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1 Introduction

The superconducting coil of an accelerator magnet is usually surrounded by magnetic
material, the iron yoke, in order to enhance the field in the aperture and to reduce the
fringe field outside the magnet.

For the calculation of the magnetic field of such superconducting magnets, typically
FEM methods are used. For our calculations, we used the coupled method of boundary
elements and finite elements which, in addition, allows to omit a meshing of the coil. In
this way, the superconducting cables are represented by line currents and the field resulting
from any permeable material can be conveniently solved. Nevertheless, analytic solutions
of simplified geometries are still needed in order to cross-check numerically obtained results
and gain deeper understanding of the underlying principles.

For the calculation of the effect of the iron yoke on the field distribution and field
quality of superconducting coils as a first approximation a circular hollow cylinder of high
permeable material could be used.

By solving the vector potential of a circular hollow cylinder including three different
materials a powerful and general approach is obtained which can be easily adapted and
simplified for different problems, e.g., the determination of the influence of the iron yoke
thickness on the field quality1 or the determination of the saturation current.

All derivations and theoretical aspects of the obtained solutions can be found in the
appendix.

2 Circular Hollow Cylinder - Three Arbitrary Materials

We consider a problem with three different materials. The geometry consists of a circular
hollow cylinder with inner radius a and outer radius b with materials of permeabilities µ1,
µ2 and µ3 as illustrated in fig. 1. Inside the hollow cylinder one line current I is placed
at an arbitrary position x = rI < a. The magnetic vector potential for all three domains
can be calculated from the potential of a line current by fulfilling the boundary conditions
and the general solution of the Laplace equation in cylindrical coordinates. Due to the
z-directed current, the vector potential has only a z-component. The detailed derivation

1The field quality is expressed in terms of the so-called multipole field errors following the European
definition (see appendix A).
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Figure 1: Geometry of a circular hollow cylinder of inner radius a and outer radius b. The
tube is filled by a material of permeability µ2 and surrounded by two materials of different
permeabilities (µ1 inside and µ3 outside).

is shown in Appendix B and here only the resulting vector potentials are given:
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Here R0 denotes an arbitrary reference radius introduced to get a dimensionless argument
of the logarithm. It cancels out as soon as two line currents of opposite direction are
considered and has no influence on the magnetic field. The coefficients αnm and βnm with
n = 1, 2 and m = n + 1 are defined as

αnm =
µn − µm

µn + µm

, (5)

βnm =
2µn

µn + µm

. (6)

3 Permeable Bore

A common way to approximate the effect of a circular iron yoke of superconducting magnets
is to replace the yoke by a permeable area with a bore [1]. This approach is valid for a
linear iron material, i.e., for fields smaller than the saturation field strength (see section
3.1), and for a yoke thick enough to close most field lines inside (see also section 4.1).

The result can be derived from the solutions of the general problem2 by setting the
permeabilities of the areas 2 and 3 to the same value (µ2 = µ3). The simplified geometry
is shown in fig. 2.
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Figure 2: Geometry of a single line current in a bore of permeable material.

The constants αnm and βnm then read:

α12 =
µ1 − µ2

µ2 + µ1

, β12 =
2µ1

µ2 + µ1

, (7)

α23 = 0, β23 = 1. (8)

2For the solution of the general problem of three materials, there are three ways to describe the bore
inside the permeable area. It can be either assumed that area 1 and 2 or that area 2 and 3 are of the same
material properties. Furthermore the geometry is given for an inner radius a equaling the outer radius b
and µ2 6= ∞. All three approaches yield the same result and so they are an easy test of correctness of the
derived terms.
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This significantly simplifies the terms for the vector potential and the solution for area 2
and 3 become identical. The resulting vector potentials read
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Ab<ρ
Bore,3,z(ρ, φ) = ABore,2,z. (12)

Figure 3 shows the resulting field distribution for different values of µ2. From the plots,
two observations can be made: 1) With increasing values of the outer permeability, µ2,
the field density outside the bore increases. Note that this would not be the case if two
line currents of opposite signs were considered inside the bore. 2) At the boundary of high
permeable domains, field lines are expected to be perpendicular to the surface. This is not
the case here! Both effects are studied and explained in Appendix C.
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Figure 3: Field distribution of the magnetic induction for a single straight line current
inside a bore of permeable material. With increasing value of µ2 the field density in area
2 increases, too.
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3.1 The Saturation Current

When introducing the general solution of the three material problem the assumption of
linear and homogeneous materials was made. For realistic materials, as e.g., the magnetic
steel of the iron yoke of the LHC or NED dipole, this is only valid as long as the magnetic
field stays below the value where the yoke material starts to behave non-linearly and
saturates (roughly around 2 T - see fig. 4). The analytical model is limited by the so-called
saturation field strength and thus the corresponding saturation current.
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Figure 4: Permeability curve and magnetization-curve as used for the LHC main dipoles
and the NED magnet [2]. One can see that the magnetization leaves the linear regime at
roughly 2 T and stays more or less constant for higher values.

