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ABSTRACT

Flame Spread Through a Solid Fuel

by

Frank R. Steward

Submitted to the Department of Chemical Engineering on September 9, 1962
in partial fulfillment of the requirements for the degree of Doctor of
Science.

An investigation was made to increase the understanding of natural
fire spread through solid fuel. The investigation included three not
wholely connected parts, theoretical and experimental. I. The rate of
fire spread over a horizonal surface covered with each of two types of
fuel, shredded newspaper and computer punch outs,was measured for several
humidities with various rates of artificially controlled irradiation from
an external source. The results were interpreted by a mathematical model
suggested in the Woods Hole Summer Study Fire Report. II. The flux den-
sity of radiation was measured around line fires of methane and propane
on a perpendicular surface. The results compared favorably with intensity
profiles based on the simplified model of a uniform temperature gray gas
wedge of slope 0.25 calculated on the 709 and 7090 computors at the
M. I. T. Computation Center. Additional calculations were made to obtain
the intensity profiles on a perpendicular surface around an infinitely
long uniform temperature gray gas rectangular parallelepiped over a wide
range of heights and widths. III. Some flame heights of the propane and
methane line fires were measured visually. They compared favorably with
circular buoyant flame heights reported in the literature.

Some consideration was given as to how the various mechanisms of
heat transfer can be estimated in a full scale fire so their relative impor-
tance can be evaluated by the suggested mathematical model.

Thesis Supervisors: Hoyt C. Hottel
Professor of Chemical Engineering

Glenn C. Williams
Professor of Chemical Engineering
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SUMMARY

An investigation was conducted to increase the understanding of

natural fire spread through solid fuel. The work consisted of both

experimental results and theoretical analysis.

The Woods Hole Summer Study Model (32) of an infinitely long line

fire spreading through a uniform fuel bed discussed in Section 2-4 is

considered to offer the best analysis for steady state fire spread at

the present time. The form is general enough in order that any new ob-

servation can be included. It can also be used as a basis for deter-

mining future work to fill in missing information.

The three equations for the Woods Hole Summer Study Model are:

1. An energy balance on the unburned fuel,

iV = Q/L)B + Q/L) R Q/L)C Q/L) 2-23

the right hand elements of which represent different modes of heat flux

to bring the fuel to ignition, operating over the fuel bed and extending

from infinity to the flame front.

Q/L) B  is the radiation flux through the plane of ignition of the

fuel from the embers below the gas flame.

Q/L) is the integrated radiation rate from the overhead flame
R

into the fuel.

Q/L)C is the ixtegrated convective heat transfer rate from the

burning gases to the unburned fuel.

Ig~ -~_1
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Q/L) is the integrated rate of convection heat loss from the un-
L

burned fuel.

Q is the net energy required to produce piloted ignition.

V is the rate of fire spread.

2. A burning law,

QcV = Q/L)R + QL)] 2-28

which says that the heat liberation rate by burning (l.h.s.) is propor-

tional to the heat input rate to the burning solid fuel bed.

Q/L)R is the integrated radiation rate to the burning fuel.

Q/L)' is the integrated internal heat generation rate in the

burning fuel.

Q c is the heat of combustion of the fuel.

is the loading density of the fuel.

is the fraction of fuel burned as the flame passes.

is a constant of proportionality between the chemical energy

in the gases liberated during decomposition of the fuel and

the heat absorbed by the fuel.

3. A determination of the flame height,

H = f (/L) 2  2-29

H is the flame height.

S is the width of the flame base.

Q/L is the integrated chemical energy liberation rate =

(Q/L)R + Q/L) )
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The results of this study have determined the form and importance

of same of the terms in the above equations.

The experimental work of this thesis can be divided into three

parts. The first part consisted of measuring the rate of spread of a

line fire over several fuels (Figure 3-la). The rate of fire spread

over shredded newspaper was measured for different loading densities

(Figure 3-2), different rates of external radiation supplied by elec-

trically heated wires (Figure3-3), and several humidities (Figure3-6).

The data indicate that after the surface is fully covered (about four equi-

valent layers when randomly distributed) the rate of spread is independent

of the loading density. The importance of the effect of radiation can be

shown from equation 2-23. On the assumption that the energy per unit

area required for ignition, Qi , is proportional to the time of heating to
i

the 1 power or is equal to Qo (V/V)4 (discussed in Section 3-4), and that

radiation through the bed, Q/L)B, may be neglected, equation 2-23 becomes

V3/4= 1 1 Q/L)R - Q/L)L + QJL) 0 .. 3-4% v Qo Vo

A plot of fire spread velocity to the three-fourths power vs. the integrated

external radiation rate minus the integrated heat loss from the fuel should

give a straight line. Unfortunately the heat loss at the surface is not

well known or easy to obtain. Using the solution of the conduction equa-

tion with external radiation on the surface of a solid as a function of

time (6), it is shown in Section 3-4 that a good estimate of this rate of

heat loss is



iv

Q/L)L = K )R 4/3

A plot of the rate of fire spread through shredded newspaper to the

3/4 vs. the integrated radiation rate minus (Q/L)R/V )4/3 for dif-

ferent K's is shown in Figure 3-5. The proper K should give a straight

line.- Figure 3-5 indicates that a large amount of the impinging exter-

nal radiation is lost (about 4/5). The small change in curvature with

the increase in K makes this only approximate. The slope and inter-

cept of the line in Figure 3-5 give the ignition energy and the inte-

grated convective heat transfer rate. The convective heat transfer

rate was found to be 94.0 Btu/hr-ft (0.224 cal/cm-sec) which makes it

an important mechanism. The ignition energy was found to be a function

of humidity as shown in Table 3-1.

Table 3-1

Humidity % QoBtu/ft2  %cal/cm 2

Based on a
27 1.94 o053 velocity V.

37-39 2.19 0.60 of 60 ft/hr

47-49 2.40 0.65

Additional runs were made with computer cards as fuel. The re-

sults for two different fuel sizes are shown in Figure 3-8. The energy

for ignition for this fuel was found to be 9.0 Btu/ft2 (2.4 cal/cm2 ) for

the more finely divided fuel and 7.5 tu/ft2 (2.0 cal/cm2) for the fuel

cf larger particles. Some exploratory runs were made to find the effect

of wind on the rate of fire spread through the shredded newspaper with a



wind generator described in Section 3-7. The results shown in Figure 3-12

indicate that a 3.5 ft/sec wind velocity increases the rate of spread three

fold underlining the importance of wind in fire spread.

The second part of the experimental work consisted of measuring

the flux density of radiation around methane and propane flames (Figure

5-1). The original data are shown in Figures5-2 and 5-3. The data were

taken from flames only two feet long and a correction was necessary to

estimate the radiation from infinitely long flames by using exchange

factors from gray gas wedges. The corrected data for infinitely long

flames are shown in Figures 5-5,and 5-6.

The distribution of radiation on a horizontal plane on either side

of an inverted gray gas wedge is shown in Section 4-7 to be given by

L dx 2 1 + (x/Z-a)

In the above expression g is the direct exchange area, which when multi-

plied by the difference in black emissive powers of the gas and surface

gives the net flux. The bracketed term represents twice the exchange area

for the case of a black flame. Z is the flame height, x is the horizontal

distance from the flame base to the surface element, and "a" is the slope

of the flame wedge. The burden of making the result fit the rigorous solu-

tion is put on the exponent B in the expression giving the "effective emis-

sivity, (1-e-BZ). Z' is the product of the flame height Z and the absorp-

tion coefficient k' and B is the ratio of the mean beam length to the

flame height, given in Figure 4-12 for a=0.25.



If the flame is well approximated by a gray gas wedge a plot of the

experimentally determined surface flux density due to flame radiation di-

vided by the flame emissivity, (l-e-BZ'), vs. the distance from the flame

over the flame height should give a single curve. This plot is shown in

Figure 5-7, based on use of all the data of Figures 5-5 and 5-6, together

with a mean absorption coefficient determined by total radiation measure-

ments on a laminar luminous flame with and without a mirror behind; k' was

2 and 10 ft-1" l for methane and propane respectively. The solid lines repre-

sent the distributions around gray gas wedges of 1260oF for propane. Near

its base the flame is not wedge shaped.

The third part of the experimental work consisted of measuring the

flame heights of the line methane and propane fires. Dimensional analy-

sis or modelling principles indicate that the ratio of the flame height,

H, to the base width,V', should depend on a group containing, (/L)2 /I  ,

where Q/L is the heat liberation rate per unit horizontal flame length.

The data are shown in Figure 6-2 along with some data of Thomas, Webster

and Raftery (31) for fires of circular and cubical fuel beds. The data

compare favorably when the radius and width are used for circular and line

fires, respectively, as would be expected if they are to be compared at an

equal mean hydraulic radius. The data indicate the flame height of line

fires over a useful range where natural fires occur is given by

he = e 2 0 6-53

The exponent c is between 0.33 and 0.40 in the useful range.
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The distribution of radiation around gray gas rectangular parallele-

pipeds and wedges of infinite length was calculated on 709 and 7090 compu-

ters. The results are shown in Figure 4-8(a-h) and 4-11 respectively. The

in
methods of calculation are discussedAChapter 4.

Returning to the Summer Study Model, it is now possible to discuss

the knowledge available for each term in equation 2-23, 2-28 and 2-29.

The heating of unburned fuel by radiation from the embers in the

fuel bed beneath the gas flame, /L) B, is readily amenable to theory.

It was shown in Section 2-4 to be

B Of f

where a' is the reciprocal mean path length for radiation through the

randomly plabed fuel and b is the height of the fuel bed.

Obtaining the radiation from the overhead flame Q/L)R, has been

one of the major endeavors of this work. When no wind is present the

radiation from the flame can be well approximated by

Q/L) = c Tf L dxs dx 7-2

where d -/L dx is the exchange factor given by either the gray gas wedge

or the rectangular parallelepiped exchange factors from Figures' 4.-11 and

4-8(a-h) respectively. Tf is the average gray gas temperature which accord-

ing to measured flux densities around propane and methane flames (Figure 5-7)

is about 12000F.

The convective heat transfer at the flame front, Q/L)c, is undoubtedly

the most elusive for quantitative treatment. In this work values of 94.0

Btu/hr-ft for shredded newspaper fuel and close to zero for the computer



viii

punch out fuel were found in the absence of wind. In an explor-atory ex-

periment a wind velocity of 3°5 ft/sec caused nearly a three-fold increase

in the rate of spread over calm conditions. This means a corresponding

increase in the convective heat tra)nsfer.

The heat loss from the unburned fuel as it preheats, Q/L)L, is also

a strong function of fuel type. However, it is believed that the treat-

ment of this term in Section 3-4 by relating it to the other heat transfer

rates, is a promising start. Although fuel beds with significant air spaces

would complicate matters a workable relation may still be found.

The energy required to produce ignition, Qi, has been determined in

this work for fuel beds of shredded newspaper and computer cut-outs. For

the newspaper it was found to decrease with humidity by approximately 10%

for a 10% decrease in humidity. This is about one third more than would

be expected if the change is based on the increase in the heat necessary

to reach a fixed ignition temperature. However, until other data over a

wider range of humidities becomes available it is recommended that the

following relation be used:

i" Vo 4o( (T T )+ MAH) 7-3

where Q. is the ignition energy at Vo, Ti is the ignition temperature,

M is the moisture content of the fuel,AH is the latent plus sensible heat

of water, and K" is a characteristic of fuel type to be determined by ex-

periment.

The radiation heat transfer to the burning fuel, Q/L)A , can be

handled in the same manner as the flame radiation to the fresh fuel.
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The heat generation in the bed itself, Q/L) , has not been studied in

this worck.

The relation between the flame height and the burning base width

and the heat liberation recommended in Se tion 6-4 is

H = L2 6-53

where c is between 0.33 and 0.40 and Yis a slight function of fuel type.

This relation seems well enough established to be used with confidence.

It is believed that the functions for equations 2-23, 2-28 and

2-29 are sufficiently well known to justify their numerical solution on

a computer. There are still many problems to be studied, particularly

the evaluation of the shift in relative importance of the different

terms which appear in the equations of the model when full-scale fuel

beds (forests or cities) are of interest.
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I. INTRODUCTION

Everyone has experienced fire in both its controlled and uncontrolled

forms. Early man considered it one of the elements. Adopting fire for useful

applications was one of the earliest discoveries of man, even before the beast

of burden. Throughout early history fire with air supplied by natural convection

(or natural fire) was the only type in existence. During this time man

discovered such facts as: small fuel must be used to start a fire, wet fuel

must be dried before it will burn, an isolated log will soon cease to burn

while several logs will burn brightly, blowing on an ember will cause it to

burn more rapidly and even burst into flame, etc. Today these concepts seem

very elementary and qualitative, but sometimes they are forgotten, resulting

in wasted effort. It should also be remembered that none of the above processes

even today is treated in more than a semi-quantitative manner.

With the coming of the Industrial Revolution, fire was harnessed to

industrial needs, and with this came the more quantitative study of combustion.

However, since natural fire has been of very little industrial use it has

been a field in which the analysis remained semi-quantitative. Today,

natural fire is seldom useful in industrial countries but it remains a potential

threat to properties and lives. The economic loss from fire in an industrial

country is huge. Direct fire damage in the United States alone is $1.5 billion

annually and the total economic loss is several times this figure, Fire

is responsible for 11,500 deaths a year. However, when one considers that more

than a billion cigarettes a day are lighted in the United States, each a pilot

for a potential fire, the above figures seen quite small. For over a quarter

of a century there has been no leveling of a city by fire in the United States.

This indeed indicates that the use of scientific methods to develop new fire

fighting equipment is justified and necessary. With the possibility of a

nuclear war in which many large fires would undoubtedly be started it is a

necessity to develop methods to meet this eventuality for national survival.

Most previous research in the fire field has been of a developmental

nature such as the invention and testing of a particular piece of equipment

to do a particular job. The last few years, however, have seen the growth

of an increasing interest in understanding unwanted fire phenomena. The work

..L



2

in this thesis is in the latter category and aims only to increase the basic

understanding of the spread of fire. Some of the phenomena have been studied

in a quantitative manner to contribute to the development of a model which

would be useful in understanding the overall problem of fire spread.
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II. THE DEVELOPMENT OF A MATHEMATICAL MODEL

2.1 Introduction

The spread of a fire through a forest, a home, or a city is a very

complex phenomenon. No two cities or forests are the same physically, and the

weather conditions vary so greatly that even if it were feasible to conduct

large scale experiments, their usefulness at this time would be of doubtful

value. It becomes necessary therefore, to construct and study models to

obtain meaningful results.

The word model, as used by engineers or scientists, usually refers to a

physical or mathematical model. Physical models are small scale processes

in which some important properties to be studies are identical with the same

properties of the full scale prototype. These models are useful in studying

certain specific details or fundamentals of a process.

The mathematical model, on the other hand, attempts to describe the

system "as it actually is" only in mathematical terms, so that one can visualize

how the changing of important variables affects the process without actual

tests. .In most instances it is impossible to describe the system mathematically

"as it actually is" and simplifying assumptions must be made.

In this thesis both physical and mathematical models have been used to

gain a better understanding of fire spread. Physical models have been used

to obtain a better comprehension of some of the fundamentals in fire spread

while a mathematical model developed by the Woods Hole Summer Study Group has

been the basis for extending these fundamentals to the general problem of

predicting the rate of fire spread.

2.2 Description of the Problem

The major object of this thesis has been to describe the propagation

of a steady state line fire through a uniform fuel bed. Note that initially

no attempt is made at describing the development of a fire in a single

dwelling. Although this is indeed important it is believed that a basic

understanding of the spread of a steady state fire is required before the

unsteady state development of a conflagration can be investigated on a

fundamental level.
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As a line fire spreads through a uniform fuel bed (a forest, a wheat

field, Levittown, Pennsylvania, etc.) as shown in Figure 2-1, it preheats

the fuel it is approaching by radiation, convection at the flame front, and

sometimes by fire brands. The fuel ignites and becomes part of the general

conflagration until the combustible part of the fuel is depleted and finally

is extinguished as the flame passes on. This description applies only to a

fully developed fire in which the length of the fire line and the height of

the flame are large compared to any irregularity in the fuel bed. A fundamental

understanding of this type of fire is not only an end in itself since this

is primarily the way a large forest fire spreads, but is also the first step

in the comprehension of the development of a fire and its suppression and

prevention.

2-3 Earlier Models

It is interesting to discuss some of the mathematical models suggested

by previous experimentors and point out their advantages and disadvantages. The

first mathematical model was probably that suggested by Fons (7) who studied

fire spread through light forest fuel. He assumed the fire to proceed through

a uniform fuel by a succession of ignitions (as from one twig to the next).

With the distance between fuel particles L and the ignition time 0 i, corresponding

to a temperature rise T1 to Ti (that is, twig n + 1 in front of the fire is

at a temperature T1 when twig n ignites). The rate of spread V is given by

V = / 0 i  2-1

Fons then writes a heat balance on an individual twig as

dT
9o r = Y c V 2-2

where

qc = heat transfer to the fuel particle by convection, Btu/hr

qr = heat transfer to the fuel by radiation, Btu/hr

= density of moist fuel, lb/ft3

C = heat capacity of moist fuel, Btu/lb-*F



S/

L w-x- -

dx

Fipure 2-1 Flame Spread Through Solid Fuel

- ------ '-E -~~-~~~-Tt~, 1 -ii~TP^ _ _ _^ I -~~'I

H

Hb

ii



5

V = volume of a fuel particle, ft3

T = temperature of the fuel particle, OF

Assuming the convection and radiation heat transfer to be given by

qc = hcAs(Tf - T) 2-3

= hAs ( Tf - T) 2-4

where A is the area of \the fuel particle, hc and hr are the radiation and

convection heat transfer efficients respectively, and Tf is the flame

temperature. Substituting and rearranging gives

d T (hc + hr) As
T T d9 2-5

Integrating and applying the boundary conditions T = T1 at Q= 0 and T = T

at 9 = 9 i gives

i CTf -T
00 (h + h ) f

where Cr = As/V, the surface to volume ratio, and the rate of apread is given

by

o (hc + h
V = r 2-7

p Tfy - Ti

Fons points out that the rate of spread is influenced by

1. the convection heat transfer,
2. the radiation heat transfer,
3. the ignition temperature of the fuel,
4. fuel spacing,
5. surface to volume ratio,
6. specific heat of the fuel,
7. density of the fuel and
8. fuel temperature.

