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ABSTRACT: We have previously described a mathematical formulation for a parton shower
based on the approximation of strongly ordered virtualities of successive parton splittings.
Quantum interference, including interference among different color and spin states, is in-
cluded. In this paper, we add the further approximations of taking only the leading color
limit and averaging over spins, as is common in parton shower Monte Carlo event gener-
ators. Soft gluon interference effects remain with this approximation. We find that the
leading color, spin averaged shower in our formalism is similar to that in other shower
formulations. We discuss some of the differences.
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Introduction

In ref. [fl], we presented a formalism for a mathematical representation of a parton shower

that incorporates interference in both spin and color. In this paper, we analyze this for-

malism in the approximation that we average over parton spins at each step and keep only

the leading contributions in an expansion in powers of 1/N2, where N, = 3 is the number

of colors.! Our interest is to elucidate the structure of the full shower formulation of ref. []I[]

by examining what happens when the spin-averaged and leading color approximations are

imposed. We also anticipate that the approximate shower may be of use in implementing

successively better approximations to the full shower including spin and color.

"More precisely, we average over the spins of incoming partons at each step and sum over the spins of
the outgoing partons.



Our main focus is on the splitting functions that would be used to generate the shower
in the spin averaged approximation (which is a customary approximation in current parton
shower event generators). In our formalism, there are two sorts of splitting functions. The
direct splitting functions correspond to the squared amplitude for a parton [ to split into
daughter partons that, in our notation, carry labels [ and m + 1, where m + 1 is the total
number of final state partons after the splitting. In this paper, we use the spin dependent
splitting functions from ref. [l and simply average over the spins of the mother parton and
sum over the spins of the daughter partons. We analyze some of the important properties
of these functions. We also need interference splitting functions. These correspond to the
interference between the amplitude for a parton [ to split into partons with labels [ and
m + 1 and the amplitude for another parton k to split into partons with labels & and
m + 1. These functions generate leading singularities when parton m + 1 is a soft gluon.
We improve the specifications of ref. [l for this by defining a useful form for certain weight
functions Ay, and Ay, that were assigned the default values 1/2 in ref. [fl]. We will see that
with the improved form for A;;, the total splitting probabilities acquire useful properties
in the soft gluon limit.

We will see that when we make the spin-averaged and leading color approximations, the
parton shower formalism of ref. ] amounts to something quite similar to standard parton
shower event generators. One significant point in common is that the splitting functions are
positive. One difference with some standard event generators is that an angular ordering
approximation is not needed because the coherence effects that lead to angular ordering are
built into the formalism from the beginning, both for initial state and final state splittings.
This coherence feature is a natural consequence of a dipole based shower, as in the final
state showers of ARIADNE [J] and the kr option of PyTHIA [[] or the showers [, ] based
on the Catani-Seymour dipole splitting formalism [f]. Additionally, our formalism differs
from others in its splitting functions and its momentum mappings.

2. Direct spin-averaged splitting functions

We begin with the splitting functions that correspond to the amplitude for a parton to split
times the complex conjugate amplitude for that same parton to split. We follow the nota-
tion of ref. [[[]. Before the splitting, there are partons that carry the labels {a,b,1,...,m},
where a and b are the labels of the initial state partons. The momenta and flavors of these
partons are denoted by {p, f}m = {Pa, fa;---;Pm, fm - The flavors are {g,u,q,d,... }, with
the initial state flavors f, and f}, denoting the flavors coming out of the hard interaction
and thus the opposite of the flavors entering the hard interaction. We let [ be the label of
the parton that splits. After the splitting, there are m + 1 final state partons. The mo-
menta and flavors of the partons are {p, f bm+1. We use the label [ for one of the daughter
partons and the label m + 1 for the other daughter parton.? The partons that do not split
keep their labels. However, they donate some of their momenta to the daughter partons so
that the daughter partons can be on shell. Thus p; # p; in general for a spectator parton.

2For a final state ¢ — qg splitting, we use m + 1 for the label of the gluon. For a final state g — ¢§
splitting, we use m + 1 for the label of the q.



Figure 1: Illustration eq. (@) for a gqg final state splitting. The small filled circle represents
the splitting amplitude v;. The mother parton has momentum p; + P41, but in the amplitude
|M {p, f }m)>, this off-shell momentum is approximated as an on-shell momentum p;.

The momenta and flavors after the splitting, {p, f }m+1, are determined by the momenta
and flavors before the splitting, {p, f}m, and variables {(,, (¢} that describe the splitting.3
A certain mapping

(B, Frmer = Bil{p, [rms {Gor ) (2.1)

defined in ref. [fl] gives the relation.

The splitting functions in ref. [[]] are based on spin dependent splitting amplitudes v;.
One starts with the amplitude ‘M {p, f }m)> to have m partons. The amplitude is a vector
in spin®color space. After splitting parton [, we have a new amplitude ‘Ml({ﬁ, f }m+1)> of
the form illustrated in figure [[]

My, FYmi1)) =t (Fr = fi + Fns) VI ({B, Flmsn) [M{D, fm)) - (2.2)

Here t;r is an operator on the color space that simply inserts the daughter partons with
the correct color structure. The factor Vf is a function the momenta and flavors and
is an operator on the spin space. It leaves the spins of the partons other than parton
I undisturbed and multiplies by a function v; that depends on the mother spin and the
daughter spins:

{8 me1 VI UD, Frms)|{8}m) = H 85,5, | 0Dy Flms1s Smr1s81,80) - (23)
i {lm+1}

Thus the splitting is defined by the splitting amplitudes v;, which are derived from the
QCD vertices.

3When a gluon splits, (¢ determines whether the daughters are a (g, g) pair, a (u,) pair, etc. In ref. [ﬂ],
we defined the splitting variables ¢, in a rather abstract way, but one could imagine using for (, the
virtuality of the daughter parton pair, a momentum fraction, and an azimuthal angle.



Figure 2: Illustration of how v; times v; appears in the calculation of the approximate matrix
element |M;({p, f}m+1)) times its complex conjugate, (M;({p, f}m+1)|. If we average over spins,
we need to multiply |M ({p, f})) times (M ({p, f}m)| by Wu, eq. @.9).

We can illustrate this for the case of a final state ¢ — ¢ + g splitting, for which we
define
V(D fhma1,5me, 81, 81) =

VIra en(msn bonyas Q) LS Bt By + UG 5) (24

(D1 + Prmt1)? — m2(f1)] 2011y

There are spinors for the initial and final quarks. There is a polarization vector for the
daughter gluon, defined in timelike axial gauge so that py,11-€ = Q - = 0. Here Q is the
total momentum of the final state partons, which is the same before and after the splitting.
There is a vertex v* for the qqg interaction. There is a propagator for the off shell quark
with momentum p; + pp,r1. So far, this is exact. Finally, there is an approximation that
applies when the splitting is nearly collinear or soft. We approximate p; + ppr1 by p; in
the hard interaction and insert a projection 74,/2p; - n; onto the “good” components of the
Dirac field. This projection uses a lightlike vector n; that lies in the plane of Q and py,

Q2
Qo+ (Qp)? — Q*m2(f;

With one exception, the direct splitting functions in ref. [l are products of a splitting

n=Q —

] P - (2.5)

amplitude, v;, times a complex conjugate splitting amplitude, v},

Ul({ﬁa f}m—i—la <§m+1a '§la Sl) 'Ul({ﬁa f}m—i—la ‘§lm+1a §ga 52)* . (2'6)

The calculation of |M,;({p, f}m+1)> times (M;({p, f}m+1)| using v; X v} is illustrated in
figure B In this calculation, in general, we have to keep track of two spin indices, s and
s’ for each parton in order to describe quantum interference in the spin space. However,
in this paper we make an approximation. We set s’ = s for each parton, sum over the
daughter parton spins and average over the mother parton spins. Thus we use a splitting



function® 1
Wy = 7 Z (4B, Fmes1s Smt, 81, 51) ]2
S1;5m+1,51
for any flavor combination allowed with our conventions for assigning the labels [ and m+1
except for a final state g — g + g splitting, for which we do something slightly different
because the two gluons are identical. We make manifest the definition of which flavor
combinations are allowed by defining

/2, le{l,....m}, fi=fur1=¢
17 le{lu"'am}7 f}?égLf;m-i-l:g
) le{lu"'am}7 fAl:gafAm-i-l #g

N 0
S bme) =9 1 et f= g s = g
0
1

(2.7)

) le{lv"'am}7 fl:(jafm-i-l:q
, Lefa b}

This is 1 for the allowed combinations, 0 otherwise, with a statistical factor 1/2 for a final
state g — g + g splitting. The complete definition of W, is then

Wll = Sl({f}m+1) % Z {|’Ul({ﬁy f}m+17 §m+17 '§ly Sl)|2
+0(le{l,....m} fi=fm=2¢ (2.8)

x| |vau({Bs f Ymt1, Bmat, 15 81) 2 = w3 ({B, f}m+1,§m+1,§1781)!2]} .

