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1. Introduction

It is usually assumed that from the knowledge of low-energy perturbative physics (e.g.,

such as, the particle spectrum, and their couplings) in our vacuum, one cannot draw any

conclusion about the physics in other vacua on the landscape, without knowing the non-

perturbative structure of underlying high scale theory. This belief is based on the intuition,

that different vacua correspond to different non-perturbative solutions of the high energy

theory, largely separated by the expectation values of the classical order parameters (e.g.,

vacuum expectation values (VEVs) of the scalar fields), whereas low energy perturbative

physics only accounts for small fluctuations about this solutions. As a result, even in the

neighboring vacua, physics may be arbitrarily different and unpredictable for a low energy

observer in our vacuum. We wish to show that black hole (BH) physics can provide a
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powerful guideline for overcoming this obstacle. Among, the expected enormity of the vac-

uum landscape, there is a large subset that shares common gravitational physics. In these

vacua, the classical black hole physics is also common and imposes the same consistency

constraints on perturbative particle physics.

In particular, by incorporating the consistency bounds, that BH physics imposes on

number and masses of particle species [1], we can derive non-trivial constraints not only

on our vacuum, but on any quasi-stationary state, which can be obtained by a continuous

deformation of it. Under continuous deformation, we mean a change of expectation values

that preserves invariant characteristics of the vacuum (such as, the number of species, their

chirality, and possibly other topological characteristics). In a certain well-defined sense, to

be made precise below, BH physics allows us to “see” through the landscape. In this part

of the discussion, the key tool in our consideration will be a BH constraint on number of

particle species and their masses. This bound can be derived from the flat space thought

experiment, with BH formation and evaporation. In this experiment, an observer forms a

classical BH and later detects its evaporation products. In each case, when the lifetime of

a BH is less than the lifetime of the species, a powerful bound follows. For example, in the

simplest case the number of stable species of mass M cannot exceed

Nmax ≡ M2
P

M2
. (1.1)

This consistency constraint must be satisfied in every vacuum of the theory. This fact

automatically limits the number of possible deformations of our vacuum, which from per-

turbative physics alone one would never guess. For example, in our vacuum, a priory, we

may have a very large number of massless species coupled to a modulus φ. Naively, nothing

forbids existence of another vacuum, obtained by giving an arbitrary VEV to the modulus

φ. However, since such a deformation of the vacuum gives masses to the species coupled

to φ, only deformations permitted by the BH bound are possible. Thus, BH physics, au-

tomatically constraints physics in such vacua. The vacua in question does not have to be

degenerate with ours, or even be stationary. Below we shall generalize BH bound for such

vacua. Primary target of this study will be the de Sitter and quasi de Sitter vacua, that

may be connected to ours by a continuous deformation of some scalar VEVs. The phe-

nomenological importance of this study is obvious. Existence of such vacua is suggested

by the strong cosmological evidence that our Universe underwent a period of inflation,

which is responsible for solving the flatness and the horizon problems, and creating the

spectrum of density perturbations. Knowing that we, most likely, rolled down from an-

other vacuum, we wish to understand constraints on such states by using BH physics, and

whatever knowledge of perturbative physics we have in our present vacuum. The bounds

from BH physics, which we discuss in this paper, set powerful criteria about what is the

class of effective string actions, which can be consistently coupled to quantum gravity, and

eventually capture string physics, which might have been lost in the effective action ap-

proach. Those effective field theories or vacua which cannot fulfill this criterion are called

swampland [2] (see also [3]).

Our generalization of the BH bound of [1] to the de Sitter and quasi de Sitter vacua
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relies on certain relations between the Schwarzschild radius and the lifetime of a “test”

BH, and the Hubble radius and the lifetime of the corresponding (quasi) de Sitter vacuum

respectively. Shortly, for a given number and masses of species, there is an upper limit

on the lifetime and the Hubble size of the vacuum, or else the BH bound (1.1) must be

satisfied. In the other words, a given vacuum can only invalidate this BH bound on species,

by becoming more curved and/or shorter lived. For the slow-roll inflationary vacua, this

implies constraints on the slow-roll parameters, and subsequently, on the allowed number

of the inflationary e-foldings.

Since our bounds imply constraint on the lifetime of the vacuum, we wish to point out

that for the consistency with the bound, the instability of the vacuum may not necessarily

occur through the usual tunneling, but for some values of the parameters, may more effi-

ciently be catalyzed by the particles produced in the black hole evaporation. The essence of

this phenomenon is that a non-zero density of heavy particles, can locally lower the barrier

between the vacua by back reacting on the expectation value of the field that gives a high

mass to the given species in the vacuum of interest. If the same species are much lighter in

a neighboring vacuum, the back reaction on the expectation value may be strong, and the

transition from one vacuum to the other may be facilitated locally. In our situation, since

bounds are derived in the presence of the black holes, such an induced instability of the vac-

uum will be as good as the tunneling instability for consistently accommodating the bound.

For the classically-stable vacua, the story is a bit more subtle. Naively, since such vacua

are exponentially long lived, their lifetime should exceed the lifetime of any sensible BH that

can fit within their de Sitter horizon. Hence, such vacua should automatically fall within

the validity of our arguments, and the only resulting constraint should be on their curvature

scale. However, in the light of enormity of the string landscape, the tunneling rate can

be enhanced by number of the neighboring vacua, to which they can decay via quantum-

mechanical tunneling. Intuitively it is clear, that at least in weakly-coupled theories, the

exponential longevity of meta-stable vacua should be maintained, or else the vacuum in

question can no longer be treated as a well defined quasi-classical state. However, for our

purposes in many cases the issue may be quantitative and we therefore perform a brief

investigation of this question in the first part of the paper.

Thus, in the first part of the paper we consider constraints on the lifetime of vacua.

The purpose of this study is twofold. First, as explained above, we wish to make sure

that enormity of the possible decay channels does not interfere with generalization of the

BH bound to such meta-stable vacua. Secondly, there is a phenomenological byproduct.

Demanding that our vacuum with cosmological constant Λ has a long enough life-time, one

gets some constraints on Λ which are related to the number Nvac of vacua. As a result we

will see that an upper bound on Λ can be obtained, which decreases with the number Nvac

of vacua (or conversely an upper limit on Nvac arises, which decreases with Λ). So, if there

exist too many vacua, the cosmological constant must be smaller than its observed value

today. As expected, for our present vacuum, these bounds are rather mild, and become

only phenomenologically interesting for very large numbers of Nvac.

In string theory, vacuum decay processes are related to domain wall configurations.

These domain walls can be thought to be built by intersecting (D)-branes of the underlying
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superstring theory. We will discuss some aspects of vacuum decays in the string landscape,

in particular also the possibility of tunneling from de Sitter or Minkowski vacua to anti-de

Sitter vacua, which typically arise in flux compactifications. The corresponding domain

wall solutions are given by branes that precisely act as sources for the background fluxes.

In this way we can derive some constraints on the flux quantum numbers, by requiring

Minkowski or de Sitter vacua with long enough life-time.

In section 3 we discuss bounds on the landscape of effective field theories from BH

decays. As it was discussed in [1] and also in [4] these bounds provide a possible expla-

nation of various hierarchies observed in nature. Namely in [1] some perturbative and

non-perturbative arguments were given that in a quantum field theory with N species of

particles of mass M , there is for large N an inevitable hierarchy between the Planck mass

MP and M :

M2
P ≥ N M2 . (1.2)

In particular, for N of order N ∼ 1032, the bound (1.2) explains the hierarchy between MP

and the N species roughly at the TeV-scale. e.g. this large number of particles is realized in

scenarios with large number of extra dimensions and 1032 KK modes at the TeV-scale [5].

