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ON THE THEORY OF COASTAL UPWELLING

by

Ants Leetmaa

Submitted to the Department of Meteorology on 25 March 1969
in partial fulfillment of the requirement for the degree of
Doctor of Philosophy

ABSTRACT

Some aspects of the linear dynamics of rotating, stratified
fluids are studied in detail. A system is considered in which the
effects of lateral friction can be neglected. The flow is driven
mechanically. The solutions are found to depend strongly on the

Vv, « DT O -
values of the parameters,(VS53 Yk Land E-fFor . For weak
stratifications, the solutions converge to the homogeneous limit.
The transitions in the dynamics of this system from the homogeneous
iimit to strong stratification are displayed in detail. Some effects
of thermal forcing are considered.

Some of the physical mechanisms which are examined in this
study are thought to be of importance in coastal upwelling. The
general observational features of coastal upwelling are examined.
On the basis of some of these, a continuously stratified linear
model of an upwelling zone on a f-plane is presented. The limit-
ations of the model are discussed.

Thesis supervisor: Henry M. Stommel
Title: Professor of Oceanography
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1.0 Introduction

Charts of mean sea surface temperature show that regionms
of anomalously cold water anrezr next to the continents on
the eastern sides of most ocean basins. These are produced
by upﬁelling. A typical case of upwelling off the coast of
Chile is illustrated in figure 1.

When a wind blows éarallel to a coast; the Coriolis force
causes a transport of water in the surface layer normal to the
coast, An off-shore transport requires by continuity that cold,
sub-surface water is drawn to the surface at the coast. This
is called upwelling. The opposite case, of surface water moving
toward the coast, is called downwelling. In ~ither case, the
dynamics of thé zone in which the water rises or descends is
not well understood.

The characteristic width of this zone is of the order of
tens of kilometers. An order of magnitude estimate in the
Navier-Stokes equations indicates that lateral friction and
inertial forces become important only on a scale of the order
of kilometers. Because of this, the previous theoretical models
in which lateral friction or non—lineaf effects are important
will not be discussed.

Recent work by Barcilon and Pedlosky (1967a,b) and Vzronis
(1967a,b) indicates that stratification can greatly modify the

=z

dynamics of rotating fluids. For certain ranges in stratification,
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Ekman layers no longer control the dynamics, and the effects of
viscosity penetrate into the interior of the fluid. There are
geophvsical situations in which such effects might be important.
Sverdrup (1937) postulated that in the upwelling zone part of the
. surface stress was directly transmitted to the interior, i.e.
the interior thermal wind balanced part of the surface stress.
He, however, did not present a detailed theoretical model of the
upwelling zone. An attempt to incorporate Sverdrup's ideas into
a dynamical model of upwelling was made by Yoshida (1967). His
model consisted essentially of a two layer system, and the ef-
fects of continuous stratification are not apparent.

A simplc, continuously stratified model of an upwelling
zone is presented in this work, To study the effects of strat-
jfication in this zone, a simpler rotating, strétified fluid
system is studied. A physical understanding of the interaction
between rotation and stratification in this system is obtained.
The physical insight obtained frcm this study helps us to under-
stand the more complex dynamics of the upwelling zone. This
theoretical upwelling model exhibits some of the features which
are observed in coastal upwelling. The limitations of the

model are discussed.

2.0 Formulation of equations

Consider the steady motion of an incompressible, Boussinesq

fluid in a coordinate frame rotating with constant angular velocity



f/a. about the vertical. The equations of motion are:

/

WV« FRrll = - pIp-gqk v VT’

V=0

WYT = x VT’

P> l1=a(T-1Y)
L .

where W ,P s P fr,V‘K are respectively the velocity, pressure,
density, temperature, constant kinematic viscosity, and constant
thermometric conductivity. The unit vector in the vertical is
ﬁ. The equation of state is assumed to be linear where A is

a constaat thermal expansion coefficient, and ) and T, are
reference values of density and temperature. The centrifugal
accelerations are assumed to be small compared to gravity and
have been neglected.

The simplest model in which thermal effects are important
is considered. The heat equation is linearized by imposing an
external temperature gradient. The fluid is contained between
two herizontal surfaces separated by a distance D . The upper
surface is maintained at a temperature 1,+A] ; the lower sur-
face is maintained at T, where AV>O . 1In the absence i any

motion the equilibrium temperature is given by:

-0

[N
[ZY
N

Te = (T,+AT) + AT 2D o

-

The problem is assumed to be independent of y, i.e. %\(=O . The



equations are non-dimensionalized as follows:

W)Vl 5 wes%Vw ;5 x=Lx | .
[ p— U?\. - - L‘ :
z2'- 0% ) T:les,m'( L
Pr= Po’Po‘f)D't + P’%AATO%( L+ 35) +P°‘PULP

where u,v,w,T,p are non-dimensional variables. Note that V and P

represent devilations of the temperature and the pressure from their

equilibrium values. The length scale "L" represents the character-

istic horizontal scale imposed on the system by the boundary conditions

at z=0 whose scale of variation is "L". The non-dimensional equations

are:
Roluu s wuyd-v = -p, + EVU.
Reve + wyy) & W= EVYV
R, (uw, + wusy) -1 T+ S eV
Wyt Wy =0
CR, (0T, +wsTy) + CosSYw = EVT
where
Gz Drandtl No. - 9/K
€= Exman wo. = %ot
R,z Ross8Y No. = U/FL
S = Mseect wmin = A
< %JL\}—%&L
and

T L

-
V-_éat*&v

In the sequel,(¢$§) will be called the stratification.



A right-handed coordinate system is used where z is positive
upward. The velocities u, v, w are respectively in the x, y, 2
directions. The notation ( )X is shorthand for 5@1\( Y . Since
the motion will be dfiven by surface stresses, the velocity amp-
litude,U , is chosen to be%o'g where T, is the amplitude of the
stress. We assume that G=0() and E<<o0(i), To linearize the system
the further restriction is made that R.¢« €ecot) | Neglecting

terms of O(R) the equations become:

Vs -p v EVLL
- EVV
0= -p+T+3EVL
0= Uyt Wy

@SSw: €V T

When §=000), this set of equations is the same as those considered
by Barcilon and Pedlosky. However, further simplification occurs
if we assume that &4¢0d().

-

3.0 The Stommel-Veronis Model

Consider a model in which the horizontal scale is large
compared to the vertical one, i.e. 0¢0() . Neglecting terms of

o(8E€) the equations become:

-V= _PR+ Euza

W= EV%—.&



O='Pf*T
0= UytrWiq
©w = €123

This was the set of equations examined by Stommel and Veronis

(1957). A single equation for the pressure can be formed:

O e @ ©®

T

E P’S% + W '\'(6—&5\3 P&y\ 2e * 8]

There exist certain natural scales for z which arise out of the

possible balances between the three terms.

The Ekman Solution:

A balance between terms CD and (:) occurs only if(§58€6<OUL

The vertical scale, § , then is:

§=€“%

The Frictional Solution:

A balance between terms @ and @ occurs if @ss€y>ol\) | Then
the vertical scale, % , is:
X v

€ e
£ (o) 2

The Lineykin Solutiom:

A balance between terms () and () occurs if [5$5€)<oly) .

=




Then the vertical scale, ¢ , is:

Z = (wsg\'"l %

The Couette Solution:

The solution, which is valid whenever the model is valid,
for which all three terms in the pressure equation are identi-

cally zero is:

P(\,ﬁ\é ﬂ({Ei + B

This solution plays a dominant role in the dynamics of the
following examples.

Physically the existence of these various z-scales indi-
cates that, for any given value of the paraﬁeters, there are
regions in the flow in which the primary balances in the mo-
mentum equations are not those which were assumed in the ini-
tial scaling.

The solution in any parameter range will be a composite
of these. Simple examples will be considergd to exhibit some
of the effects of stratification in rotating fluids. Because
complete solutions can be obtained which are valid for all
ranges of stratification, boundary layer analyses will only
be done after these solutions have been exhibited to gairn lur-

ther physical insight. The only restrictive assumption which

‘is made is that the Ekman depth is a small fraction of the total

depth. This is equivalent to the assumption made earlier that

. o oy EKMAN PePTH
E«oll), 1In the examples we let € =0 i.e. ol ocom ° QO



For computational convenience in the following examples, the
Y
unit of depth is defined as the Ekman depth, i.e. Z=i11§ .

The pressure equation becomes:

.z
Pg;‘ ¥ P"li. + A P“si =0 ()
where

N o= (988 ey

and

A= (UNEYXK\WN DEPTH)/(EKMAN DEPTH)

3
= L (FR\cTIONAL DEF 1Y/ (EXNAN DEPI) |

As in Stommel and Veronis (1957), periodic boundary con-
ditions will be used to eliminate the need for horizontal
boundaries. It should be noted than in the following examples,
the temperature referred to is always the perturbation temper-
ature. The total temperature field consists éf this plus the
mean gradient.

Temperature boundary conditions are expected to play a large
role in determining the nature of the solution. In the following
examples the temperature boundary condition will be specified
either on the pertubation heat flux or on the perfubation temp-
erature. This allows a more thorough understanding of the de-
pendence o the solution on the thermal boundary conditions to

=

be obtained.

10.



In a laboratory situation to which the Stommel and Veronis
model might apply, the total temperature is specified at z
Thus a situation in which the perturbation temperature is spec-
ified at z=0 could be experimentally realized. However, in this

situation, a system in which the flux of pertubation temperature

is specified is probably not meaningful physically.

oceanic situation, the appropriate boundary condition at z=0

is one where some combination of temperature and heat flux is

specified. The exact form of this is unknown.

