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Abstract

A large number of collective instability mechanisms act on high-intensity beams.
It is necessary to determine under what conditions the beam will remain stable. Space
charge is the most fundamental mechanism and it represents the main intensity limita-
tion in low-energy machines, while at high energy the inductive chamber impedance
is often dominant. Landau damping provides a natural stabilizing mechanism against
collective effects, if particles in the beam have a small spread S in their natural fre-
quencies. The purpose of this report is to study the loss of Landau damping for the
longitudinal plane via the “Sacherer formalism”. Stability limits are calculated for
several longitudinal beam distributions, including two types of flat bunches, which
could be of interest to the LHC upgrade. Landau stability diagrams are computed and
presented for different azimuthal modes. A general recipe is given for calculating the
threshold intensity in the case of a capacitive impedance below transition or, equiva-
lently, for a purely inductive impedance above transition. Results are finally applied to
the case of the PS Booster, as an example of space-charge impedance below transition,
and to the SPS, as an example of inductive impedance above transition.
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1 Introduction

It is known that circulating bunched beams induce electromagnetic fields in the vacuum pipe giving
rise to image currents that act back on the beam. Under certain conditions the beam will become
unstable. This is a general mechanism that drives an instability.

The vacuum chamber, having a finite conductivity, presents an impedance to the beam image
current. The impedance Z = Zr + iZi can be resistive (real, Zi = 0), capacitive (imaginary,
Zi > 0) or inductive (Zi < 0). The voltage induced is given by V ∼ IZ.

Following Sacherer [1] we can represent the beam particle distribution as the sum of a station-
ary (time independent) component g0 and a small perturbtation term g1 of the form

g(r, θ, t) = g0(r, θ) + g1(r, θ, t)e
−ıΩt , (1)

where r and θ are polar coordinates in the longitudinal phase space1, representing the amplitude
and phase of the synchrotron motion, respectively, i.e.

φ = r cos θ (2)

φ̇

ωsc0
= r sin θ . (3)

Here φ denotes the phase of a particle with respect to the rf wave (divided by 2π) and ωsc0 the
angular frequency of the longitudinal motion at the centre of the bunch including the incoherent
synchrotron frequency shift (with respect to the synchotron frequency ωs0 of a single particle)
Δωincoh due to the potential-well distortion induced by the stationary distribution, i.e.

ωsc0 = ωs0 + Δωincoh . (4)

The incoherent frequency shift Δωincoh is negative for a capacitive impedance (e.g. space charge)
below transition or for an inductive impedance above transition. The evolution of the perturbed
particle distribution g1 is governed by the Vlasov equation [1, 2].

The longitudinal impedance leads to a complex frequency shift ΔΩ that perturbs the original
angular frequency of the motion of the mth order longitudinal mode, which becomes Ω = mωsc0+
ΔΩ.

If nonlinearities are neglected, the longitudinal motion of a particle due to an external rf voltage
resembles that of the harmonic oscillator and no frequency spread is present. In this case the beam
is either stable or unstable for any current and, when unstable, the growth rate of the instability
will depend on the bunch population. In the presence of a frequency spread the fact that not all
particles in the beam oscillate with the same frequency, Landau damping occurs and stabilizes the
beam under certain conditions. It is the purpose of this report to study when this natural stabilizing

1As Sacherer, we will assume that the synchrotron frequency ω s is a function of the phase space amplitude r, but
that it does not vary very much between the bunch-center and the bunch edge, which makes the problem more tractable
because with such a small perturbation, the trajectories of the particles in phase space z, p z will be nearly circular, and
the evolution of various modes can be decoupled. However, this assumption may not always be fulfilled for proton
beams which often occupy most of the rf bucket.
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mechanism is lost and provide realistic intensity thresholds above which the beam will become
unstable.

The perturbation g1(r, θ) can be written in the form [1, 2]

g(r, θ, t) =

∞∑
m=1

Rme−ımθe−ıΩt (5)

as the distribution must be periodic in θ with a period 2π, where Rm are radial functions corre-
sponding to the mth azimuthal mode that are defined from the linearized Vlasov equation (applying
to small perturbations of the stationary distribution).

If the change in mode frequency due to the impedance is small, so that Ω − mωsc � ωsc,
the coupling between different azimuthal modes can be neglected, leading to the Sacherer integral
equation for a single mode m:

(Ω − mωsc(r))Rm(r) =
dg0

dr

∫ ∞

0

Gm(r, r′)Rm(r′)r′dr′ (6)

where the matrix Gm(r, r′) is given by

Gm(r, r′) =
ıe2v

2πC

∫ 2π

0

dθ

∫ 2π

0

dθ′Km(r′ cos θ′ − r cos θ) sin θeım(θ′−θ) (7)

The synthetic kernel approach [3, 4] is normally used to solve Eq. (6). In this approach, the actual
interaction that generates an infinity of modes is replaced by a simplified interaction that excites
only the rigid-dipole mode for m = 1, or, equivalently, only one of any of the other, higher-order,
rigid multipole modes 2. For a general mode of order m, the synthetic kernel is of the form [4]

Km ∝ r′m−1
rm . (8)

Using this dependence in (7) yields Gm(r, r′) = Cmrmr′m−1, where all constants have been ab-
sorbed into Cm. Finally, with the synthetic kernel Sacherer’s equation (6) can be rewritten as

1 = Cm

∫ ∞

0

r2m dg0

dr
dr

Ω − mωsc(r)
. (9)

1.1 Definition of Δωm

In the absence of frequency spread, the denominator in (9) can be taken out of the integral because
it is constant, Ω−mωsc(r) = Ω−mωsc0. We can thus define Wm =

∫ ∞
0

r2m dg0

dr
dr and Δωm = Ω−

mωsc as the “dynamic coherent frequency shift”. This yields the well-known Sacherer dispersion
relation (Eq. (16) in Ref. [1]):

1 =
Δωm

Wm

∫ ∞

0

r2m dg0

dr
dr

Ω − mωsc(r)
(10)

2For the lowest mode, i.e. the dipole mode m = 1, Ng [4] assumes a force proportional to the longitudinal distance
namely K1 = A(r′ cosφ′ − r cosφ). The implications and the correctness of Ng’s ansatz should be explored in the
future.
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1.2 Incoherent and coherent frequency shifts

The coherent synchrotron frequency of the bunch is,

Ω = mωs0 + mΔωincoh + Δωm ≡ mωsc0 + Δωm , (11)

where we distinguish an incoherent frequency shift at the bunch center, Δωincoh and the dynamic
coherent shift introduced above.