Recently [6], it was argued, that large number of standard-model-like species also leads to

the smallness of strong CP parameter.

We will generalize the BH bounds to the case of non-static de Sitter Universes and

to quasi de Sitter type time-dependent backgrounds. This will give us new restrictions on

inflationary scenarios like chaotic inflation or D-brane inflation. We also consider bounds

from BH on landscape models with softly broken supersymmetry in static Universe. We

shall see, that the large number and the mass of the species tends to make the vacuum

more highly curved and shorter lived.

Finally, we wish to stress an important point concerning the possible relevance of the

lowered cutoff of the theory for the generalized BH bound. As it was shown in [4], with

increasing number of species, not only their masses, but also the gravitational cutoff of the

theory gets lowered and is bounded from above by MP /
√
N . In particular, this conclusion

agrees with the perturbative argument [7, 8] about the one-loop renormalization of the

Planck mass by N species. In our constraint of the de Sitter vacua, the central role is

played by the bound (1.2), which has to be satisfied by all the relevant (long enough lived

species that can fit within the appropriate BH horizon (see below)) species, irrespectively

whether they are above of below the cutoff. This fact is important for our applications to

the string landscape, as it allows us to constrain vacua in which the masses of the species

are way above the string scale, although the latter is the cutoff of the theory. For instance,

such are the brane-inflationary vacua in which the heavy species correspond to the lowest

excitations of the stretched strings. Such states, although they are heavier than the string

scale, fit within the sub-horizon BH, and therefore fall within the validity of the bound [1].

2. Constraints on the life-time of vacua

In this section we provide a discussion about possible restrictions on the maximal number of

vacua resp. on the cosmological constant, considering two kinds of decay processes. First we
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will consider transition between vacua with positive cosmological constant via the creation

of expanding bubble. These bubbles are created by Coleman/De Luccia gravitational

effects [9] resp. by Hawking/Moss instantons [10]. Then we will discuss the string landscape

which typically also contains a large number of AdS vacua with negative cosmological

constant. We consider domain wall solutions (membranes in four dimensions) which in

analogy to the Coleman/De Luccia instantons can create bubbles of contracting universes,

and hence can be responsible for the decay of a Minkowski or de Sitter vacuum into a

vacuum with negative cosmological constant.

2.1 De Sitter vacuum decay by quantum tunneling

2.1.1 Creation of a single bubble

It is known from the work of Coleman and De Luccia [9] that a de Sitter universe with

cosmological constant Λ ≡ V0 can decay into another vacuum de Sitter vacuum or into a

Minkowski vacuum which are separated from each other by a potential barrier of height

V1. In Euclidean quantum gravity, the de Sitter entropy of an expanding universe with

vacuum energy V0 is determined by the value of the classical action:

S0 =
24π2

V0
. (2.1)

Using this value for the Euclidean action, one can compute the 1-instanton decay rate

of this De Sitter universe into another vacuum via quantum tunneling in a semiclassical

approximation:1

Γ(1) ≃MP exp

(

−24π2M4
P

V0
+

24π2M4
P

V1

)

. (2.2)

Assuming that the height of the barrier is much bigger that Λ, V1 ≫ V0, one simply obtains

for the life time τ resp. the decay rate Γ:

τ−1 ∼ Γ(1) ≃MP exp

(

−24π2M4
P

Λ

)

. (2.3)

Note that it is also possible that a quantum jump from V0 to the top of the barrier

V1, which is followed by an decay to another de Sitter vacuum with cosmological constant

V2, where V2 > V0. This was discussed by Hawking and Moss and is also closely related to

thermodynamic fluctuations due to the de Sitter entropy of the vacuum with cosmological

constant V0. Specifically, the decay rate of our vacuum by creation of a single new bubble

is given by:

τ−1 ∼ Γ̃(1) ≃MP e
−

E
TH , (2.4)

where E is the energy necessary to thermally create the new bubble, and TH is the Hawking

temperature of our de Sitter universe:

TH ≃
√
V0

MP
=

√
Λ

MP
. (2.5)

1This amplitude was also used in [11] to show that a single KKLT vacuum in type IIB superstrings has

a life-time longer than the age of the universe.
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2.1.2 Decay into Nvac vacua

Now we want to consider a much bigger landscape of Nvac different vacua, into which our

universe can decay via quantum tunneling. First, we consider the case, where all different

vacua can be reached by a single tunneling process. Adding up all these 1-instanton decays

into the Nvac different vacua one simply obtains the following decay amplitude:

Γ(Nvac) ≃ NvacMP exp

(

−24π2M4
P

Λ

)

. (2.6)

Now requiring that for our universe this decay amplitude is suppressed such that our

universe has a long enough life-time, i.e.

Γ(Nvac) < H =

√
Λ

MP
, (2.7)

we derive the following bound on Λ:

Λ <
24π2M4

P

lnNvac
. (2.8)

e.g. for Nvac = 10500 one gets Λ/(24π2M4
P ) < 8.7 × 10−4, whereas as for Nvac = 101500 one

gets Λ/(24π2M4
P ) < 2.9 × 10−4. Again, the obtained bounds on Λ are not very exciting,

unless the landscape is extremely huge.

However we should consider not only the 1-instanton process, but also all k-instanton

processes, which describe the process that we can reach a certain bubble via the subsequent

decay over k different bubbles. In a kind of instanton dilute gas approximation one gets

for each step a suppression factor of e−S0 , and hence the decay amplitude for reaching one

specific vacuum via k tunneling processes (k-instanton process) becomes

Γk ≃MP exp

(

−24π2kM4
P

Λ

)

. (2.9)

In order to obtain the full decay amplitude intoNvac different vacua we sum over all possible

k-instanton processes, i.e. taking into account all possible ways decay processes. Then we

finally obtain:

Γtotal
(Nvac)

≃ MP

(

Nvac
∑

k=0

Nvac(Nvac − 1) . . . (Nvac − k)

k!
exp

(

−24π2kM4
P

Λ

)

− 1

)

= MP

(

1 + e−
24π2M4

P
Λ

)Nvac

−MP . (2.10)

Requiring that that our universe with cosmological constant Λ is stable enough,

Γtotal
(Nvac)

< H =

√
Λ

MP
. (2.11)

we obtain again an upper bound on Λ which now reads

Λ <
24π2M4

P

ln(Nvac/ ln 2)
. (2.12)

This essentially agrees with the bound eq. (2.8) obtained before.
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2.2 Decay of vacua in the landscape of string flux compactications

2.2.1 Vacuum decay for fixed background fluxes

As it is well know string compactifications lead to a huge number of lower dimensional

ground states [12 – 14]. In particular the numberNvac of discrete vacua in the context of flux

compactifications of type II orientifolds was estimated to be of order ofNvac ∼ 10500. There-

fore a statistical analysis of flux vacua was suggested in [14, 15]. Wrapping in addition D-

branes around cycles of the underlying (Calabi-Yau) spaces in order to derive the Standard

Model of particle physics increases this number even further. Therefore intersecting brane

models and the likelihood to derive the Standard Model were also investigated in a statisti-

cal manner [16 – 21]. Here we want to discuss some constraints on the landscape of type II

compactifications with p-form fluxes and also possible non-perturbative effects like gaugino

condensation and Euclidean instantons, as it was proposed first in the KKLT scenario [11].

