneration, cancer, and diabetes. To systematically
explore the function of mitochondria in health and in disease, it is necessary to identify all of the
proteins resident in this organelle and to understand how they integrate into pathways. However,
traditional molecular and biochemistry methods have identified only half of the estimated 1200
mitochondrial proteins, including the 13 encoded by the tiny mitochondrial genome. Now, newly
available genomic technologies make it possible to identify the remainder and explore their roles in
cellular pathways and disease.

Toward this goal, we performed mass spectrometry, GFP tagging, and machine learning on
multiple genomic datasets to create a mitochondrial compendium of 1098 genes and their protein
expression across 14 mouse tissues. We linked poorly characterized proteins in this inventory to
known mitochondrial pathways by virtue of shared evolutionary history. We additionally used our
matched mRNA and protein measurements to demonstrate a widespread role of upstream open
reading frames (uORFs) in blunting translation of mitochondrial and other cellular proteins.

Next we used the mitochondrial protein inventory to identify genes underlying inherited dis-
eases of mitochondrial dysfunction. In collaboration with clinicians, we identified causal mutations
in five genes underlying diseases including hepatocerebral mtDNA depletion syndrome, autoso-
mal dominant mitochondrial myopathy, and several forms of inherited complex I deficiency. These
discoveries have enabled the development of diagnostic tests now widely available. More broadly,
the mitochondrial compendium provides a foundation for systematically exploring the organelle's
contribution to both basic cellular biology and human disease.

Thesis Supervisor: Vamsi K. Mootha MD
Title: Associate Professor
Department of Systems Biology, Harvard Medical School
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Chapter 1

Introduction



Introduction

Analysis of the human genome sequence has revealed that our DNA contains roughly

20,000 protein-coding genes1,'2. The function and cellular location of several thousand
proteins have been established by detailed biochemical and molecular studies, which

together have elucidated core pathways such as energy metabolism, cell signaling, and
replication. Progress in characterizing the remaining proteins is being fueled by

technological advances that allow simultaneous measurement of thousands of genes or

proteins. However, methods to interpret these genomic and proteomic data are still in
their infancy. Currently we know little beyond the sequence of roughly a third of all
human genes.

In this dissertation, I focus on characterizing the protein components of one specific
compartment of mammalian cells, the mitochondrion. Mitochondria generate the majority
of the cell's supply of chemical energy, as well as performing critical roles in
biosynthesis, intracellular signaling and apoptosis 3. Mitochondrial dysfunction causes
diseases ranging from neonatal fatalities to adult neurodegeneration, and is also
associated with diabetes, cancer, and aging4 . At the start of this project, approximately
half of the estimated 1200 mitochondrial proteins had been identified through decades of
biochemical and molecular studies. Identifying the rest will enable a systematic approach
to understanding mitochondrial function and the molecular basis of disease. The goals of
this dissertation work are to define a more comprehensive list of mitochondrial protein
parts, to determine how some of these proteins function together in pathways, to identify
regulatory elements within mitochondrial genes, and to identify causal mutations
underlying mitochondrial disease.

In this chapter, I introduce the role of mitochondria in cellular metabolism, discuss how
mitochondrial defects lead to disease, and review current progress in defining
mitochondrial protein composition.



Mitochondrial form and function

Mitochondria are eukaryotic cellular structures separated from the cytoplasm by a
double membrane. These organelles are best known for their role in generating
adenosine triphosphate (ATP) by oxidative phosphorylation, which provides the chemical
energy for most cellular reactions. In addition to ATP generation, mitochondria house
machinery for the Krebs cycle, urea cycle, ion homeostasis, apoptosis, and the
biosynthesis/metabolism of amino acids, fatty acids, steroids, lipids, cardiolipin,
ubiquinol, iron-sulfur clusters, and heme3 .

Mitochondria are the only eukaryotic organelles, beside the nucleus, to contain DNA.
Mitochondrial DNA (mtDNA) was first discovered in 19635, and human mtDNA was first
sequenced in 19816 revealing a circular molecule containing 16,569 base pairs. Each
mitochondrion contains approximately five copies of mtDNA 4. There is strong evidence
that mitochondria descended from an endosymbiotic bacterium early in eukaryotic
evolution7 . In the subsequent one and a half billion years of evolution, most of the
endosymbiont's genome was lost or transferred to the host genome. Currently,
mammalian mtDNA contains only 13 protein-coding genes, along with the ribosomal and
tRNA genes needed for protein synthesis7 . All remaining protein components are
encoded by nuclear DNA (nDNA), translated in the cytoplasm, and actively transported
into the mitochondrion.

Human mitochondria differ widely across tissues in number, structure, and function.
Mitochondria number varies from hundreds to thousands per cell, depending on the
tissue's metabolic demand, and can occupy up to 25% of cellular volume7 . Interestingly,
egg cells contain 100,000-300,000 copies of mtDNA, the largest number in any cell
type4 . Structurally, mitochondria exhibit morphological diversity across tissues. For
example, cardiomyocyte mitochondria have tightly folded inner membranes (cristae)
which increase OXPHOS capacity and ATP generation, whereas steroid-secreting cells
typically have mitochondria with tubular cristae3. Functionally, mitochondria are highly
specialized as well. For example, thermogenesis occurs mainly in brown adipose
mitochondria, heme is synthesized in bone marrow mitochondria, and gluconeogenesis
occurs mainly in liver and kidney mitochondria 7.

Mitochondrial disease

Since mitochondria are essential for so many cellular functions, it is not surprising that
their defects lead to a variety of human diseases. Mitochondrial dysfunction causes well
over 50 diseases ranging from neonatal fatalities to adult onset neurodegeneration
(Table 1), and is a likely contributor to cancer and type II diabetes 8 10. Additionally,



acquired mitochondrial defects have been associated with aging3,11. Primary

mitochondrial disease has an estimated prevalence of 1 in 5000 live births and is one of
the most common inborn errors of metabolism4 .

Mitochondrial dysfunction causes a wide range of clinical presentations, usually involving
highly metabolic tissues. Clinical features may include myopathy, encephalopathy, lactic
acidosis, neurodegeneration, deafness, blindness, GI dysmotility, diabetes, and liver
disease4 . These disorders exhibit incredible heterogeneity and tissue-specificity4. For
example, different mutations in gene tRNAle can cause cardiomyopathy or progressive
external ophthalmoplegia4 . In some cases family members with the same molecular
mutation have different affected organ systems4 . For some maternally inherited
disorders, disease tissue-specificity is caused by the percent of mtDNA genomes
carrying the mutation in a particular tissue (skewed heteroplasmy). For other cases, the
molecular basis of tissue-specificity is not understood.

Hereditary mitochondrial diseases can show maternal, autosomal recessive, autosomal
dominant, or X-linked inheritance. Maternal inheritance occurs for mutations in mtDNA,
since almost all zygote mtDNA are derived from the egg cell, and paternal mtDNA is
specifically degraded4 . The one known case of paternal mtDNA inheritance12 is likely the
exception that proves the rule1 3,14. Mendelian recessive, dominant, and X-linked patterns
of inheritance occur from single nDNA gene mutations. The complex patterns of
expressivity and tissue-specificity of mitochondrial diseases may well result from the
presence of multiple interacting genetic variants.

For patients with mitochondrial disease, diagnosis is extremely difficult and few effective
therapies exist. Currently diagnosis of a "definite mitochondrial disease" requires
complex clinical algorithms that utilize clinical, biochemical, imaging, and molecular
features. Clinical criteria include the number of affected organ systems and specific
forms of muscle and CNS abnormalities 15 '1 6. Biochemical indicators include abnormal
lactate, pyruvate and alanine levels (measured from serum or cerebrospinal fluid) and
enzymatic activity of respiratory chain complexes measured from invasive muscle biopsy
samples 5'1 6. Imaging includes MRI analysis of brain abnormalities '1 6. Molecular
features include identification of known pathogenic mutations in mtDNA or in several
nDNA genes 15 1 6. With the possible exception of molecular mutation, none of the
features is specific enough for accurate diagnosis. Thus for clinical use, several
complicated scoring algorithms have been developed to combine the diverse indicators,
including the Walkerl7, Bernier 15, and Morava criteria 16. The diagnosis process is long,
expensive, and often inconclusive. Additionally, few treatments are available apart from
simply managing symptoms. Patients are often provided a nutritional supplement
therapy including mixtures of coenzyme Qlo, L-carnitine, folic acid, creatine, lipoic acid,
B1, B2 , and/or B12, although none of these supplements have shown sustained efficacy4.



Over the past twenty years, research has elucidated the molecular basis of over fifty
mitochondrial diseases18 . Approximately 15% of patients have mutations in their mtDNA,
which either arise spontaneously or are inherited maternally 4 ,19 . Over 300 different
disease-causing mutations have been identified within human mtDNA 20 . The remaining
85% of patients likely have mutations in nDNA. To date, disease-causing mutations in 86
nDNA genes have been discovered (Table 1). Most of these encode proteins targeted to
the mitochondrion, while a handful encode cytoplasmic or nuclear proteins regulating
mitochondrial function (e.g. TAZ, PUS1, RRM2B).

Most known nDNA disease genes have been discovered by genetic analysis of large
consanguineous families. Approaches such as linkage analysis, homozygosity mapping,
or chromosomal transfer can narrow the search to a small chromosomal region21 -23,
typically containing over 100 genes. Next, candidate genes are sequenced to find
mutations that segregate with the disease. Pathogenic mutations can be experimentally
validated by rescue of phenotype in patient cells or cellular models. These approaches
are limited by the availability of large consanguineous families, and cannot be used to
investigate sporadic cases.

Discovering additional disease-related nDNA genes will aid in diagnosis and treatment of
mitochondrial disease. Identifying a causal gene defect can facilitate understanding of
the pathogenesis of the disease, and can be used to create a cost effective diagnostic
test. In addition, discovery of disease-related genes enables a molecular classification of
mitochondrial disorders. A more fine-grained disease classification enables the better
prediction of the disease progression, which is of substantial benefit to families, and the
ability to assess treatment of specific disease forms. Thus identifying the gene defects
underlying mitochondrial diseases enables development of patient diagnostics and
possibly even therapies.

In this work, we implement a systematic approach to discovering nDNA genes
underlying mitochondrial dysfunction. We first compile a catalog of mitochondrial protein
parts, then infer the pathway function and regulation of a subset of genes, and finally
apply the catalog to pinpoint candidate genes for mitochondrial disease based on
inferred function or location within linkage regions. In the next section, I review recent
approaches to define the mitochondrial proteome.

Defining the mitochondrial proteome

A comprehensive parts list of the human mitochondrion is an important resource for
understanding the function of its essential pathways and for systematically elucidating
disease processes.



Before cataloging the mitochondrial proteome, we first must specify the definition of a
mitochondrial protein. This is complicated by several factors:
(i) proteins may localize to multiple subcellular compartments
(ii) proteins may localize to the mitochondrion only under certain conditions (e.g.

apoptosis factors)
(iii) genes may have only a subset of splice forms that code for mitochondrial proteins

(iv) proteins may localize transiently to the outer mitochondrial membrane (e.g.
transport, fusion and fission proteins)

In this thesis, I define the term mitochondrial proteome as the set of all proteins that

reside within the mitochondria (or outer membrane) in at least one tissue or condition.
Mitochondrial genes refer to those that encode at least one mitochondrial protein.

It is not known how many different proteins comprise the mammalian mitochondrion,
although there are several methods that provide estimates. The most quoted figure of

1500 proteins was estimated in rat liver by Lopez et al. who isolated mitochondria by
centrifugation and sucrose gradients, separated proteins by size and acidity on a 2-D
gel, silver-stained for protein content, and counted the number of distinct silver spots24.

However, that estimate mistakenly includes contaminant proteins and misses low-
abundance proteins or those having similar isoelectric point and molecular weight.

Another method uses homology to the genes determined to be mitochondrial in model
organisms such as yeast. As yeast has over 800 mitochondrial proteins25, it is assumed

that the more complex mammalian organisms will have at least this many proteins.

For any given protein, there are several "gold-standard" methods to determine whether it

resides in the mitochondrion. One method is to create a genetically tagged construct
with an epitope or green fluorescent protein (GFP) tag, and to use microscopy to confirm
that the reporter construct co-localizes with mitochondria. This method was used to
identify 332 mitochondrial-localized proteins in yeast26 . While this method is highly
specific, its sensitivity is limited by interference of the tag in protein import, over-

expression artifacts, and presence of necessary chaperones, modifiers and/or conditions
in the tested cell type. A second method is to show that the protein is protected from
proteinase K degradation in intact mitochondria, but not in mitochondria lacking a
membrane potential27'28. While both of these labor-intensive methods can provide gold-
standard proof of mitochondrial localization, not all proteins are amenable to these
techniques. At the start of this project, only about 600 mammalian proteins had solid
evidence of mitochondrial location29

In addition to focused methods, several groups have pioneered high-throughput
methods to define the mitochondrial proteome, including mass spectrometry based



proteomics, genetics, computational targeting sequence prediction, and gene
expression. These methods are described in more detail below.

Proteomics
Mass spectrometry-based proteomics allows the identification of hundreds of proteins
within a complex mixture. This method has been used to identify protein components of
mitochondria purified from cells using centrifugation and density gradients. Over the past
six years, studies of enriched mitochondria have identified over 800 proteins in yeast 30 ' 31;

615 from human heart32; 591 from mouse brain, heart, kidney, and liver33 ; 689 from rat
muscle, heart and liver34; 297 from mouse liver35; 2533 from mouse brain, heart, kidney,
liver, lung, and placenta36 ; 1130 from adipocyte 3T3-L1 cells 37; and 1,162 from rat brain,
liver, heart, and kidney 38. While these studies represent substantial progress in defining
the mitochondrial proteome across tissues, the mass spectrometry approach suffers
from two major flaws. First, it has limited sensitivity for low abundance proteins. Second,
it is extremely limited by the purity of the mitochondrial enrichment process, as the
approach will identify co-purifying contaminants. As mitochondria are physically tethered
to the endoplasmic reticulum and other organelles it is not possible to completely isolate
these organelles and thus all proteomic data must be interpreted cautiously and
analyzed by additional means to exclude contaminants.

Genetics
Mitochondrial components can be identified by impaired mitochondrial phenotypes in
organisms with defective or missing proteins. In yeast, existing deletion strains for over
5000 genes enable a screen for mutants showing decreased growth on non-fermentable
substrates compared to fermentable sugars. Steinmetz and colleagues used this
approach to identify 466 putative mitochondrial genes whose deletion impaired
respiration39. Dimmer and colleagues similarly identified 341 yeast proteins with
respiration defects and an additional 15 with mitochondrial morphology abnormalities 40.
While this approach works well in yeast, it is less amenable to high throughput
implementation in mammalian systems. Additionally, the genetics approach will miss
proteins that are either redundant or essential41.

Targeting sequence prediction
Experiments have shown that a short N-terminal protein sequence is sufficient to direct
protein import into the mitochondria 42. The identified signal contains an alpha-helix with
positively charged residues on one side, and uncharged and hydrophobic residues on
the other42. A plethora of computational algorithms to identify this three dimensional
targeting signal have been developed, including TargetP43, pTARGET 44, PSORT45,
iPSORT 46, Predotar 47, ngLoc 48, MitPred49, MitoPred50 , and MitoProtS1 . However, this
three-dimensional signal is not present in many bona fide mitochondrial proteins, and



thus these methods are not sensitive. Additionally, these tools generate a high percent
of false positives.

Gene expression
Identifying genes that are coordinately expressed during mitochondrial biogenesis is
another high-throughput method to discover mitochondrial components. This method
was pioneered in 1997 by DeRisi, lyer and Brown who created microarrays to assay
yeast mRNA transcripts activated during the metabolic shift from fermentation to
respiration52 . Mootha and colleagues used microarrays to profile mouse transcripts
upregulated during mitochondrial biogenesis induced by overexpression of PGC-
lalpha53 . While these methods, and other coexpression studies across diverse tissues,
can highlight co-regulated mitochondrial genes, they fail to detect mitochondrial
components that are low-abundance, not tightly co-regulated, or activated only in
specific cellular conditions.

While each of these high-throughput techniques provides clues to mitochondrial
localization, none is individually accurate enough to confidently define the mitochondrial
proteome. By integrating complementary data sets, we can hope to better define the
mitochondrial proteome and use this information to aid disease gene discovery.

Integrative approaches to defining protein function and subcellular
location

Several groups have integrated genomic data from multiple sources in order to define
protein function54,55 and subcellular localization41,56-58 . These approaches are largely
successful because the underlying data sources have complementary strengths and
weaknesses. In general, the approaches use supervised learning, based on a training
set of known positive and negative controls, in order to classify unknown data points.
Common classifiers include Bayesian networks, decision trees, support vector machines
and ensemble approaches such as boosting and bagging (see Appendix D).
Classification accuracy is typically assessed by the prediction of known elements
excluded from the training set, termed cross-validation.

Bayesian methods have been particularly successful at combining heterogeneous,
noisy, and incomplete genomic data sets. Briefly, these methods define a prior
probability that a protein has a given subcellular location (or function), and then update
the probability using Bayes rule and available data in order to assign a posterior
probability of subcellular location (or function). In its simplest form, nafve Bayes, the data
sources (features) are assumed to be conditionally independent. Drawid and Gerstein
developed a nalve Bayesian system to predict the subcellular location of -6000 yeast



proteins based on 30 features, such as sequence motifs and mRNA expression 56. They
achieved 75% accuracy, using training sets of -1300 yeast proteins. Jansen, Gerstein
and colleagues used a similar approach to predict yeast protein-protein interactions
using nine genomic datasets including yeast two-hybrid, in vivo pull-down, and mRNA
expression-". Because some of the datasets were highly dependent, Jansen et al. used
both a fully connected Bayes subnetwork and a naTve Bayes sub-network to assign
interaction probabilities. Accuracy in this setting is difficult to assess, since there are few
negative controls for non-interacting proteins, but experimental validation of predicted
interactions showed encouraging results54. Independently, Lee, Marcotte and colleagues
developed a Bayesian-based interaction network in yeast designed to reconstruct
functional, rather than physical, gene interactions55. They integrated mRNA
coexpression, gene fusions, phylogenetic profiles, literature co-citation, and protein
interaction experiments. These network reconstructions in yeast were possible only
because of the high quality genomic datasets available for this model organism.

A variety of groups have used integrative methods specifically to predict the
mitochondrial proteome. For example, Prokisch, Steinmetz and colleagues used an ad
hoc integration of 22 genomic datasets in yeast58. For each gene they computed the
MitoP2 score as the maximum R score (1- false discovery rate) from any individual
feature or any combination of features5 8. Later, Prokisch and colleagues applied other
integrative approaches including a support vector machine5 7, linear classifier41 and
neural network41 to refine the MitoP2 scores and apply these methods to yeast, human,
and other model organisms 57 5 9 60 . While the ad hoc and support vector machine
approaches can produce integrated scores, these scores are not readily interpretable,
unlike the Bayesian approaches.

The above methods all integrate different types of genomic data using machine learning.
A different integrative approach, based solely on sequence data, predicts gene function
based on shared evolutionary history. In an elegant paper, Li and colleagues identified
the molecular components of flagella and basal bodies using comparative genomics 61. In
their simple phylogenetic profiling approach, they identified 688 genes present in ciliated
organisms (human and Chlamydomonas) that had no homologs in an un-ciliated
organism (Arabidopsis) and showed that six of them disrupted flagellar activities when
knocked down by RNAi. They used their collection to identify candidates within a linkage
region for Bardet-Biedl syndrome, which is caused by basal body dysfunction62, and
discovered causal gene mutations 61. Other, more sophisticated, phylogenetic
approaches have also been developed to annotate gene function based on shared
evolutionary history63-71 , but have not been applied toward disease gene discovery.



A comprehensive parts list enables systematic discovery of human
mitochondrial disease genes

Here, we apply Bayesian integration methods, pioneered in model organisms4,56, to

identify the protein composition of human mitochondria (Chapter 2). We combine these
predictions with large-scale mass spectrometry based proteomics and GFP-
tagging/microscopy to define a high-quality "MitoCarta" inventory of 1098 mitochondrial
genes and their protein expression across 14 mammalian tissues (Chapter 3). We
estimate that this inventory contains -100 false positives and misses -100 bona fide
mitochondrial proteins - thus we are approaching our goal of a comprehensive list of
mitochondrial protein parts.

We use this inventory to elucidate the tissue-specificity, pathway function and regulation
of a subset of mitochondrial proteins. First, we compare the differences in protein
composition across mammalian tissues (Chapter 3). Second, we use shared
evolutionary history to identify 19 proteins likely involved in the function of complex I of
the electron transport chain (Chapter 3). Third, we take advantage of our mass
spectrometry measurements to investigate the widespread role of upstream open
reading frames in blunting translation of mitochondrial and other genes (Chapter 4).
These insights illustrate how our mitochondrial protein inventory provides a foundation
for exploring mitochondrial biology.

Finally, our protein inventory enables systematic discovery of molecular defects
underlying human mitochondrial diseases. By intersecting our inventory with linkage
intervals for inherited disorders, we can quickly pinpoint causal gene defects for inherited
diseases - as we have shown for hepatocerebral mtDNA depletion2917 2 and complex I
deficiency28' 73 (Chapters 2 and 3). We are currently tackling sporadic cases of complex I
deficiency using new sequencing technologies (Chapter 5). Next, planned initiatives will
use MitoCarta to identify variants in a broad spectrum of primary mitochondrial diseases.
These discoveries can be immediately applied to improving diagnosis of primary
mitochondrial disorders and to providing candidate genes for complex diseases that
involve mitochondrial dysfunction.

The dissertation work described here was performed in an extremely collaborative
environment. I designed and performed all computational aspects of the research. I
helped to design all experiments in collaboration with colleagues expert in biochemistry,
molecular biology, mass-spectrometry and mitochondrial disease. All experimental and
clinical work was performed solely by my collaborators.



Together, our work toward the identification of mitochondrial parts, pathways and
pathogenesis has helped elucidate the function of this organelle within the cell and
provides a foundation for future systematic investigations of mitochondrial function in
human health and disease.



Mitochondrial Diseases with nDNA Mutations
Alpha methylacetoacetic aciduria
Anemia, sideroblastic, and spinocerebellar ataxia (ASAT)
Barth syndrome (BTHS)
Cardioencephalomyopathy due to COX deficiency
Charcot-Marie-Tooth disease, axonal, type 2A2 (CMT2A2)
Coenzyme Q10 deficiency
Combined oxidative phosphorylation deficiency

Complex 1 deficiency

Complex IV deficiency
Complex V deficiency
Encephalopathy, ethymalonic
Encephalopathy, hepatomegaly
Friedreich ataxia
Glycine encephalopathy
Gracile syndrome
HMG-CoA synthase deficiency
Homozygous 2p16 deletion syndrome

Leigh syndrome (LS)

Leigh syndrome, French-Canadian type (LSFC)
Leiomyoma, hereditary multiple, of skin
Leukoencephalopathy with brainstem and spinal cord
involvement and lactate elevation
Microcephaly, amish type (MCPHA)
Mitochondrial complex III deficiency
Mitochondrial myopathy and sideroblastic anemia (MLASA)
Mitochondrial neugastrointestinal encephalopathy syndrome
Mitochondrial phosphate carrier deficiency
Mitochondrial trifuctional protein deficiency
Mohr-Tranebjaerg sydrome (MTS)
mtDNA depletion syndrome, encephalomyopathic form with
renal tubulopathy
mtDNA depletion syndrome, encephalomyopathic form
mtDNA depletion syndrome, hepatocerebral form
mtDNA depletion syndrome, myopathic form
Myopathy, autosomal dominant
Optic atrophy 1 (OPA1)
Paragangliomas
Parkinson disease 6, autosomal recessive early-onset
Pontocerebellar hypoplasia
Progressive external ophthalmoplegia, mtDNA deletions
Pyruvate carboxylase deficiency
Pyruvate decarboxylase deficiency
Spastic paraplegia
Wilson disease
Wolfram Syndrome, mitochondrial form

nDNA genes
ACAT1
ABCB7
TAZ
SCO2
MFN2
PDSS1, PDSS2, COQ2, APTX, CABC1, ETFDH
EFG1, MRPS16, TSFM, TUFM, MRPS22
NDUFS1, NDUFS2, NDUFS4, NDUFS6, NDUFS7,
NDUFV1, NDUFV2, NDUFA1, NDUFAF1, NDUFAF2,
C6orf66, C20orf7, FOXRED1
COX10, COX6B1, SCO1
ATPAF2, TMEM70
ETHEl
HMGCL
FXN
GLDC, GCST, GCSH
BCS1L
HMGCS2
PPM1B, PREPL, SLC3A1
COX15, DLD, NDUFS3, NDUFS8, SDHA, SURF1,
C8orf38
LRPPRC
FH

DARS2

SLC25A19
UQCRB, UQCRQ
PUS1
ECGF1
SLC25A3
HADHA, HADHB
TIMM8A

RRM2B

SUCLG1
DGUOK, MPV17
TK2, SUCLA2
CHCHD10
OPA1
SDHB, SDHC, SDHD
PINK1
RARS2
POLG, SLC25A4, C10orf2, POLG2
PC
PDHA1
HSPD1, REEP1, SPG7
ATP7B
WFS1

Table 1. Mitochondrial disorders caused by nuclear DNA mutations. Bold indicates
genes discovered with aid of Maestro or MitoCarta. Compiled by Mohit Jain.
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Systematic identification of human
mitochondrial disease genes through
integrative genomics

The majority of inherited mitochondrial disorders are due to mutations not in the
mitochondrial genome (mtDNA), but rather in the nuclear genes encoding proteins
targeted to this organelle. A limitation to elucidating the molecular basis for these
disorders is that we currently know only about halfl' 2 of the estimated 1,500
mitochondrial proteins3. To systematically expand this catalog, we experimentally and
computationally generated eight genome-scale datasets, each designed to provide clues
of mitochondrial localization: targeting sequence prediction, protein domain enrichment,
presence of cis-regulatory motifs, yeast homology, ancestry, tandem-mass
spectrometry, coexpression, and transcriptional induction during mitochondrial
biogenesis. Through an integrated analysis we expand the collection to 1,080 genes,
which includes 368 novel predictions with a 10% estimated false prediction rate. By
combining this expanded inventory with genetic intervals linked to disease, we have
identified candidate genes for eight mitochondrial disorders, leading to the discovery of
mutations in MPV17 that result in hepatic mtDNA depletion syndrome 4. The integrative
approach promises to better define the role of mitochondria in both rare and common
human diseases.

A comprehensive catalog of mitochondrial proteins is essential for a systematic
approach to discovering related disease genes. However, the best experimental and
computational techniques fall far short of accurately identifying the estimated 1,500
human genes encoding mitochondrial proteins, of which only 13 are within the mtDNA.
Computational tools have long been available for detecting amino terminus signal
sequences that direct proteins to this organelle5 . However, not all mitochondrial proteins
are imported via such mechanisms, and moreover, computational detection of these
signals is imprecise. As a consequence, methods such as TargetP5 achieve only 91%
specificity and 60% sensitivity, which gives rise to 69% false positive predictions when



applied genome-wide since the prior probability of a protein localizing to the
mitochondrion is only 7% (see Methods). More recently, experimental approaches using
tandem mass spectrometry (MS/MS) have added to the current inventory of known
mitochondrial proteins, but due to the bias toward abundant proteins, these methods
have identified only an additional -150 mitochondrial proteins6' 7. Hence, when used
alone, existing approaches exhibit limited sensitivity and specificity. Recent studies have
illustrated how these limitations can be overcome by combining different genomic
approaches, but because such methods require high quality genome-scale datasets and
training data, they have been limited so far to studies in model organisms"8'9 .

We sought to construct high quality predictions of human mitochondrial-localized
proteins by generating and integrating datasets that provide complementary clues about
mitochondrial localization. Unlike existing computational methods that rely purely on
sequence features within the protein, we also take advantage of recent insights into the
ancestry and transcriptional regulation of the organelle. Specifically, for each human
gene product, p, we assign a score si(p) using each of the following eight genome-scale
datasets (Fig. la and Methods):

Targeting sequence (sl): presence of an amino-terminus mitochondrial targeting
sequence that directs protein import into the mitochondrion, identified by TargetPs.