For an elliptical distribution, i.e. parabolic line density, E. Metral [5], K.Y. Ng [4], and also
earlier F. Ruggiero [6], pointed out that in the absence of synchrotron frequency spread, the co-
herent frequency shift of the rigid dipole mode m = 1 vanishes. This feature can be understood
from a simple physical argument, namely from the fact that the rigid-dipole motion of the bunch
center will not be affected by the wake field because the sum of all internal forces is zero. For this
reason the coherent frequency must be just equal to the bare synchrotron frequency. This situation
is sketched in Fig. 1.

The synchrotron frequency spread vanishes for small amplitudes (i.e. for bunches occupying a
small fraction of the bucket) and with a constant de-focusing (or focussing) self-force. In the case
of a purely (positive or negative) inductive impedance, the focusing (or defocusing) self force is
constant for a parabolic line density.

However, to study loss of Landau damping the frequency spread arising from the nonlinearity
of the external rf wave and the finite length of the bunch is essential and cannot be neglected. In
the following discussion stability diagrams for different distributions and azimuthal modes will be
analyzed including a nonzero (normalized) frequency spread S.

Figure 1: Graphical representation of the case of a capacitive impedance below transition with no
frequency spread for the dipole mode

2 Distributions in the longitudinal phase space and its projections using the
Abel transformation

The discussion on Landau damping that is derived from the Sacherer dispersion relation in (10)
depends on the choice of longitudinal phase space distribution g(r). Its projection onto the z-axis
gives the line density λ(z) and this is what normally one can measure.
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For an approximately circular distribution g(r) in normalized phase space a projection onto the
axis can be performed using the Abel transformation, first introduced in [7].

The Abel transform of a function g(r) that is rotationally symmetric is given by

λ(z) = 2

∫ τ̂

z

g(r)rdr√
r2 − z2

, (12)

where g(r) is taken to be normalized such that in polar coordinates the following applies

2π

∫ τ̂

0

g(r)rdr = 1 . (13)

Throughout this report we will take z to designate the length coordinate (or τ the time, alterna-
tively) and τ̂ to denote the half bunch length.

Let us consider some commonly used distributions. As a first example, the elliptical density
distribution

g(r) =
3

2πτ̂ 2

√
1 − r2

τ̂ 2
0 < r < τ̂ (14)

has the parabolic linear projection

λ(z) =
3

4τ̂

(
1 − z2

τ̂ 2

)
0 < |z| < τ̂ . (15)

Both functions are illustrated in Fig. 2. The projection λ has a discontinuity in its derivative right
at the end of the bunch.

0.2 0.4 0.6 0.8 1
r

0.1

0.2

0.3

0.4

g�r�

-1 -0.5 0.5 1
Τ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Λ�Τ�

Figure 2: Elliptical distribution g(r) = 3/(2πτ̂ 2)
√

1 − r2

τ̂2 of (14) and its projection λ(z) of (15),
where the half bunch length has been set to one (τ̂ = 1) for convenience.

To avoid the problem of discontinuous derivative, a parabolic density distribution may be used
of the form

g(r) =
2

πτ̂ 2

(
1 − r2

τ̂ 2

)
0 < r < τ̂ , (16)

whose corresponding projection is given by its Abel transform as

λ(z) =
8

3πτ̂

(
1 − z2

τ̂ 2

)3/2

0 < |z| < τ̂ . (17)
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In his original paper, F. Sacherer [1] used a smooth distribution with zero slope at the beam
edge,

g(r) =
3

πτ̂ 2

(
1 − r2

τ̂ 2

)2

0 < r < τ̂ . (18)

The projection of this function,

λ(z) =
16

5πτ̂

(
1 − z2

τ̂ 2

)5/2

0 < |z| < τ̂ , (19)

is well-behaved. Both g and λ for the smooth distribution are shown in Fig. 3.
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Figure 3: Smooth distribution g(r) = (3/πτ̂ 2)
(
1 − r2

τ̂2

)2

of (18) and its projection λ(z) of (19)

onto the time axis.

2.1 Parameter dependent parabolic-like distributions

The three previous density functions are all examples of a more general class of distributions that
can be expressed in terms of a free parameter n [8]:

g(r) =
n + 1

πτ̂ 2

(
1 − r2

τ̂ 2

)n

0 < r < τ̂ . (20)

From this, we recover the elliptic distribution for n = 1/2 and the smooth distribution for n = 2.
In a recent report by K.Y. Ng [4] the stability diagrams for several different example values of n are
analyzed. An analytic solution of the dispersion relation for the general parabolic-like distribution
of the type (20) exists, which was derived by F. Ruggiero and S. Berg [8]. The Abel transformation
of such functions can also be calculated and it can written in the compact form

λ(z) =
n(n + 1)Γ(n)

τ̂
√

πΓ(n + 3
2
)

(
1 − r2

τ̂ 2

)n+ 1
2

0 < |z| < τ̂ (21)

.
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2.2 The inverse Abel transformation: from the line density to the amplitude distribution

Since the line density λ(z) is what one can normally measure (e.g. in a “tomoscope”), it is in-
teresting to perform the inverse transformation. No information is lost as long as the distribution
is circularly symmetric in phase space and g(r) drops to zero faster than 1/r. The inverse Abel
transformation is given by

g(r) = −1

π

∫ τ

r

dλ(z)

dz

dz√
z2 − r2

. (22)

As an example, we choose Sacherer’s smooth-function line density (19) and prove that we recover
the original amplitude distribution (19), namely

fromλ(z) =
16

5πτ̂

(
1 − z2

τ̂ 2

)5/2

via
dλ(z)

dz
= −16z

πτ̂
(1 − z2

τ̂ 2
)3/2

we findg(r) = −1

π

∫ τ̂

r

dλ(z)

dz

dz√
z2 − r2

=
3

πτ̂ 2

(
1 − r2

τ̂ 2

)2

and the smooth function (18) is recovered.
We have presented this technique here, including both the direct transform and its inverse,

since we will later attempt to search for an amplitude distribution that correctly models realistic
flat bunches. In one approach, the generalized parabolic-like distribution (20) with properly chosen
n will be used, and in a second approach a flat function λ(z) with its corresponding inverse Abel
transform for g(r).