He says such things as wind velocity, moisture of fuel, fuel density, fuel size,

fuel bed composition and slope are important in so far as they affect the

fundamental variables.



Fons goes on to elaborate on some of the terms and how they are affected

by the above indirect variables, but some of the deficiencies of this model

are already apparent. The model is that of a fire which spreads by a series

of ignitions as opposed to a continuous burning process. The use of the tem-

perature of the twig next to the igniting twig T is a clumsy choice. Finally,
1

the size of the fire does not enter the analysis. Therefore, it is futile to

hope that constants obtained from the data on small fires could be extended

to large fires. Consequently we must conclude that although this model is

adequate to describe small fires it cannot be extended to large fires and

therefore loses its usefulness as a mathematical model.

Another model is that suggested by Hottel (12) of a uniform flat fuel

bed burning at a constant rate V. The flame front is infinite in length.

The following assumptions have been made:

1. The density, the heat capacity, and the thermal conductivity
of the fuel are independent of temperature.

2. The convection heat transfer coefficient at the surface U
is independent of temperature.

3. The flame is approximated by a gray wall of constant emissivity
Gf and constant temperature Tf independent of height,and all

back radiation not absorbed by the wall passes through it.
4. The temperature of the fuel is independent of depth,and no.heat

escapes through the bottom of the bed.

An energy balance around a small element of fuel which allows for heat

transfer by radiation, convection and conduction, is given by

-2 + VC - 1 dT U(T - Ta 4(T a ) ( 1  efF(x))kld +Vc l a
dx

S- O6 6f F(x)(Tf - T ) 2-8

where

k is the thermal conductivity, Btu/hr-ft2 oF/ft

1 is the thickness of the fuel, ft

T.i is the ignition temperature of the fuel, OF

T is the temperature of the fuel, 0F

Tf is the flame temperature, OF

T is the ambient temperature, OF
a
V velocity of the flame spread, ft/hr

m



c heat capacity of the moist fuel, Btu/lb-F
-2 3_' density of the moist fuel, lb/ft3

U convection heat transfer coefficient from the fuel, Btu/hr-ft 2

f emissivity of the flame, dimensionless

E emissivity of the fuel, dimensionless

0o Stefan-Boltzmann constant, Btu/hr-ft 2 - R
F(x) view factor between dx and the flame, dimensionless

Use of the approximation,

T -T a (T - T 2-9
a (i (T- T a

which is equivalent to making the radiation from the fuel dependent on the

first power difference in temperature, with the coefficient correct only in

the limit as T reaches T., gives with rearrangement

A dT F (T 4  Tk l- + Ue 1- U+ a (T - T )
dx2 dx (Ti  Ta ) a

= - O CEfF(x) (Tf - Ta 2-10

the boundary conditions are

T=T atx= Oa

T = Ti  at x = 0 2-11

dT-- =0 at x =0dx

Atallah (1) solved this equation but erred in the application of a

boundary condition. The corrected solution is given in Appendix A-1 and is

r
C = - 2-12

o elz F(z) cdz

where



-A + A2 + r A A2 + 4B
Z = x/H , rl 2 r2  2

V c_ uH2  4)

A= P B=-- + a
k kl k1 (Ti a
Ef9(Tf4 Ta4

C = - 2-13
k1 (T T )

It is impossible to obtain an explicit solution for the velocity of fire

spread. If conduction is neglected and the true view factor (1/2)(1 -~ + z )

is approximated by e-Z/2  (which is quite good, the area being the same under

both curves) the solution (given in Appendix A-2) becomes

B' I
S=( - A') 2-142 1

where

"a (T 4 - Ta U

4 4p 1(Ti . Ta  cp 2.15Y (T T )

C y' (Ti - Ta)

The rate of spread is directly proportional to an effective radiation from the

flame minus an effective radiation plus convection from the fuel, directly

proportional to the height of the flame and inversely proportional to the

depth of the fuel.

The disadvantages of this model are quite obvious A, great many assumptions

are necessary to arrive at an answer which is then of doubtful value. A

fuel bed which would possess a uniform temperature is so thin that some

effective thickness must be used when a deep fuel bed is considered. B' and

A' are given in defined variables but the simplifying assumption necessary to

obtain an explicit solution can not be changed to provide for a more complex

situation. No relation is given to obtain the flame height H which is a

dependent variable. The undesirable characteristics of this model are the

m



usual ones encountered when writing a differential equation which one hopes

to solve, because assumptions are necessary before the equation is written.

In this case such things as an ignition temperature, a flame temperature, a

distribution of heat in depth, a constant heat transfer coefficient were assumed

to be known before the equation was written. The integral equations used in

the Wqods Hole Summer Study Model (2.4) do not suffer from this disadvantage.

Both of these models help to clarify one s thinking of fire spread but

suffer from the questionable assumptions indicated.

2.4 The Woods. Hole Summer Study Model (32)

This model has been presented in detail in the reference above with

few changes, but it merits discussion here since the physical model developed

in the present work was inspired by this mathematical model.

The model represents again mathematically the line fire in Figure 2-1

propagating across a fuel bed whose non-uniformities are small compared to the

dimensions of the flame.

Consider first the preheating of the fuel. The fuel receives heat by

various mechanisms, radiation, convection, and possibly even solar radiation.

From whatever mechanism, the amount of energy reaching the fuel at a certain

time per unit horizontal area per unit time is q. It is now necessary to define

a quantity Qi which corresponds to the amount of heat per unit area that is

necessary to produce combustion above the fuel when a pilot flame is present.

It is apparent that this is the net amount of heat received by the fuel at the

instant the flame reaches that part of the surface. Defining x as the distance

from the leading edge of the flame, negative on the unignited side,

Qi= f q dt = q dx 2.,16

where V is the rate of spread. q, energy per unit horizontal area per unit

time, is assumed to occur by four mechanisms of heat transfer, each independent

of all the others.

ql(x) is the radiation through the fuel bed complex from the hot embers at
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the base of the flame. Taking the embers as black radiators at a temperature Tf

1Y -a'xql(x) = a'b oTf 4 e 2-17

where b is the height of the ember radiators, a' is the reciprocal mean free

path or projected area per unit volume and o- is the Stefan-Boltzmann constant.

The assumption of a black radiator requires the burning zone to be large compared

to 1/a' and the height of the embers b must be large compared to 1/a' if losses

through the top and bottom of the bed are to be neglected.

q2 (x) represents the convection heat transfer due to bathing of the

unburned fuel in a part of the flame. This mechanism depends on an eddy transfer

at the flame front so that it will be a sensitive function of wind velocity, V ,

and wind turbulence, the flame height (if it is assumed that the wind produced

by the fire is determined only by the flame height), the difference between the

flame temperature and the local temperature, and the distance x from the flame.

Therefore,

q2 (x) = [f 2 (x, flame height, V , wind structure))(Tf = T) 2-18

q3 (x) is the radiation from the flame itself to the unburned fuel. It

will depend on the temperature and gas composition patterns in the flame,

the distance x, and, since it will bend the flame, on the velocity of the wind.

There is evidence that for a fixed flame without wind the radiation is determined

uniquely by the flame height. Therefore,

q3 (x) = [f 3 (H, V , x)] o-T4 2-19

q4 (x) is the heat lost by the fuel bed due to convective and radiative

cooling of the unburned fuel. This heat loss will depend on the local velocity

of the air, and therefore on the flame height, the wind velocity, and the local

temperature difference. Thus,

q4 (x) = T[f(v, 2)](T a) 2-0
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Since these four heating rates were assumed independent it is possible

to write

VQ i (q 1 (x) + q2 ( x) + q3 (x) - q(x)) dx 2-21

Define

-O

The above quantities are the integrated heating rates to the unburned fuel.

Equation (21) becomes

VQi = ), + QL)C + /L)R Q/L)L 2-23

This equation states that the velocity is directly proportional to the

sum of the integrated heating rates and inversely proportional to the energy

pulse required to produce ignition. There is no doubt of the validity of this

equation where effects such as those of firebrands are absent, but the forms of

the various quantities are not well known.

Consider now the burning zone where the combustible gases from the decom-

posing fuel feed the flame. It is assumed that the rate of chemical energy

liberated in the evolving gases at a local point in the burning fuel is directly
repr e n±ing

proportional to the amount of heat absorbed at that point. With qgpe eat

of combustion or chemical energy of the gases liberated,

qg = 224

The heat input to the burning fuel q is assumed to consist of the radiation

from the flame q3 (x), described before, and the heat generation in the fuel bed

itself q5 (x). The latter is caused by combustion when air reaches into the
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burning zone. This will be a function of the flame height, the wind velocity,
and the distance from the flame front x. Thus,

qg = B(q3(x) + q5(x)) 2-25

It is now assumed that the evolution of combustible gas continues until

a fraction of the total fresh fuel is burned. Therefore,

SQ, V = P[q 3(x) + q5(x)]dx 2-26

where

is the loading density of the fuel, bs/ft2

W is the width of the burning zone and

Qc is the heat of combustion of the fuel. per unit mass.

Once again defining integrated energy transfer rates

Q/ = q3 (x) dx
0 2.27

Q/L) = qf5 (x) dx

gives

= QL) + Q/L) 2-28

Since there are three dependent variables, the velocity of spread, the

width of the flame base and the height of the flame another relation is required

which relates the flame height to the other variables. It was shown by Thomas (31)
that the height-to-diameter ratio for a circular flame is a function of the.

square of the heat liberation rate in the flame divided by the radius of the

flame source to the fifth power. Applying the same principles, the derivation

for the line fire gives

H = f 2-29

where

Q/L = q ax 2-30
I g



When the width of the flame becomes small compared to the flame height H

the relation reduces to

H a- (Q/L) 2/ 3  2-31

This relation can be obtained by dimensional analysis or from the solution

of the equations given in Section 6-3. However, the author's experience leads

him to believe the simpler expression does not often occur in an actual forest

fire.

There are now three equations and three unknowns (V, H, and W). Assuming

the form of the Q/L functions and the function in equation 2-29 are known the

equations 2-23, 2-28, and 2-29 would yield an explicit solution if the temperature

distribution ahead of the flame did not appear in the heat loss term Q/L) L of

equation 2-23. However, by guessing a reasonable temperature distribution ahead

of the flame, to be checked after the original result, a solution can be obtained.

Notice the advantages this model has over previous models. First, equation

2-23 depends only on the assumption that the various heating rates are independent.

The equation is undoubtedly valid for any line fire no matter what the fuel

arrangement. It is not necessary to make assumptions until the forms of the

various Q/L)ls are discussed. At some future time when better functions are

available they can be inserted readily. This is the advantage the integral

equation has over a differential equation. Secondly, this model advances on

to determine the flame height and the thickness. These are dependent variables

which the other models did not attempt to determine. Finally, although it is

not presently possible to formulate some of the functions included in the

analysis, the analysis shows where work should be done to fill in the missing

information.

The disadvantage of this model compared with the other two is that no

analytical solution is obtained.

On the basis of this model, the rate of spread is a function of the various

mechanisms of heat transfer, the heat of combustion, the beat required for ignition,

and the type and loading of fuel. The other variables such as wind velocity,
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humidity, flame temperature, ignition temperature, etc. are important insofar

as they affect these direct variables. This is a considerable reduction from

those listed by Fons (1).



III. DEVELOPMENT OF A PHYSICAL MODEL

3.1 Introduction

The mathematical model of a line fire just developed showed that

many important quantities are unknown. The development of physical models to

obtain these quantities by experiment is necessary. Four earlier experimenters,

Fons (() and Fons, Bruce, Pong, and Richards (8) built line fires and measured

the rate of fire propagation. Fons' (1) fires were built in a wind tunnel

using as fuel ponderosa pine twigs mounted in saw dust. The distance between

twigs and their diameters were varied in a series of experiments. Fons, Bruce,

Pong, and Richards burned fuel cribs consisting of 1/2 to 1 1/4" square wood

sticks on a moving conveyor belt. Some of Fons ' data will be considered later.

Although the above experiments closely resemble actual forest fuel in many

respects, they suffer from an inability to separate the various forms of heat

transfer and do not offer much promise for extending an analysis to other fuel

beds with larger fires.

The physical model developed in the present study came from a consideration

of equation 2-23.

iV= Q/L)B + Q/L)R + Q/L) Q/L)L 2-23

Since the various mechanisms of heat transfer are assumed to be independent

it was decided to eliminate all forms but one in order to study each indivi-

dually. It is easy to eliminate Q/L)B, the radiative transfer from the coals

in the bed, by using a thin fuel bed which transmits a negligible amount of

heat through itself. Choice of a fuel bed which burned with a small flame

makes Q/L)R, the radiative transfer from the overhead flame, of little importance.

The fire now propagates only under the influence of the convection heat transfer

at the flame front. If measured radiation from an external source is concentrated

immediately in front of the fire it is possible to observe the effect of radiation

on the rate of spread in a quantitative manner. This has been the objective

of the following model.
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3.2 The Apparatus

The apparatus, shown in Figure 3-1, consisted of a fuel bed 10 1/2-

inches in width by 3 feet in length. The fuel rested on approximately 3 inches

of non-flammable glass wool insulation on an asbestos sheet. It was possible

to move the whole structure along the table when a fire was burning. Two fixed

arrangements of No. 20 nichrome wires were stretched above the fuel bed and held

in tension be weights over the side of the table. One set of wires consisted

of four wires with center-to-center separating distances of three wire diameters.

These wires were connected to an electric circuit capable of giving 15 amps

and 110 volts. The other circuit consisted of eight No. 20 nichrome wires with

center-to-center separating distances of 6 wire diameters and capable of conduc-

ting 15 amps and 220 volts. The radiation from the wires was measured at several

points with a thermopile described by de Rochechouart (24). These measurements

readily give the total radiation received by the fuel surface before ignition.

The method is described in Appendix B. Several different kinds of fuels were

distributed on the glass wool insulation. To prevent air from entering at the

sides of the bed, glass wool strips were placed along the edges. The fuel beds

were lighted evenly at one end. As the fire advanced over the fuel, the fuel

bed structure was moved at such a rate as to keep the flame front directly
below the closest wire. The top surface of the fuel was 1 1/4" below the

wires. The fire was allowed to travel one foot to reach steady state. The

rate of spread was measured over the last two feet by means of a stop watch.

These fires were found to be quite reproducible. The original data are given

in Appendix F-1.

3.3 The Effect of Fuel Loading Density

One of the fuels used in the experiments was small pieces of newspapero

The shapes of the individual pieces of newspaper were not uniform. The size

was less that 1/2" in any dimension. The thickness was uniform, 0.003-incheso

The particles of newspaper were scattered over the bed in a random fashion.

Using this type of fuel, it was desired to find the effect of the fuel loading

density (the amount of fuel per unit area). The data are shown in Figure 3-2

where the velocity of spread in ft/hr is plotted vs. the loading density at a

single radiation rate of 290 Btu/hr-ft and a humidity of 37 - 40 o Also shown

is the equivalent number of layers if the fuel had been evenly distributed.
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Inspection of Figure 3-2 shows that one equivalent layer will not burn, but
that four equivalent layers burn with the same rate as ten equivalent layers
and presumably as any greater number of equivalent layers. If it is assumed
that the fuel is distributed on the surface at random the fraction of surface
uncovered is given by

-mF e 3-1

where m is the equivalent number of layers, If m is unity, the fraction

uncovered is 0.368 and if m is 4 the fraction uncovered is 0.0183. Therefore,

it can be concluded that if there is a continuous surface of fuel the amount
of fuel present does not change the rate of fire spread. This would be expected

if heat received by the fuel for preheat does not penetrate the fuel bed in

depth to a significant extent and if the intensity of the fire is small so that
the radiation from the flame itself is insignificant. Both of these qualifi-
cations are satisfied in the shredded newspaper fires. All newspaper fires

studied subsequently contained six equivalent layers of fuel.

3.4 The Effect of Radiation

Fuel beds of shredded newspaper, identical with those described in

the previous section and a loading density of approximately 0.0625 lbs/ft 2

(six equivalent layers of fuel), were burned with various amounts of radiation
supplied by the wires. One set of data at constant relative humidity is shown

in Figure 3-3 where the velocity of fire spread is plotted vs. the integrated

radiation rate reaching the fuel surface in front of the fire. The above

experiments show that irradiation at a rate of 600 Btu/hr-ft increases the rate

of fire spread by a factor of approximately two over that with no irradiation.

For interpretation of these data refer to equation 2-23. Neglecting Q/L)B,
the radiation transfer through the bed itself,

QV = q/L)R - Q/L) + Q/L)c 3-2

The heat required to produce ignition Qi is undoubtedly a weak function of

time. The heat impulse required to give a third degree skin burn, when exposed

to radiation of different rates, varies with approximately the 1/3 power of

9Fr~------
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C C
time. Hottel and .i'liams (12) report the energy necessary to char wood to a

prescribed depth depends on time raised to the 1/4 to 1/8 power. Bruce and

Downs' (4) data show that the heat impulses required to produce spontaneous

ignition of newspaper varies by the 1/4 to 1/5 power of time from 0.27 seconds

to 3.18 seconds. Lawson and Simms (14) report piloted ignition of woods to

depend on time to the 1/3 to 1/4 power over a range of 2 to 500 seconds. It

is therefore reasonable to assume that in the range of heating rates provided

by natural fire the energy required to produce ignition will vary with time

raised to a low power; 1/4 is assumed Thereforefore,

V 1/4

Qi = (V) Qo 3-3

where Qo is the pulse required at a reference velocity V. Equation 3-2 becomes

3/4 11/4 Q/L)R - Q/LL) 3-4

If the heat transfer by convection at the flame front is assumed not to

be a function of the heat added by radiation, a plot of the velocity of spread

to the 3/4 power vs. the heat added by radiation minus the heat lost from the

surface as it preheats, will give a straight line. It is unfortunate that the

important quantity Q/L) R- Q/L)L, the net heat input to the fuel, can not be

measured directly. However, it is now apparent that the distance between the

wires and the fuel bed is not a variable of fundamental significance. The rate

of spread will decrease as the distance from the wires increases with the same

integrated radiation input, Q/L)R because the heat is distributed over a wider

area and a greater amount is lost by convection and back radiation. At any

distance from the wires the same Q/L)R - Q/L)L will give the same rate of fire

spread over identical fuel. The problem remains to find the integrated he&at

loss4 Q/L)L

The solution for the temperature pattern of a semni-infinite solid of

constant thermal properties, originally at a constant temperature T ,a'radiated

at the surface at a rate varying with time, is given by Carslaw and Jaeger (6)

as
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=av) Q )e -e~(& -l(t-, dT - Ta  k a /(t 12 3-5

where

ar is the thermal diffusivity, ft/hr

k is the thermal conductivity, Btu/hr-ft 2 -F/ft

Q(A ) is the radiation flux density at the surface, Btu/hr-ft2

d is the distance below the surface, ft

t is the.time of heating, hr

X is the dummy variable in time, hr

Notice that the above solution does not include a latent heat effect. How-
ever, let us assume that this equation gives the surface temperature of the

fuel bed as it is moved under the radiating wires. Replacing the time variable

by

t = y/V and = 7/V 3-6

the surface temperature is given by

T- T =\ l Q(Y/V) d3a k W 2  (y -) 1/ 2

Since it is more convenient to measure the distance of a point on the fuel bed

surface from the flame instead of from infinity, let

x = -z + y and x = -Z + y 3-8

and let z -- oo . Then the temperature of the surface is given as a function

of the distance from the flame by

T-T - gV d5 3-9
a 21/2 -)1- 2

If the net heat flux at the surface is assumed to be only the radiation from

the wires, the convection and back radiation being neglected, Q(x) is given by

) = Qw L3l
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(see Appendix B) where Qw is the heat per unit length radiated from a single
wire and T(x)/L is the view factor between all the wires and a point on the
flat fuel surface. Also shown in Appendix B, the radiation from a single wire

is directly proportional to the rate at which radiation is received by the fuel
Q/L)Ro Therefore,

K Q/L)R )(()/L d x1
- (X/2 (x - )1

aV1/2 should only be a function of x

If the above equation holds, (T - Ta  1// Q/L)R should only be a function of x.