The second term applies for a final state g — g + g splitting and is arranged to keep the
total splitting probability the same but associate the leading soft gluon singularity with
gluon m + 1 rather than gluon I. The functions v,; and v3; are defined in section @

The form of the splitting amplitude v; depends on the type of partons that are involved.
However, there is a common result in the limit p,,+1 — 0 whenever parton m+1 is a gluon.
In this limit, v; is given by the eikonal approximation,

_ o R X E(Pm+1:Sm+1; Q)" P
,Ulmkonal({p’ f}m+1,3m+175l781) = \/471'015 5§l,sl ( m—l—ﬁy ml—l—ﬁal ) . (2.9)
m+1"°

The soft gluon limit of Wy is then

pr- DB QQ) . (2.10)
(pm-i-l'pl)

7 eikonal

Wll = 471'0[5

Here D, is the sum over 5,,,1 of £,¢},

A v VLAY 32 A N7
. A P Q@+ QP Q*PDrpi1 D
Dy (Pms1, Q) = —gyu + 2 i =il (2.11)
Pm+1 - Q (pm—l-l : Q)

The function W; and its approximate form Wlell konal give the dependence of the splitting
operator on momentum and spin for a given set of parton flavors. The partons also carry

4The function W, here is the same as wy; in ref. [EI]



color. In ref. [ there is a separate factor that gives the color dependence. This factor is
an operator on the color space that we can call t;r ®1,;, where t;f is the operator in eq. (.9),
which inserts the proper color matrix into the amplitude, and ¢; inserts the proper color
matrix into the complex conjugate amplitude.® So far, we do not make any approximations
with respect to color. In section [], we will make the approximation of keeping only the
leading color conributions.

We now turn to a more detailed discussion of Wy; for particular cases.

2.1 Final state ¢ — g + g splitting

Let us look at Wy for a final state ¢ — ¢ + g splitting,

— 4 1
Wy = T

Dy (P41, G
2(p0-m)? (201 Pngr)? " (Pt Q) (2.12)

1 v
X T [y V" By + B + Iy + 10 By + B + )]
Here m = m(f;) is the quark mass, the lightlike vector n; is given by eq. (B.5), and D, is
given by eq. (2.11)). It will be convenient to examine the dimensionless function

Dl P+l =5
F=———"""-Wy; . 2.13
Pt g, 213

The limiting behavior of F' as the gluon m + 1 becomes soft, p,,+1 — 0, is simple. Then
the eikonal approximation applies and we obtain from eq. (R.I0)

N

P D(Ppm+1,Q) - P

Feikonal = =~ (214)
Pl - Pm+1
The full behavior of F' is more complicated,
Pm+1- N
F= [1 + h(ya ai, bl)] Feikonal + Zmtl (2.15)
b -y
Here
1+y+4 Ay 2a;y
h(y,a;, b)) = + -1, 2.16
Wanb) = — = ) (2.16)
where
_ 2]51 . ﬁm—i—l
2-Q
A2
a; = Q =~
2p - Q
2
b = LA : (2.17)
2p - Q

rp=+/1—4ab; ,

VI +y)? —da(y + by)
T

A=

5In ref. [EI], we write t;’(fl — fi+g) for the operator that we here call just t;r and we denote the operator
th @t by G(1,1).



The eikonal approximation to £’ will turn out to be significant in our analysis when
we incorporate the effect of soft-gluon interference graphs. We will find that it is of some
importance for the numerical good behavior of the splitting functions including interference
that

F— Feikonal > 0. (218)

To see that this property holds we note first that p,,+1 - n;/p; - n; is non-negative. Remark-
ably, h(y, a;,b;) > 0 also. To prove this, we first note that

A—=1+1y)?+4y

h(y7al70) = A\ )

(2.19)

so that h(y,a;,0) > 0. Then we show that h(y,a;, b)) — h(y,a;,0) > 0 by simply making
plots of this function. This establishes the positivity property eq. (B.13).

We now examine F further under the assumption that m = 0. We write F as a function
of the dimensionless virtuality variable y, and a momentum fraction®

= Pmal T (2.20)
(Pm+1 + 1) -y

It is also convenient to use an auxiliary momentum fraction variable

b1 - Q A 2
T = - pm+1 AQ - Z—l— aly , (221)
B +00)-Q@ 1+y  (I+y(I+y+A)
where, for m = 0, A = /(1 + y)? — 4a;y. Using these variables,
11—z 2a;y
Foikonal =2 - - .Z'2(1 T y)2 5 (222)
and
A—1+1y)? +4y 1
F= 1+( 4)\) Feikonal+§Z[1+y+/\] : (223)
As y — 0, F must turn into the Altarelli-Parisi function for this splitting,
1+ (1—2)?
Fap(z) = — (2.24)

Indeed, the derivation given above is one way to derive the Altarelli-Parisi function. We
illustrate how F'(z,y, a;,b;) at b; = 0 approaches Fap(z) in figure f§.

5Note that there are many different ways to define a momentum fraction variable. The value of the
splitting function for a given choice of daughter parton momenta does not depend on the momentum
fraction variable that one uses to label these momenta. We have taken a simple definition of z in order to
display results in a graph.
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Figure 3: The spin averaged splitting function F' defined in eq. (R.23)) for a final state ¢ — q + g
splitting, plotted versus the momentum fraction z of the gluon, as defined in eq. (R.20). The
quark is taken to be massless and we set a; = 4. The four curves are for, from bottom to top,
y = 0.03,0.01,0.001, 0. For y = 0, the result is the Altarelli-Parisi function, [1 + (1 — 2)?]/z.

Figure 4: An initial state ¢ — ¢ + g splitting.

2.2 Initial state ¢ — ¢ + g splitting

Here we consider an initial state ¢ — ¢+g splitting, as illustrated in figure f|. For notational
convenience, we let it be parton “a” that splits, so [ = a. We allow both parton “a” and
parton “b” to have masses, m, = m(fa) and my, = m(fp). One could, of course, choose
these masses to be zero. Parton m+1 is a (massless) gluon. The shower evolution for initial
state particles runs backwards in physical time. Parton “a”, which carries momentum p,
into the hard interaction, splits into the final state gluon with momentum p,,+1 and an
initial state parton that carries momentum p, into the splitting. For a nearly collinear
splitting, pa = pa — Pm+1. In physical time, it is the initial state parton with momentum
P, that splits.

Following ref. [, we define the kinematics using lightlike vectors pa and pp that are



lightlike approximations to the momenta of hadrons A and B, respectively, with 2pa-pg = s.
The momenta of the partons that enter the hard scattering, p, and py, are defined using
momentum fractions 7, and n,. After the splitting, the momentum fractions are 7, and 7.
Because parton “a” splits, 7, # 1n,. However, with our kinematics, the momentum fraction
of parton “b” remains unchanged: 7, = 7. The initial state parton momenta are defined
to be

m2
Pa = MDA + —=DB ,
778

a

mj
Pb = TbPB + —> DA (2.25)
S
2
a

R “ m
Da = NaPA + — DB -
NaS

a

The momentum of the final state spectator partons changes in order to make some momen-
tum available to allow both p, and p, to be on shell with zero transverse momenta. We
denote the total momentum of the final state partons before the splitting by Q@ = p, + pp
and after the splitting by Q = pa+ pu. In the splitting function, we make use of a lightlike
vector n, in the plane of p, and ). With a convenient choice of normalization, n, = pg.

In the following formulas, it will be convenient to define Py = py — Prm+1-

Using the definition eq. (R.§) with the splitting amplitudes v, from table 1 of ref. [i],
we write the spin averaged splitting function as

— 4oy 1 . A
Waa = : 5 —— 3 D,uz/(pm+17 Q)
2(pa - pB)? (2Pa " Pm+1) (2.26)

x iTr [(ﬁa + ma)’Y”(Pa + ma)%a(pa + 7715‘)7/%(%)a + ma)’YV]

Here D, is given in eq. (R.L1).
The spin averaged splitting function can be simplified. Let us adopt the notation

2 2
m
a q>b b

‘o NallbS ’ B NallbS ‘

P m

(2.27)
Then the result can conveniently be displayed in terms of the dimensionless function

ﬁa : ﬁm—l—l 7
F=——"7"W, . 2.28
4o o ( )

The result is

ﬁm-}-l ' PB D, Py, ('f]a - na)2
Pa - PB (1 - q>a(1)b) "7;%

Here the first term is the simple eikonal approximation for soft gluon emission,

F = Feikonal + Feikonal . (229)

Do D(Bmi1, Q) - Pa

= 2.30
Pa * Pm+1 ( )

F eikonal —

The second term is present in the case of massless or massive quarks and is manifestly
positive. The third term is present only if m, and my, are both non-zero. It is likewise
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Figure 5: The spin averaged splitting function (1,/7,)F, with F defined in eq. (), for an
initial state ¢ — ¢ + g splitting, plotted versus the momentum fraction z of the gluon, as defined
in eq. () All partons are taken to be massless. The four curves are for, from bottom to top,
y = 0.03,0.01,0.001, 0. For y = 0, the result is the Altarelli-Parisi function, [1 + (1 — 2)?]/z.

manifestly positive as long as ®,®y, < 1. Thus, as for the final state splitting analyzed in
the previous section,

F — Feikonal = 0 . (231)

Let us now specialize to m, = mp = 0 and examine the behavior of F' in more detail.