Protein domain (s2): presence of domains found exclusively in eukaryotic sequences
with known mitochondrial localization (based on SwissProt annotation).

Cis-motifs (s3): presence of evolutionarily conserved transcriptional regulatory elements
that we previously discovered to be enriched upstream of mitochondrial genes°.

Yeast homology (s4): sequence similarity to S. cerevisiae proteins with experimental
evidence of mitochondrial localization (Saccharomyces Genome Database
annotation).

Ancestry (ss): sequence similarity to proteins from Rickettsia prowazekii, the closest
living bacterial relative of human mitochondria 1 .

Coexpression (s6): transcriptional coexpression with known mitochondrial genes, using
genome-scale atlases of RNA expression across diverse tissuesl2, where
mitochondrial genes exhibit considerable co-variation. We use a neighborhood
metric 6 to score each gene's coexpression with known mitochondrial genes.

MS/MS (s7): peptide support from mitochondria extracted from multiple mouse tissues in

a previous proteomic survey".
Induction (s8): up-regulation of mRNA transcripts in a cellular model of mitochondrial

biogenesis. We induced mitochondrial proliferation in a muscle cell line by
overexpressing the transcriptional co-activator PGC-1 13 and assayed genome-wide
RNA abundance with microarray profiling (see Methods).



Each of the above scores (s1..ss) can be used individually as a weak genome-wide
predictor of mitochondrial localization. We assessed each method's performance using
large gold-standard curated training sets: 654 mitochondrial proteins (Tmito) curated by
the MitoP2 database' and 2,847 non-mitochondrial proteins (T-mito) annotated to localize
to other cellular compartments (see Methods and Supplementary Table 1). As can be
seen in Figure l b, the limited sensitivity and the relatively low specificity of each
individual approach can generate a large proportion of false positives when applied
genome-wide (Fig la).

To improve prediction accuracy, we integrated the eight approaches using a naYve
Bayes classifier8 that we implemented with a computer program called Maestro (see
Methods). We trained Maestro on the gold standard positive and negative datasets and
applied it to the Ensembl set of 33,860 human proteins. For each of the eight features, a
likelihood of mitochondrial localization was calculated by comparing performance on Tmito
to T-mito at a range of scores (Fig. 2a). A composite Maestro score was computed by
summing the log-likelihoods of eight individual features (Fig. 2b) in a naifve Bayes
integration (see Methods). We selected a score threshold, dependent on the application,
and classified as mitochondrial all proteins scoring above the threshold. Using a
conservative threshold corresponding to 10% false discovery rate and 99.4% specificity,
Maestro properly predicted 71% of the known mitochondrial proteins (Fig. 2c), as well as
an additional 797 proteins (encoded by 592 genes) not in the training data. Nearly half of
these proteins or their mammalian orthologs are annotated with gene ontology or
keyword terms associated with mitochondria, while the remaining 490 (encoded by 368
genes) have no apparent link to this organelle and thus are completely novel predictions.
Our novel predictions show considerable overlap with MitoPredl4, the best existing
computational prediction algorithm, but with greater sensitivity and specificity on our
training data (Supplementary Fig. 1). While our method does not appear to be biased
with respect to protein function, molecular weight, charge, or abundance (data not
shown), it appears to have lower sensitivity (14/38) for proteins localizing to the outer
mitochondrial membrane2 , which may represent evolutionarily recent mitochondrial
acquisitions given the fewer homologues in fungi and bacteria (data not shown). The 490
novel predictions include a large number of previously uncharacterized proteins as well
as characterized proteins, such as the Toll signaling pathway protein SITPEC 15 (Fig. 3a),
which we now link to the mitochondrion.

To assess the accuracy of the 490 novel protein predictions, we used a computational
approach as well as two experimental techniques.

First, using 10-fold cross-validation (in rotation, training on 9/10 of the data and
reserving 1/10 for testing), we correctly predicted 70% of Tmito (sensitivity) and 99.5% of
T-mito (specificity) at a genome-wide false discovery rate of 10% (comparable to the 71%
sensitivity, 99.4% specificity achieved without cross-validation).



Second, we used a targeted proteomics approach (using a technique known as
dynamic inclusion) to test 30 selected proteins, to determine if they were detected in
highly purified liver mitochondria. We specifically analyzed MS/MS spectra of peptide
fragments with molecular weights matching an "inclusion list" of target peptides, chosen
to contain 10 novel predictions, 10 negative controls (T~mito proteins) and 10 positive
controls (Tmito proteins not previously identified using MS/MS). The purified mitochondrial
extract from mouse liver contained peptide-spectra matching 100% of novel predictions,
0% of negative controls and 70% of positive controls (see Methods and Supplementary
Table 2).

Third, we used epitope-tagging and fluorescence microscopy to validate selected
candidates spanning a wide range of scores. We chose nine novel predictions at a range
of Maestro scores (6-36), two negative controls (actin and GFP), and one protein
(CORO2B) predicted to be mitochondrial by other computational tools5,'14 but not by
Maestro (score -3). We tested mitochondrial localization of these 12 proteins using a
combination of GFP tagging and fluorescence microscopy (see Methods). When
expressed in Hela cells, Figure 3 shows that neither of the negative controls localized to
the mitochondrion, whereas 8/9 Maestro predictions showed mitochondrial localization
(HIBCH, GTPBP5, LOC91689, MPV17, TMEM70, H17, C60RF210, SITPEC). The
COROB2 protein showed clear non-mitochondrial localization, consistent with its low
Maestro score. Together, these three approaches confirm mitochondrial localization for
18/19 novel predictions and support the robustness of the Maestro predictions.

The expanded collection of 1,451 human mitochondrial proteins (1,080 genes)
represents the most complete set to date and is useful for identifying genes underlying
human diseases characterized by mitochondrial pathology. These disorders are clinically
characterized by neurological disease (seizures, strokes, ataxia), skeletal and cardiac
muscle myopathy, blindness, deafness, diabetes, or lactic acidosis 6 ,17' . The molecular
basis for the majority of cases presenting with these symptoms remains unknown and
while several hundred genes may be involved, only a few dozen have been successfully
identified using strategies such as linkage analysis, homozygosity mapping, candidate
gene sequencing, or chromosomal transfer 8 -20. These methods typically implicate large
chromosomal intervals containing many genes that, in principle, can be prioritized by our
list of mitochondrial predictions.

In order to assess whether this approach can be effective, it was applied to all
mitochondrial disorders with previously identified underlying nuclear genes. We compiled
a list of 56 nuclear genes underlying clinical mitochondrial disorders by carefully
reviewing literature" 6,17' 21 (Supplementary Table 3). We then re-trained Maestro by
conservatively removing all 2,004 genes related to any disease phenotype according to
the Online Mendelian Inheritance in Man (OMIM) database. Of the 56 known
mitochondrial disease genes, Maestro correctly identified 86% as mitochondrial-
localized. For the subset of the 29 human disease genes identified through linkage



analysis, Maestro typically reduced the number of candidates from -100 genes in the
linkage interval to -3 mitochondrial candidates, and in 86% of the cases correctly
predicted the causal gene as encoding a mitochondrial protein.

We next applied our predictions to eight human mitochondrial disorders that have been
mapped to genomic intervals, but for which no causal gene has yet been identified
(Table 1). For each disease, we reduced the large number of linked genes to a
manageable number of candidates, relying on a threshold corresponding to 15% false
discovery rate. We identified mitochondrial candidates for all eight disorders and
provided novel candidates for five of them. Many of the novel candidates represent
genes of unknown function which otherwise would not have warranted further
investigation. The eight diseases include a novel form of hepatic mtDNA depletion, an X-
linked lethal pediatric syndrome termed MEHMO, and multiple mitochondrial dysfunction
syndrome (Table 1).

For one of the eight diseases, hepatic mtDNA depletion syndrome, we went one step
further to re-sequence candidate genes in patients and controls. In a companion paper4,
we report the sequencing of these predictions in three unrelated families that has led to
the discovery of segregating mutations in the prioritized candidate gene MPV17. Despite
prior literature suggesting peroxisomal localization of MPV1722, our analysis indicated a
high Maestro score for mitochondrial localization, as confirmed through fluorescence
microscopy (Fig. 3) and detailed subcellular localization studies4 .

In summary, we have integrated eight complementary genomic approaches to expand
the catalog of human mitochondrial proteins. Whereas previous methods to compile this
catalog have relied on sequence properties of the proteins 5,14, we have additionally used
clues about their ancestry and gene regulation to improve coverage and specificity.
While the augmented catalog represents a significant step forward, we believe there are
still another -500 genes yet to be identified. With advances in high-throughput
experimental methods to detect localization, refined methods to identify targeting
signals, and more extensive training data, the goal of a comprehensive mitochondrial
proteome will become achievable. While the expanded inventory of mitochondrial
proteins has proven valuable in discovering the molecular basis of monogenic diseases,
in the future such a catalog may enable us to chart the role of the mitochondrion in
common human disorders such as type 2 diabetes, cardiomyopathy, and
neurodegenerative diseases. Additionally, with increasing availability of genome-scale
datasets, the integrative approach applied here to the mitochondrion can be readily
extended to other cellular pathways in order to tackle a broader range of human
diseases.

Methods



Human and mouse datasets. All genomic methods were applied to a common set of
33,860 human proteins from the Ensembl database (www.ensembl.org, 1/10/05). For the
experiments performed on mouse models (MS/MS, induction, GNF mouse tissue
coexpression), mouse proteins were mapped to human counterparts based on an
Ensembl orthology mapping that relies on synteny and gene sequence similarity
(EnsMart 2/1/05). Since the Ensembl orthology mapping is performed at the gene level
(using the longest transcript for each gene locus), we computed a protein level orthology
mapping with each protein inheriting all orthologs from its gene locus (Supplementary
Fig. 2). As one human protein can have multiple mouse protein orthologs, a human
protein is assigned the maximum ortholog score (separately for each dataset).

Training sets. Tmito was obtained from MitoP2 (ihg.gsf.de/mitop2, 1/10/05) and mapped
to Ensembl proteins using SwissProt/Trembl identifiers (707 unique SwissProt/Trembl
identifiers mapped to 654 Ensembl proteins). T-mito was created from the set of all
Ensembl human and mouse orthologs with GO annotations to specific compartments
outside of the mitochondrion (Supplementary Table 1).

Targeting sequence (si). A subset of the known nuclear-encoded mitochondrial proteins
contain an N-terminal amphiphilic alpha helix that directs import into the organelle.
TargetP v1.1 predicts the subcellular location (mitochondria, secretory pathway, or
other) based on the N-terminal 130aa protein sequence. Because of the high false
discovery rate, we increased specificity by additionally considering targeting signals in
orthologous mouse proteins. Human proteins were assigned scores 0-2, indicating
mitochondrial targeting signals present within 0, 1, or 2 of the ortholog pairs.

Protein domain (s2). Following MitoPred's methodology 14 for identifying mitochondrial
domains, we utilized the -60,000 SwissProt eukaryotic proteins containing annotations
for 'subcellular location' (release 48.8, 1/23/06). We filtered out low confidence
annotations (excluding 'by similarity', 'potential', 'probable', and 'possible' entries) and
partitioned the rest into two sets: Smito containing 3,459 mitochondrial proteins and S-mito
containing 15,322 proteins localized to other compartments (see Supplementary
Methods). Pfam domains were determined for each protein based on the Sanger
Center's precomputed analysis
(ftp.sanger.ac.uk/pub/databases/Pfam/current_release/swisspfam, 1/23/06). We
assigned each Pfam domain a categorical score (M+,M-,M±, N/A) based on whether the
SwissProt proteins containing the domain were exclusively from Smito, exclusively from
S~mito, found in both Smito and S-mito, or not present in either set. Note that for cross-
validation studies, all human proteins were removed from Smito to avoid overestimating
sensitivity.



Cis-regulatory motifs (s3). Binding sites of three transcription factors have been shown to
lie upstream of mitochondrial genes: Erra (TGACCTTG), Gapba (GGAARY), and NRF1
(GCGCNYGCGC) 10 . For each motif, we identified all genes with a binding site occurring
within the 2kb window surrounding the annotated transcription start site of orthologous
genes in both the human and mouse genomes. Of the three motifs, only Erra was
specific enough to be informative (likelihood L=4) and genes containing this motif were
assigned a categorical score of 1 or 0 depending on the presence of a motif in the
vicinity of the annotated transcription start site in both the human and mouse orthologs.

Yeast homology (s4). The mitochondrial proteome of the yeast Saccharomyces
cerevisiae has been extensively studied by experimental approaches. Using the
Saccharomyces Genome Database, which currently lists 749 mitochondrial yeast genes
(ftp.yeastgenome.org/yeast, 1/18/05), we identify potential mammalian homologs based
on a simple all-vs-all protein comparison between species. A human protein was
assigned a categorical score of 1 if the best yeast homolog (BLASTP expect < le-3,
coverage > 50% of longer gene) was annotated as mitochondrial in yeast, and 0
otherwise.

Ancestry (s5). Since the mitochondrion is theorized to have evolved from a bacterial
endosymbiont, we searched for ancestral bacterial homology by comparing all human
proteins to the closest bacterial progenitor of mitochondria, Rickettsia prowazekii"
(genbank accession AJ235269). Since homology is difficult to determine at this distance,
we assign each human protein a similarity score (BLASTP expect) to the best Rickettsia
homolog.

Gene coexpression (s6). Because functionally related genes tend to share expression
patterns, we score every gene for its expression similarity to the set of known
mitochondrial genes (Tmito). We define a "N50" metric as the number of Tmito genes within
a gene's 50 closest neighbors (Euclidean distance)10. We used two expression studies
that have been shown to be the most informative for coexpression of mitochondrial
genes: the GNF1 survey of gene expression across 61 mouse tissues (GNF1M) 12 and
79 human tissues (Affymetrix HG-U133A and GNF1B) 12 (GEO accession GSE1133).
Since not all human transcripts were represented on the chips for the human GNF
survey, we increased sensitivity by combining data from human and mouse tissues: the
N50 values were averaged for orthologs present in both the human and mouse GNF
sets, otherwise the value from either the human or mouse GNF data was used. Probe
set IDs were mapped to Ensembl protein IDs via data in EnsMart (www.ensembl.org) for
the HG-U133A chip. Probe sets were assigned to all matching Ensembl proteins (e.g.
alternate transcripts), and Ensembl proteins matching more than one probe set were
assigned the highest N50 score. This mapping was not available for the GNF1 chips,



thus the mapping was computed by comparing the individual probe sequences for the
GNF1 chips against the Ensembl cDNA transcript sequences (Megablast -p 100 -W 20 -
q -50 -D 3 -f), and ensuring that at least 7 of the 11 probes per probe set all hit the same
gene. To identify genes with informative expression patterns, microarray rows were
clipped to smooth low intensity values (any expression level < 20 was replaced with 20)
and normalized to mean=0, variance=1. Rows with no post-normalization value > 1.5
were excluded. A total of 29,806 human transcripts had probes meeting the filtering
requirements in either the human or mouse GNF surveys, and were assigned scores (0-
50) based on the N50 metric. Note that for cross-validation studies, the N50 metric was
recalculated for each set of training data.

Mass spectrometry (s7). We re-analyzed the data from a previous survey6 of
mitochondrial proteins from 4 mouse tissues (liver, kidney, heart, brain) by comparing
the original spectra to the current Ensembl protein database, with tryptic constraints and
initial mass tolerances <0.13 Da in the search software Mascot (Matrix Sciences,
London). We then scored each human protein with the total number of tissues (0-4) in
which its mouse ortholog achieved a Mascot score > 20.

Transcriptional activation during mitochondrial proliferation (s8). Cultured mouse
myoblasts (C2C12 cells) were differentiated into myotubes and on day 3 were infected
with an adenovirus expressing either green fluorescent protein (GFP) or PGC-1 13 '23.

Extending previous studies23, gene expression was measured in triplicate at three time
points (days 1,2,3) by hybridizing targets to the Affymetrix MG-U74v2 set (A,B, and C
chips containing 28,381 probe-sets). Results from the 63 samples were deposited in
GEO (accession GSE4330). Data from the three chips were concatenated and then the
microarray intensities were sample normalized via linear fit to the median scan. The
score represents induction measured in fold-change; dividing average intensity in
PGClc treated cells (average of replicates on days 2,3) by average intensity in GFP
control cells. Only those probes showing significant difference between case and control
(p<0.05, measured by 1-tailed heteroscedastic student t-test) were considered (5,927
probe-sets).

Integration of genome-scale datasets. We explored a variety of computational methods
for combining features provided by the eight different genome-scale datasets, including
naYve Bayes, decision trees, and boosting (See Supplementary Methods). Of the
methods we tested, a simple naYve Bayes integration, as outlined by Jansen et a18

yielded the most accurate predictions.
Briefly, we use the training sets Tmito and T-mito to convert each of the eight individual

genome-scale scores (sl...s8) into a likelihood ratio, defined as L(s 1 ... s8) = P(s ... s81



Tmito)/P(sS...s81 T-mito), which is then simplified to L(s..ss)= P( o) assuming that
i= P(silT-mito)

the features are independent. We define the Maestro score for a gene product as log L
(see Fig. 2b), which we assign to every gene product in the human genome. An
underlying assumption of the na've Bayes procedure is that the individual datasets are
independent of each other, though in practice this assumption can rarely be strictly
satisfied, which may lead to overly optimistic estimates of the likelihood for some genes.
We tried to minimize this effect by using a relatively high threshold to maintain a high
specificity for the prediction. Of note we find that the Maestro score is linear with respect
to the true likelihood over a range of scores, but at high scores it clearly overestimates
the likelihood (Supplementary Fig. 3). Therefore the Maestro score is a proxy for the
likelihood but care should be taken in interpreting high scores.

In order to compare performance of datasets, for Fig. 1 display only, we chose the
following thresholds based on the differential distribution of scores on training data (Fig.
2a): targeting signal: 1; domain: M+; cis-motif: yes; yeast homology: yes; ancestry: le-3;
coexpression: 10; mass spec: 1; induction: 1.5.

False discovery rates. The false discovery rate (fdr) is the proportion of all predictions
that are false: fdr = FP / (FP + TP), where FP and TP represent the false positives and
true postives, respectively, estimated from gold-standard negative and positive training
sets. If the sizes of the training sets do not accurately reflect the prior odds (Oprior) of the
predictions, then the FP and TP must be first scaled to avoid underestimating the fdr.
We scale by the training set sizes by computing the genome-wide false discovery rate
fdr = (1-SP)/(1-SP + SN* Oprior) where specificity SP =TN/(TN+FP), sensitivity
SN=TP/(TP+FN), TN=true negatives, FN=false negatives, and Oprior = 1,500/21,000.

Validation by tandem mass spectrometry. 30 proteins were selected from within the set
of mouse proteins not previously identified in MS/MS studies6 and which showed
intermediate mRNA expression in liver tissue 12 (10th-90th percentile, equivalent to
expression values 80-1300). Within this set, we selected 10 high-scoring novel Maestro
predictions, 10 randomly selected T-mito proteins, and 10 randomly selected Tmito
proteins. The 10 novel predictions selected were: NP_848710, BC051227, Mterfd3,
Lacel, NP_061376, NP_776146, NP_080687, Q9DCB8, D5ertd33e, NP 079619.

Mitochondria were prepared from livers of C57BL/6J mice by a combination of density
centrifugation and Percoll purification, as previously described 6, and tested for purity
using immunoblot analysis. Duplicate lanes of purified mitochondrial proteins were size
separated by a 10-20% gradient SDS-PAGE. 20 slices from each gel lane were excised,
reduced, alkylated, and then subjected to in-gel tryptic digestion. Peptides extracted
from the gel slices were then analyzed by reverse phase liquid chromatography tandem
mass spectrometry using an LTQ-Orbitrap (Thermo, San Jose, CA). Mass spectra were



acquired by targeted acquisition using inclusion lists derived from a set of 30 proteins,
representing between 5 to 12 peptides per protein, with MS/MS fragmentation selection

criteria of masses set within a very narrow mass window. MS/MS spectra were quality

filtered and then searched against the Ensembl mouse protein database (see above)

using the software tool Spectrum Mill MS Proteomics Workbench. See Supplementary
Methods and Supplementary Table 2 for additional details.

Cell culture, transfection, and microscopy. Full length cDNAs (Invitrogen and Origene)

corresponding to 10 selected predictions (HIBCH [TC115062], GTPBP5 [TC100454],

LOC91689 [BC024237], MPV17 [TC118652], TMEM70 [BC002748], H17 [BC013902],
C60RF210 [BC039906], SLC35C1 [BC001427], SITPEC [BC008279], CORO2B

[BC026335]) and two negative controls were amplified by PCR (TAQ polymerase from

Qiagen) with sequence-specific primers that contained restriction enzymes sites. In
addition, forward primers included a Kozak sequence (CCACC), while reverse primers
were designed to eliminate stop codons and designed to be in-frame with the C-terminal
GFP. The PCR products were cloned into the pacGFP1-N2 vector (Clontech) and then
sequence verified on the 5' ends.

Approximately 1 x 105 HeLa cells were seeded in 24-well plates and incubated

overnight in DMEM supplemented with 10% FBS at 37'C in a humidified 5% carbon

dioxide atmosphere. 2 I of Lipofectamine 2000 (Invitrogen) was added to 48 I of Opti-

MEM I Reduced Serum Media (Invitrogen) and incubated at room temperature for 5
minutes. 2.5 g of DNA was added to a final volume of 50 I Opti-MEM I media and was

combined with the transfection mixture and added to the cells. These transfected cells

were incubated for 24 hours and then transferred to 8-well coverglass plates. Cells were

stained with 50 nM MitoTracker Red CMXRos and 1:10000 diluted Hoechst 33258

(Molecular Probes) for 30 minutes at 37C and washed twice with PBS. Cells were

subsequently fixed with 3.7% formaldehyde in PBS for 15 minutes at room temperature.

Cells were washed twice with PBS and mounted in SlowFade Gold anti-fade media.

Fluorescence microscopy was performed at 63x oil objective using a Zeiss widefield

microscope. Multiple images were captured for the constructs and reviewed for co-

localization of GFP and MitoTracker red signals.

Data access. In addition to predicting the human mitochondrial proteome, we performed

the analogous Bayes integration on all mouse proteins. Data for the eight datasets and

Maestro predictions are provided for the 33,860 human proteins (Supplementary Table
4) and 31,037 mouse proteins (Supplementary Table 5). Microarray induction data is

available from GEO (accession GSE4330).
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Figure 1: Accuracy of genome-wide mitochondrial prediction methods.
Performance of eight individual predictors of mitochondrial localization. The rate of
genome-wide false discovery (column 4) was estimated based on "gold standard"
training data of 654 known mitochondrial proteins (Tmito) and 2,847 non-mitochondrial
proteins (T-mito) at specific thresholds (see Methods). b. Tradeoff in accuracy between a
dataset's sensitivity (%Tmito correctly predicted) and specificity (%T-mito correctly
predicted). The accuracy of the eight individual datasets is shown at specific thresholds
(as in a), whereas the accuracy of Maestro is displayed at a range of thresholds (red
curve), with the chosen threshold marked by an asterisk.
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GFP fusion constructs of selected mitochondrial predictions or controls were expressed

in HeLa cells, stained with a marker for mitochondria (MitoTracker Red) and for nuclei

(Hoechst, blue), and then analyzed by fluorescence microscopy. a. Nine novel Maestro

predictions were analyzed, and based on these and additional images all but SLC35C1

showed clear mitochondrial localization. b. Negative controls actin, GFP, and CORO2B

(predicted to be mitochondrial by MitoPred and TargetP but not by Maestro) were

analyzed and showed clear non-mitochondrial localization.
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2.361 68

1,451 10

Table 1. Eight individual methods and an integrated approach (named Maestro) were
used to predict mitochondrial localization of all 33,860 Ensembl human proteins. The
genome-wide false discovery rate was estimated from large gold standard training data.



Linkage Size Gene Mitochondrial
Disease (OMIM) Clinical symptoms

region Mb loci candidates

HADHB, HADHA,

ASXL2, MRPL33,
Hepatic mtDNA encephalomyopathy, liver failure, D2S2373-

21.9 151 PRO1853, COX7A2L,
depletion hepatocerebral mtDNA depletion D2S2259 4

MPV17, CAD, TP5313,

SLC30A6, EIF2B4, RBJ

mental retardation, epileptic MGC4825,
MEHMO seizures, hypogonadism and CYBB- ENSG00000182432,

18.0 70
(300148) hypogenitalism, microcephaly, and DXS36524  PDK3, GK, ACOT9,

obesity PRDX4

HINT2, STOML2,
Friedreich ataxia 2 D9S285-

autosomal recessive ataxia 21.1 147 NDUFB6, DNAJA1,(601992) D9S187425

ACO1

PRDX5, GLYAT,

Paragangliomas 2 nonchromaffin glomus body tumors Dll11S956- GLYATL2, GLYATL1,
6.1 158 FLJ20487, COX8A,

(601650) of the head and neck PYGM 26

MRPL16, BAD, LRP16,

TRPT1

Multiple feeding difficulty, weakness,
mitochondrial A053XF9- ENSG0000001 19838,

lethargy, decreasing 8.6 44
dysfunctions D2S44127  MDH1, CCT4, RAB1A

syndrome(5711) responsiveness after birthsyndrome (605711)

Striatonigral choreoathetosis, abnormal eye
D19S596-

degeneration, movements, seizures, mental 1.3 65 BCAT2, BAX
D19S867 28

infantile (271930) retardation

Optic atrophy 4 D18S34-
(605293) autosomal dominant optic atrophy D18S479 8.8 39 ATP5A1, ACAA2(605293) D18S479 29

Wolfram Syndrome,
insulin-dependent diabetes mellitus D4S1 591-

mitochondrial form 7.6 35 HADHSC, PPA2and optic atrophy D4S324030

(604928)

Total 93 709 43

Table 2. Novel candidates for mitochondrial diseases.
For each mitochondrial disease (column 1) we narrow the search of gene candidates
within the linkage interval (column 3) from all gene loci (column 5) down to a small
number of mitochondrial candidates (column 6, ordered by decreasing score with novel
predictions underlined).
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A mitochondrial protein compendium
elucidates complex I disease biology
Mitochondria are complex organelles whose dysfunction underlies a broad spectrum of
human diseases. Identifying all the proteins resident in this organelle and understanding
how they integrate into pathways represent major challenges in cell biology. Toward this
goal, we performed mass spectrometry, GFP tagging, and machine learning to create a
mitochondrial compendium of 1098 genes and their protein expression across 14 mouse
tissues. We link poorly characterized proteins in this inventory to known mitochondrial
pathways by virtue of shared evolutionary history. Using this approach we predict 19
proteins to be important for the function of complex I (CI) of the electron transport chain.
We validate a subset of these predictions using RNAi, including C8orf38, which we
further show harbors an inherited mutation in a lethal, infantile Cl deficiency. Our results
have important implications for understanding Cl function and pathogenesis, and more
generally, illustrate how our compendium can serve as a foundation for systematic
investigations of mitochondria.

Introduction

Mitochondria are dynamic organelles essential for cellular life, death, and differentiation.
Although they are best known for ATP production via oxidative phosphorylation
(OXPHOS), they house myriad other biochemical pathways and are centers for
apoptosis and ion homeostasis. Mitochondrial dysfunction causes over 50 diseases
ranging from neonatal fatalities to adult onset neurodegeneration, and is a likely
contributor to cancer and type II diabetes1-3 . The 13 proteins encoded by the
mitochondrial genome have been known since its sequencing4 and have been linked to
a variety of maternally inherited disorders. However, there may be as many as 1500
nuclear-encoded mitochondrial proteins5 , though less than half have been identified with
experimental support. A complete protein inventory for this organelle across tissues



would provide a molecular framework for investigating mitochondrial biology and
pathogenesis.

