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ON THE THEORY OF COASTAL UPWELLING

by

Ants Leetmaa

Submitted to the Department of Meteorology on aMarch 1969

in partial fulfillment of the requirement for the degree of

Doctor of Philosophy

ABSTRACT

Some aspects of the linear dynamics of rotating, stratified

fluids are studied in detail. A system is considered in which the

effects of lateral friction can be neglected. The flow is driven

mechanically. The solutions are found to depend strongly on the

values of the parameters,(F )- K and E= . For weak

stratifications, the solutions converge to the homogeneous limit.

The transitions in the dynamics of this system from the homogeneous

limit to strong stratification are displayed in detail. Some effects

of thermal forcing are considered.

Some of the physical mechanisms which are examined in this

study are thought to be of importance in coastal upwelling. The

general observational features of coastal upwelling are examined.

On the basis of some of these, a continuously stratified linear

model of an upwelling zone on a f-plane is presented. The limit-

ations of the model are discussed.

Thesis supervisor: Henry M. Stommel
Title: Professor of Oceanography
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1.0 Introduction

Charts of mean sea surface temperature show that regions

of anomalously cold water apPear next to the continents on

the eastern sides of most ocean basins. These are produced

by upwelling. A typical case of upwelling off the coast of

Chile is illustrated in figure 1.

When a wind blows parallel to a coast, the Coriolis force

causes a transport of water in the surface layer normal to the

coast. An off-shore transport requires by continuity that cold,

sub-surface water is drawn to the surface at the coast. This

is called upwelling. The opposite case, of surface water moving

toward the coast, is called downwelling. In either case, the

dynamics of the zone in which the water rises or descends is

not well understood.

The characteristic width of this zone is of the order of

tens of kilometers. An order of magnitude estimate in the

Navier-Stokes equations indicates that lateral friction and

inertial forces become important only on a scale of the order

of kilometers. Because of this, the previous theoretical models

in which lateral friction or non-linear effects are important

will not be discussed.

Re-cent work by Barcilon and Pedlosky (1967a,b) and V--ronis

(1967a,b) indicates that stratification can greatly modify the

dynamics of rotating fluids. For certain ranges in stratification,

II ___I
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Ekman layers no longer control the dynamics, and the effects of

viscosity penetrate into the interior of the fluid. There are

geophysical situations in which such effects might be important.

Sverdrup (1937) postulated that in the upwelling zone part of the

surface stress was directly transmitted to the interior, i.e.

the interior thermal wind balanced part of the surface stress.

He, however, did not present a detailed theoretical model of the

upwelling zone. An attempt to incorporate Sverdrup's ideas into

a dynamical model of upwelling was made by Yoshida (1967). His

model consisted essentially of a two layer system, and the ef-

fects of continuous stratification are not apparent.

A simple, continuously stratified model of an upwelling

zone is presented in this work. To study the effects of strat-

ification in this zone, a simpler rotating, stratified fluid

system is studied. A physical understanding of the interaction

between rotation and stratification in this system is obtained.

The physical insight obtained frcm this study helps us to under-

stand the more complex dynamics of the upwelling zone. This

theoretical upwelling model exhibits some of the features which

are observed in coastal upwelling. The limitations of the

model are discussed.

2.0 Formulation of equations

Consider the steady motion of an incompressible, Boussinesq

fluid in a coordinate frame rotating with constant angular velocity

^.._...~1 -I~-411--.- YiXCTIII1 -.-i~iX^~------~ ---C11-. ~LI- --~~-^.I-lllll^i~- l_-~IX-I-LI- llt*II _



£/ about the vertical. The equations of motion are:

..- t { - 4pVp'-cE ~VkiY

where U ,p p ,T, 1 ,K are respectively the velocity, pressure,

density, temperature, constant kinematic viscosity, and constant

thermometric conductivity. The unit vector in the vertical is

k. The equation of state is assumed to be linear where o( is

a constanit thermal expansion coefficient, and Po and To  are

reference values of density and temperature. The centrifugal

accelerations are assumed to be small compared to gravity and

have been neglected.

The simplest model in which thermal effects are important

is considered. The heat equation is linearized by imposing an

external temperature gradient. The fluid is contained between

two horizontal sturfaces separated by a distance D . The upper

surface is maintained at a temperature T~,+T ; the lower sur-

face is maintained at To where a\0 . In the absence f any

motion the equilibrium temperature is given by:

S (TOtT) t /o O Z 4-O

The problem is assumed to be independent of y, i.e. '=CO . The

_~_I__CII__I__X_________IIY1-_I__lll-_l



equations are non-dimensionalized as follows:

(u'v' Uluv) w' ; /L LX

' o d L7 0 _ -t ++--)

where u,V,<,T p are non-dimensional variables. Note thatT and p

represent devi-ations of the temperature and the pressure from their

equilibrium values. The length scale "L" represents the character-

istic horizontal scale imposed on the system by the boundary conditions

at z=O whose scale of variation is "L". The non-dimensional equations

are:

R 4 'L- Li WL P V +

UlLt wS =L0

where

o-: (ossf"( N. - ,L

5= /f L

and

In the sequell be called the stratification.

In the sequel,(a ) will be called the stratification.

.__ i~l~ _illl__~l_~~^~ LXI~I-^II--^I--~ - I~ ~_LI~-L- I~L -



A right-handed coordinate system is used where z is positive

upward. The velocities u, v, w are respectively in the x, y, z

directions. The notation ( ) is shorthand for dr) . Since

the motion will be driven by surface stresses, the velocity amp-

litude,U , is chosen to be - where to is the amplitude of the

stress. We assume that VG=od and E<"tco). To linearize the system

the further restriction is made that Rc )(< o( . Neglecting

terms of 0(£0) the equations become:

EVV

O- U , ET

When o=0(0, this set of equations is the same as those considered

by Barcilon and Pedlosky. However, further simplification occurs

if we assume that 6OLOt(I.

3.0 The Stommel-Veronis Model

Consider a model in which the horizontal scale is large

compared to the vertical one, i.e. 6co() . Neglecting terms of

o(E} the equations become:

E V

_1~ ____~LL__~_IIIIII___~il--_~~^-~ -^L~_I



This was the set of equations examined by Stommel and Veronis

(1957). A single equation for the pressure can be formed:

O C

There exist certain natural scales for z which arise out of the

possible balances between the three terms.

The Ekman Solution:

A balance between terms Q and ( occurs only if 1 OSCO(O).

The vertical scale, r , then is:

The Frictional Solution:

A balance between terms O and 9 occurs if $ 0oI) . Then

the vertical scale, T , is:

The Lineykin Solution:

A balance between terms 2 and 3' occurs if LCOs <oLI) .

.^- ^I ___ -)~^.P-l-^---l~-YL .. I~ I1~~TI^--~i I~IUI~_I_~L--~i .. I- r_~_-IUL~IY- ~L--LLIX~--ILII~P-QL



Then the vertical scale, , is:

7 = (Trs&

The Couette Solution:

The solution, which is valid whenever the model is valid,

for which all three terms in the pressure equation are identi-

cally zero is:

This solution plays a dominant role in the dynamics of the

following examples.

Physically the existence of these various z-scales indi-

cates thdt, for any given value of the parameters, there are

regions in the flow in which the primary balances in the mo-

mentum equations are not those which were assumed in the ini-

tial scaling.

The solution in any parameter range will be a composite

of these. Simple examples will be considered to exhibit some

of the effects of stratification in rotating fluids. Because

complete solutions can be obtained which are valid for all

ranges of stratificat4 on, boundary layer analyses will only

be done after these solutions have been exhibited to gain fur-

ther physical insight. The only restrictive assumption which

is made is that the Ekman depth is a small fraction of the total

depth. This is equivalent to the assumption made earlier that

E zo'\ . In the examples we let E %A= 4 0 i.e. OTPL O _-N_ r 0 •TOT~L OGPitN '-(

~III I~-l^l-~-ll-P- ..i -~-.- 11.~_ ~yl~-lllllll-l^lls~--1111 . ~-L-.-.. -,~I^I~_~.LUULI I.~lly



10.

For computational convenience in the following examples, the

unit of depth is defined as the Ekman depth, i.e. EZ= .