We define a virtuality variable
Pa * Pb
and a variable representing the momentum fraction of the daughter gluon

Pa - (Pb — Dm+1)

We can write z in a different form by using the kinematic relation that is used to define
the momentum mapping Ra, (pa + pp)? = (Pa + Pb — Pma1)?, which is equivalent to

ﬁa . ﬁm—l—l - (Pa - pa) *Pb - (234)
This relation gives
p=2 Y (2.35)
=1, )
where
Na
r=1—— . 2.36
o (2.36)

Note that z and x are equivalent when y = 0 but z varies in the range 0 < z < 1. The

inverse relation is
r=z+4+y(l—2) . (2.37)

— 10 —



Figure 6: A final state g — g + g splitting.

A simple calculation gives

X
F = Fgxonal + 11—+ -v, (238)
where 5 9
Y
Feikonal = 5 - P . (239)

As expected, (1 — x)F = (na/7.)F approaches the Altarelli-Parisi splitting function, [1 +
(1 —2)?]/z as y — 0. The approach to the limit is depicted in figure f.
2.3 Final state g — g+ g splitting

Next we consider a final state g — gg splitting, as illustrated in figure [f. According ref. [T,
the splitting amplitude is built from the ggg vertex,

0 (pay s Pe) = VT (Days os Pe) + 0577 (s Dos Pe) + 0577 (s Dis D) (2.40)
where
U (Das Dby D) = 9% (D0 — 1b)7
05 (Day s pe) = 97 (0 — pe)® (2.41)
V5% (Das Dby pe) = 97 (pe — pa)” -
We use v*?7 to define the splitting amplitude
0 ({P, fIma1,8mr1, 81, 51)
VAaTa . . - LA Ak A
= ﬁga(pm—l—lasm—l-l;Q) ep(pr, 515 Q)" (1, 51, Q) (2.42)
Pm+1-Dl

X Uaﬁ’y(ﬁm—i-laﬁla —Pmi1 — ﬁl) D*yl/(ﬁl + Pm+1; nl) .
We have the ggg vertex, polarization vectors for the external particles, and a propagator
D /(2pm+1-p1) for the off-shell gluon. The numerator D., (p; + Pm+1; 1) projects on to the
physical polarization states for the off-shell gluon,
PEnY + nf'P”

.nl

Dy (Pymg) = =g + (2.43)

— 11 —



Here n; is a lightlike vector in the plane of p; and Q, defined as in eq. (R.5). Then n?Dw =0.
Following ref. [fl], we define the spin averaged splitting function using eq. (2.§),

_ 1(1 A
I [ETCT N T —n |
2\ 2

v§l7v§m+175l

(2.44)

+ |U2,l({p7 f}m+17§m+17'§l781)|2 - |U3,l({ﬁ7 f}m+17§m+17‘§lvsl)|2 } .

Here vo; and v3; are defined as in eq. (B-42), but with vy A or ngﬁ 7, respectively, replacing
the full ggg vertex v*?7. Note first of all the prefactor 1/2, which is a statistical factor
for having two identical final state particles in a g — g + g splitting. This is the factor 5;
in eq. (B:§). Then we add |vg;|* — |vsy]?. This does not change the result when we add
this function to the same function with the roles of the two daughter gluons interchanged.
With this modification, there is a singularity when daughter gluon m + 1 becomes soft but
not when daughter gluon [ becomes soft.
One can evaluate Wy, as given in eq. (:44) by using

> eulk,s:Q)%e,(k, 5:Q) = Dy (k,Q) (2.45)

where D, (k, Q) is defined in eq. (2-I1). One might expect a complicated result, but Wy
is actually quite simple. As in previous subsections, we display the result in terms of the
dimensionless function

ﬁl : ﬁm—i—l 594
F=——"Wy, . 2.46
o (2.46)

The result is
(—ED)[+ (1 -A4)%

4ﬁl 'ﬁm—i—l
Here Fijxonal is the standard eikonal function given in eq. (R.14) and
ki = D(pi, Q)”u ﬁ¢n+1 )
Q2 P Pmt1 (2.48)
ﬁl : Q ﬁm+1 : Q

Since k, , the part of p,,11 orthogonal to p; and Q, is spacelike, we again find

F= Foikonal + (247)

A =

F — Feikonal = 0 . (249)

We can evaluate F' as a function of the variables y and z and the parameter q;, defined
as for a final state quark splitting in eqs. (R.17) and (R.20). We find

1+ (1—A)?

F=F cikonal T 2

z(1—2) . (2.50)

Here Fiikona Was given in terms of z and y in eq. (R.23) and

2a;y
r(1—-z)(1+y)?’

A= (2.51)

- 12 —
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Figure 7: The spin averaged splitting function F' defined in eq. () for a final state g — g+ ¢
splitting, plotted versus the momentum fraction z of the gluon, as defined in eq. (R.20). We set
a; = 4. The four curves are for, from bottom to top, y = 0.03,0.01,0.001,0. For y = 0, the result
is 2(1 — z)/z + 2(1 — z). The sum of this and the same function with z — 1 — z is the standard
Altarelli-Parisi function, 2(1 — z)/z 4 2z/(1 — z) + 22(1 — 2).

where the auxiliary momentum fraction x was given in terms of z and y in eq. (R.21]).

For y — 0, F becomes

2(1 —
F o f(z) = % +a(1—2) . (2.52)
The standard Altarelli-Parisi function,
1—=2 z
fap(z) =2 + T +z2(1—2)| , (2.53)

is f(2) + f(1 — 2). Recall from eq. (R.44) that we broke the symmetry in a g — g+ g
splitting in such a way that there is a leading singularity for gluon m + 1 becomming soft
but not for gluon [ becoming soft. We could have accomplished the same end by using the
full ggg vertex but multiplying the splitting function by #(z < 1/2). Had we done that,
the small y limit of F' would have been f(z) = fap(z)6(z < 1/2). This would also give
F(2)+ £ 2) = fap(2).

The full function F(z,y,a;) approaches f(z) as y — 0, as illustrated in figure .

2.4 Initial state g — g+ g splitting

We now consider an initial state g — gg splitting, as illustrated in figure §. According
ref. [, the splitting amplitude is again built from the ggg vertex, v eq. (R.40). We use
v to define the splitting amplitude for the splitting of one of the initial state partons,

— 13 -



Figure 8: An initial state g — g + g splitting.

say parton “a,”

Val{P, fYmt1.8m+1, 81, 51)

Vamra . . A oA R

= — 55— alPmi1: 8mi1; Q) ep(Pas 8a; Q)" (Pay 523 Q)" (2.54)
Pm+1-Pa
X 'Uaﬁ,y(ﬁm—i-la —Pa,Pa — ﬁm—l-l) D’yl/(ﬁa — Dm+1; na) .

We have the ggg vertex, polarization vectors for the external particles, and a propagator
D /(2pm+1-Pa) for the off-shell gluon. The numerator D, (Pa — Pm+1;7a) Projects on to
the physical polarization states for the off-shell gluon. It is defined using eq. (B.43), with
the lightlike vector n, = pp. Following ref. [[], we use eq. (2.§) to define the spin averaged
splitting function from the square of v,,

— ~ 1 oA . . 2
Waa({fap}m-i-l) = 5 Z |'Ua({p, f}m-i-la Sm+1; Sas Sa)| : (255)
§a7<§m+lysa

Remarkably, W ,, is rather simple. As in previous subsections, we display the result
in terms of the dimensionless function

Pa Pm+1 7
F=—— . 2.
T, Waa (2.56)

The result is

~ 2 ~ ~ A ~ ~ A
_ _ki Pm+41:Na Pa'Na Pm+1°Q + Pm+1-Na Pa- Q@
F= Feikonal + — ~ ~ N = N ~

Pa Pm+1 (pa - pm+1) My, (pa — pm+1)-na Pm+1 -Q

(2.57)

Here Fjxona is the eikonal function, eq. (R.30), and /-cj‘_ = D(pa, Q)“,, Pr, 1 as in eq. (2.49).
Examination of eq. (R.57) shows that, as in the previous cases,

F — Faikonal = 0 . (2.58)

To see this, one needs to know that splitting kinematics ensures that (p, — pm+1)-na > 0.
We note that the splitting kinematics allows non-zero parton masses, although the gluon
that splits here is massless.
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Figure 9: The spin averaged splitting function (1,/7,)F, with F defined in eq. (), for an
initial state g — g+ g splitting, plotted versus the momentum fraction z of the gluon, as defined
in eq. () The four curves are for, from bottom to top, y = 0.03,0.01,0.001,0. For y = 0, the
result is the standard Altarelli-Parisi function, 2(1 — 2z)/z + 2z/(1 — z) 4+ 2z(1 — z).