The temperature of the top layer of fuel was measured with a 0o003-inch
copper-constantan thermal couple for five different heating rates at the same
humidity. The normalized measured temperatures are shown in Figure 3-4 and show
fair agreement with the above analysis. The curve on Figure 3-4 shows the shape
of the integral on the right hand side of equation 3-11.

The heat loss, while the fuel preheats, is assumed to be given by

Q/L)L = h(T - Ta) dx 3-12
- o

where h is assumed constant. Therefore,

fQi ) 1PQ/L)L = K 1/ 3-13

The heat loss is directly proportional to the rate of radiation divided
by the velocity of spread to the 1/2 power, all raised to the p power. Equation

3-4 becomes

3/4 1 FQ/L)R +V3/4 1 Q/L) K + 3-14
0o o0o

Let p be 4/3 as recommended for natural convection by McAdams (18).
3/ 4 is plotted vs. Q/L)R K[Q/L)R/V/21 43 for various K's in Figure 3-5.

The proper K gives a straight line and appears to be approximately 2.0. This
corresponds to a QoVo1 /4  equal to 6-7° If the reference velocity V is taken

as 60 ft/hr, Qo equals 2.4 Btu/ft 2 (0.65 cal/cm2 ) This corresponds to a
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convection heat transfer rate of 94.0 Btu/hr-ft (0.224 cal/cm-sec.). Unfortunately
the straightness of the line s not a very sensitive function of K.

A value of 0.65 cal/cm2 may seem rather low to produce piloted ignition.

However, Figure 3-5 indicates a considerable amount of the impinging radiation

is back radiated or convected away from the surface (slightly more than 4/5).

Broido and Martin (3) report values of from 5 to 14 cal/cm2 to produce transient

flaming and at least 11 cal/cm2 to give sustained flaming at the surface of

alphacellulose papers. The above values are for non piloted ignition. Bruce

and Downs (4) report 5-8 cal/cm2 to ignite newspaper in a similar experiment.

Martin, Lincoln and Ramsted (16) report 4 to 20 cal/cm2 to ignite various types

of paper. Lawson and Simms (14) report values of 4 cal/cm2 for fiber board

and 7 cal/cm2 for freijo to produce ignition in 5 seconds when a pilot flame

is held 1/2" from the surface. They also report 6.5 and 12 cal/cm2 for spon-

taneous ignition of the same materials, giving a ratio of about 1.7 for piloted

ignition to spontaneous ignition. If the value of 5 cal/cm2 reported by Bruce

and Downs for newspaper is divided by the 1.7 , a piloted ignition of 2.9 cal/cm2

is obtained from the present data. Figure 3-5 indicates that a large amount

of the total external radiation received at the fuel surface is lost by convection

and back radiation. If a line were drawn through the data of Figure 3-5 with

no consideration for heat loss at the surface, (K = 0) a value for the ignition

energy of approximately 4.5 times that previously quoted would be obtained. With

this consideration the 0.65 cal/cm2 compares favorably with that reported by

Bruce and Downs. The uncertainty of the amount of heat loss at the surface is

indeed unfortunate.

It should be remembered, however, that in arriving at the relation

Q/L)L = K[ Q/L)R /1/24/3 it was assumed that heat entering at the surface

of the fuel Q(x) came exclusively as radiation from the wires. Actually Figure 3-4

indicates a large amount of this heat leaves the surface by convection or back

radiation. Consequently 3-10 could be replaced by

h( ) = , -L hr+c a 3-15

A derivation given in Appendix C indicates the form of the expression for the

temperature distribution on the surface would be approximately

LI___ __;
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T-T Q/L)R K2  Q/L) 3-16
a 7 " j

Since the powers are not greatly different on the two terms it is unlikely
that this change could affect the slope of the line in Figure 3-5 to a large
extent.

Another possibility is that the heated wires change the convection across
the unburned fuel by a significant amount. In this case the heat transfer
coefficient h in equation 3-12 might be given by

h = ho [ Q/L)R] s 3-17

This would give a line on Figure 3-5 with a lower slope and consequently a

higher value of Qo. At the present time any attempt to determine the influence

of the heated wires on the convection heat transfer at the surface would be only

a guess . The given analysis is considered an adequate first approximation for

present purposes.

The convective heat transfer at the flame front may be assumed to be

Q/L) = h '(Tf - Ti) 3-18

where

h is the convection coefficient, Btu/hr-ft2- F

1' is the distance over which the transfer occurs, ft

Tf is the flame temperature, OF

Ti is the ignition temperature, OF

Assuming the temperature difference to be 1000OF and 1' as 1/4 inch

(a visual estimate), h would be 4.7 Btu/hr-ft2 .F, a reasonable number. Since

this heat transfer occurs by an eddy process, Q/L)C can be written as

Q/L)C = j . (Tf - Ti) 3-19

and

----~-----------------
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0, = .' 3-20

The corresponding values for the eddy diffusivity and the eddy velocity are

2.0 ft 2 /hr and 1.59 ft/min (96 ft/hr) . The eddy transfer occurs by the flame

slipping under the fuel immediately ahead of it, presumably because air is

drawn across the surface into the fire. Quantitative study of this process

is indeed difficult.

3.5 The Effect of Humidity

Humidity greatly affects the spread of fire since natural fuels

absorb and desorb moisture readily. Prolonged dry weather will cause

vegetation to die and become very dry. Although absorption and desorption of

moisture by living vegetation is a complex process, that of dead fuel is

reversible. The fuel used in these experiments is so thin, 0.003 inches, that

it is virtually in equilibrium with the humidity of the room at all times.

The moisture content of a sample of the fuel vs. humidity is given in Appendix E.

Figure 3-6 shows data for three humidity, 27%, 37-39% and 47-49%. A decrease

in humidity of approximately 20%, at the same rate of radiation, gives about a

20% increase in flame spread. This corresponds to approximately 1.8% change in

moisture content of the fuel.

If the line K = 2.0 in Figure 3-5 were extended to negative values it

would intersect at the zero axis at - Q/L)C . Since it is believed that this

value is independent of humidity, the extended lines for the other two humidities

must pass also through this point. Figure 3-7 shows these lines. The values for

K which best fit the data are K = 2.35 for 27% humidity and K = 2.14 for 37-

39% humidity. A different value for K is required since

Q/L) i - x -)d7

hdx 3-21
c + k Y cP V. X)

The density is a slight function of humidity and the heat capacity is a strong

one. If it is assumed that

-- +MAH3c c +M - 3-22
P p AT
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where

c is the heat capacity of the dry fuel, Btu/lb-*F

M is the moisture content per lb of dry fuel, lb/lb

AH is the enthalpy required to heat up and evaporate the moisture,
Btu/lb

AT is the overall temperature rise in the fuel, OF

Substituting reasonable values into equation 3-24 gives the following

Mc = 0.24 + 1100 M 2-23p AT

The change in heat capacity due to the 1.8% decrease in moisture content

would change K by approximately 9%, assuming an ignition temperature of 5000F.

The change in K is about twice as great as would be expected from this consid-

eration alone.

For a standard velocity of V = 60 ft/hr the ignition energy for pilot

ignition for the three humidities is given below,

Table 3-1

Humidity Qo Btu/ft2 cal/cm2

27 1.94 0.53 Based on a
37 - 39 2.19 0.60 velocity of
47 - 49 2.40 0.65 60 ft/hr

Approximately a 20% change in relative humidity (1.8% change in moisture

content) gives a 20% change in the heat required to produce ignition.

Bruce and Downs (4) report that a 10% increase in moisture content increases

the heat required for spontaneous ignition by 10%. Since unpiloted ignition

occurs at 500*C rather than the 3000 C of piloted ignition, it would be expected

that moisture would affect the latter to a greater extent. Also it is not

improbable that water vapor leaving the surface increases turbulence which

Simms (26) has shown, lowers the radiation required to produce spontaneous

ignition. It also should be remembered that the values derived from the fire

data are obtained by an indirect method and could be somewhat higher.
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3.6 The Effect of Fuel Type

Any attempt to determine the influence of the type of fuel on the

various integrated heat transfer rates and the energy pulse required to produce

ignition in a quantitative manner is a problem of immense magnitude. When one

considers the possible fuel beds, from pine needles on a forest floor to uni-

formly spaced houses in a city, there is much work to be done.

Two other fuels were used in this study, the punch outs of computer cards

(1/16 x 1/8 x 0.007-inches) and computer cards cut in squares approximately

1/2 x 1/2 x 0.007-inches. The effect of added external radiation on the rate

of fire spread for both fuels is shown in Figure 3-8. Neither of these fuels

burned without external radiation. This has been confirmed by the extinguishment

of developed fires when the external radiation was removed.

Figure 3-9 and 3-10 show the plot described in Section 3-6

3/4 vs. Q/L) - K[Q/L)R/V/2J1

It is demonstrated that a straight line through the origin can not be obtained

with a positive slope. However, if the point at the origin is neglected,

a K of 0.6 for the fine fuel and 0.7 for the 1/2" squares gives a straight line.

This may be explained by the following: when a fire supported by radiation is'

burning, there is a small but finite amount of convection heat transfer at the

flame front. When the radiation is removed, the heat loss is greater than this

convection heat transfer and the fire is extinguished.

The energy required for ignition based on the lines in Figure 3-9 and 3-10

at the standard velocity of 60 ft/hr are 9.0 Btu/ft2 (2.4 cal/cm2) for the fine

fuel and 7.5 Btu/ft2 (2.0 cal/cm 2) for the 1/2 " squares. It is apparent that

these values are quite crude. To determine a better value would require larger

amounts of external radiation than was available. The larger energy rates

required to produce ignition of the computer card fuel is undoubtedly due to

the increase in the thermal conductivity of the fuel particles. The computer

fuel elements are rigid and the fuel bed is considerably more compact than that

of the newspaper fuel. Again looking at equation 3-23, the thermal conductivity

and the fuel density are the variables changing in this instance. A three-

fold change of K between the newspaper and the computer cards corresponds to
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about a six-fold increase in the thermal conductivity. The data show that this

gives a three-fold increase in Qo. It should be emphasized that the values

of Qo for the computer fuel are rather uncertain.

3.7 The Effect of Wind

It takes only a casual observation to see that the wind velocity is

of primary importance in the spread of a fire. With only a slightly less casual

observation one also sees that it will be a very long time before a mathematical

description of an external wind acting on a fire is obtained. However, any

study which hopes eventually to predict the rate of spread of natur&l fire

must sooner of later come to grips with this complex phenomenon.

Fons (7) has measured fire spread through ponderosa pine twigs at various

imposed wind velocities. Several twig sizes and spacings were used. The wind

velocity was varied between 4 and 8 miles per hour. According to the data the

different spacings used, 1 to 1.75 inches, had no noticeable affect. The data

were difficult to interpret because the moisture content of the fuel varied

over such a wide range. However, if it is assumed that

Q moist c AT + M AH

= c AT 3-34
i dry p

the data can be roughly corrected for variation in moisture content. A plot

for the three twigs sizes of V Qmoist/Qdry (presumably the spread over dry

fuel) vs. wind velocity is given in Figure 3-11. An increase in wind velocity

from 6 m.p.h. to 8 m.p.h. gives an increase of about 60% in the rate of spread,

which is quite significant. However, the scatter of the data is very great.

In order to get a very rough idea of how wind influenced the newspaper

fires, a few exploratory experiments were conducted. A wind across the burning

fuel was produced by blowing air from a one-inch opening mounted behlnd the

flame. The flow of air was measured by an upstream orifice. The wind velocity

was calculated on the basis of a flat velocity profile through the one-inch

opening. The air was fed through small holes throughout the length of a one-

inch pipe at the back of a rectangular box. A fine mesh screen was placed

between the pipe and the outlet.
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The data are shown in Figure 3-12. A wind velocity of 1.3 ft/sec increases
the rate of spread by only 5% over that of calm conditions. However, a velocity

of 3.5 ft/sec increases the rate of fire spread by nearly three-fold.

There is a significant change in mechanism of the convection heat transfer
as the wind velocity increases. As was discussed before, in the absence of
wind, fire spread occurs by the flame slipping under new fuel as the fire
draws air across the top of the surface. At a wind velocity of 1.3 ft/sec the
above mechanism still seems to be the most important. At higher wind velocities

the flame leans far over the unburned fuel. At 3.5 ft/sec the flame is nearly

parallel to the surface. The fire now darts across the top of the surface

from one piece of fuel to the next..

A 3.5 ft/sec wind velocity is considerable for such a small fire. The

velocity in a turbulent convection column of a line heat source is shown by

Hottel (11) from dimensional analysis to be

u = f (R/z) 3-25

where

Q/L heat liberation at the source, Btu/hr-ft

g the acceleration due to gravity, ft/hr2

Ta  surrounding temperature, OF

p gas density, lbs/ft3

c heat capacity of the gas, Btu/lb-OF

In order to model, the wind velocity V must be proportional to the velocityw
u in the convection column. Hottel also shows that

H3/2 Q/L (Ta/g) /2i aw a 3-26
P (T - T )3 2

Substitution of 3-26 into 3-25 gives

(T Tag ] 1/2
uQ o V 3-27
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Let the two-inch flame height of the newspaper fire become a 20-foot

forest fire. A 3.5 ft/sec (2.38 mile/hr) wind velocity on the newspaper fire

is equivalent to 38.4 ft/sec (26.2 mile/hr) in the forest fire. The small

two-inch newspaper fire is certainly not a well-developed turbulent fire, but

the above analysis shows that the 3.5 ft/sec wind velocity is a strong wind for

that size fire.

Recall equation 3-18

/L) = h 1' (T - Ti) 3-18

and 3-2

V Q = Q/L)C - Q/L)L 3-2

with the radiation heat transfer neglected. Since there is no significant

radiation, all heat transferred to and away from the fuel is produced by convection

and occurs very near the flame front. If the Q/L)C is considered the net heat

input by convection at the flame front equation 3-2 becomes

Q. V = Q/L) 3-28

Qi' the energy required for ignition in the abolve experiments, remained the

same. Therefore, Q/L)C increases by the same factor as the velocity of spread

when the wind is present. The distance over which the flame bathes the fuel,

1' appears to increase by approximately 4 - 8 fold for a 3.5 ft/sec wind,

(a visual estimate). The heat transfer coefficient between the flame gases and

the fuel, h, must increase significantly since the velocity increases. The

flame temperature apparently is decreased by the cold wind blowing through

the flame.

The above suggests an interesting simple experiment to determine the

distance over which the convection heat transfer occurs. A fuel bed could be

constructed with line spaces containing no combustibles. The spaces would be

widely separated with uniformly distributed fuel. The sizes of the spaces would



Irr I

29

increase as their distance from the ignition end increased. The fire would jump

the spaces until the convection heat transfer could not heat the fuel across

the opening to ignition.
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IV. TWO DIMENSIONAL INTERCHANGE FACTORS WITH AN ABSORBING GAS

4.1 Introduction

Systems in which one dimension is very much larger than the other

dimensions present an important class of problems in radiant heat transfer.

Many industrial furnaces fall into this catagory. A fire front moving through

a forest has effectively an infinite front. This chapter considers some of

the two-dimensional view factors with an absorbing gas in part of the

system and the remaining space filled by clear gas. It also presents some

of the modifications necessary when the "infinite" dimension must be considered

finite.