The pressure equation becomes:

where

and

= (cP?'.vkC \ ?eq V O/ (Eyn)t0 oDThl

As in Stommel and Veronis (1957), periodic boundary con-

ditions will be used to eliminate the need for horizontal

boundaries. It should be noted than in the following examples,

the temperature referred to is always the perturbation temper-

ature. The total temperature field consists of this plus the

mean gradient.

Temperature boundary conditions are expected to play a large

role in determining the nature of the solution. In the following

examples the temperature boundary condition will be specified

either on the pertubation heat flux or on the pertubation temp-

erature. This allows a more thorough understanding of the de-

pendence of the solution on the thermal boundary conditions to

be obtained.

(__I1L _I_____________~~_Il_^l ~~_____UI_ ~-- I^-IL.~CLII ..-illly---.-



11.

In a laboratory situation to which the Stommel and Veronis

model might apply, the total temperature is specified at z = 0;-1

Thus a situation in which the perturbation temperature is spec-

ified at z=O could be experimentally realized. However, in this

situation, a system in which the flux of pertubation temperature

is specified is probably not meaningful physically. For an

oceanic situation, the appropriate boundary condition at z=O

is one where some combination of temperature and heat flux is

specified. The exact form of this is unknown.

3.1 Example I:

Consider the following problem. Specify the boundary

conditions:

@= -tosX d =0 = O

C a _LJ O = V 1=o

The solution to equation (1) which will satisfy the boundary

conditions is:

where

The C~' satisfy the condition that:

~-----ii-- Plll~sr~~ - u~ Vl._p y .I___~ -~PLIIII
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c- + ig - =O

The following relations are true:

G, -- G -

G- C
0- = - t (,

The ( )* denotes complex conjugate. The O7S were determined

numerically and a short list of them for various values of (

is given in Table I. Note that G-, is real.

(F ='Lr T,

Application of the boundary conditions determines the I 'S

IA ,-'T(G I,' l eYp(--ioc,)

_ )C6 ' _1YT

- (I~ ~ i1-73Y1
GI (a,, - 9

-N T -4 i at6,3L ~ UI \

3 J -. T t )

T15 3 (1

L'\ U 3 c3 T

IT *

~i____l_ I__~_^_l ~j__~_~_ )-^~---ILY -~I -~I YYLI ~IXII~ II~PL.



13,

TABLE I

3.1016

2.1377

1.3857

.8260

.3313

.1000

.0333

.0100

1.5591

1.0938

.7762

.6593

.6896

.7053

.7069

.7071

2.6909

1.8658

1.2500

.8808

.7283

.7089

.7073

.7071

1/30

1/10

1/3

1

3

10

30

100

i~ ~_II1~II/__I^_____C_~U1. YIIL Lil~



14.

Utilizing the momentum equations, the fields are represented in

terms of the pressure as follows:

These are plotted in figures 2-5 for various values of h .

The value of A is indicated on each curve. The symbol, H,

designates the homogeneous case. This was computed for an example

in which the stratification was absent.

.. - --.~l~-r-- --- ^u-rr- -'- p~- ---- -------c~*;p-X ~--Y - ~I----u
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19.

3.2 Example II:

Specify that@=o ; - 0 . The rest of the boundary

conditions remain the same as in Example I. The -Tl's now

are:

1 I ~ £, (jC - (-)io ep(-Ho 1/

1- ( TI -T3, ) 1-it 3 'Y

G'i (CIT3 (q + C) 4 0', (3, Z+ G"~3\- + Y qep(~611

3 v 0'0a

-,A T U1E cL+r,
P5 L ((k % 3 tT 3) TI e,4. 8O T I

:-to~~+6,,~' C~ lS+ T, q-)e +L)(l~ri

T, =

_~..rrcrr- aru-----rr**ill-CI IVI~~ ~-liYI11~~ -~i~.~



20.

I A 0 - T"'IU&e.pGL\1T, t N- ( gzt-

The fields are expressed in terms of the pressure as in Example

I. These are plotted in figures 6-9.
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25.

3.3 Example III:

Apply a stress in the x-direction. Couette flow cannot

exist because of the lack of y-dependence. Consider the following

problem:

=Co -1

@ Lj; Q

6 = UO
6 z C S

zT=CO = T=O

LL= = = 7 =0

The T1$ are:

(l -Ti

7 ( a

flL - L(3(q > Cj1) )- ( yL2fL

e*Tf c( or?~V~ -

~~JJ - 'J U&~J~)U~2

C ( 0 Cc G-i -1q

IIY---L~---m*..-~-.~~i ly -r ^~ IL ~-~
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The fields are given in terms of the pressure by the same ex-

pressions as in Example I. These are plotted in figures 10-13.

Because no Couette flow exists, the applied stress has to be

balanced by the boundary layers. For( ()r=46) the stress is

absorbed by the Ekman layers. However, for(5" &WbL6 the bal-

ancing agency is the vertically integrated pressure gradient of

the rotational-frictional layer. The net transport to the right

in the boundary layers is exhibited as a function of X in

figure 14. This drops to zero as the pressure gradient balance

becomes important.

--~--I--^I I 3g
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3.40 Discussion of Results:

It is clear from these examples that temperature boundary

conditions are of primary importance in determining the nature

of the solution. A startling example of this is the solution of

Example II when the temperature is allowed to be constant in

by specifying thatT=0 also at I=-O , The complete solution

which is valid for all ranges of stratification, for which the

model is valid, is a Couette flow. This is:

v : ( *AO) Cosy

L

The equations it satisfies are:

The flow is geostrophic and hydrostatic. The Lhermal wind

transmits the applied stress from the upper surface directly to

the bottom. This solution does not converge to the homogeneous

limit. This non-convergence is probably related to the physically

unrealistic boundary conditions.

... -.L .~^~l---~-r~ -------*~-"I~"Y~"^"^"'""IIP C-_ _ --ssC
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An examination of equation (2) shows that the solution to the

pressure equation consists of a Couette flow, in which T,, p can

be functions of the stratification, and six exponential terms. As

was shown, three of these grow and three decay away from =O .

For convenience the decaying ones are called the upper solution,

and the growing ones, which contribute mainly at y=-CRO , are

called the lower solution.

For (G5e-S o(( ) , as will. be shown in section 3.41, the real

exponentials correspond to the Lineykin solution, and the complex

exponentials are the Ekman solution. Consider a situation in which

both the Lineykin and Ekman solutions exist but the separation

between the upper and lower surface is large enough so that the

upper and lower Lineykin solutions decay to zero before they reach

each other. In Example I this occurs for X-6 . Consider the

top solution. Integration of the v-momentum equation shows that

for each of these exponentials, if 'a' is greater than the decay

rLd ,0V C V(0 - .,(-4 = \,14 :
-01, -C,I

depth, the surface stress is balanced by a body force. In the

homogeneous case, all of the surface stress is balanceby a body

force in the Ekman layer. Stratification, however, introduces a

real exponential which can also balance a stress through a body

force. Consequently stritification bas introduced two additional

solutions among which the surface stress can be distributed--the

Lineykin and Couette solutions. In the other limit of (G% o(C%

_ ~~~..r,~-^ -Ir*p-^l---C~- YL-_YII ~I.IPY__~sPIY) I~* IIIPPYq~ll~lPIIIIIC-~ IU
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(section 3.42) the real and complex exponentials no longer correspond

to the Lineykin and Ekman solutions, but the idea of the stress

being balanced by the real exponential, the complex exponentials,

and the Couette flow still bolds.

Table II indicates how the surface stress in Example I is

distributed amongst the real exponential, the complex exponentials,

and the Couette solution at N O for various values of N .

In the limit of X(oCLL all the stress is absorbed by the Couette

flow. In the other limit of X o(d , it is not clear which of

the solutions does balance the stress. This will be resolved in

the next section.