3.1 Example I:

Consider the following problem. Specify the boundary

conditions:

The solution to equation (1) which will satisfy the boundary

conditions is:
P(x,i\= PGY siwx ¥
where

:OTf;e G- T .
FYﬁ) ?; PO3 ¢ Hﬁi + g

The G;'s satisfy the condition that:

11,
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The following relations are true:

6, =-60,
¥
6E = G}

O ‘"’GL”Qf
The ( )* denotes complex conjugate. The G.'s were determined
numerically and a short list of them for various values of ( AN
is given in Table I. Note that G, is real.

0, = Oupt L0y

Application of the boundary conditions determines the ‘T{s

ﬁ\ VeI o )G -6T)) + 1Ty exp(-*iOO',\

M- /(N6 (ar-a7 Yo -00))

*
ﬁ's = -ﬂz
Ty = [(e¥(aia)y afo7-00) -0,07 (5,-T) o)) exp(-10T,)-

(V(RGHOE-SY(G2-G1)) ~ Tl 0,62(8,-T)) / Lo (6 -6}y
(G2-62) - (6 1-G2YW T -6 - (83 (07-6) -0 (a5 -0, ) -

G007 (g,-6)exp(- 800‘,3]

M- LA (g}-a7) T, expl-oa) - T (afo - ala*y]/

[6,((03- 6 (02-G2) - (6, - G- G 0]

ﬂt‘ WS*



A 7

1/30 3.1016
1/10 2.1377
1/3 1.3857
1 .8260
3 .3313
10 .1000
30 .0333

100 .0100

TABLE 1

Tar
1.5591
1.0938

7762
.6593
.6896
.7053
.7069

.7071

Cal
2.6909
1.8658
1.2500

.8808
.7283
.7089
.7073

.7071

13,
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W, - LYOh e 07 ) (6= ) + ReaL (30, )]

Ty - “oTiq- LRGP T, +AReALONE; )| - X672T, exp (-404))

Utilizing the momentum equations, the fields are represented in

terms of the pressure as follows:

V= Lpte) - X PR ¢ ) cosx
w= N P(ﬂw cos X

w= N P(7§g§ SURY

T= Plr) sw x

These are plotted in figures 2-5 for varicus values of A
The value of A is indicated on each curve, The symbol, H,
designates the homogeneous case. This was computed for an example

in which the stratification was absent.
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3.2 Example II:

Specify thatp@ "{=°LTi;O . The rest of the boundary
conditions remain the same as in Example I. The M's now

are:

=00 (0,40,) + G, (G4 T2+, 0) - 65 Ty ey (-100)]/
-3 3 3 PR A P

[ (6‘3'@:\ (0‘|<0-\+6-3§ - GL( Gz* GJ))]

i, - [0\'1(0\63 (€,46,) + 0,(G+ G +6,05) - (,‘})TL‘ eyp(-%c\ﬂ/

(6. (0-6)(0,(0,+T) -0, (g, + M)

= Le-6)(0a,+0) -0, (0,400 050, Tq] / Ta, (o,
~ GO (6,4 0,) - 070+ T (0, (T,46,) -0, (T4 0))
-0 {2 (G + G+ G - GF0F + 0. (0a TN (0 ( g+

a,’ s qzcs\ t 0,05 (0, +G5) -9 exp(-SOG.ﬂ

Vg = I((( Tya Tty 0".6330“3 + (0, +03) O-l"'_gxz 0"336\;(\)(-%6"} i,
- G;O—Iz U’]>]/[ 0_17<G|1+ 6-3¢| * 0_37') - 6;' G?U—;— - qu‘

(€, @)}
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q = |

Tig=40-X\ Y,o‘fﬁ\e*p(-k\oq\\ + 67T, + ARERL (GLLTT.;\]

The fields are expressed in terms of the pressure as in Example

I. These are plotted in figures 6-9.

I
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3.3 Example III:

Apply a stress in the x-direction. Couette flow cannot

- 25.

exist because of the lack of y-dependence. Consider the following

problem:

ol oV -
@ % =0 -, 0% = cosx ai:w=l=0

@ %=-10 W=Vv=u=1=0

The Ti{'s are:
T, = (654 &)/ (Xa (62 - (0,760 + Ty exp (-Y00)

Ty = (a8 o0Y/(X6] (601 (0 -0y

M= L(6303-63) - 0 (a2-67) - 0,0(0,-0)G 2
explHo GS € a5+ 0/ N O (GG (2 -2 -
Mo 67(0,-6)] /(0 (6% a7 (- 67) - (0-T7)
(62~ - (0% (a2-0) -~ 6 (602 -6,9, 67

(6, -6)) e\;p(~?0mﬂ



26,

M= V20, (G561, expl-uoe) - Ty (GRo*-
610/ 16 (6 -6 ( g2 0 - (G- 6F)

(¢3-67%)

— L

“(“—' Wg

Mla= -Lei a2y /(Na (6 -a2) (ar-aF) + vem (aa,T,)]

We= WO TH - xlcjm + AREAL (N'6,7T5)] - N T, expl(-40a)

The fields are given in terms of the pressure by the same ex-
pressions as in Example I. These are plotted in figures 10-13.
Because no Couette flow exists, the applied stress has to be
balanced by the boundary layers. For (3§8) <0 the stress is
absorbed by the Ekman layers. However, for @%8€)» o) the bal-
ancing agency is the vertically integrated pressure gradient of
the rotational-frictional layer. The net transport to the right
in the boundary layers is exhibited as a function of N in
figure 14. This drops to zero as the pressure gradient balance

becomes important.
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3.40 Discussion of Results:

It is clear from these examples that temperature boundary
conditioﬁs are of primary importance in determining the natﬁre
of the solution., A startling example of this is the solution of
Example II when the temperature is allowed to be constant in %
by specifying thathzo also at {:—WO , The complete solutibn
which is valid for Eg&_rénges of stratification, for which the
model is valid, is a Couette flow. This is:

U=%=0
V = (3440) cosx

T= 5N X

. The equations it satisfies are:

The flow is geostrophic and hydrostatic. The ithermal wind

Vg = Tx
transmits the applied stress from the upper surface directly to

the bottom. This solution does not converge to the homogeneous

limit. This non~convergence is probably velated to the physically

unrealistic boundary conditions.
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An examination of equation (2) shows that the solution to Ehe
pressure equation consists of a Couette flow, in which ﬂ;,ﬂg can
be functions of the stratification, and six exponential terms. As
was shown, three of these grow and three decay away from %<0 .
For convenience the decaying omes are called the upper solution,
and the growing ones, which contribute mainly at %=-40 , are
called the lower solution.

For (gSSelewoll) aé will be shown in section 3.41, the real
exponentials correspond to the Lineykin solution, and the complex
exponentials are the Ekman solution. Consider a situation in which
both the Lineykin and Ekman solutions exist but the separation
between the upper and lower surface is large enough so that the
upper and lower Lineykin solutions decay to zero before they reach
each other. In Example I this occurs for AMb . Consider the
top solution. Integration of the v-momentum equation shows that

for each of these exponentials, if 'a' is greater than the decay

)
J:U»dg - _S@Vgiolg = V0 -\ a) = N (o)

depth, the surface stress is balanced by a body force. In the
homogeneous case, all of the surface stress is balancedby a body
force in the Ekman layer. Stratification, however, introduces a
real exponential which can also balance a stress through a body
force. Conseqﬁently stratification bess introduced two additional
solutions among which the surface stress can be distributed--the

Lineykin and Couette solutions. In the other limit of (6$§e)>>oly)
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-

(section 3.42) the real and complex exponentials no longer correspond
to the Lineykin and Ekman solutions, but the idea of the stress

being balanced by the real exponential, the complex exponentials,

and the Couette flow still helds.

Table II indicates how the surface stress in Example I is
distributed amongst the real exponential, the complex exponentials,
and the Couette solution at %:=0 for various values of A .

In the limit of A<«o() all the stress is absorbed by the Couette
flow. In the other limit of A»o() , it is not clear which of
the solutions does balance the stress. This will be resolved in

the next section.

e om e

IR
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TABLE II

The Distribution of Stress @ z = 0

X Real Complex Couette
Exponential Exponentials
0.033 -0.004 0.004 1.00
0.050 -0.006 0.006 1.00
0.100 -0.016 0.016 1.00
0.250 -0.055 0.055 1.00
0.333 -0.083 0.083 1.00
©0.500 -0.149 0.149 1.00
1.000 -0.417 0.417 1.00
2.000 -0.856 0.856 1.00
3.000 -0.965 0.965 1.00
4,000 -0.989 0.989 1.00
6.000 -0.998 0.998 1.00
10.000 -1.000 1.000 1.00

N
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3.41 The Limit (¢S8E) ol

As can be seen from Table I, and easily shown, the complex

exponentials in this limit correspond to the Ekman solution. For
M

an 0(1) applied stress, in the Ekman layer we have Uszo(bl),‘”zouﬂ

T-0(t$§€) . For the Lineykin solution we get the following

equations:

O= CL‘( '\'\II:)VI
w-—T,m
where
Wy
and

For the Couette flow:

VLT =0l

W=w =0
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Because the order of magnitu&e of the temperature in the
Lineykin and Couette solutions is much greater than it is in the
Ekman solution, these solutions have to satisfy the temperature
boundary conditions by themselves. If the boundary conditién is,
as in Example I, that 1=O then ?“%' . Through the thermal
wind relationship this implies that Qq+0£=(3 . Consequently all
the stress in this limit is taken up by the Ekman layer.

If we specify, as iﬁ Example II, that at %=0, T}:=0,
then because.?%=0 we also have fil=0 . This implies that the
top Lineykin solution is absent. (Note: %1L=0<515YA' We are
interested in the cases in which the lower Lineykin solution does
not reach the upper surface. In this range of stratification,

A~ 10 or(0‘5<3'3'l’=§|7{}\ , consequently LGS&E‘“OU\ . Thus we
must still require that the upper Lineykin solution vanishes.)