The saturation current can be obtained by increasing the current of any given geometry
until the maximum field inside the material reaches the saturation field. For this purpose,
the iron yoke is modeled by means of a bore of radius a in a material of linear and homo-
geneous permeability µlin, allowing to derive a closed expression for the saturation current.
In order to keep the calculation as general and simple as possible, no specific coil cross
section layout is considered, instead two line currents are placed symmetrically at x = ±rP.
The field of the magnetic induction in the permeable material can easily be calculated by
means of the imaging method

Biron(x, y) = β12

(

−B|(x + rP, y) + B|(x − rP, y)
)

where B| denotes the field of magnetic induction of a single line current in a material of
permeability µ2. In this case, β12 is given by Eq. (65).

The field maximum is expected in close vicinity to the coil, located on the boundary.
By using the Fourier expansion of the two line currents, the two maxima of the modulus
on the boundary can be identified on the x-axis3. Due to the symmetry of the coil the field

3That is different from what one would expect. For dipole coils in magnet construction, the field
maximum and the saturation starts at the poles [3].
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of magnetic induction on the axis is only ±y-directed.

max
ρ=a

|Biron| = |Biron,y(x = ±a, 0)|

= β12
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(13)

For high values of µlin the product µlinβ12 can be replaced by µ0 (for µlin = 50µ0 the factor
gives already ≈ 0.98µ0). Substituting the current I by the ampere turns NI (with N the
number of turns and I the current per turn) and setting Bsat = maxρ=a |Biron|, the ampere
turns are given as:
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(
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)

. (14)

For an exemplary calculation a coil of 90 conductors and a mean positioning radius of
0.075 m is considered. The relative permeability of the iron yoke is chosen to be 500, the
saturation field set to 2 T, and the inner yoke radius to 0.125 m. For this geometry, the
term yields a current of 7.4 kA. This result is consistent with the numerically determined
saturation current of the NED 88 mm magnet of 7.5 kA[4]. For the LHC main bending
magnets the formula gives a saturation current of 11.5 kA which is still in good agree-
ment with the numerically determined saturation current of ≈ 9 kA considering the double
aperture yoke.

Ansorge [5] published a third method to determine the saturation current for an iron
yoke of finite thickness. It shall be mentioned here because of its beauty and simplicity:
From the total flux of one pole entering the iron tube wall, he determines the minimum
thickness of the iron yoke in order to guide the flux without exceeding the saturation field
(magnetic induction) assuming a homogenous flux distribution inside the shell. In the
same way, it is possible to calculate the maximum energization current for a given wall
thickness. For an infinite thick tube this approach means to limit the mean flux density to
the saturation flux density and would thus yield greater values than the approaches shown
above.

3.2 The Effect on Multipole Errors

In [1, p.144 ff] it is shown that the multipole errors of a single line current can be derived
by comparing the expression for the radial field with the general multipole expansion.
Furthermore, a geometry of an up-down symmetry only gives normal multipole errors
which are at maximum for zero positioning angle of the line current.

In order to reduce the degrees of freedom for this estimation a single line current at
an arbitrary position on the x-axis placed in a circular bore of a permeable material is
assumed. Only the position of the line current with respect to the bore radius and the
material permeability are varied. For a more general result considering the positioning
angle as well, the same approach could be used by applying the sine addition theorems
(see also B.4).
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Deriving the normal magnetic induction from Eq. (9), the normal multipole errors are
given as:

Bn,Bore = −
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(15)

where r0 denotes the reference radius. This result can easily be split into the multipole
error induced by the line current Bn,| and the added ∆Bn,Bore of the virtual image current.
Then the added relative normal multipole error reads

Bn,Bore − Bn,|
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=
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= −α12

(rI

a
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Figure 5 shows the dependence of the added multipole error on the inner bore radius for
a material with a permeability going to infinity. The dependence is given as a function
of the bore radius a with respect to the positioning radius rI . The plot shows, e.g., for a
bore radius twice the positioning radius of the line current, a = 2rI , all multipoles of order
5 and higher show only a negligible influence of the outer material. For positioning radii
that are even smaller with respect to the bore radius, e.g., a = 5rI , obly the main field
component is influenced by the surrounding permeable material.

4 Permeable tube

The iron yoke of real superconducting magnets is more or less a tube of a high permeable
material. This is usually modeled by means of the imaging method or calculated, e.g., with
the finite element method. In order to determine the applicability of the imaging method
and to give an analytical expression, the solution shall be derived directly from the general
solution for circular geometries (section B.4).