2.3 Flat bunches using parabolic-like distributions

Flat bunches are produced in the PS Booster using different techniques [9]. To correctly describe
longitudinal instabilities of such beams, a phase-space distribution has to be chosen, so that its line
density resembles that of a flattened bunch.

Making use of the previous analysis, we can proceed by assuming different values of n and
observing how as n gets larger, the distribution becomes more packed around the origin. On the
other hand and conversely, the line density or projection onto the axis λ(z) becomes flatter as n
gets smaller.

in particular, by setting dλ
dn
| = 0, we find that for the specific value n = −1/2 a perfectly

flat line density is obtained. This, however, presents a problem in the phase-space distribution
g(r), because for this value of n the latter goes to infinity at the bunch-edge. Introducing a small
additional term in n ±ε removes the singularity. In the example of Fig. 4, the parameter n has been
set to n = −0.49.

2.4 Flat bunches using the inverse Abel transformation

As suggested by M. Furman in [10] a “flat” longitudinal profile is specified by the line density

λ(z) = K(1 − |z/a|1/p)q |z| < a, p, q ≥ 0 , (23)
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Figure 4: General parabolic-like distribution (20) with n = −0.49 and its nearly flat projection
onto the time axis, λ(z).

where K is a normalization constant. This distribution has a full width of 2a. A reasonable
description of a flat bunch, according to [10], is given by the following choice of parameters:
a = 1, p = 0.039 and q = 10. With the corresponding normalization and again choosing τ̂ = 1,
(23) simplifies to:

λ(z) = 0.561466
(
1 − |z|25)10

. (24)

The inverse Abel transformation cannot be given analytically. However, its numerical compu-
tation is straightforward. Both the amplitude distribution and its projection are plotted in Fig. 5.

Figure 5: Amplitude distribution g(r) for a flat line density λ(z)

2.5 Comparison between different distributions

Figure 6 compares different radial distributions obtained from (20) by choosing different exponents
n, and the corresponding projections onto the real coordinate z,
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Figure 6: Different distributions of phase space amplitude from (20) with various exponents n
[left], and their projections [right], all superimposed.
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3 Landau stability diagrams

In the following section, we discuss stability diagrams for different distributions.

3.1 Stability diagrams for parabolic-like distributions

The Sacherer dispersion relation has an analytic solution for the general distribution given by (20).
The dispersion relation in this case reads

1 =
Δωm

Wm

∫ ∞

0

r2m

Ω − mωsc(r)
· dg0(r)

dr
dr , (25)

where

Wm =

∫ ∞

0

r2mdg0(r)

dr
dr . (26)

In the absence of incoherent frequency spread (S = 0), oscillations about the stationary distribution
g0(r) occur at a frequency of Ω = mωsc0 + Δωm, where, as before, ωsc0 denotes the incoherent
synchrotron frequency at the centre of the bunch including self forces. The dynamic part of the
mth azimuthal coherent frequency shift is defined as Δωm = Ω − mωsc0. From the discussion
of the frequency shift in Appendix A the small amplitude approximation is valid and ωsc(r) =
(ωsc0 − Sr2). To simplify the integral, we make the following change of variable u = r2. The
dispersion relation can then be rewritten as

1 =
Δωm

Wm

∫ ∞

0

um

Ω − mωsc0 + mSu
· dg0(u)

du
du . (27)

Eq. (27) includes only the frequency spread from the nonlinearity of the external rf and ignores
additional contributions to (or reductions from) the freqeuncy spread that arise from the self force.
In other words, we are implicitly making the assumption that the spread introduced by the self
fields is either small compared with the external spread or that it also has a quadratic dependence
on the amplitude of the synchrotron motion r.

It now is convenient to take S and m out of the integral and to define z = (ωsc0 −Ω/m)/S, so
that (27) becomes

1 =
Δωm

mSWm

∫ ∞

0

um · dg0(u)
du

u − z
du . (28)

For parabolic-like distributions, written as a function of u as

g0(u) =
n + 1

πτ̂ 2

(
1 − u

τ̂ 2

)n

0 < u < τ̂ 2 , (29)

the integral assumes the form of a hypergeometric function. Using its properties and that of the
Gamma function (a thorough derivation is deferred to subsection 3.2), the dispersion relation yields

1 = −Δωm

mS

τ̂ 2

z
2F1

(
1, 1 + m; 1 + m + n;

τ̂ 2

z

)
. (30)
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Figure 7: Landau stability diagram for a parabolic-like distribution (20) with n = 1, i.e. parabolic
distribution g(r) = 2

π
(1 − r2). Plotted is Im(Δω/S) as a function of Re(Δω/S) at the border

of instability, where Δω ≡ Δωm denotes the dynamic part of the coherent frequency shift in the
absence of incoherent frequency spread.

Figure 8: Landau stability diagram for a parabolic-like distribution (20) with n=2, i.e. Sacherer’s
smooth function g(r) = 3

π
(1 − r2)

2

Figure 9: Landau stability diagram for a parabolic-like distribution (20) with n=1/2, i.e. elliptic
distribution g(r) = 3

2π

√
1 − r2. Plotted is Im(Δω/S) as a function of Re(Δω/S) at the border

of instability, where Δω ≡ Δωm denotes the dynamic part of the coherent frequency shift in the
absence of incoherent frequency spread.
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Figure 10: Landau stability diagram for a parabolic-like distribution n=-1/2, i.e. flattest λ(z)

g(r) = 1
2π

(1−r2)−
1
2 . Plotted is Im(Δω/S) as a function of Re(Δω/S) at the border of instability,

where Δω ≡ Δωm denotes the dynamic part of the coherent frequency shift in the absence of
incoherent frequency spread.