Recent progress in defining the mitochondrial proteome has been driven by large-
scale approaches, including mass spectrometry (MS) based proteomics in mammals 6-11

and yeast 12' 13, epitope tagging combined with microscopy in yeast1 4,15 , and

computation6-18 . However each of these methods suffers from intrinsic technical
limitations. MS-based approaches struggle with distinguishing genuine mitochondrial
proteins from co-purifying contaminants, and published reports exhibit up to 41% false
positive rates (Table Sl). Additionally, these approaches tend to miss low abundance
proteins or those expressed only in specific tissues or developmental states, and thus
capture only 23-40% of known mitochondrial components (Table Sl). Other
experimental approaches such as epitope tagging are limited by the availability of cDNA
clones, tag interference, and over-expression artifacts. While integrative machine-
learning methods can be more comprehensive '" , they require subsequent
experimental validation.

Here, we perform in-depth protein mass spectrometry, microscopy, and machine
learning to construct a protein compendium of the mitochondrion. We perform MS-based
proteomics on both highly purified and crude mitochondrial preparations to discover
genuine mitochondrial proteins and distinguish them from contaminants based on
enrichment. We integrate these MS data with six other genome-scale datasets of
mitochondrial localization using a Bayesian framework and additionally perform the most
extensive GFP tagging study focused on mammalian mitochondria. The resulting
compendium consists of 1098 genes (Figure 1) and their protein expression across 14
mouse tissues. Although not complete, this represents the most comprehensive and
accurate molecular characterization of the organelle to date.

Our compendium provides a framework for identifying novel proteins within pathways
resident in the mitochondrion. Here, we focus on complex I (CI) of the electron transport
chain, a macromolecular structure composed of -45 subunits in mammals 20. CI

deficiency is the most common cause of rare, respiratory chain diseases' and has been
implicated in Parkinson's disease21 . Half of the patients with Cl deficiency lack mutations
in any known Cl subunit, suggesting that yet unidentified genes crucial for maturation,
assembly, or stability of CI are mutated in the remaining cases22. Multiple assembly

factors for much smaller complexes IV and V have been identified in S. cerevisiae, and it
is estimated that complex IV alone requires over 20 factors23' 24. However, the absence of
CI in S. cerevisiae has impeded similar studies and, to date, only three CI assembly and
maturation factors have been identified25 -27

To systematically discover proteins essential for CI function, we apply the technique
of phylogenetic profiling which uses shared evolutionary history to highlight functionally
related proteins28. This approach was recently used to identify the CI assembly factor
NDUFA12L using five yeast species25. We apply this approach more broadly to our



mitochondrial protein inventory and report that 19 of these proteins share ancestry with a
large subset of Cl proteins. We validate several of these predictions in cellular models
and additionally report that one of these genes, C8orf38, harbors a causative mutation in
an inherited Cl deficiency.

Together, these studies illustrate the utility of an expanded mitochondrial inventory in
advancing basic and disease biology of the organelle. Our compendium, called
MitoCarta, is freely available at www.broad.mit.edu/publications/MitoCarta.

Results and Discussion

Discovery and Subtractive Proteomics of Mouse Mitochondria
As a first step toward establishing an experimentally supported inventory of mammalian
mitochondrial proteins, we performed protein mass spectrometry on mitochondria from
14 diverse mouse organs (Figure 1). We designed our proteomic experiments in two
phases in order to identify as many mitochondrial proteins as possible while
systematically flagging co-purifying contaminants. In the discovery phase, we isolated
highly purified mitochondria from cerebrum, cerebellum, brainstem, spinal cord, kidney,
liver, heart, skeletal muscle, white adipose tissue, stomach, small intestine, large
intestine, testis and placenta obtained from healthy C57BL/6 mice. Mitochondrial purity
was assessed by western blots against selected mitochondrial and non-mitochondrial
proteins, and intactness was verified by polarographic studies (data not shown) and
electron microscopy (Figure 2A, S2). Each sample was separated by SDS-PAGE and
then sectioned into 20 bands that were each analyzed by high performance, liquid
chromatography tandem mass spectrometry (LC-MS/MS) using an LTQ Orbitrap Hybrid
MS system. We captured 4.7 million tandem mass spectra and searched them against
the mouse RefSeq protein database using stringent matching criteria, resulting in the
confident identification of products from 3,881 genes (Table S3). The detected proteins
are not biased by molecular weight, isoelectric point, or presence of transmembrane
helices, but do show a slight bias against proteins whose transcripts exhibit low
abundance (Figure S4). We estimate that we identify 85% of proteins within each
sample (based on technical liver replicates), but we saturate detection of distinct proteins
by sampling many tissues (Figure 2B). In total, we identify 88% of previously known
mitochondrial proteins, including 93% of OXPHOS proteins.

In the subtractive proteomics phase, we applied in-solution LC-MS/MS on both crude
and purified mitochondria from 10 of the above tissues. This approach is based on the
observation that bona fide mitochondrial proteins should become enriched during the
purification process, and likewise contaminants should become depleted (e.g., the loss
of ER protein calreticulin in Figure 2A). This subtractive method is similar in concept to
protein correlation profilinglo. Of the 2,565 gene products detected in either crude or
pure samples, 1,022 were more abundant in crude samples (crude-enriched), 709 more



abundant in purified samples (pure-enriched), and the remainder inconclusive (see
Experimental Procedures). The crude-enriched set contained many plasma membrane
and extracellular proteins (likely as precursors in the ER) whereas the pure-enriched set
was almost exclusively mitochondrial, validating that the subtractive proteomics
approach can aid in distinguishing genuine mitochondrial proteins from contaminants
(Figure 2C).

We next combined the data from the discovery and subtractive phases in order to
assign a probability that each protein detected by discovery MS/MS was truly
mitochondrial. To do so, we compiled training sets comprised of 591 known
mitochondria genes (Tmito) and 2519 non-mitochondrial genes (T~mito), listed in Table S5.
To avoid circularity, our curated Tmito list excludes mitochondrial proteins characterized
solely by prior proteomic studies. Using our training data, we calculated the likelihood
ratio that each protein is genuinely mitochondrial based on its discovery MS/MS protein
abundance and its subtractive MS/MS enrichment (see Experimental Procedures and
Figure S6). As shown in Figure 2D, the likelihood ratio quantifies the confidence that a
protein detected by MS/MS is truly mitochondrial.

Integration of Mass Spectrometry Analysis with Genome-Scale Datasets
Our combination of discovery and subtractive proteomics is extremely powerful for
discovering bona fide mitochondrial proteins, though this approach alone is not
sufficiently sensitive or specific (Figure 3A). For example, these experiments miss
proteins that are extremely low in abundance, lack tryptic peptides amenable to MS, or
localize to mitochondria only under specific conditions. In order to approach a
comprehensive mitochondrial inventory we need to integrate these data with other
available information.

We therefore combined our MS/MS results with six complementary computational,
homology-based, and experimental techniques to determine likelihood of mitochondrial
localization (Figure 3A and Experimental Procedures). Using the Maestro naYve Bayes
framework we developed previously 8 , we used training data to convert each method's
data values into log-likelihood scores of mitochondrial localization (Table S7). Since the
seven methods are largely conditionally independent (Figure S8), we sum these
individual log-likelihood scores into the combined Maestro score based on an
independent probability model. Using Maestro, we systematically rank all mouse genes
by their likelihood of mitochondrial localization (Table S5). We can assess accuracy at
each score using a corrected false discovery rate statistic (cFDR), which accounts for
the sizes of our training sets (see Experimental Procedures). At a Maestro score
threshold of 4.56, corresponding to 10% cFDR, there are 951 mitochondrial gene
predictions including 498/591 known mitochondrial genes (84% sensitivity). This
Bayesian integration avoids overfitting the training data, as shown through 10-fold cross-
validation (in rotation, training on 90% of the data and reserving 10% for testing) that



achieves comparable 82% sensitivity at the same cFDR. As seen in Figure 3A,
integration greatly increases prediction accuracy.

Large-Scale GFP-Microscopy of Mitochondrial Localization
We additionally undertook a large-scale microscopy study as a complementary
experimental approach to confirm mitochondrial localization (Figure 1). We tested the
human orthologs of our mouse predictions due to the availability of high quality clones
from the human hORFeome v3.1 collection29. We created C-terminus GFP-fusion
constructs and visualized subcellular localization in HeLa cells by fluorescence
microscopy. This method showed clear mitochondrial localization of 12/21 positive
controls and none of 18 negative controls, indicating that this technique is specific but
has limited sensitivity. We then tested 470 genes that lacked prior experimental support
of mitochondrial localization. These candidates were selected from an interim Maestro
analysis and have an estimated 59% cFDR based on our final Bayesian analysis. Of the
404 candidates successfully transfected, we identified 131 genes with clear
mitochondrial localization (representatives shown in Figure 3B and the complete set
available at www.broad.mit.edu/publications/MitoCarta). The success rate of this
approach matches our estimated cFDR and sensitivity rates - thus validating our
Bayesian integration. The 273 constructs without clear mitochondrial localization were
less informative since it is possible that the GFP tag interfered with mitochondrial import,
the wrong splice form was tested, or HeLa cells lacked necessary chaperones/modifiers.

MitoCarta: an Inventory of 1098 Genes Encoding the Mitochondrial Proteome and
their Protein Expression across 14 Tissues
Combining our discovery and subtractive proteomics with computation, microscopy and
previous literature, we defined a high-confidence mitochondrial compendium of 1098
genes, termed MitoCarta (Figure 1). This inventory is estimated to be over 85%
complete and contain -10% false positives (see Supplemental Data). It contains 356
genes without previous mitochondrial annotation in Gene Ontology (GO) or MitoP230

databases, and distinguishes itself from other catalogs by providing strong experimental
support for 87% of genes based on: mass spectrometry (70%), GFP studies (12%),
and/or literature curation (54%). We conservatively estimate that at least 85 of the
MitoCarta proteins are also resident in other cellular locations, based on crossing
MitoCarta with two organelle-based proteomic surveys shown in Table S97 ,10

The MitoCarta collection includes some notable components and highlights important
regulatory features for the organelle. For example, the inventory includes several
kinases, phosphatases, RNA-binding proteins and disease-related proteins (MMACHC,
ATIC) not previously associated with the mitochondrion (Table S5B). Interestingly, as a
collection the MitoCarta genes have significantly shorter UTRs and coding regions, and
are more highly expressed, compared to all mouse genes (Figure S10). Their promoters



tend to have CpG islands and lack TATA boxes, a feature shared with other
"housekeeping" genes that may account for their higher expression31. Additionally
MitoCarta promoters are enriched for the presence of eight conserved sequence motifs,
including five known mitochondrial transcription factor binding sites and three novel
elements (Figure S10).

In addition to expanding the number of known mitochondrial proteins, our inventory
provides the opportunity to assess differences in mitochondrial protein expression
across tissues (Figure 4A). We assessed the relative abundance of each MitoCarta
protein across our 14 tissues using MS total peak intensity (see Experimental
Procedures). This metric is highly reproducible across technical replicates (Figure S11)
and correlates quite well with mRNA expression (see Supplemental Data). However, as
our atlas contains only a single replicate per tissue, we note two caveats: first, it cannot
be used to assess statistically significant differences in abundance across tissues; and
second, due to stochastic sampling we estimate that we detect approximately 90% of
proteins present in each tissue.

We utilize this protein atlas to investigate the differences in mitochondrial pathways
between tissues. We find that approximately 1/3 of MitoCarta genes are core
mitochondrial components present across all sampled tissues, including most OXPHOS
subunits and the TCA cycle (Figure 4B). However, most MitoCarta genes show some
degree of tissue specificity (Figure 4A). Interestingly, these include much of the
mitochondrial ribosome and half the subunits of complex IV, several of which have
previous verification of tissue-specific expression32. Additionally, the enzymes of the
ketogenesis and urea cycle pathways are expressed in a broader set of tissues than
expected, including brain and placenta (Figure S12). Typically, we find that mitochondria
express an average of -760 unique gene products per tissue (range 554-797, Figure
4C), with pairs of tissues typically sharing -75% of proteins (range 63-88%). Moreover,
using a cytochrome c ELISA, we estimate that mitochondrial quantity varies by a
remarkable 30-fold amongst a panel of 19 tissues (Figure 4D). Together these analyses
reveal the tissue diversity of mitochondrial quantity and composition, and demonstrate
how our compendium can serve as a resource for future investigations into tissue-
specific mitochondrial biology.

Identifying Complex I Associated Proteins Through Phylogenetic Profiling
The expanded mitochondrial compendium also provides an opportunity to discover novel
components for pathways resident in the organelle. Nearly 300 genes-26% of our
inventory-have no association with a GO biological process. To associate a subset of
these with known pathways, we perform phylogenetic profiling, which uses shared
evolutionary history to identify functionally related proteins28. This approach is likely to be
particularly applicable to the mitochondrion, given its unique evolutionary history of
descending from a Rickettsia-like endosymbiont early in eukaryotic evolution33 .



To explore the utility of phylogenetic profiling for mitochondria, we first identified
homologs of mouse MitoCarta proteins in 500 fully sequenced species (Figure 5A, Table
S13). We find that 75% of present-day mitochondrial components have clear bacterial
ancestry (BlastP expect < le-3) and that 57% have bacterial best-bidirectional orthologs,
which is more than three-fold higher than that of all mouse proteins (Figure 5C). The
phylogenetic profiles confirm that functionally-related mitochondrial proteins tend to have
similar evolutionary histories. For example, most proteins involved in fatty acid
metabolism, the citric acid cycle, and folate metabolism have ancient origins (Figure 5B).
Conversely, the mitochondrial protein import machinery and mitochondrial carriers are
more recent innovations (Figure 5B). Thus, it may be possible to use shared
evolutionary history to associate unannotated MitoCarta proteins with known pathways.

We focused this strategy on identifying factors essential to respiratory chain complex
I (CI) because of its prominent role in energy metabolism and disease. Currently, there
are only three known assembly factors for this large, macromolecular complex, though
clinical data suggest that there are many unidentified factors needed for its assembly
and activity22. These factors likely reside in the mitochondrion, and thus our MitoCarta
compendium aids in prioritizing candidates. Additionally, the evolutionary history of Cl
across 5 yeast species has recently been proven useful in identifying the assembly
factor NDUFA12L, supporting this phylogenetic approach 25' 34

In order to establish a broader phylogenetic profile for CI, we first built a rooted
phylogenetic tree of 42 eukaryotes (Figure 6C, Experimental Procedures). This tree is
robust to different phylogenetic reconstruction methods, except for some positioning
uncertainty of three deep branching protist species (see Supplemental Data). We
observed that a set of 15 Cl proteins are not only absent from several yeast species, but
are ancestral bacterial subunits that have been independently lost at least four times in
eukaryotic evolution (Figure 6A, Table S14). It is probable that the species that lost Cl
also lost the proteins required for its assembly and function. Only 19 other MitoCarta
proteins share this profile and now represent strong candidates for functional association
with CI (Figure 6B). These 19 MitoCarta proteins, termed COPP (Complex One
Phylogenetic Profile), as well as an expanded set with weaker phylogenetic signatures,
are listed in Table S14. The COPP set includes two well-studied proteins involved in
branched chain amino acid degradation (Ivd, Mccc2), and four proteins involved in lipid
breakdown (Dci, Phyh, Amacr, AF397014), which raises the intriguing hypothesis of an
association between these pathways and complex I activity.

We tested four of our COPP genes for an involvement in CI activity by creating
stable knockdowns in human fibroblasts using lentiviral-mediated RNAi35. Given that we
are interested in the clinical relevance of these predictions, we chose to test the human
orthologs of our mouse candidates. We achieved > 80% knockdown of 3 COPP genes
and 50% knockdown of the fourth, as measured by quantitative real-time PCR (Figure
6E). We next assessed both CI abundance, using immunoblots against a Cl subunit, and



Cl activity, using immunocapture-based activity assays (see Experimental Procedures
and Figure S15). Knockdown of C8orf38 showed the strongest reduction of both CI
abundance and activity, comparable to the known CI assembly factor NDUFAF1 (Figure
6D-F). These data strongly suggest that C8orf38, which previously had no prior
association to any biological process or subcellular location, is crucial for activity and/or
assembly of endogenous CI. The other three candidate knockdown lines showed 20-
40% reduction of Cl activity (Figure 6F) with variable effects on CI abundance (Figure
6D). The moderate reduction of CI activity does not offer definitive evidence of
association with CI, however we note that the Cl activity assay measures only the NADH
dehydrogenase activity, which may still be largely intact even if other modules of CI are
improperly assembled. Thus we experimentally validate the importance of a one COPP
gene, show suggestive evidence for three other COPP genes, and prioritize more than
one dozen additional proteins for future studies of complex I.

A Mutation in C8orf38 Causes an Inherited Complex I Deficiency in Humans
The 19 MitoCarta COPP genes identified above represent strong candidates for genes
underlying clinical Cl deficiency. We used these candidates in combination with
homozygosity mapping to search for a causative gene mutation in two siblings (female
and male) with severe isolated CI deficiency, born to first cousin Lebanese parents
(Figure 7A). The siblings presented at 10 and 7 months, respectively, with focal right
hand seizures, decreased movement and strength, ataxia and evolving rigidity. Both had
persistent lactic acidosis and neuroimaging was consistent with Leigh syndrome. The
affected girl had isolated Cl deficiency in muscle, liver and fibroblasts with normal or
elevated activities of other complexes and citrate synthase (Figure 7B). She died at 34
months of age from a cardiorespiratory arrest following admission to hospital with
pneumonia. The affected boy had an isolated CI defect confirmed in fibroblasts and is
currently 22 months of age.

Since the underlying molecular defect is likely a recessive mutation, we performed
homozygosity mapping on DNA isolated from the five family members and identified
eight chromosomal regions of homozygosity shared only by the affected siblings (Figure
7C and Experimental Procedures). Collectively, these regions contain 857 genes,
including 4 Cl structural subunits and one COPP gene: C8orf38 (Figure 7C). Sequencing
of two Cl structural subunit genes showed no mutations, however sequencing of C8orf38
(NM_152416) revealed a c.296A>G mutation in exon 2 that segregated with the disease
in the family (Figure 7D). This mutation causes a predicted Gln99Arg substitution in a
residue fully conserved across vertebrates, and may also cause a splicing defect due to
its position at the 3' end of exon 2 (Figure 7D). This mutation was not present in EST
databases, SNP databases, or in 100 Lebanese chromosomes tested. The localization
of C8orf38 to the mitochondrion, its RNAi phenotype of Cl deficiency (Figure 6F), and



the segregating C8orf38 mutation at a highly conserved residue together strongly
establish that C8orf38 is a human CI disease gene.

Conclusion
We have constructed a high quality compendium of mitochondrial proteins, used
comparative genomics to predict roles for unannotated proteins in Cl biology, and
validated these predictions using cellular models and human genetics. Our inventory of
1098 mitochondrial genes and their protein expression across 14 tissues represents the
most comprehensive characterization of the organelle to date and provides a framework
for addressing major questions in mitochondrial biology.

We leveraged our compendium to discover proteins essential for proper complex I
activity. Despite Cl's critical importance in energy production and broad role in rare and
common human disease, many aspects of its structure, assembly and activity are poorly
understood. Through phylogenetic profiling, we identified 19 additional genes likely to be
associated with CI, most notably C8orf38, which we further show is mutated in an
inherited Cl deficiency. C8orf38 was first shown to be mitochondrial in this study and
was not previously associated with any biological function. The domain structure of
C8orf38 suggests involvement in phytoene metabolism, potentially implicating it in
branched chain lipid metabolism along with other COPP proteins Phyh, Amacr, and
AF397014. The remaining COPP genes are now prime candidates for other Cl
deficiencies, and may help unravel the assembly and maturation program for Cl.

In addition to fueling the discoveries we present here, the MitoCarta inventory can be
used immediately in other disease related projects. As we have demonstrated in the
current report, the mitochondrial compendium can help highlight specific candidates
within linkage regions of any Mendelian mitochondrial disease. MitoCarta can also help
elucidate the pathogenesis of common degenerative diseases, which have recently been
associated with declining mitochondrial gene expression and rising reactive oxygen
species production3 6-38 . Importantly, MitoCarta can also serve as a foundation for basic
mitochondrial biology. The orchestrated transcription, translation, and assembly of the
mitochondrial components, encoded by two genomes, into functioning, tissue-specific
organelles is a remarkable feat about which much remains unknown. Our protein
compendium provides a framework with which these tissue-specific programs can be
deciphered.

Experimental Procedures

Protein mass spectrometry
Discovery phase: Mitochondria were isolated from C57BL/6 mouse tissues by Percoll
density gradient purification (see Supplemental Data for complete details), and assessed
for purity with antibodies against Calreticulin (Calbiochem), VDAC1 (Abcam), and an 8



KDa Cl subunit (Mitosciences). To further demonstrate purity, a more extensive set of
organelle marker antibodies were used for a subset of the mitochondrial preparations
(Figure S2). Each sample was size separated by 4-12% bis-Tris gradient SDS-PAGE,
separated into 20 gel slices and then reduced, alkylated, and subjected to in-gel tryptic
digestion. Extracted peptides from each slice were analyzed by reversed-phase LC-
MS/MS using an LTQ-Orbitrap (Thermo Scientific). Data dependent MS/MS were
collected in the LTQ for the top ten most intense ions observed in the Orbitrap survey
scan, using dynamic exclusion to exclude re-sampling peaks recently selected for
tandem MS/MS (within 60s intervals). MS/MS spectra were filtered for spectral quality,
pooled from all 14 tissues, and searched against the RefSeq mouse protein database
using the Spectrum Mill MS Proteomics Workbench. We required proteins to have >2
unique peptides detected, with at least one peptide that distinguished the matching gene
from all other mouse Entrez genes. Data were aggregated at the gene level, using the
highest MS values for any splice form. Abundance was measured by coverage (percent
of amino acids with MS evidence) for cross-protein comparisons, and by total peak
intensity (the sum of MS peak areas for all sequence identified peptides matching a
protein) for cross-tissue comparisons.

Subtractive phase: Matched crude and highly purified mitochondria were collected from
10 tissues. Sample proteins were reduced, alkylated and then digested with trypsin in-
solution. MS/MS spectra were obtained and searched as above, but proteins required
only >1 peptide spectra, since these results affected only proteins detected via discovery
MS/MS. Proteins found only in crude extracts, or found at 2 twofold higher peak intensity
in crude extracts compared to pure were considered crude-enriched (and similarly for
pure-enriched).

Data combination: Proteins were assigned integrated MS/MS scores using the likelihood
ratio L(d,s)=P(d,sTito)/P(d,sITmit,o) where d is the discovery MS/MS abundance level

(coverage), s is the subtractive MS/MS enrichment category, and Tmito and T-mito are
training sets.

See Supplemental Data for complete details.

Mouse and human datasets
Mouse RefSeq Release 20 proteins were mapped to 23,640 NCBI Entrez gene
identifiers (ftp.ncbi.nih.gov/gene/DATA/, 12/12/2006), excluding proteins mapped to non-
reference assemblies or to pseudogenes (Entrez annotation, 6/21/07). Human-mouse
orthologs were obtained from Homologene (ftp.ncbi.nih.gov/pub/HomoloGene,
1/26/2007). Training sets (Table S5) included Tmito: 591 genes with mitochondrial
annotations from MitoP2 or Gene Ontology (GO) databases, that were manually curated



for experimental evidence of mitochondrial localization in mammals, excluding genes
with support solely from large scale proteomics surveys; T~mito: all 2519 genes with GO
subcellular localization annotations (type "inferred by direct assay"), excluding
mitochondrial and uninformative categories 8 . Protein domains from Pfam
(ftp.sanger.ac.uk/pub/databases/Pfam, 11/22/2006) were identified using HMMER
(expect parameter=0.1, trusted threshold cutoffs).

Integration of genome-scale data sets
Seven methods for determining mitochondrial localization were integrated using the
Maestro na've Bayes classifier18 . Training sets (Tmito and T~mito) were used to convert
each of the individual feature scores (sl..s7) into a log-likelihood ratio, defined as
log2[P(sl..s71 Tmito) / P(sl..s71 T-mito)]. For transcript or protein level scores, the gene
inherited the highest score of any splice form. The scores for the seven genomic
features were calculated at predefined ranges (see Table S7) as follows (see
Supplemental Data for details):

Proteomics: one of 12 categories shown in Figure 2D, or NA if not detected
Targeting sequence: TargetP v1l.1 confidence scorel6
Protein domain: categorical score (M+, M-, M+, NA) representing presence of a protein

domain that is exclusively mitochondrial, exclusively non-mitochondrial, ambiguous,
or not present in any annotated SwissProt eukaryotic protein.

Yeast homology: 1 if the best S. cerevisiae homolog (BlastP expect < le-3, coverage
>50% of longer gene) is mitochondrial (Saccharomyces Genome Database,
12/27/06), 0 otherwise

Ancestry: BlastP expect value from R. prowazekii homolog, or NA if expect > le-3
Coexpression: N50 score (number of Trito genes found within the gene's 50 nearest

transcriptional co-expression neighbors) within the GNF1M atlas of 61 mouse
tissues39

Induction: fold-change of mRNA expression in cellular models of mitochondrial
proliferation (overexpression of PGC-la in mouse myotubes) compared to
controls

1 8,40

The corrected false discovery rate was used to assess accuracy of predictions since the
sizes of the training sets Tmito and T~mito do not match our prior expectation of the
proportion of mitochondrial to non-mitochondrial cellular proteins'8 . We define cFDR = (1
- SP) / (1 - SP + SN x Oprior), where TP, TN, FP, FN represent true/false positives and
negatives, specificity SP = TN / (TN + FP), sensitivity SN = TP / (TP + FN), and Oprior =
1500/21000.



To compare performance of each method (Figure 3A), we chose the following
thresholds: MS/MS pure-enriched, or inconclusive with coverage > 25%; TargetP > 1;
Induction > 1.5; Domain M+; Coexpression > 5; Yeast Homology 1; Ancestry 5 le-3;
Maestro > 4.56.

Epitope tagging with GFP and microscopy.
cDNAs from the Human Orfeome collection29 were cloned into the C-terminal GFP
vector pcDNA6.2/C-EmGFP-DEST (Invitrogen). Approximately 4 X10 3 HeLa cells were
seeded in 100 pL of medium (DMEM with 10% FBS, 1x GPS) in 96-well imaging plates
(Falcon) 24 h before transfection using Lipofectamine LTX (Invitrogen). 48 h post
transfection, cells were stained with medium containing 50 nM MitoTracker Red
CMXRos and 1:1000 diluted Hoechst 33258 (Molecular Probes), washed, fixed, and
imaged (see Supplemental Data). Mitochondrial localization was determined by overlap
of GFP and MitoTracker signals.

Cytochrome c ELISA assays
Fresh mouse tissues were prepared in ice-cold PBS (see Supplemental Data). Following
homogenization, tissue lysates were resuspended in PBS containing 0.5% Triton X-100
detergent and protease inhibitors (Roche) and spun at maximum speed in a table top
centrifuge set to 4'C for 30 minutes. Supernatant was drawn off, flash frozen in liquid
nitrogen and stored at -80'C until use. Cytochrome c levels were measured in duplicate
using an ELISA kit (Quantikine) following the manufacturer's protocol.

Phylogenetic profiling
Homologs of mouse proteins within 500 fully sequenced species (Table S13) were
defined by BlastP expect < le-3. Mouse genes with <1 bacterial homologs were called
"eukaryotic innovations". We built a rooted phylogenetic tree of 42 eukaryotic species
and a bacterial outgroup (E. coli) using PhyML41 (JTT matrix, 4 substitution rate
categories) based on ClustalW multiple alignments of 6 well-conserved mouse proteins
(Rpsl6, Ak2, Drgl, Dpml, Cct7, Psmc3) that were concatenated and manually edited to
remove regions of poor alignment. COPP genes were identified using the following
profile: absent in 11 species (S. pombe, A. gossypii, C. glabrata, S. cerevisiae, C.
hominis, C. parvum, P. falciparum 3D7, T. annulata, T. parva, G. lamblia, E. cuniculi),
present in a bacterial genome, present in > 1 plant-like species (A. thaliana, 0. sativa, D.
discoideum, C. merolae) and present in > 2 other yeasts (Y. lipolytica, C. albicans, P.
stipitis, D. hansenii), where presence was defined by BlastP expect < le-3. See
Supplemental Data and Table S14 for full details.