Because wEmﬂNJfﬁ):o L @30 , this also requires that the
upper Ekman layer be absent. This Ekman layer will be absent
until the stratific9tion is; eak enough so that the lower Lineykin
solution reaches the upper surface. The heat flux contribution of

v . II L3 (3
this solution is small and is of the order of (63§) " This is

cancelled by the upper Lineykin solution.
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3.42 The Limit (g$J€)»ol)--Rotational-Frictional Layer:

The scale depth for this layer, as was pointed out earlier,

is’ .
Z-= (%ss\”bﬁ

The dynamics of this layer are those of the’frictional layer
studied by Stommel and Veronis (1957). In the analogy between
homogeneous rotating fluids and stratified fluids (Veronis (1967
a,b)), this layer is the thermal equivalent to the Stewartson
E%Llayer. The dynamics of this layer are non-rotating. However,
there is a rotational effect. The v-field is a subsidiary calculation

once u is known. This coupling is made possible because the system

is rotating. The momentum equations for this boundary layer are:

O""PVY.*‘(J.»??
G- Vi
O-—_ﬁi*T
O &,y « Wy
w= zi
where
~ 1 )
D - ol&)Y)

G = 0UesST™

¥ U((f’?—g}?‘)‘\wg}

- ol(essye™)
T - ol



39.

The temperature in this layer is assumed to be the same order
as the interior temperature, which in this case is 0(1). This
allows the temperature boundary conditions at the top and bottom
surfaces to be satisfied. Setting the temperature scale fixes
the rest of the scales. The boundary layer contribution to the

i -
surface stress is C>(TEZ§E?E) , i.e. V§<<o(0 . However, if as
in Example II, the temperature boundary condition can be satisfied
by the Couette flow itself, the rotational-frictional layer is
absent.

Because there is a thermal ﬁk—layer, the question cricesy
why isn't there a thermal E%Llayer in this problem? The equations
for this layer are the same as those for the thermal E%—layer
except for the first momentum equation which become;:

pr -0
This implies that ;% is independweat of X . However, for
these simple solutions, all the variables are functions of x.

Consequently thie layer does not occur.
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3.43 Convergence to the Homogeneous Limit:

Consider the situation in which the separation between the
upper and lower surfaces is large enough so that the upper and
lower Lineykin solutions essentially decay to zero before they
reach each other. As was shown in section 3.40, the fraction of
the applied stress taken up by each exponential solution
is a direct indication of the net transport to the right of the
stress associated with that exponential., Consequently for these
solutions which decay rapidly enough, there is no net transport
to the right of the surface stress. The integrated transport in
the Ekman layer is balanced by an equal, but-opposite, integrated
transport in the Lineykin layer,

Suppose the stratification is sufficiently weak that the
upper Lineykin solution begins to contribute at the lower surface
and vice versa. The value of the stress at ¥ =0 is then the sum
of the upper and lower contributions. This sum is alway- -1, but
it is no longer simply related to the net transport in the upper
Linevkin layer. The upper and lower Lineykin solutions have opposite
but equal transports. Consequently as their decay depth gets
larger and larger, their transports begin to cancel. For extremely
weak stratifications, neither solution decays appreciably in the
distance between the upper and lower surface. As a result, the net
Lineykin transport in this region is zero; Tramsports occur only
in the lower and upper Ekman layers. Tiis is the homogeneous

limit for the u-velocity.
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Similar convergences occur for the other fields. 1In each
case the Lineykin solution is instrumental in bringing about this
convergence to the homogeneous limit. In figure 15 is illustrated
how the Ekman, Lineykin, and Couette solutions combine to give
the v-velocity for A =100. It appears that the Lineykin exponentials
are well represented for weak stratifications by the first two
terms, i.e. 14z, in their Taylor expansions., Figure 16 is a similar
illustration for the temperature field when X =50.

The interior vertical velocity is essentially given by the

Lineykin solution. Recall from section 3.1 that

Since the Linevkin solutions are exponentials, g%tA’G} .
However, G, for large A is proportional to '/N . Consequently
for large A

Wuneww A_'T\,m;.wm = |
This is the value for the interior vertical velocity in the
homogeneous case.

Convergence to the homogeneous limit depends crucially on the
fact that the interior cannct satisfy all the boundary conditions
by itself and that viscous boundary layers are required to correct
the interior fields to the boundary values. This is illustrated
in Example II. For strong stratifications, i.e. A~ (0 ; the
interio:r Couette solution satisfies the houndary conditions at 3%=0

by itself. Viscous boundary layers are absent., The convergence
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to the homogeneous limit at =0 does not begin to occur until the
stratification is sufficiently weak so‘that the lower Lineykin
solution reaches the upper surface.

Probably the most graphic illustration that convergence to
the homogeneous limit requires the presence of viscous boundary
layers is the simple problem mentioned in the beginning of section
3.40. 1In that case the interior solution, a Couette flow, satisfied
all the boundary conditions at %= O, -40 ; convergence to the

homogeneous limit did not occur.
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4.0 Comparison with Previous Work:

In the studies of Barcilon and Tedlosky (1967a,b), a stratification
(¢s§ ) of order Evzrepresented an important transition in the
dynamics of the fluid. This occurs because the order of the
vertical velocity at the base of an Ekman layer driven by velocity
boundary conditions is E%Z For stratifications iess than this value
Ekman layers played a doﬁinant role in the dynamics. For stratifications
greater than this, the stratification inhibits the interior vertical
velocity to be less than O(E%O. Consequently in this range of
stratification the Ekman layers are thought to be non-divergent
and viscous~diffusive processes control the dynamics of the fluid.
However if, as in the examples studied here, we specify a
stress boundary condition. then the w at the base of the Ekman
layer is 0(E). Consequently E™ no longer appears as a crucial
stratification. Now divergent Ekman layers can exist, and are
influential in the dynamics, uvp to an 0(l) stratification. 1Imn
fact, as can be seen from Example I, they exist until ((s‘ﬁé»'\'“€-l
or A-=]| . At this point the Ekman and Couette layers combine
to give the rotational-frictional layer. The details of this
merger were previously unknown.
This 0(E) flux out of the Ekmau layer is absorbed by the
Lineykin solution. This solution only exists as a boundary
layer for a small range in stratificatious less than.(o%ﬁ~€“%m .

For weaker stratifications the boundaf& layer merges with the
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interior and, as was discussed in the previous section, is instrumental
in bringing about the convergence to the homogeneous limit,

The Lineykin layer is physically analogous to the hydrostatic
layer (Barcilon and Pedlosky (1967b)). The formal difference occurs
only in that for the hydrostatic layer the diffusion of momentum
-and heat occurs in the horizontal direction while for the Lineykin
layer it occurs in the vertical direction. In the exampies which
were considered, the small aspect ratio and periodic boundary
conditions made it possible to neglect the effects of the hydro-
static layer and concentrate primarily on the effects of the
Lineykin solution.

A schematic description of the various elements of the dynamics
of rotating, stvatified fluids as a function of stratification is
shown in figure 17. This representation was obtained from Barcilon
(1969) (Barcilon and Pedlosky (1967b)). The results of the present

investigation are indicated by bteing enclosed in parentheses.
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5.0 Some Aspects of Thermal Forcing:

All the previous examples vnich were considcred were forced
mechanically by applying a stress at z = 0. However, some interesting
effects occur if the fluid is also thermally forced. Consider the

Stommel and Veronis model and apply the following boundary conditions:

oV
@%-0 - oy = 0-COSX
T=bsinx .
o
ai-. w so

@?:-—‘U)" U.=\=w=1\=0

The solution, as in the previous examples, is of the form:

< o - =
P, 5 = L Z ievpoig + g+ Hgl SV X

It is easy to show that TMy=a . For (653€Vou) the solution
again consists of Ekman layers, a Lineykin solution, and a Couette

flow. As before the Lineykin and Couette solutions have to satis-

fy the temperature boundary conditions by themselves, i.e.

@ 3-0 f\—*:\_'=b

m “ n “

—_ N
Here the signifies the Couette solution and the the
- A
Lineykin solution. Since T=W'\ =4, , we have that T=h-a | Through

the thermal wind relationship

A

QT=T=b“Q/

The stress condition at ‘?=O is
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or
VE_\'_ ‘7 = a’ - b
where ( )E L stands for an Ekman layer variable. From this last

expression it is clear that thermal forcing can have great effects.
The net transport in the Ekman layer is now proportional toa-b .
For example, if =20, then the net transport in the Ekman layer

is in fact to the left of the 'apparent' applied stress "a". This
results, of course, because of the thermal wind shear associated
with the thermal forecing. In the limit (6$6€)»0l\) the only effect
of the thermal forcing would be to modify the solution near =0 .

The interior solution would still be the Couette flow .

V= ol +40) cos
T =aswxX
These solutions of course won't converge to the homogeneous limit

unless some provision is made to let the applied temperature per-

turbation go to zero as the stratification decreases.
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PART II -

6.0 General Features of Coastal Upwelling:

Frequently along coastlines regions of anomalously cold water
appear. These are thought to be caused by upwelling. On the eastern
sides of ocean basins upwelling is a common occurrence along the
coastlines of Peru and Chile, California, and the west coast of
Africa. Wooster and Reid (1562 present'a survey of the general
oceanic conditidns in these regions. Their paper is also an ex-
cellent source for references to the literature on upwelling. On
the western sides of oceans, the prominent regions of upwelling
are the east coasts of Somaliland and Arabia during the southwest
monsoon. The details of upwelling vary from place to place and
depend strongly on local conditions. In this section only the
salient features of the upwelling zones will be discussed. On che
basis of some of these a theory of upwelling will be constructed.