For this purpose, the general geometry is simplified by setting the permeabilities of area
1 and 3 identical (µ1 = µ3) and the permeability of area 2 to a higher value (µ2 > µ1).
All other quantities remain unchanged. The geometry of the single line current inside the
permeable tube is shown in fig. 6.

With the assumptions given above, the constants αnm and βnm read:

α12 =
µ1 − µ2

µ2 + µ1

, β12 = 1 + α12, (17)

α23 = −α12, β23 = 1 − α12. (18)
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Figure 5: For a line current inside a circular bore within a material with infinite permeabil-
ity, multipole errors are induced by the line current and its virtual image current replacing
the outside material of infinite permeability. The dependence of the the additional multi-
pole errors on the inner bore radius with respect to the positioning radius of the considered
strand is shown.

The vector potentials result to:
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Figure 6: Geometry of a single line current inside the permeable tube.
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As could be expected, the influence of the permeable tube vanishes for a = b with µ2 6= ∞
and also for µ2 = µ1. For b → ∞ the Eqs. (19) to (22) transform to the expressions for
the bore in a permeable area given in Eqs. (10) and (12). Furthermore the expressions are
in good agreement with the results published in literature as [6].

In fig. 7 the distribution of the magnetic induction is shown for three tubes of different
permeablilites. It can be seen that for increasing permeability of the tube more and more
magnetic flux is concentrated in the tube walls like for the permeable core of toroidal coils.
Mathematically this is related to the same fact as explained for the permeable bore and it
also vanishes if the current sum inside the tube is set to zero (see appendix C.1).

Considering Eq. (22) for a tube made of infinitely permeable material, it can be seen
that the field of the line current outside the tube is not screened, but the virtual position of
the line current is moved to the center of the tube. This is in agreement with

∮

H · ds = I.

4.1 The Effect on Multipole Errors

For the effect on the multipole errors the radial field is needed and can be derived from the
vector potential obtained from Eq. (19). Then the normal multipole errors are given by
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The difference to the multipole error calculated by means of the imaging method is given
by:

∆Bn,Tube = Bn,Tube − Bn,Bore (24)
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Figure 7: Field distribution of the magnetic induction for a line current inside a tube of
permeable material.

For materials of high permeability the influence of the tube thickness reduces with increas-
ing permebility since in this case α12 is close to −1 and for a < b the fraction is smaller
than 1. In this way the deviation is mainly driven by the fraction (rI/b)

n with b ≥ a > rI .
In fig. 8 the relative deviation (∆Bn,Tube/Bn,Bore) of the multipole errors for a tube with

finite thickness compared to the multipole errors of a bore is shown. The positioning radius
rI is set to half of the inner tube radius. The dashed lines indicate a relative deviation of
−0.1% and the continuous lines of −1%. It can be seen that for yokes of an outer radius
of more then three times the inner radius the modulus of the deviation is smaller than 1%
for all multipoles. Furthermore it can be seen that for high permeabilities and therefore
values of α close to −1 the absolute deviation is much smaller even if the outer radii are
only 1.5 times the inner radius. Generally the influence of the tube thickness is strongly
depending on the order of the multipole error and for thick tubes it is only significant up
to the order of 3.

In order to show how to use fig. 8 one example is given: Considering a yoke of outer
radius 2.5 times the inner radius and an α of −0.8 this yields a deviation of little more then
−1% for the main field (B1) because it is inside and close to the continuous line indicated
by 1 and an absolute deviation of less then 0.1% for all other multipoles since the point is
outside all higher order dashed lines.

4.2 Fringe Field of a Coil

For the operation of superconducting magnets it is important to make sure that the field
outside the magnet, the so-called fringe field, does not exceed certain limits. This stray
field could cause problems with other electrical devices, cause movement of iron parts or
even effect the health of persons exposed to it [7].

It is obvious that the strength of the fringe field increases with increasing main field
and therefore it is most severe for a magnet operated at maximum field. As mentioned
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Figure 8: The relative deviation of the multipole errors for a tube of varying thickness and
permeability compared to a bore of fixed inner radius. The positioning radius rI is assumed
to be half the inner tube radius a. The parameter α denotes the imaging coefficient as
defined in Eq. (64). The continuous lines indicate a deviation of −1% compared to the
calculation with the imaging method. The dashed lines indicate a deviation of −0.1%.
The numbers denote the order of the multipole error.

above, for high fields the iron saturation has to be taken into account and a calculation
has to be done by means of numerical field computation.

Nevertheless, an analytical expression shall be derived from the expressions obtained
before to be used for first estimations and investigations. Therefore a coil of two leads is
considered in order to represent the bipolar character of symmetric coils.