Complex I abundance and activity assays



Lentiviral vectors (pLKO.1) encoding short hairpin sequences were obtained from the
Broad RNAi Consortium (TRC) 35. These vectors were transfected with a packaging
plasmid (pCMV-dR8.91) and VSV-G envelope plasmid (pMD2.G) into 293T cells using
Fugene (Roche) following TRC protocols (www.broad.mit.edu/genome_bio/trc/
publicProtocols.html). Virus-containing medium was harvested 24 and 48 hours post
transfection. Approximately 30,000 MCH58 human fibroblasts were seeded onto 24-well
plates the day prior to infection. To infect cells, 150 pl of virus-containing medium mixed
with 350 pl of low antibiotic medium containing 8pg/ml polybrene was added to each well
and the plate spun at 2250 rpm for 90 minutes at 370C. Post spin, medium was replaced
with DMEM (5% FBS, 1X GPS) for 12-24 hours and then switched to DMEM with 2 pg/
ml puromycin for 1-2 weeks for selection of stably infected cells. RNA was extracted
from each cell line (Qiagen RNAeasy) and used for 1st strand cDNA synthesis
(Invitrogen). Knockdown efficiency was then assessed using real-time PCR (ABI
Taqman Assays) using HPRT as an endogenous control. For immunoblot analysis of Cl
and actin, 10 pg of cleared whole cell lysate was separated on a 4-12% gel (Invitrogen)
and transferred to pvdf membrane. Membranes were probed with antibodies against -
actin (Sigma) and an 8kDa CI subunit (Mitosciences). Cl activity assays were performed
on 15 pg of cell lysate using immunocapture-based assays following the manufacturer's
protocol (Mitosciences). Results were scanned using a BioRad GS-800 scanner and
analyzed with Quantity One software.

Mitochondrial enzyme assays
Respiratory chain complexes 1, 11, III and IV plus the mitochondrial marker enzyme citrate
synthase were assayed in skeletal muscle and liver homogenates and in enriched
fibroblast mitochondrial preparations by spectrophotometric methods as described
previously42' 43. Respiratory chain enzyme assays measured NADH:coenzyme Q1
reductase (CI), succinate:coenzyme Q1 reductase (CII), decylbenzylquinol:cytochrome c
reductase (CIII) and cytochrome c oxidase (CIV). Enzyme activities were expressed as a
ratio relative to citrate synthase and then as a percentage of normal control mean value.

Homozygosity mapping
DNA from five family members was analyzed using Affymetrix GeneChip Mapping 50K
Xbal SNP arrays. Loss of heterozygosity regions were detected using Affymetrix
software (GDAS v.3.0.2.8, CNAT v.2.0.0.9 and IGB v.4.56).
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Figure 1: Building a Compendium of Mitochondrial Proteins

MitoCarta is a compendium of 1098 genes encoding proteins with strong support of

mitochondrial localization. Each protein was determined to be mitochondrial by one or

more of the following approaches: 1) an integrated analysis of seven genome-scale data

sets, including in-depth proteomics of isolated mitochondria from 14 mouse tissues (gray

circle), 2) large-scale GFP-tagging/microscopy (green circle), and 3) prior experimental

support from focused studies (red circle). The union of genes from each approach

comprises the MitoCarta compendium.
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Figure 2: Discovery Proteomics and Subtractive Proteomics of Isolated

Mitochondria
(A) Purification of mitochondria from 14 mouse tissues. Mitochondrial enrichment was

tracked by the ratio of an ER protein (calreticulin) to mitochondrial proteins (VDAC and

CI 8kDa subunit) at three stages of isolation (W, whole tissue lysate; C, crude

mitochondrial extracts; P, purified mitochondrial extracts). Electron micrographs show

intactness of the purified organelles.
(B) Saturation of protein identifications by discovery MS/MS is plotted for previously

known mitochondrial proteins (T,,to), abundant proteins (>25% coverage), and all

proteins.
(C) Gene Ontology annotations of proteins enriched in pure (red) or crude (black)
mitochondrial samples based on subtractive MS/MS experiments. Inset: schematic

overview of subtractive MS/MS method.
(D) Likelihood ratio of a protein being truly mitochondrial based on detection in discovery
and subtractive MS/MS experiments.
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Figure 3: Data Integration and Validation by Microscopy
(A) Eight genome-wide methods for predicting mitochondrial localization, with sensitivity
and corrected false discovery rates (cFDR) calculated from large training sets at
predefined thresholds (Experimental Procedures). Rightmost columns show each
method's log-likelihood score for a selection of mouse genes, which are summed to
produce the Maestro log-likelihood of mitochondrial localization.
(B) Fluorescence microscopy images of 10 GFP-fusion constructs with clear
mitochondrial localization, corresponding to examples in panel A. Images for all 131
constructs showing mitochondrial localization are available at
www.broad.mit.edu/publications/MitoCarta.
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Figure 4: Mitochondrial Protein Expression Across 14 Mouse Tissues
(A) Heatmap of protein abundance, measured by log10 (total MS peak intensity), for 1098
MitoCarta genes across 14 tissues. Genes are ordered by number of tissues and total
intensity. White background indicates genes whose protein product was not detected by
MS/MS, but are mitochondrial based on prior annotation, computation, or microscopy.
(B) Tissue-distribution of proteins within selected pathways. Tick marks indicate
locations of corresponding proteins within (A), and gray shading indicates the total
number of tissues in which the protein was detected (0-14).
(C) Correlation matrix of MitoCarta proteins detected by MS/MS in each tissue, clustered
hierarchically. Counts on diagonal indicate number of MitoCarta proteins identified by
MS/MS.
(D) Mitochondrial quantity per tissue, assessed by ELISA measurements of cytochrome
c from whole tissue lysates.
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Figure 5: Ancestry of Mitochondrial Proteins
(A) Presence/absence matrix for the 1098 MitoCarta proteins across 500 fully
sequenced organisms. Blue squares indicate homology of the mouse protein (row) to a
protein within a target species (column).
(B) Ancestry of MitoCarta proteins from selected groups. Tick marks indicate location of
proteins within (A).
(C) Comparison of MitoCarta protein ancestry to all mouse proteins, considering only
best-bidirectional hits. P values based on hypergeometric distribution with Bonferroni
multiple hypothesis correction: *p = 6e6 4 , **p = 4e -78 , **p = 2e-232
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Figure 7: Discovery of a C8orf38 Mutation in an Inherited Complex I Deficiency
(A) Pedigree from a consanguineous Lebanese family with two children affected by
Leigh syndrome and complex I deficiency. Letters beneath each family member
represent the genotype for a c.296A>G mutation in C8orf38. Proband indicated by
arrow.
(B) Respiratory chain enzyme activities, standardized against the mitochondrial matrix
marker enzyme citrate synthase, expressed as percentages of the mean value (normal
ranges in parentheses). The final column lists citrate synthase activities (relative to total
protein) as % of normal control mean (see Experimental Procedures).
(C) Results of homozygosity mapping using DNA from family members in (A). Eight
intervals of homozygosity shared by the affected siblings but not the parents or
unaffected sibling are listed along with the number of genes in various categories for
each interval (CI, known complex I genes; COPP, Complex One Phylogenetic Profiling
candidates).
(D) Sequence traces of C8orf38 from each family member in (A) and one healthy control
demonstrating homozygosity for a c.296A>G mutation in both affected siblings.
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Upstream open reading frames cause
widespread reduction of protein
expression and are polymorphic among
humans

Upstream open reading frames (uORFs) are mRNA elements defined by a start codon in
the 5' untranslated region (UTR) that is out-of-frame with the main coding sequence.
While uORFs are present in approximately half of human and mouse transcripts, no
study has investigated their global impact on protein expression. Here, we report that
uORFs correlate with significantly reduced protein expression of the downstream ORF,
based on analysis of 11,649 matched mRNA and protein measurements from four
published mammalian studies. Using reporter constructs to test 25 selected uORFs, we
estimate that uORFs typically reduce protein expression by 30-80%, with a modest
impact on mRNA levels. We additionally identify polymorphisms that alter uORF
presence in 509 human genes. Finally, we report that five uORF-altering mutations,
detected within genes previously linked to human diseases, dramatically silence
expression of the downstream protein. Together, our results suggest that uORFs
influence the protein expression of thousands of mammalian genes and that variation in
these elements can influence human phenotype and disease.

Introduction

The regulation of gene expression is controlled at many levels, including transcription,
mRNA processing, protein translation, and protein turnover. Post-transcriptional
regulation is often controlled by short sequence elements in the untranslated regions
(UTRs) of mRNA. One such 5' UTR element is the upstream open reading frame
(uORF) depicted in Fig. 1A. Since eukaryotic ribosomes usually load on the 5' cap of
mRNA transcripts and scan for the presence of the first AUG start codon, uORFs can
disrupt the efficient translation of the downstream coding sequence (1, 2). Previous
reports have shown that ribosomes encountering a uORF can either (i) translate the



uORF and stall, triggering mRNA decay, (ii) translate the uORF and then, with some

probability, reinitiate to translate the downstream ORF or (iii) simply scan through the

uORF (2). uORFs have been shown to reduce protein levels in approximately 100

eukaryotic genes (Table Sl). Additionally, mutations that introduce or disrupt a uORF

have found to cause three human diseases (3-5). In several interesting cases the

uORF-derived protein is functional, however in most cases the mere presence of the

uORF is sufficient to reduce expression of the downstream ORF (1, 2, 6-8). Previous

genomic analyses suggest that uORFs may be widely functional for several reasons:
they correlate with lower mRNA expression levels (9), they are less common in 5' UTRs
than would be expected by chance (6, 10), they are more conserved than expected
when present (6), and several hundred have evidence of translation in yeast (11).

However, no study has demonstrated that these elements have a widespread impact on

cellular protein levels. Moreover, no study has investigated whether uORF presence
varies in the human population. Here, we take advantage of recently-available datasets
of protein abundance (12-17) and genetic variation (18, 19) to assess the impact and
natural variation of mammalian uORFs.

Results

uORF Prevalence Within Mammalian Transcripts. We define a uORF as formed by a
start codon within a 5' UTR, an in-frame stop codon preceding the end of the main
coding sequence (CDS), and length at least 9 nucleotides including the stop codon. As
shown in Fig. 1A, this definition includes uORFs both fully upstream and overlapping the

CDS, since both types are predicted to be functional (20). We searched for uORFs
within all human and mouse RefSeq transcripts with annotated 5' UTRs exceeding 10nt.

Consistent with previous estimates (9, 10), we find that 49% of human and 44% of
mouse transcripts contain at least one uORF (Fig. 1B). Interestingly, human and mouse
uORF start codons (uAUGs) are the most conserved 5' UTR trinucleotide across
vertebrate species (Fig. S1), consistent with a widespread functional role.

uORF Impact on Cellular Protein Levels. If uORFs cause widespread reduction in
protein expression, as predicted by ribosome scanning models, we would expect uORF-
containing transcripts to correlate with lower protein levels when compared to uORF-less
transcripts. To test this hypothesis, we analyzed a total of 11,649 matched mRNA and
protein abundance measurements from four published studies across a variety of mouse
tissues and developmental stages. These included: 2484 genes expressed in liver (12),
722 genes expressed in six stages of lung development (13), 487 mitochondria-localized
gene products expressed in 14 tissues (14), and 925 genes expressed in six tissues (15)
(see Supporting Information for details). Proteins were detected via tandem mass
spectrometry (MS/MS) and abundance was estimated by standard methods using the



normalized number (12, 13, 15) or total peak area (14) of matching MS spectra. mRNA
abundance in these conditions was measured by microarrays (21, 22). While neither
technology provides absolute quantitation, these large-scale datasets can reveal trends
across thousands of genes. Since MS/MS technology cannot reliably distinguish splice
variants, we analyzed expression at the gene level and considered only those genes
whose collective splice variants either all contain, or all lack, uORFs. Consistent with
previous reports (23), we observed that the 10% most highly expressed transcripts
based on microarray tissue atlases (21) tend to lack uORFs (Fig. S2 and Supporting
Information) and therefore we conservatively excluded these genes to avoid
overestimating uORF effects.

Despite differences in experimental methodology, all four independent datasets showed
a reduced distribution of protein levels for genes containing versus lacking uORFs (Fig.
2A-D). Median protein levels were reduced, respectively, by 39% (p=le-5), 29%
(p=0.007), 34% (p=0.008), and 13% (p=0.36) where significance was determined by
empirical permutation testing. mRNA levels were reduced to a lesser extent with only the
liver dataset (12) showing a statistically significant median reduction (Fig. 2E and Fig.
S3). Importantly, the ratio of protein to mRNA was significantly reduced for uORF-
containing genes in three of four datasets (Fig. 2E and Fig. S3), suggesting that uORF
presence likely inhibits translation of the main coding sequence. We observed the same
trends when we modified the definition of a uORF by altering length and overlap criteria
(data not shown), and when we included the 10% most highly expressed genes (Fig.
S4). Analysis of two additional MS/MS studies of mouse adipocyte cells (16) and
differentiating embryonic stem cells (17) also showed reduced protein levels for uORF-
containing genes, although matched mRNA data were not available (Fig. S3).
Collectively, these analyses across 3297 mouse genes demonstrated the first large-
scale correlation of uORF presence with reduced protein levels.

To determine whether uORFs play a causal role in reducing protein levels, and to more
accurately quantify their effect size, we performed a series of experiments on 15 uORF-
containing genes using dual-luciferase reporter constructs (see Materials and Methods).
Five genes were chosen randomly from the set of all mouse transcripts containing single
uORFs and where, for technical ease, 5' UTR length exceeded 100nt (Fig. 3B, F). An
additional 10 were selected from our mitochondrial study (14) where MS/MS and
conservation data suggested functionality (Fig. 3C, G). We cloned the 5' UTR of each
selected gene upstream of a luciferase reporter (Fig. 3A). HEK 293A cells were then
transfected with uORF-containing luciferase constructs or control constructs where the
uORF's start codon (ATG) was mutated to TTG. After 48 hours, cells were assayed for
luciferase transcript levels by quantitative PCR and for luciferase activity by luminometry.
These experiments showed that, on average, uORFs cause a 58% decrease in protein



levels (Fig. 3B,C), and a 5% decrease in transcript levels (Fig. 3F,G). All individual
protein differences and four mRNA differences were statistically significant (Fig. 3), and
all protein/mRNA ratio differences were statistically significant except for gene Hsdl2
(Table S2). The constructs with randomly selected uORFs showed higher protein levels
compared to the uORFs selected with evidence of functionality (p=le-5 based on t-test).
Similar results were obtained using HEK 293T cells (data not shown). Together, the
large-scale correlations and validation experiments demonstrate that uORFs cause
blunted protein expression of downstream coding sequences.

Influence of uORF Context, Position, and Conservation. We next investigated
whether specific uORF properties were associated with stronger translational inhibition.
We analyzed uORF length, number, conservation, position relative to the cap, position
relative to the CDS, and uAUG context (also called "Kozak sequence") (see Methods).
We quantified uORF effects using the Kolmogorov-Smirnov D statistic within the largest
dataset (liver), which offered statistical power for these analyses. All tested subsets of
uORFs showed reduced protein levels compared to uORF-less genes (p<0.05), although
certain properties modified the effect size (Fig. S5). As predicted by Kozak's classic
experiments (1, 20, 24-26), increased inhibition correlated with strong versus weak
uAUG context (p=0.04), long versus short cap-to-uORF distance (p=4e-4), presence of
multiple uORFs in the 5' UTR (p=8e-6), and increased conservation (p=le-6) (Fig. S5).
Surprisingly, we observed no significant difference between uORFs fully upstream
versus overlapping the CDS (p=0.9), between uORFs of different proximity to the CDS
(p=0.5) or between uORFs of different lengths (p=0.3). These comparisons over
hundreds of liver genes indicate that while all types of uORFs can reduce protein
expression, four uORF properties are associated with greater inhibition: strong uAUG
context, evolutionary conservation, increased distance from the cap, and multiple uORFs
in the 5' UTR.

Polymorphic uORFs in Humans. Given that uORFs reduce protein expression,
polymorphisms that create or delete uORFs could influence human phenotypes.
Therefore we searched for uORF-altering variants within the 12 million single nucleotide
polymorphisms (SNPs) in the human dbSNP database (18). We coin the term
polymorphic uORF (puORF) to indicate a uORF that is created or deleted by a
polymorphism. We identified puORFs in 509 unique genes (Table S3), of which 366
genes had multiple uORFs and 143 genes had single uORFs (Table 1). Using the
cellular reporter constructs described above, we tested the functionality of five puORFs.
In all cases the constructs with uORFs produced 30-60% less protein than those with the
uORF-less SNP variant, with an average 3% decrease in mRNA levels (Fig. 3D,H). All
individual protein and protein/mRNA reductions were statistically significant (Table S2).
The impact of the puORFs was comparable to all other uORFs that were tested



experimentally (Fig. 3). Thus naturally occurring uORF-altering polymorphisms are likely
to alter cellular expression of the downstream protein.

puORF-Mediated Differences in Factor XII Protein Levels. One of the human uORF-
altering SNPs (rs1801020) has previously been associated with differences in circulating
plasma levels of clotting factor XII (FXII) in five independent studies (27-31) (Fig. 4). This
SNP represents a common T/C polymorphism with prevalence of the T allele estimated
at 20% in Caucasian and 70% in Asian populations (27-31). Kanaji and colleagues
demonstrated that the T allele reduces protein levels, and proposed that the mechanism
could be due to disruption of the Kozak consensus sequence or to the introduction of a
uORF, though these hypotheses were not tested (30). To experimentally test the uORF
hypothesis, we created eight reporter constructs that included all four possible
nucleotide variants at the SNP site, three artificial uORF-generating mutations, and one
mutation creating an alternate in-frame start site (Fig. 4A). All four uORF-containing UTR
constructs showed >50% reduction in protein levels (p<2e-6), whereas the four
constructs lacking uORFs did not show strong differences in protein levels (Fig. 4B).
mRNA levels were altered by less than 30% (Table S2). These results strongly suggest
that the presence of a puORF is responsible for the observed variation in human factor
XII protein levels.

uORF-Altering Mutations Related to Human Disease. In addition to common
puORFs, rare mutations that alter uORFs may cause disease, as has been shown for
three genes (Table 2). To systematically identify additional cases, we searched the
Human Gene Mutation Database (19) for mutations that introduce or eliminate uORFs.
We found 11 additional mutations (Table 2), which were detected by re-sequencing
known disease-related genes in affected patients (32-42). These uORF-altering
mutations were not present in population controls (32-42), and were either the sole
mutation detected in the sequenced exons, or were compound heterozygous with a
missense/nonsense mutation (Table 2). The patient presentation was consistent with a
recessive phenotype in three of the four compound heterozygous cases (37, 38, 42, 43),
and was ambiguous in the remaining case (36). To our knowledge, the mechanistic link
between the gene mutation and uORFs had not been previously proposed for SRY (32),
IRF6 (33) or GCH1 (34).

To assess whether the uORF-altering mutations influenced protein expression, we used
luciferase reporter constructs to test patient mutations in five genes (HBB, PRKAR1A,
IRF6, SRY and SPINK1). The uORF-altering mutations in these genes reduced
luciferase mRNA levels by less than 20% and luciferase activity levels by 70-100% (Fig.
3E,I). These effects on protein levels were highly significant (p<2e-12) and were larger
than in the other uORFs experimentally tested (p=4e-4). Thus, these uORF-altering



mutations cause dramatically reduced protein levels in our reporter assays, suggesting
that they may indeed be responsible for the observed disease phenotypes.

Discussion

Our analyses provide the first assessment of the widespread impact of uORFs on
mammalian protein expression. Many previous studies of individual genes demonstrated
that the presence of uORFs can lead to reduced mRNA stability and protein translation.
Here we show that approximately half of human and mouse protein-encoding genes
contain uORFs and that uORF presence correlates with reduced protein expression
across thousands of mammalian genes in a variety of tissues and conditions (Fig. 2). We
quantify uORF effects using mutation experiments on 25 selected 5' UTRs (Fig. 3),
which have typical length, context, position, and conservation features (Fig. S6). These
experiments indicate that uORFs typically affect mRNA levels by under 30% and reduce
protein levels by 30-80%, although complete protein suppression is possible (Fig. 3).
While our mutation experiments focused chiefly on 5' UTRs containing single uORFs,
our MS/MS data suggest that multiple uORFs lead to greater reduction of protein
expression (Fig. S5E). Collectively, these data suggest that uORFs cause reduced
protein levels of thousands of mammalian genes.

Our data provide insight into the mechanism by which uORFs influence protein
expression. Without exception, uORF-containing reporter constructs exhibit more
pronounced reduction of protein compared to mRNA levels (Fig 3), in agreement with
the trend observed in large-scale datasets (Fig. 2E). This suggests that uORFs act
primarily by reducing translational efficiency, and more modestly by affecting mRNA
levels. Additionally, since uORF effects do not correlate with the distance between the
uORF and CDS (Fig. S5D), it is likely that CDS translation generally proceeds from
ribosomes that scan through the uORF rather than from ribosomes that reinitiate after
uORF translation - at least in genes that contain only a single uORF.

Given that uORFs reduce translation, variants that create or delete uORFs are likely to
alter cellular protein levels and in some cases may influence phenotype. uORF-altering
variants are likely to be widespread, since each human transcript contains on average
28 nucleotides that could be mutated to introduce a uORF. We identified 509 human
genes with polymorphic uORFs (puORFs), although more are likely to be identified as
genome variation databases expand. Our data suggest that puORFs will typically alter
cellular protein levels by 30-80% in cases where the 5' UTR contains a single uORF.
When these puORFs cause physiologically relevant changes in protein levels, as we
showed for factor XII, they may cause phenotypic variation. Indeed, the factor XII puORF
has been associated with several thromboembolic conditions, although the associations



are in contention due to small sample sizes (44). We speculate that other puORFs in our
collection (Table S3) may also affect phenotype. For instance, the puORF in chemokine
receptor CCR5 might mediate susceptibility to HIV-1 infection, as previous studies
showed that variants affecting CCR5 expression alter susceptibility to HIV-1 infection
and progression of AIDS (45). Similarly, the puORFs in bitter taste receptors TAS2R5
and TAS2R3 might lead to common variation in taste perception, and puORFs in
receptors for ACTH, serotonin, and oxytocin may modulate neurohormonal response
(Table 1).

In addition to common polymorphisms, rare uORF-altering mutations that alter levels of
essential proteins can cause human disease. To date, three such mutations have been
reported. First, a hereditary form of thrombocythaemia is caused by a mutation in THPO
mRNA that eliminates a uORF through a splicing defect, and thus causes increased
translation of thrombopoetin (3). Second, a mutation introducing a uORF into CDKN2A
causes a familial predisposition to melanoma (4). Third, disruption of uORF presence
and coding sequence in gene HR causes Marie Unna hereditary hypotrichosis (5).
Additional uORF-altering mutations detected in patients with 11 diseases have been
reported in the literature, although they were not followed up experimentally (Table 2). In
each case, the patient mutation was present within a gene known to underlie the disease
when disrupted, and was the sole mutation detected or was compound heterozygous
with a nonsynonymous variant. Using reporter assays, we tested five patient mutations
in genes associated with disease: Gonadal dysgenesis (SRY), Van der Woude
syndrome (IRF6), Carney complex type 1 (PRKARIA), Hereditary pancreatitis (SPINK1)
and Thalassaemia beta (HBB). We found that the uORF-altering patient mutation
caused severely reduced protein levels, and in two cases almost no reporter protein was
detected (SRY and SPINK1, Fig. 3E). In these two cases, the patient mutation created a
second uORF within the gene 5' UTR, rather than creating a single uORF. The strong
suppression of protein expression by these five patient mutations offers a simple
mechanistic basis for their pathogenicity. These cases add to the growing list of uORF-
altering mutations linked to disease and highlight the importance of searching for uORF
changes in addition to coding changes underlying disease.

In summary, our analyses demonstrate that uORFs have a widespread impact on the
expression of human and mouse genes, and that the human genome contains hundreds
of polymorphic uORFs. With the routine application of newer generation sequencing
technologies, an important challenge will be to link variation in genome sequences to
physiology and disease - and puORFs may represent an important class of functional
variants that can be readily linked to phenotype. Although the current analyses focused
on the constitutive effects of uORFs on steady-state protein levels, an important next
step is to determine whether the influence of uORFs is widely regulated by



environmental conditions or signaling pathways, as been shown for a handful of
examples (2).

Materials and Methods

Human and mouse uORFs. RefSeq transcripts for human (hg18) and mouse (mm9)
were obtained from the UCSC Genome Browser Database (46) (5/20/2008), along with
28-vertebrate species alignments (47). Custom perl scripts annotated uORFs and
computed features: uORF context ("strong" indicates a -3 purine and +4 guanine relative
to uAUG, otherwise "weak"), cap-to-uORF distance (length between mRNA cap and
uAUG), uORF length (including start and stop codon), uORF-to-CDS distance (length
between uORF stop codon and CDS start codon), uORF number (number of distinct
uORFs in a transcript, where uORFs may overlap but not in the same frame), and
conservation (number of species with aligned start codons within 28-species
alignments). The first four features were analyzed on transcripts containing single
uORFs. uORF properties were compared using a Bonferroni-corrected, one-sided KS
test. 5' UTR trinucleotide conservation was scored by number of identities in 28-species
alignments.

Matched mRNA and protein datasets. MS/MS protein abundance measurements were
obtained from published studies (12-17). Matched mRNA data were available in three
studies (13-15). For the liver study (12) we used mean mRNA expression from GNF1M
liver replicates (21). All data were mapped to Entrez Gene identifiers with the gene
inheriting the highest score from any splice form. We excluded genes with poorly
quantified mRNA values (expression values below 40) and the top 10% most highly
expressed genes, based on mean mRNA expression values from the GNF1M atlas. We
analyzed mouse genes with annotated 5' UTRs (>10nt), where all splice forms contained
a uORF (6933 genes) or lacked a uORF (9343 genes). Differences in median protein
expression were measured as percent reduction from uORF-less genes, using 10,000
permutations of gene uORF labels to assess significance. See Supporting Information
for details.

Luciferase assays. UTR sequences, up to and including the primary ATG initiation
codon, were synthesized (IDT), cloned and ligated into the Nhel site directly preceeding
the Renilla luciferase gene in the dual-luciferase vector psiCHECK-2 (Promega) (Table
S4). Prior to cloning, the ATG of the Renilla luciferase was mutated to TTG so that the
Renilla luciferase expression would be driven by the primary ATG initiation codon of the
gene under investigation. HEK 293A cells were seeded at 6000 cells/well in 96-well
opaque white cell culture plates (Nunc). After overnight incubation, cells were
transfected with 20-100ng of each construct using Fugene 6 (Roche). Forty-eight hours



post transfection, cells were washed with PBS and lysed with Passive Lysis Buffer
(Promega). Renilla and Firefly luciferase signals were generated using Promega's Dual-
Luciferase Assay System according to the manufacturer's protocol. For each construct,
Renilla luciferase signal was normalized to the Firefly luciferase internal control signal.
Plates were read using a Victor3 plate reader (Perkin Elmer) and the data analyzed using
Wallac 1420 Workstation software. Two-sided, homoscedastic t-tests assessed
significance.

Real-time PCR. HEK 293A cells were seeded at 2x10 5 cells/well in 6-well cell culture
plates 24 hrs before transfection. One pg of each construct was transfected per well
using Fugene 6 as above. Forty-eight hours post transfection, cells were washed with
PBS, and RNA was harvested using a Qiagen RNAeasy kit. First-strand cDNA synthesis
was performed using SuperScript III (Invitrogen) using one pg of RNA from each
transfection as starting material. Real-time PCR was performed using custom TaqMan
Assays (ABI) designed against Renilla luciferase (target) and Firefly luciferase
(endogenous control). Two-sided, homoscedastic t-tests assessed significance.

uORF-altering variants. Human dbSNP version 128 (18) was obtained from UCSC (46)
and filtered for SNPs (class "single") that mapped to single locations within hgl8 and
overlapped annotated RefSeq 5' UTRs, excluding those that overlapped RefSeq CDSs.
Custom perl scripts mapped SNPs onto mRNA transcripts and determined those that
altered uORF presence. The Human Gene Mutation Database professional release
2008.2 (19), was searched for all non-coding substitutions or micro-lesions which altered
presence of ATG codons and which overlapped 5' UTRs based on manual inspection of
Blat alignments to hg18.

