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ON THE STUDY OF INVARIANTS OF EQUATIONS OF MOTION
IN CALCULATIONS OF ABERRATION COEFFICIENTS

YU. P. SIVKOVY
D. V. Efremov Research Institute of Electrophysical Instrumentation, Leningrad, U.S.S.R.

In this paper we study aberration coefficients, i.e., the coefficients in the expansion of the equations for the

trajectories of charged particles
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in powers of the initial conditions g0, pro. It is shown that, owing to the invariants of the equations of dynamics,
these coefficients are related to each other by certain identities, for whose construction a method is given. In
particular, a system of identities relating the second and third order aberration coefficients is constructed for a

stationary field possessing one or two planes of symmetry.

In certain problems of ion optics, specifically,
problems of ion-beam transport, equations for the
trajectories of particles are frequently used in the
form
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considered as a transformation of phase space.
Here g, p; are canonically conjugate coordinates of
the particle, g9, pro are the initial values of the
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corresponding coordinates, and s is an independent
variable.

If the interactions of the particles, due to the
discrete character of the beam, may be neglected,
then n» = 3 in the general case. In special cases, the
number of variables may be reduced.

A well-studied case is'that in which the equations
of motion are linear and g, p; are linear in the initial
values. This corresponds to the study of first-order
terms in the expansion of ¢,, p; in powers of ¢,
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In Egs. (2), and in the sequel, left indices refer to
dynamical variables, right indices to the correspond-
ing initial values. The subscripts refer- to the
coordinates, the superscripts to momenta.

In a series of papers,!~> higher-order terms

T To our deep regret we learned of Professor Sivkov’s
accidental death shortly after his paper was submitted to
Particie Accelerators—The Editor.

kIm=1

were determined by successive iterations of simple
nonlinear systems.

Among the coefficients of the expansion (2)
aberration coefficients hold certain relations, which
result from integral invariants of the equations of
dynamics, irrespective of the specific form of the
focusing fields. The present paper is devoted to a
systematic study of the constraints which formulas
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(1) satisfy as a result of the integral invariants of the
equations of dynamics.

When the aberration coefficients are found by
successive iterations, these constraints may serve
as a side check on the resulting solutions.

The aberration coefficients may also be found by
numerical calculation or experimental determina-
tion of separate trajectories. From some power on,
the terms of the expansion (2) are neglected in these
calculations. The relations given below may be
used to check the validity of the approximation, to
any order, for describing the motion of particles
whose phase-space coordinates lie in some region at
the initial time.

Finally, some of the aberration coefficients can
be expressed directly in terms of the others.

It is well known'® that the matrix constructed
from the partial derivatives

[ Ay A, 4, A4 A5 Ass
Ay Azy Ay3 Azq Ays Ass
A3 A3, A3 A4 A35 Aze
Agy1 Agz Agz Asa Ays Ags
Asi Asy As3 Asg Ass Asg
__A61 A62 A63 A64A65 A66_

[ 09, 0q, éq, 0q, 0q, 0q, ]

0q100P1009200P20 0930 0P30
op, 'apl op, A5P1 op, 0p;

0910 0P10 0920 9P20 9930 OP30
0q, 09, 04, 09, 9q, 04q,

_ 0910 0P10 0920 9P20 0930 OP30 3)
0p, 0p, Op, @1 dp, 0p,

04100P1004200P20 0430 O30
09 261_3_ 043 093 0qs 0q;
09100P1004200P20 9930 0P30
Ops Ops Ops Ops Ops Op;

| 09100P1099200P200q300P30 |l

is symplectic, i.e., it satisfies the identity

AS4 =S, ()

where A is the transpose of 4 and

0 -1 0 00 0
1t 00 00 O

¢ |0 00 10 0 )
0o 01 00 0
0 00 00 —1
o 00 01 0]

In particular, it follows from Eq. (4) that the
determinant of A4 is equal to 1, which means that
for any A the inverse A~ ! is easily calculated. This,
however, also follows from physical considerations.
The matrix 4~! may be obtained by the usual
inversion procedure and, in view of condition (4),
assumes the form

A=Ay, Ay—Ays Aze—Ajs
—Ayy A1—A,; Az—Ays Ags
Asa—Asy Apa—Ass Ase—Ase
—Ay Az~ Ay Asz—Ays Ass
Aez—Asy Aga—Asqs Ase—Ass
| —Ag; Asi—Agy Asz—Ags Ass

6

This expression is well known for one-dimensional
motion.