- --~-- ------- - * --~~'~' '~~~~~YII-"~~~~l"*l-~~1IC~ "ylC~x -^r^l -~ lrr*,
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TABLE II

The. Distribution of Stress @ z = 0

Real

Exponential

-0.004
-0.006
-0.016
-0.055
-0.083
-0.149
-0.417
-0.856
-0.965
-0.989
-0.998
-1.000

Complex Couette

Exponentials

0.004
0.006
0.016
0.055
0.083
0.149
0.417
0.856
0.965
0.989
0.998
1.000

0.033
0.050
0.100
0.250
0.333
0.500
1.000
2.000
3.000
4.000
6.000

10.000

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

--LII -LOI- ll --
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3.41 The Limit (8~G) 44oC):

As can be seen from Table I, and easily shown, the complex

exponentials in this limit correspond to the Ekman solution. For

an 0(1) applied stress, in the Ekman layer we have UV=O('IL) W :OE

T-o(TSE) . For the Lineykin solution we get the following

equations:

A-V -- _ )

where

and

O T = B

For the Couette flow:

an d oOA AU~

I L



37.

Because the order of magnitude of the temperature in the

Lineykin and Couette solutions is much greater than it is in the

Ekman solution, these solutions have to satisfy the temperature

boundary conditions by themselves. If the boundary condition is,

as in Example I, that T=0 then T-T . Through the thermal

wind relationship this implies that Vv+VL =O . Consequently all

the stress in this limit is taken up by the Ekman layer.

If we specify, as in Example II, that at =0O, \: 0

then because T--o we also have Tv =0 . This implies that the

top Lineykin solution is absent. (Note: T=oletY) We are

interested in the cases in which the lower Lineykin solution does

not reach the upper surface. In this range of stratification,

~-to or () = (--- , consequently s} q~otiN . Thus we

must still require that the upper Lineykin solution vanishes.)

A

Because WE1 U+=0 ;0 , this also requires that the

upper Ekman layer be absent. This Ekman layer will be absent

until the stratification is •;eak enough so that the lower Lineykin

solution reaches the upper surface. The heat flux contribution of
I,

this solution is small and is of the order of @S) This is

cancelled by the upper Lineykin solution.

.. _,_~ .~.~.~.~.~III--~,- --...-.---.-I-L---LW~-L~-~-_I~---1~-- l- * -Pr~--------PC- r~~~- ll~ ~- ---C~-~: -
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3.42 The Limit C&eC) )L-)--Rotational-Frictional Layer :

The scale depth for this layer, as was pointed out earlier,

is

The dynamics of this layer are those of the frictional layer

studied by Stommel and Veronis (1957). In the analogy between

homogeneous rotating fluids and stratified fluids (Veronis (1967

a,b)), this layer is the thermal equivalent to the Stewartson

E -layer. The dynamics of this layer are non-rotating. However,

there is a rotational effect. The v-field is a subsidiary calculation

L

. once u is known. This coupling is made possible because the system

is rotating. The momentum equations for this boundary layer are:

W IT

where

S o((

F 0 (L)
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The temperature in this layer is assumed to be the same order

as the interior temperature, which in this case is 0(1). This

allows the temperature boundary conditions at the top and bottom

surfaces to be satisfied. Setting the temperature scale fixes

the rest of the scales. The boundary layer contribution to the

surface stress is 0( (~ ) , i.e. V~"o) . However, if as

in Example II, the temperature boundary condition can be satisfied

by the Couette flow itself, the rotational-frictional layer is

absent.

Because there is a thermal E -layer, the question arises;

why isn't there a thermal E -layer in this problem? The equations

for this layer are the same as those for the thermal E -layer

except for the "irst momentum equation which becomes:

This implies rhat - is independent of . However, for

these simple solutions, all the variables are functions of x.

Consequently this layer does not occur.
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3.43 Convergence to the Homogeneous Limit:

Consider the situation in which the separation between the

upper and lower surfaces is large enough so that the upper and

lower Lineykin solutions essentially decay to zero before they

reach each other. As was shown in section 3.40, the fraction of

the applied stress taken up by each exponential solution

is a direct indication of the net transport to the right of the

stress associated with that exponential. Consequently for these

solutions which decay rapidly enough, there is no net transport

to the right of the surface stress. The integrated transport in

the Ekman layer is balanced by an equal, but-opposite, integrated

transport in the Lineykin layer.

Suppose the stratification is sufficiently weak that the

upper Lineykin solution begins to contribute at the lower surface

and vice versa. The value of the stress at =O is then the sum

of the upper and lower contributions. This sum is alway -1, but

it is no longer simply related to the net transport in the upper

Liiievkin layer. The upper and lower Lineykin solutions have opposite

but equal transports. Consequently as their decay depth gets

larger and larger, their transports begin to cancel. For extremely

weak stratifications, neither solution decays appreciably in the

distance between the upper and lower surface. As a result, the net

Lineykin transport in this region is zero; Transports occur only

in the lower and upper Ekman layers. This is the homogeneous

limit for the u-velocity.
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Similar convergences occur for the other fields. In each

case the Lineykin solution is instrumental in bringing about this

convergence to the homogeneous limit. In figure 15 is illustrated

how the Ekman, Lineykin, and Couette solutions combine to give

the v-velocity for \ =100. It appears that the Lineykin exponentials

are well represented for weak stratifications by the first two

terms, i.e. l+z, in their Taylor expansions. Figure 16 is a similar

illustration for the temperature field when X =50.

The interior vertical velocity is essentially given by the

Lineykin solution. Recall from section 3.1 that

Since the Lineykin solutions are exponentials, -L -q i .

However, 1for large X is proportional to /h . Consequently

for large A

This is the value for the interior vertical velocity in the

homogeneous case.

Convergence to the homogeneous limit depends crucially on the

fact that the interior cannot satisfy all the boundary conditions

by itself and that viscous boundary layers are required to correct

the interior fields to the boundary values. This is illustrated

in Example II. For strong stratifications, i.e. ~- jO , the

interior Couette solution satisfies the boundary conditions at =o

by itself. Viscous boundary layers are absent. The convergence
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to the homogeneous limit at y=o does not begin to occur until the

stratification is sufficiently weak so that the lower Lineykin

solution reaches the upper surface.

Probably the most graphic illustration that convergence to

the homogeneous limit requires the presence of viscous boundary

layers is the simple problem mentioned in the beginning of section

3.40. In that case the interior solution, a Couette flow, satisfied

all the boundary conditions at $= 0U -4D ; convergence to the

homogeneous limit did not occur.
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4.0 Comparison with Previous Work:

In the studies of Barcilon and Pedlosky (1967a,b), a stratification

(crS ) of order E represented an important transition in the

dynamics of the fluid. This occurs because the order of the

vertical velocity at the base of an Ekman layer driven by velocity

boundary conditions is E . For stratifications less than this value

Ekman layers played a dominant role in the dynamics. For stratifications

greater than this, the stratification inhibits the interior vertical

velocity to be less than 0(E'-). Consequently in this range of

stratification the Ekman layers are thought to be non-divergent

and viscous.-diffusive processes control the dynamics of the fluid.

However if, as in the examples studied here, we specify a

stress boundary condition, then the w at the base of the Ekman

layer is 0(E). Consequently E Vno longer appears as a crucial

stratification. Now divergent Ekman layers can exist, and are

influential in the dynamits, up to an 0(1) stratification. In

fact, as can be seen from Example I, they exist until (cOr~CS

or X =  . At this point the Ekman and Couette layers combine

to give the rotational-frictional layer. The details of this

merger were previously unknown.

This 0(E) flux out of the Ekman layer is absorbed by the

Lineykin solution. This solution only exists as a boundary

layer for a small range in stratificatiois less than ()-E 'ofz 1i .

For weaker stratifications the boundary layer merges with the

I~-- --- PII - I_
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interior and, as was discussed in the previous section, is instrumental

in bringing about the convergence to the homogeneous limit.

The Lineykin layer is physically analogous to the hydrostatic

layer (Barcilon and Pedlosky (1967b)). The formal difference occurs

only in that for the hydrostatic layer the diffusion of momentum

and heat occurs in the horizontal direction while for the Lineykin

layer it occurs in the vertical direction. In the examples which

were considered, the small aspect ratio and periodic boundary

conditions made it possible to neglect the effects of the hydro-

static layer and concentrate primarily on the effects of the

Lineykin solution.

