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Abstract

The data model for event reconstruction (EDM) in the Inner Detector of the
ATLAS experiment is presented. Different data classes represent evolving stages in
the reconstruction data flow, and specific derived classes exist for the sub-detectors.
The Inner Detector EDM also extends the data model for common tracking in
ATLAS and is integrated into the modular design of the ATLAS high-level trigger
and off-line software.
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1 Introduction

For large collaborations like the ATLAS experiment common data objects and modular
algorithms have been designed to ensure easy maintenance and coherence of the experi-
ment’s software platform over a long period of time. The ATLAS EDM improves common-
ality across all tracking detector subsystems in the inner detector and muon spectrometer.
Following the proposals in [1, 2] it has been designed to suit the needs of the high-level
trigger, offline track reconstruction, and combined event reconstruction. In addition it
was given enough flexibility to allow reconstruction of other data than LHC collisions, for
example test-beam and cosmic ray tracks. In practice an object oriented approach has
been chosen for the description of the detector data, designed to have one common data
flow for all of the above applications and all tracking detectors in ATLAS. This common-
ality is mainly achieved by formalising the access to data which is present in a similar
form in every sub-detector, such as the mathematical representation of measurements,
geometry information and handles to access objects from earlier reconstruction stages.

The ATLAS inner detector consists of the Pixel detector, the semi-conducting tracker
(SCT), and the transition radiation tracker (TRT) [3]. The data flow in the reconstruction
is sketched in Fig. 1 and can be summarised as follows. The data acquisition delivers the
readout from every sub-detector in form of a byte stream. This byte stream is subsequently
converted into data objects by the byte stream converters. The raw data objects are
prepared for the track finding by forming clusters, drift circles and space points using
information from the detector positions and calibrations. The next step is the track
finding and track fitting, during which further calibration corrections to the position and
measurement error are applied. The output objects are the final measurements-on-track,
which are held by the track objects from the Tracking EDM [4]. A post-processing of
those tracks leads to the physics-level description of the measured charged particles and
their associated production vertices.

The goal of the inner detector EDM is to ensure simple and uniform interfaces between
the processing stages of the data and between the reconstruction tools which implement
the reconstruction in a modular design. The classes described in this document correspond
to the ATLAS offline software release 13.0.30

Byte Stream 
Conversion

Trackfinding 
and Fitting

Postprocessing

Services Tools

Preparation

Figure 1: The schematic inner detector data flow.

1.1 Tracking Information from the Inner Detector

Pixel detector, SCT and TRT employ different charged particle detection techniques and
therefore differ in the data they provide.
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• The Pixel detector is arranged in cylindrical layers and disks fitted with silicon
sensors. Each sensor is subdivided into pixels and hence provides a two-dimensional
hit position on the module. Together with the surface constraint the Pixel detector
provides fully three-dimensional space points. In addition, a time-over-threshold
information is read out which is proportional to the deposited charge. A matrix of
two by 8 read-out chips are connected directly to the back face of the sensor module.
To avoid dead regions, pixels not covered by the readout chips are ganged together
electrically with near-by pixels, creating an ambiguity.

• The SCT is a similar arrangement of silicon modules, but its sensors are divided
into strips and each module consists of two sensor planes glued together back-to-
back with 1mm distance. In the barrel the strips are parallel while in the end-cap
modules have radially oriented strips. Consequently the measurement provided by
a single sensor constrains only one of the two local position coordinates. A small
stereo angle of 40mrad between the two sensor planes provides sensitivity to the
position along direction of the strips. Unlike the Pixel detector, the SCT does not
provide a charge deposit measurement.

• The TRT is an arrangement of small drift tubes of 4mm diameter, its genuine
measurement is therefore a drift radius. Once the direction of the particle is known,
this drift radius translates into a closest distance to the wire with an ambiguity
(which side of the wire the particle passed by). Since the full measurement frame
is not defined without a track direction, the measurements are expressed on a line
surface associated to each wire. The amount of transition radiation is connected to
the type of particle passing through the TRT; the TRT therefore reports additional
information such as the time over threshold and a second, high-level discriminator
signal.

1.2 From Raw Data to Event Data

The differences in the way how the sub-detectors measure hit position information makes
it necessary to store the data in different objects – or at least different child classes of
one common object. In addition the subsequent reconstruction levels change the meaning
and content of the measurement information by combining and calibrating measurements
and associating them to tracks. Different classes are therefore provided also for each of
those stages.

An inner-detector specific design is chosen for the first stage, the InDetRawData objects
(RDO). They are an object version of byte steam data as coming from the DAQ Read-
Out Drivers (RODs). The raw data model is described in detail in Section 2.1. There
is a difference between LVL2 and Event Filter/Offline in the processing chain from byte
stream to raw data. In the LVL2 the RDOs are not produced at all, but directly cluster
and drift circle objects are constructed, thus saving the RDO creation and access time.

The next stage involves tracking input and output objects which derive from base
classes shared with the ATLAS muon spectrometer software. This common tracking EDM
and the structure of the base classes are described in detail in [4]. Briefly, the idea behind
this design is to apply tracking code on hits from both tracking systems and thus reduce
code duplication and allow combined fits across the whole ATLAS detector. Measurements
in the inner detector, the clusters and drift circles, are described by objects inheriting
from PrepRawData. They are created once by the clustering and drift circle creation
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algorithms and can not be modified later. This ensures that different versions or stages
of the tracking can be run without interfering with each other. To correct PrepRawData

further using the track candidate’s position and incidence angle, the track finding and
fitting algorithms create a different type of object which inherits from a common base class
MeasurementBase. This class carries the information from one or several hits, depending
on the needs of the track reconstruction code in use. The class representing a single
PrepRawData is called RIO OnTrack1. Objects of type MeasurementBase are assigned to
a track by means of object ownership and form part of the reconstruction’s persistent
output stream. The concrete implementations of the inner detector tracking classes are
described in Sections 2.2 and 2.4.