For convenience, we now again choose τ̂ = 1, since it is easy to add the correct normalization
later, using dimensional arguments. The stability diagram can be plotted by letting z adopt real
values between 0 and 1. Examples for n = 1, 2, 1/2 and −1/2 are presented in Figs. 7 to 10.

Figures 11, 12, and 13 show the same stability diagrams, but now comparing different distri-
butions for the same azimuthal mode from m = 1 to m = 3. .

Figure 11: Landau stability diagram for the dipole mode m = 1 considering a parabolic, elliptic
and smooth distribution. Plotted is Im(Δω/S) as a function of Re(Δω/S) at the border of in-
stability, where Δω ≡ Δω1 denotes the dynamic part of the coherent frequency shift of the rigid
dipole mode in the absence of incoherent frequency spread.
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Figure 12: Landau stability diagram for a parabolic, elliptic and smooth distributions correspond-
ing to the quadrupole mode m = 2. Plotted is Im(Δω/S) as a function of Re(Δω/S) at the border
of instability, where Δω ≡ Δω2 denotes the dynamic part of the coherent frequency shift of the
rigid quadrupole mode in the absence of incoherent frequency spread.

Figure 13: Landau stability diagram for a parabolic, elliptic and smooth distributions correspond-
ing to the sextupole mode m = 3. Plotted is Im(Δω/S) as a function of Re(Δω/S) at the border
of instability, where Δω ≡ Δω3 denotes the dynamic part of the coherent frequency shift of the
rigid sextupole mode in the absence of incoherent frequency spread.
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3.2 Solution of Sacherer dispersion relation in terms of Hypergeometric function

The hypergeometric function can be defined as

2F1(a, b; c; x) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0

tb−1(1 − t)c−b−1

(1 − tx)a
dt . (31)

Combining (28) and (29) we have

1 =
Δωm

mSWm

∫ ∞

0

um · dg0(u)
du

u − z
du =

Δωm

mSWm

−n(n + 1)

zπ

∫ 1

0

um · (1 − u)n−1

−(1 − u
z
)

du , (32)

and comparing (31) and (32), we can easily identify coefficients term by term,

a = 1 ,

b = 1 + m ,

c = 1 + m + n ,

x =
1

z
,

so that (32) can be rewritten as

1 =
Δωm

SWm

n(n + 1)

zπm

Γ(1 + m)Γ(n)

Γ(1 + m + n)
2F1

(
1, 1 + m; 1 + m + n;

1

z

)
. (33)

The coefficient Wm can be computed in a similar fashion, after setting a = 0. Since 2F1(0, 1 +
m; 1 + m + n; 1/z) = 1 we obtain

Wm =
−n(n + 1)

π

Γ(1 + m)Γ(n)

Γ(1 + m + n)
. (34)

Hence, the dispersion relation (33) simplifies to

1 = −Δωm

mS

1

z
2F1(1, 1 + m; 1 + m + n;

1

z
) , (35)

which is our Eq. (30).

3.3 Sign convention

3.3.1 REAL PART OF Δωm

Depending on the convention that has been chosen, ejΩt (engineering convention), or e−iΩt, the
shape of the stability diagram will be flipped around the imaginary axis. A fundamental question
arises when asked to relate the frequency shift with the impedance.

Not only is it relevant what choice of the sign has been made, but it is also necessary to de-
termine whether the beam is driven by a space-charge (capacitive) impedance below transition
or by an inductive impedance below transition. According to A. Hofmann, to avoid confusion,
accelerator physicists use causality arguments when discussing stability diagrams. For example, if
we are dealing with space charge below transition where stability will be lost when Δωm reaches
its peak, i.e. for z = 0 (see the subsequent discussion in subsection 3.4), we then know that this
point should be on the half plane where Re(Δωm) > 0.
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3.3.2 IMAGINARY PART OF Δωm

Using Cauchy’s theorem it is possible to separate the previous integral into two parts: the principal
value and a residuum:∫

F (x)

x − x0 ∓ ıε
dx = PV

∫
F (x)

x − x0 ∓ ıε
dx ± ıπF (x0) (36)

Introducing this mathematical fact into the dispersion relation yields

1 =
Δωm

S

∫ 1

0

F (u)

u − z ∓ ıε
du =

Δωm

S
(I(z) ± ıπF (z)) , (37)

where

I(z) = PV
∫

F (x)

x − x0
dx ,

and, in our case,

F (u) =
umg′(u)

mWm
.

The computation of I and F for a parabolic-like distribution (20) is straightforward:

I(z) = −Re

(
1

z
2F1

(
1, 1 + |m|, 1 + |m| + n,

1

z

))
,

F (u) =
( u

m

)m (
1 − u

m

)n−1 Γ(1 + m + n)

mΓ(n)Γ(1 + m)
.

An important matter regarding the sign of the imaginary part arises here. The hypergeometric
function has a branch line from z = ∞ to z = 1. So the analytic continuation is at choice. By
introducing ıε with ε > 0, z approaches the axis from above and we make sure that causality is
fulfilled. For the sake of consistency, it will be assumed that a force of the form e−iΩt drives the
beam and by choosing Ω− > Ω + ıε, it is a force that grows with time at an infinitesimal rate
as e−iΩt+εt. So all points on the negative half-plane of the stability diagram will be automatically
damped. It is only in the upper half plane, Im(Δωm) > 0, that Landau damping can actually
happen.

Figure 3.3.2 shows Re(Δωm) and Im(Δωm) as functions of real values z, describing the
threshold of instability. Note that the Landau-damped region corresponds to zε[0, 1]. In addition,
the difference between choosing +ıε and −ıε is indicated by the two graphs.
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Figure 14: Re(Δωm) and Im(Δωm) vs. z for +ıε and −ıε, respectively. The graph corresponds to
n = 1/2 (elliptic distribution) and m = 1 (dipole mode).