Condition (4), which involves antisymmetric
matrices of rank 2#n, corresponds to n(2n— 1) scalar
equations. Calculation of the partial derivatives
in the Jacobian (3) and their substitution into
Eq. (4) leads to n(2n—1) expressions, which are
identities in ¢;9, p;o and bilinear in the aberration
coefficients. In these identities all coefficients in the
expansion in ¢;q, p;o are equal to zero.

The relations thus obtained enable one to calculate
certain aberration coefficients in terms of others.
Not all the equations, however, are independent.
One reason for this is that for high-order aberration
the number of equations exceeds the number of
aberration coefficients.

Let N of the total M aberration coefficients of
order at most k be mutually independent. Clearly,
the others can be obtained from these with the aid
of M—-N linearly independent equations (M-N = Q,
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where Q is the total number of equations). This
procedure is possible if the Jacobian of the partial
derivatives, with respect to the dependent co-
efficients, of the left-hand sides of the M-N
independent equations is different from zero. Since
these left-hand sides are bilinear functions of the
aberration coefficients, all the elements of the
Jacobian are also aberration coefficients (possibly
multiplied by integers).

The problem of the minimal set of independent
aberration coefficients may be solved in the follow-
ing way. Construct a matrix of M columns and
Q rows from all the aberration coefficients. Each
row (corresponding to one of the equations)
contains any aberration coefficient multiplying any
other in the same equation, in the column corres-
ponding to the latter coefficient. All other row
elements are zero. We must then find the rank of
the matrix, that is, the maximum order of a non-
vanishing minor of this matrix. Obviously, the
rank is M-N. The aberration coeflicients
corresponding to the columns of such a determinant
are linearly dependent, and can be expressed in
terms of the others. Rows not occurring in the
above determinant correspond to linearly dependent
equations.

Generally speaking, there may well be different
sets of linearly dependent aberration coefficients,
for which the Jacobian of ordér M-N does not
vanish. Hence the choice of a- specific set of
independent aberration coefficients may be guided
by practical considerations of convenience or by
their experimental determination.

Below we consider a set of identities which relate
the aberration coefficients of the second and third
order, for a stationary field, to one or two planes of
symmetry. One of the most practical possibilities
for a set of independent aberration coefficients for
this case will also be discussed.

If the electric and magnetic fields acting on the
particle are time-independent, a useful choice for
the independent variable is the length of arc of a
coordinate-line coinciding with one of the possible
trajectories.” The transverse coordinates g, and
q, are then taken along the binormal and normal,
respectively, to the coordinate line, the time 7 is a
cyclic coordinate, and the total energy H of the
particle becomes an integral of the motion. In this
case all elements of the matrix 4 which belong to

the row corresponding to p; = —H vanish, with
the exception of dp;/0p; = 1.

The system of equalities (4) for the matrix ele-
ments (3) becomes

Ay Ayy— Ay Ay + Ay Agy—Agy Agy =1
Az Aya— Ay Ayt Agy Agy— Azg Agy =1
Ay Agy—Ays Agy+ Ays Aga— Ay Ags =0
Ay Agy— Ay Ay +Ay3 Asg—Agg Ay =0
Ay Ayy—Ayy Agy+ Agy Aga—Azy Ay =0
Ay Ayy— Ay Ay +Agy Ayy— Azy Az =0

(7a)

Any A= Asy Asgt Auy Asg—Ags Agg = s, |
Azy Are—Aya Are+ Asz Ass— Az Ass = Asy L
A3 Aje—Ar3 Are+Asz Az —Asz Asge = Ass
Azq Ayg—AyaArs+Asa Aze— Azq Ass = Asy

(7b)

Ay Ays— Ay  Ass+ Ay Azs— Az  Ays =0 )
AyyAys— A Ass+ Ay Azs— Az A5 =0
Ays Ays— A3 Ars+Auz Azs—Az3A4s =0 J
Ayg Ays— A  Ays+ Ay Azs— Az Ays =0

(7o)

Equations (7a) are conditions for the 4 x 4 minor
in the upper left corner of the matrix (3), correspond-
ing to a two-dimensional motion, to be a symplectic
matrix. Conditions (7b) uniquely determine the
‘time-like’ elements As; in terms of A4, (and the
other elements) and vice versa. Because of con-
ditions (7a), the determinants of the systems (7b)
and (7c) with respect to the unknowns A, and
Ays, respectively, are equal to 1. Finally, the last
four equations mean that all elements of the
column corresponding to ¢;, (except Ass = 0q3/
0q50 = 1) vanish; the matrix 4 becomes

Ay A, Ay A 0 A
Ayy Ay Ay Ay 0 Ay

Ao| An A A A O ds | o
Asy Asz Az Ass 0 Age
Asy As; Asy Asy 1 Agg
0 0 0o 0 0 1 |
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The majority of practically applicable focusing
systems possess a plane of symmetry g, s (defined
by the electric field) or a plane of antisymmetry
(defined by the magnetic field).