We will discuss flux compactifications in the context of the effective supergravity action.

In a general N = 1 supergravity, the scalar potential V is a function of chiral superfields

φi and takes the standard form

V = eK
(

|DiW |2 − 3|W |2
)

+ |Da|2 , (2.13)

where Da are the D-terms, and the F-terms are defined as

Fi = eK/2DiW = eK/2 (∂φi
W +W∂φi

K) (2.14)

with W being the superpotential and K the Kähler potential.

Our aim is to find local minima of V . We must therefore impose

∂V/∂φi|φmin
= 0 ∀i . (2.15)

Supersymmetric minima are obtained if all Fi|φmin
= Da|φmin

= 0.

Let us neglect the possible contribution of D-terms to the scalar potential. In this case

V is fully specified by the Kähler potential K and the superpotential W in eq. (2.14). The

generic form of the superpotential in type II orientifold compactifications is of the form

W = Wflux(φ) +Wn.p.(φ) . (2.16)

On a generic Calabi-Yau space the total number of (type IIB) flux vacua is estimated

by the following equation [13, 22, 23]:

Nvac ≃
L2h2,1+2

(2h2,1 + 2)!
(2.17)

Here the Hodge number h2,1 counts the number of complex structure moduli, and L is

the orientifold charge of the system. Typical numbers for h2,1 and L indeed lead to a

huge number of supersymmetric flux vacua. This number counts all different 3-form flux

combinations that lead to a supersymmetric ground state satisfying that lead to a solution

of the supersymmetry equations with respect to Wflux:

DφWflux = 0 (2.18)
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In particular eq. (2.17) means that the huge number of flux vacua originates from the big

number of possibilities of choosing different flux vectors though the homology 3-cycles of

the CY space.

Let us first consider transitions between vacua with fixed values for the fluxes, i.e. all

vacua have the same flux quantum numbers. These transitions are due to gravitational

non-perturbative effects, like e.g. the Coleman/De Luccia instantons in case of positive

cosmological constants, as describes above. However, since the fluxes are quantized and

hence take discrete values, there exist only a few transitions that are possible. Indeed,

on a given moduli space of type IIB complex structure moduli φ2,1, Kähler moduli φ1,1

and including the dilaton τ , transitions between different vacua are only possible for fixed

background fluxes, and also for fixed non-perturbative effects. i.e. fixing the flux parameters

and also the non-perturbative superpotential, the corresponding scalar potential has only a

relatively small number of (local) minima, denoted byN∗, and in general one has thatN∗ ≪
Nvac. This fact largely restricts the possible vacuum decay processes within the string flux

landscape for fixed fluxes. Varying the moduli fields, only a small subset of vacua can

be reached by vacuum tunneling and decay processes, along the lines described in section

two. e.g. in type IIB flux compactifications supersymmetric solutions are characterized by

imaginary self-dual fluxes G3 [24], whereas nonsymmetric local minima of V allow for more

general flux choices. The extremality conditions comprise h2,1 + 1 conditions for h2,1 + 1

complex variables. Therefore one expects that the degeneracy in the moduli space is in

general totally lifted, and one obtains a discrete set of solutions for the moduli fields. Their

number N∗ depends on the prepotential F (U) of the underlying Calabi-Yau manifold. As

one can show the number N∗ of solutions of eqs. (2.18) is essentially of order one. e.g.

consider a GVW/TV superpotential [25, 26] of the form [27]

WIIB = (p+ iqSU1)(l2 − il1U2 + in1U3 − n2U2U3) . (2.19)

p, q, l1, l2, n2, n2 parametrize the flux quantum numbers that are constrined by the tadpole

condition. For fixed flux quantum numbers there is a unique solution of the supersymmetry

condition with zero vacuum energy:

SU1 = −p
q
, U2 =

√

l1l2
n1n2

, U3 =

√

l2n1

l1n2
. (2.20)

How many other local (non-supersymetric) minima of V may exist besides the su-

persymmetric Minkowski or AdS4 groundstates? The answer to this question in general

depends on the details of the non-perturbative part of the superpotential and also on the

up-lift procedure, e.g. by additional D-terms or non-supersymmetric contributions to the

potential. In general, we expect that the total number Nvac of vacua of different possible

flux choices is by far larger that the number N∗ of local minima of the scalar potential

with fixed fluxes. This can be seen as follows: In KKLT [11] the modification of the IIB

flux superpotential by non-perturbative D-instantons or by gaugino condensation is of the

following form:

W = W0(U) +A(U)e−aT . (2.21)
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The fluxes entirely enter in W0, which can be treated in some approximation as a constant

contribution to the superpotential. Each different choice for the fluxes leads to some

specific W0. However for given fluxes, i.e. given W0, the number of local minima of the

scalar potential is low. If we vary all moduli parameters plus the dilaton field, we are

moving in a moduli space M of (complex) dimension dim(M) = (h1,1 + h2,1 + 1). On

general grounds, we expect that the number N∗ of solutions of eq. (2.15) is at most of

the order dim(M). This is obviously smaller that the number NSUSY given eq. (2.17).

Finally uplifting the potential by a small amount, in oder to obtain a vacuum with small

cosmological constant V0, will not drastically change the number N∗ of metastable vacua.

2.2.2 Vacuum decay due to stringy domain walls

In order to get transitions between vacua with different flux quantum numbers, one needs

non-perturbative, gravitational configurations which are coupled to the flux background

fields, and which interpolate between different flux vacua. These are given in term of

BPS or nearly BPS domain walls (membranes) (for earlier work see e.g. [28, 29]) in four-

dimensional space time that are coupled to the scalar moduli fields. The profile of the

domain wall is such that it separates spatial regions with different flux quantum num-

bers from each other. For the case that the domain wall is interpolating between two

supersymmetric vacua, the interpolating solutions is describing a BPS domain wall. Of

course, eventually we are interested in the decay of a non-supersymmetric flux vacuum

with positive cosmological constant (our vacuum) and broken space-time supersymmetry

into another (supersymmetric) flux vacuum, which cam have either positive, zero or also

negative cosmological constant (AdS4) vacuum. The formation of an AdS4 domain wall

is particularly interesting, since AdS4 are very common in the string landscape. In this

case our universe would be decaying into a contracting space, which at first sight seems to

be problematic. Nevertheless the corresponding transition amplitude from dS4 to AdS4 is

expected to be non-vanishing, as it was discussed in [30].