A schematic description of the various elements of the dynamics

of rotating, stratified fluids as a function of stratification is

shown in figure 17. This representation was obtained from Barcilon

(1969) (Barcilon and Pedlosky (1967b)). The results of the present

investigation are indicated by being enclosed in parentheses.
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5.0 Some Aspects of Thermal Forcing:

All the previous examples v:'"ch were considered were forced

mechanically by applying a stress at z = 0. However, some interesting

effects occur if the fluid is also thermally forced. ConsideL the

Stommel and Veronis model and apply the following boundary conditions:

T

The solution, as in the previous examples, is of the form:

(4I

It is easy to show that I=qqt . For (C~SEot\L the solution

again consists of Ekman layers, a Lineykin solution, and a Couette

flow. As before the Lineykin and Couette solutions have to satis-

fy the temperature boundary conditions by themselves, i.e.

qp 0 T +T b

Here the signifies the Couette solution and the the
A

Lineykin solution. Since T=T,=o\ , we have thatTh- cL . Through

the thermal wind relationship

A A : T -

The stress condition at = O is
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or

Sa-b

where ( )L. stands for an Ekman layer variable. From this last

expression it is clear that thermal forcing can have great effects.

The net transport in the Ekman layer is now proportional to -b .

For example, if b-=Q then the net transport in the Ekman layer

is in fact to the left of the 'apparent' applied stress "a". This

results, of course, because of the thermal wind shear associated

with the thermal forcing. In the limit ( 8 s~Yo>L the only effect

of the thermal forcing would be to modify the solution near=0 .

The interior solution would still be the Couette flow

V z oA- + Ao) coS x

These solutions of course won't converge to the homogeneous limit

unless some provision is made to let the applied temperature per-

turbation go to zero as the stratification decreases.
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PART II

6.0 General Features of Coastal Upwelling:

Frequently along coastlines regions of anomalously cold water

appear. These are thought to be caused by upwelling. On the eastern

sides of ocean basins upwelling is a common occurrence along the

coastlines of Peru and Chile, California, and the west coast of

Africa. Wooster and Reid (1963) present a survey of the general

oceanic conditions in these regions. Their paper is also an ex-

cellent source for references to the literature on upwelling. On

the western sides of oceans, the prominent regions of upwelling

are the east coasts of Somaliland and Arabia during the southwest

monsoon. The details of upwelling vary from place to place and

depend strongly on local conditions. In this section only the

salient features of the upwelling zones will be discussed. On che

basis of some of these a theory of upwelling will be constructed.

The observational studies indicate that there are some gen-

eral features which are common to all upwelling zones. Upwelling

seems to be confined to the surface layers. Sverdrup and Fleming

(1941) found the depth of upwelling off California to be about

200 meters. Off Peru and Chile the depth from which upwelled water

is brought to the surface rarely exceeds 200 meters (Gunther (193b)).

Off the Somali coast this depth appears to be less than 300 meters

(Warren, et al. (1966)); off Arabia it appears to be 100-200 meters.

The scarcity of systematic observations and the presence of
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continental shelfs makes it difficult to relate this depth to

general oceanic and atmospheric conditions.

The upwelled water has a temperature 2-5*C colder than that

of the surface water furthcr offshore. Generally this colder water

is fresher than the offshore surface water. The salinity dif-

ference is of the order of a couple of tenths of a part per thousand.

The density difference between the upwelled water and the offshore

surface water varies considerably and is of the order of 1 part

in _ t . The upwelled water has high concentrations of nutrients

such as phosphates and silicates but is undersaturated in oxygen.

All these features of course vary from place to place and depend

strongly on the local conditions. It is difficult, on the basis

of the limited information which is available, to determine any

systematic variations.

Upwelling is usually confined to a zone within 70 km. of the

coast. Within this zone the velocities increase toward the coast.

The ship drift observations of Gunther (1936) indicate that the sur-

face drift in the zone is of the order of a knot. Sverdrup and

Fleming (1941), using dynamic computations, get a similar value

for the surface velocity relative to 100 meters. Comparable sur-

face shears are found off Arabia. By assuming that all the upwelled

water moves offshore in the mixed layer in which the magnitude

of the offshore velocity can be estimated by assuming Ekman layer

dynamics, Sverdrup and Fleming (1941) obtain estimates for the ver-

tical and offshore velocities in the upwelling zone. The offshore

velocity is of the order of 10 cm/sec. This requires a vertical
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velucity in the upwelling zone of 10 - -10 cm/sec. Alli of these

values of course depend on the magnitude of the wind. In the

upwelling situation Sverdrup and Fleming studied, this was about

16 knots.

The regions of strong upwelling are of limited extent along

Lhe coast. Their extent along the coast is of the order of hun-

dreds of kilometers, and they are separated from one another by

regions with higher 3urface temperatures. There seems to be little

correlation between the location of the zones and bottom topography

(Gunther (1936)). However, the regions of strong upwelling occur

frequently at capes. This, no doubt, is related to the winds which

generally are strongest in these regions. There is a strong

correlation between the strength of the component of a wind parallel

to a coast and upwelling (Wooster and Reid (1963)). Variable

winds consequently make the upwelling process strongly time de-

pendent. No systematic observations have been made to study the

response time for upwelling. However, an estimate of this can

be made by computing the time required for water to ascend from

a characteristic depth of upwelling, i.e. 100 meters, to the

surface. For w of the order of 10 -10 cm/sec, this takes 10-100

days. This consistent with observations (Sverdrup and Fleming

(1941); Smith, et al (1966)) which indicate that the general

features of the upwelling zone are set up in a period of a week or so.

The upwelling zones on the western side of the ocean basins

appear to be quite similar to those on the eastern side. However,

on the western side there is an additional complicating factor.
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Off Somaliland, during the southwest monsoon, it isn't clear

whether the upwelling is due to the local winds, i.e. to the off-

shore transport in the mixed layer, or to the Somali Current. The

Somali Current as it crosses the equator and flows northward in-

creases in transport and begins to feel the effects of the earth's

rotation. Consequently the density surfaces rise toward the 2jast.

This process will be called geostrophic upwelling. When the cur-

rent reaches a steady state, no more water is upwelled and the sur-

face oxygen values, close to the coast, should reach saturation.

However, near the Somali coast, several months after the onset

of the southwest monsoon, the surface oxygen values are only 60%

of saturation (Warren, et al, (1966)). This either indicates that

the current is not yet in steady state or that water is being forced

away from the coast in the surface layers. Close to the Somali

coast extremely cold water, which is about 80C colder than the off-

shore surface water, is brought to the surface. This extreme up-

welling probably occurs because the two types of upwelling are acting

concurrently.

At about 9*N the Somali Current leaves the coast so that

further north, off the Arabian coast, the strong geostrophic up-

welling associated with the Somali current is absent. In Appendix

A are shown temperature, salinity, and oxygen profiles along three

sections off the Arabian coast during the southwest monsoon. From

these profiles some general features of the flow close to the coast

are immediately apparent.
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6.1 Arabian Upwelling:

There appears to be little continuity in the surface currents

along the coast. In section C, a hot, saline surface current, 29.9 0C

36.15%, flows next to the coast. Its high temperature and salinity

indicate that the origin of this water is probably the Gulf of A-

den. Note that this water does not appear in section B. Although

cold water is not directly at the surface at the shoremost station

(5006) of this section, water of 20'C and 2 ml/1 oxygen is found

20 meters below the surface. The surface temperature at this station

is 26.8 0 C. This indicates that upwelling has probably recently

stopped. The upwelled water appears to be drawn from a depth of

100-150 meters. Dynamic calculations indicate that at station

5008, the geostrophic velocity at the surface relative to 50 meters

is 80 cm/sec.

At section B active upwelling is in progress. At station

5033 water of 19.8 0 C and a salinity of about 35.65% is at the sur-

face. The oxygens are 50% of saturation. Near the edge of the up-

welling zone at stations 5036, 5037 the geostrophic velocity shear

in the top 100 meters is 40 cm/sec/100 meters. The extremely warm

and saline water found next to the coast in section C probably lies

at the right edge of this profile.