Acknowledgements
We thank S.E. Ong for advice on mass spectrometry; M. Garber for advice on
alignments; 0. Goldberger for technical assistance; J. Dixon for technical resources; and
D. Altshuler, J. Hirshhorn, M. Springer, D. Neafsey, B. Voight, S. Carter, J. Avruch and
E. Lander for comments on the manuscript and project. We thank the Broad Institute
Sequencing Platform, Washington University Genome Sequencing Center, and Baylor
Human Genome Sequencing Center for the vertebrate genome sequences used in
comparative analyses. This work was supported by a grant from the National Institute of
General Medical Science (GM077465) awarded to V.K.M.



cap 5' UTR main coding sequence 3' UTR polyA
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# Transcripts with: Human Mouse

annotated 5' UTR 23775 18663
1 uORF 11670 8253

>2 uORFs 6268 4197
>1 uORF fully upstream 9879 6935
>1 uORF overlapping CDS 4275 2872

Median Length (nt):
5'UTR 170 139
uORF 48 48

Fig. 1. uORF definition and prevalence. (A) Schematic representation of mRNA

transcript with two uORFs (red arrows), one fully upstream and one overlapping the

main coding sequence (black arrow). uORFs are defined by a start codon (AUG) in the

5' UTR, an in-frame stop codon (arrow head) preceding the end of the main coding

sequence, and length >9 nucleotides. (B) Number and length of uORFs in human and

mouse RefSeq transcripts.
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Fig. 3. Luciferase assays of uORF effects on protein and mRNA levels.
Experimental design of reporter constructs with and without uORFs is shown for
example Mrpl I (A). Normalized luciferase activity (B-E) and mRNA expression (F-1) are
shown for reporter constructs that contain a uORF (red) or lack a uORF (gray) due to a
mutation that disrupts the uORF start codon. The constructs contain 5' UTRs from: five
mouse genes chosen randomly (B,F), ten mouse genes with proteomic and conservation
signatures of functional uORFs (C,G), five human genes with polymorphic uORFs (D,H),
and five human disease genes with uORF-altering mutations detected in patients (E,I).
Error bars represent ± standard error of > six biological replicates (B-E) and > four
technical replicates (F-1). Asterisks indicate significant difference (p<0.01).
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Fig. 4. Polymorphic uORF alters FXII protein expression. (A) 5' UTR sequence of
FXII shown with two SNP variants, where the T allele creates a uORF (red text). Below
are eight constructs with introduced mutations (underlined text), where colored text
indicates a uORF (red) or in-frame alternative start (green). (B) Luciferase activity from
reporter constructs listed in (A). Error bars represent ± standard deviation of 2 six
biological replicates. (C) Meta-analysis of plasma FXII activity levels measured by five
independent studies, stratified by genotype of SNP rs1801020.



# SNP avHet Gene Gene description
rs1801020

rsl2272467

rsl 108842

rs6460054

rsl 1046188

rs13104310

rs7667298

rs7331765

rs2001216

rs12975585

rs2838343

rs765007

rs17499247

rsl 1048371

rsl 800070

rs34704828

rs28926176

rs41409645

rs2856759

rs34819868

rs41275166

rs6057688

rs2234011

rs1091826

rs6781226

5
5
5
5
5
4
4
4
4
4
4
4
4
4

0.
4

0% F12
0% TRIM6
0% GNL3
0% CLDN3
0% SCAMP3
9% C4orf21
9% KDR
9% RASL11A
9% RCCD1

8% HNRNPUL1
6% HSF2BP
6% TAS2R3
5% CREM
2% MUCL1
* CFTR

* HBB

2% MC2R
% CCL3
* CCR5

* HAVCR1

* CD59

* DEFB119

* TAS2R5
* OXTR

* HTR1F

coagulation factor XII (Hageman factor)
tripartite motif-containing 6
guanine nucleotide binding protein-like 3 (nucleolar)
claudin 3
secretory carrier membrane protein 3
chromosome 4 open reading frame 21
kinase insert domain receptor
RAS-like, family 11, member A
RCC1 domain containing 1
heterogeneous nuclear ribonucleoprotein U-like 1
heat shock transcription factor 2 binding protein
taste receptor, type 2, member 3
cAMP responsive element modulator
mucin-like 1
cystic fibrosis transmembrane conductance regulator
hemoglobin, beta
melanocortin 2 (ACTH hormone) receptor
chemokine (C-C motif) ligand 3
chemokine (C-C motif) receptor 5
hepatitis A virus cellular receptor 1
CD59 molecule, complement regulatory protein
defensin, beta 119
taste receptor, type 2, member 5
oxytocin receptor
5-hydroxytryptamine (serotonin) receptor 1 F

Table 1. Notable human variants that create polymorphic uORFs. List contains
common SNP variants (#1-14) and genes associated with monogenic disease (#15-17),
immune response (#18-22), and receptor activity (#23-25 and 7, 12, 17, 19, 20). Table
S3 contains complete list. AvHet indicates SNP's average heterozygosity (* indicates
data not available).



Disease
Thrombocythaemia

Melanoma
Marie Unna hereditary hypotrichosis

Gonadal dysgenesis
Van der Woude syndrome
DOPA-responsive dystonia
Juvenile haemochromatosis

Hyperinsulinemic hypoglycemia, 2
Familial hypercholesterolaemia

Rhizomelic chondrodysplasia punctata
Proopiomelanocortin deficiency

Carney complex type 1
Hereditary pancreatitis

Thalassaemia beta

Mutation
splice site (3)

G-34T (4)
A-321G (5)
G-75A (32)
A-48T (33)
C-22T (34)
G-25A (35)

C-54T (36) t
delC-22 (37) t
C-45T (38) t
C-11A (39)
G-97A (40)
C-53T (41)

G-29A (42) t

Table 2. uORF-altering mutations linked to disease. uORF-altering mutations
detected in patients but not population controls. Mutation column includes 5' UTR
position relative to translation start and literature reference (in parentheses). Cross
indicates compound heterozygous mutations. The links between mutations and uORFs
were previously known, predicted, or novel. Asterisk indicates mutations tested
experimentally in this study.

Gene
THPO

CDKN2A
HR

SRY
IRF6

GCH1
HAMP

KCNJ11
LDLR
PEX7

POMC
PRKAR1A
SPINK1

HBB

uORF link
known
known
known
novel*
novel*
novel

predicted
predicted
predicted
predicted
predicted

predicted*
predicted*
predicted*
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Implications and Future Directions



Implications and Future Directions

Through the integration of diverse genomic datasets, we have deduced most of the
protein components of human mitochondria, measured their amounts in numerous
tissues, linked several newly discovered components to function in complex I assembly,
identified disease-causing mutations, and demonstrated that uORFs cause widespread
blunting of translation of mitochondrial and other cellular proteins. This work has
important implications for mitochondrial medicine and for the systematic understanding
of mitochondrial function.

Implications

Discovery of mitochondrial disease genes
Our mitochondrial protein compendium has already been used to identify six novel
disease-related genes underlying inherited mitochondrial disorders. These represent a
substantial contribution to the 86 total nDNA mitochondrial disease genes identified to
date.

First, in collaboration with Antonella Spinazzola, Massimo Zeviani and colleagues, we
showed that defects in MPV17 cause infantile hepatic mitochondrial DNA depletion in
three unrelated families'. This devastating disorder presents within six months of birth
and is characterized by persistent vomiting, failure to thrive, hypotonia, hypoglycemia
and progressive neurological symptoms 2. Pathogenic mutations in MPV17 were
confirmed using yeast complementation, whereby the wild type but not mutant alleles of
MPV17 rescued an ethanol growth phenotype in yeast cells lacking the homolog of
MPV17, Syml. Our discovery led to the subsequent identification of MPV17 mutations
underlying Navajo neurohepatopathy, a disease having a relatively high prevalence
within the western Navajo Reservation due to a founder effect (1 in 1600 live births) 3. In
addition, homozygous or compound heterozygous mutations in MPV17 have since been
found in seven unrelated families4-8. These subsequent studies have helped define the



mutational spectrum of this disease (nine unique mutations) and relate genotype to
clinical phenotype2'8 . It is estimated that MPV17 defects account for 22% of
hepatocerebral mtDNA depletion cases2. Moreover, a knockout mouse strain (Mpvl7-/-)
is now being used to model the human disease pathogenesis, as it exhibits severe
mtDNA depletion in liver and skeletal muscle 9.

Second, our phylogenetic profiling approach has led to the discovery of three genes
underlying complex I deficiency: C8orf38 10 , C20orf71 , and FOXREDI (manuscript in
preparation). Complex I deficiency is the most common form of respiratory chain
disease. The patients with complex I deficiency presented neonatally or within 10
months of birth, and showed biochemical complex I deficiency, elevated lactate, and, for
two siblings, focal right-hand seizures, ataxia, and evolving rigidity 0o,". We demonstrated
that RNAi knockdown of both C8orf38 and C200orf7 in MCH58 fibroblast cells caused
reduced complex I activity, consistent with patient phenotypes' 1". Validation of
FOXREDI mutations are still pending.

Third, we used MitoCarta to select candidate genes for an autosomal dominant muscle
myopathy, leading to discovery of pathogenic mutations in CHCHDIO in collaboration
with Senda Ajroud-Driss and colleagues (manuscript in progress).

Lastly, our published Maestro compendium was used in the discovery of TMEM70
mutations underlying isolated ATP synthase deficiency and neonatal mitochondrial
encephalocardiomyopathyl2. Although we were not directly involved in this discovery, we
hope our Maestro and MitoCarta inventories will be used routinely in this manner to
highlight mitochondrial gene candidates within regions of the genome to which
mitochondrial disease phenotypes have been linked.

Development of molecular diagnostics and potential therapeutics
Since the discovery of defects in MPV17 in 2006, there has been progress on
development of diagnostics and therapies for mtDNA depletion. Starting in late 2006,
Baylor college of Medicine added MPV17 sequencing to its list of routine diagnostic tests
for mitochondrial diseases. This diagnostic test requires 2-3cc of blood in an EDTA tube,
takes 4 weeks turnaround time, and costs $30013. Therapeutically, a diet-based
treatment was developed by Zeviani and colleagues and assessed in two individuals
with severe MPV17 mutations 8. These two patients showed improved liver function tests
upon continuous IV glucose infusion or when fed every 3h8 . With additional validation,
this diet-based approach may prove to be an effective therapy to slow disease
progression for patients with MPV17 mutations.



For the other disease gene discoveries, published after July 2008, there has not yet
been time for development of clinical applications, although we anticipate that diagnostic
tests will be available soon.

Pathogenic uORF-altering mutations
In addition to discovery of novel disease-related genes, above, we have also generated
evidence supporting the pathogenicity of five mutations that create uORFs. These
mutations in HBB 14 , SRY 15 , IRF616, PRKAR1A 17 , and SPINK11 8 were previously
found to be associated with disease, but there was no evidence supporting their
causality. Using reporter constructs in cell models, we showed that these single
mutations that create uORFs cause severe reduction of protein encoded by downstream
open reading frames. These experiments provide evidence that these five uORF-altering
mutations may cause disease. When added to the three previously known uORF-related
disease mutations 9-2 1, these cases suggest that mutations in upstream open reading
frames may be a more common cause of disease than previously suspected. For this
reason, resequencing projects aimed at discovering disease-causing mutations should
not be limited to coding exons, but should also include upstream regions.

Future directions

MitolOK: systematic search for genes underlying complex I deficiency
While we have successfully applied our compendium to discover gene defects
underlying inherited forms of mitochondrial disease, we also plan to tackle mitochondrial
diseases that arise sporadically. Advances in sequencing technology make it possible to
systematically address all forms of complex I deficiency using a candidate gene
approach. In collaboration with Dr. David Thorburn, we have initiated a project to
sequence 100 gene candidates, detected by MitoCarta and phylogenetic profilinglo, in
100 patients having well-characterized complex I deficiency. We term this project
"MitolOK", reflecting the 10,000 total genes that require sequencing. Using massively
parallel Illumina technology, we are currently sequencing 831 candidate gene exons at
an average coverage of 80X. While much computational and experimental work is
required to identify and validate pathogenic mutations, this methodology is especially
promising because it should systematically uncover sporadic mutations leading to
complex 1 deficiency. If successful, this approach could transform the diagnosis of this
mitochondrial disease.

Decoding components of mitochondrial pathways
In addition to helping elucidate the molecular basis of disease, our MitoCarta
compendium also provides a foundation for systematic investigation of mitochondrial



function. Current work in the Mootha laboratory is directly applying this inventory to (i)
annotate gene function based on mRNA coexpression across thousands of microarray
datasets; (ii) identify regulators of mtDNA copy number through an RNAi screen; and (iii)
identify protein regulators of mitochondrial calcium signaling through an RNAi screen.
Additionally, kinases and phosphotases present within MitoCarta can help decipher the
signaling networks within mitochondria.

Identifying mitochondrial regulatory and targeting elements
The inventory also provides a resource for the identification of transcriptional, post-
transcriptional, and targeting elements present in mitochondrial genes. Transcriptional
regulatory elements can be identified by detecting sequence motifs specifically enriched
in subsets of MitoCarta gene promoters. Similarly, sequence elements statistically
enriched in MitoCarta gene 5' UTRs and 3' UTRs may lead to discovery of post-
transcriptional regulatory elements. Additionally, analysis of protein sequences of
MitoCarta proteins that lack canonical targeting signals may elucidate novel targeting
motifs that direct mitochondrial localization.

Systems biology of the mitochondrion
The work described here takes a classic reductionist approach to characterize the
location and function of individual molecular components. However, by defining the
mitochondrial proteome, this work lays the foundation for a systems approach to
understanding how these thousands of parts are coordinately regulated and assembled
into functional networks that respond to changing cellular needs. The network properties
of pathways residing within mitochondria, and between mitochondria and the rest of the
cell, will ultimately enable the understanding of complex diseases involving mitochondrial
dysfunction.



References

1. Spinazzola, A. et al. MPV17 encodes an inner mitochondrial membrane protein
and is mutated in infantile hepatic mitochondrial DNA depletion. Nat Genet 38,
570-5 (2006).

2. Spinazzola, A. et al. Clinical and molecular features of mitochondrial DNA
depletion syndromes. J Inherit Metab Dis (2008).

3. Karadimas, C.L. et al. Navajo neurohepatopathy is caused by a mutation in the
MPV17 gene. Am J Hum Genet 79, 544-8 (2006).

4. Sarzi, E. et al. Mitochondrial DNA depletion is a prevalent cause of multiple
respiratory chain deficiency in childhood. J Pediatr 150, 531-4, 534 el-6 (2007).

5. Wong, L.J. et al. Mutations in the MPV17 gene are responsible for rapidly
progressive liver failure in infancy. Hepatology 46, 1218-27 (2007).

6. Navarro-Sastre, A. et al. Lethal hepatopathy and leukodystrophy caused by a
novel mutation in MPV17 gene: description of an alternative MPV17 spliced form.
Mol Genet Metab 94, 234-9 (2008).

7. Spinazzola, A. et al. Hepatocerebral form of mitochondrial DNA depletion
syndrome: novel MPV17 mutations. Arch Neurol 65, 1108-13 (2008).

8. Parini, R. et al. Glucose metabolism and diet-based prevention of liver
dysfunction in MPV17 mutant patients. J Hepatol 50, 215-21 (2009).

9. Viscomi, C. et al. Early-onset liver mtDNA depletion and late-onset proteinuric
nephropathy in Mpvl17 knockout mice. Hum Mol Genet 18, 12-26 (2009).

10. Pagliarini, D.J. et al. A mitochondrial protein compendium elucidates complex I
disease biology. Cell 134, 112-23 (2008).

11. Sugiana, C. et al. Mutation of C20orf7 disrupts complex I assembly and causes
lethal neonatal mitochondrial disease. Am J Hum Genet 83, 468-78 (2008).

12. Cizkova, A. et al. TMEM70 mutations cause isolated ATP synthase deficiency
and neonatal mitochondrial encephalocardiomyopathy. Nat Genet 40, 1288-90
(2008).

13. Baylor College of Medicine Medical Genetics Laboratories.
14. Oner, R. et al. The G----A mutation at position +22 3' to the Cap site of the beta-

globin gene as a possible cause for a beta-thalassemia. Hemoglobin 15, 67-76
(1991).

15. Poulat, F. et al. Mutation in the 5' noncoding region of the SRY gene in an XY
sex-reversed patient. Hum Mutat Suppl 1, S192-4 (1998).

16. Kondo, S. et al. Mutations in IRF6 cause Van der Woude and popliteal pterygium
syndromes. Nat Genet 32, 285-9 (2002).

17. Groussin, L. et al. Molecular analysis of the cyclic AMP-dependent protein kinase
A (PKA) regulatory subunit 1A (PRKAR1A) gene in patients with Carney complex
and primary pigmented nodular adrenocortical disease (PPNAD) reveals novel



mutations and clues for pathophysiology: augmented PKA signaling is associated
with adrenal tumorigenesis in PPNAD. Am J Hum Genet 71, 1433-42 (2002).

18. Witt, H. et al. Mutations in the gene encoding the serine protease inhibitor, Kazal
type 1 are associated with chronic pancreatitis. Nat Genet 25, 213-6 (2000).

19. Liu, L. et al. Mutation of the CDKN2A 5' UTR creates an aberrant initiation codon
and predisposes to melanoma. Nat Genet 21, 128-32 (1999).

20. Wen, Y. et al. Loss-of-function mutations of an inhibitory upstream ORF in the
human hairless transcript cause Marie Unna hereditary hypotrichosis. Nat Genet
41, 228-33 (2009).

21. Wiestner, A., Schlemper, R.J., van der Maas, A.P. & Skoda, R.C. An activating
splice donor mutation in the thrombopoietin gene causes hereditary
thrombocythaemia. Nat Genet 18, 49-52 (1998).



100



Appendix A

Supplementary Material for Chapter 2

101



Supplementary Data: Systematic
identification of human mitochondrial
disease genes through integrative
genomics

Supplementary Figures and Tables
Below are Supplementary Figures S1-S3 and Supplementary Table S1. Supplementary
Tables 2-5 are large Excel files that are available online at:
www.nature.com/ng/journal/v38/n5/suppinfo/ng1776_S1.html.
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MitoPred
score > 98

Supplementary Figure 1. Maestro and MitoPred Overlap.
While a direct comparison between prediction methods is not possible since the
algorithms were trained on different datasets, we show the overlap of Maestro novel
protein predictions (threshold 5.65) with the novel predictions of MitoPred using both
stringent (panel a) and relaxed (panel b) threshold criteria.
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Supplementary Figure 2. Mouse to human orthology mapping.
For experiments performed on mouse models (mass spec, induction, GNF mouse tissue
coexpression), mouse gene transcripts were mapped to human counterparts based on
an Ensembl homology mapping that uses synteny and gene sequence similarity (See
EnsMart www.ensembl.org). Since the Ensembl orthology mapping is performed at the
gene level (using the longest transcript for each gene locus), we computed a transcript
level orthology mapping with each transcript inheriting all orthologs from its gene locus.
For example, transcript Al was mapped to two mouse transcripts (al,a2), as were A2
and A3. Transcript B1 was assigned four mouse orthologs (bl, b2, cl, c2) from two
different mouse gene loci.
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Supplementary Figure 3. Correlation between 8 datasets.

a. Pairwise correlation coefficient of scores between different genomic features for gold

standard mitochondrial proteins Tmito. b. Pairwise correlation coefficient of scores

between different genomic features for gold standard nonmitochondrial proteins T-mito.

c. Log-likelihood ratio of Maestro scores (y-axis) computed as P(score in intervall Tmito )

/ P(score in interval I T-mito) for each range of Maestro scores (x-axis). This plotshows

that Maestro scores are linearly related to computed log-likelihoods of mitochondrial

localization until score 10.
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GO identifier Cellular location

GO:0009986 cell surface
GO:0000785 chromatin
GO:0005929 cilium
GO:0005905 coated pit
GO:0016023 cytoplasmic vesicle
GO:0005856 cytoskeleton
GO:0005830 cytosolic ribosome
GO:0005783 endoplasmic reticulum
GO:0005768 endosome
GO:0031012 extracellular matrix
GO:0005576 extracellular region
GO:0009434 flagellum (Eukaryota)

GO identifier Cellular location

GO:0005794 Golgi apparatus
GO:000591 intercellular junction
GO:0042470 melanosome
GO:0042579 microbody
GO:0005792 microsome
GO:0005634 nucleus
GO:0005886 plasma membrane
GO:0009579 thylakoid
GO:0005923 tight junction
GO:0000151 ubiquitin ligase complex
GO:0005773 vacuole

Supplementary Table 1. Computation of non-mitochondrial protein set T-mito.
The gold-standard set of non-mitochondrial proteins (T-mito) was created from all
Ensembl human and mouse proteins (www.ensembl.org, Jan 10, 2005) that had
SWISSPROT entries and Gene Ontology (GO) annotations to specific compartments
outside of the mitochondrion. GO represents the cellular compartment structure as a
complex tree allowing nodes to have multiple ancestors (i.e. a directed acyclic graph).
Ensembl associates proteins with identifiers (GO IDs) to the most specific nodes within
the GO tree. A protein was considered "non-mitochondrial" if the annotated GO ID was
within the subtree of any of the compartments listed above. Because of the mixed
quality of GO annotations, we conservatively considered only those proteins for which
the human and mouse orthologs (see Methods) were both "non-mitochondrial".
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Supplementary Methods

Protein domain analysis
In order to identify sets of mitochondrial-specific proteins domains across eukaryotic
species, we first created sets of mitochondrial and non-mitochondrial proteins from the
set of SwissProt eukaryotic proteins (release 48.8, 1/23/06), as described in Methods.
For the entries with high confidence 'subcellular location' (excluding 'by similarity',
'potential','probable',and 'possible' entries), we partitioned the proteins into two sets
based on the annotations in the 'subcellular location' field:
- Smito contained the keyword Mitochondria, and its variants (Mitochondrial,

Mitochondrion)
- S-mito started with one of the following 36 locations: Cell membrane, Cell surface,

Cell wall, Centrosomal, Centrosome, Cis-Golgi complex, Coated vesicle,
Cytoskeletal, Cytoskeleton, Cytosol, Endoplasmic reticulum, Endosomal,
Endosomal, Flagellar, Focal adhesion, Glycosomal, Glyoxysomal, Golgi, Lysosomal,
Microsomal, Microsomes, Mitotic spindle, Neuromuscular junction, Nuclear,
Nucleolar, Nucleoplasmic, Nucleus, Peroxisomal, Plasma membrane, Secreted,
Surface protein, Synapse, Synaptic vesicles, Vacuolar, Vacuole, Vesicular. All
entries containing the keyword mitochondria (or variant mitochondrial,
mitochondrion) were filtered out.

Mass spectrometry validation

In gel digestion protocol- 2 lanes each of 100ug of liver homogenate and purified liver
mitochondria were size separated by a 10-20% Tris-HCI gradient. Gel slices were
incubated in 50% acetonitrile, 50mM ammonium bicarbonate for extraction of coomassie
stain, and then dried by vacuum centrifugation and subjected to reduction in 10mM DTT
for 45min at 600C, followed by alkylation in 55mM iodoacetamide for 60 minutes at room
temperature. Each gel slice was then subjected to in-gel tryptic digestion (immersed
with lug trypsin in 100mM ammonium bicarbonate solution overnight at 3700C).
Peptides were extracted from gel slices using three cycles of vortexing in 70%
acetonitrile, 1% trifluoroacetic acid in water and 1% trifluoroacetic acid in water.
Extracted material were lyophilized by vacuum centrifugation and resuspended in 20uL
of 3% acetonitrile/5% formic acid in water.

Reverse phase chromatography - Peptides extracted from the gel slices were then
analyzed by reverse phase liquid chromatography tandem mass spectrometry (LC-
MS/MS) using an LTQ-Orbitrap (Thermo, San Jose, CA). Analysis using a linear
acetonitrile gradient on 3pm 200A C18 reverse phase material packed to 30cm into a
10pm tip, 75pm ID picofritTM column (New Objective, Woburn, MA). Gradient performed
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from 7% B to 40% B in 27.5 minutes using mobile phases A: 0.1% formic acid in water
and B: 90% acetonitrile/0.1% formic acid in water.

Mass spectrometry -We performed a LTQ-Orbitrap survey scan over the range 300 to
1500 m/z, followed by eight data dependent tandem MS (from a set inclusion list) using
dynamic exclusion (m/z precursor selection for MS/MS repeat count of 2 within 20sec,
exclusion for 60sec, early expiration from exclusion list at signal to noise threshold of 4).
The inclusion list of 303 masses was derived from a set of 30 proteins, representing 224
distinct peptides; with accurate mass selection criteria for tandem MS set at 15ppm to
left and 25 ppm to right of the monoisotopic peak.

Database searching - Using Spectrum MillTM Extractor, spectra were filtered (requiring
sequence tag length > 1) and redundant spectra (identical m/z observed within 20sec
windows) were merged. These spectra were then searched against the Ensembl mouse
protein database (www.ensembl.org, Jan 10, 2005). Search parameters included:

- carbamidomethylation of cysteines,
- 50% minimum matched peak intensity,
- precursor mass tolerance of +/- 0.05 Da,
- production ion mass tolerance of +/- 0.7 Da,
- 1 missed tryptic cleavage,
- electrospray ionization trap scoring settings

Autovalidation scoring threshold criteria:
(a) protein details mode, charge-dependent:

- peptide charge +1: (score > 7, SPI (scored peak intensity) >70%)
- peptide charge +2: (score > 8, SPI>70%) or (score > 6, SPI>90%)
- peptide charge +3: (score > 9, SPI>70%)
- peptide charge +4: (score > 9, SPI>70%)

(b) peptide mode: peptide charge +1,+2,+3,+4: score >13, SPI > 70%

Inclusion List - A mass list was generated from in silico tryptic digestion of 30 proteins,
allowing for no miscleavages, charge states 2, 3, 4 and a mass range between 300 to
1500 m/z.

Comparison of integration approaches
In addition to integrating the eight genome-wide scores with a naive Bayes network, we
also explored several other methods:
- decision trees. We applied the CART decision tree software (Salford Systems) to

our eight genomic datasets. Decision trees output easily interpretable results
showing the contribution of each type of data. CART has been successfully used in
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other genomics applications 1, however it performed less well on our large gold-
standard training data than nal've Bayes networks.
boosting. Boosting is a method of improving the performance of any machine
learning algorithm based on the assumption that a series of weak algorithms can be
"boosted" into a strong algorithm by successively training on different subsets of the
initial data. We evaluated this method by integrating our data using the Boostexter 2

(www.cs.princeton.edu/-schapire/BoosTexter) implementation of the Schapire and
Singer AdaBoost algorithm3 , as well as implementing a version of this algorithm
based on the simple naive Bayes integration. In neither implementation did the
boosting methodology improve the training results.
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Supplementary Data:
A mitochondrial protein compendium
elucidates complex I disease biology
Supplementary Figures and Tables
Below are Supplementary Figures S1-S8 and Supplementary Tables S1, S4, and S6.
Supplemental Tables S2, S3, S5, S7, and S8 are Excel spreadsheets that are available
online at www.cell.com/supplemental/S00928674(08)00768-X.
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Figure SI. Assessment of Mitochondrial Purity.
(A) Enrichment of mitochondria isolated from testis or skeletal muscle assessed at three
stages of the isolation procedure (W: whole tissue lysate; C: crude mitochondrial
extracts; P: purified mitochondrial extracts) by immunoblot against various protein
markers (contamination markers in black font, mitochondrial markers in red font).
(B) Same as (A) for mitochondria isolated from four brain regions. Here, immunoblots
against SNAP-25 was included to ensure loss of synaptosomes from the mitochondrial
preparations.