To demonstrate a vacuum transition between string vacua with different fluxes, we

discuss as a simple example we type IIA, AdS4 flux vacua with all moduli fixed at finite

values. The corresponding domain walls were recently constructed in [31], and they are mi-

croscopically composed of intersecting D-branes, NS 5-branes and possibly also by socalled

Kaluza-Klein monopoles. Specifically, consider a flux superpotential of the form [31 – 35]

WIIA = WH +WF . (2.22)

The first term is due to the Neveu-Schwarz 3-form fluxes and depends on the dilaton S

and the type IIA complex-structure moduli Um (m = 1, . . . , h̃2,1):

WH(S,U) =

∫

Y
Ωc ∧H3 = iã0S + ic̃mUm , (2.23)

where in type IIA the 3-form Ωc is defined by Ωc = C3 + iRe(CΩ). Second, we have the
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contribution from Ramond 0-, 2-, 4-, 6-form fluxes:

WF (T ) =

∫

Y
eJc ∧ FR

= m̃0
1

6

∫

Y
(Jc ∧ Jc ∧ Jc) +

1

2

∫

Y

(

FR
2 ∧ Jc ∧ Jc

)

+

∫

Y
FR

4 ∧ Jc +

∫

Y
FR

6

= im̃0F0(T ) − m̃iFi(T ) + iẽiTi + ẽ0 . (2.24)

Here F (T ) := F0(T ) is the type IIA prepotential, which depends on the IIA Kähler moduli

Ti (i = 1, . . . , h̃1,1) and Fi(T ) := ∂F0/∂Ti. We use the notation Jc for the complexified

Kähler metric Jc := B + iJ . Assuming a simple (toroidal) cubic prepotential F = T1T2T3,

the superpotential has the generic form:

WIIA = WF +WH = m̃0

∫

Y
(J ∧ J ∧ J) +

∫

Y
FR

4 ∧ J +

∫

Y
Ωc ∧H3

= iẽiTi + im̃0T1T2T3 + iã0S + ic̃mUm . (2.25)

With K = − log(S+S̄)
∏3

i=1(Ti+T̄i)
∏3

i=1(Ui+Ūi), the equations (2.18) admit the following

unique solution with all moduli stabilized:

|γi|Ti =

√

5|γ1γ2γ3|
3m̃2

0

, S = − 2

3m̃0ã0
γiTi , c̃mUm = − 2

3m̃0
γiTi , γi = m̃0ẽi . (2.26)

This solution corresponds to supersymmetric AdS4 vacuum with negative cosmological

constant:

ΛAdS = −3eK |W |2 = −
37
√

3
5

100

|ã0c̃1c̃2c̃3|(|m̃0ẽ1ẽ2ẽ3|)5/2

(ẽ1ẽ2ẽ3)4
M4

P . (2.27)

Now let us consider the corresponding the domain wall solution which interpolates

between the above AdS4 flux vacuum and flat Minkowski space-time with vanishing fluxes.

As discussed in [31] it is given in terms of intersting D4,- D8- and NS 5-branes. In addition

one also needs orientifold 6-planes (O6) in order to cancel the induces D6-brane charge from

the fluxes. The complete form of the 10-dimensional metric as well as the profiles of the

scalar fields can be found in [31]. The four dimensional part of the metric is such of an inter-

polating domain wall, where the intersecting branes are smeared in the direction transveral

to the domain wall. Specifically, this 4-dimensional part of the metric can be written as

ds2 = a(r)2(−dt2 + dx2 + dy2) + dr2 . (2.28)

For r → 0 this metric approaches the metric of AdS4, and the scalar fields are fixed to the

values determined by the non-vanishing fluxes, as given in eq. (2.26). For r → ∞, the func-

tion a(r) becomes a constant, and the eq. (2.28) become the metric of flat Minkowski space.

The tension σ of the domain wall can be computed by introducing a central function

Z(r) which is defines as

Z(r) =
a′(r)

a(r)
. (2.29)
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By comparison with the exact metric of [31] one obtains

Z(r)|r=0 = eK/2|W | , ΛAdS = −3|Z(r)|2r=0 . (2.30)

The (membrane) tension σ of the domain wall is then given by the following expression:

σ ≃ (|Z|r=∞ − |Z|r=0) . (2.31)

Now let us determine the decay amplitude of the Minkowski vacuum with vanishing

fluxes into the AdS4 vacuum with non-vanishing fluxes. The decay of the Minkowski

vacuum occurs due to the creation of the domain wall, which speews through space-time

until the entire universe is in the new AdS4 vacuum. This is similar but not completely

equal to the creation of a bubble via the Coleman/De Luccia instanton. In fact in order to

be realistic, one should break supersymmetry and uplift the Minkowski vacuum by a small

amount to obtain a de Sitter vacuum which decays into the AdS4 vacuum. Neglecting the

problem of supersymmetry breaking and the uplift, the decay amplitude of the Minkowki

(de Sitter) vacuum is then given by the following expression:2

Γ ≃MP exp

(

−8π2M4
PC

σ2

)

= MP exp

(

24π2M4
PC

ΛAdS

)

. (2.32)

The constant C depends on the details of the domain wall solution.

As also discussed in [30], unlike the cases discussed in section two, the corresponding

decay amplitude is independent of the de Sitter cosmological constant Λ = V0, but only

depends on the value of ΛAdS. In order to avoid too fast decay of our vacuum, |ΛAdS|
must not be too large. e.g. if |ΛAdS| ≃ m4

3/2, the life-time of our universe is long enough.

However AdS4 vacua with |V1| ∼ M4
P create too much decay of our vacuum. Using the

known expression for ΛAdS in eq. (2.27), this constraint can be translated into the following

restriction on the flux quantum numbers:

37
√

3
5

100

|ã0c̃1c̃2c̃3|(|m̃0ẽ1ẽ2ẽ3|)5/2

(ẽ1ẽ2ẽ3)4
≪ 1 . (2.33)

3. Black hole proof for de Sitter

Before studying applications of the bound on species (1.1) to the vacuum landscape, we

wish to generalize the BH proof of the bound to the de Sitter and quasi de Sitter spaces.

Let M be the mass of the species, and let H be the Hubble parameter in de Sitter. We

wish to perform a thought experiment [1], in which number of species is absorbed by a

BH, which then evaporates and releases them back. The key point is, that the BH can

start emitting the species only after its Hawking temperature becomes comparable to their

mass, and this fact implies (1.1). The necessary requirement for such an experiment is that

2The details of the derivation of this equation by computing the Euclidean action of the domain wall of

ref. [31] coupled to the scalar fields will be given elsewhere [36].
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the gravitational radius rg ≡ MBH/M
2
P of the BH of the interest, must be less than the

Hubble radius

rg ≪ H−1. (3.1)

We shall split the rest of the discussion into two parts, by imposing different constraints on

the BH lifetime. This is dictated by the fact that for the validity of such an experiment, not

only the size but the lifetime of the BH also matters. What is important, is that vacuum

itself must be longer lived than the BH. This implies different constraints on the type of

BH that we can use in our analysis for the vacua with different level of time-dependence.

3.1 Time-dependent vacua: constraints from short-lived black holes

In the first case, let us require that not only the gravitational radius, but also the lifetime

of the BH be less than the Hubble time. That is,

τBH ≪ H−1. (3.2)

Notice, that the lifetime of a black hole depends on the number of species into which it can

evaporate, and which in our case may be very large. For small black holes, rg ≪ M−1,

this correction can be very important, and must be taken into the account. On the other

hand, for large BH rg ≫ M−1, that mostly evaporate into few very light species (such as

a graviton or a photon), the correction to the lifetime from N heavy states is unimportant,

and for these BH the life-time is approximately given by

τBH ∼ r3gM
2
P . (3.3)

In practical applications, the requirement (3.2) will be relevant for the vacua that

have a relatively short life-time, e.g., such as the slow-roll inflationary vacua, which can be

regarded as stationary only for several Hubble times.