4.2 Interchange Factor Between a Volume Element of Gray Gas Infinite
in one Dimension and a Black Strip Separated by a Gray and Clear
Gas

The first step in obtaining the intensity profile around an open

flame is the solution to the above problem. Consider the geometry in

Figure 4-1, where the boundary between the absorbing and clear gas is given

by the two dimensional surfaces f(z). The volume element dV = dxdydz lies

a distance r = x+ y + z from the surface element dA which is inclined

at an angle a with the perpendicular to the xy plane. Radiation leaving dV

passes through the absorbing gas for a length s. The volume element emits

at a rate 4k'EdV with the fraction cos 01 dA/4cr2 heading towards dA. The
-ks

amount absorbed in its traverse by Beer's Law is e. . The interchange area
4-

d gs is then given by

k' cos le k  dAdV

d g = 2 4.1
icr

where

cos 0 = (z/r) cos a + (x/r) sin a 4-2

dA = L dx 4-3

Substitution of 4-2 and 4-3 into 4-1 gives

-k's 2
4 -  k' e (z cos a + x sin ) dzx dy

d gs = 2 2/ .4
t(z + y + x )

I I
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Since the fraction of the path over which absorption occurs is independent

of y the relationship can be obtained by considering the problem in two

dimensions as shown in Figure 4-2. The radiation headed for the area dA

intersects the gray-clear gas interface at a height Z and a horizontal

distance f(Z). The ratio of the absorbing path to the total path is then

f(Z)/x and s is given by

S= r 4-5x

where Z can be found from the relation of similar triangles

X Z

Equation 4-4 becomes

_4- g-_ k1e-(k, f(Z)/x)(z 2 + x2 + y2)1/2

Lx2 dz 2 (z 2  x 2)312Ldx dz w (z + +x

(z cos a + x sin a) dy

4-7

Substituting the dimensionless variables

z' = k'z, x' = k'x , and y' = k'y 4-8

and integrating over y from - Oo to oo0, noting the symmetry about y = 0 gives

3g -2 (k' f(Z)/x')(zg2 + x' 2 + Y 2
dfs 2 (z'cos a + xsindy

L dxdz'dx 2 2 + y)3
S(z' + x' +y'

4-9

Making the substitutions

,2 ,2 ,2v = z + Xg

Y' = v' sinh 0

k' f(Z)s5 = k - v'
X cosh

y' + v v2cosh2 Q

The interchange factor between a volume element infinite in length by (dx dz)

and the area element L dx becomes

---" ---- ------- L-~L

7-



d d gs
Ldx' dz' dx

2(z' cos a + x' sin a) e " osh d

IV 2  " 2Av cosh 2
4.11

Now consider the same system but assume no radiation is absorbed as it

traverses from the volume element to the area L dx. The exchange factor

for "no gas absorption" is given by equation (9) with the exponential term

deleted. Therefore,

3-
Idx'dz'dx No absorption

which upon integration gives

3 -- A
.dx'dz N

No Absorption

2(z' cos + x' sin a) +_'
i ( y '2 + x,2 + z2 )3/2

2(z' cos a + x' sin a)
I,,12
~v,'

4-13

The transmissivity of a gas is defined as the ratio of the intensity

of radiation passing through the gas to the incident intensity of radiation.

Beer's Law gives= e -k'1 where 1 is the distance through the absorbing

gas which the radiation passes. In the case of interest, the radiation

traverses an infinite number of different absorbing paths. Define a

transmissivity in this instance as '= e-Bss where s' is the shortest

dimensionless path between the radiating volume and receiving surface and

B is the ratio of the mean beam length (used many times by Hottel (10)

to the shortest absorbing distance. The mean beam length is physically the

dimensionless distance a beam of radiation which properly weights all the beams

must travel through an absorbing gas. The ratio of the true exchange

factor to the no-absorption factor , (4-11)/Z4-13), is equal to the trans-

missivity giving

-Bs
e =

0
-s' cosh 9

e
2cosh 0

B=- e ' cosh OO scosh2
BO 1-ned

and

4-15

yl--rryr _ L- ~- ~A/PC~_
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Thus, the mean beam length to shortest absorbing distance ratio is only a

function of the minimum absorbing path length s' and is shown as the top

curve in Figure 4-3. It approached 1/2 as s' goes to zero and unity as s'

goes to infinity. The above solution is general for any arbitrary boundary

between a gray and clear gas which extends to infinity.

4.3 Interchange Factor Between a Volume Element of Gray Gas and a
Black Spot Centrally Located Between the Ends, Separated by Gray
and Clear Gas

The derivation for the system with all dimensions finite proceeds

in an identical fashion as the case with one dimension infinite. However,

the limits for integration on y are finite. Taking the symmetrical case where

the element of area lies a dimensionless distance k'Y = Y' from both ends

of the absorbing gas volume, equation 4-9 becomes

d3-- g

Ldx 'dz dx
2(z'cos a + x'sin a)

aJ

Using the substitutions from 4-10 gives

d 2(z' cos a + x' sin a)
Ldx'dz dx = :v,2

9 = sinhl Y,/vt

e-(kf(Z)/x)(x,'2 + z2 + y,2 1/2

(Z 2 + x,2 + y,2)3/2

O0

e-s' cosh

cosh 2

S=ln i + V 2 + ]
The omission of the exponential function gives the exchange factor for

"no-absorption". This is given by equation 4-12 with a finite limit of

integration Y'. Therefore,

d3gs 2(z' cos + x sina)
Ldxdzdx o Absorption fsin

O
(y 2 2+ z2 )3/2

which gives on integration

where
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d d x 2(z cos a + x' sin -) 21Idx Idz'dx (y,2 + v,2 12 4-21
no absorption

The mean beam length to shortest absorbing distance ratio is therefore

e-s' cosh

e Y + 1

B is given in Figure 4-3 as a function of the shortest absorbing distance s'

with a family of curves for Y'/v'

4.4 Interchange Factor Between Two Infinite Parallel Strips with a
Gray and Clear Gas Intervening

This problem has been previously solved in the report of the Summer

Combustion Woods Hole Study Group (32) for the special case when only gray

gas is present. Consider the system in Figure 4-4. The planes zy and xy

intersect at an angle a and form the y axis. The two strips dx and dz

extend to infinity. The region of absorbing gas is bounded by the two

dimensional surface curve f(z) with clear gas to the right. 01 and 2

are the angles between the connecting line r and the perpendiculars to dA1
and dA2 respectively. Radiation leaving the area element dA2 = dydz and

headed for the area dA = Ldx is absorbed over a length s. The interchange

factor between the two areas is given by

dss - cos 01 dA1 cos 02 dA2 e'k'ss= .. 2 423
or

where

cos = -sin cos = - sin2  r 2  r

r = x + z - 2 xz cos + y

Substituting and integrating over y from -o to o gives
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2- 2 -k's
d s 2 zx sin a e dy-25

L dxdz 2  2  2 .2 2(X + z + y -2 xz cos a)

The fraction of the path in which absorption occurs can again be

considered in two dimensions and is obtained from Figure 4-5, where Z is

the height at which the connecting line intersects the boundary between gray

and clear gas. Therefore s is given by

= ( Z c os a (x2 + y + z 2 xz cos a)/2 4-26
x - Z COS

Where Z can be obtained from

x -Z

Using the substitutions

x' = k'x v 2 = z'2 + x?2 -2 xz cos a2 2 2 2

y' = k'y y,2 + v = cosh 2 4-28

z = k'z s' k'f(Z) - (z' - Z) cos a6
x' - z' cos a

and integrating over y from zero to infinity gives

oO
2 -s' cosh 9d ss 2 z'x' sin a e cosh dO 429= .4.29

xdzl arv 3  cosh 3Q

Once again the mean beam length discussed in Section 4-2 can be used.

The exchange factor between the black strips with no absorbing gas can be

found either by excluding the exponential term in 4-29 and integrating or

by the cross strings method described by Hottel (10). In either case one

obtaines

d s x'z' sin a 4

Ldxd INo Absorption 2v-30



-Bs' 4e =
-s ' cosh Q

e dQ
osh3

cosh 0

B = 1 -s cosh 9 d@ 4.32

cosh3  J
The mean beam length to shortest absorbing distance ratio is again only

a function of the shortest absorbing distance s', and is given by the top
curve in Figure 4-6. B approaches 4/i as s' goes to zero and unity as s'
goes to infinity.

4.5 Interchange Factor Between a Finite Black Strip and a Black Spot
Centrally Located with a Gray and Clear Gas Intervening

The derivation for obtaining the mean beam length between a finite
black strip and a black spot centrally located separated by gray and clear
gas proceeds in the same manner as the infinite one. in Section 4-4. The
symmetrical case with the element of the area a distance Y' from both ends
of the strips is considered. The "no-absorption" exchange factor is obtained
from equation 4-25 by dropping the exponential term and integrating over the
finite dimensionless distance Y'. The mean beam length to shortest absorbing
distance ratio is given by

1
B = - In

st

e-s' cosh
2 e 3 d

S cosh Q

Y'v' I + tan- Y
(Y'/v')2 + 1

B is plotted vs. the shortest absorbing distance,

family of curves in Figure 4-6.

s', with the Y'/v'

The above four derivations are important because they replace a numerical

Then

and

4-31

4-33
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integration with a very simple graph. Although the two integrals could be

tabulated as well, the replacement of these integrals with the mean beam

length is believed to have the advantages of both physical meaning and

easier use.

4.6 Interchange Factors Between a Gray Gas Rectangular Parallelepiped
of Height Z, Width W, and Infinite Length and a Black Infinite
Parallel Strip dx Wide on a Surrounding Horizontal Surface

This problem has been solved in the report of the Combustion

Summer Study Group (3Q). Notice that it is a special case of Section 4-2.

Considering Figure 4-7 the element of volume dV = dw dz dy is located a

distance w from the front gray gas face, at a height z and displaced a

distance y from the xz plane. The area element L dx is a distance x from

the front gray gas face. Notice the integration over y' in Section 4-2

can be applied directly. Relating the above nomenclature with that in

Section 4-2

a = 0 f(z) =w

sin a = ,0 4-34
cos a= i V' = 'Z + (X' + W')2cos a = 1

Equation 4-11 and 4-15 gives

p ( W2ze -(Bw~'/(w'+x'))(z 2 + (x',')2+ ) 1/2
d Js 2z e go dz'dw'
L dx f 0(z '2 + (x' + W')2

4-35

Integration over W' gives the exchange factor between a volume of gray

gas of infinite length, W' dimensionless width, and dz' height and the

element Ldx' at a dimensionless distance x'. A second integration over Z'

gives the interchange factor between the rectangular parallelepiped and the

element Ldx' at a dimensionless distance x' from its base.

It is possible to solve the above integral analytically only in the

limit when the gas does not absorb. The double integration without the



Figure 4-7 Interchange Between a Rectangular ParalleTepiped of Gray Gas

and a Black Strip

ill --- ---~---~~-- - - ---- ;- -- ----- ------i~--'l~ ~~'-~~ ---~p--"----?- ~_~_ ~t- _C.I__ ~sl_ _ __ ~ ~-.I-~ .1_1~~. .-__. .~---i-- ~.-- - ._-.- . .?-i-l

C^p :r~ ; -- -LIF



exponential term gives

d gs 2 ta1 W' + x' - ta X1

Z'Ldx 7 Z' Z'

WI + x' Z_ 2 xf Zr 2
+ In 1 + ) In 1 +() 22Z W9 + x? 2z x' 4-36

The other limit of k = 9< (or a black wall to a black strip) is obtained by

the cross strings method.

- = ( 1 - x/ ) 4-37/dx + (x/Z)

In order to obtain the exchange factors between the two limits the double

numerical integration of equation 4-35 must be completed. Since numerical

integration is a laborious process a semi-integration process with good

accuracy is used. Note that, except very near the front face of the gray

parallelepiped, s', the shortest absorption path, and therefore B, change

slowly with w'. Equation 4-35 is well approximated by

W n+ W
W+WB W +WS21/22---_ s 2 2 z2 + x' + n n 1Idxz' = e + + W1 2

11 n 2n-1

n z 'dw'
,2 )a 4-38

W, z' 2 + (x' + '3)

where m = W'/Aw', the number of increments into which W' is divided.

Integration over W' to W' givesn-1 n
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(W + 1
2 B n-1 ' '+W' 2 1/2

d gs 2 2 2 n n-1
Laxdz ' Wt x ' + W' 2

x+ n n-1

.T, + X' W' + x'

-1 n -1 n-1
(tan- ~ - tanz z'

4-39

Use of equation 4-39 reduces numerical work considerably. Values for

tan1 can be tabulated and used repeatedly while B is read directly from
Figure 4-3. As an example, take x' = 0.1, z' = 1.0 and W' = 1.0. Numerical

integration gives (d gs/Ldxdz') = 0.16376. Equation 4-39 with m = 10 or

Aw' = 0.1 gives (d gs/Ldxdz')=0.16056 which is about 2% low. Most of the

error is in the first two intervals. Dividing these two intervals in half

again so that Aw' = 0.05 for w'( 0.2 and Aw' = 0.1 for w' 0.2 gives
2-

(d gs / Ldxdz')= 0.16409 which is 0.2% high. The numerical integration is

only good to about 0.5%. By using equation 4-39 the double integration of

equation 4-35 was carried out on the 709 and 7090 computers at the M.I.T.

Computation Center for a wide range of heights and widths. The results

are given in Figure 4-8 (a - h). (dj/Z'Ldx) is plotted vs. x'/Z' with a

family of curves for different Z's. Values for an intermediate W'/Z'

can be obtained to within 5% by arithmetic averaging.

If an analytical expression is desired

e1 Z - 4B Z ' 40

Ldx 2
Y 1 + (x/Z)2

The bracketed term represents twice the exchange factor between an infinitely

long black surface of height Z' and a black strip on a -horizontal plane.

The exponential term, (1 - e ), is the effective emissivity of the gray

gas rectangular parallelepiped where B is given in Figures 4-9 and bears the

burden of making the simplified equation give the rigorous answer.
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Notice how the mean beam length varies in Figure 4-9 where Z' = 0.

Consider the curve W'/Z' = 1.0 , for instance. B starts at a value greater

than Z' for x' = O, since the shortest possible path is Z'. As x'/Z'

increases the mean beam length decreases since the short distance through

the upper corner of the parallelepiped becomes important. Finally as

x'/Z'-00o the mean beam length must return to unity since the absorbing path

length becomes equal to W' for all traces.

4.7 Interchange Factors Between an Infinite Gray Gas Wedge and an
Infinite Black Strip on the Horizontal Surface Surrounding its

Base

The element of volume dV = dz dw dy in Figure 4-10 is located a

distance w from the axis of symmetry of the wedge, a height z above the

horizontal surface z and displaced a distance y from the xz plane. The area

element Ldx is a distance x from the axis of symmetry. The base of the

wedge is of half width b and the boundary of the gray gas wedge is given by

W = az + b. Note that this is again a special case of Section 4-2 and therefore

the integration over y can be applied directly. Thus, equation 4-11 with

proper numerical substitution of B in the integral becomes

Z' az'+b'

0 (az'+6)-Bsd zs2 _ _ _ _

where s', given by 4-5 and 4-6 is

s = az bz' 2  (x - )2 4-42
Z' + x' - w'+ x w)

The approximate formula suggested in Section 4-6 applies giving

2-- m B(az' + bw - n n-1)) r'
ma bv n n-ld gr 2 2 av

Ldxdz n W' e w+ W'
1 (az' + x' (  2 n-l))

ta-1 x' - W tan 1  n-1ztan, "- t-a
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W' + W'

S2 , n n-1ave 2

and m = 2 az'/Aw'. The same Aw, is recommended as in Section 4-6. It is

possible to solve equation 4-41 only in the limit k = 0.0 by deleting the

exponential term. The solution is

Z'Ldx
2 tan 1  x' + a + b - 1 tn x - (aZ' + b')

(x' + b') ( 1 + a2)Z + 2a(x + Z + (x' '+ b ')2
2Z 1(1:- (XI + b)2

(x' + b;')2

_(x' - b')
2Z'(1 + a2)

(x' + b')a

Z'(l + a)

+2 a
Z'(1 + a )

2 2b
In (1+ a - 2a(x' I b )Zv + (x' - b'12

L (x' - b)2

-1 (1 + a2 )Z' + a(x2 + b') -1tan (x + '-tan a

(-1 (a2 +-1Z' - a(x) - b) a 1  ]
tax - T- + tan a 4-

(X bb

The solution for k = W by cross strings is

4-45

Some values for other absorption coefficients have been obtained on the

709 and 7090 computers for a base b' = 0 and a wedge slope of a = 0.25,

and are given in Figure 4-11. The slope 0.25 corresponds approximately to

the slope of a buoyant line flame given by the analysis in Chapter 6. The

equation recommended for analytical use is

(x/Z) a

+ a)+ Z

hV-l~la

=s 1 -
Ldx 2 S
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-BZ'S(1 e (x/Z) - a)
L dx 2-

S+ ( - a)2

where the bracketed term represents twice the exchange between an infinitely

long black plane of height Z inclined at a slope "a" and a black strip on a

horixontal plane. The exponential term, (1 - w-B Z '), represents the effective

emissivity of the gray gas wedge. B is given in Figure 4-12 and supplies

the correct values to make the simplified equation give the rigorous answer.

The method for correcting the data of Chapter V was based on the above

infinite wedge exchange factors, along with the required finite ones calculated

manually. The radiation from a line fire can be given, to a first approx-

imation, by the assumption of a uniform temperature wedge for a very narrow-

base fire, or a uniform temperature rectangular parallelepiped for a wide-

base fire. The data in Chapter V suggest that a uniform temperature of

approximately 1200F be used.

4.8 Total Interchange Areas

In many engineering problems involving radiative transfer, it is

advantageous to divide the system into finite zones. Once the interchange

between each zone and all the other zones is known it is not difficult to

obtain the heat transfer to and from various parts of the system. The zoning

technique used before has usually been for small regularly shaped areas.

However, it is possible to apply the same technique to the system which is

infinite in one dimension.

It is apparent that the interchange between a rectangular volume of

gray gas and a finite surrounding surface in a system of infinite length

is given by the integration of equation 4-35.

M j dgsj 4.47
L L edx

where d gs/L dx can be obtained from Figure 4-8 as a function of x.
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f
G -ST = G4 + Gl - Sl - G1 - 81

where G4 + 01 - SI is obtained from 4-47. In like manner

G2 - Sl1 G2 + G1 - S1 - G1 - S1

G3 - = G3 +G2- Sl - G2 - Sl 4-50

Therefore, it is necessary to obtain only four interchange factors by

numerical integration to find all the gas-to-surface exchange factors.

In order to obtain the surface-to-surface interchange factors it would

be necessary to perform two more integrations of equation 4-29. It appears

that it may be desirable to pursue this system to completion, and it is

recommended that evaluation of these interchange factors be made a part of

future studies.

Consider the simple system in Figure 4-13 where it is desired to obtain

the interchange between the gas volumes and the various surfaces. G1 - Sl

can be obtained directly from 4-47 and is the same as G1 - ST, G2 - $2, etc.

G4 - s1, is found by

C~--L

4.48
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V. RADIATION FRM4 A LINE FIRE

5.1 Introduction

The two-dimensional exchange factors in Chapter 4 give the

intensity profiles around a uniform temperature gray gas wedge and rec-

tangular parallelepiped. It seemed desirable to establish how well these

profiles approximate the distribution of the flux density of radiation on

a surface surrounding an actual fire. Some measurements of radiation flux

density around a line fire were made by de Rodhechouart (24) using methane

flames. The present author used propane flames.