The observational studies indicate that there are some gen-
eral features which are common to all upwelling zones. Upwelling
seems to be confined to the surface layers. Sverdrup and Fleming
(1941) found the depth of upwelling off California to be about
200 meters. Off Peru and Chile the depth from which upwelled water
.is brought to the surface rarely excceds 200 meters (Gunther (193%)).
Off the Somali coast this depth appears to be less than 300 meters
(Warren, et al. (1966)); of f Arabia it appears to be 100-200 meters.

The scarcity of systematic observations and the presence of
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continental shelfs makes it difficult tec relate this depth to
general oceanic and atmospheric conditions.
The upwelled water has a temperature 2-5°C colder than that
of the surface water further offshore. Generally this colider water
is fresher than the offshore surface water. The salinity dif-
ference is of the order of a couple of tenths of a part per thousand.
The density difference between the upwelled water and the offshore
surface water varies considerably and is of the order of 1 part
in ¢, . The upwelled water has high concentrations of nutrients
such as phosphates and silicates but is undersaturated in oxygen.
All thesevfeatures of course vary from place to place and depend
strongly on the local conditions. It is difficult, on the basis
of the limited information which is available, to determine any
systematic vartations. .
Upwelling is usually confined to a zone within 70 km. of the
coast. Within this zone the velucities increase toward the coast.
The ship drift observations of Gunther (1936) indicate that the sur-
face drift in the'zone is of the order of a knot. Svefdrup and
Fleming (1941), using dynamic comﬁutations, get a similar value
for the surface velocity relative to 100 meters. Comparable sur-
face shears are found off Arabia. By assuming that all the upwelled
water moves offéhore in the mixed layer in which the magnitude
of the offshore velocity can be estimated by assuming Ekman layer
dynamics, Sverdrup and Fleming (1941) obtain estimates for the ver-

tical and offshore velocities in the upwelling zone. The offshore

velocity is of the order of 10 cm/sec. This requires a vertical
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velucity in the upwelling zone of 10" -10 ° cm/sec. All of these
valuns of course depend on the magnitude of the wind. In the
upwelling situation Sverdrup and Fleming studied, this was about
16 knots.

The regions of strong upwelling are of limited extent along
ihe coast. Their extent along the coast is of the order of hun-
dreds of kilumeters, and they are separated from one another by
regions with higher surface temperaéures. There seems to be little
correlation between the location of thedzoﬁes and bottom topography
(Gunther (1936)). However, the regions of strong upwelling occur
frequently at capes. This, no doubt, is related to the winds which
generally are strongest in these regions. There is a strong
correlation between the strength of the component of a wind parallel
to a coast and upwelling (Wooster and Reid (1963)). Variablé
winds consequently make the upwelling process strongly time de-
pendent. No systematic observations have been made to study the
response time for upwelling. However, an estimate of this can
be made by computing the time required for water to ascend from
a characteristic depth of upwelling, i.e. 100 meters, to the
surface. For w of the order of ldz—ldgcm/sec, this takes 10-100
days. This consistent withk observations (Sverdrup and Fleming
' (1941); Smith, et al (1966)) which indicate that the general
features of the upwelling zone are set up in a perlod of a week or so.

The upwelling zones on the western side of the ocean basins
appear to be quite similar to those on the eastern side. However,

on the western side there is an additional compliicating factor.
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Off Somaliland, during the southwest monsoon, it isn't clear
whether the upwelling is due to the local winds, i.e. to the off-
sho?e transport in t;e mixed layer, or to the Somali Current. Tke
Somali Current as it crosses the equator and flows northward in-
creases in transport and begins to feel the effects of the earth's
rotation. Consequently the density surfaces rise toward the :zvast.
This process will be called geostrophic upwélling. When the cur-
rent reaches a steady state, no more water is upwelled and the sur-
face oxygen values, close to the coast, should reach saturation.
However, near the Somali coast, several months after the onset

of the southwest monsoon, the surface oxygen values are only 607

of saturation (Warren, et al, (1966)). This either indicates that
the current is not yet in steady state or that water is being forced
away from the coast in the surface layers. Close to the Somali
coast extremely cold water, which is about 8°C colder than the off-
shore surface water, is brought to the surface. This extreme up-
welling probably occurs because the two types of upwelling are acting
concurrently.

At about 9°N the Somali Current leaves the coast so that
further north, off the Arabian coast, the strong geostrophic up-
welling associated with the Somali current is absent. In Appendix
A are shown temperature, salinity, and oxygen profiles along three
sections off the Arabian coast during the socuthwest monsoon. From
these profiles some general features of the flow close to the coast

are immediately apparent.



54,

6.1 Arabian Upwelling:

There appears to be little continuity in the surface currents
along the coast. In section C, a hot, saline surface current, 29.9°C
36.15%., flows next to the coast. Its high temperature and salinity
irdicate that the origin of this water is probably the Gulf of A-
den. Note that this water does not appear in section B. Although
cold water is not directly at the surface at the shoremost station
(5006) of this section, water of 20°C andVZ ml/1l oxygen is found
20 meters below the surface. The surface temperature at this station
is 26.8°C. This indicates that upwelling has probably recently
stopped. The upwelled water appears to be drawn from a depth of
100-150 meters. Dynamic calculatiopns indicate that at station
5008, the geostrophic velocity at the surface relative to 50 meters
is 80 cm/sec.

At section B active uvpwelling is in progress. At station
5033 water of 19.8°C and a salinity of about 35.657%. is at the sur-
face. The oxygens are 507 of satu?ation. Near the edge of the up-
welling zone at stations 5036, 5037 the geostrophic velocity shear
in the top 100 meters is 40 cm/sec/100 meters. The extremely warm
and saline water found next to the coast in section C probably lies
at the right edge of this profile.

The conditions at section A indicate that upwelling is in
progress. Water of 18.9°C and 35.687%.is found at the surface at
station 5047. The ogygen,values are 50% of saturation. From the

water mass characteristics and geostrophic calculations there again
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appears to be a current running parallel to the coast in the sur-
face layers. The g;ostrophic velocity shear at stations 5049 and
5050 near the edge of the upwelling zone is about 50 cm/sec/120
meters. It is difficult to tell where the water in this current
originates. The surface tempcrature, salinity and oxygen values
about 160 kilometers from the coast in profile B are similar to
those found close to the coast in this section so this might in-
dicate some continuity of flow between these two sections.

Water in these three sections appears to upwell from a depth
of 100-150 meters. In all three sections there exists & narrow
coastal current whose width is about 20 kilometers within which
there are large geostrophic shears. This coastal current appears
not to be continuous. Consequently it might be related to the lo-
cal upwelling. . This is to be expected because the upwelling tilts
the density surfaces up ‘towards the coast, and this results in a
geostrophic current which ruins pavallel to the coast.

The salinity profiles are all very confused, which makes it
difficult to trace water movement at intermediate depths., This
is similar to what Hamon (1967 ) féund in this region. This confused
picture probably is directly related to the several sources of dif-
ferent salinity such as the Persian Gulf and the Gulf of Aden which
are found in this region. From profiles A and C it appears that
there might be a movement of water at 200-300 meters along the coast
because of the oxygen values over .5 ml/l. However, at profile B,

pext to the coast, no values greater than .3 ml/l are found at 200

meters. Furthermore the salinity at this depth next to the coast
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for this section is higher than it is either in section A or C.
Consequently there probably is no continuity in this flow next to
the coast at 200 meters. This is in contrast with what is observed

in the upwelling zones along the eastern sides of ocean basins. -
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6.2 Poleward Counrer-Curients:

On the eastern sides of the ocean basins are found deep pole-
ward countercurrents whose axes lie at about 300 meters. These
are described in the article by Wooster and Reid (1963). The
counter-currents are found in both hemispheres and transport water
from equatorial regions toward the poles. Their high temperature,
salinity, and low oxygen values--water mass properties characteristic
of equatorial water-—enable fhe counter-currents to be traced into
mid-latitudes. These features can be seen in figure 1, in which
a profile off Chile is exhibited. The counter-current has a
width of 30-50 kilometers, and its velocity along the coast is
10-20 cm/sec (Wooster and Gilmartin (1961)). This current is thought
to supply part of the water which is upwelled. Because of this,
it is commonly called a compensation current. MHowever, there are
indications that this might not be the case. Observations off
California (Reid, et al. (1958)) show that this current is in fact
strongest during the winter, i.e. when the upwelling is essentially
absent. During the spring and early summer, when upwelling is
strongest, the current is weakest. This is exactly opposite of what
simple dynamical models, which attribute the origin of the current
to @ —effects, would predict (Latun (1962), Yoshida (1967)).
Furthermore, when the current is strongest, it reaches to the surface;
however, during periods of upwelling it is destroyed above 200 meters.

Consequently the possibility exists that this current, instead of
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being a compensation current, is a result of a different physical
process.,

An examination of the dynamic topography of the 200 db surface
with respect to the 1000 db surface (Wooster and Reid (1963))
shows that a narrow pressuré gradient of the right sense to drive
this countercurrent exists along the coast. This pressure gradient
is confined to within 100 kilometers of the coast. The existence
of a pressure gradient, of the same width as the uvpwelling zone,
in the same region as the upwelling zone, indicates that it is
probably in some way related to the upwelling.

Because the main oceanic thermocline is shallower in equatorial
regions than in mid-latitudes, upwelling in low latitudes brings to
the surface water whose temperature is not much warmer than the
upwelled water'in mid-latitudes even though the surface temperature
in equatorial regions is much higher than it is in mid-latitudes.
However, the salinity of equatorial water is much higher than that
of water in mid—latitudes. Consequently the density Qf upwelled
water in low latitudes can be greater than it is in mid-latitudes.
This density difference, integrated throughout a water column,
would produce a poleward pressure gradient, of limited width,
such as is observed.