From Eq. (22), the vector potential and the field of magnetic induction of a coil can be
derived in the area outside the tube.
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Figure 9 shows the field distribution of a symmetric coil of two leads in an iron tube with
a relative permeability of 10. For the LHC main dipoles, this permeability value would be
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Figure 9: Field distribution of the magnetic induction for a coil in a permeable tube. The
positioning radius is half the inner yoke radius. The outer yoke radius is twice the inner
yoke radius and the permeability of the tube is 10 times bigger then the permeability of
the air domain.

below saturation of the yoke. The resulting fringe field is easily observeable.
The modulus of a vector field in cylindrical coordinates can be calculated by the square

root of the square sum of the components of the vector, |B| =
√

B2
ρ + B2

φ + B2
z . It is then

possible to define the coefficients knm by
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which only differs from zero for odd m and n, and express the modulus by:

|B| =
µ1|I|

2π

√
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√

√
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In fig. 10 the maximum of the modulus of the fringe field is displayed for different outer
yoke radii and permeabilities. The inner yoke radius is chosen to 125 mm which is similar
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Figure 10: Modulus of the fringe field along the x-axis for different outer tube radii and
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tube radius. The capital letters indicate the used relative permeability of the tube material
(A = 500, B = 2500 and C = 5000). The inner tube radius a is 125 mm, the current I is
1 A and the position of the currents rI is a/2.

to the radius used for the study of the NED 88 mm aperture dipole. The line currents of
±1 A are placed at rI = a/2. Assuming a linear material the results can be scaled to any
currents (or ampere turns).

It has to be emphasized that due to saturation effects at high fields the fringe field of
real geometries will exceed the values given above. In this case, the formulae defines only
the lower bounds.

In [8, p. 228] Jackson calculates the screening of the magnetic field of a line current
due to a surrounding permeable cylinder by using the scalar potential approximation of a
line dipole of first order, and gives the screening factor F to

F =
4µrb

2

(µr + 1)2b2 − (µr − 1)2a2
.

This equals the first coefficient (n = 1) of the vector potential given in Eq. (26) and
confirms the expressions given.
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5 The Influence of the Steel Collar

Superconducting coils are usually surrounded by rigid force-retaining structures in order
to withstand the enormous electromagnetic forces and to provide prestress to the coil. The
force-retaining structure typically consists of a combination of a collar made of stainless
steel or aluminum and a surrounding iron yoke made of magnetic steel. This method
increases the minimum distance between the iron yoke and the coil, however, the collar
represents a second material which has to be modeled independently.

A first estimation of the influence of the collar on the multipole errors can be derived
by modeling a circular collar (neglecting, e.g., notches and noses along the inner contour
of the collars) by means of the general solution of the three material problem derived in
appendix B. From Eq. (1), the radial magnetic field and the normal multipole errors can
be calculated. Here, the entity µ1 denotes the permeability in the region of the bore and
µ2 is the material permeability of the collars, used to determine α12.

Bn,Collar = −
µ1I

2π

rn−1
0

rn
I

(

1 −
α12

(

rI

a

)2n
+ α23

(

rI

b

)2n

1 + α12α23

(

a
b

)2n

)

(31)

Figure 11 shows the relative deviation of the multipole errors if calculated with and without
collars made of a material with low permeability. The mean positioning radius rI of the
coil is set to 0.075 m and the inner collar radius a is set to 0.1 m. The inner yoke radius b
is given by the varied collar thickness d to b = a + d. The relative permeability of the iron
yoke is set to 500 while the permeability of the collar is also varied. It can be seen that the
influence of the collar material on the multipole errors decreases strongly with increasing
multipole order. For materials with a relative permeability below 2 the contribution of the
collar is very small and translates to a change of relative multipoles of approximately 1%.
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Figure 11: Influence of the collar on the multipole error. The continuous lines represent a
geometry of inner collar radius a of 0.1 m and collar thickness d of 0.025 m. For the dotted
lines the collar thickness is increased to d = 0.05 m while for the dashed lines the collar
thickness is decreased to d = 0.0125 m.

6 Conclusions

A general solution for the magnetic field is given for the general geometry of an eccentric
line current placed in a circular domain and surrounded by two materials of different
permeabilities (Appendix B). The solution is used for the calculation of a single line
current

• inside a bore in permeable material,

• inside a tube of permeable material, and

• inside a tube of low permeability surrounded by material of higher permeability.

In magnet applications, the results allow to decide whether the contribution of the iron yoke
can be determined analytically or whether a collar of stainless steel has to be considered
in the calculation. Therefore, the so-called imaging method for a single line current in a
circular bore was derived and it could be demonstrated that

• the boundary conditions for a single line current in a bore within material with
infinitely permeability can be fulfilled without violating Ampere’s law, and

• that the closing lead, usually not considered for the calculation of a single line current,
has to be taken into account when the imaging method is applied.
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Using the imaging method,

• the influence of the iron yoke on the multipole errors can be shown, and

• the limit of the model due to the iron saturation is estimated.