The conditions at section A indicate that upwelling is in

progress. Water of 18.9 0 C and 35.68%.is found at the surface at

station 5047. The oxygenvalues are 50% of saturation. From the

water mass characteristics and geostrophic calculations there again
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appears to be a current running parallel to the coast in the sur-

face layers. The geostrophic velocity shear at stations 5049 and

5050 near the edge of the upwelling zone is about 50 cm/sec/!00

meters. It is difficult to tell where the water in this current

originates. The surface temperature, salinity and oxygen values

about 160 kilometers from the coast in profile B are similar to

those found close to the coast in this section so this might in-

dicate some continuity of flow between these two sections.

Water in these three sections appears to upwell from a depth

of 100-150 meters. In all three sections there exists a narrow

coastal current whose width is about 20 kilometers within which

there are large geostrophic shears. This coastal current appears

not to be continuous. Consequently it might be related to the lo-

cal upwelling. This is to be expected because the upwelling tilts

the density surfaces up towards the coast, and this results in a

geostrophic current which runs parallel to the coast.

The salinity profiles are all very confused, which makes it

difficult to trace water movement at intermediate depths. This

is similar to what Hamon (1961 ) found in this region. This confused

picture probably is directly related to the several sources of dif-

ferent salinity such as the Persian Gulf and the Gulf of Aden which

are found in this region. From profiles A and C it appears that

there might be a movement of water at 200-300 meters along the coast

because of the oxygen values over .5 ml/l. However, at profile B,

next to the coast, no Values greater than .3 ml/l are found at 200

meters. Furthermore the salinity at this depth next to the coast
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for this section is higher than it is either in section A or C.

Consequently there probably is no continuity in this flow next to

the coast at 200 meters. This is in contrast with what is observed

in the upwelling zones along the eastern sides of ocean basins.
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6.2 Poleward CounLer-Currents:

On the eastern sides of the ocean basins are found deep pole-

ward countercurrents whose axes lie at aboat 300 meters. These

are described in the article by Wooster and Reid (1963). The

counter-currents are found in both hemispheres and transport water

from equatorial regions toward the poles. Their high temperature,

salinity, and low oxygen values--water mass properties characteristic

of equatorial water--enable the counter-currents to be traced into

mid-latitudes. These features can be seen in figure 1, in which

a profile off Chile is exhibited. The counter-current has a

width of 30-50 kilometers, and its velocity along the coast is

10-20 cm/sec (Wooster and Gilmartin (1961)). This current is thought

to supply part of the water which is upwelled. Because of this,

it is commonly called a compensation current. However, there are

indications that this might not be the case. Observations off

California (Reid, et al. (1958)) show that this current is in fact

strongest during the winter, i.e. when the upwelling is essentially

absent. During the spring and early summer, when upwelling is

strongest, the current is weakest. This is exactly opposite of what

simple dynamical models, which attribute the origin of the current

to P -effects, would predict (Latun (1962), Yoshida (1967)).

Furthermore, when the current is strongest, it reaches to the surface;

however, during periods of upwelling it is destroyed above 200 meters.

Consequently the possibility exists that this current, instead of
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being a compensation current, is a result of a different physical

process.

An examination of the dynamic topography of the 200 db surface

with respect to the 1000 db surface (WoosteE and Reid (1963))

shows that a narrow pressure gradient of the right sense to drive

this countercurrent exists along the coast. This pressure gradient

is confined to within 100 kilometers of the coast. The existence

of a pressure gradient, of the same width as the upwelling zone,

in the same region as the upwelling zone, indicates that it is

probably in some way related to the upwelling.

Because the main oceanic thermocline is shallower in equatorial

regions than in mid-latitudes, upwelling in low latitudes brings to

the surface water whose temperature is not much warmer than the

upwelled water in mid-latitudes even though the surface temperature

in equatorial regions is much higher than it is in mid-latitudes.

However, the salinity of equatorial water is much higher than that

of water in mid-latitudes. Consequently the density of upwelled

water in low latitudes can be greater than it is in mid-latitudes.

This density difference, integrated throughout a water column,

would produce a poleward pressure gradient, of limited width,

such as is observed.

An examination of Gunther's data shows that the density of

upwelled water tends to be greater in low latitudes than in middle

latitudes. The difference in Tt between low and middle latitudes

is about .10-.30. Of course, strong upwelling in high latitudes

can reverse this density difference.
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It also appears that, at least off South America, upwelling

in low latitudes i more persistent and stronger than it is in

middle latitudes. One factor which might contribute to this is

the simple Ekman notion that the offshore transport in the mixed

layer is of the order of t/f , where t is the magnitude of the

wind stress and f is the Coriolis parameter. This relationship

indicates that for two upwelling zones of equal width in which the

wind stresses are equal, the upwelling is more intense in the one

that is at the lower latitude. Over a period of time, this would

have the tendency to produce the proper pressure gradient.

However, off the Arabian coast the distribution in density

of upwelled water, if anything, is such as to produce an equator-

ward pressure gradient, i.e. opposite to that observed off Peru

and Chile. The upwelling is ajno probebly more uniform in time

and space because the Arabian coastline is of limited north-

south extent and the monsoon winds are relatively steady. These

factors might not be conducive to the formation of a counter-

current which probably depends on north-south variations in the

upwelling.
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6.3 Lateral Mixing in the Upwelling Zone:

Estimates of the horizoital, turbulent diffusivity off the

California coast were made by Sverdrup and Fleming (1941). Guided

by observations of the mean distribution of water mass properties

along C-t-surfaces, they deduced that the horizontal diffusivity

was of the order of 10' cm'/sec. Horizontal eddies, 20-40 kilometers

in diameter were observed in the flow field. These were though to

be responsible for a lateral exchange of this order. Clearly if

these eddies were important in the exchange process in the upwelling

zone, whose scale is comparable to that of the eddies, it would be

difficult to maintain the integrity of the upwelling zone. Furthermore,

upwelling off California is highly time dependent and the eddies

themselves, to some extent are products of upwelling. As the up-

welling progresses, the pressure gradient normal to the coast

increases, and the velocity parallel to the coast grows larger.

Instability or irregularity in the flow tends to create these eddies

which in turn limit the growth of the velocity.

Consequently the value, 10 cm~/sec, is probably a gross over-

estimation of the importance of lateral friction within the zone.

The "actual" eddy coefficient is probably several orders of magnitude

less than this. However, its magnitude is unknown and probably

varies from location to location. To make estimates of horizontal

Ekman numbers in section 7.1, a value of 10 cm /sec will be settled

on. Most likely the value 10 cm /sec is a more appropriate one to
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describe the mean conditions away from the upwelling zone. Hcwever,

because we re interested in studying the dynamics of the zone

itself, the smaller value will be used in the order of magnitude

estimates. The theory will be constructed so that it does not depend

on the value of this coefficient.

It is instructive to make an estimate of the relative importance

of horizontal to vertical exchange processes within the upwelling

zone. This is done using the value, 10 cm /sec, for the eddy

coefficient even though this is probably much too large. This

calculation indicates that vertical mixing is at least an order of

magnitude more important than lateral mixing. A smaller lateral

diffusivity would of course further decrease this ratio. These

considerations indicate that the dynamics of the upwelling zone

should not be strongly influenced by lateral friction.

However, because of the strong effects lateral friction has

in some of the cases of rotating, stratified fluids studied by

Barcilon and Pedlosky (1967a,b) and Veronis (1967a,b), its effects

will be considered in Appendix B. It is shown there that for the

theoretical model which is considered, the effects of lateral

friction are unimportant.
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6.4 The Boundary Condition at a Coast:

In a model of the upwelling zone in which lateral friction is

neglected, it is impossible to catisfy all the boundary conditions

on the temperature and velocity fields at a coast. In practice

oceanic coasts are ill-defined and are far from being vertical walls.

There appear to be heat fluxes (see fig. 1) through these "walls"

at least on the scale on which observations have been made. The

precise boundary conditions at such a coast are unknown. Consequently

the only boundary condition which will be imposed is that there be

no normal flow through the coast.

However, in the published studies of rotating, stratified

fluids mentioned in the previous section, the condition of normal

flow at a wall is intimately connected to the thermal boundary

condition there. Satisfaction of the thermal boundary condition

can induce a circulation which can modify the interior solution.