An examination of Gunther's data shows that the density of
upwelled water tends to be greater in low latitudes than in middle
latitudes. The difference in ¢, between low and middle latitudes
is about .10-.30, Of course, strong upweliing in high latitudes

can reverse this density difference.
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It also appears that, at least off South America, upwelling

e
}J-

, : .
in low latitudes is more persistent and stronger than it is

n
middle latitudes. One factor which might contribute to this is
the simple Ekman notion that the offshore transport in the mixed
layer is of the order of fq?, where T is the magnitude of the
wind stress and € is the Coriolis parameter. This relationship
indicates that for two upwelling zones of equal width in which the
wind stresses are equal, the upwelling is more intense in the one
that is at the lower latitude. Over a period of time, this would
have the tendency to pruduce the proper pressure gradient,
However, off the Arabian coast the distribution in density
of upwelled water, if anything, is such as to produce an equator-
ward pressure gradient, i.e. opposite to that observed off Peru
and Chile. The upwelling is also probebly more uniform in time
and space because the Arabian coastline is of iimited north-
south extent and the monsoon winds are relatively steady. These
factors might not be conducive to the formation of a counter-

current which probably depends on north-south variations in the

upwelling.



6.3 Lateral Mixing in the Upwelling Zone:

Estimates of the horizontal, turbulent diffusivity off the
California coast were made by Sverdrup and Fleming (1941). Guided
by observations of the mean distribution of water mass properties
along G ~surfaces, they deduced that the horizontal diffusivity
was of the order of 10° cm“/sec. Horizontal eddies, 20-40 kilometers
in diameter were observed in the flow figld. These were though to
be responsible for a lateral exchange of this order. Clearly if
these eddies were important in the exchange process in the upwelling
zone, whose scale is comparable to that of the eddies, it would be
difficult to maintain the integrity of the upwelling zone. Furthermore,
upwelling off California is highly time dependent and the eddies
themselves, to.some extent are products of upwelling. As thé up-
welling progresses, the pressure gradient normal to the coast
increases, and the velocity parallel to the coast grows larger.
Instability or irregularity in the flow tends to create these eddies
which in turn limit the growth of the velocity.

Consequently the Qalue, lObcm?/sec, is probably a gross over-
estimation of the importance of lateral friction within the zone.

The "actual" eddy coefficient is probably several orders of magnitude
less than this. However, its magnitude is unknown and probably
varies from location to location. To make estimates of horizontal
Ekman numbers in section 7.1, a value of 1d4cﬁb/sec will be settled

"]
on. Most likely the value 10 em /sec is a more appropriate one to
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describe the mean conditions away from the upwelling zone. Hcwever,
because we are interested in studying the dynamics of the zone
1tself, the smaller value will be used in the order of magnitude
estimates. The theory will be constructed so that it does not depend
on the value of this coefficient.

It is instructive to make an estimate of the relative importance
of horizontal to vertical exchange processes within the upwelling
zone, This is done using the value, 1059m1/sec, for the eddy
coefficient even though this is probably much too large. This
calculation indicates that vertical mixing is at least an order of

\)38}31}/\2 Q}L = wz ~ -
vor 163 (S x10%) S
magnitude more important than lateral mixing. A smaller lateral
diffusivity would of course further decrease this ratio. Thege
considerations indicate that the dynamics of ihe upwelling zone
should not be strongly influenced by lateral friction.

However, because of the strong effects lateral friction has
in some of the cases of rotating, stratified fluids studied by
Barcilon and Pedlosky (1967a,b) and Veronis (1967a,b), its effects
will be considered in Appendix B. It is shown there that for the
theoretical model which is considered, the effects of lateral

friction are unimportant.
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6.4 The BoundarX>thdition at a Coast:

In a model of the upwelling zone in which lateral friction is
neglected, it is impossible to catisfy all the boundary conditions
on the temperature aﬁd velocity fields at a coast. In practice
oceanic coasts are ill-defined and are far from being vertical walls.
There appear to be heat fluxes (see fig. 1) through these "walls"
at least on the scale on which observations have been made. Tha
precise boundary conditions at such a coast are unknown. Consequently
the only boundary condition which will be imposed is that there be
no normal flow through the coast.

Howaver, in the published studies of rotating, stratified
fluids mentioned in the previous section, the condition of no;mal
flow at a wall is intimately connected to the thermal boundary
condition there. Satisfaction of the thermal boundary condition
can induce a circulation which can modify the interior solution.
It is shown in Appendix B, that for the model which will be considered,
that the inclusign of lateral friction, which allows the heat flux

to be brought to zero, does not modify the solution.
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6.5 Consideration §£>f3—Effects:

North-south motion on a {3-plane creates a vertical velocity.
If 3 —effects are negligible in an upwelling model, this w must
be much less than the one caused by the diffusion of relative
vorticity. 1In the linear theory the vorticity equation is of the
form:
Bv= fwa + DIFFVSION OF RELATWE VeRTACWTY
Consequently the w created by @ -effects is of the order of

-3
B, 50107 53
107

w§=%awaa‘~
This can be of the same order as the vertical velocities actually
observed in the upwelling zone. However, for the sake of simplicity,
the theoretical model which will be considered will ignor (3-effects.
In geostr;phic upwelling as a current flows poleward the up-

welling becomes more intense because the value of the Coriolis

parameter increases, ie. because of the (3-effect.
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7.0 An Upwelling Model:

In the previous secticns, some observational features of the
upwelling zones have been examined. For a theoretical analy-is,
the simplest coastal model would seem to be a vertical coast at
x=0 with a uniformly stratified ocean extending to x=—%, A
steady stress in the y-direction (i.e. parallel to the coast) is
applied everywhere at the surface. The rotation vector is vertical
(f>0) and constant. As before, we assume that the linearized
equations are valid. The effects of lateral friction and conduction
will also be ignored except that some discussion of their role is
made in Appendix B. With these assumptions, the set of dynamical
equations is that which was studied in the Stommel and Veronis
‘model of Part I.

A solution to this problem is postponed until section 7.30.

As a preliminary to this problem, section 7.20 analyses a some-
what similar problem in which the coast is moved to x= teo ,

and the uniform stress is replaced by an alternating square wave
distribution. The similarity arises in that in the square wave
solution, u vanishes when the stress changes sign, and to this
extent, such places may be considered as a ''coast". This method
of solution is motivated by considering the regions of different

sign of the stress as being "images" of each other, and the

solution is obtained in the sense of the "mcthod of images".
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7.1 Formulation of ﬁquations:

The set of non-dimensional, linear equations with lateral

friction included is:

V= -0+ Byl +EyUay
W= Bu Vax v By Var
0« -paT e St(Eku*\Ev“’u}
O = Uy xW,

«RSSMU*EE&AEHT;x*Eszz

where

~ v v ‘)“

Ju Jv A Y
EH’ £ ') E'sz-ox , G‘v= Yy G-H‘ K

®

The constant eddy viscosity coefficients in the horizontal znd
vertical directions are respectively, ¥, Vv ; the constant eddy
coefficients of thermometric conductivity in the horizontal and
vertical directions are K, W, . The assumptions in deriving this
set of equations and the non-dimensionalizations are the same as
in Part I. The horizontal and vertical Prandtl numbers are both
assumed to be of order unity.

In the estimation of the abomsve parameters, the following

-y 2l _ ° ~ -4 -l
numerical values are used: f~\D S€C D\-v‘ \0C ) d= 25530 T

3ot “
L=\000¥m, [ D=1000 newErs | Y, =\0 e L Ng ~\0 o[z,

A discussion of the value used for ¥, has already been made in

section 6.3. The value used for D is an order of magnitude estimate
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of.the depth of the;main thermocline. Because we are thinking

of a system which has a mean stratification, we want D to represent
the depth over which this stratification occurs. In the ocean this
is a thermocline depth. The value of L is not a measure of ke
total width of an ocean basin. The only restriction on L is that
L»\, where L, is a natural length scale defined in terms of the
other parameters in the problem. Physically L, is the width of

the upwelling zone, which at this point is still undetermined in
terms of the parameters o the problem. In the square wave problem
L is proportional to the wavelength of the square wave. For the
semi-infinite ocean, where there is no other horizontal length
scale than L, , the restriction is made that L>»L,. The width and
dynamics of the upwelling zone will be shown to be independent of

L. For convenience in estimating E4, L is chusen to be 1000 kilo-

meters. Using these values one gets that:

.8 4
£y ~0 s €y~

(,58) ~25x15° - N~ LoD
The nature of the dynamics depends on the relative magnitudes
of these. From the above estimates and from those made in section
6.3, it appears that the effects of lateral friction, on the scales
we are concerned with, are small. Formally the restriction ic made
that:
By << (0,88 Ey
This implies, in terms of the formalism of Darcilon and Pedlosky

(1967b), that the parameter (o,$8) as compared to Ey puts the
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fluid into the very strongly stratified regime. Here Ekman layers

arefabsént, and the ‘only vertical boundary layer of the type considered

by Bercilon and Pedlosky, in which horizontal viscosity is important,

is the buoyanc§ layer. It is shown in Appendix B that this layer

has negligible dynamical influence. A comparison ofﬁﬂsé) with Ev

indicates that we are in the essentially homogeneous regime in

which Ekman layers exist and play a dominant role is the interior

dynamics. As is shown in section 7.30, a vertical boundary layer,

in which vertical viscosity is important, is also present.
Consequently a set of equations is considered in which all

T R -
terms of order £, €, €y are neglected. This set is:

"V=—P~‘ {-G-V\LQ:%

w =

0- —?t+1.