3.4 General method for calculating the intensity threshold

Landau damping is lost when the coherent frequency Ω lies outside the band of incoherent syn-
chrotron frequencies. The corresponding threshold intensity for the case of a purely capacitive
space-charge impedance can be calculated from

Ω = mωmin
sc or Ω = mωmax

sc ,

with ωmin
sc (ωmax

sc ) denoting the minimum (maximum) synchrotron frequency inside the bunch and
m representing the azimuthal mode number. The first case applies for an inductive impedance
below transition, where the synchrotron frequencies are shifted upwards with increasing bunch
intensity. Here the threshold intensity is determined by the lowest synchrotron frequency. The
second case applies for a space-charge (capacitive) impedance below transition (or an inductive
impedance above transition), and where the threshold intensity is determined by the highest syn-
chrotron frequency.

This can easily be justified by taking a close look at the Sacherer formula that relates the
dynamical coherent frequency shift with the intensity and impedance [11, 12] 3

Δωm = −ı
mωsc

m + 1

Ib

3B3Vth cos φs

(
Z

n

)
eff

. (38)

where B is the bunching factor, defined as B = τbf0 with τb the total bunch-length in seconds. By
definition cos φs > 0 below transition and cos φs < 0 above transition. The parameter Vt denotes
the total peak voltage, h the harmonic number and Zeff the effective impedance. For a positive
capacitive impedance below transition we have Re(Δωm) > 0.

The incoherent frequency shift due to self-forces (already included in ωsc) for a parabolic line
distribution (or elliptical density distribution) is given by [4]:

Δωincoh = −η
3e2Nb

8πβ2E0ωs0τ̂ 3
Im(Z0/n) (39)

3Neither Sacherer nor Zotter give any hint for which type of distribution this formula applies, but possibly it has
been derived for a parabolic line density. In the future we need to verify whether or not this formula is a reasonable
approximation for other distributions, and in particular for flat profiles.
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Summarizing, for space-charge below transition the incoherent frequency is shifted down-
wards, Δωincoh < 0 and the bunch as a whole is coherently shifted upwards, Re(Δωm) > 0.
Figure 15 illustrates this process.

Figure 15: Graphical representation of a capacitive impedance below transition with rms frequency

spread < ωrms >
!≡ ωsc0. The left diagram shows a case where Landau damping occurs, because

the coherent tune shift falls within the frequency spread Δωm/S < 1. The diagram on the right
shows the case of Δωm/S >> 1, where no Landau damping occurs.

3.4.1 THRESHOLD VALUE OF Δωm

S
FOR ANY g(r) DISTRIBUTION

We note that the condition Ω = mωmax
s translates into z = 0, where we define z as in (28),

z =
ωsc0 − Ω/m

S
. (40)

A general recipe for the calculation of the threshold intensity can now be given:

1. For any given distribution in longitudinal phase space g(r) calculate its derivative dg(r)
dr

.

2. Define a function

F (z, m) =

∫ ∞
0

um· dg0(u)
du

u−z
du∫ ∞

0
um · dg0(u)

du
du

,

where we have changed variables according to u = r2.

3. Evaluate Δωm

S
(z, m)|z=0 = 1

F (z,m)
|z=0

4. Use Sacherer’s coherent shift formula 38) plus a good approximation for the frequency spread
S, e.g. Eq. (55) in the appendix), to express the result in terms of the intensity:

Im
threshold = ı

m + 1

m

3π2B5h3VT cos φs

16 · (Z
n

)
eff

[
Δωm

S

]
z=0

. (41)

We must add two words of caution here. First the “recipe” that is described above is valid only
for a capacitive impedance below transition or an inductive impedance above transition; otherwise
the evaluation of the dispersion relation should be done for z = 1 instead of z = 0. Second,
depending on the validity range of Sacherer’s coherent tune shift formula, the recipe may or may
not give a good estimate for an arbitrary distribution. In our following applications, the shape of
the distribution enters only through Δωm/S|z=0.
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3.4.2 THRESHOLD VALUE OF Δωm

S
FOR PARABOLIC LIKE DISTRIBUTIONS

For parabolic-like distributions we already have an expression for Δωm

S
in terms of the hypergeo-

metric function of second kind:
Δωm

S
= − lim

z→0

mz

2F1(1, 1 + m; 1 + m + n; 1
z
)

. (42)

Results for the four lowest order modes and four different parabolic-like distributions of the
type (20), differing in the value of n, are compiled in Table 1.

Table 1: Stability limits Δωm/S for different distributions (20), characterized by n, and different
azimuthal modes, specified by m.

g(r) distribution n Δω1

S
Δω2

S
Δω3

S
Δω4

S

Smooth 2 1/3 1 9/5 8/3
Parabolic 1 1/2 4/3 9/4 16/5
Elliptic 1/2 2/3 8/5 18/7 32/9

Flat -1/2 2 8/3 18/5 32/7

A distribution that better describes the flat bunch was given in section (2.2). It is given by
the Abel transform of (23). The derivative of g(r) is required for the dispersion relation; this can
be calculated numerically by means of the fundamental theorem of calculus and plugged into the
integral. We evaluate the integral only at z = 0 to obtain the threshold value for Δωm

S
. Table 2

presents the resulting stability limits for Furman’s flat distribution (23).

Table 2: Stability limits Δωm/S for the Abel transform of Furman’s flat line density (23, and
different azimuthal modes, specified by m.

g(r) distribution n Δω1

S
Δω2

S
Δω3

S
Δω4

S

Flat - 1.5821 2.1293 2.8987 3.7087

The flatter the line density λ(z), the more stable the beam is. One of the cures for loss of
Landau damping on the transverse plane due to space-charge has been that of flattening the bunch.
By increasing the bunching factor considerably (e.g. up to Bf = 0.55 in the PS Booster) a decrease
of the dynamic coherent shift is obtained, because Δωm ∝ 1/B3. This may also explain why
the more realistic flat bunch distribution has lower threshold values than the flat parabolic-like
distribution.