Let us look at this assuming massless partons and using the splitting variables y, z
and x = 2 + y(1 — 2) defined in section (R.9). A straightforward calculation gives

1-yz \? 22(1-y) +y
<7)z> T . (2.59)

= (- TR G Py

2 2y
Z_ 27 49(1 —
~ - t2(l-y):

As expected, (1—x)F = (na/7.)F approaches the Altarelli-Parisi splitting function, 2z/(1—
2) +2(1 — 2)/z+22(1 — 2) as y — 0. The approach to the limit is depicted in figure 9.

2.5 Other cases

We have covered the cases of quark or gluon splittings in which a daughter gluon enters the
final state. There is also the possibility of an antiquark splitting replacing a quark spitting,
but, because of charge conjugation invariance, these are essentially the same as the quark
splitting cases. There are also cases in which no daughter gluon enters the final state: final
state and initial state g — ¢ + ¢ and initial state ¢ — ¢+ g and § — ¢ + g in which the
gluon enters the hard scattering and the quark or antiquark enters the final state. The spin
averaged splitting functions for these cases are manifestly positive. In these cases, there is
no leading singularity when a final state daughter parton becomes soft, so we do not need
to consider soft gluon singularities. We list the results for these cases in appendix [A].

3. Interference diagrams

We have analyzed the spin averaged splitting functions Wp;, which correspond to the
squared amplitude for a parton [ to split into daughter partons with labels [ and m+1. Now
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Figure 10: An interference diagram. A gluon, labelled m + 1, is emitted from parton [ in the
amplitude and from parton k in the complex conjugate amplitude. This diagram has a leading
singularity when the gluon is soft.

we need to consider interference diagrams, such as the diagram illustrated in figure [L0. In
the amplitude, parton [ can change into a daughter parton with label [ by emitting a gluon
with label m+1. In the complex conjugate amplitude, parton k£ can change into a daughter
parton with label k by emitting a gluon with label m + 1. If we were to temporarily ignore
questions about how to define the kinematics and were to use the splitting amplitudes v;
and vy for this, the corresponding contribution to the splitting function would be

V{B, FYmi1s Smits 80 80) 8500 V6B, Fhm1s Shgs 810 1) 0511 - (3.1)

This function is singular when gluon m + 1 is soft, p,,+1 — 0. However it does not have
a leading singularity when gluon m + 1 is collinear with parton [ or parton k. For this
reason, we can use a simple eikonal approximation to the splitting amplitude,

2 . . E(Pm+1:8m+1; Q)" P

VPP, fYme1s Sme1s 81, 81) = VATag 85,6, B e ) ; (32)
Pm+41-P1

if parton m + 1 is a gluon, with vlSOft = 0 otherwise.

Making the eikonal approximation, the splitting function is
Wik, = o (V™) 65151 Oy s, - (3.3)

This function gives the dependence of the splitting operator on momentum and spin. In
ref. [] there is a separate factor that gives the color dependence. This factor is an operator
on the color space that we can call t;r ®t,, where t;r is the operator in eq. (R.2) that inserts
the proper color matrix into line / in the amplitude and ¢, inserts the proper color matrix
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into line k in the complex conjugate amplitude.” We do not yet make any approximations
with respect to color. In section [}, we will make the approximation of keeping only the
leading color conributions.

There is an ambiguity with the prescription (B.3). The functions in Wj; are defined
in terms of daughter parton momenta and flavors, {p, f }m+1. However, we want to define
{p, f}m+1 from the momenta and flavors {p, f},, before the splitting together with the
splitting variables {(p,(r}. We need to specify what relation to use. One way is to use
the kinematic functions that we use for the splitting of parton [ into a daughter parton [
and the gluon m + 1, {p, fYme1 = Ri({p: fm, {¢p,C¢}). With this mapping, we define a
function Wl(,i) of the {p, f} and the splitting variables. Alternatively, we could use the
kinematic functions, Ry, that we use for the splitting of parton k into a daughter parton
k and the gluon m + 1. With this momentum mapping, we define a function VVI(:) of the
{p, f}m and the splitting variables. Instead of using one or the other of these possibilities,
we average over them. We use I/Vl(,i) with weight Aj;, and VVI(:) with weight Ag;. In ref. [,
we let the weight functions take the default value Aj, = Ay, = 1/2. This choice is certainly
conceptually simple. However, we can obtain spin-summed splitting functions that have
nicer properties if we define the weights as certain functions A, ({p}m+1) and Ag({p}m+1)
of the momenta. It is simplest to specify the functional forms of the weight functions using
the momenta {p},,+1 after splitting. The momenta after splitting are to be determined
by the mapping R; for A;, and by the mapping Ry for A;;.28 The weight functions are
non-negative and obey A ({P}m+1) + Aki({P}m+1) = 1 at fixed momenta {p},,+1. The
relation Ay, + Ay, ~ 1 then holds at fixed {p, f },, and splitting variables. This approximate
relation becomes exact in the limit of an infinitely soft splitting, for which the mappings
R, and R, become identical.

With the choice of momentum mappings determined by A;; and Ay, the net splitting
function, including the color factor, summed over the two graphs arising from interference
of soft gluons emitted from partons [ and k, is

[Alsz(zi) + Alez(kk)] et + [Akl Wi + AlkWé?] et = (34)
3.4
A (Wt et Wit ot]| + A (Wt et + Wit o]

We will see in the following section that we obtain spin-summed splitting functions
that have nice properties if we define Aj; as a ratio,

Bie({P}ym+1)

Arg({P}mt1) = Bo(itos) + Bty (3.5)

where . X
Bu({pYms1) = 228 D, Q)1 - (3.6)

Pm+1-D1

Here D(pp+t1, Q) is the transverse projection tensor defined in eq. (.11)).

"In ref. ﬂ], we write tlT(fl — fi+g) for the operator that we here call just t}L and we denote the operator
tl @t by G(1, k).
8This is expressed most precisely using the operator language of eq. (8.26) of ref. [ﬂ]
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4. Spin-averaged interference graph splitting functions

The part of the soft splitting function representing I-k interference that is associated with
the kinematic mapping R; is

Ay [Wl(,j) th b, + Wil @ tl] . (4.1)

We now make the approximation of setting s’ = s for each parton, summing over the
daughter parton spins, and averaging over the mother parton spins. The sum over spins of
Wl(,? is the same as the sum over spins of WIS) Thus the spin averaged splitting function,

including the color factor, becomes®”

1 -
5 H Dty 4+t ®tl} Wi (4.2)

where 1
o l l
Wi = i Z A A [Wl(k) + Wlil) (4.3)
S1,51,Sk»Sky»Sm—+1

]{s'}:{s}

Here we have used the notation {s'} = {s} to indicate the instruction to set s; = s;, §] = §,
S}, = Sk, 8), = 8k, and 8], | = Spy1. The structure of Wi is quite simple,

- 1 D13 Q) -
Wlk — 4y 2Alk PlA (p +1 Q) Pk . (44)

Pm+1 'ﬁl ﬁm—l—l ﬁk

We can associate Wy, with the splitting of parton [, since it uses the kinematic mapping
R;. Then we are led to consider the relation of Wy, to the direct splitting function Wp;.
Now, the color factor that multiplies W is tlT ® t,. However, as discussed in ref. [[[], the
invariance of the matrix element under color rotations implies that

1
Hoty=— §[tj®tk+t£®tl] . (4.5)
oy

Thus we can combine the direct and interference graphs to give

<_§ [t;®tk+t;®tl]> W — W] . (4.6)

We will see in section [ that the color factor here is very simple in the leading color limit,
essentially amounting to multiplying by Cg or zero. We are thus motivated to investigate
the coefficient of this color operator, W; — W .