It is shown in Appendix B, that for the model which will be considered,

that the inclusion of lateral friction, which allows the heat flux

to be brought to zero, does not modify the solution.
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6.5 Consideration of P-Effects:

North-south motion on a -plane creates a vertical velocity.

If (3 -effects are negligible in an upwelling model, this w must

be much less than the one caused by the diffusion of relative

vorticity. In the linear theory the vorticity equation is of the

form:

3V =  o * OiFPVJUSi0 Of R L~TTWE VojigT\cTX

Consequently the w created by -effects is of the order of

This can be of the same order as the vertical velocities actually

observed in the upwelling zone. However, for the sake of simplicity,

the theoretical model which will be considered will ignor @-effects.

In geostrophic upwelling as a current flows poleward the up-

welling becomes more intense because the value of the Coriolis

parameter increases, ie. because of the (-effect.
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7.0 An Upwelling Model:

In the previous sections, some observational features of the

upwelling zones have been examined. For a theoretical analy-is,

the simplest coastal model would seem to be a vertical coast at

x=0 with a uniformly stratified ocean extending to x=-z. A

steady stress in the y-direction (i.e. parallel to the coast) is

applied everywhere at the surface. The rotation vector is vertical

(f-o) and constant. As before, we assume that the linearized

equations are valid. The effects of lateral friction and conduction

will also be ignored except that some discussion of their role is

made in Appendix B. With these assumptions, the set of dynamical

equations is that which was studied in the Stommel and Veronis

model of Part I.

A solution to this problem is postponed until section 7.30.

As a preliminary to this problem, section 7.20 analyses a some-

what similar problem in which the coast is moved to x= t oo

and the uniform stress is replaced by an alternating square wave

distribution. The similarity arises in that in the square wave

solution, u vanishes when the stress changes sign, and to this

extent, such places may be considered as a "coast". This method

of solution is motivated by considering the regions of different

sign of the stress as being "images" of each other, and the

solution is obtained in the sense of the "mcthod of images".

--"---------~-------~--'.-L-'"-~'~~~~ '~"C~^~~I-- -~'~~E~PPl~lpSC IP-- IPI.
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7.1 Formulation of Equations:

The set of non-dimensional, linear equations with lateral

friction included is:

-V= -p, t , u,. t_.,..

where

E,. -F , E,,---4 - -% -

The constant eddy viscosity coefficients in the horizontal and

vertical directions are respectivelv, - 9, ; the constant eddy

coefficients of thermometric conductivity in the horizontal and

vertical directions are , . The assumptions in deriving this

set of equations and the non-dimensionalizations are the same as

in Part I. The horizontal and vertical Prandtl numbers are both

assumed to be of order unity.

In the estimation of the aboeve parameters, the following
L( -- -I

numerical values are used: ~ \0 Se v 
= \C = a . s T

w= \ooo VM. " -\ooo nVEz<. , -,€ v - Vse. ". \0 1-l/sec.

A discussion of the value used for * has already been made in

section 6.3. The value used for D is an order of magnitude estimate

r I--r
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of the depth of the main thermocline. Because we are thinking

of a system which has a mean stratification, we =T.ant D to represent

the depth over which this stratification occurs. In the ocean this

is a thermocline depth. The value of L is not a measure of .'he

total width of an ocean basin. The only restriction on L is that

L~\L-, where L o is a natural length scale defined in terms of the

other parameters in the problem. Physically L o is the width of

the upwelling zone, which at this point is still undetermined in

terms of the parameters of the problem. In the square wave problem

L is proportional to the wavelength of the square wave. For the

semi-infinite ocean, where there is no other horizontal length

scale than Lo , the restriction is made that L">L o . The width and

dynamics of the upwelling zone will be shown to be independent of

L. For convenience in estimating Eq, L is chosen to be 1000 kilo-

meters. Using these values one gets that:

-3 -3

X. -- oO

The nature of the dynamics depends on the relative magnitudes

of these. From the above estimates and from those made in section

6.3, it appears that the effects of lateral friction, on the scales

we are concerned with, are small. Formally the restriction is made

that:

This implies, in terms of the formalism of Darcilon and Pedlosky

(1967b), that the parameter (aYS$) as compared to E" puts the
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fluid into the very strongly stratified regime. Here Ekman layers

are- absent, and the only vertical boundary layer of the type considered

by Barcilon and Pedlosky. in which horizontal viscosity is important,

is the buoyancy layer. It is shown in Appendix B that this layer

has negligible dynamical influence. A comparison of Sv ) with -v

indicates that we are in the essentially homogeneous regime in

which Ekman layers exist and play a dominant role is the interior

dynamics. As is shown in section 7.30, a vertical boundary layer,

in which vertical vi.cosity is important, is also present.

Consequently a set of equations is considered in which all

terms of order E , v are neglected. This set is:

om - +T qt

These can be combined to give the following equation:

941 0;& =0
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7.2 The Square-Wave Stress Model:

Consider a model, in which the applied stress is a square-

wave. This stress can be reprrzented as a Fourier sine series.

Consequently the solution can be represented as a sum of the single

sine wave solutions which were studied in Part I. The physics of

each of these is well understood. By knowing how these sum to

give a soluti6n, a physical understanding of the square=wave

problem can be obtained. This solution is not expected to differ

significantly from the case in which the stress does not drop to

zero. Consequently the insight obtained from this approach enables

us to solve the problem using boundary layer techniques. This in

turn will indicate the dependence of the solution upon the parameters.

The actual series which will be used is the sine series modified

through the introduction of the Lanczos convergence factors (Lanczos

(1956)). This new representation reduces the Gibbs phenomena,

which occurs near the points of discontinuity in the stress, to about

a 2% overshoot. It also insures rapid convergence of the series.

In the square wave representation, the small wave-length components

contribute primarily in the region close to where the stress

drops to zero. Recall that

Consequently decreasing the horizontal length scale is equivalent

to increasing the mean stratification. This means that near points

I ___~ --~~--II~--------..~~ .- --(1~I~PI~C- I~ICI~sl/iCI ^I-I.IPI(P-I~-C F~II1~-- -~ll(i
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of discontinuity in the stress, the stratification is effectively

increased. The flow in these regio-s would consequently be similar

to the cases of strongly stratified flow studied in Part I.

Because of the special nature of the applied stress, u, v,

Tx are proportional to the sine of x. Consequenltly in the regions

in which the stress drops to zero, i.e. where sinx is zero, all

three of these fields are also zero. If a coast is imagined to

exist at this point, the boundary conditions of no normal flow,

no tangential flow, and no heat flux are automatically satisfied.

Consider Example II in Part I with the following stress

applied at the surface, z=0:

The other boundary conditions remain as before:

CC-3 2 6 -- o=O

@ =O ,- u u :-o

The applied stress can be represented as the following Fourier

series:

This representation has the Gibbs phenomena near the points of

discontinuity in the stress. To reduce this to about a 2% overshoot,

.I -- --- -x- 11- -11--'~x~i- ----- ~ -~YYIPlsPC"""ICI"~~--~LI- X _~~''~'~ Y~-ax
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and to insure rapid convergence, the representation is modified

through the introduction of the Lanczos convergence factors

(Lanczos (1956)). The new representation is:

The number of terms, m, which is kept in the present example is

80. This large number is used to insure that the solution near

the coast is well represented. The maximum number that can be

used is determined by the scale on which lateral friction becomes

important. This is much larger than 80 for the example which is

considered. The applied stress is illustrated in figure 18. The

width of a basin can be thought to be one-half of a square-wave.

In the non-dimensional units which will be used for x, this is f

radians.