A word of caution may be in order. Not only the stability diagram, but for a given impedance
and bunch charge also the coherent tune shift Δωm will be different for different beam distri-
butions, with Eq (38) probably being strictly valid only for an elliptic distribution. In addition,
Eq. (27) applies only if the frequency spread is dominated by the external rf curvature or for an
elliptic distribution g0(r).
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4 Application to the LHC injectors

4.1 Intensity thresholds for the LHC beam in the PS Booster

In the longitudinal plane space charge leads to a reduction of the available bucket area with inten-
sity. It also leads to a loss of Landau damping above a given bunch population, namely, N th.

The PS Booster has three rf systems: C02 (h = 1), C04 (h = 2 or h = 4), and the C16
system capable of producing harmonics from 10 to 27 at 50 MeV. Both C02 and C04 operate at
up to 8 kV. At injection, the PSB is normally operated with h = 1 as the main harmonic and the
h = 2 harmonic system is superimposed in anti-phase to provide bunch flattening. The harmonic
rf cavities of h = 2 or higher will, however, not be considered in the following analysis and the
issue of a double rf system will be handled in Appendix A. Table 3 lists the parameters for the
standard LHC beam 4.

Table 3: Parameters for LHC beam in the PS Booster.

Normalized emittance for the LHC beam εN 2.5 μm
Betatron Tunes Qx,y (old working point) ≈ 4.2, 5.45

PSB radius 25 m
Beam pipe radius b 35-65 mm (average =50 mm)

Full bunch length 2τ̂ 750 ns
Revolution frequency frev 600 kHz
Voltage up to acceleration 8 kV

Momentum compaction factor α 0.0608
|η| 0.8411

For the kinetic energy at injection (50 MeV) we have γ = 1.053 ≈ 1 and β = 0.31. The
capacitive (or negative inductive) impedance due to longitudinal space charge is given by

Zsc

n
= ı

gZ0

2βγ2
= ı

376.73Ω · g
2βγ2

. , (43)

where Z0 = 376.73 Ω is the vacuum impedance and g a form factor for longitudinal space charge
usually written as g = 1

2
+ 2 ln(b/a), with b the beam pipe radius and a = 2σx twice the rms beam

size.
Since for the LHC beam εN = 2.5μm and Q ≈ 5, the average transverse beam size is about

a =

√
ε2σ

R

Q
=

√
4εNβav

βγ
=

√
4 · 2.5 · 10−6 · 5

0.3
= 0.0129 m = 12.91 mm . (44)

The value of the form factor is given by

g =
1

2
+ 2 ln b/a =

1

2
+ 2 ln

50

12.91
≈ 3.20804 . (45)

4Information provided by Dr. M. Chanel.
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The bunching factor for a single bunch can be calculated as B = frev2τ̂ = 9/20. Assum-
ing a synchronous phase equal zero, φs = 0, the frequency spread is given by S = π2

16
B2ωs =

0.124912ωs (see Eq. (55) below). The peak voltage is Vt = 8kV , the harmonic number is h = 1
and below transition we have cos φs = 1. We now apply (41)

Im
threshold = ı

m + 1

m

3π2B5h3VT cos φs

16 · (Z
n

)
eff

[
Δωm

S

]
z=0

= 0.147572
m + 1

m

[
Δωm

S

]
z=0

A , (46)

which corresponds to a total threshold bunch intensity above which Landau damping would be lost
and hence, give rise to instabilities, of

Nth =
0.147572m+1

m

[
Δωm

S

]
z=0

·
e · frev

≈ 1.53 · 1012m + 1

m

[
Δωm

S

]
z=0

. (47)

This total booster intensity is later divided into 12 bunches that will be fed to the LHC, so that in
terms of the LHC intensity we have the equivalent threshold

Nm
th,LHC ≈ 1.28 · 1011m + 1

m

[
Δωm

S

]
z=0

ppb (48)

The nominal LHC bunch intensity is 1.15 × 1011 protons. Table 4 lists the threshold values for
various distributions and azimuthal modes.

Table 4: Equivalent LHC threshold bunch intensities due to loss of longitudinal Landau damping
in the PS booster, for different beam distributions and modes.

g(r) distribution n Nm=1
th,LHC(1011) Nm=2

th,LHC Nm=3
th,LHC Nm=4

th,LHC

Smooth 2 0.85 1.92 3.07 4.26
Parabolic 1 1.28 2.56 3.84 5.12
Elliptic 1/2 1.70 3.07 4.38 5.68

Flat -1/2 5.12 5.12 6.14 7.31
Flat + Tail - 4.05 4.08 4.94 5.93

These results indicate that in case of the nominal LHC beam Landau damping might be lost
only for the dipole mode. The PSB is equipped with an rf phase loop mechanism on the h = 1
rf system which suppresses any dipole mode instabilities. In principle, loss of Landau damping
for higher modes could lead to beam losses at injection. However, Table 4 demonstrates that in
the PS Booster the azimuthal modes higher than the dipole mode become unstable only at bunch
intensities much higher than nominal, and indeed even higher than the so-called ultimate LHC
bunch intensity of 1.7 × 1011 protons per bunch.

Our above analysis has neglected the existence of the double rf system plus the additional
cavity that is used for longitudinal blow up.
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4.2 Intensity thresholds for the LHC beam in the SPS

Table 5 lists key parameters for the LHC beam at injection into the SPS (26 GeV).

Table 5: Parameters of the LHC beam at injection into the SPS.