€y Vo

o:u¥*w%

(GVQJ\UJ‘- gsz_qu

These can be combined to give the following equation:

1

B0+ Puy & (6,58 Pqpy =0 ()
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7.2 The Square-Wave Stress Model:

Consider a model, in which the applied stress is a square-

wave. This stress can be rvepreeented as a Fourier sine series.
Consequently the solution can be represented as a sum of the single
sine wave solutions which were studied im Part I. The physics of
each of these is well understood. By knowing how these sum to
give a solution, a physical understanding of the square=wave
problem can be obtained. This solution is not expected to differ
significantly from the case in which the stress does not drop to |
zero, Consequently the insight obtained from this approach enables
us to solve the problem using boundary layer techniques. This in
turn will indicate the dependence of the solution upoa the parameters.

The actual series which will be used is the sine series modified
through the introduction of the Lanczos convergence factors (Lanczos
(1956)). This néw representation reduces the Gibbs phenomena,
which occurs near the points of discontinuity in the stress, to about
a 2% overshoot. .It also insures rapid convergence of the series.
In the square wave representation, the small wave-length components
contribute primarily in the region close to where the stress

drops to zero. Recall that

ARAT D
(6,58) = (\?\qﬂ}?’\f T_'_\,

Consequently decreasing the horizontal length scale is equivalent

to increasing the mean stratification. This means that near points
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of discontinuity in the stress, the stratification is effectively
increased. The flow in these regions would comseguently be similar
to the cases of strongly stratified flow studied in Part I,

Because of the special nature of the applied stress, u, v,
Ty are proportional to the sine of x. Consequeatly in the'regions
in which the stress drops to zero, i.e. where sinx is zero, all
three of these fields are also zero. If a coast is imagined to
exist at this point, the boundary conditions of no normal flow,
no tangential flow, and no heat flux are automatically satisfied.

Consider Example I in Part I with the following stress
applied at the surface, 2z=0:
Y L E\ al <x<ne) L n evem

=% )y

POv' ot al<x¢ (\r\'r\\L N odd

The other boundary conditions remain as before:

ALY

©@ &=0 eV or "0
ol
0r=W°0

@ :--0 w=v:=w=T=0

The applied stress can be represented as the following Fourier

series:

n-t)
T ‘22 I3t E(LL%W*]

P
L= e &7 @n-Y)

This representation has the Gibbs phenomena near the points of

discontinuity in the stress. To reduce this to about a 2% overshoot,



and to insure rapid convergence, the representation is modified
through the introduction of the Lanczos convergence factors

(Lanczos (1956)). The new representation is:

- s\mﬁt(av\—\\xﬂ/am} s L@V x/u]
Leome Sy ] C@an-um/am] (an-1)

The number of terms, m, which is Kept in the present example is
80. This large number is used to insure that the solution near
the coasﬁ is well represented. The maximum number that can be .
used is determined by the scale on which lateral friction becomes
important. This is much larger than 30 for the example which is
considered. The applied stress is illustrated in figure 18. The
width of a basin can be thought to be one-half of a square-wave.
In the non-dimensional units which will be used for x, this is T
radians,

We recall tuat equation (1') is:

Gz +Pug + (0,58€)0, o (19

x5 T

The boundary conditions are:

&3 swllnix]
@2=0.’ 0%~ :,\z.\ an-\)

dw a4t _

0% =0y W=0

@ %=-40 W=V=w=V=0
where

LM\ _ S { (@n-0m}/am }
Cas-Du/am]
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In this’square—wave problem there actually has been a slight

change in the non-dimensionalization. For computational convenience

the non-dimensionalizations are:

\ \—\’k\;o v (
(Wu'ys oYt
\ L\‘to
Patl
4T FL
n*e, A%
Ut L
P n’fgﬁfp

"

w Uy

T\

]

(1]

b

A { \”*.
Y= ﬁ“ '.) 2= 87%) %

The solution i of the form:
™
P- “Zqu\ (1,1{\

where
[\

R\(Vb,‘g) - (%:\4-\\1 coS[(’Av\-\\Q P,\(wé\

The Fi(i\ satisfy the following equation

Pﬂgi L y\\i-i — (G-VSSQ\,B (Q\’\’\\I (,“)"\-31 = O

and are subject to the boundary conditions:

\d A

@ 3=0 \k\t( - (2n—\\7‘{)v\‘\1 s - \

Fiqa =0
A
PV\‘S'Q =0
A
\”,,\ta =0
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FaN
The analytic solution for each P,(3) is siwmilar to that found

in Example II with the following minor changes. The GQS 1ow
satisfy:

-
G, + OF - (0,56 (Rn-1) =

The sign of the applied stress is also changed in the boundary

conditions. This occurs because now P*~C05X

The other fields are represented in terms of the pressure as

follows:
o cos An-N¢ o

T )= Z L &y P{(\?\

M "-c <(An-H X R
w5 z LN Sy B ()

MY x.s\N(an -Ny 2
= Ei L (xn-0 % FL%ﬁtﬁ\

M) gu{an- l\\([

Vix 3\ Z L (-1 w(3) * nvv\)’ Pﬂlazt“t)]

R W 3
As was shown, the value of N is between 10 and 10 for the values
of the parameters which were used. For this example, X is chosen

to be

M
A= (6,58€,) =100

The solutions for each individual sine wave were computed and
summed numerically. The complete solutions for the velocity fields
and the temperature are shown in figures 19-22. A stream function

can be defined as follows:
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The stream function is plotted in figure 23.

From the results it appesrs that, as expectad, there exists
a boundary layer near the coast. As the coast is approached, this
layer absorbs more and more of the surface stress. Consequently
the net transport in the Ekman layer Adrops to zero as the wall is
approached. A more detailed examination of the solution and its

dependence on the parameters is postponed until the next section.
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7.30 Boundary Layer Approach for the Semi-Infinite Ocean:

In the present circumstances we expect that far from the coast
(large negative x) the motion will be independent of x. This

x-interior solution will be the same as the solution for the square

wave problem away from the regions where the stress changes sign.
It consists of non-divergent Ekman layers at top and bottom in
which transports in the x-direction exis}. These are separated
vertically by a region with uniform geostrophic v in the direction
of the stress and zero :. W and T vanish everywhere. The formulae

for this solution are given below:

Ve @ls t/ﬁ Evp ¢ EJVLL% \‘_COS\YEEL‘L‘&*SWJ%E‘:‘%]

MELY evrp%é“‘(— @+1) cos %(‘é&(%ﬂ“

W= G lepd E;‘&%[c»s%év‘"% sw2e Yé] -@7T exp{}(-ELv‘(%ms sw‘%(ﬂi—v%(w\)
Next to the coast we expect to be able to reduce the u velocity to
zero by adding appropriate boundary layer solutions. The possibilities
are as follows.

As was shown in section 7.1 the set of governing equations

can be combined to give:

® @ ®
E:Pa% < PL\% » (G-VSéB P?_}Y\X = O Qq‘)

We recall that now the only restriction on L, the length used to

non-dimensionalize x, is that L>L_, where L, is the width of the

o

boundary layers next to the coast. For'gi,=0(l), the only talance

in Q) which yields a boundary layer solution in x is between terms
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QD-and @ . The bdhndary layer variable in this case is:
Y - (0,589 %
Since this is the Couette-Lineykin balance of Part I, it is called
the Couette-Lineykin layer.
However, if we don't demand that §é=0(l), there is another.
x-length scale. This is the scale on which the Ekman layers
disappear. Consider equation Q) and let z=ﬁh§ ; then

P‘*’z + ?L\z( + (6,85)8, Byg 2 =0

All three terms are the sane order of magnitude when:
X = (cvsaevf’”%

From Part I we recall that for scales of this order or less,
the boundary layers along horizontal surfaces no longer accept any
of the applied stress and serve only to bring the temperature field
to its specified boundary value. On these scales the Lineykin part
of the Couette-Lineykin solution no longer exists and the interior
solution consists only of the Couette flow.

In the boundary layer solution to the problem in which the
applied stress is constant, two tybes of boundary layers occur.
These are the Couette-Lineykin and Ekman layers. We are neglecting
the boundary layer which occurs for x-scales of (qsgevihat hori-

zontal surfaces, and whose function is only to adjust the tewperature

field to its boundary value.
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7.31 Ekman Layers:’

At the horizontal boundaries, Ekman layers can occur. Dynamically

the top and bottom Ekman layers are similar, so only the top solution

is examined. The equations are:

-V - ass
C\:: \7-5-5
O - U+ &,

|1_L
EARN -

where

W = ole?)

V- o(eD)

W = 0E)/sx)

? = o(GSSEN /olx)
P - 0(aS8E Y s 0y)

These yield:

S

7 < erp \E"s [(ﬂhﬂ c.os\s:}E + B(I)S)N\%%l

Q= @mp‘%%\. 36x) COS%% ’T'Pr(ﬂsn\s%il

A \rL < kA

& - Fews - (w180, cosE s + @p-R@ 5 T5 |



7.32 The Couette-Lineykin Layer:

The equations for the Couette-Lineykin layer are:

~ A

V = Pq

w = Vaz

(O '§%;+T
[ A

O~ \Lq'\'m%

W =

The magnitudes of the variables are:

~

P = o0lgssY™)
T = 0l(,55)7)
Vo= o)

2 =00

W =0l

® =O(Z(%€3)"~>
X< (6,58)"
These were obtained by assuming that the layer could carry the
Ekman transport and that the vertical shear was order omne, i.e.
o)
o(&oM=E, | oG ~ oW
Since this layer is much thicker than an Ekman layer, Ekman layer

dynamics still hold within the layer. 1In the Ekman layer when

"
%=0(G,55) We have:
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=

”~

3
W -0 (m:asx"»)

T - o ((6,58)"€,)

N A
As in Examples I and II of Part I, the V, T have to satisfy the

boundary conditions by themselves while at 2z=0,
A A
w=-w

The general solution to the Couette-Lineykin layer equations is

-

found to be:

- ~ A 2 + Blo)

P(Yl,%\ = 2& Gipo‘qr_ Clodcose + O Sin Gy + g ] (3)
,« Rz + B0

\/(q‘%\. = Z__G‘expﬁq (C(@\) o5y + DO swiL + o 1 @)
@(Y},%\ =" Z—;qze)lPGYLY_C(ﬂ cos U2 + D(Q’)S\NW%} G)
- )

Tlqp)= ZGE*QGQ[DCW3COS€%- Clo) sivar+ 0?] ()

©lqa) = - Z Gze*ocqbaﬂ CosF2 ~ C(a) $IvT z] o
, - \ ;
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7.33 The Uniform Stress Model:

Consider the following problem with the boundary conditions:

@ 10 \/%,(‘,
U=Te=w, =0 lxio
@ 2--| w-V:=w. 170 X
where P
1= 4]

At x=0, as was discussed in section 6.4, we require that
ws=0.