In that case, upon simultaneous change of sign
in the initial values ¢, and p,,, the quantities ¢,
and p; also change sign, while the other variables
remain unchanged. It then turns out that all
coeflicients in the expansion of ¢, and p,, where the
index 1 to the right is repeated an even number of
times, vanish, and the same holds for the coefficients
in the expansion of the other variables, where the
index 1 is repeated an odd number of times. The
matrix of the linear approximation then assumes
the form

[a, @@ 0 0 0 07
g, %at 0 0 0 O
0 0 .,a, ,a* 0 ,a°
242 2 2 (9)
0 0 Z2a, %% 0 %23
0 0 sa, za®2 1 ;a°
0 0 0 o0 0 1

For the linear coefficients, there are two known
relations for the elements involved in transverse
motion,
1,1 11
aga —a ta; =1
(10)

2.2 22 —
0,°a°—,a*a, =1

The total number of second-order aberration co-

efficients is 30, 20 of which describe spatial
aberrations and 10 chromatic aberrations.

Conditions (7a) for the second-order aberration
coefficients have the form

14y 1b%+lal 1b12—1a1 lblz’“ 1‘11 1b; =0
1a11b12+1a11b§—1a1 Ib%_la1 1bl?. =0
1@y *b{—24a" *by; +2a* by, —2a; b7 =0
1@y ,b1—2,a" ;byy +,0% by, —5a, b7 =0
2,a,%b'" — a*?bl +2a® b} —2a, b'* =0
2ya, ,b"" —a' yb} +,a% 1b3—5a, b =0

laIZbi_zlal 2b11+2a2 1b12_2a21b2 =0

(11a)

1 1Al 1 21 112 _
a;bi—2"a’ by +,a" by, —za, by =
2la, 2 1g1 2pl 4 2q2 1p1 24 1pi2 = ()

21(11 zbll_lal 2b{+2(12 lb;‘_‘zaz 1b12 - OJ

2“2 2b%+22a22b22—-22022b22—2a2 Zb% :0 (llb)
2,a,*b**+%a% b3 —,a**b2—2%a, ,b** =0
a b +at (bi—a' b3 —"a, b =0
(11¢)
2a2 2b23+ 202 zbg—zaz sz“zaz 2b23 = O

The chromatic coefficients ,6°* and 25 are
independent, since neither appear in any of the
equations. The other eight chromatic coefficients
are related to each other by the two Egs. (11c), so
that any six of them may be considered independent.
Of the six coefficients ,b,,, 2b,,, 2b3, ,b3, ,b*2,2b*?

TABLE I

Stationary field with Stationary field with

one symmetry plane two symmetry planes

Spatial Chromatic Spatial Chromatic
Linear approximation Number of coefficients 8 2 8 0
Number of equations 2 0 2 0
Number of independent coefficients 6 2 6 0
Second order approximation Number of coefficients 20 10 (] 8
Number of independent equations 10 2 0 2
Number of independent coeflicients 10 8 0 6
Third order approximation Number of coefficients 40 30 40 8
Number of independent equations 21 12 21 2
Number of independent coefficients 19 18 19 6
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which characterize aberrations in the plane of
symmetry, any two can be determined from
Eqgs. (11b). It is particularly convenient to de-
termine the coefficients ,b3 and 2b%, whose de-
terminant is identically unity. The 14 coefficients
characterizing the motion outside the plane of
symmetry are related to each other by Egs. (11a).
It is easy to show that the first two of these follow
from the others. The latter eight are easily solved
for by, 'by,, b7, (b2, (b'?, b2, b}, 'bs. The
independent coefficients are then ,b,;, b, ,bi,
b}, ,b**, 2b'', which characterize the projection

2,b11 ?b1—2%by1 b1 —

1.1 1,1 11
1y e t37a e —3a ey —

of trajectory onto the plane of symmetry for non-
Ze10 4305 P20-

If the system possesses two planes of symmetry
in the above sense, all spatial aberration coefficients
vanish, and Egs. (11a) and (11b) hold identically.