113



1.0-

0.8-

0.6-

0.4-

0.2-

0.0
v I I I I I

0 50 100 150 200

Molecular weight (kDa)

[mRNA] = 217.5-. 4-4mRNA] = 362.5

I I
10 100

Isoelectric point(pl)

0.8-

0.6-

0.4-

02-

0.0-I I
1000 10000

mRNA expression
Membrane No membrane

helix helix

Figure S2. Analysis of MS/MS Detection Biases.
(A-C) The cumulative distributions for molecular weight (A), isoelectric point (B), and
mRNA abundance (C) are plotted for MitoCarta proteins detected (red) or not detected
(black) by our proteomic survey. Molecular weight and isoelectric points were calculated
from the underlying protein sequences. Median mRNA expression levels for the fourteen
tissues sampled was obtained from the GNF tissue atlas (Su et. al. 2004).
(D) Fraction of genes containing one or more membrane helices (based on TMHMM
prediction, www.cbs.dtu.dk/services/TMHMM) are plotted for MitoCarta proteins
detected (red) or not detected (black) by MS/MS.
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Figure S3. Assessment of Discovery MS/MS.
Number of genes detected by discovery MS/MS at four levels of protein abundance,
measured by coverage (black, known mitochondrial proteins (Tito); gray, non-
mitochondrial proteins (T-mito); white, other proteins). Overlaid in red is the corrected
false discovery rate for each coverage range estimated from Tmito and T-mito. The high
cFDRs for discovery MS/MS data alone motivate the need to distinguish co-purifying
contaminants using subtractive techniques, shown in Figure 2C-D.
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Figure S4. Correlation between Seven Genome-Scale Data Sets.
(A) Pairwise Pearson correlation coefficient of scores between seven genomic features,
within the training set of known mitochondrial proteins Tmito.
(B) Pairwise Pearson correlation coefficient of scores between seven genomic features,
within the training set of known non-mitochondrial proteins T-mito.
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Figure S5. Discovery Proteomics Reproducibility.
(A) Protein abundance measurements of the 643 MitoCarta proteins detected by mass
spectrometry within two technical replicates of liver mitochondrial samples (R2=0.83).
(B) Histogram of coefficient of variation (sd/mean) for proteins identified in both
replicates.
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Figure S6. Tissue Distribution of Ketogenesis and Urea Cycle Pathways.
Tissues containing all pathway enzymes for ketogenesis (A) or the urea cycle (B) are
marked with dots colored black (previously known to exist in this tissue) or green (novel).
Key: protein abundance from proteomic analyses, as in Figure 4A.

118

2 Acetyl CoA

I Acat

Acetoacetyl-CoA

I Hmgc$2

HMG-CoA

I Hmgld
Acetoacetate

SHy Bdh
P-Hydroxybutarate



Ar 1

80

V 4 0

20-

0

Hairpin: C0

B o
20

i 40

80

100
Hairpin: "_

qPCR Assay: NDUFAF1

Figure S7. Sensitivity of Immunocapture Assays for Assessing CI Activity.
(A) CI activity assays from fibroblasts following lentiviral-mediated delivery of four distinct
hairpins targeted against the known CI assembly factor NDUFAFI, or against GFP
(negative control).
(B) Assessment of knockdown efficiency of each hairpin in (A) by real-time qPCR,
showing correlation of knockdown efficiency to CI activity.
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Figure S8. Estimated False Discovery Rates of Discovery MS/MS.
Corrected false discovery rates (cFDRs) calculated from the numbers of training set
gene products detected by discovery MS/MS in each tissue. (A) All detected gene
products listed, including MitoCarta and all other mouse genes. (B) Only MitoCarta gene
products listed, showing improvements in specificity achieved by Bayesian integration.
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Foster Kislinger Johnson Forner Mootha
Publication stud et. al. et. al. et al. e al. et. al.

study 2006 2006 2006 2006 2003
lit &

Method to filter out KNN mito
MitoCarta PCP targeting

contaminants (>0.8) signal

# tissues analyzed 14 1 6 4 3 4
# mouse gene loci detected 1097 257 301 260 533 396
Sensitivity 84% 28% 29% 23% 37% 40%
cFDR 10% 2% 26% 30% 41% NA*

Table SI. Mass Spectrometry Studies of Mammalian Mitochondria.
Proteins detected in each study were mapped to mouse Entrez gene identifiers and
assessed using training data of 591 mitochondrial genes and 2519 non-mitochondrial
genes. We note that mapping between protein annotations and between species is
difficult and we failed to map some detected proteins to mouse Entrez genes. Asterisk
(*) indicates published data that contributed to the gene ontology "mitochondrial"
annotation, which were excluded from the non-mitochondrial training set, and thus
cannot be used to calculate cFDR.
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Dataset Bin logodds specificity sensitivity Tmito found T-mito found
MitoDomain M+ 5.8 99% 47% 280 21
MitoDomain M+/- 0.8 82% 30% 179 445
MitoDomain M- -4.0 34% 4% 25 1671
MitoDomain null 0.3 85% 18% 107 382

Coexpression 30 8.8 100% 18% 107 1
Coexpression 20 5.4 100% 7% 41 4
Coexpression 10 4.0 100% 6% 34 9
Coexpression 5 2.8 99% 10% 58 36
Coexpression <5 -1.0 19% 40% 239 2052
Coexpression null 0.2 83% 19% 112 417

Mass Spectrometry 75-100pure 8,0 100% 20% 119 2
Mass Spectrometry 50-75pure 7.5 100% 28% 165 4
Mass Spectrometry 25-50pure 5.5 100% 14% 84 8
Mass Spectrometry 0-25pure 3.2 100% 2% 11 5
Mass Spectrometry 75-100ambig 4.3 100% 2% 9 2
Mass Spectrometry 50-75ambig 3.7 100% 6% 34 11
Mass Spectrometry 25-50ambig 1 9 98% 7% 43 48
Mass Spectrometry 0-25ambig -0.8 89% 6% 38 281
Mass Spectrometry 75-100crude -0.7 100% 0% 1 7
Mass Spectrometry 50-75crude -1.1 98% 1% 5 47
Mass Spectrometry 25-50crude -1.0 97% 1% 8 69
Mass Spectrometry 0-25crude -3.9 95% 0% 2 128
Mass Spectrometry null -2.6 24% 12% 72 1907

PGC induction 3 3.7 99% 13% 79 26
PGC induction 2.5 3.4 99% 9% 54 22
PGC induction 2 2.4 98% 9% 52 41
PGC induction 1.5 2.0 96% 17% 99 104
PGC induction <1.5 -0.9 17% 44% 259 2096
PGC induction null -0.2 91% 8% 48 230

Rickettsia Ancestry <le-10 2.4 94% 34% 202 162
Rickettsia Ancestry <le-5 0.1 100% 0% 1 4
Rickettsia Ancestry null -0.5 7% 66% 388 2353

TargetP 1 9.0 100% 20% 120 1
TargetP 2 4.8 99% 23% 135 21
TargetP 3 2.8 99% 10% 59 36
TargetP 4 1.7 98% 7% 40 52
TargetP 5 0.7 97% 4% 26 70
TargetP null -1.4 7% 36% 211 2339

YeastMitoHomolog 1 4.5 98% 38% 226 42
YeastMitoHomolog 0 -0.7 2% 62% 365 2477

Table S4. Log-likelihood Scores for Seven Genome-Scale Data Sets.
Log-likelihood scores for each of the seven genome-scale data sets were calculated at

the predefined ranges listed. We counted the number of Tmito and T-mito genes with

scores within each range (Tmito found, T-mito found columns) to compute the sensitivity,
specificity and log-likelihood odds ratio (base 2) as defined in Experimental Procedures.
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MitoCarta Mous pvalue motif(s)A rnRNA features gene g s pvalu mof

5' UTR length (nt) 83 129 <2e-16
CDS length (nt) 966 1062 2e-12
3' UTR length (nt) 484 631 le8
mRNA abundance 322 167 <2e-16

Promoterfeatures

CpG 72% 41% 4e-101
TATA 9% 19% 3e-18

Conserved promoter motifs
ERR1/5F1 10% 4% 8e-17 TGACCTY_V_ERR_Q2/TGACCTTGVS F_Q6
SPI 14% 10% le-5 GGGCGGRVSP1 _Q6
NRF1 S% 3% Be-S RCGCANGCGY_V_NRF1_Q6
NRF2/ELK1 8% 4% 3e-10 VNRF201/ SCGGAAGY_VELKI 02

MYC/USF 6% 3% 3e-3 CACGTG V_MYC_Q2/VU SF_Q6
0 NF-Y 6% 4% le-2 GATTGGY_V_NFY_Q601
I TMTCGCGANR 1% 0.5% le-3 TMTCGCGANR_UNKNOWN
o ACTAYRNNNCCCR 3% 1% 2e-2 ACTAYRNNNCCR_UNKNOWN

Table S6. MitoCarta Transcript and Promoter Features.
(A) Frequency of genomic features in MitoCarta genes compared to all mouse genes,
with significance assessed by Mann Whitney test. mRNA abundance was measured by
median expression value within the mouse GNF tissue atlas.
(B) Frequency of promoter features in MitoCarta genes compared to all mouse genes,
with significance assessed by the Bonferroni corrected hypergeometric distribution.
(C) Frequency of conserved motifs in MitoCarta promoters compared to promoters of all
mouse genes, with significance assessed by the Bonferroni corrected hypergeometric
distribution. We searched for enrichment within all 68 motifs from MSigDB for which
conserved motif instances were found in > 15 MitoCarta promoters. Mouse MitoCarta
genes were associated with conserved motifs using the MSigDB annotation. Listed are
the eight unique motifs with corrected pvalues < le-2. Since MSigDB contains redundant
motifs, we collapsed sequence motif variants and reported results for the genes
containing any of the motif variants listed (E.G. MYC/USF indicates promoters
containing CACGTG_V_MYC_Q2 or V_USF_Q6).
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Supplemental Experimental Procedures

Mitochondrial Purification: C57BL/6 mice were euthanized by CO2 asphyxiation
followed by cervical dislocation. Organs were quickly excised and placed into ice-cold
isolation buffer (buffer A: 220 mM mannitol, 70 mM sucrose, 5 mM HEPES-KOH, pH 7.4,
1 mM EGTA-KOH). All subsequent steps were performed either on ice or at 4°C in a
cold room. Tissues were carefully trimmed and washed twice in isolation buffer A and
then twice in buffer B (buffer A plus 1.0 mg/ ml bovine serum albumin (BSA) and
protease inhibitor cocktail (Roche Complete EDTA free tablets)). Tissues were
resuspended to - 0.2 mg/ml in buffer B and homogenized with four strokes of a Potter-
Elvehjem glass/Teflon homogenizer attached to a Eurostar power-visc motorized stirrer
set at 1000 rpm. The homogenate was diluted up to 20 ml with buffer B and immediately
decanted into a 45 ml Parr bomb attached to a pressurized N2 tank. While stirring at
medium speed, the bomb was pressurized to 800 psi for 10 min. After rapid
depressurization, the tissue homogenate was decanted into a 50 ml conical tube
(homogenates from stomach, large intestine and small intestine were stirred for 10 min
with DEAE celluose (1.0 mg/ 10 ml), 75 U/ml heparin, and 2 mM DTT) 1. A small sample
was taken (whole tissue lysate- W), and the remaining homogenate was centrifuged at
1000 rpm for 10 min. The supernatant was carefully decanted and saved. The pellet was
transferred to a Kontes glass/ teflon homogenizer and rehomogenized in buffer B with 2
strokes at 1000 rpm as above. This second homogenate was again centrifuged at 1000
rpm for 10 min. The supernatants from the two spins were combined, filtered through
nylon mesh, and spun at 8,000 x g for 10 min. The supernatant was decanted and any
loose or lighter colored material surrounding the pellet was suctioned away. A small
amount of buffer B (200- 300 pl) was then added to the tube and the pellet was carefully
dislodged using a polished glass rod. The pellet was thoroughly resuspended until
homogeneous. A small sample was taken (crude mitochondria- C). The remaining
mitochondria were carefully layered on top of a stepwise density gradient of 0.5 ml 80%,
1.5 ml 52%, and 1.5 ml 26% Percoll in a 4 ml Beckman Ultra-Clear centrifuge tube (note:
Percoll is supplied as a 23% colloidal suspension in water. Here, this solution is
considered "100% Percoll." This solution was made isotonic by the addition of 1 part 5X
buffer A to 4 parts 100% Percoll to create 80% Percoll (aka SIP- stock isotonic Percoll).
52% and 26% Percoll were made by further diluting SIP with 1X buffer A). The gradient
was spun at 20,000 rpm for 45 min in a Beckman SW 60 Ti rotor. Mitochondria were
collected from the interface of the 26%52% interface, diluted to capacity in a 2 ml
eppendorf tube with buffer A, and spun at full speed in a refrigerated table top centrifuge
for 10 min. The supernatant was carefully discarded, and the mitochondria were washed
with an additional 2 ml of buffer A and respun. The resulting pellet was resuspended in a
small volume of buffer A. A small sample was taken (P- pure mitos). The protein
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concentration of the remaining mitochondrial solution was determined by Bradford assay,
and the mitochondria were divided into eppendorf tubes in 100 pg aliquots and flash
frozen in liquid nitrogen.

The use of animals outlined in this proposal has been reviewed and approved by the
Massachusetts General Hospital (MGH) Subcommittee on Research Animal Care
(Protocol #: 2005N000332/2).

SDS-PAGE and In-Gel Protein Digestion Protocol: 100 pg of protein sample was
dissolved in 1% SDS and 100 mM NH4CO3 to a final volume of 20 pL and subjected to
reduction in 10 mM DTT for 45 min at 37 0C, followed by alkylation in 55 mM
iodoacetamide for 60 minutes at room temperature. Each sample was separated by
protein molecular weight using a 4-12% bis-Tris gradient SDS-PAGE gel and MES-SDS
running buffer (Invitrogen, Carlsbad, CA). Gels were stained with SimplyBlueTM

Safestain (Invitrogen) and each lane was excised into 20 slices and placed in separate
tubes. Each gel slice was further excised into 1 mm cube pieces and incubated in a
solution of 100 mM NH4CO3 in 50% acetonitrile/50%water for Coomassie stain extraction
and gel dehydration. After removal of the extraction solution, gel pieces were immersed
in a solution of 100 mM NH4CO3 in water containing 1 pg trypsin (modified sequencing
grade, Promega, Madison, WI) and incubated at 37 0C overnight for in-gel tryptic
digestion. Digested peptides were extracted from gel pieces by vortexing the gel pieces
in 75 pL of peptide extraction buffer (1% trifluoroacetic acid in 70% acetonitrile/30%
water); the solution was removed from the gel pieces and reserved. 25 pL of rehydration
buffer (1% trifluoroacetic acid in water) is then added to the gel pieces. The cycle of
peptide extraction and rehydration was performed two more times and the extracted
material was dried by vacuum centrifugation and reconstituted in 6.5 uL of 3%
acetonitrile/5% formic acid in water.

In-Solution Protein Digestion Protocol: 100 pg of protein sample was dissolved in 7 M
Urea/ 2 M Thiourea and 100 mM NH4CO3 to a final volume of 20 pL and subjected to
reduction in 10 mM DTT for 45 min at 370C, followed by alkylation in 55 mM
iodoacetamide for 60 minutes at room temperature. Each sample was incubated with 1
pg Lys-C (Roche Diagnostics, Indianapolis, IN) for 4 hrs at 370C and then diluted 9-fold
in a solution of 100 mM NH4CO3 in water. 1 pg of trypsin was added and the sample was
incubated at 370C overnight. The digested sample was concentrated and desalted using
an Oasis @ HLB 5mg cartridge (Waters Corporation, Milford, MA). Peptides were eluted
from the HLB cartridge with 1 mL of 0.1% formic acid in 70% acetonitrile 1/30% water and
dried by vacuum centrifugation and reconstituted in 100pL of 3% acetonitrile/5% formic
acid in water.
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Reverse Phase Chromatography and Mass Spectrometry: Peptide samples prepared
from in-gel digestion were analyzed by reverse phase liquid chromatography tandem
mass spectrometry (LC-MS/MS) using an LTQ-Orbitrap (Thermo Scientific, San Jose,
CA) equipped with a custom nanospray source (James A. Hill Instrument Services,
Arlington, MA). 6 pL of each 6.5 pL peptide extract was injected on to a 15 cm ReproSil-
Pur C18-AQ 3 pm reverse phase resin (Dr. Maisch GmbH, Ammerbuch-Entrigen,
Germany) packed into a 15 pm tip, 75 pm inner diameter fused silica column prepared
in-house and analyzed by a linear gradient of mobile phase A (0.1% formic acid in water)
and mobile phase B (0.1% formic acid in 90% acetonitrile/10% water), performed from
5% B/95% A to 65% B/35% A in 70 minutes at 200nL/min using an 1100 Series
Nanoflow Pump (Agilent Technologies, Santa Clara, CA). Data dependent MS/MS were
collected in the LTQ for the top ten most intense ions observed in the LTQ-Orbitrap
survey scan, taken over an m/z range of 300 to 1800 at resolution 60,000 (for m/z at
400) and lock mass injection of polydimethylcyclosiloxane for internal calibration at m/z
445.120025. Dynamic exclusion was employed and set to a precursor repeat selection
of 2 within 20 seconds and exclusion for 60 seconds, with an early expiration from the
exclusion list set for a detection of a signal to noise threshold of 4 in 2 consecutive scans.

Peptide samples prepared from in-solution digestion were also analyzed by LC-MS/MS.
2 pL of each 100 pL peptide sample was injected on to a reverse phase column as
described above, and analyzed using a linear reverse phase gradient from 5% B/95% A
to 65% B/35% A in 100minutes. Dynamic exclusion was set to a set to a precursor
repeat selection of 1 within 20 seconds and exclusion for 60 seconds, with an early
expiration from the exclusion list set for a detection of a signal to noise threshold of 4 in
2 consecutive scans.

Mass Spectra Database Matching and Validation: Using Spectrum MillTM Rev

B.03.03.070 Extractor (Agilent, Santa Clara, CA), all captured MS/MS spectra were
filtered (requiring sequence tag length > 1) and redundant spectra (identical m/z
observed within a 40 second window) were merged. Spectrum Mill search parameters
included:

- carbamidomethylation of cysteines,
- 50% minimum matched peak intensity,
- precursor mass tolerance of +/- 0.05 Da for orbitrap scans,
- product ion mass tolerance of +/- 0.7 Da,
- <3 missed tryptic cleavages,
- variable modification mode - allowing for multiple modifications of oxidized

methionine, conversion of glutamine to pyroglutamic acid, deamidation of
asparagine, acetylated lysine, phosphorylation of tyrosine, threonine and serine.
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- reverse database search, based on the target-decoy strategy 2 and described
below.

MS/MS spectra matched via these search parameters were marked as valid using
Spectum Mill Autovalidation using 4 parameters:

1. charge state (+1, +2, +3, or +4)
2. scored peak intensity (SPI)
3. peptide scores (representing the match between the observed spectra and a

theoretical spectrum from the input protein database), where rank1 indicates the
score of the best matching peptide and rank2 indicates the score of the second
best matching peptide.

4. reverse database peptide scores (representing the match between the observed
spectra and a theoretical spectrum from the reversed input protein database,
where each sequence is reversed), where revrankl indicates the score of the best
matching peptide from the reverse database

Proteins were searched in Spectrum Mill protein details and peptide mode as described
below. In protein details mode, a protein group must have an additive peptide score of >
20, where individual peptides must meet the following criteria:

1. Peptides of charge state +1, +3 or + 4 must have:rankl >8 and SPI >70% and
rankl-revrankl >2 and rankl-rank2 >2.

2. Peptides of charge state +2 must have: [rank1 >8 and SPI >70% and rankl-
revrankl >2 and rankl-rank2 >2] or [rankl >6 and SPI >90% and rankl-
revrankl >1 and rankl-rank2 >1]

In peptide mode, a peptide must have: rankl >13 and SPI > 70% and rankl-revrankl >
2 and rankl- rank2 >2.

Discovery Proteomics of Purified Mitochondrial Extracts: Pure mitochondria from 14
mouse tissues were analyzed according to the in-gel digestion protocol described above.
A total of 285 LTQ-Orbitrap instrument files for 280 gel slices were collected,
representing 4,475,842 tandem mass spectra. In five instances due to instrument failure,
analyses were continued without re-injection of sample; data from these partial analyses
were included in this study. The instrument files for all gel slices and tissues were
concatenated prior to database search. Spectrum Mill Extractor merging of identical
spectra yielded 4,241,196 spectra and quality filtering yielded 1,643,930 spectra. These
spectra were then searched against the mouse Refseq database as described above.
Validation was performed using protein grouping in protein details mode, enabling the
validation of peptides grouped across all 14 tissue mitochondrial samples. This allows
for the consideration, for example, of protein identifications that do not meet the
validation criteria in an individual tissue. The validation in peptide mode was then
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performed as described above. Validation across all 14 tissue mitochondria yielded
416,432 validated spectra and 48,206 unique peptide identifications. In addition, a
technical replicate of liver samples was performed.

Corrected false discovery rates (cFDR) are shown in Figure S16 for each tissue,
based on our training sets.

Subtractive Proteomics of Crude and Pure Mitochondrial Extracts: Crude and pure
mitochondria from ten tissues were purified and in-solution digestion was performed as
described above. Four technical replicates of crude and pure cerebellum samples were
performed, while single samples were analyzed for the other nine tissues (cerebrum,
brainstem, spinal cord, kidney, liver, heart, skeletal muscle, testis and placenta). Spectra
from each tissue were separately searched from databases matches using SpectrumMill.
We considered proteins to be crude-enriched if they were found only in crude extracts,
or if they were found at 2 twofold higher peak intensity in crude extracts compared to
pure in a tissue (and similarly for pure-enriched). For the few genes found to be crude-
enriched in some tissues and pure-enriched in others, the label was assigned based on
a majority vote. Genes not detected by subtractive proteomics, or those with under
twofold difference in protein abundance, were considered inconclusive in terms of
enrichment.

Mass Spectrometry Protein Abundance Measurements: We used two estimates of
protein abundance generated by SpectrumMill: coverage (the percent of protein residues
identified by MS/MS spectra) and total peak intensity (the sum of peak areas from
extracted ion chromatograms (XIC) for all sequence identified peptides). While coverage
is useful for estimating relative abundance between proteins, it quickly saturates for
abundant molecules. In contrast, total peak intensity correlates with relative abundance
of a given protein across samples, but it is difficult to compare between proteins since
the number of potential peptides can vary widely. Thus we use coverage for cross-
protein comparisons and total peak intensity for cross-sample comparisons. Total peak
intensity values were log 10 transformed in data provided in Supplemental Data and
Tranche.

Mass Spectrometry Data Access: MS RAW files and identified peptides for both the
discovery and subtractive proteomics are available in Tranche
(www.proteomecommons.org/dev/dfs). In addition, peptide level information is provided
in Table S3 and protein level information is provided in Table S5 (aggregated by gene
locus, with each gene inheriting the highest score of any splice form).

Integration of Genome-Scale Datasets: Genome-scale datasets of mitochondrial
localization were created and integrated using a Naive Bayes approach as previously
described 3. Below we provide specific details on the scoring of these datasets.
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Proteomics: one of 12 categories combining discovery proteomics abundance

(coverage) with subtractive proteomics (Figure 2D) or NA if not detected
Targeting sequence: 0 if no mitochondrial targeting signal was detected by TargetP

v1.1 4, otherwise a confidence score of 1-5 (1 is most confident)
Protein domain: Following MitoPred's methodology 5 for identifying mitochondrial

domains, we used -99,000 SwissProt 6 eukaryotic proteins (release 54.1) containing

annotations for 'subcellular location', which we filtered (excluding low-confidence

annotations containing 'by similarity', 'potential', 'probable', and 'possible') and
partitioned into two sets: Smito containing 3,852 mitochondrial proteins and S-mito
containing 27,873 non-mitochondrial proteins. Pfam domains for each Swissprot protein

were obtained from Swissprot annotations. We assigned each Pfam domain a

categorical score (M+, M-, M+, NA) based on whether the SwissProt proteins containing
the domain were exclusively from Smito, exclusively from S-mito, found in both, or not
present in either set. Each mouse gene received a categorical score based on the best
score of any of its Pfam domains. Protein domains for all mouse proteins were
determined using HMMER (with expect parameter=0.1 and using pfam TC trusted
threshold cutoffs) to search 7,973 Pfam domains
(ftp.sanger.ac.uk/pub/databases/Pfam/current_release, 11/22/2006). Note that for cross-
validation studies, all mouse proteins were removed from Smito to avoid overestimating
sensitivity.

Yeast homology: 1 if the best S.cerevisiae homolog (BlastP expect < le-3, coverage
>50% of longer gene) was annotated as mitochondrial (825 mitochondrial genes within
the Saccharomyces Genome Database, 12/27/06), 0 otherwise

Ancestry: best BlastP expect value from R. prowazekii homolog, or NA if expect >
le-3

Transcriptional coexpression: Genes were assigned a score 0-50 based on
transcriptional co-expression with Tmito across the GNF1 survey of gene expression
across 61 mouse tissues 7 (GEO accession GSE1133). The score represents the
number of Tmito genes found within a gene's 50 nearest neighbors (Euclidean distance) 8
Probe set IDs were mapped to RefSeq IDs via SymAtlas (symatlas.gnf.org, 12/28/06),
excluding probe sets matching more than one protein. Mouse genes were assigned the
highest score of any splice form, or NA if not available. Microarray rows were clipped to
smooth low intensity values (any expression level < 20 was replaced with 20) and
normalized to mean=0, variance=1. Rows with no post-normalization value > 1.5 were
excluded. A total of 15,778 mouse genes had probes meeting the filtering requirements.

Transcriptional activation during mitochondrial proliferation: We used time-course
microarray studies (GEO accession GSE4330) to assess gene transcription in mouse
myoblasts during overexpression of PGC-la 3,8, which is known to induce mitochondrial
proliferation. Expression intensities were sample normalized via linear fit to the median
scan. Each gene was assigned an induction score measured in fold-change; dividing

129



average intensity in PGC-1 a treated cells (average of replicates on days 2,3) by average
intensity in GFP control cells. Only those probes showing significant difference between
case and control (p<0.05, measured by 1-tailed heteroscedastic student t-test) were
considered (3,438 probe-sets corresponding to 2,944 genes).

The scores for each method are available for all 23,640 mouse genes in Table S5C.
The dataset scores were converted to log-likelihood ratios at predefined ranges shown in
Table S7. In calculating log-likelihood values, we added small pseudocounts (le-4) in
order to avoid mathematical errors when the denominator was zero.

Epitope-Tagging with GFP and Microscopy: cDNAs cloned into the Gateway entry
vector pDONR 223 were obtained from the Human Orfeome collection and robotically
arrayed into BioRad HardShell 96 well plates. (Rual et al., Genome Research 2004)
These clones were recombined into the C-terminal GFP Gateway Destination vector
pcDNA6.2/C-EmGFP-DEST (Invitrogen) in 96 well plate format by adding 0.5 pL of LR
clonase recombination enzyme (Invitrogen) to wells containing 1 pL of destination vector
DNA (75 ng/pL), 1.5 pL entry vector, 1 pL of 5x LR buffer, and 1 pL of TE. These
mixtures were incubated overnight at 25 oC.

Competent DH5a cells were arrayed in Marsh 96-well plates in 8 pl aliquots and
transformed with 2 pl of the LR reaction mixture. After 30 minutes of incubation on ice,
these plates were heat shocked for 45 seconds at 42 'C using a thermal cycler and
incubated on ice for 5 minutes. We then added 105 pL of SOC to each well, incubated
the plates at 37 oC and 225 rpm for 1 hour, and then transferred the entire
transformation mixture to deep-well plates containing 1 mL of LB with ampicillin. Cultures
were grown overnight at 37 oC and 225 rpm. DNA was extracted using the PrepEase 96-
well Plasmid Kit (USB Corp.).

The quality of these GFP-labeled clones was then assessed using three independent
metrics. First, DNA concentrations and OD260/280 ratios were measured using a
Nanodrop spectrophotometer. 418 out of 470 clones (89%) had both a yield of > 1.0 pg
of DNA and an OD 260/OD 280 ratio between 1.6 and 2.2, indicating a high overall
quality of DNA preparations. In addition, 60 clones (12 clones per 96 well plate) were
selected and subjected to PCR analysis using a T7 forward primer and a GFP reverse
primer. Analysis of the PCR products by gel electrophoresis revealed that 56/60 clones
(93%) had the correct insert size. Finally, the same 60 clones were analyzed by forward
and reverse sequencing using the T7 and GFP primers. We assessed our sequences for
the presence of an intact start codon, the absence of a premature stop codon before the
C-terminal GFP, and for the correct identity of the gene insert by BLAST. 57 out of 60
clones (95%) passed all sequencing criteria.