For the latter two geometries it is shown,

• that for the radii and permeabilities commonly used for the iron yoke of supercon-
ducting magnets, the imaging method is sufficient to calculate the effect of the iron
yoke on the multipole errors in the non saturated state,

• how to estimate the fringe field and how it decreases with increasing distance to the
yoke, and

• that for the commonly used low permeabilities of the collar material, and the circular
shape, the collar does not need to be considered within the analytical calculations.
It should be noted that for the case of non-circular collar contours, the contribution
of the collars should be determined differently.

The validity of the imaging method for the modeling of superconducting magnets has been
shown and the limiting factors as the yoke thickness and the maximum allowed current,
the saturation current, were pointed out.
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A Field Quality and Multipole Expansion

The multipole field errors can be obtained from the Fourier expansion of the radial
magnetic induction, Br, inside a magnet’s aperture at a given reference radius, Rref:

Br(Rref, φ) ≈

Nm
∑

n=1

[An(Rref) cos(nφ) + Bn(Rref) sin(nφ)] (32)

where Nm denotes the highest order coefficient taken into account, An the skew and Bn

the normal multipole errors given by:

An(Rref) =
1

π

∫ 2π

0

Br(Rref, φ) cos(nφ)dφ (33)

Bn(Rref) =
1

π

∫ 2π

0

Br(Rref, φ) sin(nφ)dφ. (34)

Dividing the multipole coefficients by the main component of the magnet configuration,
BN, and multiplying by 104 yields the so-called relative multipole errors, an and bn:

an(Rref) =
An(Rref)

BN(Rref)
104, bn(Rref) =

Bn(Rref)

BN(Rref)
104. (35)
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B Magnetic Induction and Vector Potential for a Cir-

cular Problem consisting of 3 material layers

We consider a circular hollow cylinder with inner radius a and outer radius b. The circular
bore, the cylinder and teh outside shall have the material permeabilities µ1, µ2 and µ3.
Inside the hollow cylinder one straight line current I is placed at the arbitrary position
x = rI .

x

y

rI

b
a I

Μ1

Μ2

Μ3

Figure 12: Geometry of a circular hollow cylinder of inner radius a and outer radius b. The
tube shall have a material permeability µ2 with two materials of different permeabilities
µ1 and µ3, inside and outside of the tube.

B.1 Potential Approach

The field distribution will be expressed by means of the vector potential A. For area 1
inside the hollow cylinder the vector potential A1 consists of the primary potential of the
line current A| and of the secondary potential A

(1) describing the repercussion of the iron
on the inner field. In the areas 2 and 3 the field is created by the line current and the effect
of the different materials and is expressed by the potentials A2 = A

(2) and A3 = A
(3).

A1 = A| + A
(1).

A
(i) with n = 1, 2, 3 denotes potential approaches for which the constants need to be

determined in the following.
Since the source is a z-directed line current, all resulting vector potentials possess a

z-component, only.
In [1] the vector potential of a single line current at an arbitrary radial position rI is

derived and expressed by means of the Fourier expansion. In order to determine the
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constants of the approaches the vector potential needs to be evaluated at the inner radius
a, i.e. for radii bigger than the position of the line current. For the determination of
multipole errors the potential is also needed for smaller radii.

A|,z = −
µ1I

2π
ln





√

(x − rI)
2 + y2

R0





= −
µ1I

2π







ln
(

rI

R0

)

−
∑∞

n=1
1
n

(

ρ
rI

)n

cos (nφ) ρ < rI

ln
(

ρ
R0

)

−
∑∞

n=1
1
n

(

rI

ρ

)n

cos (nφ) ρ > rI

. (36)

The secondary potentials can be expressed by the general solution of the Laplace-equation
in cylindrical coordinates:

A(i)
z =

µiI

2π

(

A
(i)
0 + B

(i)
0 ln

(

ρ

R0

))

(

C
(i)
0 + D

(i)
0 φ
)

+
µiI

2π

∞
∑

n=1

1

n

(

A(i)
n

(

ρ

rI

)n

+ B(i)
n

(

rI

ρ

)n)
(

C(i)
n cos (nφ) + D(i)

n sin (nφ)
)

. (37)

Before the constants of these approaches are determined by fulfilling the boundary condi-
tions the number of unknowns can be reduced by qualitative thoughts:

One line current placed at an arbitrary position on the x-axis produces circular field
lines which are always perpendicular to the x-axis. Although the field distribution is
changed by the repercussion of the hollow cylinder, this characteristic will stay unchanged
and so the field of the magnetic induction will be only azimuthal for φ = 0 and φ = π. For
this reason all sine-terms and the linearly φ-dependent term vanish.