From the square-wave solution, we essentially know the dynamics
of the solution. Within (6,$S€)"of the wall, the solution is
essentially Couette flow, and thcre are no Ekman layers. Within
a region Gﬁ£s¢bof the wall, Ekman layers and the Couette-Lineykin
solution exist. At distances greater than this from the wall, Ekman
layers exist, and an interior v-velocity, independent of z, is
required to drive the lower Ekman layer.

U
The Region of Thickness (656€.)":

Since Ekman layers don't exist, the Couette-Lineykin solution
has to satisfy the boundary conditions by itself. These are:
® 20 (/E:\ - Lexp )
@ 2--| ’\‘/m . C‘Dm: 0

The solution to these is:
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v - TN evpm

&(3) - 0
N
2@\ A
T = Lewpm

Note that this solution satisfies the top boundary condition on
temperature, but it doesn't satisfy the one at z=-1. This can be
corrected for by including the boundary layer which is the solution
to equation (3). However, since this un}y brings ine temperature

to zero and is otherwise passive, it is neglected.

"
The Region gﬁ_WidthLG,SJ)ﬁ

The stress condition at the surface has essentially been

reduced to
A @)

Vy = Varomi- Vp = LO-expm) = Thi-epm)

where
Y

T

=€

Let the interior Couette-Lineykin solution consist of two parts:

A0
V' = soluToN  wick Srwés Wy To 2ERD
» !

\/mz SoLuTYN ©of (GVSJ\L"SCQ\\.E

The stress at the surface is then given by '

2~ W) A L‘L\ ~

Ve= Vy + Ve *Vg = TO- evpiig)

Pick
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Vi= - T’e*P‘Q“‘L

~ A 2@
Vs -y
A

Substituting for V% from equation ) we get that
~ A 2 r 9@
Ve = 1- 2 a'ex Gy, LOG) + 0‘3]
i 70 &P

The total Ekman layer solution consists of a solution far from

/v(-d
the wall and a boundary layer correction. Let vV represent

, &) .
the solution far from the wall and V' be the boundary layer correction.

The boundary layer correction has a surface stress of the form:

~e) @)
V;L . _% Glequﬂ.y-o(ﬂ % ?1

Thus we can look for the total solution to the upper Ekman layer

to be of the form:

G.(‘l\z\: Jﬁ‘(/l\f Zo’-e*pGrLED + Q/()?] e‘p%{ [cos%i ~S %21
A~ _ e B

Tlag) > T2 oexpnq (0F 7] evp 35 Leas Tg *S'“%i]
wln,3) = % TleypTq Lo %] e < cos %{}

From the condition

\fumiq,o\ = - {5(‘\,0\

{§) is found to be zero. At the wall, all the applied stress

is transmitted to the Couette-Lineykin flow; consequently the

Ekman velocities at the wall vanish. Either one of these conditions



gives:

The application of the boundary conditionms

AQ)
@ %’O T‘i‘.‘:
A(\ A
@ t=-\ A V =0

20
determines the remaining arbitrary constants in the V = solution.

The solution is

&
N -y
\/(ﬂ = at Z gt Expoq (S\NGi x (-1 X

N o

Qb

n“=p

>
Sé

)
(qu.

n
(4\8190q'mNG%

Q

WP -2t Z (- " e\q)m’ cosOy

n =y

1\( o
- >
T P1V éb expﬁq CosG2
where
- Ca\]i’l) lT
0= z

A
The calculation of the V  solution is also straightforward.

The relevant boundary conditions are:

AN

@20 w =0
(1 = ’(.J@LPV“Q
@ 2=-| ™ (%0

These give the solutions:

Qm \AM@MWmewm waq,c“m),(%“ﬁ

P

AW _W_\_,_x W N
U -~ sinm SrpMcosmy

88.
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wl
\:Jh‘ = s W exp&q SN V)‘?\i:
A~ A
r L A SINMT
Q)] — —_—
TV -wepen | ow v\

, . 0]
It should be noted that while w"-0 at z=-1, w" is not.

Thus an Ekman layer is required at z=-1 to bring the total W to
zero there. Physically this Ekman laver is required to transport
water away from the wall which was brought toward the wall in the
upper Ekman layer. A simple calculation shows that the Ekman

layer solution at z=-1 is:

VT Lexp Tz coc® 5 (1-exp )
Gerlite &y n s (e
X = _‘fv\te‘?v’}\m—\;e\?%t{(sw%i —cos%g\]

where

v,
R=-E (1)

To drive this Ekman layer an interior flow of the form

I A
Vo= +izl (\-81{9«\\1\
is required.
There are several points which should be noted about these
: . . e . * (1) AR
solutions. First of all, the infinite series for w and W
converge everywhere except at x=0. Similar non-convergences,
right at the boundaries, also occur for the boundary layer solutions
Y3
to the Stewartson E -layer and probably for solutions to the hydro-

static layer. Consequently the boundary solution for these layers

should be taken as the limit of the interior solution as the
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boundary is approached. The stream functions for all these layers
converge.
Secondly, although the condition of no normal flow through
v
the wall is satisfied through O(EI), there is and 0(E) flow in and
A A2)
out of the wall for W and W . However,
]

j((ﬁnf Y4z = o 6 X0

b )

desnite the fact that 0  itself does not converge at x=0. A
simple integration shows that all the flow which enters into the
Couette-Lineykin layer iurough the upper Ekman layer leaves through
the lower one.

If drawn, these solutions would resemble quite closely those
of the square wave (figures 19-23). The main difference occurs
for the v-velocity. This no longer drcps to zero, and in a distance
within(Gﬁéﬂxkof the wall is essentially Couette flow. At the wall
it is Couette flow, and its surface value at the wall is 40. Because
this solution does resemble the square-wave one so closely and
because of the practical difficulty in resolving both the w and v,
scales where‘n=é%q , the solutions are not displayed.

The dimensional width of the upwelling zone is N§5YA\. . This
is independent of the width of the basin, "L". Initially the non-
dimensionalization of some of the fields depended on this "L".

Now it would be possible to change the non-dimensionalization such
that the horizontal length scaie was the width of the upwelling zone.

The response in the zone would then be independent of the width of

the ocean.



91.

7.4 Discussion of Results:

A spatially uniform stress applied parallel to a wall pro-
duces a net transport of water, in the Ekman layer, toward or
away from the wall. Suppose it is toward the wall. The initial
piling up of water at the wall produces a pressure gradient per-
pendicular to the wall. This creates an interior flow in the
direction of the stress which results in the formation of an Ek-
man layer at the bottom. The transport in this Ekman layer is
away from the wall. The pressure gradient builds up until the
sum of the transports in the upper and lower Ekman layers perpen-
dicular to the wall is zero. Close to the wall (on the scale of
the Couette-Lineykin layer) vertical advections of the mean temp-
erature field create horizontal temperéture gradients. These:pro-
duce a thermalnwind'shear which balances the surface stress at
the wall. Consequently at the wall the Ekman layer velocities
vanish.

Away from the wall, but still on the scale of (QSJ)W' s
the Couette—Liﬁeykin layer does nof transmit the stress directly
to the bottom. The surface stress is balanced by a body force which
is distributed throughout the depth of the fluid. Close to the
wall, on a scale of “ﬁsSEAVL, che stress is directly transmitted

‘to the bottom by the Couette flow and consequently at the wall

(o]

j (00 0™ Ydz =0
—‘ N
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Oceanic Application:

The restrictive assumptions made in this jdealized model of
coastal upwelling clearly limit its applicability to actual oceanic
conditions. However, there are some features of the model wrich
are in qualitative agreement with what is observed, The width of
the upwelling zone, which is of the order of tens of kilometers,
is predicted by the model. Furthermore, as the observations in-
dicate, there is a region close to the coast in which the velocity
along the coast is higher than it is further offshore. The width
of this region is of course the width of the upwelling zone. The
question arises as to whether thermal ‘wind' shears of sufficient
magnitude to balance the wind stress occur in oceanic upwelling
zones. .

Observations in most of ihe upwelling zones indicate that
the thermal wind shear at the inshore edge of the upwelling zone
is of the order of 50 cm/sec/100 meters. The wind stress on the sea
surface for a wind of 15 knots is about 4 dynes/cm (this'value is
highly uncertain). The vertical eddy coefficient, if the thermal
‘wind" shear is to balance the surface stress, must be approximately
8x102 cm/sec. This is not an unreasonable value. Although this
is ﬁot proof that this physical mechanism is operative in the up-
welling zone, it does point to its possible existence. Even if
all of the wind stress is not balanced by the thermal‘wind"shear,
a portion of it very easily could be.