Horizontal normalized r.m.s. emittance εH
N 2.5 ± 0.3 μm

Vertical normalized r.m.s. emittance εV
N 3.0 ± 0.3 μm

Longitudinal normalized emittance (2σ) εz
N 0.25 eV · s

Betatron Tunes Qx,y 26.13, 26.19
SPS circumference 6.9 km
Beam pipe radius b 37.4-43 mm

Bunch length 4.2±0.1 ns (at 4σ)
Revolution frequency frev 43.450 kHz
Voltage up to acceleration from 2 to 3 MV

Momentum compaction factor α 0.00192
|η| 5.98 · 10−4

We proceed in the same way as before, but we now take into account only the inductive
impedance, since space charge is negligible. For kinetic energy at injection (26 GeV) we have
γ ≈ 26 and β = 0.99. The recently measured value of the longitudinal inductive impedance in the
SPS (2007) is approximately [13]

Zind

n
≈ −ı10Ω . (49)

The bunching factor for a single bunch is given by B = frev2τ̂ = 1.825 × 10−4. The peak
voltage is Vt = 2000 kV, the harmonic number is h = 4620, and above transition we have cos φs =
−1. We again apply (41),

Im
threshold = ı

m + 1

m

3π2B5h3VT cos φs

16 · (Z
n

)
eff

[
Δωm

S

]
z=0

= 0.00734
m + 1

m

[
Δωm

S

]
z=0

A/bunch ,

(50)
and the threshold population is given by

Nth =
0.00734m+1

m

[
Δωm

S

]
z=0

·
e · frev

≈ 1.054 · 1012m + 1

m

[
Δωm

S

]
z=0

ppb . (51)

The nominal intensity per bunch is 1.15×1011ppb. Table 6 lists the threshold values for various
distributions and azimuthal modes.

21



Table 6: Threshold LHC bunch intensities due to loss of Landau damping in the SPS, for different
beam distributions and modes.

g(r) distribution n Nm=1
th (1012) Nm=2

th Nm=3
th Nm=4

th

Smooth 2 0.70 1.58 2.52 3.51
Parabolic 1 1.05 2.10 3.16 4.21
Elliptic 1/2 1.40 2.52 3.61 4.68

Flat -1/2 4.21 4.21 5.05 6.02
Flat + Tail - 3.33 3.36 4.07 4.88

22



5 Conclusions

A general recipe has been given for the calculation of intensity thresholds in the two cases of a
space charge impedance below transition or inductive impedance above transition, respectively,
based on the groundbreaking work of Sacherer. Different beam distributions have been considered
and flat bunches have proven to be more stable than bunches of other shapes. Non-linearities
introduced by a double rf system do not permit a simplification of the Sacherer equation in the
same way as it is done for a single harmonic system. Stability diagrams are a useful tool from
which approximate values of intensity thresholds can be obtained. The bunch-intensity thresholds
where longitudinal Landau damping is lost in the SPS are about 20% lower than the corresponding
values for the PS booster. In either accelerator, the lowest thresholds are found for the dipole
modes (m = 1), which are partially controlled by existing rf feedback loops. However, in the
case of a multi-bunch beam, as in the SPS, one cannot damp rigid dipole bunch oscillations of
individual bunches with the phase loop, since the latter detects an average phase error over several
bunches and corrects ALL bunches for this average error. Landau damping, if lost, can be restored
by either increasing the frequency spread S, or by decreasing the frequency shift Δωm, e.g. via
flattening the bunch. Introducing a double rf system increases the frequency spread and is a cure
for loss of Landau damping. However, the double rf system is thought to create some other kind
of instabilities [14].

For the moment, two open questions remain, namely the implications of the “synthetic kernel”
ansatz and the validity range of the Sacherer formula for the coherent tune shift.
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A Change of tune with amplitude for single and double rf systems

A.1 Change of tune with amplitude in a single rf system

For a stationary bucket (with zero synchronous phase φs = 0) the synchrotron tune change as a
function of the amplitude of the synchrotron oscillation r previously defined is given by [19]:

ωsc(r) =
πωsc0

2K(sin(r/2))
, (52)

where K(k) is the complete elliptic integral of the first kind:

K(x) =

∫ ∞

0

dw√
1 − x2 sin2 w

. (53)

For small amplitude oscillations

ωsc(r) ≈
(

1 − 1

16
r2

)
ωsc0 . (54)

This is of the same form as our approximation (27), namely ωsc(r) = (ωsc0−Sr2), where, however,
S is meant to characterize the total frequency spread. We can estimate the latter from (54) as

S ≈ π2

16
(hB)2ωsc0 , (55)

where h denotes the harmonic number and B the bunching factor defined as the full bunch duration
multiplied by the revolution frequency. The exact dependence of the synchrotron tune on longi-
tudinal amplitude φ according to (52) and the approximation (54) are compared in Fig. 16. For
completeness, in the general case of an accelerating single-harmonic rf bucket the total frequency
spread S along a parabolic bunch is given by [20]:

S =

(
1 +

5

3
tan2 φs

)
π2

16
(hB)2ωsc0 . (56)
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Figure 16: Exact dependence of the synchrotron frequency on the amplitude (52) and the approxi-
mation with S/ωsc0 = 1/16.
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A.2 Change of tune with amplitude in a double rf system

At low or medium energies like in the PS Booster, bunches cannot be regarded as being short
relative to rf waves. In other words, the nonlinearity of the rf waves will affect particles of large
amplitude. This is true specially for double rf systems.

The main reason for using a double rf system is to flatten the bunch and increase the transverse
space charge limit. This, however, will make the motion fully non-linear (see [15]). An analytic
approach to the study of the double rf system is possible if the ratio of the voltages is of 1/2. This
has already been suggested by F. Pedersen [17] and studied in detail by E. Shaposhnikova [16].
Other investigations of double rf systems with space-charge effects were performed by O. Boine-
Frankenheim at GSI, also for r = 0.5 [18]. The PS Booster, however, uses a second harmonic
cavity operated with the same voltage as the first harmonic system, i.e. r = 1.

A.2.1 SYNCHROTRON EQUATION OF MOTION IN A DOUBLE RF SYSTEM

For an extensive treatment of single-particle dynamics in a double haromic rf system we refer to
S.Y. Lee’s Accelerator Physics textbook [19].