Notice, that since in any sensible (quasi) de Sitter state H−1MP ≫ 1, the condi-

tion (3.2) outomatically implies (3.1). That is, a BH that evaporates in less than a Hubble

time, is automatically small enough to fit within the Hubble horizon. Let us now prepare

such a BH, by putting together n particles, all from different species. The maximal num-

ber of particles that we can add to a BH, without violating the requirement (3.2) (and

automatically (3.1)), is limited by the following consideration.

In order to fit a particle into a BH, the typical momentum of the particle (that is, its

characteristic inverse localization width) must be higher than r−1
g . Indeed, even if a particle

in question is massless, in order to throw it into a BH, we have to prepare a localized wave-

packet of the size ∆X . rg. Such a wave-packet will have a characteristic momentum

∆P & r−1
g . Thus, throwing a particle of the rest mass M into a BH, we automatically

increase the mass of the latter at least by ∆MBH ≃
√

M2 + r−2
g , and correspondingly,

increase its horizon by

∆rg ∼

√

M2 + r−2
g

M2
P

. (3.4)
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(Notice, that the converse is also true. When a black hole emits a particle, due to the

thermal nature of Hawking radiation, the typical energy released is ∼ r−1
g , and decrease in

the horizon is (3.4)). To find the BH mass as a function of number n of the “constitutent”

particles, we must summ over all the increments. Approximating the sum by the integral,

we get the following expression for the number of particles necessary for building a BH of

a given mass MBH,

n(MBH) ≃
∫ MBH

0

dm
√

M2 + M4
P /m

2
=

1

2M2

(

√

M2M2
BH + M4

P − M2
P

)

. (3.5)

The maximum number of particle species, n̄, that can participate in our experiment, is set

by the number of particles that is needed to grow the BH to a critical mass, MC , with

the lifetime becoming comparable to H−1. That is, n̄ ≡ n(MC), where MC saturates the

bound (3.2). At this point, it is usefull to split the discussion into two parts, corresponding

to the cases when M ≫ H, and M . H.

3.1.1 Constraint on heavy species: M ≫ H

This case requires a careful analysis, since the black hole lifetime, which is a function of

its size rg, undergoes an abrupt transition around the critical size rg ∼ M−1. The reason

is, that the black holes of size rg . M−1 have Hawking temperature TH & M , and can

radiate all the constituent species. So the lifetime of a subcritical BH is

τBH(rg . M) ∼ 1

n

M3
BH

M4
P

. (3.6)

Recall that our experiment is designed in such a way, that we are forming a minimal BH

out of n particles belonging to different species. So due to conservation of species number,

such a minimal BH can only radiate the n particles belonging to the input species, and

not other energetically available N − n species. In order to find number of species needed

for building a BH of size rg ∼ M−1, we just have to take MBH = M2
P /M in eq. (3.5).

Ignoring the factors of order one, this gives

n(M2
P /M) ∼ M2

P

M2
. (3.7)

Plugging this into the eq. (3.6), we get

τBH ∼M−1. (3.8)

This result is already indicative. Equation (3.7) is compatible with the flat space bound,

which is certainly applicable because the lifetime of a BH is M−1 ≪ H−1. Moreover, the

fact that N cannot exceed M2
p/M

2 can be anticipated from the fact that if it could, we

could form a neutral BH of mass M−1, with even less lifetime. This would indicate that

such BHs cannot be treated as well defined states, in agreement with the result of [4].

So far, what we know is, that a BH of size ∼ M−1 can contain maximum M2
P /M

2

units of the conserved species number. Now, let us try to build a bigger BH by putting
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in more species (as before, we keep adding particles from the different species!). Once the

BH grows rg ≫ M−1, there is sharp increase in its lifetime, since the emission of states

with mass M becomes exponentially suppressed by the Boltzmann factor. At this point,

the BH can only evaporate into the small number of available massless species (such as the

graviton), and the lifetime is given by (3.3).

Requiring that the resulting BH satisfies the lifetime constraint (3.2), that is,

rg < (H−1MP )
1

3 M−1
P , (3.9)

we find from (3.5) the corresponding maximal n̄, by taking the integral up to MBH =

(H−1MP )1/3MP . Since, by default, the size of this BH is ≫M−1, we have MMBH ≫ M2
P

and the first term dominates in the last equation of (3.5). This gives

n̄ ∼ MP

M
(H−1MP )

1

3 . (3.10)

Again, n̄ sets the maximal number of particles that can participate in the experiment,

without making BH unacceptably long lived. Now, if N > n̄, the following constraint

emeges. Using a subset of n̄ species and peforming the thought experiment with the BH

formation and evaporation, we arrive to the usual flat space constraint

n̄ .
M2

p

M2
. (3.11)

From here, by taking into the account (3.10), we get the following bound on the mass of

the species

M .
MP

(H−1MP )
1

3

. (3.12)

3.1.2 Constraint on light species: M . H

In such a case, even a BH as big as ∼ H−1, can have a lifetime ∼ H−1. So, for finding n̄ in

eq. (3.5) the integration must be performed up toMBH = H−1M2
P . Since

M2

P

M ≫ H ≫M ,

this gives,

n̄ ∼ (H−1MP )2. (3.13)

Checking for the lifetime, we get

τ .
1

n̄
H−3M2

P ∼ H−1, (3.14)

which confirms the legitimacy of the derivation. Then again, because by default n̄ has to

satisfy the bound (3.11), we get

(H−1MP )2 < M2
P /M

2, (3.15)

which is automatically compatible with the original assumption that H > M . What

remains is to be seen that N ≤ n̄. This follows from the Gibbons-Hawking temperature

constraint. Indeed, because the de Sitter space is a thermal bath with effective temperature
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TGH ∼ H, the contribution to the energy density from N species with masses M < H

would be

ρspecies ∼ N H4. (3.16)

This contribution cannot exceed the energy density of the de Sitter vacuum, which puts

the upper bound on the number of species lighter than H, to be M2
P /H

2. Notice, that for

species that are lighter than H, this is a more stringent bound, than the flat space one.

3.2 Classically stable vacua: relaxing the longevity constraint

In the analysis of the previous section, we have deliberately limited ourselves by considering

BH that are sufficiently short-lived. This requirement is certainly justified for the time

dependent vacua, which can only be regarded as stationary de Sitter on the time-scales of

few Hubble. Most of the slow-roll inflationary vacua fall in this category.

On the other hand, the vacua that correspond to the classically-stable minima of the

landscape, are exponentially long lived. For such vacua, the requirement (3.2), demanding

that the BH evaporation time to be less than the Hubble time, is unnecessarily stringent.

Indeed, we can have a hypothetical observer orbiting around a BH on a stationary orbit for

much longer than the Hubble time. What is important in such a case, is that the lifetime of

the BH is longer than the lifetime of the vacuum τvac. If latter is the case, we can relax the

requirement (3.2) and only demand (3.1). It is again useful to split the discussion in two

cases, corresponding to the mass of the species being heavier or lighter than the Hubble.

3.2.1 Constraint on heavy species: M ≫ H

Again we first have to find the number of available species n̄, which can participate in the

BH formation and evaporation experiment that are compatible with the constraint (3.1).