We recall that equation (1') is:

' +e~-~± ( S e'9yT 0 ()

The boundary conditions are:

where

whereta-irl/m

SIN /-'qXAAw\
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In this square-wave problem there actually has been a slight

chane in the non-dimensionalization. For computational convenience

the non-dimensionalizations are:

The solution i5 of the form:

where

The F,~ satisfy the following equation

A A

and are subject to the boundary conditions:

S =O

A

?A7P A

~ vxVAX
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A

The analytic solution for each R(jl is siimilar to that found

in Example II with the following minor changes. The qvS now

satisfy:

The sign of the applied stress is also changed in the bounda'y

conditions. This occurs because now ?-coSX

The other fields are represented in terms of the pressure as

follows:

-(A."\ -k) 3

As was shown, the value of X is between 10 and 10 for the values

of the parameters which were used. For this example, X is chosen

to be

The solutions for each individual sine wave were computed and

summed numerically. The complete solutions for the velocity fields

and the temperature are shown in figures 19-22. A stream function

can be defined as follows:

LI~-o~ll=L~- I~. IY-~ LCI~~1~ IXII~1II~~~ _Is~~ ~
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The stream function is plotted in figure 23.

From Lhe resuts it appears that, as expected, there exists

a boundary layer near the coast. As the coast is approached, this

layer absorbs more and more of the surface stress. Consequently

the net transport in the Ekman layer drops to zero as the wall is

approached. A more detailed examination of the solution and its

dependence on the parameters is postponed until the next section.

--------L-L-LW~LCII VI~P-~il~ III __ ly^
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7.30 Boundary Layer Approach for the Semi-Infinite Ocean:

In the present circumstances we expect that far from the coast

(large negative x) the motion will be independent of x. This

x-interior solution will be the same as the solution for the square

wave problem away from the regions where the stress changes sign.

It consists of non-divergent Ekman layers at top and bottom in

which transports in the x-direction exist. These are separated

vertically by a region with uniform geostrophic v in the direction

of the stress and zero u. W and T vanish everywhere. The formulae

for this solution are given below:

Next to the coast we expect to be able to reduce the u velocity to

zero by adding appropriate boundary layer solutions. The possibilities

are as follows.

As was shown in section 7.1 the set of governing equations

can be combined to give:

We recall that no the only restriction on L, the length used t o

non-dimensionalize x, is that L L, where Lo is the width of the
boundary layers next to the coast. Forwe expect to be able to red=0(), the only balance

in by which yields a boundary layer solution in x is between terms
in Q) which yields a boundary layer solution in x is between terms

-~I.... ^.e~~" .~- ~- Y~-"~"L~-~ II I I
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and . The boundary layer variable in this case is:

Since this is the Couette-Lineykin balance of Part I, it is called

the Couette-Lineykin layer.

However, if we don't demand that a=0(1), there is another

x-length scale. This is the scale on which the Ekinan layers

disappear. Consider equation () and let z=E $ ; then

All three terms are the samie order of magnitude when:

From Part I we recall that for scales of this order or less,

the boundary layers along horizontal surfaces no longer accept any

of the applied stress and serve only to bring the temperature field

to its specified boundary value. On these scales the Lineykin part

of the Couette-Lineykin solution no longer exists and the interior

solution consists only of the Couette flow.

In the boundary layer solution to the problem in which the

applied stress is constant, two types of boundary layers occur.

These are the Couette-Lineykin and Ekman layers. We are neglecting

the boundary layer which occurs for x-scales of (CSse) at hori-

zontal surfaces, and whose function is only to adjust the temperature

field to its boundary value.

.. I ..
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7.31 E!kman Layers:

At the horizontal boundaries, Ekman layers can occur. Dynamically

the top and bottom Ekman layers are similar, so only the top solution

is examined. The equations are:

where

v - o (-'
0

- U o 1e)o ( ..)

These yield:

S exp~ ~Rlc~~~to) COSyi~t

ii F ep'r~T~ OO 3 (y,) coS~ -~

Z, Z 0tt~lR,03~o2 ~ ~- i x I ,

XI_ .~~,~- --ll--~-~-n--- --~r~iL -ri ~ -uY~' L..WI~L XX~~-'--~' ~i _-~i* 1I I1
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7.32 The Couttc-Lineykin Layer:

The equations for the Couette-Lineykin layer are:

A

0 +-U T 3

U Y1
o-

The magnitudes of the variables are:

P =o ( (,ss 3

V oc(l}
V (c'C L

2 OC

EA oc'
;0 vo~s'

'~c~(z. r

These were obtained by assuming that the layer could carry the

Ekman transport and that the vertical shear was order one, i.e.

( C1

Since this layer is much thicker than an Ekman layer, Ekman layer

dynamics still hold within the layer. In the Ekman layer when

XzO(G(C5) we have:

___I~__LII_~_1X_~__ Irl IPLellXiL II^. I-~i~I-~I-~



As in Exaimples I and II of Part I, the V T have to satisfy the

boundary conditions by themselves while at z=0,

A

The general solution to the Couette-Lineykin layer equations is

found to be:

Te GyI cCG) Cos I - N~O-: kG

T Te',- Y OT CC&Tc 0w3 sz - C-q) +

-*O(T Q((r) CC)S T -~ C(i s Zot

o

I j. (3 (a-)

2

ig,

84.
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7.33 The Uniform Stress Model:

Consider the following problem with the boundary conditions:

where

At x=0, as was discussed in section 6.4, we require that

LL =O.

From the square-wave solution, we essentially know the dynamics

of the solution. Within (y SE, V of the wall, the solution is

essentially Couette flow, and there are no Ekman layers. Within

a region (G'y5 6 S) of the wall, Ekman layers and the Couette-Lineykin

solution exist. At distances greater than this from the wall, Ekman

layers exist, and an interior v-velocity, independent of z, is

required to drive the lower Ekman layer.

The Region of Thickness (c~S, IC:

Since Ekman layers don't exist, the Couette-Lineykin solution

has to satisfy the boundary conditions by itself. These are:

^ ( = o A i(3)

The solution to these is:

_~II~L-iLl---^-il~~~- i ii..l ._-r-.11~11-~1 ~ilL
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A (3)

Note that this solution satisfies the top boundary condition on

temperature, but it doesn't satisfy the one at z=-1. This can be

corrected for by including the boundary layer which is the solution

to equation (3). However, since this only brings the temperature

to zero and is otherwise passive, it is neglected.

The Region of Width L)'.

The stress condition at the surface has essentially been

reduced to

where

A -4-L

Let the interior Couette-Lineykin solution consist of two parts:

V soLAt\oN kc %37c-16S V., v To eto

V 2q O t (SS cC)L2

The stress at the surface is then given by

V,: V: V;, +V M0-

Pick
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consequently

Substituting for V, from equation (') we get that

1 7"

The total Ekmnan layer solution consists of a solution far from

the wall and a boundary layer correction. Let represent

the solution far from the wall and V be the boundary layer correction.

The boundary layer correction has a surface stress of the form:

V - e . " I.( & -,

Thus we can look for the total solution to the upper Ekmnan layer

to be of the form:

From the condition

Gfl) is found to be zero. At the wall, all the applied stress

is transmitted to the Couette-Lineykin flow; consequently the

Ekman velocities at the wall vanish. Either one of these conditions

._...~.~........ .II _~,.-~,~U~-r~~- ~ -~ ' -4p-- -'-~---- irrrrrp- ----- l I_~,,-L-iira__lblLIY-i~-L---r~lP-- ..
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gives:

The application of the boundary conditions

@ %=0 T = O

1-\ 7 V =O

determines the remaining arbitrary constants in the $V solution.

The solution is

The relevant boundary conditions are:@ 1 o -o
~--I Y (- t v =cogwhereg t s:

Thes calculation of the V solution is also straightforward.

V =. ,
^ ( 1)These give the solutions:

Su e toiic -- ----- (COS A-A

U .- Si A c~s(Y
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P A S

It should be noted that while WA 0 at z=-l, is not.

Thus an Ekman layer is required at z=-! to bring the total Lu to

zero there. Physically this Ekman layer is required to transport

water away from the wall which was brought toward the wall in the

upper Ekman layer. A simple calculation shows that the Ekman

layer solution at z=-l is:

ib v Y1 e v? C

where

To drive this Ekman layer an interior flow of the form

is required.

There are several points which should be noted about these

solutions. First of all, the infinite series for W and LL

converge everywhere except at x=O. Similar non-convergences,

right at the boundaries, also occur for the boundary layer solutions

to the Stewartson E -layer and probably for solutions to the hydro-

static layer. Consequently the boundary solution for these layers

should be taken as the limit of the interior solution as the

_11^ --.1^11... -. ^.~i*---~ II .^^-_ L-IIIXIII1 i. ~IIII~L-Xli_- ~r^-----II.-1~YLI~II~-LII l~-- -Llllli*l
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boundary is approached. The stream functions for all these layers

converge.