Of the chromatic coefficients, ,5** and 25°3
vanish, and thus there are six independent second-
order aberration coefficients.

The total number of spatial and chromatic third-
order aberration coefficients for a stationary field
with one plane of symmetry is 70. The equations
which contain spatial aberrations onlyare of the form

1 1
a1¢11=0

2,by1 26! =27y ,b" + 4 teit +at jef —at e —ay e}t =0 (12a)
2,b12p1 —2,b112p1 43 q, et f gt (1l gliclt 3l i1t =
2;b32 203 =2%by5 3b3+ a5 23, +3%a% 5655, — 3,07 P35, — a5 5,63, =0
2,b,,2b*2—=2%b,, ,b** +,a, 2c3* +2a? ¢35, —,a% 2c3,—%a, ,c3* =0 (12b)
2,b3%b,,—2%b% ,b**+3,a, *c*?? 4+ 2a% ;32— ,a* 2c3? - 3%a, ,c** 2 = O
1012 (Cb1+2b3)—2,b3 by —2,b7 *byy + 10, *cl,—2,a" Py, +2%a% 645, — a5 ¢}, = 0
2,b13%b*2 4+ b} (Pb} —2b3)=2,b'2 by, + 10, 2c}? —2,a" 2c}; +2a? ¢f, —2%a, ¢} = 0
2,by2 20" + b3 Cb3—2b1)—2,b'2 2byy +2,a, *c3' —1a' el +2%a% ¢5,— a5 15 =0
2,632bM 42,51 2672 — b2 (2b} 4+ 2b2)+2,a, 2112 — ;a" 2c12 4 202 ¢} —2%a, 122 = 0
1012 (b1 +2b3) = 2103 ,b11=2,bF 1by0 410, 5612 =210 5¢112+2,0% (€122 285 1¢1, =0
2,by5,b? +1bf(2b{—2b§)—21b122b11+1a12c}2—21a12cf1+2a2 1612 =255 1¢{* =0
2yby5 b — b3 (3b1—2b3) = 2,012 3byy +24a; 5¢3" —1at yei,+2,0% (€35 —285 1637 =0
2,b7 b 42,03 ,b22— b2 (b +,b3) + 214, 5¢' P —1at HeiP 4,07 (€57 =250, €122 =0 (12¢)
by, (b1 +2b3) =203 2by, —2'b3 by +1a, Fej, —2"at Py, +2%a7 ey =0, el = 0
2'b,, 267 4+ 163 (b1 —2b2)—2'h'2 2, + 1, 2c12—2'al 2¢2 + 202 12, —22a21cf2 0
21b,, 2b1 — b3 (2b} —2p2)—2'p122p,, 4 21a, 2cl! — 1l 2cl, +2%a% ek, — 2a, ed? = 0
21p22p11 4 911 2p22 _1p12(2p1 4 2p2) L 9lg 26112 1412012 4 2421012025 1,122 )

b12(2b1+2b )— 21b1 2b22“2 b22b11+ a 26'12_2 a 2c112+22a 0122_‘
b122b22+1bf(2bi_2b2)_2 b12 b11+ alzc —21(112(:1 +2a _22a21 22 0
2'by; 2b" =1b} (;b] —

24, C12 =0

) 21b122b22+2 (11202 — a 2C12+22a —,d; Cz =0

21b%2b11+21b§2b22—lblz(zbi+2b§)+2la120112— a C +2a21 12__2 a, 1 122_0J
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171 11 1.0 4, 1,1 11 1 1 _
1bia by — by by ia; ea A (=1 TCia— A1 1€, =0
17,12 2171 1152 121 1,12 1,1 .2 11,2 1 12 _
1byo b2+ b1 by — by b — b2 by +a, e+ Tal e, —a Tei—agc" =0 (12d)
22
BIpI2 pI2Ip2 g g 11224 01 (22 g 122_1g 122 20