This can be found by integrating (3.5) up to the mass of the Hubble size BH, which has a

mass MBH ∼ H−1M2
P . This gives

n̄ ∼ M2
P

MH
. (3.17)

An alternative way of finding the maximal number of heavy species of mass M ≫ H,

that can participate in the experiment, is by estimating of how many such particles can fit

within the de Sitter horizon before turning the Hubble volume into a BH,

n̄M

M2
P

∼ H−1 → n̄ ∼ M2
P

HM
. (3.18)

Because M ≫ H, the above number is much larger than the flat space bound on the num-

ber of species. Thus, in this case, de Sitter is essentially not limiting the number of species

that one could use in BH formation, and the flat space BH bound remains. Thus we have,

N .
M2

P

M2
, (3.19)

just as in flat space. This makes perfect sense. Indeed, in an eternal de Sitter space,

sub-horizon BHs formed by the heavy particles, evaporate just as in the flat space.
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3.2.2 Constraint on light species: M . H

In this case expression for n̄ (again the maximal number of particles that can be used in

experiment without conflicting with (3.1)) changes to

n̄ = (H−1MP )2. (3.20)

Let us find out, what is the constraint on N in such a case. Let us first show, that we

cannot have N > n̄ due to Gibbons-Hawking temperature argument. Because

M . H, (3.21)

in the de Sitter space all the species contribute to Gibbons-Hawking radiation. Each species

with mass < H, will contribute into the thermal energy a factor ∼ H4, which for N > n̄

would exceed the energy in de Sitter space. This is impossible. Thus, we arrive to the

conclusion that n̄ is the bound on N . Thus,

N .
M2

P

H2
. (3.22)

Again, this result agrees with the general intuition, since in the presence of sub-Hubble

mass species, the de Sitter horizon strongly limits the size of the BH that in the flat space

would evaporate into the light species. Thus, the key point is that for the light species

M ≪ H, the bound is cut-off by the Gibbons-Hawking temperature argument, which is

more stringent than the flat space bound of [1].

We shall now apply this consideration to different inflationary scenarios.

4. Application for the landscape

4.1 Stationary SUSY-breaking de Sitter vacua

In this section, we shall apply our consideration to the vacua that are classically stable,

and thus have an exponentially long life-time.

Consider a nearly Minkowski vacuum in which gravitino mass is m3/2. In the standard

picture our MSSM vacuum is such. In this vacuum there are moduli that are getting

masses from the SUSY-breaking dynamics, and their masses are ∼ m3/2. These moduli

parameterize the would be flat directions, that are lifted by SUSY-breaking. When we

move along the lifted flat directions, many particles become massive. Let such modulus be

φ. For example, φ can be one of the MSSM flat directions. In F -term type supersymmetry

breaking, the potential for moduli is generated through the Kähler couplings to the SUSY-

breaking F -terms and has a form

V (φ) = m2
3/2M

2
P V

(

φ

MP

)

. (4.1)

Usually, is it assumed that the function V(φ/MP ) can have many new minima at values φ ∼
MP . However, the BH bound derived in the previous section can restrict such possibilities.
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To see this, imagine that indeed there is a new minimum at φ ∼ MP . Of course,

typically this minimum will not be Minkowski and will have a vacuum energy of order the

SUSY-breaking scale V0 ∼ m2
3/2M

2
P . The question is, what is the restriction on the number

of species of mass M in such a vaccum.

In this section we will be interested in classically-stable vacua, which can only decay

through the tunneling process and thus, have an exponentially-long lifetime τvac. We shall

show, that BH consideration of the previous section can provide a restriction on this lifetime

in terms of number of species N and their mass M . For definiteness, we shall discuss vacua

with M ≫ m3/2.

In order to see this, let us first assume that the vacuum in question can be arbitrarily

long lived. In particular, τvac can be much longer than the lifetime of a minimal BH

satisfying the constraint (3.1). That is

τvac ≫ τBH ∼ (n̄M)3

M4
P

∼ H−3M2
P , (4.2)

where in the last expression we have taken in to the account (3.17). Then, as shown in the

previous section the BH proof of the bound, NM2 < M2
P , will go through. The requirement

that the gravitational radius rg of a minimal BH incorporating all the species, is less than

the curvature radius of the vacuum (H−1), applied to SUSY-breaking vacua, takes the form

rg . H−1 → NM . M2
P /m3/2, (4.3)

where we have used the fact that the mass of a minimal BH (containing all the species) is

MBH ∼ NM . Because (4.3) implies

N .
M2

P

M2

M

m3/2
, (4.4)

the flat space BH bound

N .
M2

P

M2
(4.5)

is automatically valid even in the curved vacua (with V0 ∼ m2
3/2M

2
P ), as long as, M > m3/2.

Now it is obvious that the above result puts a severe restriction on all the vacua, that

are obtained my modular deformation from the Minkowski vacuum in which supersymmetry

breaking scale is hierarchically small. For instance, on the deformations of the standard

MSSM vacuum in which the hierarchy problem is solved by the low energy SUSY-breaking.

An immediate implication is that there cannot be the metastable vacua in which MSSM

flat directions have & MP VEVs, since such vacua would automatically fall within the

conditions of the BH proof, and in the same time there many species will get masses

M ∼ MP , in contradiction with this bound. The same is true for the deformations of the

vacua with GUT symmetry breaking, and for many other cases.

What happens if the bound is not satisfied, for example, what if there are too many

massive particles? Then, by consistency, theory has to respond by decreasing the lifetime

of the vacuum, in such a way that (4.2) is no longer valid. That is, a large number of
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species must destabilize the vacuum! In such a case the vacuum in consideration becomes

short lived or even classically unstable, and the argument has to be reconsidered. We shall

discuss such a situation in the next section.

4.2 Constraint on the slow-roll inflationary states

The black hole bound on species (1.1) can be extended not just to the (meta) stable vacua,

but also to time dependent “vacua”, with slowly changing values of the parameters. The

important examples from this class of vacua are the inflationary slow-roll backgrounds. We

shall now apply the BH bound to such states.

Consider a slow roll inflation driven by a single inflaton field φ. The equation for the

spatially-homogeneous time-dependent field is,

φ̈ + 3H φ̇ + V (φ)′ = 0 , (4.6)

where, prime stands for the derivative with respect to φ. The main idea of the slow roll

inflation is, that for certain values of φ, the potential V (φ) is sufficiently flat, so that the

friction term dominates and this allows φ to roll slowly. The energy density is then dom-

inated by the slowly-changing potential energy. The Hubble parameter is approximately

given by H2 ≃ V (φ)/3M2
P , and can be regarded as constant on the time scales ∼ H−1.

Obviously, the inflationary region of the potential must be away from todays minimum

with almost zero vacuum energy. In any inflationary scenario the value of the inflaton field

during inflation is very different from its todays expectation value φ0 corresponding to the

minimum of V (φ), which without loss of generality we can put at φ0 = 0.

Soon after the end of the inflationary period, inflaton oscillates about its true minimum

φ0, and reheats the Universe. For this to happen, inflaton should necessarily interact with

the standard model particles and possibly with the other fields. Let us consider an inflaton

coupled to N species, with masses Mj. For the efficient reheating, the masses of the the

particles about the minimum φ0, must be less than the inflaton mass about the same

minimum. That is, Mj ≪ V ′′(φ0). Due to coupling to the inflaton field, the masses of

species are functions of its expectation value, Mj(φ), and it is very common that these

masses change substanctialy during inflation. The key point that we are willing to address

now, is that the masses of these species are subject to the BH bound, and give useful

restriction on the inflationary trajectory. Thus, knowing the couplings of the inflaton in

our vacuum, one can get an non-trivial information about the much remote inflationary

vacua of the same theory.