Approximately 4x10 3 HeLa cells in 100 pL medium (DMEM with 10% FBS, 1x GPS)
were seeded in Falcon 96-well Imaging Plates using a MultiDrop Combi robot and
incubated at 37 oC in a humidified 5% C02 atmosphere (Thermo Scientific). The
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following day, the medium was replaced and transfection reagents were added to each

well. We created our transfection reagents by first diluting Lipofectamine LTX

(Invitrogen) 1:10 in OptiMEM I Reduced Serum Medium (Invitrogen). 2 pL of this solution

was then added to a mixture of 1 pL DNA that had been diluted with 17 pL OptiMEM I.

The complete solution was incubated at RT for 30 minutes prior to transfection.
48 hours post transfection, we stained our cells by replacing the media with our

staining solution, which consisted of full medium with 50 nM MitoTracker Red CMXRos
and 1:1000 diluted Hoechst 33258 (Molecular Probes). Cells were stained in this
solution for 30 minutes at 37 0C in a humidified 5% CO02 atmosphere. Following staining,
the cells were washed twice with medium and then fixed with 3.7% formaldehyde in PBS
for 15 minutes at RT. The cells were then washed twice more with PBS before
continuing with microscopy.

Fluorescence microscopy was performed with a 63x oil-immersion objective on a
Zeiss wide-field microscope. Multiple images using DAPI, FITC, and Texas Red filters
were captured for the constructs using a 12-bit CCD camera and reviewed for
colocalization of GFP and MitoTracker red signals.

Creation of MitoCarta
MitoCarta was created as the union of the 951 Maestro predictions (scores > 4.56,
corresponding to 10% cFDR), the 131 genes validated by GFP-tagging and microscopy,
and the 591 Tmito genes with experimental evidence of mitochondrial localization from
literature. The full MitoCarta dataset is available at
www.broad.mit.edu/publications/MitoCarta. We estimate the completeness of MitoCarta
by the following steps. Our Maestro set includes 498/591 Tmito genes (84% sensitivity)
and 453 predictions with an estimated 29.6% cFDR, indicating that 319 predictions
should be bona fide mitochondrial genes (note that the 29.6% cFDR of predictions
exceeds the 10% cFDR for training data due to their lower average log-likelihood scores).
Based on this sensitivity, in addition to Tmito there should be an additional 538
mitochondrial genes (538=453/84%) - or a total of 1129 bona fide mitochondrial genes
(1129=591+538). We validate by GFP-tagging 54 genes not Maestro predicted. Thus
out of the estimated 1129 bona fide mitochondrial genes, we capture 964 (591 + 319 +
54) or 85% in MitoCarta, and we miss an estimated 165 genes. We estimate that the
remaining 134 Maestro predictioned genes (1098-964=134) are false positives, and
thus the estimated false discovery rate of MitoCarta is -10%.

Transcript and Promoter Analysis: Promoter features for RefSeq NM annotations
(UCSC mm8 assembly, 8/23/07) were annotated as follows: CpG islands within +/-
200bp of transcription start (UCSC annotation); TATA motif weight matrix 9 within +/-
50bp of transcription start. mRNA abundance was measured by median expression
value within the mouse GNF tissue atlas. Transcription factor motif assignments to
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human gene promoters were downloaded from MSigDB 10 based on 4-species
conservation, and mapped to mouse via HomoloGene. All 67 motifs with >15 MitoCarta
members were then tested for enrichment in MitoCarta promoters compared to all gene
promoters using the hypergeometric distribution, with Bonferroni correction for multiple
hypotheses (Table S10).

Concordance of mRNA Expression and Protein Expression: MitoCarta protein
expression values were compared to mRNA expression values from matched tissues
using the pairwise concordance statistic developed previously 1. mRNA expression data
(gcRMA) from the GNF1M tissue atlas 7 was obtained for our fourteen tissues by
calculating the mean expression value for technical replicates of the matching tissues
(hypothalamus and substantia.nigra were averaged together for "brainstem", and
spinal.cord.lower and spinal.cord.upper were averaged together for "spinal cord").
Microarray rows were clipped to smooth low intensity values (any expression level < 40
was replaced with 40) and rows with no value > 40 were excluded. The protein
expression (peak intensity) was quantile normalized across tissues based on total peak
intensity for all MitoCarta genes detected in each tissue. Next, the protein expression
values were divided by the protein length (number of amino acids). We cannot compare
our proteomics expression data (generated per mass of mitochondria) directly to mRNA
expression (generated per tissue) since different tissues have extremely different
mitochondrial quantity. Thus, using the ELISA assay results described in Experimental
Procedures, we normalize our protein expression values by the mitochondrial quantity
per tissue. For each gene, we computed the pairwise concordance statistic (number of
pairs of tissues for which mRNA and protein expression values are concordant, divided
by number of all possible tissue pairs). A pair of tissues (a, b) is concordant if [(mRNA(a)
> mRNA(b)) and (prot(a) > prot(b))] or [(mRNA(a) < mRNA(b)) and (prot(a) < prot(b))],
where mRNA(a) and prot(a) represent the normalized mRNA and protein levels
respectively. Using the two technical replicates for each tissue from the mRNA atlas, we
also computed pairwise concordance for mRNA duplicates. By the above definition, we
find over 60% pairwise concordance between protein and mRNA expression 7 across the
fourteen tissues. This is particularly high given that technical replicates of mRNA
expression show only 80% pairwise concordance.

Eukaryotic phylogeny: The shown phylogeny of eukaryotic species in Figure 6C is
based on a phylogenetic reconstruction method previously described 12. The resulting
tree was robust to several phylogenetic reconstruction methods using different aligned
protein sequences and using small subunit RNA, except for the positioning of three
deep-branching protest species: E. histolytica, G. lamblia, and E. cuniculi. These
branches also received low scores in bootstrap analysis. Because of the uncertainty in
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their phylogeny, we didn't count the loss of CI in E. histolytica as a separate evolutionary
loss event even though this would be implied in the phylogeny displayed in Figure 6C.
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Supplementary Material for Chapter 4
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Supplementary Data: Upstream open
reading frames cause widespread
reduction of protein expression and are
polymorphic among humans

Supplementary Figures, Tables, and Notes
Below are Supplementary Figures S1-S6, Supplementary Tables S1, S2, S4, and
Supplementary Notes. Supplementary Table S3 is a large excel file that is available
online.
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Supplementary Figure 1: uAUG conservation.
(A-B) Histograms of trinucleotide conservation scores are plotted for all 64 trinucleotides
(gray curves) and for the ATG trinucleotide (red curve) within mouse (A) and human (B)
5' UTRs. The conservation score is the number of species with the given trinucleotide
aligned and conserved within 5' UTR multiple alignments of 30 species (A) or 28 species
(B). Note that >97% of ATG trinucleotides define a uORF, whereas the remaining -3%
of ATGs are in-frame with the main coding sequence without an intervening stop codon.
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Supplementary Figure 2: Distribution of uORFs by mRNA expression.
Plotted are the distributions of genes with uORFs based on mean mRNA expression
across 79 human tissues (A) and 61 mouse tissues (B) from the GNF tissue atlas, using
sliding windows of 1000 genes. X-axis shows rank of mRNA expression from lowest
(left) to highest (right), and Y-axis shows the fraction of genes in the window that contain
uORFs. Dashed lines indicate the 90th percentile, which is equivalent to expression
values of 1510 and 777 for human and mouse atlases, respectively.
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Supplementary Figure 3: Cumulative distribution of expression values.
Plotted are the empirical cumulative distribution of expression of genes with uORFs (red
curves) and genes without uORFs (black curves) for six independent datasets. Statistic
mr indicates the median reduction of expression from uORF-containing vs. uORF-less
genes, with p-values computed by permutation testing (10,000 permuations of uORF
labels). (A) Expression of proteins (first row), mRNA (second row), and protein/mRNA
ratios (third row) are shown for genes detected by MS/MS and microarrays in 4 studies
(columns). (B) Expression of proteins detected by MS/MS in 2 additional studies of
mouse adipocyte cells and embryonic stem cell differentiation.
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Supplementary Figure 4: Cumulative distribution of expression values, all genes.
Plotted are the empirical cumulative distribution of expression of genes with uORFs (red
curves) and genes without uORFs (black curves) for four independent datasets. Unlike
Fig. S3, these plots include the 10% most highly expressed genes. Statistic mr indicates
the median reduction of expression from uORF-containing vs uORF-less genes, with p-
values computed by permutation testing (10,000 permuations of uORF labels).
Expression of proteins (first row), mRNA (second row), and protein/mRNA ratios (third
row) are shown for genes detected by MS/MS and microarrays in 4 studies (columns).

As discussed in the Supporting Information, the bias against uORFs in the most highly
expressed genes causes a shifted distribution of mRNA expression for uORF-containing
genes.
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Supplementary Figure 5: Effects of uORF properties on liver protein levels.
(A-F) Cumulative distributions of protein expression are shown for mouse gene loci
lacking uORFs (black curve) or with uORFs of different properties (red, pink, and gray
curves). In each plot, the legend contains the feature name, the number of gene loci in
each subset (N), the one-sided Kolmogorov-Smrinov (KS) statistic (D) and p-value (p),
where D measures the maximum deviation in cumulative distribution between uORF-
less genes and the uORF subset. (G) Schematic of uORF features, where feature
subsets are listed along asterisks indicating statistical significance of the reduced protein
distribution compared to uORF-less genes (*p< 0.05, **p< 0.01, ***p< 0.001 based on
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Bonferroni-corrected KS p-values). (H) KS test D statistics and associated p-values for
feature subsets compared against each other. We note that other MS/MS datasets were
too small to provide significant results for uORF subsets.
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Supplementary Figure 6: Properties of uORFs assayed by mutation experiments.
The 25 uORFs assessed by mutation experiments (Xs) are overlaid on histograms of all
mouse uORFs, with regard to seven 5' UTR or uORF properties (A-G). Color indicates
disease-related genes (gray) and all other constructs (red). Histograms in panels B-F
show only genes with a single uORF. In panels E-G, Xs are offset vertically to show the
number of selected uORFs in each bin.
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Supplementary Table 1: List of previously known eukaryotic genes with functional
uORFs, including selected references. These were manually curated from PubMed
articles referring to "upstream open reading frames" or "uORFs".

# Gene
ABI3

ADH5
AdoMetDC

AN0244

AN1179

arg-2

ARG-2
AS

AT(1)R
ATB2/AtbZIP11
ATF4

ATF5

AtMHX
BACE1

BCKD-kinase
bcl-2
brlA

C/EBPalpha
C/EBPbeta

Cat-1

CBS1
CD36
CHOP

Cited2
CLN3
c-mos
CPA1

cpcA (GCN4)
Cx41
Cycl
CYP27
DCD1
ERalpha
Esi47
ETT

Clade(s)
plant
mammal
mammal, plant

fungi
fungi
fungi

fungi
mammal
mammal

plant
mammal

mammal

plant
mammal
mammal

mammal
fungi
mammal

mammal
mammal

fungi
mammal
mammal

mammal
fungi
mammal

fungi

fungi
animal
fungi
mammal

fungi
mammal
plant
plant

References
(Ng et al., 2004)
(Kwon et al., 2001)
(Law et al., 2001; Mize et al., 1998; Raney et al.,
2000; Nishimura et al., 1999; Chang et al., 2000;
Franceschetti et al., 2001; Raney et al., 2002;
Ruan et al., 1996)

(Galagan et al., 2005)
(Galagan et al., 2005)
(Freitag et al., 1996; Luo and Sachs, 1996; Wang
et al., 1998; Wang et al., 1999; Wang and Sachs,
1997a, b)

(Shen and Ebbole, 1996)
(Pendleton et al., 2005)
(Martin et al., 2006)
(Wiese et al., 2004)
(Harding, et al., 2000; Harding, et al., 2003; Blais,
et al., 2004)

(Watatani, et al., 2008)
(David-Assael et al., 2005)
(Rogers et al., 2004)
(Muller and Danner, 2004)
(Harigai et al., 1996; Salomons et al., 1998)
(Han and Adams, 2001)
(Lincoln et al., 1998)
(Lincoln et al., 1998)
(Fernandez et al., 2002; Yaman et al., 2003)
(Tzagoloff and Dieckmann, 1990)
(Griffin et al., 2001)
(Jousse et al., 2001)
(van den Beucken et al., 2007)
(Polymenis and Schmidt, 1997)
(Steel et al., 1996)
(Messenguy et al., 2002; Nyunoya and Lusty,
1984; Gaba et al., 2005; Linz et al., 1997)

(Wanke et al., 1997; Hoffmann et al., 2001)
(Meijer et al., 2000)
(Pinto, et al., 1992)
(Lodhi et al., 2003)
(McIntosh and Haynes, 1986)
(Kos et al., 2002; Pentecost et al., 2005)
(Shen, et al., 2001)
(Nishimura et al., 2005)

Pubmed ID
15159632
11368338

11489903;9829983;
10829027;10570962;
11029703;11139406;
11741992;8939886

16372000

16372000

8770589;8636015;
9819438;10608810;
8995256;8995256

10679190

15851478

16504375

15208401

11106749;12667446;
15314157

18055463

15710632

14981268

11073965

8649841;9645350

12586880

9545285

9545285

11684693;12757712

18155664

11433350

11691921

17499866

11753385

8891345

12172963;6086650;
16285926;9083042

9004217;11553722

10896676

1327957

12909643

17692847

12147702;15607532

11244122

16227452



Fli-1
FOL1

GADD34

GATA-6
GCN4
GDNF

Gld
gna-2
GR (NR3C1)
H(+)-ATPase
HAC1
HAP4
HCS1

HER-2/neu

HIAP2
HOL1

Huntington
IN02
LBP
Lc
LEU4
LPA
MDM2
MKK1
Mona (aka
Gads)
MOR
MP

Mrp2
MS
MtHAP2-1
MVP
myb-7
MYEOV
NOD2
ODC

Opaque-2
P27 (Kipl)
PEAMT
PET111
PPR1
PR-39
R genes
RAR beta 2
RPC11
RPL24

(Lohmer, et al., 1993)
(Gopfert et al., 2003)
(Tabuchi et al., 2006)
(Strick and Fox, 1987)
(Kammerer et al., 1984)
(Wu et al., 2002)
(Wang and Wessler, 1998)
(Reynolds et al., 1996)
(Zhang and Dietrich, 2005)
(Nishimura et al., 2004)

mammal
fungi
mammal
mammal
fungi
mammal
C. elegans
animal
mammal
plant
fungi
fungi
plant
mammal

mammal
fungi
mammal
fungi
protist
plant
fungi
mammal
mammal
fungi
mammal

mammal
plant
mammal
mammal
plant
mammal
plant
mammal
mammal
plant, mammal

8439744

12837699

16960350

16679454

6096561

12213322

12890013

8769409

1625572

15270688
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(Sarrazin et al., 2000)
(Zhang and Dietrich, 2005)
(Lee, et al., 2009)
(Takeda et al., 2004)
(Gaba et al., 2001)
(Tanaka, et al., 2001)
(Lee, et al., 2004)
(Lee and Schedl, 2004)
(Diba et al., 2001)
(Lukaszewicz et al., 1998)
(Saloheimo et al., 2003)
(Forsburg and Guarente, 1989)
(Puyaubert et al., 2008)
(Child et al., 1999; Mehta et al., 2006; Spevak et
al., 2006)

(Warnakulasuriyarachchi et al., 2003)
(Wright et al., 1996)
(Lee et al., 2002)
(Eiznhamer et al., 2001)
(Mittag et al., 1997)
(Wang and Wessler, 2001)
(Beltzer et al., 1986)
(B. R. Zysow, et al., 1995)
(Brown et al., 1999; Jin et al., 2003)
(Zhang and Dietrich, 2005)
(Guyot et al., 2002)

(Song et al., 2007)
(Nishimura et al., 2005)
(Zhang et al., 2007)
(Col et al., 2007)
(Combier et al., 2008)
(Holzmann et al., 2001)
(Locatelli et al., 2002)
(de Almeida et al., 2006)
(Rosenstiel et al., 2007)
(Kwak and Lee, 2001; Ivanov et al., 2008)

10757781
1625572
19131336
15173203
11707416
11457495
15105376
11489903
11180405
9670558
12581366
15596718
18156294
10446211;16598037;
17045969

12867997
8955402
12466534
11251853
9271214
12890013
2420798
7749816
10523842;12730202
1625572
12487779

17284463
16227452
17065236
17683808
18519645
11297743
11855732
16275643
18096043
1782674;18626014

plant
mammal

plant
fungi
fungi
mammal

plant
mammal
fungi
plant



81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

SAC51

SCHO9
SCO1

SEPT9
SLC
SOCS-1

Sp3
StuAp
Tie

TIF 4631
TPK1
TPO

UCP2
V(lb)
VAR2CSA

VEGF-A
Vigilin
Wntl 3
WSC3
Yap1p

Yap2p
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plant
fungi
fungi
mammal
mammal

mammal

mammal

fungi
mammal

fungi
fungi
mammal

mammal
mammal

parasite
mammal
mammal
mammal

fungi
fungi
fungi

(Imai et al., 2006)
(di Blasi et al., 1993)
(Krummeck et al., 1991)
(McDade, et al., 2007)
(Calkhoven et al., 2003)
(Schluter et al., 2000)
(Sapetschnig, et al., 2004)
(Wu and Miller, 1997)
(Park et al., 2006)
(Goyer et al., 1993)
(Zhang and Dietrich, 2005)
(Stockklausner et al., 2006)
(Hurtaud et al., 2006; C. Pecqueur, et al., 2001)
(Nomura et al., 2001; Rabadan-Diehl et al., 2007)
(Amulic, et al., 2009)
(Bastide et al., 2008)
(Rohwedel et al., 2003)
(Tang et al., 2008)
(Zhang and Dietrich, 2005)
(Vilela et al., 1998; Vilela et al., 1999)
(Vilela et al., 1998; Vilela et al., 1999)

16936072

8442384

1782674

17468182

12704079

10679190

15247228

8955402

16457819

8336723

1625572

16679454

16845607;11098051

11287361;17355321

19119419

18304943

14504658

18155664

1625572

9469820;10357825

9469820;10357825



Supplementary Table 2: Listed are the 25 gene UTRs for which uORFs were tested

using reporter constructs. Corresponding sequences for each construct are listed in

Table S4. Columns 5 and 7 report the average protein and mRNA expression for the

uORF-containing construct as a percent of the uORF-less construct expression values.

Column 6 and 8 represent significance of expression difference between the construct

containing vs lacking the uORF (based on two-sided t-test). Column 9 represents the

mean protein expression value divided by the mean mRNA expression value, and

column 10 represents significance (one-sided t-test). Columns 11-17 (next page) list the

construct uORF properties, which are described in the Methods section. Construct

numbers 18.1-18.8 show the eight constructs for FXII, of which the first four lack uORFs

and the last four contain uORFs (see Table S4).

# Category Entrez ID

random
random
random
random
random
MS/MS
MS/MS
MS/MS
MS/MS
MS/MS
MS/MS
MS/MS
MS/MS
MS/MS
MS/MS
puORF
puORF
puORF
puORF
puORF

disease-related
disease-related
disease-related
disease-related
disease-related

F12 exp
F12 exp
F12 exp
F12 exp
F12 exp
F12 exp
F12 exp
F12 exp

72479
69656
225010
434446
271981
233799
18408
18673
17850
66419
72416
235582
56046
67809
94280
841
3791
2161
4158
50831
3043
5573
3664
6736
6690
2161
2161
2161
2161
2161
2161
2161
2161

Protein
Symbol Expr:

% -uORF

Hsdl2 65
Pir 62

Lycat 60
Ccdcl3 58

A630047E20Rik 51
Acsm2 50

Slc25a15 45
Phb 42
Mut 39

Mrplll 1 33
Lrpprc 26
Glyctk 27
Uqcc 25

Fam82a2 21
Sfxn3 20

CASP8 69
MC2R 63
F12 50
KDR 50

TAS2R3 42
HBB 30

PRKAR1A 5
IRF6 4
SRY 0

SPINK1 0
F12 C allele 100

F12_non uORF1 110
F12_non_uORF2 87

F12_altstart 124
F12 T allele 50

F12_altuORF1 45
F12_altuORF2 44
F12_altuORF3 32
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8

Protein
Expr:
pval

3.E-04
2.E-12
4.E-10
1.E-06
2.E-05
2.E-07
2.E-08
3.E-04
9.E-12
1.E-05
5.E-07
7.E-12
3.E-07
2.E-08
7.E-11
2.E-04
2.E-03
2.E-06
5.E-09
7.E-06
4.E-13
6.E-19
1.E-17
2.E-12
8.E-17

NA
7.E-01
4.E-02
1.E-02
2.E-06
8.E-07
4.E-06
1.E-07

mRNA
Expr:

% -uORF

76
101
102
85
86

112
113
69
101
94

114
82
83
105
101
108
106
86
89
96
112
88
81
80

103
100
100
99
95
86
128
113
109

mRNA
Expr:
pval

2.E-06
8.E-01
7.E-01
2.E-02
2.E-02
1.E-02
3.E-02
6.E-06
9.E-01
7.E-01
2.E-02
3.E-04
7.E-04
2.E-01
4.E-01
1.E-01
4.E-01
1.E-05
3.E-02
2.E-01
1.E-01
2.E-02
1.E-03
3.E-04
4.E-01

NA
5.E-01
5.E-01
1.E-01
1.E-05
2.E-07
9.E-02
1.E-01

Prot/
mRNA
Expr:

% -uORF
85
62
59
69
59
44
40
60
39
35
23
33
30
20
20
64
59
58
56
44
27
5
5
1
0

100
111
87
131
58
35
39
29

Prot/
mRNA
Expr:
p-val

6.E-02
5.E-06
2.E-05
3.E-03
3.E-04
6.E-05
4.E-07
5.E-04
9.E-04
9.E-05
4.E-03
6.E-08
1.E-04
8.E-06
5.E-04
3.E-03
7.E-03
9.E-06
6.E-04
2.E-05
3.E-04
1.E-09
2.E-05
4.E-04
3.E-05

NA
3.E-04
3.E-05
3.E-03
2.E-05
2.E-07
2.E-06
8.E-07



uAUG uORF- #species w/# uORFs 5' UTR cap-uORF uORF- # species wi
# Symbol in 5' UTR len sequence distance uORF len. CDS conserved

context distance uORF

1 Hsdl2 1 168 0 91 66 12 12

2 Pir 1 274 1 9 39 227 1

3 Lycat 1 188 0 61 9 119 14

4 Ccdcl3 1 214 0 66 72 77 17

5 A630047E20Rik 1 235 0 121 21 94 10

6 Acsm2 1 111 0 19 42 50 1

7 Sic25al5 1 174 0 118 60 -4 15

8 Phb 1 80 0 29 18 33 17

9 Mut 1 95 0 85 24 -14 14

10 Mrpill 1 78 1 14 21 43 20

11 Lrpprc 1 273 0 69 63 141 1

12 Glyctk 1 137 1 104 21 12 20

13 Uqcc 1 297 0 71 132 94 17

14 Fam82a2 1 56 1 31 33 -8 14

15 Sfxn3 1 220 1 142 54 24 13

16 CASP8 1 303 0 157 24 122 0

17 MC2R 1 302 0 31 207 64 2

18 F12 1 49 0 44 9 -4 1

19 KDR 1 177 0 71 60 46 0

20 TAS2R3 1 61 0 15 45 1 2

21 HBB 1 50 0 21 42 -13 0

22 PRKAR1A 1 153 1 56 126 -29 0

23 IRF6 1 263 0 214 108 -59 0

24 SRY 2 148 0 73 15 60 0

25 SPINK1 2 120 1 66 9 45 0

18.1 F12 C allele 0 49 NA NA NA NA NA

18.2 F12_nonuORF1 0 49 NA NA NA NA NA

18.3 F12_non_uORF2 0 49 NA NA NA NA NA

18.4 F12 altstart 0 49 NA NA NA NA NA

18.5 F12 T allele 1 49 0 44 9 -4 1

18.6 F12 alt uORF1 1 49 0 6 18 25 NA

18.7 F12_altuORF2 1 49 0 20 33 -4 NA

18.8 F12 altuORF3 1 49 1 8 45 -4 NA
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Supplementary Table 4: UTR sequences synthesized for reporter construct
experiments. Column 2 lists the Gene Symbol and RefSeq ID of the uORF-containing
gene. Column 3 lists the two sequences synthesized; the two tested variants are listed in
parentheses, the uORFs are highlighted in red, and the main ORF ATG or alternate in-
frame ATGs are in bold. Each sequence is flanked on either end with the Xhol cut site
'gctagc' and, when necessary, 1-2 additional residues to keep the main ORF ATG in-
frame with the luciferase sequence. For the 8 FXII constructs (18.2-18.8), the modified
residue is underlined.