It is useful to break W — W, into two pieces,

— eikonal — eikonal

Wy—Wyg=Wy—-W, )+ (W, —~ W) . (4.7)
Here, we recall from eq. (P.10),
reikona b1+ D(Ppm, 5 )P
peikonal _ g, P Ep ik Qz) 2 (4.8)
(pm+1 'pl)

9The function W here equals the product 2A;,w;; of functions in ref. [EI]
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—eikonal

We have investigated (W, — W, ) in section f and found that

elkonal

Wll - Wll = >0 . (49)
Thus we should consider W;;lkonal — Wik. We have
_ 4 5 - D(pr1:0) - D 5 - D(Dor1:0) - D
W;lkonal Wy = — 7TasA {pl (Apm—i_llQ) b 245 Y2 (Apm-l-laAQ) pk} ' (410)
Pm+1-P1 Pm+1-P1 Pm+1-Pk

We can simplify this if we use the definitions (B.5) of A, and (B.6) of By,

— eikonal =
Wy - Wy, =
4o m+1 - Dk

Dm+1 - D pm+1 pk{ m+1 Pl
drren
- {sz —2A, P - D - pk}

pr-D-pp— 245 ﬁl'D'ﬁk}

pm+1 DI Pm+1* Dk

4y A
= - sk {B + By —2p-D - pk}
Pm+1 Pl Pm+1 " Pk
Aoy A D ) R ) . . .
_ _dmas  Aw {1{ AL Pk s PP
DPm+1 Dl Pm+1 Dk | Pl - D1 Pm+1 - Dk (4.11)
—Qﬁl'D-f)k}
471'045 Alk 1

= — — — — — {(Pms1 - Dr)* B+ D - Py
Pm+1 Pl Pm+1 Pk Pm+1 Pl Pm+1 ° Pk

+ Bms1 - D) P D~ i — 2 Bt - Dr) Prms1 - 1) B D - i}
. 471'045 Alk 1
Pm+1 Pl Pm+1 Pk Dm+1 " Dl Pmt1 * Pk
X (Dm+1 Pk Dt — Pm+1 - Pt Pk) - D (Pmt1 - Dk Dt — Pm1 - D1 Pr) -

We can simplify this further by noting that the vector py,+1-Pr Di —Pm+1-P1 Pk is orthogonal
t0 Pm+1, so that only the term —g"*” in D* contributes. Thus

ikonal  —— 4oy A —(p “Pr D1 — P - Dy Pr)?
Wl(lzl onal Wi = — s lk (pm—i-l Pk Pt — Pm+1 " Dl pk)

~ = - ~ —— — (4.12)
Pm+1 Pl Pm+1 - Dk Pm+1 Pl Pm+1 * Pk

Since the vector pm+1 - Pr D1 — Pma1 - D1 Pk is orthogonal to the lightlike vector pp,y1, it is
either lightlike or spacelike. Furthermore, A;;, > 0. Thus

—eikonal

W, —~ Wi >0 . (4.13)
Thus both parts of our splitting function, W — W;;lkonal and W;;lkonal Wk, are non-

negative. This means that we can use these functions as probabilities in constructing a
parton shower Monte Carlo program without needing separate weight functions. We discuss
this further in section [g.

The analysis so far has allowed partons [ and k to have non-zero masses. Let us now
consider the case of massless partons, ]3% = ﬁi = 0. The massless result can be understood

- 19 —



Figure 11: The function g defined in eq. ) that serves to suppress soft gluon radiation outside
of the “angle ordered” region. The plot coordinates are §, = fcos¢ and 6, = 0sin ¢, where 0, ¢
are the polar angles of #,,41. The vector 4} is at § = 0 and the vector ), is at § = 0.1, ¢ = 0.

in more detail if we write it in terms of three-vectors in the frame in which C_j = 0. We
define i, i}, and 41 to be unit three-vectors in the directions of the space parts of py,
Dk, and P41 respectively. Then

4o 2@2

(Q'ﬁm—i—l)z (1 - z_jm—i-l"l_jl)

—eikonal

W” — Wlk; = g(ﬁm-l-l) Ulv ,L_[k‘) ) (414)

where

(1 + U1 -1y (1 — - y,)

- = = - — — — — . 4.15
1 — g -ty (1 + g -Ug) + (1 — g1 Uk ) (1 + U1 -0 (4.15)

g(ﬁm—i-laﬁlyﬁk) = (

We can make some comments about this. First, the splitting probability is singular when
the angle between 1,11 and @; approaches zero, (1 — @Wy,+1 - 4;) — 0. This is the standard
collinear singularity, seen in the soft limit. Second, when (1 — w11 %) < (1 — 1 -1;) < 1,
Wﬁikonal — Wi, behaves like 1/(1 — @41 - ;). If we integrate over the angle of i, 1 with
a lower cutoff on the angle between ,,+1 and w;, the integral is logarithmically sensitive
to the cutoff. Third, when (1 — d - @) < (1 — Upt1 - @) < 1, Wﬁikonal — Wy behaves
like 1/(1 — @y - )2, If we were to put an upper cutoff on the angular integration, there
would be no logarithmic sensitivity to this cutoff. Thus, only the angle ordered region
(1 — U1 - ) S (1 — g - 4p) is important in the integral over angles. There is a smooth
decrease in the splitting probability when the angle between ,,11 and @; becomes greater
than the angle between # and ;. There is no sharp cutoff.

We illustrate this in figure []. We take the polar angles of 11 to be 0, ¢ where
U is along the 6 = 0 axis. We choose wj to have polar angles 6, = 0.1 and ¢, = 0.
Then we plot g(tm+1, U, Uy) versus 6, = 0 cos ¢ and 0, = fsin ¢. Since Wﬁlkonal — Wy

o N _ - . o eikonal = . . .
91, Ty, ) /(1 — @y - @), the main feature of W, — Wy is a singularity at
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0, = 0, = 0. We see that the factor g that multiplies the singular factor is a smooth function
with a gentle peak between 4; and w. This peak above g = 1 represents constructive
interference. When ,,+1 moves outside the “angle ordered” region (1 — Up41 - U;) <
(1 — @1 - Ug), the factor g drops below 1 and decreases to zero, representing destructive
interference. We notice in figure [[] that there is an enhancement of soft gluon radiation
in the region between the directions of parton [ and parton k. This enhancement is known
as the string effect and has been observed experimentally [[].

5. The leading color limit

We have studied the spin-averaged splitting function [W” — Wlk]. Here W;; describes the
square of the graph for emission of a gluon from parton [. There are also interference graphs
between emitting the gluon from parton [ and emitting the same gluon from parton k. The
function Wy, describes the part of the interference graphs that we group with parton I.
These functions give the momentum dependence. They multiply a color operator as given

in eq. (£.9),

1
-3 Het+tiet) . (5.1)

We have so far not made any approximations with respect to color. Let us now take
the leading color approximation. To do that, recall from ref. [[] that we use color states
based on color string configurations. For instance, we could have a state [4,5,2,3,1] in
which 4 labels a quark, 1 labels an antiquark, and 5, 2, and 3 label gluons that connect, in
that order, to a color string between the quark and antiquark. One can also have a closed
string such as (4,5,2,3,1) in which all of the partons are gluons. A color basis state can
also consist of more than one color string connecting the partons. In general, the amplitude
can have one color state ‘c> and the complex conjugate amplitude can have a color state
(¢| with ¢ # c. However, in the leading color approximation we can only have ¢’ = c.
Additionally, in the leading color approximation we have

1

Here alTk represents the operator that inserts gluon m + 1 between partons [ and k on the
color string if these partons are adjacent to each other on the same color string, that is, if
partons [ and k are color connected. When alTk is applied to a state ‘c> in which [ and k are
not color connected, we define a}k|c> = 0.1 For the complex conjugate amplitude, <c| ak
again gives a state with the soft gluon inserted between partons [ and k. Thus, starting
with a color state ‘c> in the amplitude and <c‘ in the complex conjugate amplitude, we
get zero if partons [ and k are not color connected and we get a new color state with the
soft gluon inserted between [ and k if [ and k are color connected. The bookkeeping on

We here adapt the notation of ref. [], where we had gluon insertion operators al (1) and a' (1) that
insert the gluon to the right or the left of parton [, respectively. If partons | and k are color connected,
we have a;rk|c> = ai (l)|c> or a;rk|c> =al (l)|c>7 depending on whether parton k was to the right or left of

parton [ along the string.
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color connections is a standard part of parton shower event generators. The momentum
dependent numerical factor [W; — W] is multiplied by a color factor Cr.

This analysis has covered the case in which parton m + 1 is a gluon, so that there are
interference graphs arising from this gluon being emitted from parton ! in the amplitude
and from parton k in the complex conjugate amplitude (or the other way around). There
are also graphs for which parton m + 1 is a quark or antiquark, as described in section R.5.
In these cases, we have just the splitting function W;;, which multiplies the color operator
t;' ® t;. This operator is very simple in the leading color limit.