For simplicity, we shall assume the universality of the species masses Mj(φ) = M(φ).

During the slow-roll inflation, Universe is in a quasi-de-Sitter state, in which the inflationary

Hubble parameter sets the size of the causally-connected event horizon H−1. However, the

difference from the stationary de Sitter vacua, is that in realistic inflationary scenarios the

slow roll phase (in any given region) is not exponentially long lived, and lasts for several

Hubble times. So H−1 sets the time scale on which parameters can be regarded as constant.

Thus, a hypothetical observer located within a given causally-connected inflationary

patch can perform a sensible experiment with BH formation and evaporation, as long as
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the gravitational radius rg and the BH lifetime τ obey the bounds (3.1) and (3.2). In such

a case, the considerations of section 1.1 can be directly applied, and we arrive to the bound,

M(φ) <
MP

(H−1(φ)MP )
1

3

. (4.7)

All the information that this bound implies for a given inflationary scenario, is encoded in

the functions M(φ) and H(φ). We shall now illustrate this on some well known examples.

4.3 Chaotic inflation

Let us consider the example of Linde’s chaotic inflation [37]. This is based on a single

scalar field with a mass m and no sef-coupling

V (φ) =
1

2
m2φ2 + gφψ̄jψj . (4.8)

The last term describes the coupling to N -species, which for definiteness we assume to be

fermions, and g is the interaction constant. As said above, the coupling of the inflaton to

the species is crucial for the reheating.

The above theory has a Minkowski vacuum, in which φ = 0 and all the species are

massless. Due to the latter fact, in this vacuum the BH bound on the number and mass

of the species is satisfied. However, as we shall see, the same bound, puts non-trivial

restriction on the inflationary epoch, since during inflation φ 6= 0 and species are massive.

Ignoring for a moment the coupling to the species, the logic in the standard Chaotic

inflationary scenario goes as follows. The expectation value of the field φ can be arbitrarily

large, as long as the energy density remains sub-Planckian, that is

m2φ2 ≪ M4
P . (4.9)

The equation (4.6) then can be applied and takes the form

φ̈ + 3H φ̇ + m2φ = 0 , (4.10)

where H2 = m2φ2 + φ̇2

6M2

P

. As long as H ≫ m, the friction dominates and φ rolls slowly. This

implies (up to a factor of order one)

φ ≫ MP , (4.11)

which is compatible with (4.9) as long as m ≪ MP . If the above is satisfied, φ rolls slowly,

and Universe undergoes the exponentially fast expansion. Let us now see how the coupling

to the species restricts the above dynamics. During inflation the mass of the species is

M = gφ and they are subject to the BH bound. To see what this bound implies we can

simply insert the current values of M(φ) and V (φ) in (4.7), and we get

gφ . MP

(

mφ

M2
P

)
1

3

. (4.12)
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Non-triviality of the above constraint is obvious. For example, the standard argument

assumes that inflation could take place for arbitrary m ≪ MP , and from arbitrarily

large values of φ satisfying (4.9), irrespective to the number of species to which inflaton is

coupled. The above expression tells us that in the presence of species, this is only possible,

provided, g . (MP /φ)2/3(m/MP )1/3.

For the practical reasons of solving the flatness and the horizon problems, in the

standard Chaotic scenario, last 60 e-foldings happen for φ . 10MP , whereas from density

perturbation we have m ∼ 1012GeV or so. This implies, g < 10−3. This constraint can

be easily accommodated by the adjustment of couplings, however it is remarkable that no

fine tuning can make g ∼ 1 consistent.

4.4 Hybrid inflationary vacua

The essence of the hybrid inflation [38] is that inflationary energy density is not dominated

by the potential of the slowly-rolling inflaton field φ, but rather by a false vacuum energy

of other scalar fields, χj . These fields are trapped in a temporary minimum, created

due to large positive mass2-s, which they acquire from the coupling to the inflaton field.

The slowly rolling inflaton then acts as a clock, which at some critical point triggers the

transition that liberates the trapped fields, and converts their false vacuum energy into

radiation. However, usually Inflation ends before this transition, because of breakdown

of the slow-roll. Thus, in hybrid inflation, the presence of fields with inflaton-dependent

masses is essential not only for the reheating, but for the inflation itself.

The simplest prototype model realizing this idea is

V = λ2 φ2χ2
j +

(g

2
χ2

j − µ2
)2
, (4.13)

where λ and g are constants. Then, for |φ| > φt ≡ µ
√

g
λ2 , the effective potential for χj is

minimized at χj = 0, and the false vacuum energy density is a φ-independent constant, µ4.

Thus, in the classical treatment of the problem, starting at arbitrary initial value φ ≫ φt

and with zero initial velocity, φ would experience zero driving force and system would inflate

forever. One could slightly lift this flat direction by adding an appropriate self interaction

potential for φ (e.g., such as a positive mass term m2φ2) which would drive φ towards

the small values. In such a picture inflation ends abruptly after φ drops to its critical

value φt, for which χj becomes tachionic, and system rapidly relaxes into the true vacuum.

However, the above story is only true classically, and quantum mechanical corrections are

very important and always generate potential for φ [40, 41]. Because of to these corrections,

typically, inflation ends way before the phase transition, due to breakdown of the slow-roll.

Existence of supersymmetry cannot change the latter fact, however, supersymmetry does

make the corrections to the potential finite and predictive.

The simple supersymmetric realizations of the hybrid inflation idea have been sug-

gested in form of F -term [39, 40] and D-term [41, 42] inflationary models. As a result

of supersymmetry, in F -term inflation λ = g. As it was shown in [40] and [41], due to

renormalization of the Kähler function via χj loops, the non-trivial inflaton potential is
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inevitably generated, which for φ≫ φt has the following form,

V (φ) ≃ µ4

[

1 +
Ng2

16π2
ln
g|φ|
Q

]

, (4.14)

where, Q is the renormalization scale. Notice, that this potential cannot be fine tuned away

by addition of some local counter terms. The condition of the slow roll is that V ′′ ≪ H2,

implying that

N g2 ≪ φ2

M2
P

. (4.15)

Because of the logarithmic nature, the slope flattens out for large φ. However, even if one

tries to ignore any other correction to the potential, nevertheless, the slow-roll condition

will eventually run in conflict with the black hole bound, which implies that

N g2 .
M2

P

φ2
. (4.16)

This fact indicates, that even if the theory is in seemingly-valid perturbative regime (that

is, Ng2

16π2 lngφ
Q ≪ 1), nevertheless, the perturbative corrections to the Kähler cannot be the

whole story, and theory has to prevent growth of φ, by consistency with the black hole

physics.

We wish to point out one subtle difference between the F -term and D-term inflationary

scenarios. In case of F -term inflation, χj fields need not transform under any long range

(un-Higgsed) gauge symmetry. However, in case of the D-term inflation story is more

involved, because the mass parameter µ2 comes from the Fayet-Illiopoulos term ξ of an U(1)

vector supermultiplet. In the globally supersymmetric limit, the potential has the form [41]

V = λ2 |φ|2
(

|χj |2 + |χ̄j |2
)

+
g2

2

(

|χj |2 − |χ̄j |2 − ξ2
)2
, (4.17)

where, χ and χ̄ carry opposite charges, which we take equal to +1 and −1 respectively.