# Gene IRefSeq Sequence

1 Hsdl2 gctagcTCTTGTAAGCTCTCGGTCTTGTAGGATCTCGGTCTTGTAGGAGGGCCGGTCCCCGAGCGGGTCTCGGGGCGGGGC
NM_024255 CCGGGGCGCGGCTAA(T/TGCGGAGAGAAAGTTCGCCTGTCACTCACAGCTCGCTGCTGTTCCACTGCCACCAAGTTCT

CTGAACTGCGAAGGTCATGTTgctagc
2 Pir gctagcAGAGAGCC(T/A)TGGGGCGGAGTCAGAGAATCCAAACCAGGGTAATAAAGGGTGTGTCCCCCGGTCCAAGGCCC

NM_027153 CTGAGACCTAGAGACTCCCGCCTTCTGGAGGCGGCTGAGCCGCGCGCGGCGGCGCCCGCAAC
AACCTGTCCTCCCTTTGCTGTGTCCCTGCCGCTGTGGAGTCTAGGCACCTCCGACTGTGGCCTCCCTCCTGGGCCTGCG
CTACTGCCCACTCAACATCAGAACTTTCTATAAACTTCAAAATGTTgctagc

3 Lycat gctagcGGTGGAGCCCGGAGGGACGCATTACTAAGGCGACGGGGCTCGACGCCTCCC CGCTTCGGG(TATGAATTAGCGG
NM_001081071 CGGGTTCTTCTCCCAGGTTGTGACCCCGTGGAGTCGCTGTCTCGCCCCAGTGTCCCCGCGACGTCGCGCGTTTCCCC

CGGTGTGTCCCAGGTGCGCGGCCCGCGGTGTCAGAATCATGTgctagc
4 Ccdc13 gctagcGAGGCCTGGGCACTGTTGCCTGTGAGGAGCAGTCGGTCCACCTTTCCCTTGCAGGGTGTTGGAAG(T/ATGAAATC

NM_001033784 CAGCATCTTCGCAGTGAGCTCCGGGAGACAGTCGATGAGAATGGGCGACTATATAAGCTGCTGAAGGAGAGGGACTTGA
GATCAAACACCTCAAGAAGAAAATAGAAGAGGACAGATTCGCCTTCACAGGGGCGTCTGGGATGTTgctagc

5 A630047E20Rik gctagcGGAGCGAGGTGCGCTCACCCTCGGGTTCTGAGCCGGGGACCCGGGAGGCCCGCGCGGACGGAGGCGTGTCG
NM_173032 CTCCGGCTGTCACCTTCCCTAGGCGGCCTCTTGTAGACGCGCCTGAA(T/ATGCAGGACACGGCCCACTAAGCACTGccA

GGCATAGCTTCCGCGCTTAGGAGCTCAACCCCCCAATCTCTGCGTCCCCAGATTCAGATCATCTTAAAGGATCCAAGACT
ACAAAATGTTgctagc

6 Acsm2 gctagcAGTGCTCTTCTCTCCACTG(T/ATGCTGCAGGAATTCTCAAACGACTTC CAAGAGGGAAATAGACAAAGCTACTGT
NM_146197 CAGAGAGAGTTCCAGAAGAAGACCAGAAGCTCTGACTATGTTgctagc

7 Slc25a15 gctagcGGAGGGCCCGAGGGCCGGACCCACAGGGCGACCTTAAAAATTGCCCGGGGGCCCGCGGCCGCCAGCGGAGCGC
NM_011017 GCGGGCGGCAGAGGGCGAGCCGGACACAGCCAGGGGGGGAT(T/ATGTGGTAATTCCTTCGGGAT(T/TGCCTTCCAGAGAATC

GCCTTCCACAGAAACCAGTAACGCCATGAAgctagc
8 Phb gctagcCACGCGCAGTATCCGGAGCTGGGGAATTC(T/ATGTGGAGGTCAGAGTGAAAGCAGGTGTGAGTGGAAGCAACAGA

NM008831 AGGAGTCATGTTgctagc
9 Mut

NM_008650
10 Mrp11

NM_025553

gctagcGGCGTCTGGGTTCGGTTCTGAAGTCCGGGCTTGGTCCGGGTGATCCCCAAAcACTGACCGTTcTcATTTccTTTT
GGGAGTATTC(T/ATGCTTCACCATGTTGAGAGCTAAgctagc
gctagcACCTCTGACCCAAA(T/ATGGCCGCGCCCAGAGCGTAGTTCTTGCTTCTCCGAGGCGAGCTAAGATTAAAATccTA
CATCATGTTgctagc

11 Lrpprc gctagcGCCAGGCTCGCTGAGAGCCGGGGCGCTGGACAAGGGAACAGGGACACTGTGAACGGAAGAcAAAAAAcA(T/ATGT
NM_028233 ATAGTAAAACAGAAGGCGGATCCAGGGTATCCCGCGAACTCGGCTTGCCTCTCCCGTGAGCCTTGGCGGGGATCTGCCT

CCTCCTCCGCTGGACGCCCTCGGTCCTTAGTTTGTCCCACTAGGGGCGACCGGGTCGTCACGTGCTCCTCCAGGTCCT
CTGCAGGAGCGTGCATCCTATCCTGCCTTGGGTACGCTGAGCCATGTTgctagc

12 Glyctk gctagcGGACTTGGAGCAGAGTGTCCAGAAGACTGGTGTGTGGTCTACAGAAGAGGAcGTGGcTGGGcATcAGGGcTGGGc
NM_001039586 TTTCAGGGCTGGTGTAAGATCAGGCAGCT(T/ATGGACACGAGGCTGTGCTGAGAGAAGCGGGGCATGTTgctagc

13 Uqcc gctagcTTGTGGAGGAACATGGCGGCACGAGGTTGCTGGTGCGAGTCCTTAGGAACCAGAcTAccATcTcTcAGTGGGTTC
NM_018888 CAGT(T/ATGCAGCCAACTGGTATCAGTGTCTCCTACCCAAAGACAGTGGAGCAGCACTTCCCAGTGGCTCCAGAAGAATC

AGTCTCGAGTGTGTTTGGGATCAGAACAGACTGTTGGAGCGGACACAGCGCAGAGTAGGAAATACCACAACACAAGTAAG
CTTCTTACTACCCAAGATTTCCCACAGCCTGTTGAAGAGAAGGTCGGTCCCTTCACGAAGATAATAGAAGCCATGTTgctagc

14 1200015F23Rik gctagcACAGAGTGAAAGCGCGGTGCCTGCTGCTGCC(T/ TGGTGGCTGGTGGCTGGGTACACTATGTCTAGgctagc
NM 001033136

15 Sfxn3 gctagcGTCTCAACGGCCTGGTCTGGGAGAATCACTCTGGACATCCACTGTCTCGGAACTCTGCCAAGAGGGGGGGTGGGT
NM_053197 CAGGCGAACGAGCTCAGGGAGCCCCCGCCCTTCCCTGCTGCTCAGCGTCACGCGTGAcGTCTCGGTG(T/-TGGCTGGG

AGGAAAGCGGAGAGCGGTGAGGAAGGCGGGTCTGAGAGCTTCTAGAGGCTGAAAACCCCGGAAAGCAAGATGTTgctagc
16 CASP8 gctagcGCTCTGAGTTTTTGGTTTCTGTTTCACCTTGTGTCTGAGCTGGTCTGAAGGTGGTTGTTcAGAcTGAGCTTCCTG

NM_001228 CCTGCCTGTACCCCGCCAACAGCTTCAGAAGGTGACTGGTGGCTGCCTGAGGAATACCAGTGGGCAAGAGAATTAG
CAT(TI GTCTGGAGCATCTGCTGTCTGAGCAGCCCCTGGGTGCGTCCACTT CTGGGCACGTGAGGTTGGGCCTTGGCC
GCCTGAGCCCTTGAGTTGGTCACTTGAACCTTGGGAATATTGAGATTATATTCTCCTGCCTTTTAAAAAGATGTTgctagc

17 MC2R gctagcATTCCTTCTCATTCA CCCTTTTG AGAAAG CCTGCTTCAGAGCTGAAGGTGATTGGGAGATTTTAACTTAGATCTC
NM_002253 CAGCAA(G/TGCTACAAGGAAGAAAAGATCCT GAATCAATAAGTTTTCAAGTCAAGTAACATCCCCG

CCTTAACCACAAGCAGGAGAAATGAAGCACATTATCAACTCGTATGAgctagc
18 F12 gctagcCTATTGATCTGGACTCCTGGATAGGCAGCTGGACCAACGGACGGACGCCATGACgctagc
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NM 000505
19 KDR gctagcCTGAGTCCCGGGACCCCGGGAGAGCGGTCA(G/ATGTGTGGTCGCTGCGTTTCCTCTGCCTGCGCCGGGCATCAC

NM_000529 TTGCGCGCCGCAGAAAGTCCGTCTGGCAGCCTGGATATCCTCTCCTACCGGCACCCGCAGACGCCCCTGCAGCCGCGG
TCGGCGCCCGGGCTCCCTAGCCCTGTGCGCTCAACTGTCCTGCGCTGCGGGGTGCCGCGAGTTCCACCTCCGCGCCT
CCTTCTCTAGACAGGCGCTGGGAGAAAGAACCGGCTCCCGAGTTCTGGGCATTTCGCCCGGCTCGAGGTGCAGGATGTT
gctagc

20 TAS2R3 gctagcCAGTGAGGAGATTCTA(C/T)GTATCAACAGAAAGAACAAAGATCAGGGCTGCCTAATTGcTGACATGTTgctagc
NM016943

21 HBB gctagcACATTTGCTTCTGACACAACT(G/-TGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGATgctagc
NM 000518

22 PRKAR1A gctagcGATTGGCTGCGGCCAGGCCGMCCGGTGGAGCTGTCGCCTAGCCGCTATCGCAGA(G/ATGGAGCGGGGCTGGG
NM_002734 AGCAAAGCGCTGAGGGAGCTCGGTACGCCGCCGCCTCGCACCCGCAGCCTCGCGCCCGCCGCCGCCCGTCCCCAGAG

AACCATGGAGTCTGGCAGTACCGCCGCCAGTGAgctagc
23 IRF6 gctagcGAGCTCGGCGCACCTGGGCTGGGCAGGTAAGGGCTGGTGCGGGACGGGGAGAGGAACCTGCAGTCCCTACTTGG

NM006147 GTAGAGCCAGGCGCCCCTTGGCTAAGACGTCGAGGAGCGTGGTAGCGACGGGTGATCTTCGCTGCGGACTTGGTTCGGA
GGGACGTCCGCTTCTGGTGGACAGATTGAGCAAAGAATTTGAGCGGTCA AAAGAAAGAA(A/TGCCGACTCTTCAGAT
CCCTGTGGACACACTGCCTGCTCTTCCATATCATGGCCCTCCACCCCCGCAGAGTCCGGCTAAAGCCCTGGCTGGTGGC
CCAGGTGGATAGgctagec

24 SRY gctagcGTTGAGGGGGTGTTGAGGGCGGAGAAATGCAAGTTTCATTACAAAAGTTAACGTAACAAAGAATCTGGTAGAA(G/A)T
NM_003140 GAGTTTTGGATAGTAAAATAAGTTTCGAACTCTGGCACCTTTCAATTTTGTCGCACTCTCCTTGTTGACAATGTTgctagc

25 SPINK1 gctagcAGCCCAGTAGGTGGGGCCTTGCTGCCATCTGCCATATGACCCTTCCAGTCCCAGGCTTCTGAAGAGA(C/DGTGGT
NM_003122 AAGTGCGGTGCAGTTTTCAACTGACCTCTGGACGCAGAACTTCAGCCATGTTgctagc

18.2F12 gctagcCTATTGATCTGGACTCCTGGATAGGCAGCTGGACCAACGGACGGAAGCCATGACgctagc
NM 000505

18.3 F12 gctagcCTATTGATCTGGACTCCTGGATAGGCAGCTGGACCAACGGACGGAGGCCATGACgctagc
NM 000506

18.4 F12 gctagcCTATTGATCTGGACTCCTGGATAGGCAGCTGGACCAACGGATGGACGCCATGACgctagc
NM 000507

18.5 F12 gctagcCTATTGATCTGGACTCCTGGATAGGCAGCTGGACCAACGGACGGATGCCATGACgctagc
NM 000508

18.6F12 gctagcCTATTGATGTGGACTCCTGGATAGGCAGCTGGACCAACGGACGGACGCCATGACgctagc
NM 000509

18.7 F12 gctagcCTATTGATCTGGACTCCTGGATGGGCAGCTGGACCAACGGACGGACGCCATGACgctagc
NM 000510

18.8 F12 gctagcCTATTGATATGGACTCCTGGATAGGCAGCTGGACCAACGGACGGACGCCATGACgctagc
NM 000511
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Supplementary Notes

Details of matched protein and mRNA datasets
We analyzed large-scale protein and mRNA datasets from four published studies (1-4)

across a variety of mouse tissues and developmental stages. Below we provide details

of the datasets and mapping to Entrez Gene identifiers.

Lai and colleagues (1) investigated the mouse liver proteome using a 3-dimensional

separation of intact liver proteins from adult mice. They used a combination of

centrifugation, 2D HPLC separation of supernatant proteins, and SDS PAGE to separate

proteins and then used LC-MS/MS with ProteinProphet software to identify a total of

7090 unique proteins. They approximated protein abundance by peptide counts

normalized by protein length. We downloaded the protein abundance data and mapped

their 7090 IPI protein identifiers to 5036 unique Entrez Gene identifiers, excluding IPI

identifiers that mapped to more than one gene locus. Although Lai and colleagues used

microarrays to quantify mRNA abundance from the same tissues, their mRNA data were

not available either in supplemental materials or upon request. Thus we obtained mRNA

abundance data using the GNF1M tissue atlas(5) by averaging the measurements from

the two liver sample replicates and mapping probe level data to Entrez Gene identifiers.

As described in Methods, we then excluded the top 10% most highly expressed genes,

genes with poorly quantified mRNA values (<40), and genes with discordant uORF

presence (i.e. splice forms that contained and lacked uORFs), leading to a total of 2484

genes with well-quantified protein and mRNA measurements in liver.

Cox and colleagues (2) investigated the proteome of mouse lung at six stages

development (embryonic day 13.5, 16.5, 18.5, and post-natal day 2, 14, and 56). They

performed MudPIT analyses on cellular fractions and used SEQUEST software
searches to identify 3330 proteins. Abundance was estimated by spectral counts,
summed over all cellular fractions. mRNA expression for equivalent time points was

provided by microarray studies (6) using the Affymetrix Mul 1K A and B chip sets. We

downloaded their matched protein and mRNA abundance data and mapped their 1383
SwissProt identifiers to 1266 unique Entrez Gene identifiers, excluding SwissProt
identifiers that mapped to more than one gene locus. As described in Methods, we then

excluded the top 10% most highly expressed genes, genes with poorly quantified mRNA
values (<40), and genes with discordant uORF presence, leading to a total of 2569 well-
quantified protein and mRNA measurements across 722 unique gene loci.

In our previous study (3), we investigated the mitochondrial proteome across 14 mouse
tissues. Mitochondria were purified from each tissue by a combination of centrifugation
and Percoll density gradients. We used LC-MS/MS and SpectrumMill software to identify
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products from 3881 genes. Protein abundance was approximated by total peak intensity
(sum of MS peak areas for all sequence identified peptides matching a protein)
normalized by protein length. An integrated analysis was performed to separate the truly
mitochondrial proteins from the co-purifying contaminants, leading to 591 mitochondrial
proteins with MS/MS quantification. We obtained mRNA abundance data for these gene
loci using the GNF1M tissue atlas (5) by averaging the measurements from equivalent
tissue samples. Because protein abundance measurements were obtained per mass of
mitochondria, and mRNA abundance was measured per tissue, we normalized protein
measurements by the quantity of mitochondria within each tissue so that each
measurement represents tissue-level data (5). As described in Methods, we then
excluded the top 10% most highly expressed genes, genes with poorly quantified mRNA
values (<40), and genes with discordant uORF presence, leading to a total of 5060 well-
quantified protein and mRNA measurements across 487 unique gene loci.

Kislinger and colleagues (4) investigated proteins from six mouse organs (brain, heart,
kidney, liver, lung, and placenta). Proteins were fractionated into four subcellular
compartments (cytosol, membranes, mitochondria, and nuclei), and analyzed by
MudPIT. A total of 4768 proteins were detected using SEQUEST software. Abundance
was estimated by spectral counts, summed over all cell fractions. The authors matched
their protein data to mRNA abundance from the GNF1M tissue atlas (5) and the Zhang
et al. microarray study (7), using stringent normalization methods. We downloaded their
matched protein and mRNA abundance data and mapped their 1758 SwissProt mouse
identifiers to 1336 unique Entrez Gene identifiers, excluding SwissProt identifiers that
mapped to more than one gene locus. As described in Methods, we then excluded the
top 10% most highly expressed genes, genes with poorly quantified mRNA values (<40),
and genes with discordant uORF presence, leading to a total of 2377 well-quantified
protein and mRNA measurements across 925 unique gene loci. We analyzed matched
data both from the GNF1M atlas and the Zhang et al. microarray studies with similar
results (data shown only for GNF1M expression).

In addition to the above matched mRNA and protein studies, we also analyzed two
additional proteomics datasets (8, 9).

Adachi and colleagues (8) analyzed proteins from 3T3-L1 adipocytes, which were
fractionated into four subcellular compartments (nuclei, mitchondria, membrane, and
cytosol) and analyzed by LC-MS/MS. A total of 3287 unique proteins were detected
using Mascot software. Abundance was approximated by number of observed peptides.
We downloaded their protein data and mapped their 3287 IPI proteins to 2805 unique
Entrez Gene identifiers, excluding IPI identifiers that mapped to more than one gene
locus. As described in Methods, we then excluded the top 10% most highly expressed
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genes, and genes with discordant uORF presence, leading to a total of 2563 well-

quantified protein measurements. The authors also analyzed matched mRNA

microarrays from 3T3-L1 adipocytes, however the raw mRNA expression values for

these experiments were not provided in the supplemental materials. Therefore, we

simply analyzed the protein data without matching mRNA values.

Williamson and colleagues (9) analyzed proteins expressed during differentiation of

embryonic stem cells to hemangioblasts following the expression of BryGFP/+ and Flkl

genes. Cells were sorted using flow cytometry, enriched for nuclei, and then analyzed by

LC-MS/MS and ProQUANT software to detect 2389 proteins. Abundance was

approximated by number of observed peptides. We downloaded their protein data and

mapped their 2389 SwissProt and RefSeq proteins to 1306 unique Entrez Gene

identifiers, excluding identifiers that mapped to more than one gene locus. As described

in Methods, we then excluded the top 10% most highly expressed genes, and genes

with discordant uORF presence, leading to a total of 800 well-quantified protein

measurements. The authors also analyzed matched mRNA microarrays from the same

cells. However we did not utilize the mRNA data because the protein abundance was

measured only for nuclei and the mRNA was harvested from whole cells. Therefore, we

simply analyzed the protein data without matching mRNA values.

Highly expressed genes tend to lack uORFs
As others have previously noted (10), the most highly expressed genes tend to lack

uORFs (see Fig. S2). Because of this skewed distribution, the set of uORF-containing

genes have lower mean mRNA expression compared to uORF-less genes. Matsui and

colleagues (11) argue that uORFs cause widespread reduced mRNA expression,
through mRNA instability or nonsense mediated decay. While this explanation is

possible, an alternate explanation is that evolutionary selection ensures that uORFs are

not present in transcripts that the cell requires in highest abundance. This would not be

surprising, since the 5' UTRs of the most highly expressed transcripts not only lack

uORFs, but also tend to be short, unstructured and have low GC content - and thus

selection is acting differently on this set of genes (10). Because of the biases inherent in

this class of highly expressed transcripts, we excluded the 10% most highly expressed

genes from our analyses (Fig. 2). However, we do provide figures showing the

distribution of protein expression for all transcripts (Fig. S4), as well as the distribution

excluding the top 10% most highly expressed genes (Fig. S3).
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Machine learning predictions of the
human mitochondrial proteome

Chapter 2 details a na'fve Bayes prediction of the human mitochondrial proteome.
However, na've Bayes is just one of many supervised classification algorithms. Here, I
compare five alternative machine learning algorithms for predicting which of the -22,000
genes in the human genome code for mitochondrial proteins. Comparison of na'fve
Bayes, support vector machines, decision trees, boosting, and bagging algorithms
shows that na'fve Bayes provides the most accurate and interpretable prediction of the
human mitochondrial proteome.

Methods

Genomic datasets and training sets
Each classifier relies on clues of mitochondrial localization (features) and is trained on
large sets of known mitochondrial and non-mitochondrial genes. Table 1 lists 21
computed features of mitochondrial localization. These features are heterogeneous
(categorical and scalar), conditionally dependent, and contain up to 63% missing values.

The training data consist of 654 known mitochondrial proteins (termed gold+) and 2847
known non-mitochondrial proteins (gold-) described in Chapter 2. The training data are
complicated by several factors: (i) the ratio of training examples (gold+/gold- = 23%)
does not match the prior belief of actual class size ratio (7%); (ii) approximately -5% of
gold- labels are likely to be incorrect; (iii) gold- is missing several large subcategories of
actual non-mitochondrial proteins.

Assessment criteria
All algorithms and parameter settings are compared on the same 10-fold cross-
validation splits of training data. A commonly used alternative is "leave one out" cross
validation, however this approach likely overestimates performance. A second
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alternative approach uses theoretical models of complexity, however these models may

not match the actual data. I define the best predictor as the one with the highest

sensitivity at a 10% corrected FDR.

Definitions
The following definitions and abbreviations are utilized: TP=true positives; FN=false

negatives; FP=false positives; TN=true negatives; Sensitivity SN = TP/(TP+FN);

Specificity SP=TN/(TN+FP); False discovery rate FDR= FP/(FP+TP). Opnor=prior odds of

mitochondrial localization; Corrected false discovery rate cFDR = (1 - SP)/(1 - SP + SN *

Oprior).

Results

Naive Bayes
Naive Bayes classification relies on the simplifying assumption that the input features

are conditionally independent. That is, for feature vector x and classification category y,
d

P(x,y) = P(y) -P(xily). The weights P(xily) can be learned by simple counts'.
i=1

Categorical and missing data are readily handled, by assigning weights to each

category, and scalar values can be divided into relevant bins. Although this method can

result in a biased classifier, the benefit is low variance2 .

I performed a Naive Bayes classification on 8 of 21 features that were selected to be

conditionally independent, with correlation coefficients below 0.33. Ten-fold cross-

validation showed a range of sensitivity and cFDR values depending on the log-

likelihood score thresholds selected (Fig. 1 brown diamonds). NaYve Bayes classification

with 8 features achieves 71% sensitivity at a 10% cFDR threshold. NaYve Bayes

classification using all 21 non-independent features (Fig. 1, brown cross) achieved

worse performance at the 10% cFDR threshold, due to the violated assumption of

independence.

Support Vector Machines (SVMs)
SVMs learn a linear boundary designed to maximally separate training classes. For

classes that are not linearly separable, misclassifications can be allowed with a penalty.

For data that is not linear, it is possible to transform the input into a higher dimensional

space and perform linear classification in that higher space. Two common transformation

types are polynomial and radial basis, and kernel methods are available to simplify the

computation. However, more complex models (i.e. higher dimensional spaces) will

always be able to better separate data than simpler models, and thus a complexity
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regularization penalty must be introduced to avoid overfitting. SVMs define the exact
decision boundary only using a small subset of the training examples that are near the
boundary (i.e. support vectors), and thus a single outlier or misclassified example will
radically affect the solution'. This is in contrast to linear discriminant analysis in which
the decision boundary is determined using the covariance of the class distributions and
the position of the class centroids2. Other SVM limitations include difficulty in handling
categorical or missing data, and equal dependence on all features despite the fact that
some features are likely to be irrelevant or particularly noisy.

I applied SVM classification using the SVMlight package4 . I compared SVM predictions
using all 21 features to SVM predictions using 8 relevant features. I assessed a wide
range of SVM parameters for cost-factor je{0.1, 0.3, 1, 2}, margin-tradeoff ce{0.5, 1,
10}, gamma ge{0.05, 0.1, 0.2, 0.5, 1, 10}, and polynomial level de{1-6}. For radial basis
kernels, high gamma values concentrate on examples close to the decision boundary
and thus create "wiggly" boundaries that overfit data, thus small values are likely to be
more robust. The cost-factor parameter measures how much a positive training example
should be weighted compared to a negative training example, therefore I predicted a
cost parameter of 0.3 would best compensate for the discrepancy of my training sets.
The margin-tradeoff parameter determines the trade-off between training error and
margin, which should be high to avoid overfitting.

Not surprisingly, SVMs performed better on 8 relevant features compared to all 21
features (Fig. 1 pink diamonds and cross, respectively) since the extra features
contained some irrelevant information. The optimal set of parameters for the radial basis
kernel (j=0.3, g=0.05, c=1) achieved a 65% sensitivity at 11% cFDR, similar to the 63%
sensitivity achieved by the best polynomial kernel (j=0.3, d=1, c=10) (Fig. 1 aqua
diamonds). Surprisingly, polynomial degrees exceeding 1 performed poorly (cFDR > 0.8,
off the chart in Fig. 1) while the linear polynomial performed well. Compared to Navie
Bayes, the SVM overfit the data.

Decision trees
Decision tree classifiers automatically learn a tree of simple classification rules, where
each node represents a simple rule (that is, a single threshold for a single feature) and
the tree leaves hold the classification results. The appealing simplicity of the model
mimics a person's rule-based protocol for making decisions but the sequential greedy
implementation does not take joint feature probabilities into account when choosing new
nodes. Like Naive Bayes classifiers, decision trees easily handle categorical data and
are readily interpretable, however they do not require conditional independence and they
automatically handle feature selection.
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I utilized the GML AdaBoost Matlab5 implementation of decision trees with a variety of
tree levels {1-30}. Since the training relies on optimizing the error rate, I triplicated the
gold- examples so that the size of the training sets matched prior expectations. The
decision tree performed better on 8 features than 21 due to overfitting (Fig. 1, blue
diamond vs cross). With 8 features, the trees converged at 10 levels and achieved 64%
sensitivity at 13% FDR.

Boosting using decision trees.
Combining different learners tends to decrease variance'. Boosting is a technique to
train an ensemble of learners in a greedy iterative algorithm, where the first learner is
trained on all data equally, and successive learners are sequentially added and trained
on weighted data (more weight on misclassified examples), to decrease the overall
weighted logistic loss training error. Boosting tends to work well even with simple base
learners, such as decision stumps (trees with one level). The advantages of boosting are
good generalizability, easy handling of heterogeneous or missing data, and automatic
feature selection. The tradeoff can be interpretability of results.

I used the GML AdaBoost Matlab5 package with a variety of decision tree levels (1-4).
Since boosting automatically selects the most informative features, it performed better
with 21 features compared to 8 (Fig. 1 green cross vs diamonds). Boosting achieved
72% sensitivity at 10% cFDR.

Bagging
Bagging (bootstrap aggregating) is another ensemble method where each classifier is
trained on a sampling of the original set with replacement. Bagging is useful when the
learning algorithms are unstable (i.e. small input changes cause different classifications,
such as in decision trees and SVM) 6. Like boosting, the ensemble reduces variance
without affecting bias 6.

Using MATLABArsenal7, I tested bagging using 3 weak learners: decision stumps,
decision trees, and SVMs (parameters optimized from above). SVM weak learners
showed the best performance, as the ensemble likely compensated for the overfitting
tendency. Unlike the underlying base SVMs, the 21-feature learner slightly outperformed
the 8-feature learner (Fig. 1, orange cross vs diamond), and radial basis kernel
outperformed the polynomial kernel (data not shown).

Discussion
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To compare performance of the five machine learning approaches, sensitivity is plotted
against the corrected false discovery rate based on 10-fold cross validation (Fig. 1). At a
10% FDR threshold, the most sensitive algorithms were Nafve Bayes, boosting, and
bagging (Fig. 1, red circle). SVMs and decision trees performed similarly to each other
and tended to overfit the data (data not shown). Since NaYve Bayes with 8 features
shows similar accuracy to the ensemble methods of boosting and bagging, it is
preferable as the results are easily interpretable. However, unlike Nafve Bayes, the
ensemble methods do not require careful selection of conditionally independent features,
and thus are the easiest to implement.
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Figure 1: Assessment of machine learning algorithms.
Sensitivity is plotted against corrected false discovery rates at a range of model
parameters and score thresholds. In the legend, SVM indicates support vector machine
and RBF indicates radial basis kernel.
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FeaNre % "%lFeature Fe Values Values Description

MSMSiverorbitrap scaar 9 Mass spectrometry (Orbitrap) of mito isolated
from mouse liver

MSMS liver scalar 0-3000 96% Mass spectrometry (QSTAR) of mito isolated
from mouse liver

MSMS heart scalar 0&3001 96% Mass spectrometry (QSTAR) of mito isolated
from mouse heart

MSMSbran scalar 0-3002 96% Mass spectrometry (QOSTAR) of mito isolated
from mouse brain

MSMS_kidney scalar a03003 96% Mass spectrometry (QSTAR) of mito isolated
from mouse kidney

MSMS tissues scalar 0-4 0% # of tissues that protein was detected by
MS/MS (OSTAR)
nS0 score for mouse tissue atlas of mRNA

mouse.gnfl.n50 scalar 0-50 35% expression; n50 = # of 50 nearest neighbors
that gold+ (known mito)

human.gnf.n50 scalar 0-51 21% n5 score for human tissue atlas

gnfrn0.ave ' scalar 0-50 12% Average of mouse and human tissue atlas
n!0

muscleregenn50 scalar 0-50 63% n95 score for mouse muscle regeneration
mRNA expression dataset

pgclainduced ' scalar 0-30 36% Fold-induction. in microarray dataset that
measured mitochondrial biogenesis

YeaMoml eg 0% Similarty to yeast mitochondrial proteinYeastMitoHomolog categorical (0, 1) 0%
(blast expect score)

RickettsiaOthoExpect * scalar 0-1 0% Similanty to Rickettsia (mitochondrial
ancestor) protein (blast expect score)

Protein domain (PFAM) found exclusively in
milochondrial proteins (1), found shared in

MitoDomain * categorical {-2.-1,0.1 1 0% mito and nonmito proteins (-1), found
exclusively in nonmito proteins (-2), or no
information (0)

MitoPred scalar 0-100 0% Predicted to be mitochondrial by MitoPred
program

MitoPred-0rthe scalar 0-101 0% Mouse ortholog predicted to be mitochondrial
by MitoPred program

TargetP Mio categorical 10. 1) 0% Mouse ortholog predicted to be mitochondrial
by TargetP program

Both human and mouse orthologs predicted
Targetp ' categorical (0, 1,2) 0% mito by TargetP (2), only one predicted (1),

or neither predicted (0)
ERRAmotif * categorical {0, 1 0% ERRalpha motif present in promoter
GABPA motif categorical {0, 1} 0% GABPA motif present in promoter

NRFlmotif categorical 10.1) 0% NRF1 motif present in promoter
YYl_motif categorical (0, 1) 0% YY1 motif present in promoter

Table 1: Features related to
Asterisk indicates selection in

mitochondrial
8 feature set.

localization.
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