D
(1,2,3)
0 = 0, (38)

D(1,2,3)
n = 0. (39)

In area 1, the only singularity is at the position of the line current. Therefore, the value
of the vector potential has to be finite.

B
(1)
0 = 0, (40)

B(1)
n = 0. (41)

For very big radii all fields should vanish and so the term with ρn has to vanish in area 3.

A(3)
n = 0. (42)

With these first constants the approaches can be reduced and the following constants can
be defined:

L
(1)
0 = A

(1)
0 C

(1)
0 , E(1)

n = A(1)
n C(1)

n ,

L
(2)
0 = A

(2)
0 C

(2)
0 , K

(2)
0 = B

(2)
0 C

(2)
0 , E(2)

n = A(2)
n C(2)

n , F (2)
n = A(2)

n C(2)
n ,

L
(3)
0 = A

(3)
0 C

(3)
0 , K

(3)
0 = B

(3)
0 C

(3)
0 , F (3)

n = B(3)
n C(3)

n .
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Then the secondary vector potentials read:

A(1)
z =

µ1I

2π

[

L
(1)
0 +

∞
∑

n=1

1

n
E(1)

n

(

ρ

rI

)n

cos (nφ)

]

, (43)

A(2)
z =

µ2I

2π

[

L
(2)
0 + K

(2)
0 ln

(

ρ

R0

)

+
∞
∑

n=1

1

n

(

E(2)
n

(

ρ

rI

)n

+ F (2)
n

(

rI

ρ

)n)

cos (nφ)

]

(44)

A(3)
z =

µ3I

2π

[

L
(3)
0 + K

(3)
0 ln

(

ρ

R0

)

+
∞
∑

n=1

1

n
F (3)

n

(

rI

ρ

)n

cos (nφ)

]

. (45)

B.2 Field of Magnetic Induction

The magnetic induction in the three areas is given by the curl of the vector potentials and
yields:

Bρ<rI

1,r = −
µ1I

2π

∞
∑

n=1

(

1 + E(1)
n

) ρn−1

rn
I

sin (nφ) , (46)

Bρ<rI

1,φ = −
µ1I

2π

∞
∑

n=1

(

1 + E(1)
n

) ρn−1

rn
I

cos (nφ) , (47)

Bρ>rI

1,r = −
µ1I

2π

∞
∑

n=1

(

rn
I

ρn+1
+ E(1)

n

ρn−1

rn
I

)

sin (nφ) , (48)

Bρ>rI

1,φ =
µ1I

2π

1

ρ
+

µ1I

2π

∞
∑

n=1

(

rn
I

ρn+1
− E(1)

n

ρn−1

rn
I

)

cos (nφ) . (49)

B2,r = −
µ2I

2π

∞
∑

n=1

(

E(2)
n

ρn−1

rn
I

+ F (2)
n

rn
I

ρn+1

)

sin (nφ) , (50)

B2,φ = −
µ2I

2π
K

(2)
0

1

ρ
−

µ2I

2π

∞
∑

n=1

(

E(2)
n

ρn−1

rn
I

− F (2)
n

rn
I

ρn+1

)

cos (nφ) . (51)

B3,r = −
µ3I

2π

∞
∑

n=1

F (3)
n

1

ρn+1
sin (nφ) , (52)

B3,φ = −
µ3I

2π
K

(3)
0

1

ρ
+

µ3I

2π

∞
∑

n=1

F (3)
n

rn
I

ρn+1
cos (nφ) . (53)

B.3 Fulfilling the Boundary Conditions

All fields have to fulfill the boundary condition of continuous normal magnetic induction
due to the zero divergence. Following Ampere’s law the tangential magnetic field is also
continuous, if there are no current sheets on the boundary.
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For very long geometries of which the cross section can be considered only, the vector
potential results to

B1|∂12
· n = B2|∂12

· n → A1|∂12
= A2|∂12

, (54)

H1|∂12
× n = H2|∂12

× n →
1

µ1

∂A1

∂n

∣

∣

∣

∣

∂12

=
1

µ2

∂A2

∂n

∣

∣

∣

∣

∂12

. (55)

Here ∂12 denotes the boundary between areas 1 and 2, n denotes a normal vector perpen-
dicular to the boundary and ∂/∂n denotes its normal derivative (n · ∇).

The considered geometry has one circular boundary at ρ = a and one at ρ = b. This
yields in general four equations. Furthermore, on the boundary the two vector poten-
tials/ magnetic fields are the Fourier expansion of the same function/quantity and thus
show the same coefficients. The four equations can therefore be split up in one set for the
members of each series of order zero and one set for the members of each series of nth order.