152 21 2.2 ;2,2 22 2 2 o)
1b12 b1 — b7 by +oa, ct +7a% 501127207 "¢ — azzcu—OL

17212 1132 211 121 2,12 , 2.2 1 221
1b12 10"+ by 'bT— b} by — b by 4,4, 2ei +2a” yeiy — a7 Peiy —2a, 5017 = 0 (12¢)
b, b1 B2l 4 g, 26112 4 22 a2l 2, 112 = 0
Equations (12c¢) (twelve of which are independent) come identities upon substitution of the evaluated
give rise to twelve aberration coefficients, charac- coefﬁcients The coefficients ,¢;;1, €111, 1Ci1s
terizing the deviation (normal to the plane of c“, et et o el and oo oy, €02y 2€32s
: 1 2 1,2 1 1.1 22 22 2,22 222 2,222 :
symmetry) 1€1225 "€1225 1€125 €125 1€225 €225 1€17> 2c3as 2635 263%, ac c¢*** figure in Egs. (12a)
1e22 c32, tel?, o122 1122 1n terms of the twelve and (12b), respectlvely
coefficients ,¢, 5, 2C12, 2612, 2cls, 203t 2c3t, ,c3,, The following relations hold for the 30 chromatlc
2¢2,, ,c12, 2cl2 ,c112 2¢112 The latter are related aberration coefficients:
to each other by Eqs. (12¢). Equations (12d) be-
17213 131 3 1 13 11 1,13 1,1 3 1 13 113__\
1hiy 1B+ BT —"by, (b — b3 b+ ja; TeP 4+ at el —tay e’ —at e, =0
1b%1b13+1b121b%_1b%1b13 b12 1b3+ a, 1 123+ a 1C%3—1a1 1c123 1all 23 0
113 2 3 1 1.3 2.3 1 3 2 3 __
1h12 1 +2%by b3 —1h 5 1 b3 —2,by, 2b3 410, Teia 42,0, %) —Tay 1e3,—2%a5 561 =0
11 3 3 13,1 3 12 2,13 1 13 2 13 _
1b3 13 +2b ,b5—"bg b3 — b1 b3+ a, fer’ +,a, %1} = tay 163’ —2a, 5017 =0
2113 2
1b1 bl +2 b11 2b23_1b% 1b:1;"‘22b112b23+1a L 23+2 (1 C?l*lal 10%3—20226%1 :0 (13 )
a
1b12 lb%+2bi 2b23_1b121bi bl 2b23+ a, 1 123+ a22 13 la1 1C123 a __0
1713 211 3 1 13 1233 1.1 3 2,13 11.3 2 13 __
1b12 b7 +2b1 2b3—"b15 (b =51 *hy+1a" jeiy+aa,%ci —qat Teiy—tas 017 =0
lb;1b13+22b112b%_1b51b13_22b11 2b§+1a11c%3+22a2 ZC}3 1all 13 22 2 113 O
1b%1b13+2bi 2b23 1b21b13 Zbl 2b23+1a1 1C23+2a22 13 al 10%3 2a2 2013 — 0
1b12 1b13+22b112b23_1b121b13_22b112b23+1a1 1C123+22a220113—'1a11 123 22 2 113 =0J
2213 2 23 21,23 21,2 3 2 23 22,3 2,23 2.2 .3
2b3%b3+2%b55 2b*7 = 2,b,, *0* = ?b3 ,b3+ a5 557 +2,a% %3y —2a, Py’ —2%a% ¢35, = 0 (13b)
22b22 2b§+2b§2b23~2b§ 2b23_22b222b2+2a22 23+22 223__22a2 26223_2a22c§3 — 0
(BI3—1b3 b3 42,4, 1334200 (332, (332,013 =0 (13¢)
2b32b23—2b22b23+202 2C233+2a2 Zc§3 205 26233—-21122023 =0 (13d)
The first two equations of (13a) are dependent. 1cf3, 1c§3, 1653, ¢'23,1¢123 in terms of the other six
With the aid of the next eight equations of (13a) 231, 2e3,, ,el3) Zeld 2c113 2c'13. The six co-

one can determine the coefficients ;c3,, 'c3,, 23, efficients ,¢3,, 2¢3,, ,¢23, 2¢23, ,¢223, 26223 are
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related to each other by Egs. (13b) and the co-
efficients ¢33, 133, ¢33, 1133 and ,c33, 233,
,¢233, 2¢233 by Egs. (13c) and (13d), respectively.
The coefficients ,¢333, 2¢*33 do not appear in any
of the equations and are hence independent.

For the case of two planes of symmetry, all
transverse third-order aberration coefficients and all
Egs. (12) are the same as before. For the non-

vanishing chromatic coefficients (¢33, ¢33, ;c'*3,

1133 ,e33, 2c33, ,c?*3, 2¢**3, the two equations
(13c) and (13d) still hold.

In conclusion, we present a table summarizing
the number of independent first to third order
aberration coefficients for systems with one or two

planes of symmetry.
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