Consider first the case of an initial state splitting in which f; = ¢ and { fi, fm+1} =
{g, q}, where ¢ is a quark flavor (u, @, d, ...). In physical time, this is a splitting g — ¢+ ¢,
while in shower time it is a splitting ¢ — g + ¢. As discussed in section 7.3 of ref. [,

ti ot =Cral(l) ®ag(l) . (5.3)
Here aé(l) represents the operator that inserts the gluon at the end of the string terminated
by quark [ before the splitting and terminated by quark m-+1 after the splitting.!! Similarly,
in the case of an initial state splitting in which f; = ¢ and {fl, fm+1} = {g,q}, we have
the same result, where now a;(l) represents the operator that inserts the gluon at the end
of the string terminated by antiquark [ before the splitting and terminated by antiquark
m + 1 after the splitting.
Consider next the case of an initial state splitting in which f; = g and { fi, fm+1} =
{q,q}. In physical time, this is a splitting ¢ — ¢ + g, while in shower time it is a splitting
g — ¢+ q. As discussed in section 7.3 of ref. [, in the leading color limit,

ot ~Tr al(l) ®ag(l) | (5.4)

where TR = 1/2 and aj](l) splits the color string at the point at which gluon [ attaches,
creating new string ends corresponding to the quark and the antiquark. The same analysis
applies for an initial state splitting with f; = g and {fl, fm+1} = {q, @} and for a final state
g — q + g splitting, for which {fl, fm+1} ={q,q}.

6. Evolution equation

We now have the information that we need to present the formulas from ref. [} for parton
shower evolution specialized to the spin averaged, leading color approximation. In the
general case, we had basis states ‘{p, f.s',c ,s,c}m) with two color configurations {c},
and {c’},,, representing the color state in the amplitude and the color state in the complex
conjugate amplitude, respectively, and two spin color configurations {s},, and {s'},,. In
this paper, we have averaged over spins, so that we can describe the evolution of the states
without referring to spin at all. We also use the leading color approximation, so that we
always work with states with {c},, = {¢'};n. Thus our description is vastly simplified and
we can work with basis states |{p, 7, c}m)

"This operator is denoted a', (1) in ref. []
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As in ref. [l], we use the logarithm of the virtuality of a splitting as the evolution
variable, so that a splitting of parton [ is assigned to a shower time ¢t = T;({p, f }m+1),

. Q3

144 o) =108 (5 s =) o
where f; = fi+ fm+1 and Q3 is the starting virtuality scale. Shower evolution is based on the
probability that, at shower time ¢, a state ‘{p, f, c}m) that had not already split now splits
to make a new state ‘{ﬁ, 1, é}m+1) with one more parton. This probability is represented
as a matrix element of a splitting operator HEO) (t), which is similar to the splitting operator
Hi(t) of ref. [l except that the spin averaged, leading color approximations (“(0)”) have
been applied. Then HEO) (t) operates on states |{p, 7, c}m) instead of the states of the full
theory. We write

({5 f, Y [H” O P, £, }m)
= Z(m + 1) nc(a)nc(b) Talb fd/A(ﬁa7 N%)fl}/g(ﬁba N%ﬂ)
1 n

c(&)nc(i)) ﬁa'f/b fa/A(na’N%)fb/B(nb’u%)
% ({5, Fymas[Pi{ps £1m) 0 (¢ = T4, Fhm1))
X {e(fm—i-l =g) Z <{é}m+1|ajk‘{c}m> D1 ({p, fm1)
k
k#l
+0(fmi1 #8)0(fi = 2) ({&maalal(D{ckm) Pu({D, fImi1)
+0(fii1 # 8) 0(f1 = &) ({1 |afD|{c}m) Pu({p, f}m+1)} :

(6.2)

The first line on the right hand side of this formula contains factors copied directly from
ref. [Il. There is a sum over the index [ of the parton that splits. Then there is a ratio
of parton distribution functions. This ratio is 1 for a final state splitting but different
from 1 for an initial state splitting. The next line concerns the relation of the variables
{p, f }m+1 and t to the variables {p, f},,. For the flavors, this factor vanishes unless there
is a QCD vertex for f; — fl + fm+1 and it vanishes unless fj = f; for the other partons.
For an allowed relationship between {f}ms1 and {f}m, the flavor factor is 1. There is
a similar factor for the momenta. Given the momenta {p},,, the momenta {p},+1 must
lie on a certain three dimensional surface specified by the momentum mapping R; de-
fined in ref. []. The function ({p, f}m“‘PZ‘{p,f}m) contains a delta function on this
surface. There is also a delta function that defines the shower time ¢. Thus if we integrate
({ﬁ, 1, é}m+1|H§0) (t)‘{p, f, c}m) over t and the momenta {p},,+1, we are really integrating
over three variables that describe the splitting of parton .

The final factor in eq. (6.9) contains three terms. Our main interest is in the first term,
for fm+1 = g. There is a sum over the index k of other partons in the process. These are the
partons that might be connected with parton [ in an interference diagram. The remaining
factors are rather complicated in the general case described in ref. [[l], but are quite simple
in the spin averaged, leading color approximation. The factor ({¢}m11 !a;fk [{c}m ) embodies
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the color considerations described in section . It equals 1 provided two conditions hold.
First, partons [ and k must be color connected in the initial color state {c},,. Second,
the new color state {¢},,+1 must be the same as {c},, with the gluon with label m + 1
inserted between partons [ and k. If either of these conditions fails, this factor vanishes.
The remaining factor is the splitting function

(I)lk = CF [W” - Wlk] . (63)

We have seen explicitly what this factor is, and have noted that &y is positive.

The next term in the braces in eq. (b.J) applies to an initial state splitting in which
fi = g and {fi, fms1} is either {g,q} or {7,q}. The color factor <{é}m+1‘ag(1)‘{c}m> is
1 if the new color state {¢},,+1 is the same as {c},, with the end of the string at quark
or antiquark [ now terminated at quark or antiquark m 4+ 1 and the new the gluon with
label [ inserted just next to the end of the string. Otherwise, this factor vanishes. The
corresponding splitting function is

(I)” = CF Wll . (64)

The final term in the braces in eq. (f.9) applies to a splitting in which f; = g and { fi, fm+1}
is either {q, ¢} or {7, q}. The color factor ({¢}m1 ‘aé(l)|{c}m> is 1 if the color state {¢},,+1
is related to {c},, by cutting the color string on which parton [ (a gluon) lies into two
strings, terminating at the new quark and antiquark. Otherwise, this factor vanishes. The
corresponding splitting function is

q)” = TR Wll . (65)

We have now specified the probability that a state ‘{p, 1, c}m) splits. The probability
that this state does not split between shower times ¢ and ¢’ is

AO 4,1 [p, £ chm) = exp (— [ ar @)1, c}m>> . (6.6)

Here (1|HI(0) (T)‘{p, f, c}m) is the inclusive probability for the state |{p, 7, c}m) to split at
time T,

RO D, f.ehn) = 7 / ({5, f.Ymsa] (16, F hmia [V @) (D, £ 0hn) -

(m+1)
(6.7)

To get the inclusive splitting probability, we have integrated over the momenta {p},,+1
after the splitting and summed over the flavors and colors, using the integration measure
in Eq, (3.15) of ref. [[l], supplemented by a sum over color states.'?

With these ingredients, we can describe shower evolution using the evolution equation
(14.1) from ref. fl]. The evolution from a shower time ¢’ to a final time ¢ at which showering

12 According to eq. (3.15) of ref. [], there is an extra normalization factor ({¢}m+1]|{¢}m1) in eq. (@)
With our choice of the normalization of color states, this factor is not exactly 1, but it is 1 in the leading
color limit.
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is terminated is given by an operator U© (t;, ') that obeys!?
te
UO (1, 1) = NO (15, 1) + /t dr U0 (te, ) HO () N O (7.¢) . (6.8)

Here N (¢,#') is a no-splitting operator defined by

NO@ ) {p, f,ctm) = A {p, £, clm) [{p, fochm) - (6.9)

If we apply this to a state Hp, f, c}m) that exists at shower time ¢, we have
Z/[ (tfv )‘{pv I C}m) A(O)(tﬁt/'{p) fac}m)Hpv I C}m)
/ /[d{p7 7é}m+1] tf7 ‘{p7 7é}m+l)

T mr)
{p,f.¢} mﬂm TV, frctm) AO (5 {p, fochm) -
(6.10)

The first term gives the probability that the state does not split before shower time ¢;. The
main evolution is represented by the second term. There is an integration over the shower
time 7 of the next splitting and over the splitting parameters. In an implementation of
this equation, the integration would be performed by Monte Carlo integration. That is,
we would choose 7 and {p, 1, ¢}m+1 with some probability density p that contains delta
functions that restrict 7 and {p, f, ¢}m+1 to the allowed surface defined by the eq. (6.1) for
7 and the momentum mapping R;. Then we multiply by a weight w defined by

1

g (8 Bua VO £.6hn) AV 5 fohm) =wxp o (611)

In the present case, the integrand has two welcome features. First, it is positive. Second,
using the definition of A©),

m n 1 /t’ dT/ d{p, fv C}m+1] ({p, fa C}m+1|H )!{p, f, C}m) A(O) (7’, t/; {p, f, c}m)

=1.
(6.12)

Thus the function

(15 St [HO O AP, frchin) AO(r 5 {p, £, chn)
B (m+1)!