The boundary condition Az,1|ρ=a = Az,2|ρ=a yields:

L
(1)
0 − ln

(

a

R0

)

=
µ2

µ1

(

L
(2)
0 + K

(2)
0 ln

(

a

R0

))

, (56)

(rI

a

)n

+ E(1)
n

(

a

rI

)n

=
µ2

µ1

(

E(2)
n

(

a

rI

)n

+ F (2)
n

(rI

a

)n
)

. (57)

The boundary condition − 1
µ1

∂Az,1

∂ρ
|ρ=a = − 1

µ2

∂Az,2

∂ρ
|ρ=a yields:

1

a
= −K

(2)
0

1

a
, (58)

−E(1)
n

an−1

rn
I

+
rn
I

an+1
= −E(2)

n

an−1

rn
I

+ F (2)
n

rn
I

an+1
. (59)

The boundary condition Az,2|ρ=b = Az,3|ρ=b yields:

µ2

µ3

(

L
(2)
0 + K

(2)
0 ln

(

b

R0

))

= L
(3)
0 + K

(3)
0 ln

(

b

R0

)

, (60)

µ2

µ3

(

E(2)
n

(

b

rI

)n

+ F (2)
n

(rI

b

)n
)

= F (3)
n

(rI

b

)n

. (61)

The boundary condition − 1
µ2

∂Az,2

∂ρ
|ρ=b = − 1

µ3

∂Az,3

∂ρ
|ρ=b yields:

− K
(2)
0

1

b
= −K

(3)
0

1

b
, (62)

−E(2)
n

bn−1

rn
I

+ F (2)
n

rn
I

bn+1
= F (3)

n

rn
I

bn+1
. (63)

The two systems, one consisting of the four equations (56), (58), (60) and (62), the other
consisting of the four equations (57), (59), (61) and (63), are solved by Gauss’ method or

23



by inversion of the matrix of the linear system. The system of the members of zero order
is over determined which means that one of the three constants L

(1,2,3)
0 is free of choice.

Without limitations the constant L
(3)
0 is set to zero.

In order to simplify the results and for coherence with literature [9] the constants αnm

and βnm are defined for each boundary. Figure 13 shows the plot of both constants for
different values for the corresponding permeability ratios between two areas

αnm =
µn − µm

µn + µm

, (64)

βnm =
2µn

µn + µm

. (65)
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Figure 13: Values of the constants αnm and βnm for different permeabilities. The relation,
βnm = αnm + 1, can easily be observed.

This way the solution for the unknown constants reads:

L
(1)
0 =

µ1 − µ2

µ1

ln

(

a

R0

)

+
µ2 − µ3

µ1

ln

(

b

R0

)

, (66)

K
(2)
0 = −1, L

(2)
0 =

µ2 − µ3

µ2

ln

(

b

R0

)

, (67)

K
(3)
0 = −1, L

(3)
0 = 0, (68)
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E(1)
n = −

α12

(

rI

a

)2n
+ α23

(

rI

b

)2n

1 + α12α23

(

a
b

)2n , (69)

E(2)
n = −

α23β12

(

rI

b

)2n

1 + α12α23

(

a
b

)2n , F (2)
n =

β12

1 + α12α23

(

a
b

)2n , (70)

F (3)
n =

β12β23

1 + α12α23

(

a
b

)2n . (71)

B.4 The Resulting Vector Potential

With the constants derived above the vector potential is given for all three areas:

Aρ<rI

1,z =
(µ1 − µ2)I

2π
ln

(

a

R0

)

+
(µ2 − µ3)I

2π
ln

(

b

R0

)

−
µ1I

2π
ln

(

rI

R0

)

+
µ1I

2π

∞
∑
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1

n


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ρ

rI

)n

−
α12

(

ρ
a2/rI

)n

+ α23

(

ρ
b2/rI

)n

1 + α12α23

(

a
b

)2n



 cos (nφ) , (72)

Aρ>rI

1,z =
(µ1 − µ2)I

2π
ln
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R0

)

+
(µ2 − µ3)I

2π
ln

(
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R0
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−
µ1I
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ρ

R0
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µ1I

2π
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ρ
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1 + α12α23

(

a
b

)2n
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 cos (nφ) , (73)

A2,z =
(µ2 − µ3)I

2π
ln
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R0
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−
µ2I
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ln
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ρ
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ρ
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1 + α12α23
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a
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A3,z = −
µ3I

2π
ln

(

ρ

R0

)

+
µ3I

2π

∞
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1

n

β12β23

(

rI

ρ

)n

1 + α12α23

(
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b

)2n cos (nφ) . (74)

These results can easily be generalized to geometries with a single line current at any
position (rI , φI) in area 1 by rotating the coordinate system. Mathematically this is given
by the substitution

φ → φ − φI .
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C Permeable Bore

C.1 The Imaging Method for a Single Line Current

Investigating equations (9) to (12) in terms of the vector potential of a single line current
A|,z(x, y), Eq. (36), like the primary potential and using the relation 1 = βnm −αnm yields

ABore,1,z(x, y) = L
(1)
0 + A|,z(x − rI , y) − α12A|,z(x − a2/rI , y), (75)

ABore,2,3,z(x, y) = β12A|,z(x − rI , y) + α12A|,z(x, y). (76)

The expressions for the vector potential include the permeability constant of the corre-
sponding area.