5.2 Apparatus

The apparatus is discussed in more detail by de Rochechouart (24).

It consisted of a 2" by 24" slot surrounded by a flat surface of 3 feet

on both sides. Fuel was fed at a measured rate through a one inch pipe with

numerous small holes throughout its length, into the bottom of a metal

chimney to obtain a uniform velocity profile. The flow rate of the fuel

issuing from the slot was so low that the fuel momentum was negligible

compared to the buoyancy produced by the flame. The resulting fire is

shown in Figure 5-1. The radiation flux density was measured at several

distances from the flame with a thermopile consisting of a flat chromel-

constantan strip soldered at the ends to 2-inch copper cubes. The thermo-

pile is described fully by de Rochechouart (24). For each measurement

the e m f was recorded continuously for several minutes on a Sanborn 150

Recorder. The recorded data oscillated rather randomly by about 5%. The

radiation flux densities were evaluated by drawing the best straight line

through the recorded data.
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Figure 5-1 Line Fires (Methane)
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5.3 Data on Line Fire Radiation

The data of de Rochechouart (24) of radiation flux densities

around methane flames is given in Figure 5-2 and tabulated in Appendix F.

The heat liberation rates reported originally were wrong, due to an error

for which this author is partially responsible. The values given are

based on the low heating value of the fuels. The data for radiation

around propane flames is given in Figure 5-3 and is tabulated in Ap-
ces

pendi/ F-2 and F-3. The data cover a range of heat liberation rates

from T2,000 to 231,000 Btu/hr-ft. The measurements were made at distances

of 0.2 to 1.2 feet from the center of the slot.

Inspection of Figure 5-1 shows that the fires were nearly laminar at

the base and developed large scale turbulence at the top of the flame.

This was also observed by Blinov and Kludihov (2) in large pan fires. The

photographs and visual observation indicate that this turbulence is quite

spectacular with whole sections of luminous gas separating itself from the

rest of the flame. This is believed to be responsible for the oscillations

in the measured radiation flux density. It was also observed that propane

flames tended to wander out over the surface. This is undoubtedly because

propane has a higher density than air and will be discussed more fully in

section 6.4.

5.4 Correction of Data to an Infinitely Long Flame

The fires in these experiments were only two feet long because

it was unfeasible to liberate a large amount of heat in the small test cell.

Some of the larger fires raised the temperature of the air near the ceiling

to 1500F in less than 10 minutes. The experimenters were forced to make one

measurement over several minutes, stop the fire, and resume after the room had
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cooled. Propane flames also provided a problem because the air in the

cell rapidly filled with soot. Therefore, the physical inconvenience of

a long fire led to the theoretical inconvenience of a short one, since a

two-foot line fire is considerably shorter than an infinite one. To over-

come these circumstances the following method was used to predict the in-

tensity patterns from an infinitely long line fire.

-Bs'
It is apparent that equation 4-21 multiplied by e with B given

by equation 4-22 or Figure 4-3 is the solution for the exchange factors

between a finite gray gas wedge and a black element of area L dx located

a dimensionless distance x' from the base of the wedge and half way be-

tween the ends. By obtaining the proper substitution of variables from

Figure 4-10 one obtains the following equation 5-1

d gs = 2 z' Y'e dw'

L dx 1 -(az' + be) (z' 2 + (x'-w') 2) (z,2+(x'-w') 2 + 2 )

where s' is given by equation 4-42

8' = (az' + b'-w') -2 + (x-w)2  4-42

(as' + x'-w')

The double integration of equation 5-1 was performed graphically for three

Z'/Y' at several x'/Z' for k' = 0 ft-1 and k' = 1.0 ft- l . The solution for

k' =oo can be obtained analytically and is given in Appendix D. The exchange

factors for wedges of infinite L9ngth are given in Figure 4-11. The ratio of

the exchange factor at infinity to the exchange factor at Y' is given as the

ratio of the distance from the wedge to the wedge height for three length-to-

height ratio's and three absorption coefficients in Figure 5-4.

Unfortunately the absorption coefficient for the actual fires is not

known. In general the absorption coefficient will be a function of the

r~rrr c-
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position in the flame since it is a function of carbon and gas concen-

tration and temperature. Attempts to measure this absorption coefficient

in the actual flame would be made difficult by the great turbulence in

the flame. However, single-and double-path measurements were made on

small laminar line flames of methane and propane. The absorption coef-

ficients obtained were approximately k' = 2.0 ft-1 for methane and

k' = 10.0 ft 1l for propane. With the flame heights given in Figure 6-2,

it is now possible to correct the data to an infinite flame using Figure

/ 5-4. The corrected data are shown in Figure 5-5 and 5-6.

A reconsideration of the analysis of Section 4-7 is helpful. The

exchange factors around a gray gas wedge are given by equation 4-46

S x -a=(1-e-BZ 4-46
L dx 2 x a

where B is obtained from Figure 4-12. Therefore a plot of the flux den-

-BZ'
sity divided by (1-e ) vs. the distance from the center of the flame

base by the flame height, should give a single curve. This plot is

shown in Figure 5-7.

Note that if the data for a particular fuel do not fall on a single

curve in Figure 5-7 either the measured absorption coefficient is in error

or the approximation of the flame by a uniform temperature gray gas wedge

is not a good one. The correlation of the data in Figure 5-7 seems to

support both the measured absorption coefficients and the assumption.

The solid curves in Figure 5-7 are those of gray wedges with tempera-

tures of 12600 F and 11200 F. These values do not seem unreasonable since

they are based on the entire luminous flame region. Although propane has

a higher heating value and a slightly higher adiabatic flame temperature
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for a stoichiometric mixture, the propane flame is considerably blacker

and radiates more of its heat.

The data indicate that a gray gas wedge of slope 0.,25 with a uni-

form temperature and constant absorption coefficient is a good approxi-

mation for flames of a narrow base. A rectangular parallelepiped of uni-

form temperature and uniform absorption coefficient is recommended for

calculating the radiation flux density around a wide-base fire.
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VI. THE LAME AND RESULTING CONVECTION COLUMN

6.1 Introduction

An understanding of the fluid dynamics of a buoyant plume is
important in the analysis of fire spread. The flame supplies radiation to
the unburned and burning fuel, and the buoyant plume above the fire influences
combustion to an unknown extent. The data on the distribution of radiation
around buoyant flames in Chapter V indicates that the approximation of the
flame by a gray gas wedge of uniform temperature is a rather good one.
However, it may be possible to improve the analysis by allowing for temperature
and concentration variations in 'the flame.

Although it is apparent that disturbances in the convection columns
above small fires do not greatly influence the fire itself, it is possible
that once a fire attains a magnitude where it can compete with normal
meteorological forces, conditions in the convection column may greatly affect
the fire below. This is where the almost completely undetermined influence
of weather plays its parts. Schaefer (26) reports that "wild fires" nearly
always occur in a very unstable atmosphere (super adiabatic) with a jet
stream in the upper atmosphere. However, there is no quantitative knowledge
of the effect of weather on large fires.

6.2 Buoyant Plumes

Buoyant plumes can be defined as currents of rising fluid produced
by a difference in density of the plume and the surrounding fluid. Although
this density differenee can be a low density source, such as a low density
liquid (water) issuing into higher density liquid (salt solution), the most

I important applications involve a density difference produced by a heat
source establishing an upward flow in the atmosphere. This heat source may
be a chimney, sand heated by the sun, a lake on a cool summer night, or a
a fire. Our primary interest is in the latter.

The problem was first considered analytically by Schmidt (28). Schmidt
made the following assumptions which are general to all other investigators:

1. Turbulent flow fully developed and molecular processes neglected.
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2. Transverse forces small compared with those in the vertical direction.

3. Mixing in the vertical direction neglected.

4. No horizontal pressure variation.

Schmidt used Prandtl's mixing length theory and similarity but not

equality of eddy viscosity and eddy conduction.

Rate of lateral momentum transfer oc- pb2 (d)2
dy

Rate of lateral heat transfer c cpb2 du(d)
dy dy

where

p = density

b = distance of transfer

u = velocity perpendicular to transfer

e = heat capacity

0 = temperature

Using the above assumptions Schmidt writes the equations of continuity,

vertical motion (force balance), and an energy balance. With the additional

assumptions of'uniform density at infinity and density variations small

compared to absolute density he obtains a solution which (1) predicts the

form of the temperature and velocity distributions and in addition calls for

(2) the normalized distributions of temperature and upward velocity to be

self preserving at all heights (although the distributions of temperature

and of velocity are different). By making measurements above an electrically

heated coil he found (2) well verified and (1) approximately so.

Rouse, Yih, and Humphreys (M) wrote the same equations as Schmidt

independently, but assumed his second conclusion of similar profiles instead

of Prandtl's mixing length. Their solution gives the variation of center

line properties with height but leaves the profiles to be determined experi-

mentally. The profiles above both point and line sources were obtained by

measuring physical. properties over small gas burners.

L~ter work by Priestley and Ball (3) and Morton, Tayler, and Turner (22)

extend the analysis to an atmosphere in which density changes with height
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above the source, but make slightly different assumptions regarding boundary

conditions.

Priestley and Ball assume effectively that the plume is straight

sided which is strictly true only if the ambient density does not vary with

height. They apply boundary conditions at a finite source. Morton applies

all boundary conditions at a virtual source of zero radius and momentum flux

and assumes a weight deficiency (or heating rate) is known. The significant

difference occurs when the density decreases with height. In this case the

plume has a finite height, and will spread horizontally as it stops.

Priestley and Ball's assumption of linear spread is certainly not good in

this instance and although Morton's does not include entrainment from the

top of the plume it seems to be more realistic.

Morton (12) extends his previous paper to include the effect of a moist

atmosphere and predicts when condensation will occur and its effect on the

flow. He assumes a simple linear decrease in humidity with height and no

effects on physical properties due to water vapor.

Morton (20) adapts his previous treatment to finite sources with finite

flow by relating them to the virtual point source in his previous paper.

Schmidt (2q) reviews the findings of Priestley and Ball (33) and suggests

a new axial velocity distribution to replace the standard Gaussian function.

However, the new distribution does not seem justified and predicts a reverse

flow region the existance of which seems rather dubious,

Murgai and Emmons (2 ) give a very useful method of calculating a

plume for any arbitrary lapse rate by making the calculation over several

heights of constant lapse rate. No assumption of virtual source is made and

the previous final conditions become the initial conditions of the next step,

i.e., all boundary conditions are applied at a finite source.

Lee and Emmons (15) give the treatment of a finite line source issuing

into a constant density atmosphere. No virtual source is assumed and the
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boundary conditions are applied at a finite source.

Morton (21) extends his previous papers on buoyant jets to include wakes.

SHe also introduces a very simple momentum-mass flux diagram which is very

helpful in clarifying the meaning of the solutions for various cases.

Homsy (2) has obtained the solution for a plume originating at a finite

circular source without the assumption of small density variations. The

boundary conditions are applied at the finite source and the assumptions of

a constant density atmosphere and reproducing profiles are made. This method

of solution can easily be applied to a finite line source.

The above solutions are now at a state where the convection column

above a fire can be described with confidence since the results have been

well supported by data.

6,3 A Model of a Burning Jet

The solutions for buoyant jets reported in the previous section,

except for Homsy (2), assume the density difference between the jet and the

surrounding fluid to be small compared to the absolute density of the fluid.

This will be true in the upper section of the convection column of a fire.

Homsy's solution does not require the assumption of small density variations

and can, therefore, be used with confidence near the fire. However, Homsy (9)

also finds a solution for a circular buoyant or forced jet in which combustion

occurs. It is easy to extend this to a line source.

In addition to the assumptions made by Schmidt and listed in Section

6-2, the following assumptions are made.

5. Normalized density and velocity profiles are independent of height.

6. The rate of entrainment is proportional to the local velocity of the
jet.

7. The inspired air mixes with the fuel and burns to stoichiometric

completion instantaneously.

9. The heat capacity is independent of temperature and the molecular
weight of the jet is uniform.

10. Radiation from the flame is neglected.
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The assumptions 1 through 4 have been discussed by previous workers
and are well justified by experiment.

Although assumption 5 of self-preserving profiles is well established
when the density variations are small it is undoubtedly casual for a flame.
The fuel at the edge of the flame mixes with air more rapidly than the fuel
at the center of the jet. Therefore, the more rapid combustion at the edge
of the flame causes the temperature to rise more quickly. The velocity and
density profiles must take on the appearance of a camel's humps, which diminish
higher in the jet. It is thus doubtful that this humped pattern is maintained
for a great distance in a turbulent flame.

Once again assumption 6 is reasonably well established when the density
differences are small. Inadequate data are available to give firm support
to this assumption for buoyant flames.

The instantaneous mixing of fuel and air to burn to stoichiometric

completion does not occur in buoyant jets with large scale turbulence. If
this were true the camel hump velocity profile described above would be quite
pronounced. H6wever, any attempt to describe the burning pattern in the
flame introduces at least one additional parameter.

An ambient density variation could be included in the same manner employed
by Murgai and Emmons (21), but most flames occur in a substantially constant
density medium.

A mean heat capacity and molecular weight is considered sufficient in
view of other approximations.

The inclusion of radiation makes an analytical solution impossible
since the energy balance would depend on a fourth power temperature relation.

The analysis is not affected by the assumption of the type of velocity

and density profiles. For simplicity a rectangular or top hat profile will
be assumed.



In Figure 6-1 fuel at a density po is released at a velocity u0 through

a slot of half-width yo. The flame entrains air at a density pa which is

mixed with fuel producing combustion. At a height x the density is p, the

velocity u, and the half-width yx"

The characteristics of the buoyant flame are given by a force balance,

an energy balance, continuity, the equation of state, and the postulated

burning law. It is apparent that the change in momentum across the element

is equal to the byoyant force acting on the volume 2y dx. The force balance

is given by

d(pu2yx )

dx = (p a - P)gyx Force Balance 6-1

By assumptions 7 and 8 the change in sensible energy across the element dx

is equal to the energy released by the combustion produced by the inspired air.

c d(puyxT) k"TQ

Supa Energy Balance 6-2
dx rf

where k" is the entrainment coefficient, dimensionless, c is the heat capacity

of the gas, Btu/lb-OF, Qc is the heat of combustion per pound of fuel, Btu/

lb-fuel, rf is the lbs of air per lb of fuel for stoichiometric combustion,

lb/lb. Combining the energy balance with the equation of state for a perfect

gas,

P RT
P- = Equation of State 6-3Pa Ma a

gives

d(uyx )  k"Qc
dx rf c T

The mass flux in the flame at a height x is equal to the mass entering the

base of the flame plus the mass entrained up to height x.
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pV =pV +pV Mass Balance 6-5

is the volumetric flow per unit length at height x, ft3/hr-ft

is the volumetric flow per unit length at the origin, ft3/hr-ft
per unit time 3

is the volume per unit lengthpinspired up to height x, ftg/hr-ft

Va
LV = a 6-6V - V

x o

puyx =oo oo+ Pa(uyx - UoY) 6-7

Since it was assumed that the burning goes to stoichiometric completion

an energy balance on the fluid passing up to height x can be written by:

equating the energy at height x, to the energy inputfrom incoming fuel:and

air. Neglecting radiation and taking T as the base temperature
a

QcMn
nMe (T-T ) = nM c(T -T ) +caa

a o a r
6-8

where

n is the

n is the
o
n is the

a

Since the heat

equation 6-8 can be

nT - n T
0o 0

nT
as a

molal flow rate at height x

molal flow rate of fuel at x = 0

molal flow rate into the flame up to height x

capacity and molecular weight are assumed to be constant

rearranged to

n - n
0

na
6-9

Qc
+
r cTf a

The right hand side being equivalent to (V - V )/V . Thereforex o a

where

Defining

gives



where

F = u 2/gyo o

k"Q
and K' r= c

rfcT

Solving for p' in 6-15 and introducing it into 6-13 gives

d[u'p + wu'(u'' - 1)

dx 
x

Let

v = uIy'x =UY

and equations 6-14 and 6-17 become

dv'
x

= K'u'

and

1
P u'

respectively. Dividing 6-17 by 6-20 gives

d[u'(p' + W(v' - 1))]
o x
dvl

1

K'Fu'
[(W- po)

0
+ vx(1 -W )]x

t' = u'(L (v' - 1) + p
x O

Equation 6-22 becomes

6-16

x
F

xu I Y X 6-17

6-18

6-19

[( A - Po) + v(Z -l )]x 6-21

Let

6-22

6-23

d[u'(p' + W (v' - 1))]
o x

dXt

W (
u'y')



dt' 2 [( V 1) + po)2 ( P) + VI1
x K'Ft'

or

t,2 dt' IF J ( ( - 1) + o)2((- p') + v'(l - dv,))

6-24

Solution of the integral on the right hand side is given by Burington (5).

Therefore t' is given by

t' w= +KF2 _ Wv +(3 Lv (1 -W)v' + (W- po)(3w+ 1))

- ,3 (~u (4 - 3P ) - + 13 1/3

6-25

u' is obtained from t' by equation 6-22 and y' is given by 6-18. It isx
necessary to obtain x" from a numerical integration of equation 6-19 or

x" = x 6-26
K'u'

3
Notice that for a buoyance-controlled line fire p' is small compared to the

0
other term in equation 6-25 at a very small v' . Thus

x

t' = [1KF (f(v ~ ' P,)) 1/3 6-27

Since

u' = t v' ) + p6-28
x 0

Therefore

2 1/3
(K'F u 2

X 1 =_ 2 ), wJ , p') 6-29
K' f2 (Vx 0O

I;n~O~irC~lu ~--=- -



If a single fuel is considered

, 1/3 2

,- - -

Since Qc/r c is equal to

temperature T - Ta,

(KF 2)1/3
K'

the adiabatic flame temperature minus the ambient

2

o

T 2  1/3
(Tf - T a) Tf

Since the energy flux at the origin is given by

Q/L) = 2 Qe Pouooy

Equation 6-31 becomes

(K'F w2 1/3
K'

and the flame height H

+- 2 --I
is given by 6-29 and 6-33.

= LFf 1  2 k(Q
is given by 6-29 and 6-33.

ST2 2/3H (T -a ( 6-34
f a f 2QcP

The flame height is proportional to (Q/L)2/3 for a single type of fuel.

This result was deduced by Hottel (11) from dimensional analysis.

Hottel points out that his solution does not depend on the assumption of

similar temperature and velocity profiles.