(6.13)

is positive and properly normalized to be a probability density. Using standard methods
from shower Monte Carlo algorithms [J—[L1], we can choose points with this probability
density. Then w = 1. With a probability A© (¢,¢; {p, f, c}m), the point selected will be
in the range tf < 7 < oco. In this case, there is no splitting and we simply keep the state

3Tn ref. [ﬂ], [Hi(7) — Vs(7)] appears in place of ’H%O) (1) here. With the leading color approximation,
Vs(1) =0.
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|{p, 1, c}m) ThlS corresponds to the no splitting term in eq. (6.10). If 7 < t¢, the state
splits to {p, f c}m+1 Then, according to eq. (p.1(), we should apply UO) (te,7) to this
state, repeating the process. Thus the evolution proceeds by what is known as a Markov
chain.

The starting point for evolution is a state that is a mixture of the basis states
|{p, f, c}m) for m = 2, assuming that we start with a 2 — 2 hard process,

1p9(0)) = 2 / [d{p. f.c}a] |{p, [, ct2) ({p. £, c}2|p(0)) (6.14)

Here ({p, 7, C}Q‘,O(O) (0)) is obtained from the 2 — 2 matrix element summed over spins,**

Fasa(Mas 1) o8 (Mo, 1F)

({p’ fs 0}2"0(0)(0)) 4nc( ) (b) 2MaMNbPA - PB

ST s k| MUp, £12))]° . (6.15)
(s}

To implement eq. (6.14), one would choose points {p, f, c}2 by Monte Carlo methods. This
gives the starting point for the shower evolution. The state ! p(o)(O)) then evolves into a

state
10O (tr)) = U0 (t,0)]p9(0)) (6.16)

at the shower time t¢ at which we choose to terminate shower evolution. At this point,
as described in ref. [[ll, the desired cross section is obtained by applying a hadroniza-
tion model to the component states ‘{p, 7, C}N) in ‘p(o) (tf)), producing a hadronic state
U (o0, ty)| p(t¢)). Then the desired cross section o[F},] results from applying the mea-
surement function F}, to the hadronic states produced. Thus

dO[FR) = (B U (oo, tr) | oV (1))
= Zﬁ/[d{pvac}]\/] (Fh‘uhad(oo7tf)|{pvac}]\/')({pvac}N‘p(O)(tf)) :
m !
(6.17)

Just as in the parton shower evolution, the integration in eq. (6.17) can be implemented
by simply taking the states |{p, fyc} N) generated by the shower evolution and passing
them to a Monte Carlo implementation of a hadronization model. Then application of
the measurement function is acheived by, for instance, putting the events into desired bins
according to the momenta of the resulting hadrons.

7. Other approaches

In this section, we sketch the relation of the shower evolution of this paper to some other
approaches to the description of parton showers. For the shake of the simplicity we work
only with massless partons in this section but it is still allowed for the non-QCD particles
to have non-zero masses.

1 As explained in ref. [], we should most properly project out the component of |M({p, f}2)> that is
proportional to a color basis state !{c}2> by using a dual basis state D<{c}2|7 but in the leading color limit
there is no distinction between the dual basis states and the ordinary basis states.
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7.1 Dipole shower

One possibility for organizing the gluon radiation in a (spin averaged, leading color) parton
shower is to use the same functions that are used for organizing the subtractions in a next-
to-leading order perturbative calculation. In particular, the dipole subtraction scheme of
Catani and Seymour [[f] is an attractive possibility [[J] that has been developed as the
basis for parton shower programs by Schumann and Krauss []] and by Dinsdale, Ternick
and Weinzierl [{].

To see how this can work, consider the case that the emitted parton m -+ 1 is a gluon,

so that the splitting operator is given by the main term in eq. (6.9),

({ﬁ7 fv é}TrL-i-l‘ll_l(O) t Hp7 fac}m)
n6(b) namy Ta/A(as W) f3 5 (s 117)

b/B
- ZZ ( ) ( )77a77b fa/A(naaﬂF)f /B(nbqu)
K

X ({257 f}m—i—l ‘Pl‘{pv f}m) 5<t - T ({p, f}m+1)> <{é}m+1|a;rk‘{c}m>
x @ ({P, fYms1) -

The term [, k generates gluons predominately soft or collinear with parton . That is

because @y is singular when p,,+1 is soft or collinear with p; but finite when p,,41 is
collinear with pg. Each term is defined with its own phase space mapping P; and evolution
parameter t. Now we can use the momentum mappings P;7 of Catani and Seymour. These
obey

({p, f}m+1| ‘{p, f}m ~ ({ﬁy f}m—l—l |’Pl‘{p, f}m) when pri1 — Apy
({p7 f}m+l| ‘{paf}m ({ﬁy f}m-ﬁ-l‘,})l‘{paf}m) (72)
~ ({Bs FYmi1 | Pe|{p. fIm) when pri1 — 0 .

We can also use the splitting functions ®;7 of Catani and Seymour. These substitutions
give

({ﬁ7 fv é}m—l-l‘HfS t Hpv fv C}m)
= ZZ (m+1)
1 ( )nc
k;él
% ({6, Fma PP £1m) 0(t = Ti{, Fhmtn) ) ({hmea]afy[{ehm)
5D, Frms1) -
(0)

The splitting operator H{®(t) matches H; " (t) in the collinear and soft limits.

(b)?’]a?’]b fa/A(naauF)f/ (lemu'F)
(0) Naiy Jasa(Mas 13) foy 5 (M, 13,

(7.3)

We see that the structure of shower generation using the Catani-Seymour functions is
quite similar to that of this paper. It is of interest to compare the splitting functions in
the soft limit, 5,11 — 0. Using the definitions in ref. [f], we have

4o Cp 2@2 o

O ({Bs flms1) ~ —— ———— 9% (U1, Uy, Uy B/ Ey) (7.4)
(Q'pm+1)2 (1 - um+1‘ul)
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Figure 12: The soft radiation function for parton ! corresponding to Catani-Seymour dipole
splitting. The function g defined in eq. ({.15) and plotted in figure [L]] is replaced by the function
Jes., €Q. @), plotted here. In the plot on the left, E;/E; = 3. In the plots on the right,
E;/E), = 1/3. The plot coordinates and value of 6 are as in figure .

for ppma1 — 0, where

(1 — ay-uy)
(E1/Er)(1 — tpgr-y) + (1 — gy -1y

9% (U1, U, Uy; B/ By) = (7.5)
Here E; and E}, are the energies of partons [ and k, respectively, in the rest frame of Q,
the total momentum of the final state partons. Thus E;/Ey = p; - Q /Dk - Q. This function
is similar in form to the function g of this paper, plotted in figure [[J, but it depends on
the ratio E;/Ey,. We plot it in figure [ for E;/E); = 3 and E;/E), = 1/3. We see that
the Catani-Seymour functions assign little soft radiation to the more energetic of partons
I and k. More soft radiation is assigned to the less energetic parton of [ and k, with quite
a lot of the radiation going in approximately the direction of the more energetic parton.
The the final state shower in the latest version (version 8.1) of PyTHIA [§, []] is essen-
tially a dipole shower as described above. In particular, the splitting function describing
gluon emission in the soft limit p,,1 — 0 is that in eq. ([-4) with the same function g as

given in eq. ([[.5).
7.2 Antenna shower

In the method of this paper and in a dipole shower following the Catani-Seymour scheme,
the creation of a new gluon is attributed to the splitting of one of the previously existing
partons. This requires that for the interference graph between the amplitude for emitting
the gluon from parton [ and the amplitude for emitting the gluon from parton k, one assigns
a certain fraction Ay of the graph to the splitting of parton [ and a fraction 1 — Ay to the
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splitting of parton k. In an antenna shower, one treats the pair of color connected partons,
I,k as a unit. The [,k dipole constitutes an antenna that radiates the daughter gluon.'®
The pioneering development along these lines is the final state shower of ARIADNE[P]. More
recent examples include those in refs. [[L3, [4]. There is a corresponding subtraction scheme
for next-to-leading order calculations, antenna subtraction [[[5].