Observations indicate that upwelling is generally confined
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to the t;p 100--300 meters. However, the steady solution to our
model indicates thaégit extends to the bottom. This shortcoming
of the model appears to be a result of our assumption that the
flow is steady. The Couette flow develops on the order of the

diffusion time scale. This is of the order of

3
o \o

_ N
Toseoson /ey = ot T o

or about 100 days. Of course in the ocean X. is some function

of depth so this estimate represents a lower bound. Probably in
most upwelling zones the Couette flow and consequently the lower
Ekman layer would not have a chance to develop. This means that
the compensating flow, which previcusly came through the lower
Ekman layer, rust come through the interior and is probably bal-
anced by the time accelerations. An additional factor, which.might
be of importance in limiting the depth of upwelling, is that the
upwelling zones are of limited north-south extent and consequently
are not independent of this direction. This dependence allows
compensatory water to be drawn from the interior.

A conspicuous feature which is missing in the theoretical
model, is the deep, poleward counter-current. There is some reason
to believe, as was mentioned earlier, that the existence of this
counter-current is related to the north-south variations in the

"oceanic and atmospheric conditions. Since these are not considered
it is not surprising that the model does not exhibit a counter-
current.

-

From Part I it is clear that the boundary conditions played
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an important role in determining the rature of the solution in

the examples which were considered. Suppose the ocean is driven
both mechanically and thermally. At the surface specify that

(non-dimensionally)
oV
ot - h (x‘\()

T - aby)

Tf in some region these are related such that

Q

\

3 °—rx

o

ie. h- I

J

then, the stress is transmitted directly to the interior, and
FEkman layers are absent. This can obviously cause some very in-
teresting flows. Is the Antarctic Convergence a piysical phen-

omena of this type?
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Appendix A: Arabian Upwelling

The data for these sections came from Discovery stations 5006&-
5015, 5033-5045, and 5047-5054. During the period these stations

ken, June-August 1963, the southwest monscon blows steadily

over the northwestern Indian Ocean. For sections A and B, the
wird blew from about 200 -220° with a speed of 25-30 knots. The
average wind speed in sectiou C was somewhat less at about 15
knots. The positions ot these sections are shown in figure 24.
The salinities at stations 5040 and 5041 of section B were

excluded from that section because of the great difficulty of

making sense of the contours if they had been included.
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Agpendix'g; The Buoyancy Layer

Because of the important role the buoyancy layer (Barcilon
and Pedlosky (1967a,b), Veronis (1967a,b)) plays in rotating,
stratified fluids, its effects in this problem are examined.

The solution t; the upwelling problem without lateral fric-
tion has an 0(1l) heat flux through the wall at x = 0. If this is
to be brought to zero, the effects of lateral friction must be
considered. This would be done through the introduction of the
buoyancy layer., If the 0(1) heat flux is brought to zero, we get

for the buoyancy layer that

oo+ (€,48)/ (6, 58
oW~ €y /(0‘,55\

ol = EJ/(6,55Y 8"
oM = (£,8Y/(6,s8)"

2
o) = (E48)/(g,88)

and
v Ve
O = UQ-\\L);:
0= \1(1)‘,e
w1V
fe
where

Y- M
o= (c,%)"‘(E.,S) X
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It is easy to show that the buoyancy layer in this case is

thinner than the smallest x-scale considered in the upwelling

v
problem, i.e. (6,$8€,Y " . The 1atio of the width of the buoyancy

layer to this thickness is given by

|( \ \)
(SEN . ) ek 8 N
Pl A = . |
(0,58) (6,568~ (Tgﬁ‘,\ syt < e o()
where we have used the fact that Eu<<CGﬁE\€V and have sub-

stituted for Ey.

In the Couette-Lineykin layer the magnitude of the u-velocity
was 0(E,). Because E <« (638G, the secondary u-circulation caused
by the buoyancy layer is much less than the one in the Couette-
Lineykin layer. Furthermore, for this particular problem, this
secondary circulation is identically zero. Trom the equations

for the buoyancy layer we have .

We 5—&9% .

ButTf,e is independent of z because in the Couette flow next to

the wall the heat flux is independent of z. Consequently

UWe =0
This implies that w=0 .,
It appears that the addition of the buoy;ncy layer would not chiange
the nature of the solution to the upwelling problem. Even if the
heat flux were brought to zero through the addition of a buoyancy
layer, the no slip conditions on O and © still remain to be

satisfied. It does not appear that this can be done in the frame-

work of the linear theory of rotating, stratified fluids.



108.

B1BLIOGRAPHY

Barcilon, V. (1969) Private communication.

Rarcilon, V. and J. Pedlosky. (1967a) '"Linear theory of rotating
stratified fluid motions". J. Fluid Mech. 29, 1-16.

Barcilon, V. and J. Pedlosky, (1967b) "A unified linear theory
of homogeneous and stratified rotating fluids." J. Fluid
Mech. 29, 609-521,

Gunther, E. R. (193%b) "A report on oceanographical investigations
in the Peru coastal current.'" Discovery Reps. 13, 207-276.

Hamon, B. V. (1967) '"Medium-scale temperature and salinity
structure in the upper 1500 m in the Indian Ocean." Deep
Sea Res. 14, 169-181.

Hart, I.J. and R. I. Currie. (1960) '"The Benguela Current". Dis-
covery Reps. 31, 123-298.

Hidaka, K. (1954) "A contribution to the theory of upwelling and
coastal currents." Trans. Amer. Geophys. Un. 35, 431-444.

Lanczos, G. (1956) Applied Analysis, Prentice Hall.

Latun, V. S. (1962) '"The upwelling of deep water near the south-
coast of Africa". Izv. An. USSR., (Geophys. Ser.) 9, 1229-
1239, (770-775 Tranms,)

Reid, J. L., Jr. (1962) ''Measurements of the California counter-
current at a depth of 250 meters." J. Mar. Res. 20, 134-137.

Reid, J. L., Jr., G. I. Roden and J. G. Wyllie.(1958) "Studies
of the California current system." Prog. Rep., Calif. Coop.
Ocean. Fish. Invest., 1 July, 1956 to 1 January, 1958, 27-57.

_ Stommel, H. and G. Veronis. (1957) ''Steady convective motion

in a horizontal layer of fluid heated uniformly from above
and cooled non-uniformly from below." Tellus. Vol. 9; 401~
407.

Stommel, H. and W. S. Wooster. (1965) "Reconnaissance of the
Somali current during the southwest monsoon.'" Proc. Nat.
Acad. Sci. 54, 8-13.



109.

Sverdrup, H. U. (1937) "On the process of upwelling". Journal
of Marine Research. Vol, 1, No. 2, pp. 155-164.

Sverdrup, H. U. and R. H. FPleming. (1941) "The waters off the
coast of Southern California, March to July 1937." Buii,
Scripps Inst. Oceanog. 4, 261-378,

Sverdrup, H. U., M. W. Johnson and R. H. Fleming. (1942) The
Oceans, Their Physics, Chemistry and General Biology. Pren-
tice Hall, New York, 1087 pp.

Swallow, .J. C., and J. G. Bruce. (1966) 'Current measurements
off the Somali coast during the southwest monsoon of 1964."
Deep-Sea Res. 13, 861-888.

Veronis, G. (1967a) '"Analogous behavior of rotating and strati-
fied fluids." Tellus. 19, 620,

Veronis, G. (1967b) "Analogous behavior of homogeneous, rotating
fluids and stratified, non-rotating fluids." Tellus. 19, 326.

Warren, B., H. Stommel and J. C. Swallow. (1966) '"Water masses
and patterns of flow in the Somali basin during the south-
west monsoon of 1964.," Deep-Sea Res. 13, 825-860.

Wooster, W. S. (1960) "E1 Nino," Calif. Coop. Ocean. Fish.
Invest. Rep. 7 )

Wooster, W. S. (1961) '"Yearly changes in the Peru current."
Limnol. Oceanog. 6, 222-226.

Wooster, W. S. and T. Cromwell. (1958) '"An oceanographic des-
cription of the eastern tropical Pacific.™ Bull. Scripps
Inst. Oceanog. 7, 169-282.

Wooster, W. S. and M. Gilmartin. (1961) '"The Peru-Chile under-
current." J. Mar. Res. 19 (3), 97-112.

Wooster, W. S. and J. L. Reid, Jr. (1963) "Eastern boundary
currents" in The Seas, Vol. 1, (ed. M.N. Hill), Interscience,
New York.

Wyrtki, K. (1962) '"The upwelling in the region between Java and
Australia during the south-east monsoon.'" Australian J.
Mar. and Fresh Water Res. 13, 217-225.

Wyrtki, K. (1963) "The horizontal and vertical field of motion
in the Peru current." Bull. Scripps Inst. Oceanog. 8, 313-346.

Yoshida, Kozo (1967) '"Circulation in the eastern tropical oceans
with special references to upwelling and undercurrents."
Japanese Journal of Geophysies. Vol. 4, No. 2, March.




Acknowledgments

I am deceply grateful to Professor Henry Stommel for his
telerance, example, and inspiration.

I would like to thank Proif. N.A. fhillips, Dr. W.F. Simmons,
and Dr. B.A. Warren for their assistance.

I would also like to thank Mr. John L. Bowen for his assist-
ance in programming and Mrs, Karen MacQueen for her excellent
job of typing the thesis.

This research has been supported by the National Science

Foundatiou under grant GA-1613.



BIOGRAPHICAL NOTE

The author was born in Viljandi, Estonia on 16 Novem
1942. The Russian invasion of Estonia forced his family to
flee to Czechoslovakia. The war years were spent there and in
Germany. In 1947 his family came to the United States.

He obtained his primary and secondary education in the
public school system of Fremont, Ohio. In the fall of 1961 he
enrolled at the University of Chicago. He graduated in June
of 1565 with a S.B. in physics. In September of 1965 he began

his studies at M.I.T.