The vector potential within the bore is then given by the primary potential and the
potential of a virtual image current at the distance a2/rI as given by the imaging method.

In the result for the vector potential outside the bore, the α term can be interpreted
as the imaging current of the closing lead in infinite distance. By means of the imaging
method this would be placed in the center.

This means that all plain geometries are a priori of zero current and charge sum and
the parts not considered and placed somewhere very far away have to be taken into account
for imaging purposes.

For a continuous vector potential the constant L
(1)
0 is needed. However, for the magnetic

field and the field of magnetic induction it is of no meaning and therefore does not need
to be taken into account for the physical interpretation of the equations above.

In fig. 3 a) to c) the field distribution of one single line current is shown for three different
outer permeabilities. It can be seen from the plots that the more the outer permeability
outranges the inner, the more the field density outside increases compared to inside. Seen
from the outer area, this feature results from the fact, that the virtual line current that is
placed in the center is weighted with the factor µ2α12. Consequently, for large values of
µ2, i.e. if µ2 → ∞, this product produces a large field contribution. At the same time the
field density inside the bore increases only slightly. Note that this effect occurs only if the
current sum inside the bore is different from zero. Otherwise, the centered line currents
cancel out.

C.2 Material with Infinite Permeability

In a first glance it might seem impossible to put a single line current into a bore within
material with infinite material because either Ampere’s law or the boundary conditions
of orthogonal field lines would be violated.

Following Henke [9, p. 163], the boundary conditions for a geometry free of current
sheets can also be written as

tan θ1

tan θ2

=
Ht1/Hn1

Ht2/Hn2

=
µ1

µ2

. (77)
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Figure 14: Field distribution of the magnetic induction for a line current inside a bore
within permeable material. With increasing value of µ2 the field density in area 2 increases,
too.

Here Hti denotes the tangential and Hni denotes the normal component of the magnetic
field on the boundary of area i. The angles θi denote the angle between the field/field
lines and the normal vector on the boundary. The definition of the angles is also shown in
fig. 15.

With an outer area of infinite permeability, the quotient of the two tangents is given
to zero. This could be either obtained by an inner angle θ1 of zero which means that the
inner field lines run perpendicular to the boundary, or by an outer angle θ2 of π/2 which
means that field lines outside run parallel to the boundary of the bore.

From Eqs. (10) and (11) the magnetic field can be derived.

n

Θ1

Θ2

21

Figure 15: Definition of the angles of the field lines by means of a normal vector n perpen-
dicular to the contour. The two areas 1 and 2 are shown in different colors.
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Hρ>rI

1,ρ = −
I

2π

∞
∑

n=1

(

rn
I

ρn+1
− α12

ρn−1

(a2/rI)
n

)

sin (nφ) , (78)

Hρ>rI

1,φ =
I

2π

1

ρ
+

µ1I

2π

∞
∑

n=1

(

rn
I

ρn+1
+ α12

ρn−1

(a2/rI)
n

)

cos (nφ) , (79)

Hρ>rI

2,ρ = −β12

I

2π

∞
∑

n=1

rIn

ρn+1
sin (nφ) , (80)

Hρ>rI

2,φ =
I

2π

1

ρ
+ β12

µ2I

2π

∞
∑

n=1

rIn

ρn+1
cos (nφ) . (81)

Calculating the arc tangent of the field components at ρ = a and evaluating the limit for
µ2 → ∞ yields the two angles θ1,2:

θ1(φ) = arctan

(

H1,φ(ρ = a)

H1,ρ(ρ = a)

)

= arctan

(

1

−2
∑∞

n=1

(

rI

a

)n
sin (nφ)

)

(82)

θ2(φ) = arctan

(

H2,φ(ρ = a)

H2,ρ(ρ = a)

)

= arctan

(

1

β12 → 0

)

=
π

2
(83)

As shown in Eqs. (82) and (83), for a single line current in a permeable bore with µ → ∞
the latter case is applicable and the field lines are not perpendicular. Fig. 16 shows the
angle of the field lines at the inner circular boundary of the bore.
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Figure 16: Angle of the field lines at the inner boundary of the circular bore within material
with infinite permeability.
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