We study the case of the PS Booster where h1 = 1 and h2 = 2, hence h = h2

h1
= 2. To

simplify the discussion, only stationary buckets are considered. Using the normalized coordinates
(φ,P ≡ φ̇/νs) the Hamiltonian is

H =
1

2
νsP2 + νs

[
(1 − cos φ − r

2
(1 − cos 2φ))

]
, (57)

where r = −V2/V1 (the minus sign accounts for the fact that the cavities are out of phase as in
the PSB). Using action-angle variables and defining φ̂ as the maximum phase angle for a given
Hamiltonian torus of energy E the synchrotron tune is expressed by

ωs(φ̂)

ωs(0)
=

π
√

(1 − 2r) + 2t2 + (1 + 2r)t4

2(1 + t2)K(k1)
, (58)

where t = tan(φ̂/2), K is the elliptic integral of the first kind with modulus

k1 =
t
√

1 + (1 + 2r)t2√
(1 − 2r) + 2t2 + (1 + 2r)t4

. (59)

This formula is valid when r ≤ 0.5 and it is as well valid for r > 0.5 in the range φ > φb, where
φb denotes the intercept of the inner separatrix with the phase axis.

For r > 0.5 when φ̂ < φb the normalized synchrotron tune is given by a different expression:

ωs(φ̂)

ωs(0)
=

√
2rπt√

(1 + t2)(1 + t2l )

1

K(k2)
, (60)

with modulus k2 =
√

t2 − t2l /t
2 and tl = tan(φ̂l/2), where φl = 2 arcsin

√
sin2(φb/2) − sin2(φ/2).

Reading off from the Hamiltonian, the inner separatrix, which passes through the origin, intersects
the phase axis at ±φb with cos(φb/2) = 1/

√
2r.
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A.2.2 R=1 IN THE PS BOOSTER

At injection the beam is accelerated up to 8 kV using both cavities. For r = 1 an unstable fixed
point exists at the center of as can be seen in the tomograph. Figure 17 shows the variation of the
normalized synchrotron frequency with amplitude for r = 1 and r = 0.5 and r = 0 (single rf
cavity). The case r = 1 exhibits a large discontunity at φ = π/2.

Figure 17: Exact dependence of the synchrotron frequency on the amplitude for a double har-
monic rf system with three different values of the second-to-first harmonic voltage ratio r, and for
comparison the quadratic approximation for a single harmonic system ωs(r) = (ωs0 − Sr2) with
S/ωs0 = 1/16.
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B Hofmann-Pedersen formalism

In an attempt to obtain results similar to those presented in this paper, the Hofmann-Pedersen
formalism has been introduced [21], where bunches with a local elliptic energy distributions
are considered, namely the particle distribution as a function of energy is taken to be g(φ) =
(c/ω0)

√
ΔE2

b (φ) − ΔE2, where Eb(φ) is the local bunch boundary. This distribution fits well to
distributions observed experimentally in proton synchrotron and it enables several analytical cal-
culations. In particular, the self forces caused by space charge and by the inductive wall impedance
are proportional to the external focusing force from the rf.

For stationary buckets, (32) in [21] may be used to compute the threshold intensity when Lan-
dau damping is lost as

Ith = ± V

2πh2Im
(

Ze

n

) (
1

2
sin φl − φl

2
+ 2 sin

φl

2
− φl cos

φl

2

)
. (61)

We consider the PS Booster parameters for the LHC beam. The bunch length needs to be expressed
in radians. Using frf = h · frev = 600 kHz we obtain

φl = φ2 − φ1 = 2πfrf tb = 2π · 600 kHz · 750 ns =
9π

10
rad . (62)

Plugging these numbers into (61) with h = 1 yields, for the equivalent instability threshold

Ith = ± 8000V

2π
(

376.73Ω·g
2βγ2

) (
1

2
sin φl − φl

2
+ 2 sin

φl

2
− φl cos

φl

2

)
= 0.198343 A . (63)

The corresponding bunch population is given by,

Nth =
Ith·
efrev

= 2.063 · 1012 ppb , (64)

and divided into 12 LHC bunches,

NLHC
th = 12

Ith·
efrev

= 1.71 · 1011 , ppb , (65)

which is in nearly perfect agreement with the dipole-mode instability threshold obtained from the
Sacherer formalism for the elliptic distribution with n = 1/2 (see Table 4).
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C Frequency dependent space charge impedance

In principle, the space-charge impedance depends on the frequency in a more complicated manner.
The following discussion shows that it is a good approximation to assume that Z/n is constant.

A fitting formula for the ratio of the Fourier-transformed potential and charge density was
proposed by Bisognano. This ratio is exactly the expression for the geometric factor g, which has
been assumed to be constant throughout this report. In a paper by G. Rumolo et al. [22] a modified
Bisognano formula is given for the laboratory frame as

g =
g0

1 + n2

γ2
a2

4R2

, (66)

where g0 = 1/2 + 2 ln(b/a) as before, R is the radius of the circumference and n = ω/ωrev.
Hence, the space charge impedance times 1/n is frequency dependent. The effective impedance

is given by

[
Zl(n)

n

]eff

mm

=

n=+∞∑
n=−∞

Zl(ωnm)

n
hmm(wnm)

n=+∞∑
n=−∞

hmm(wnm)

, (67)

where, for a parabolic distribution with sinusoidal modes,

hmm(ω) =
t2b

2π4
(|m| + 1)2)

1 + (−1)|m| cos ωtb

{(ωtb/π)2 − (|m| + 1)2}2 (68)

and ωnm = nωrev + mωs designates a displaced frequency.
The synchrotron tune for the PSB beam amounts to

Qs =
ωs

ωrev
=

√
|η|ehVrf

2πmpγβ2c2
=

√
0.840987 · 8000eV

2π938 · 106eV γβ2
= 0.00335822 . (69)

Thus, we have ωl
n = (n + m · Qs)ωrev = 2π(6 · 105n + 2014.93m) Performing the numerical

calculations now yields

[
Zl(n)

n

]eff

00

=

[
Zl(n)

n

]eff

11

= 1758.01 Ω . (70)

No difference of the effective impedances for the dipole or quadrupole modes from the constant
space-charge impedance (gZ0/(2βγ2) has been observed by using Bisognano’s formula. There-
fore, it is perfectly correct to assume that the space-charge impedance, divided by n, remains
constant over the full frequency spectrum of beams in the PS Booster.
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