6.4 Flame Heights

One reason for developing a theoretical model for burning jets is
to predict flame heights. The fire spread model in Chapter II requires

1/3

6-30

a

6-31

6-32

1/3

6-33



knowledge of the relation between the flame height and other variables. This

section reviews the analyses of other authors and gives some new data.

Thomas, Webster, and Raftery (31) considered the flame heights of

circular burning fires and obtained

HI 2-=f v 6-35

where

H is the flame height, ft.

D is the diameter of the base, ft.

F is the volumetric flow rate from the base, ft3/hr

This equation was obtained from the following argument where the line

source will be used as the example.

In a flow system containing viscous, inertial and buoyant forces the

ratio of the velocity anywhere in the system to a reference velocity (e.g.,

the velocity at the base) is a function of the Grashof and Reynolds Numbers

and the distance above the source. Thus

u gB I IV0Tp2  u xu , , x-) 6-36

where

u is the velocity of the fuel at the base, ft/hr

B' the coefficient of thermal expansion, OF-

AT the excess temperature in the flame, OF

p the density of the gas, ibs/ft3

p the viscosity of the gas, lbs/ft-hr

V the width of the base, ft

By definition the volumetric flow rate is given by

F
V De U 0' 6-37L o

~_ ____ji__ll__~~lll___ 1_
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It is assumed possible to neglect the viscous forces. Therefore equation

6-36 can be replaced by

u '5 AT x-- = f 6-38

The surface area per unit length of a line flame is readily seem to be given

by

S = Wf4[- V] 6-39

The rate of air entrainment per unit area is assumed to be directly

proportional to the local stream velocity. This is a common assumption for

non-burning jets. The total air entrainment through out the flame is then

proportional to the-product of an average value of the entrainment velocity

and the surface area of the jet. The average entrainment velocity is given

by equation 6-38 with x replaced by H. This product is also proportional

to the volumetric fuel flow rate at the base. Eliminating u from equations

6-37, 6-38, and 6-39, gives

U ov f4 o 0 5 u 2 OW 6-4o
o

Therefore

H F/L)2

Most buoyancy controlled flames of interest are large compared to

their source width and can be considered a line source. Therefore, the flow

conditions at the base have little influence in the flame and the entrainment

velocity would become independent of the base width as well as the base

velocity. Equation 6-40 would then give

Ve P. x1/2 6-42
e
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where v is the entrainment velocity.

The surface area per unit length given by equation 6-39 will be directly

proportional to the flame height H when the flame is a large wedge and

directly proportional to W when the flame is small and just covers the surface.

Therefore, n
s v'W( ) 6-43

where n goes from zero to unity as H/V increases. If the mean entrainment

velocity is taken proportional to 1/2 (equation 6-42), then from equations

6-40 and 6-43

2 1/(2n + 1)

The above equation calls for H/"W to increase with (F )2 3 , but with

a decreasing power since n goes from 0 to 1.

Hottel (11) obtained the relation for a line source

(Q/L2  a 45

(pc)2(T T a) 3 g H3  H

from dimensional analysis. However, if the width of the line source becomes

finite it is apparent that

a f( X H ) 6.46
(p) (T - T ) 3 g 3  H' /

Replacing the H3 on the left hand side by /3 and defining the flame height

as the height at which a temperature Tf is reached

H f (Q/L)2 T 6-47
or r 3(pc)(Tf - Ta a

or for a single fuel
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f ( 6-48

The analysis of Thomas, Webster and Raftery gives the same result if the

volumetric flow rate per unit length is replaced by the heat liberation per

unit length. Notice that the treatment by Hottel is for heat liberated at

the origin but does not include combustion. The derivation in the preceeding

section includes combustion of a special type (combustion occurs on mixing

and goes to stoichiometric completion; (assumption 8)). The relation for

the flame height can be derived from equation 6-29 and is

2
2 (Q/T)a_.a ,I , P/p

3 (Qco)2 (Tf - Ta) oa

6-49

is equal to Ta /Tf and nearly constant for all fuels. Therefore,

H -f (Q/L)2 I-50- e , p /p 6-50

The effect of the parameter (po/Pa) is quite significant near the base

of the flame. If the fuel gas issuing forth is heavier than air the small

amount of momentum will soon be dissipated. The gas will then flow in a

horizontal direction, or possibly in a reverse direction. When enough

combustion has occurred to make the fluid lighter than the surrounding air,

the flow continues upward. This caused the experimental propane flames to

wander across the surface.

Some flame heights for line fires of methane and propane, measured

visually, are given in Figure 6-2 vs. the square of the heat liberation

rate divided by the cube of the source width. The lines recommended by

Thomas, Webster, and Raftery for their data on approximately circular fires

are shown based on a heating value of wood of 6000 Btu/lb. The radius is

used as the characteristic circular dimension to give a comparison with the

line fires at an equivalent mean hydraulic radius.
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The slope of the curves for the line propane and methane fires are
approximately 0.4 with methane having a slightly higher flame height than
propane for the same (Q/L) / 3. The data nearly coincide with the lines
recommended by Thomas, Webster, and Fartery (31) for wood crib fires of
nearly circular dimension when the coordinates H/R and Q2/R5 are used. It
is believed that the heat liberation is a more significant quantity than the
volumetric velocity at the origin when different types of fuels are considered
since the heat liberation rate is a better indication of the available
buoyancy. The close correspondence of the data for line methane and propane
fires and circular wood crib fires indicate this to be true. One would
expect a lower slope for the circular fire data than for the line fire data
since in the circular case as R goes to zero the slope approaches 1/5 and
in the line case as ~/' approaches zero, the slope approacher 1/3. Although
the slope is slightly less for circular fires in Figure 6-2 (0.3 opposed
to 0.4 for line fires) the scatter of the data is to great for firm conclusions.

The base flow rate for the larger flames was approximately 1/3 ft/sec.
The bases of the flames were definitely laminar, particularly for methane

(see Figure 5-1). The flame broke into turbulence at a height of about three

or four slot widths, the larger flames being trubulent nearer the base. If
the base were made 1/10 as wide the flow rate would be 3.33 ft/sec. and
presumably H/W approximately 10 times larger or 150. This base velocity of

3.33 ft/sec is large enough for one to expect it to influence the flame
height. When the base velocity becomes great enough H/h/ becomes a constant
and eqUil to approximately 600 for propane (assuming H/R for circular flames
corresponds to H/lo/for lines flames). It appears that all the data in
Figure- 6-2 are nearly three orders of magnitude in (Q/L)2 /3 or Q2/R5

from any influence of entering momentum. The data of Thomas, Webster and
Raftery (3 ) indicate that this is an important range for natural fires.

It appears that a good approximation for line flame heights, to be used
in the model in Chapter II, would be

H F(Q/L)2 c

e i . 6o53
where c is 0.33 to 0.4 in the range of interest.



VII. DISCUSSION OF RESULTS

7.1 Introduction

It is apparent that this work has been concerned with

numerous aspects of the fire problem over a wide area not entirely re-

lated. In order to take full advantage of this work in planning future

studies it is necessary to take cognizance of the results as it applies

to the general problem of fire spread in a real situation.

7.2 Results of This Thesis Work Applied to Actual Fire Spread

It is believed that the Woods Hole Summer Study Model dis-

cussed in Section 2-4 offers the best analysis for fire spread at the

present time. The form is general enough that any new observations can

be included. It can also be used as a basis for determining future work

to supply the missing information for a more thorough understanding of

fire phenomena.

The three final equations for the Woods Hole Summer Study

Model are:

1. An energy balance on the unburned fuel,

V= 1 Q/L)B + Q/L)R + Q/L)C - Q/L)L] 2-23

which states that the velocity of fire spread is directly proportional

to the various mechanisms of integrated heat transfer rates to the un-

burned fuel and inversely proportional to the energy required to produce

piloted ignition.

2. A burning law

V)Qc V= [Q/L ) + Q/L):] 2-28

__ __ ~ =~ ~
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which says that the heat liberation rate by combustion (1. h. s.) is

proportional to the heat input rate to the burning solid fuel bed.

3. A determination of the flame height

H = (/L)2 2-29

The heating of unburned fuel by radiation fram the embers in the

fuel bed beneath the gas flame Q/L) B d is readily amenable to theory.

It was shown in Section 2-4 to be
O oo

Q/L) = q1 (x) dx = a'bcrT eaxdx = baTff 7-1
000f

Obtaining the radiation from the overhead flame, Q/L)R, has been

one of the major endeavors of this thesis. When no wind is present to

bend the flame the data of Chapter 5 indicate the flame radiation can be

well approximated by

Q/L)R Tf4 Ldx dx 7-2

where d gs is the exchange factor given by either the gray gas wedge
L dx

or parellelepiped exchange factors discussed in Sections 4-7 and 4-6

respectively. Tf is the average gray gas temperature which propane and

methane flame data of Chapter 5 indicate to be approximately 12000F. It

would not be difficult to calculate exchange factors for bent wedges using

a similar method to the ones used for straight wedges in Section 4-7. How-

ever, a wind will not only bend the flame but can also pass through it.

How this affects the combustion pattern, and therefore, the temperature

pattern is unknown but certainly significant. Exchange factors for gray

gas bent wedges is certainly the first step in analyzing the effect of

wind on the overhead radiation.

The convection heat transfer at the flame front, Q/L)C is un-

doubtedly the most elusive for quantitative treatment. In this work

_



values of 94.0 Btu/hr-ft for shredded newspaper fuel and close to zero

for the computer punch out fuel were found in the absence of wind. In

an exploratory experiment a wind velocity of 3.5 ft/sec caused nearly a

three fold increase in this number. An experiment is recommended in

Section 3-7 which could determine the distance over which this heat trans-

fer may occur for different wind velocities. However, the effect of fuel

type on this method of heat transfer presents a difficult problem. In a

natural fire it is believed that this heat transfer is of primary impor-

tance.

The heat loss from the fresh fuel as it preheats, Q/L)L, is also

a strong function of fuel type. However, it is believed that the treat-

ment of this term in Section 3-4., by relating it to the other heat trans-

fers, is a promising start. Although fuel beds with significant air

spaces would complicate matters a workable relation may still be obtained.

The energy required to produce ignition, Qi, has been determined in

this work for fuel beds of newspaper and computer cutouts. For the news-

paper it was found to decrease with humidity be approximately 10% for a

10% decrease in humidity. This is about one third more than would be ex-

pected if the change is based on the increase in heat necessary to reach

a fixed ignition temperature. However, until other data over a wider range

of humidities become available it is recommended that the following rela-

tion be used:

Q. = vo o ( (4 C -T" ) + M 7 -3

where Q is the ignition energy at Vo, Btu/ft2

Ti is the ignition temperature, OF

M is the moisture content of the fuel, lb/lb



SH is the latent plus sensible heat of water, Btu/lb

K is a characteristic of fuel type to be determined by experiment

Finding how I' varies with fuel type, other than its variation

with thermal properties for flat surfaces, is another difficult problem.

An independent experiment under more controlled conditions than is pos-

sible when measuring fire spread, may be advisable. However, there is

merit in obtaining the ignition energy from measurement of fire spread

rates even though the method is not as accurate.

The radiative heat transfer to burning fuel, Q/L)', can be handled

in the same manner as the flame radiation to fresh fuel. The heat

generation in the bed itself, Q/L)±, has not been studied in this work.

The relation between the flame height and the burning base width

and the heat liberation recommended in Section 6-4 is

H = _Q/L2 6-53

where c is between 0.33 and 0.4 and Yis a slight function of fuel type.

This relation seems well enough stablished to be used with confidence.

It is believed that the functions for equations 2-23, 2-28 and

2-29 are sufficiently well-known to justify their numerical solution

on a computer.

There are still many problems to be studied, particularly the

evaluations of the shift in relative importance of the different terms

which appear in the equations of the model when full-scale fuel beds

(forests or cities) are of interest.



7.3 Conclusions

1) The energy required to produce piloted ignition in shredded

newspaper at a humidity of 48% and a burning rate 60 ft/hr was found to be

2.40 Btu/ft 2 (0.65 cal/cm2 ).

2) The energy required to produce piloted ignition in compu-

ter card cutouts ( 1/16" x 1/8"x 0.007") at a humidity of 44% and a

burning rate of 60 ft/hr was found to be 9.0 Btu/ft 2 (2.4 cal/cm2 ). The

required energy to produce piloted ignition for similar fuel cut in approxd-

mately -I squares at a humidity of 47% was found to be 7.5 Btu/ft. 2

(2.0 cal/cm2).

3) A ten per cent decrease in humidity produced approximately

a ten per cen decrease in the ignition energy of ahredded newspaper.

4) A wind velocity of 3.5 ft/sec produced nearly a three-

fold increase in the rate of fire spread over that for no wind, for

shredded newspaper.

5) The intensity pattern around a constant temperature gray

gas wedge is a good first approximation for the radiation flux density dis-

tribution around line flames of propane and methane.

6) The flame heights for line fires of propane and methane

is best fitted by the equation

H Y[- l 2 ] 6-53

where Wis a slight function of the fuel type.

7.4 Recommendations

1) A detailed study of the convection heat transfer at the

flame front as a function of the wind velocity should be made.

-- I
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2) An independent experiment should be designed to determine

a more exact value for the net piloted ignition energy of the fuels used.

3) The Summer Study Model should be programmed and solved

numerically in the light of the new information available.

___ ~ _ _
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VII. APPENDIX



& SOLUTION OF DIFFERENTIAL EQUATIONS

A-1 The Solution of the Differential Equation of Atallah's Model (1)

The heat balance for the modle suggested by Atallah on a small element

of fuel dx ahead of the flame was given in Section 2.3 as

dT dT
d2 Vp dx
dx2

(T.- T)
1 a

.,- P () (Tf - T )

(T - T )
m;

2-10

with the boundary condotions

T =T a

T T.

dT
= 0

X =

x= 0 2-11

The temperature of the fuel is the dependent variable and x the independent

variable, All other variables are constant for a particular fire, Making

a change of variables

T-T a

T. Y-T
1 a

z = x/H A-1

gives

2 Vc ' H
-- +

dz2 k

rd H2 4(T T ) 42

dk1 (T. T ) kl

2 4 i4)06 fH (Tf -T)

kI (T. , T )
A'-2

I I - - rr -

U



- AVc 'H
A= P B =;

2 4 4SO H (T . T4)
i a

kl (T - T )
1 a

o0- f 2 (T4 T4)

kl(T.- T)
I. a

which gives

d2 0
2

dz

de+ A - B = C F(z)
dz

with the boundary conditions

e = 0 at z =

0 = 1 at

d,-- = 0 at
dz

z = 0

z = 0

The general solution for this equation is given by Martin and

Reissner (17) as

S=, C1 (z) exp(r 1 z) + C2 (z) exp(r2z)

-C F(z) exp(r2z) dz

Ce(z) =xe
W(exp(rlz), exp(r2z))

Let

+

kl

A -3

A -5

where

+ C1



SC F(z) exp(r1z) dz

C2 (z) = .
S W(exp(rlz), exp(r2z))

exp(
W(exp(r 1 z), exp(r 2 z)) =:

r exr

-A + vA2 + 4B
r

1 2

rIz) exp(r2z)

)(r1z) r2exp(r2z)

-A - A2 + 4B
r2  2

2 2

Substitution into equation A-6 gives

= C

1 (r 2 - r I )

exp(-r 1 z)

C2  (r2 r exp-(-r 2 z) F(z)

- (r 2  r 1)
0

The boundary condition e = 1 at z = 0 gives

C1 + C2 = 1

To apply the boundary condition 4 = 0 at z = oo is a little more subtle,

Since r2 is negative exp(r2z) goes to zero as z goes to infinity, Since r 1

is positive exp(r 1z) goes to infinity as z goes to infinity. Therefore, if

0 is to equal zero at z : oo the section of equation A-8 multiplying exp(r z)

must equal zero at z equal to infinity and

C C - exp(-r z) F(z) dz

1  (r2 - r In

A-10

+ C2

A .7

F(z) dz exp(r 1 z)

dz] exp(r 2 z) A-8

A-9



Therefore,

CC2  =1 + (r 2 - r
2 1I

C
+ (r

2 - r)

C

w (r2 - r1 I0

exp(-r z) F(z) dz

0

exp(-r 1z) F(z) dz

6

exp(-r 2 z) F(z) dz exp(r 2 z)

C c
+- rexp(*r Z)

[ expPi~ 0

C

* cr2 - r1)
2

exp(.rl ) F(z)1 dz exp(r1z)

Differentiating the above one finds

m r2 exp(r2z)

Si

C
+(r2 - r1

exp(-rlz) F(z) dz

C

(r2 - r1 )

- r 1 exp(r z)

C
r2 - r1 )

0

I'O z

exp(-r 2 z)

C
(r r)2 1 ,

exp(r z)
1

F(z) dz]
Ca 2  r

(r2 -m :rI1
F (z)

0
exp(-r 1z) F(z) dz

0

F(z) dz
C

(r 2 - r 1 )

F(z) A-13

and applying the boundary condition dz = 0 at z = 0 givesdz

and

A-11

F(z) dz

A-12

m-[
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r i + C exp(-r 1 z) F(z) dz2 (r2  a r I

r l C a
S(r exp(-r z) F(z) dz 0 A-14

Simplifying the solution becomes

- r2
C = A-15

exp(-r z) F(z) dz

where

F(z) 1/2 1 - A-16

+ z

An explicit solution for the velocity of fire spread can not be

obtained.

A-2 The Solution of the Differential Equation of Atallah's Model (1) Neglecting

Conduction and Assuming the Exponential View Factor

An important special case of the previous model is one in which

conduction along the bed is negligable. It is doubtful that this conduction

ever contributes a significant amount of heat transfer in an actual fire.