To define an antenna shower, we choose a momentum mapping P3™ with the properties

previously defined and with the symmetry property
Pt = pant (7.6)

We also redefine the shower evolution variable to be symmetric under [ <+ k interchange.
For instance, we could take

£ = log ( Q% > . (77)

2 min[ﬁz ‘ﬁm+17 ]ak 'ﬁm+1]

Then we can rewrite the sum over [ and k£ as a sum over pairs [, k, with each pair counted
once, giving
({ﬁ7 fv é}m-i—l |H?nt (t) ‘ {p7 f7 C}m)

B ne(a)ne(b) nany fd/A(ﬁaaM%)fi)/B(ﬁb,M%)
- lzk: ot nc(&)nc(l}) TaTlb fa/A(naaﬂ%)fb/B(nhN%)
pziirs (78)
~ p an Q2
* ({8 Syt [P S ) 5<t ~log <2min[ﬁl'ﬁm+017 ﬁk'ﬁmﬂ]))
% ({emaafy [ {chm) OB, Frmr) -

Here @?ﬁt can be

O = By, + Dy (7.9)

or any function that matches it in the soft and collinear limits.
In the soft limit, P41 — 0, @3 approaches the soft limit of the sum @y, + @y, which
is R
4oy Cp 2@2 (1 — -ty
(Q-Pmg1)? (L= tmy1 1) (1 — U g1 -1y,

There is no function g here. The function g in the previous subsections arises from sepa-

?/?t({ﬁ7 f}m—l—l) ~

(7.10)

rating this into two terms, one that remains finite when (1 — @, +1-%) — 0 and the other
that remains finite when (1 — @, 41-1;) — 0.

7.3 Angular ordering approximation

With massless kinematics, the distribution of soft radiation that is kinematically of the
form for a splitting of parton [ is proportional to g(u,41, U, W)/ (1 — U1 - U;), as given
in eq. (.14). From the plot of ¢ in figure [, we see that the soft gluon radiation from

50One ought to call this a dipole shower, but then one would need a new name for the kind of shower
described in the previous subsection.
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Figure 13: The angular ordering approximation. The function g defined in eq. () and plotted
in figure is replaced by the function g¢,.., eq. (), plotted here. The plot coordinates and
value of 6, are as in figure @

partons [ and k is approximately confined to a cone between p; and pi. This is called
“angular ordering.” There is also an angular ordering approximation [[Ld] that is sometimes
used for parton showers and, in particular, lies at the heart of HERWIG [@] With this
approximation, the function g in figure [LI] is approximated by the function plotted in

figure [[d,

Gao.(Um+1, Uy, Ux) = O(Upmy1 - Uy > Uy - Up) - (7.11)

We see that in the angular region between the two hard parton directions (6, ~ 0.5,6, ~ 0
in the figures), the angular distribution of the soft radiation determined by the exact
function ¢ is about twice as large as that determined by g,... In other angular regions
g gives less soft radiation than g,,. The angular ordering approximation has the good
feature that it gets the total amount of soft radiation right,

/de+1 g(um+17 ug, uk) — Ga.o. (um+17 uz, uk‘) -0 . (712)

1 _ﬁm—i-l : Z_Zl

This result follows from the original construction of refs. [[d. We note, however, that
the original construction involved only an integration over the azimuthal angle ¢, while
eq. (1) requires an integral over both 6 and ¢. We have also checked eq. ([:19) by
numerical integration.

One should note that the theta function in g, restricts the emission angle of a soft
gluon to be smaller than the angle between ;. and u;, where k is a parton that is color
connected to parton [. If parton [ is a quark, then there is only one choice for k. However,
if parton [ is a gluon, then there are two color connected partons. Then there are two
contributions with separate angle restrictions.

— 30 —



8. Conclusions

In ref. [f], we presented evolution equations that represent a leading order parton shower
including quantum interference, spin, and color. We did not, however, present a way to
implement the integrations implied by these equations in a fashion that would be practical
for more than a few partons. The idea behind the evolution equations was to make just
one approximation: that the virtualities in successive splittings are strongly ordered.

Typical Monte Carlo event generators, such as PYTHIA [I(], ARIADNE [B], HERw1G [],
and SHERPA [[7], make additional approximations. In particular, they typically average
over parton spins and take the leading term in an expansion in 1/N2, where N, = 3 is the
number of colors.'® Our aim in this paper has been to work out how the general formalism
could work as a practical calculation if we make the further approximations of averaging
over parton spins and of keeping only the leading order in 1/N2. We do, however, keep
some aspects of quantum interference in that the interference graphs between the emission
of a soft gluon from parton [ and the emission of the soft gluon from another parton k are
accounted for.

The result is an algorithm that is similar to what is done in widely used parton shower
event generators in that the calculation can be implemented as a Markov chain, as described
in section f. The form of the evolution is perhaps most similar to that in the dipole showers
of refs. [f]] and [f] and is also similar to the k; version of PyTHIA [ff]. One can think of
the basic object that splits as not one parton, but two partons, [ and k, that are next to
each other along a color string. This basic object is often referred to as a color dipole.
When we incorporate the joint splitting of partons [ and k, there is a contribution to the
splitting probability that corresponds to the square of the amplitude for parton [ to split.
There is another contribution to the splitting probability that corresponds to the square
of the amplitude for parton k to split. Then there are two contributions that correspond
to the interference of these amplitudes. We reorganize the four terms into two terms. One
is kinematically of the form for a splitting of parton [, while the other is kinematically
of the form for a splitting of parton k. This is rather similar to the structure of the
dipole subtraction scheme for next-to-leading order calculations proposed by Catani and

Seymour [ff], which has been implemented for parton showers in two recent papers [, fi].

There are differences between the shower formulation used here and that in, say, the
dipole showers of refs. [l and [f]. The splitting functions are different. In particular,
we have separate formulations for the interference graphs (based on the simple eikonal
approximation) and for the direct graphs, for which our splitting functions are quite directly
read off from the Feynman graphs with a minimal approximation applied where an off-shell
mother parton attaches to a hard scattering amplitude. The momentum mapping functions,
which were presented in ref. [[l], are also different. They are similar to the Catani-Seymour
momentum mappings in that they are systematically defined, invertible mappings, but

6More precisely, one averages over the spins of a parton before it splits and sums over the spins of
daughter partons. For colors, the color accounting by which one assigns color factors Cr or Ca to splittings
is based on treating each gluon as carrying color 3 ® 3 instead of 8.
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they have the advantage that the form of the mapping depends on the parton index [ but
not on the index k of the partner parton.

We have seen that the leading color, spin averaged shower of this paper has a structure
similar to that implemented in standard parton shower event generators. In particular, this
simple shower can be implemented using a Markov chain. The full shower formalism of
ref. [[l] is more general than the simple shower in that parton spin and color correlations
are included. We anticipate that the full formalism will be more difficult than the simple
version to implement in a practical fashion. However, we anticipate that one can use the
simple shower as a basis for a systematically improvable approximation to the full shower.
The idea would be to start with the simple shower and provide parameters that remove the
approximations gradually, so that the result is still approximate but the approximation is
systematically improvable as computer resources allow. We expect to return to this subject
in future papers.
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A. The remaining splitting functions

In this section we record the spin averaged splitting functions W, for the cases in which
fm+1 # g, which were not covered in the main body of the paper. We use the general
definition (R-§) of W; together with the formulas from ref. [l for the splitting amplitudes
(B

We first consider a final state splitting with { f, fi, fm+1} = {g,q,q} where ¢ is a quark
flavor and ¢ is the corresponding antiflavor. A straightforward calculation gives

8mag 14 2 p1-D(p1, Q) Pt
(D1 + Pmt1)? (D1 + Pmt1)?

Wul{f, p}ms1) = (A.1)

For an initial state splitting with {f, i, fm+1} ={g,q,q}, we find

~ 2 . Al
Wll({fvﬁ}m-i-l) 871-70[52 (—1 + <( bi-my > 2 pm+1'D(pl7 Q)'pm—l—l

B (D1 — Pmt1) DL — Pmt1) 1 (P — ﬁm+1)2
(A.2)
Here n; = pp for [ = a and n; = pa for [ = b. The same result holds for an initial state
splitting with {f}, fi, fm+1} = {g,q, - o
We consider next an initial state splitting with {f, fi, fm+1} = {¢,8,¢}. A straight-
forward calculation gives

Amas  (Prru (P — Pmt1) 7 Pmg1-D(Pr, Q) Py
Ly Py Pl Dm+1

Tu({f, Blms1) = =

= A3
Pi-Pm+1 ( )

Again, n, = pg and n, = pa. The same result holds for an initial state splitting with

{flafhfm-‘rl} = {Q7g7q}

This completes the analysis of W, for cases in which fm+1 # g.
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