Secondly, although the condition of no normal flow through

the wall is satisfied through O(E~), there is and 0(E) flow in and

out of the wall for U and . However,

desnite the fact that B itself does not converge at x-0. A

simple integration shows that all the flow which enters into the

Couette-Lineykin layer Lihrough the upper Ekman layer leaves through

the lower one.

If drawn, these solutions would resemble quite closely those

of the square wave (figures 19-23). The main difference occurs

for the v-velocity. This no longer drops to zero, and in a distance

within (G,6Ev\ of the wall is essentially Couette flow. At the wall

it is Couette flow, and its surface value at the wall is 40. Because

this solution does resemble the square-wave one so closely and

because of the practical difficulty in resolving both the t and l,

scales where MtI rL , the solutions are not displayed.

The dimensional width of the upwelling zone is ($S . This

is independent of the width of the basin, "L". Initially the non-

dimensionalization of some of the fields depended on this "L"'

Now it would be possible to change the non-dimensionalization such

that the horizontal length scale was the width of the upwelling zone.

The response in the zone would then be independent of the width of

the ocean.

~~ .~It_ _~__ _~jX~__1_ _ILII_____~___ILL__1111_ ~IYIX_ L-~~--- LII~L- --~. L-. L^I.E.___II.LI-~-C~ill~-~l- I-~l._.~i
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7.4 Discussion of Results:

A spatially uniform stress applied parallel to a wall pro-

duces a net transport of water, in the Ekman layer, toward or

away from the wall. Suppose it is toward the wall. The initial

piling up of water at the wall produces a pressure gradient per-

pendicular to the wall. This creates an interior flow in the

direction of the stress which results in the formation of an Ek-

man lnyer at the bottom. The transport in this Ekman layer is

away from the wall. The pressure gradient builds up until the

sum of the transports in the upper and lower Ekman layers perpen-

dicular to the wall is zero. Close to the wall (on the scale of

the Couette-Lineykin layer) vertical advections of the mean temp-

erature field create horizontal temperature gradients. These-pro-

duce a thermal wind shear which balances the surface stress at

the wall. Consequently at the wall the Ekman layer velocities

vanish.

Away from the wall, but still on the scale of (SS)L ,

the Couette-Lineykin layer does not transmit the stress directly

to the bottom. The surface stress is balanced by a body force which

is distributed throughout the depth of the fluid. Close to the

wall, on a scale of (Shf6 , the stress is directly transmitted

to the bottom by the Couette flow and consequently at the wall

-- LL
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Oceanic Application:

The restrictive assumptions made in this idealized model of

coastal upwelling clearly limit its applicability to actual oceanic

conditions. However, there are some features of the model w1-ah

are in qualitative agreement with what is observed. The width of

the upwelling zone, which is of the order of tens of kilometers,

is predicted by the model. Furthermore, as the observations in-

dicate, there is a region close to the coast in which the velocity

along the coast is higher than it is further offshore. The width

of this region is of course the width of the upwelling zone. The

question arises as to whether thermal wind shears of sufficient

magnitude to balance the wind stress occur in oceanic upwelling

zones.

Observations in most of Lhe upwelling zones indicate that

the thermal wind shear at the inshore edge of the upwelling zone

is of the order of 50 cm/sec/100 meters. The wind stress on the sea

surface for a wind of 15 knots is about 4 dynes/cm (this value is

highly uncertain). The vertical eddy coefficient, if the thermal

'windt shear is to balance the surface stress, must be approximately

8x102 cm/sec. This is not an unreasonable value. Although this

is not proof that this physical mechanism is operative in the up-

welling zone, it does point to its possible existence. Even if

all of the wind stress is not balanced by the thermal"wind" shear,

a portion of it very easily could be.

Observations indicate that upwelling is generally confined

-i_-_-_-sl~- -~l-~--~_----ii ~XIT^LXII~XI-~II.I.- __LI_-



93.

to the top 100-300 meters. H!owever, the steady solution to our

model indicates that it extends to the bottom. This shortcoming

of the model appears to be a result of our assumption that the

flow is steady. The Couette flow develops on the order of the

diffusion time scale. This is uf the order of

O3 sO

or about 100 days. Of course in the ocean v is some function

of depth so this estimate represents a lower bound. Probably in

most upwelling zones the Couette flow and consequently the lower

Ekman layer would not have a chance to develop. This means that

the compensating flow, which previously came through the lower

Ekman layer, must come through the interior and is probably bal-

anced by the time accelerations. An additional factor, which,might

be of importance in limiting the depth of upwelling, is that the

upwelling zones are of limited north-south extent and consequently

are not independent of this direction. This dependence allows

compensatory water to be drawn from the interior.

A conspicuous feature which is missing in the theoretical

model, is the deep, poleward counter-current. There is some reason

to believe, as was mentioned earlier, that the existence of this

counter-current is related to the north-south variations in the

oceanic and atmospheric conditions. Since these are not considered

it is not surprising that the model does not exhibit a counter-

current.

From Part I it is clear that the boundary conditions played

I L~I____IUCL_^_____L___CIIIUL_*~..LI.- Y~1-__i -LI .--_i-i-1L -l. . - 11-^1~_11~1 . --~-.-^^ .CI_



an important role in determining the

the examples which were considered.

both mechanically and thermally. At

(non-dimensionally)

nature of the solution in

Suppose the ocean is driven

the surface specify that

by

Tf in some region these are related such that

then, the stress is transmitted directly to the interior, and

Ekman layers are absent. This can obviously cause some very in-

teresting flows.. Is the Antarctic Convergence a physical phen-

omena of this type?

94.
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Appendix A: Arabian Upwelling

The data for these sections came from Discovery stations 5006-

5015, 5033-5045, and 5047-5054. During the period these stations

were taken, June-August 1963, the southwest monsoon blows steadily

over the northwestern Indian Ocean. For sections A and B, the

wind blew from about 200 -2200 with a speed of 25-30 knots. The

average wind speed in sectioii C was somewhat less at about 15

knots. The positions ot these sections are shown in figure 24.

The salinities at stations 5040 and 5041 of section B were

excluded from that section because of the great difficulty of

making sense of the contours if they had been included.
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Appendix B: The Buoyancy Layer

Because of the important role the buoyancy layer (Barcilon

and Pedlosky (1967a,b), Veronis (1967a,b)) plays in rotating,

stratified fluids, its effects in this problem are examined,

The solution to the upwelling problem without lateral fric-

tion has an 0(1) heat flux through the wall at x = 0. If this is

to be brought to zero, the effects of lateral friction must be

considered. This would be done through the introduction of the

buoyancy layer. If the 0(1) heat flux is brought to zero, we get

for the buoyancy layer that

oCt\-- -. /(dySS'

and

0 = ti+ L

o T-

where

p o = ( G',st' '( .
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It is easy to show that the buoyancy layer in this case is

thinner than the smallest x-scale considered in the upwelling

problem, i.e. (G,SEPV I  . The iatio of the width of the buoyancy

layer to this thickness is given by

(a I (G TSS6 -E (<&) oSV'

where we have used the fact that VC_<S F and have sub-

stituted for El.

In the Couette-Lineykin layer the magnitude of the u-velocity

was 0(E,). Because S<-( -)<v the secondary u-circulation caused

by the buoyancy layer is much less than the one in the Couette-

Lineykin layer. Furthermore, for this particular problem, this

secondary circulation is identically zero. From the equations

for the buoyancy layer we have

But I , is independent of z because in the Couette flow next to

the wall the heat flux is independent of z. Consequently

This implies that L= O 0

It appears that the addition of the buoyancy layer would not change

the nature of the solution to the upwelling problem. Even if the

heat flux were brought to zero through the addition of a buoyancy

layer, the no slip conditions on V and au still remain to be

satisfied. It does not appear that this can be done in the frame-

work of the linear theory of rotating, stratified fluids.
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