Neglecting this conduction equation 2-10 becomes

0-e (T4 T4
dT (Ti -T)a

-- -- dT + a (T-T)Vp d a

S- O @fF(x) (T- Ta) A-17



with the boundary conditions

T T
a

T = T.
1

at x = co

at x: = 0

Making the same change of variables as in Section A-1

T -T
a

T. -T
1 a

gives

dz _ _
c (T. - T )
p 1 a

S  6  (Ti - T4)

(T.- T)
p 1 a

H F(z)
A-19

A'* =

B' =:

U T4 T
-+ I a

c p c (T -T
P 9 i

E 4 4 4
f f a

c (T. - T)
p I a

giving

dO A'H B' H
dz -- 1 - F(z)
dz: V 1 Ve 1

A-18

z = x/H A-1

HV

VI

Let

A 20

A -21



V
f

6 = 1 at z a 0 A .22

The general solution for equation A-21 is given by Martin and Reissner (17) as

Sexp( P(z) dz)
Q(z ) dz

A-23

exp( f P(z) dz)

where

P (z) A'HV- V Q(z) =:
B'H4WV L F(z) A-24

Substitution gives

- exp(- P z)/ IP V-

B'H
V J F(z) dz

A-25
A'H

exp(- AH z)V 1

Applying the boundary condition 0 = 1 at z = 0 gives

C w: 1

and

A'H
exp(- * z)V-1

B'H
V 1

Q0 .
A'Hexp(- --- z)
V 1

Let it be assumed that

F(z) dz , 1

F(z) w 1/2 e-z

with the boundary conditions

S= 0: at z = co

A-26

A -27

-- i csm~:

A-28
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V = (B'/2 - A') H/1

79

The above assumption gives a curve with the same area. as the true view factor

1/2 (1 - Z 1 + z ). It also follows the true curve closely,

Equation A.27 becomes

- B'H A'H -2 z- r exp(- z) e dz + 12V I V 1
S=. .. A-29

A'H
exp(- A z)VI

which gives upon solution of the integral and applying the boundary condition

9 =: 0 at z = co

___i iP~B+~

A-30
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B MEASUREMENT OF THE RADIATION FROM THE WIRES

B-1 The Flux Density of Radiation Arround a Single Wire

The wires used in the flame spread experiments of Chapter III were

so small compared to the dimensions of the system that the wires can be assumed

to be a line source

A line. ource of heat with an energy rate per unit length Q is

shown in Figure B-i located a distance x from the line perpendicular to

the surface which passes through the line source. A line drawn between the

element of area and the line source is of length r and makes an angle O with

the surface, The flux density of radiation on dx is given by the strength

of the source times the solid angle or

d sin oC dx
dE a. B-i

2 -r

From Figure B-1

sin O= L/r r x2 L2  B-2

and equation B-1 becomes

dE _w _ 2 B- 
dx L 2 2

which gives the distribution of radiation around a single line source of

infinite extent,



dA
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Figure B-I Line neat Source



B-2 The Flux Density of Radiation Around Several Wires

The distribution of radiation around several line sources is

obtained from adding the contributions from the individual distributions.

In order to do this by a simple addition of fluxes it is necessary to assume

that the radiation from a single wire is not intercepted by another wire

and the amount received from other wires does not raise significantly its

emitting power,

The wire arrangements used in the experiments were 1. four wires

with a ratio of center-to-center distance to wire diameter of three and

2, eight wires with a ratio of center-to-center distance to wire diameter of 6.

The view factor between two infinitely long wires seperated by a

distance large compared to their diameter is given approximately by

d-S- --- -----SS = 2r C B-4

With C/d = 3.0, ss = 0,053, and C/d = 6.0, ss = 0.0265. Most of the runs

were made with the eight wire system with a C/d = 6.0 to reduce interaction,

The flux density distribution around the four wire and the eight

wire systems, dE/dx/Qw, given in Figures B-2 and B-3, were calculated assuming

no interaction or interference.

B-3 The Solution for the Integrated Radiation Flux, Q/L)R, Around Several Wires

Equation B-3 gives the flux density of radiation around a single
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Figure B-? Distribution of Radiation on a Surface 1.25" Below Four Wires
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Figure B-3 Distribution of Radiation on a Surface 1.25" Below Eight Wires
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wire as

dE _w

dx L

F 1 1
2 fr(I + x 2)°

B-3

The total integrated radiation flux between a distance -xl and infinity

is given by

E =- f dx

L 2 (1 + xL 2 )

-X2

E =
2 TI

B-5

B-6

The integrated radiation flux from any number of wires to a parti-

cular x1/L is given by the proper summation of the values obtained from B-6.

For the two systems in question

2.5744 QW

1.0725 Q

eight wires

four wires B-7

The strength of radiation from a single wire is obtained by measure-

ing the radiation flux density at several distances around the wires with a

thermopile. This flux density is divided by the exchange factor from either

Figure B-2 or,Figur B.3,' depending :on' the, wire Larrangement.: The average

value is used in Equation B-7 to give the integfated a adiation flux, Q/L)R.

R

(12 + tan-1 (x1l/L))
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C" DERIVATION OF HEAT LOSS FROM FUEL SURFACE CONSIDERATING CONVECTION LOSSES

In Section 3-4 the integrated heat loss, Q/L)L' was found to be

Q/L)L K Q/i)R a
V1/2

3-13

when only incedent radiation to a semi-infinite solid of constant thermal

properties is considered, Since some heat is lost from the surface by back

radiation and convection it is instructive to see how this could affect the

relation 3-13. The surface temperature for a semi-infinite solid of constant

thermal properties heated at the surface is given by equation 3-9 (6)

Q(x) dx
T-T =

a kV1/ 2  1/2
k V (x- )

-OO

When heat loss at the surface is considered

Q(()

3-9

3-15- h(T- T )a
a

and equation 3-9 becomes

T-T =
ak V

a

(x - x)

12/X
(x - )xo -

C-1

Equation C-1 is an integral equation with T - T as the dependent variable
a

and must be solved numerically. However, if it is assumed that T - T under
a

the integral can be given by the former solution which did not consider
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convection losses

T - T =a
(x) dx

- 1/2(x - x)V1/2V
3-11

Equation C-i becomes

T-T / 2
a 1/2

- h - ~~i

Qw1/2
L (x - x)

S.-

L - 1/2L (x - x)

Therefore, T - T takes the forma

K C Q/L)R
I V 1/

K2 (x)

- 1/2V

Q/L)R -I

V1/

Q/L)L = h K1 Q/L)R
L V1/

-K

V 1,2

Q/L R

V1/2

d;] C-2

T-T
a

and

C-3

3-18

I-



85

D THE VIEW FACTOR BETWEEN A BLACK SURFACE INCLINED AT AN ANGLE O( AND A

BLACK SPOT MIDWAY BETWEEN THE ENDS

The finite exchange factors discussed in Section 5-4 are required

to find the radiation distribution around infinite flames from the data taken

on finite flames. As was pointed out in Section 5-4, it is impossible to

perform the integration except when the absorption coefficient k' goes to

infinity and the wedge can be treated as a black surface. This derivation

follows.

The YZ plane in Figure D-1 intersects the yx plane at an angle oz

forming the y axis. Consider the radiative exchange between an element of

area located on the YZ plane at the coordinates y, z and an element of area

Ldx located a distance x from the y axis and midway between the ends of the

YZ plane. The line drawn between the two elements is of length r, and with

the perpendiculars to the areas determines the angles 91 and 92# The fraction

of black body radiation leaving the element dydz and 'intercepted by the 'element

Ldx, is equal to the apparent area of ,the element, c'os 92 dy dz , times the

solid angle subtended by Ldx, cos 91 Ldx/r , divided by lT . Therefore,

D-1
3- cos l cos 2 dy dz Ldx

d ss = 2
Y r

where

z xcos 9 = - sin o* - sin cc1 r 2 r

2 2 2 2 (x - Cos ) 2
r = y + zsin + (x - z cos

_ _ _ ~~~_~L~__~ ~-~rr~-



Figure D-1 Interchange Between a Finite Black Plane and , Blonck S)o*



Substituting D-2 into D-1 and integrating from -Y to Y and 0 to Z noting

the symmetry over Y, gives

2x sin 2

UF
i

/18 8
dy dz

(y2 z2 + x- 2xz cosoC) 2

The integration over Y yields

2
x sin OC

dss

Ldx q)

2 - 2xz c

(2 - 2xz c

fZ
Yz dz

2
(z -2xz

)sOC+ x2 )3/2

cosOC+ x 2 )(z 2 + 2xz cosoc+ x + Y2)

tan-1
tan D-4

- 2xz cos @c+

In order to integrate the second integral by parts, let

dv =
z dz

(z - 2xz cosc+ x )

Stan-1
U rr tan

2 2- 2xz 1/2(z -2xz cos %C+ x )

- (x - z:Cosg,)'

x sin CW(z - 2xz cos C + x )

Y(z - x cos oc) dz

(z2 - 2xz cos + x2  )(z 2 -2xz cos oC + x2 )/2(z 2xz cos oc + y2 (

and cquation D-4 becomes with rearrangement

D-3

then

D-5

du -
du =: D-6

7 ___



x sinx sin ca
='

- (x - z cos OM)

x sin oC (z 2 - 2xz cosoc+ x )

+ tan-

S x sj

Y cosoc dz

in2 2 2x cos 2Ln o( (z - 2xz coso.+ x

The solution of the above integral is standard and

(Z cos C - x)

2 2x os+ x/22 - 2xE cosO+ x )

Y cos aC

(x sin2 oc + )

x cos Ow.

2 . 2
x sin c

tan c

(Z2 - 2xZ cos + x)1

tI I ,Z - x, cos ocW

D-8

dss
Ldx

+*2)
D-7

dss
Ldx -l/

Y/x-1+ tan 1

Stan"-1+ tan

• . " . . _
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E MOISTURE CONTENT OF THE FUEL

The moisture content of the fuel was obtained by weighing a sample

of known volume at different humidities. The value for zero humidity was

obtained by drying a sample in a desiccator for several days, and weighing

it on successive days until the weight became constant. The results for the

newspaper and computer fuels are shown in Figure E-l,

~C31~- ~L
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F CRIGINAI, DAIM

F-1 Data on Fire Spread Through Shredded Newspaper and Computer Cards,

Table: F-1

The Effect of Loading Density on the Rate of Fire Spread for Shredded

Newspaper (0.003" thick)

Run No. Loading
Dens iy
ib/f t

0,0720
0.1175
0.0547
0.0631
0.0212
0.0127
0.0375

Temp. Relative- External* Velocity Residue % Burned
F Humidity Radiation ft/hr lb/ft

% Btu/hr-ft '

75
75
74'
75
75
75
75

40
40
39.5
37
37
37
46

296
296
2821
289
296)
296
296

79.8
81.6
79.3
79.3
67.8

-

0.0284
0.0066
0.00933
0.0014

0
63,6 0,0107

76
88
85.2
93,41

71.5

*Radiation from four wires;



Table F-2

The Effect of Radiation on the Rate of Fire Spread for Shredded Newspaper

Run No. Loading
Densiy
lb/ft

50
51
52
53
54
55
56
57
58
59

0.0625
0.0625
0,.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625

Temp. Relative
0F Humidity

49
48
48
48
49
48
48
48
48
47

Externa.l*
Radiation
Btu/hr-ft

554,
450
348
250
140
0

206**
0

554
554

Velocity Residue
ft/hr lb/ft

94.8
89.5
75.0
70.2
57.6
33.6
60.0
34,2'
95,5
95.5

0.0052'
0.0026
0.0024
0.0046
0.0047
0.0044
0.0047

* Radiation from
** Radiation from

eight wires
four wires.

& Burned

91,7
95,8
96.2
92.6
92,5
93.0
92,5



Table F-3B

The Effect of Humidity on the Rate of Fire Spread for Shredded Newspaper

Run No. Loading
Dens i y
lb/ft

4.
10
11
12
13'
14
15
16
17
60
61
62'
63

Temp. Relative,0F Humidity

0.0631
0.0627
0.0630
0.0620
0.0624
0.0625
0.0625
0.0624
0.0630
0.0625
0.0625
0.0625
0.0635

37
37
39
37
37
39
43
31
33
27
27
27
27

External*
Radiation
Btu/hr-ft

289**
173**
554t
0

5541
450
399
0

554'
0

605
398
207

Velocity Residue
ft/hr lb/ft

79.3
66.0

104.5
38.0

109.2
96.0
85.9
37.5

112.0
45.5

116.5
100.1
76.8

0.0093
0.00622
0.0145
0.0134
0.0137
0.0155
0.0150
0.0145
0.0139
0.0012
0.0013
0.0013
0.0013

* Radiation from
** radiation from

eight wires
four wires

% Burned

85 .Z
90.1
77.0
78.5
78.1
75.2
76.0
76.8
78,0
98.1
97,9
97.9
97.9



Table F-4

The Effect of Radiation on the Rate of Fire Spread for Computer Punch

Outs (1/8"x/16"xO.007")

Run No. Loading
Dens ily
lb/ft

Temp. Relative
OF Humidity

%

External*
Radiation
Btu/hr-ft

Velocity Reside
ft/hr lb/f t"

39 0
39 566
44 554
43 348
44 207
44 0
44 106
44 5541

0
14.90
14.47
9.96
7.56

0
4.68

13.80

0 .O
0.00
0.00

0.000C
010C

65 86.0
P84. 93.5
)71 94.4
)75 94.3

71 94.5

* Radiation from eight wires

21
22
23
24
25
26
27
28

% Burned

0.0625
0,0625
0.1275
0,1275
0.1275
0,1275
0.1275
0,1275

ILI~----- --- ." ~Wi l~ L". ;-~ -



Table F-5

The Effect of Radiation on the Rate of Fire Spread for Computer Cards

(l/2"xl/2"xO. 007")

Run No. Loading
Densi y
lb/ft

0.1275
0.1275
0.1275
0.1275

Temp. Relative External*
oP Humidity Radiation

% Btu/hr-ft

47 554'
47 0
47 348
44 168

Velocity Residme
ft/hr lb/ft

20.50 0.0056
0
13.70
8.70

0.0145
0.0059

* Radiation from eight wires

% Burned

95.5
-

88.6
95.3



Table F-6

The Effect of Wind Velocity on the Rate of Fire Spread for Shredded

Newspaper Fuel

Run No, Loading
Densiy
lb/ft

Temp. Relative External
oP Humidity Radiation

% Btu/hr-f t

0.0625
0.0625
0.0625
0.0625
0.0625
0.0625

Wind
Velocity
ft/sec

0
3.48
2.42.
2.89
1.30

0:

Velocity
ft/hr

29.3
107.5
59.0
82,8
31,5
28.3



F-2 Data of Radiation Flux Densities Around Methane Flames (by de

Rochechouart (2))

Table F-7

Reproducibility of DataL (Methane)

Q/L = 176,300 Btu/hr-ft

Run No, 6-4-3.

Distance from the
Center of the Slot

ft

0.217
0.296
0.361
0.427
0,493
0.624
0,755
0,886
1.018

0.217
0.263
0.329
0.394
0.525
0.657
0.788
0.919
1.050

0.217
0,247
0,312
0.378
0,4433
0.575
0.706
0.837
0.968

Reading
my

0,71
0,64"
0.59
0,58
0.5a
0,47
0,42
0,35
0,30

Flux Density
Btu/hr-ft 2

5,580
5,000
4,600
4,520
4,020
3,620
3,280
2,700
2,320

Run No. 6-4-4

0.74
0*665
0.64
0,60
0.52
0.46
0,40
0.35
0.30

Run No. 6-4-5

0.73
0.675
0,68
0.60
0.57
0.48
0.42
0.35
0.31

5,820
5,210
5,000
4,680
4,000
3,540
3,080
2,700
2,320

5,740
5,300
5,320
4,670
4,440
3,680
3,240
2,700
2,400

__



Table F-7 (continued)

Run No. 6-4-6

Distance from the
Center of the Slot

ft

0,217
0.279
0,345
0.411
0,476
0,607
0,739
0.870
1.001

Reading
my

0,73
0,66
0,61
0.56
0,52
0,47
0.41
0.34
0,29

Flux Densi
Btu/hr-ft

5,740
5,160
4,760
4,360
4,020
3,620
3,160
2,620
2,240

Ij~_ _ ~



Table F-8

Radiation Plur Densities for Different Heat Liberation Rates (Methane)

Run No. 6-00

Q/L = 63,700 Btu/hr-ft

Distance from the
Center of the Slot*

0,217
0.296
0.361
0.427
0.493
0,624

Reading
myv

0.51
0.39
0.36
0.31
0.29
0.25

Flux Densi y
Btu/hr-ft

3,920
3,000
2,780
2,400
2,240
1,940

Run No. 6-0

Q/L = 78,600 Btu/hr-ft

Distance from the
Center of the Slot*

0.217
0.296
0.361
0,427
0.493
0.624

Reading
my

0.54"
0.435
0.39
0.35
0,3

0.28

Flu, Density
Btu/hr-f t

4,190
3,300
3,000
2,700
2,480
2,100

Run No. 6-1

Q/L = 90,000 Btu/hr-ft

Distance from the
Center of the Slot*

0,217
0,296
0.361
0.427
0,493
0,624
0,755

Reading
my

0.56
0.44
0,41
0.37
0,34
0,28
0,22

Flux Densi 
Btu/hr-f t

4,360
3,400
3,160
2,860
2,620
2,160
1,700

~Zr-~ur -l~ -----u~- LQ_ -.Lii- :



Table F-8 (Continued)

Run No. 6-2

Q/L = 120,000 Btu/hr-ft

Distance from the
Center of the Slot*

ft

0.217
0.296
0,361
0.427
0!,493
0.624
0.755

Reading
my

0,59
0.48
0.45
0.43
0,i41
0,34
0.28

Flux Densiy
Btu/hr-ft

4,600
3,700
3,470
3,320
3,160
2,620
2,160

Run No, 6-8

Q/L = 130,600 Btu/hr-ft

Distance from the
Center of the Slot*

ft

0.217
0.296
0.361
0.427
0.493
0,624
0.755
0.886
1,018

Reading
my

0.65
0,54
0.50
0.51
0,46
0.37
0.32
0.26
0,20

Flux Densily
Btu/hr-ft

5, 090
4,190
3,850
3,920
3,540
2,860
2,470
2,010
1,550

Run No, 6-3

Q/L = 143,800 Btu/hr-ft

Distance from the
Center of the Slot*

ft

0.217
0.296
0.361
0,427
0.493
0,624
0.755
0.886
1,018

Reading
my

0.69
0.60
0.56
0.54
0,48
0.43
0.35
0.30
0.25

Flux Densiy
Btu/hr-ft

5,420
4,680
4,360
4,190
3,770
3,280
2,700
2,320
1,920



Table F-8 (Continued)