The mass of the U(1) gauge field (call it Wµ) therefore vanishes above the critical point

|φ|2 > φ2
t ≡ g2

λ2 ξ. However, this is an artifact of the global supersymmetry.

The most important effect of supergravity corrections to this picture is that U(1)

becomes a gauged R-symmetry [43], and the charges experience a shift of order ξ/M2
p .

This can be seen from the expression for the covariant derivative on the gravitino ( we use

conventions of [44], see details there)

D[µψν] =

(

∂[µ +
1

4
ω[µ

ab(e)γab +
1

2
A[µγ5

)

ψν] , (4.18)

where ωab
µ (e) is the spin connection, and the U(1)-connection Aµ is given by

Aµ =
1

2

[

(∂iK)∂̂µz
i − (∂iK)∂̂µzi

]

+
gξ

M2
P

Wµ , (4.19)

where

∂̂µzi = ∂µzi −Wµ ηi(z) . (4.20)
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Here, K is the Kähler function, and sum runs over all the chiral superfields zi and ηi(z)

are the holomorphic functions that set the U(1) transformations of all chiral superfields in

the superconformal action,

δzi = ηi(z)α(x) . (4.21)

When the Kähler potential is U(1)-invariant, as is the case in the simple model above, the

U(1) gauge transformation of the gravitino gauge-connection Aµ takes a universal form:

δAµ =
gξ

M2
P

δWµ =
gξ

M2
P

∂µα(x) , (4.22)

which means that gravitino acquires an U(1)-charge, and thus U(1) becomes an R-

symmetry.

Because of this charge shift, it is not at all guaranteed that U(1) will stay un-Higgsed

even though χj VEVs vanish. The characteristic mass of the U(1) photon is at least

as large as the Hubble parameter. As we shall discuss, this is exactly what happens in

D-brane inflation.

4.5 Brane inflationary vacua

A possible mechanism for the inflation in string theory, is brane inflation [45 – 50]. In this

picture the role of the inflaton field φ is played by the brane-separation field. A simplifying

but crucial assumption of the original brane inflation model, is that compactification moduli

are all fixed, with the masses being at least of order of the inflationary Hubble parameter,

so that branes can be considered to be moving in a fixed external geometry, weakly affected

by the brane motion. In the same time, the 4d Hubble volume must be larger than the

size of the compact extra dimensions. These conditions allow us to apply the power of the

effective four-dimensional supergravity reasoning.

Below we shall focus on the case of D − brane inflation, based on the motion and

subsequent annihilation of branes an anti-branes. In [47], it was shown that this picture

from the four-dimensional perspective can be understood as the hybrid inflation, in which

φ is a brane distance field, and role of χ is played by the open string tachion.

An interesting evidence, indicating that D-brane inflation as seen from the 4d super-

gravity perspective is of the D-term type, emerged later (see [51, 44]). This connection

allows us to apply the above-derived black hole constraints to brane inflation both from 4d

supegravity as well as from 10d string theory point of view.

In this picture, the supersymmetry breaking by a non BPS brane-anti-brane system

corresponds to the spontaneous supersymmetry breaking via FI D-term.

When branes are far apart, there is a light field φ, corresponding to their relative

motion. This mode is a combination of the lowest lying scalar modes of the open strings

that are attached to a brane or anti-brane only. We are interested in the combination that

corresponds to the relative radial motion of branes.

φ = M2
s r , (4.23)

where Ms is the string scale.
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In the simplest case of a single brane-anti-brane pair, we have the two gauged U(1)-

symmetries. One of these two provides a non-vanishing D-term. The tachyon (χ) is an

open string state that connects the brane and the anti-brane. The mass of this stretched

open string is M2
s r. In 4d language, the tachyon as well as other open string states get

mass from the coupling to φ.

The energy of the system is given by the D-term energy, which is constant at the tree-

level, but not at one-loop level. At one-loop level the gauge coupling depends on φ. g2 gets

renormalized, because of the loops of the heavy U(1)-charged states, with φ-dependent

masses. For instance, there are one-loop contributions from the χ and χ̄ loops. More

precisely there is a renormalization of g2 due to one-loop open string diagram, which are

stretched between the brane and anti-brane. Since the mass of these strings depend on φ,

so does the renormalized D-term energy

VD =
g2(φ)

2
D2 =

g2
0

2

(

1 + g2
0f(φ)

)

ξ2 , (4.24)

where g2
0 is the tree-level gauge coupling, and f(φ) is the renormalization function. For

example, for D3 −D7 system [52] at the intermediate distances (M−1
s ≪ r ≪ R, where R

is the size of two transverse extra dimensions), this takes the form (4.14).

We shall now see, why at least in the simplest D-brane setup, the U(1) symmetry must

be Higgsed throughout the inflation.

Let us again think about the process of D3+q − D̄3+q driven inflation, with the subse-

quent brane annihilation. We assume that q dimensions are wrapped on a compact cycle,

and relative motion takes place in 6 − q remaining transverse dimensions.

The low energy gauge symmetry group is U(1) × U(1), one linear superposition of

which is Higgsed by the tachyon VEV. The crucial point is, that this Higgsed U(1) gauge

field is precisely the combination of the original U(1)-s that carries a non-zero RR-charge

(the other combination is neutral). The corresponding gauge field strength (F(2)) has a

coupling to the closed string RR 2 + q-form (C(2 + q)) via the WZ terms,

∫

3+1+q
F(2) ∧ C(2 + q) , (4.25)

where, since we are interested in the effective 4d supergravity description, we have to

integrate over extra q-coordinates, and only keep the 4d zero mode component of the RR

field. This then becomes an effective 2-form, C(2).

The connection with the 4d supergravity D-term language, is made by a dual descrip-

tion of the C(2)-form in terms of an axion (a),

dC(2) → ∗ da , (4.26)

where star denotes a 4d Hodge-dual. Under this duality transformation we have to replace

(dC(2))
2 +

ξ

M2
P

F(2) ∧ C(2) → M2
P (da − gQaW)2 , (4.27)
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where Qa = ξ
M2

P

is the axion charge under U(1). As it should, this charge vanishes as the

compactification volume goes to infinity, and 4d supergravity approaches the rigid limit.3

We thus see that the U(1) gauge field (Wµ) acquires a mass m2
W & ξ2/M2

P .

We are now ready to discuss applicability of our BH thought experiment to the above

D-brane system. Since the role of the species χj, that are getting mass from the inflaton

field, is played by the stretched open strings, the first condition for the applicability of

the BH bound is, that these strings should fit at least within the Hubble size black hole.

This is automatically the case, since by the validity of the brane inflation, the effective 4d

Hubble volume must be much larger than the size of the compactified dimensions. Since

the length of the stretched strings cannot exceed the latter size, they automatically fit

within the black hole horizon.

The second issue is the possible interference of the U(1) “hair” of the open string

tachion with the black hole formation and evaporation process. Again, as we have seen,

the black holes of interest have size of order Hubble, which is comparable to the Compton

wavelength of the U(1)-photon. On the other hand, stretched strings are heavy, so the

lifetime of such a black hole is many Hubble times. Typical time scale for a black hole to

loose a photon hair is the Hubble time (because of photon mass), after this time, black

holes should evaporate as normal hairless black holes. So again, at least to leading order,

the massive U(1) photon should not interfere with our arguments.

We should stress, however, that because the photon mass is roughly the same order as

the curvature scale, more careful analysis would be very useful. This will not be attempted

here.
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