Run No. 6-9

Q/L r= 165,000 Btu/hr-ft

Distance from the
Center of the Slot*

ft

0.217
0,296
0.361
0.427
0,493
0.624
0.755
0.886
1.018

Reading
my

0.70
0.61
0.57
0.55
0.52
0,44
0,37
0.31
0,27

Flux Dens i y
Btu/hr-ft

5,500
4,760
4,440
4,270

4,020
3,420
2,860
2,400
2,090

Run No. 6-4

Q/L = 176,300 Btu/hr-ft

Distance from the
Center of the Slot*

ft

0.217
0.296
0.361
0.427
0.493
0.624
0.755
0.886
1.018

Reading
my

0,71
0,64
0.59
0,58
0,53
0.47
0.42
0.35
0.30

Flux Densipy
Btu/hr-ft

5,580
5,000
4,600
4,520
4,020
3,620
3,280
2,700
2,320

sY-~D------ -Z' - 1
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Table F-8 (Continued)

Run No. 6-5

Q/L = 197,200 Btu/hr-ft

Distance from the
Center of the Slot*

ft

0.217
0.296
0.361
0.427
0.493
0.624
0.755
0.886
1.018

Reading
mv

0,73
0.66
0.61
0.59
0.57
0.48
0.43
0.36
0.31

Flux Dens iy
Btu/hr-ft

5,740
5,170
4,760
4,600
4,440
3,680
3,320
2,780
2,400

Run No. 6-7

Q/L = 235,600 Btu/hr-ft

Distance from the
Center of the Slot*

ft

0,217
0.296
0.361
0.427
0.493
0.624
0.755
0.886
1.018

Reading
my

0,75
0,67
0.64
0.60
0.58
0.49
0.46
0.40
0.34

Flux Densiy
Btu/hr-ft

5,900
5,270
5,000
4,680
4,510
3,770
3,540
3,090
2,620

*Slot Width = 2.0 inches

c~-L-~s~-~-u~ -P-



Table F-9

Radiation Flux Density for a Different Slot Width and Two Different

Heat Liberation Rates (Methane)

Run No. 9-2

Q/L a 176,300 Btu/hr-ft

Distance from the
Center of the Slot*

ft

0.176
0.255
0.320
0.386
0.452
0.583
0.714
0.845
0.977

Reading
my

0.75
0,66
0.63
0.585
0,50
0.47
0,395
0.36
0 31

Flux Densiy
Btu/hr-f t

5,900
5,160
4,920
4,560
3,840
3,620
3,040
2,780
2,400

Run No, 9-3

Q/L = 120,000 Btu/hr-ft

Distance from the
Center of the Slot*

ft

0.176
0.255
0.320
0.386
0.452
0.583
0.714
0.845

Reading
my

0.63
0.53
0.50
0.46
0.41
0.37
0.29
0.25

Flux Density
Btu/hr-ft

*Slot Width = 1.0 inch

4,920
4,100
3,840
3,540
3,160
2,860
2,240
1,940
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F-3 Data. of Radiation Flux Densities Around Propane Flames

Table F-10

Radiation Flux Densities for Different Heat Liberation Rates (Propane)

Run No. 7-1

Q/L = 153,000 Btu/hr-ft

Distance from the
Center of the Slot*

0.220
0.296
0.361
0.427
0.558
0.689
0.821
0,952

Reading
my

0,75
0,69
0.62
0,58
0.48
0.39
0.33
0,30

Flux Densiy
Btu/hr -ft

5,840
5,380
4,830
4,500
3,740
3,040
2,570
2,340

Run No. 7-2

Q/L = 193,000 Btu/hr-ft

Distance from the
Center of the Slot*

0.296
0.361
0.427
0.493
0,558
0.689
0,821
0.952

Reading
myv

0.73
0,67
0.60
0.59
0.545
0.48
0,415
0.39

Flux Densi y
Btu/hr-ft

5,690
5,220
4,670
4,600
4,250
3,740
3,230
3,040
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Table F-10 (Continued)

Run No. 7-3

Q/L = 108,000 Btu/hr-ft

Distance from the
Center of the Slot*

0,230
0.296
0.361
0,427
0,493
0.624
0,755
0.886
1.018

Reading
my

0.695
0.63
0,57
0.51
0,46
0.385
0.325
0,27
0.215

Flux Dens iy
Btu/hr-ft

5,410
4,910
4,440
3,970
3,580
3,000
2,530
2,100
1,670

Run No, 7-4

Q/L = 83,600 Btu/hr-ft

Distanve from the
Center of the Slot*

0,230
0.296
0,361
0.427
0,493
0,558
0.689
0,821
0.952

Reading
my

0.68
0,59
0.54
0,46
0.41
0.41
0,325
0.26
0.195

Flux Density
Btu/hr-ft

5,300
4,600
4,210
3,580
3,.,190
3,190
2,530
2,030
1,520

*Slot Width = 2,0 inches

-- - ~plC~ Ut. -VI - -



104

F-4 Data on Flame Heights of Methane and Propane

Table F-11

Methane Flame Heights
( by de Rochechouart (24))

Heat Liberation Rate Flame Height
Btu/hr-ft ft

77,100
139,000
189,000
213,000
230,000
239,000
121,500
154,000
214,500

1.16
1,645
2.025
2.33
2.58
2.63
1.44
1.81
2.17

Propane Flame Heights

Heat Liberation Rate Flame Height
Btu/hr-ft ft

961500
128,500
166,800
187,000
212,000
229,000
146,000

1.15
1.38
1.71
1,93
2.12
2.38
1.56

Slot Width = 2.0 inches
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G. NOMENCLATURE

a slope of a gray gas wedge, dimensionless

a '  reciprocal men free path for radiation in the
fuel bed, ft-

A surface area of a fuel particle, ft2

b half width of a gray gas wedge, ft

bi dimensionless half width of the base of a
gray gas wedge, k'b

B mean beam length, dimensionless

B '  coefficient of expansion, (oF)-1

c heat capacity of a gas, Btu/lb-OF

c heat capacity of dry fuel, Btu/lb-oF
p

c heat capacity of moist fuel, Btu/lb-oF

d distance below fuel surface, ft

D diameter of a circular source, ft

*0 eddy diffusivity at the flame front, ft2/hre

F uo/yog modified Froude Number, dimensionless

F volumetric flow rate at a circular source, ft3/hr
V

F /L volumetric flow rate at a line source, ft3/hr-ft

F(x) interchange factor between a gray wall and an
element of fuel, dimensionless

5r(x)/L interchange factor between the wires and an
element of fuel dx, dimensionless

g acceleration due to gravity, ft/hr2

h convection heat transfer coefficient, Btu/hr-ft -oF

h convection heat transfer coefficient, Btu/hr-ft 2-F
c



106

h radiation heat transfer coefficient based
r on a first power temperature difference,

Btu/hr-ft2 - o F

H flame height, ft

d H total enthalpy of moisture (sensible plus
latent heat), Btu/lb

I flux density of radiation, Btu/ft2 -hr

k thermal conductivity of the fuel, Btu/hr-ft2 -opF/ft

k' absorption coefficient of a gray gas, ft-1

k" entrainment coefficient of a jet, dimensionless

K constant determining importance of heat lost
from fuel surface, ft/(Btu-hr)1 3

K' k' 'Q /rf cT a, dimensionless

1 thickness of the fuel, ft

1' distance over which convection heat transfer at
the flame front occurs, ft

L distance from the wires to the fuel, ft

L distance between fuel particles, ft

m number of equivalent layers of fuel if evenly
distributed, dimensionless

M moisture content of the fuel, lbs water/lb dry fuel

M molecular weight of air, lbs/mole

n molal flow rate of products at height x, lb-moles/hrx

n molal flow rate of fuel at source, lb-moles/hr

n molal flow rate of entrained air up to
a height x, lb-moles/hr

P pressure of gas, lbs/ft2

q total rate of heat transfer to an element
of fuel, Btu/hr-ft2
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q1 (x) rate of heat transfer by radiation from embers
under the fire to an element of unburned fuel per
unit of horizontal area, Btu/hr-ft2

q2 (x) rate of heat transfer by convection 
at the flame

front to an element of unburned fuel per unit
of horizontal area, Btu/hr-ft2

q (x) rate of heat transfer by radiation from the over-
head flame to an element of fuel per unit of
horizontal area, Btu/hr-ft2

q (x) rate of heat transfer from an element of unburned
fuel by convection and radiation per unit of
horizontal area, Btu/hr-ft2

q5 (x) rate of heat liberation by combustion within an
element of fuel per unit of horizontal area,
Btu/hr-ft2

q rate of chemical energy liberation from an
element of fuel during decompostion, Btu/hr-ft 2

q rate of heat transfer to unburned fuel by
c convection, Btu/hr

q rate of heat transfer to unburned fuel by
r radiation, Btu/hr

Q heat of combustion of the fuel, Btu/lb
c

Q. energy required to produce piloted ignition
1 per unit of horizontal area, Btu/ft 2

Q energy required to produce piloted ignition
per unit of horizontal area at a standard
velocity of fire spread, Btu/ft

2

Q heat liberation rate from a single wire per
unit length, Btu/hr-ft

Q(A) heat input rate per unit surface area as a
function of time, Btu/hr-ft2

Q/L rate of heat liberation by the flame per foot
length, Btu/hr-ft
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Q/L)B integrated heat transfer rate by radiation from
embers under the gas flame, Btu/hr-ft

Q/L) C integrated heat transfer rate by convection at
the flame front to unburned fuel, Btu/hr-ft

Q/L)L integrated rate of heat loss from the unburned
fuel, Btu/hr-ft

Q/L)R integrated rate of heat transfer by radiation
from the overhead flame to unburned fuel,
Btu/hr-ft

Q/L) I integrated rate of heat generation within
the burning fuel by combustion, Btu/hr-ft

Q/L)' integrated rate of heat transfer by radiation
R from the overhead flame to the burning

fuel, Btu/hr-ft

r distance between elements exchanging radiation, ft

r' dimensionless distance, k'r

r air required for stoichiometric combustion,
lbs air/lb fuel

R universal constant for an ideal gas, lbs/lb mole OF

s distance of paths through gray gas between
elements exchanging radiation, ft

s' dimensionless distance, k's

S surface area of a jet, ft2

t time, hr

T temperature, OF

T ambient temperature, OFa

T flame temperature, OF

Ti  ignition temperature of the fuel, OF

T temperature of a jet at its source, OF
o
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T1  temperature of the fuel particle when the
particle next to it ignites, OF

u vertical velocity of a jet at height x, ft/hr

ue eddy velocity at the flame front, ft/hr

uo velocity of a jet at the source, ft/hr

u' dimensionless jet velocity, u/u
o

U overall convection heat transfer coefficient,
Btu/hr-ft 2_oF

V rate of fire spread, ft/hr

v entrainment velocity, ft/hr

V wind velocity, ft/hr
w

v' shortest dimensionless distance between an
infinite element and a spot exchanging radiation

V volumetric flow at height x per unit length,
x ft3/hr-ft

V volumetric rate of entrainment up to height
x per unit length, ft 3 /hr-ft

V volumetric flow at source, per unit length,
o ft 3 /hr-ft

v' dimensionless volumetric flow rate at height xx

V volume of a fuel particle, ft3

w distance variable, ft

w' k'w, dimensionless

W width of a parallelepiped of gray gas, ft

W' dimensionless width of a parallelepiped of
gray gas, k'W

S width of the base of the line fire, ft

x distance variable, ft

xv k'x, dimensionless



x'' dimensionless distance from the source of a
jet, x/y0

y distance variable, ft

y' k'y, dimensionless

y half width of a jet at height x, ftx

Yo half width of a jet at the source, ft

Y' dimensionless half width of a jet at heightx
x, y /yx o

Y half the length of a gray gas parallelepiped, ft

Y' kY, dimensionless

z distance variable, ft

z' k'z, dimensionless

Z height of a rectangular parallelepiped or wedge
of gray gas, ft

Z' kZ, dimensionless

Greek Letters

a thermal diffusivity, ft2/hr

constant of proportionality between chemical
energy of gases liberated during fuel de-
composition and the heat absorbed by the
fuel, dimensionless

V density of moist fuel, lbs/ft3

emissivity of the fuel, dimensionless

Ef emissivity of the flame, dimensionless

f fuel loading density, lbs/ft2

Sfraction of the fuel burned by the passing
fire, dimensionless

dummy variable in time, hr

a- Stefan-Boltzmann constant, Btu/hr-ft -0 R4
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'0 surface of volume ratio, ft"/ft 3

p density of a gas, lbs/ft3

Pa density of air, lbs/ft
3

Po density of fuel at source, lbs/ft 3

p' dimensionless density of gas, P/Pa

po dimensionless density of fuel at source, p /p

Q time of heating from ignition of the previous
ignited fuel particle, hr

4i time of ignition from the ignition of the
previous fuel particle, hr

A viscosity of a gas, lbs/ft-hr

A. inverse volumetric expansion of gas due to
combustion, dimensionless



112

IX REFERENCES

1. Atallah, S. I,, "Model Studies on the Propagation of Fire", Eng, Thesis,
Chem. Eng, Dept., M.I.T.,Jan. 1960

2, Blinev, V. I,, and Khudiakov, G.N., Reviewed by Hottel, H,C., "Certain
Laws Governing Diffusive Burning of Liquids", Fire Research Abstracts
and Reviews, Vol. 1, No. 2, Jan. 1959

3. Broido, A., and Martin, S. B., "Effects of Potassium Bicarbonate on the
Ignition of Cellulose by Thermal Radiation", U, S. Naval Radiological
Defence Laboratory, USNRDL-TR-536, DASA-1255, Oct. 1961

4. Bruce, H. D., and Downs, L, E,, "Ignition of Newspaper by Radiation with
Variation in Moisture Content and Pulse Time", U. S. Dept. of Agriculture,
Forest Service, Technical Report AFSWP-1099

5. Burington, R, S., "Handbook of Mathamatical Tables and Formulas", page 61

6. Carslaw, H. S., and Jaeger, J. C., "Conduction of Heat in Solids", Second
Edition, Oxford at Clarendon Press, page 76

7. Fons, W. L., ".Analysis of Fire Spread in Light Forest Fuels", Journal
of Agricultural Research, 72, 93, 1946

8, Fons, W. L., Bruce, H. D., Pong, W. Y., and Richards, S, S., "Project
Fire Model", Summary Progress Report, U. S. Dept. Agriculture, Forest
Service, May 1960

9. Homsy, C, A., "Similitude in Turbulent Free-Jet Diffusion Flames", ScD
Thesis, Chem, Eng. Dept., M.I.T., 1959

10. Hottel, H. C., "Heat Transmission", Third Edition, Chapter 4, (Mc Adams),
Mc Graw-Hill Book Co., New York, 1959, pages 55-139

11, Hottel, H. C., "Fire Modeling", "The Use of Models in Fire Research"',
National Academy of Science, Publication 786, 1961

12, Hottel, H. C., Personal Commuunication, 1961

13, Hottel, H. C., and Williams, C. C., "Transient Heat Flow in Organic
Materials Expossed to High Intensity Radiation", Industrial and Engineering
Chemistry, 47, 1136-1143, (1955)

14, Lawson, D. I., and Simms, D, L., "The Ignition of Wood by Radiation",
Britisn Journal of Applied Physics, 3, 288-292, (1952)

15. Lee and Emmons, H. W., 1961, to be published

16, Martin, S., Lincoln, K. A., and Ramstad, R. W., "Thermal Radiation Damage
to Cellulose Materials", Part IV, U. S. Radiological Defence Laboratory,
USNRDL-TR-295, Dec. 1958

v_



113

17, Martin, W. T., and Reissner, E., "Elementary Differential Equations",
Addison-Wesley Publishing Co., Cambridge, Mass., pages 42, 94-95

18. Mc Adams, W. H,,, "Heat Transmission',', Third Edition, Mc Graw-Hill Book Co.,
New York, 1954, page 177

19, Morton, B. R., Journal of Fluid Mechanics, 2, 127, (1957)

20. Morton, B. R., Journal of Fluid Mechanics, 5, 156, (1959)

21, Morton, B. R., Journal of Fluid Mechanics, 10, 101, (1961)

22, Morton, B. R,, Taylor, G. I., and Turner, J. S., "Proceedings of the

Royal Society A, 236, 1, (1956)

23. Murgai, M. P., and Emmons, H. W,, Journal of Fluid Mechanics, 8, 611, (1960)

24. de Rochechouart, C. L., "Radiation from a Line Fire", M. S. Thesis,
Chem. Eng, Dept., M.I.T., May 1961

25, Rouse, H., Yih, C, S., and Humpreys, H. W., Tellus, 4, 201, (1952)

26, Schaefer, V. J., "The Relationship of Jet Dtreams to Forest Wildfires",
Journal of Forestry, 55, 419, (1957)

27, Schmidt, F. H., "On the Diffusion of Heated Jets", Tellus, 9, 378, (1959)

28. Schmidt, W., angew Math. Mech., 21, 265,351, (1941)

29. Simms, D. L., "The Influence of External Air Movements on the Ignition
of Materials by Radiation", Dept. of Scientific and Industrial Research
and Fire Offices, Committee Jount Fire Research Organization, F. R.
Note 305

30. Stout, H. P., "Ignition of Wood by Radiation", British Journal of Applied
Physics, 3, 394, (1952)

31, Thomas, P. H., Webster, C. T.,, and Raftery, M, M,, "Some Experiments on
Buoyant Diffusion Flames", Combustion and Flame, 5, No. 4, (1961)

32, "A Study of Fire Problems", National Academy of Sciences, National Research
Council, Publication 949

33, Priestly and Ball, "Continuous Convection from an Isolated Source of
Teat", Quarterly Journal of the Royal Meteorological Society, 81, (1955)



AUTOBIOGRAPHICAL NOTE

The author was born on May 16,1937 in Woodbury, New Jersey, the

third son of Owen F. Steward and his wife, the former Mary Waddington. He

attended the local elementary and high school from which he was graduated

in June, 1955 and entered M.I.T. the following September. He received his

Bachelor of Science in Chemical Enginerring in June, 1959 and his Master

of Science in Chemical Engineering in February of 1960 after spending the fall

term at the Bayway-Bound Brook Practice School in New Jersey. At this time

he commenced the present project. The author married the former Jacqueline

Bourcier of Alexandria, Ontario on June 24, 1961. They now have a son,

Richard Michel, born April 18, 1962.

The author was a Teaching Assistant from February to June, 1960

and a Research Assistant for the remainder of this work. He has accepted

a position as Assistant Lecturer at the University of Edinburgh.

- _~__ ~-~II---.