During the last stage of event reconstruction, information from the inner detector
and other ATLAS detectors is used to reconstruct tracks, vertices and physics objects.
They usually do not need an inner-detector specific object implementation and are hence
designed not to be an exclusive part of the inner detector EDM. Where relevant the inner
detector instanciation of such ATLAS-wide objects is described.

2 Event Data Model Objects

The commonality in the data model for track measurements from the inner detector and
muon spectrometer is established by allowing each subsystem to access and implement the
generic information but disallow any link to the specific information of the other system.
Technically, the generic structures of the tracking EDM are organised in a separate CVS
repository under offline/Tracking, and defined in a separate namespace Trk::. They are
documented in detail in ref. [4].

Inner-detector specific objects (including the inner detector implementation of classes
derived from the tracking EDM) are hosted by the offline/InnerDetector repository and
defined in the InDet:: namespace. No compile-time dependency between inner detector
and muon spectrometer or of the tracking EDM on any of the two systems is allowed.
From the computing aspect this approach has helped maintaining object type safety and
has considerably improved the stability of the software.

Although the raw data objects are implemented in a similar way in the inner detector
and muon spectrometer, they are the only objects in the track reconstruction data flow
which do not need a common base class and therefore do not share one. The inner
detector EDM follows the ATLAS policy of providing only minimal algorithmic content,
thus making the objects lightweight

The detector geometry follows a similar approach of distinguishing between generic
and inner-detector specific entities, but is not an integrated part of the inner detector
EDM. Here the ATLAS software framework separates strictly between event and non-
event data, the latter being managed by the DetectorStore instead of the transient event
store, StoreGate [5]. Detector data classes can nevertheless be accessed from the EDM
objects through their pointers to detector elements and surfaces.

1An early name proposal for the PrepRawData object was ReconstructionInputObject. Its successor
in the data flow, RIO OnTrack, still bears witness of this.
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2.1 Raw Data Objects

The InDetRawData object (RDO) is a data class designed to store the hit information
given by the RODs of the different sub-detectors. It represents uncalibrated data and
depends on the output of the particular detector technology (Pixels, SCT or TRT).

The byte stream converters are responsible for decoding the different ROD event
fragments and creating a raw data object for each recorded signal. The result is a Pixel
RDO per fired pixel cell, an SCT RDO per consecutive group of strips or individual strips
with signal (depending if the ROD is configured to run in condensed or expanded mode),
and a TRT RDO for each straw which has been hit.

The RDO contains an offline identifier of the corresponding pixel cell, SCT strip or
TRT straw. The BS converter uses the so-called cabling service to map the ROD channel
numbers to the module part of the hierarchically structured offline identifier [6].

Additional information contained in the byte stream is also stored in the RDO: For
the Pixels, a 32-bit word encoding the time the signal was over threshold and for timing
studies the Level 1 and bunch crossing identifiers as well as the Level 1 accept in case
several bunch crossings are triggered. For the SCT, a 32 bit word contains the information
of the number of consecutive strips with signal, the time-bin pattern corresponding to the
information recorded in three consecutive bunch crossings and the error type if present.
The TRT RDO contains a 75 ns, 24 bit, time digitization of the output of the discriminator
in the front end electronics and whether the high threshold was crossed for each of the
25 ns clock cycles. This enables the RDO class to compute the raw drift time and time
over threshold. For the case in which the trigger is not synchronized with the detector
readout clock, which is the case of test beam and cosmic rays data, the time difference
between the trigger and the next clock edge is also stored in the TRT RDO to allow for
a drift time correction.

Figure 2 shows the structure of the present raw data objects. For Pixels a single
concrete implementation is used for all different data types (LHC, cosmic rays and test
beam data). This is also the plan for the SCT which is still using SCT1RawData for
the case of simulated raw data. For the TRT two different concrete classes will remain:
one for the LHC data in which the bunch crossing is synchronized with the readout clock
(TRTLoLumRawData) and another one for the random case (TRTTB04RawData). The
classes are located in the code repository under InDetRawData [7].

2.2 Clusters and Drift Circles

The RDOs can not be used directly in the reconstruction but have to be “prepared”, that is
translated into a position measurement, assigned an error matrix, positioned with respect
to the other detectors and checked for bad channels. The PixelCluster, SCT Cluster and
TRT DriftCircle classes are the PrepRawData objects of the inner detector. The first two
are meant to store the output of the online and offline clusterisation processes. During this
process neighbouring silicon hits are joined into clusters (taking into account bad channels
and ganged pixels) and the position of the resulting cluster is computed. For the TRT,
the drift time is translated into a drift radius making use of the R–t straw calibration.
In both cases an error is added to the measured position. The calculated local cluster
position or local drift radius is expressed with respect to a measurement surface from the
detector geometry, so that the measured position is known also in the global inner detector
frame, including alignment corrections. Although the data class holds a two-dimensional

5



InDetRawData
const Identifier m_rdoId
const unsigned int m_word

Identifier identify() const
unsigned int getWord() const

PixelRDORawData

int getToT() const = 0
int getBCID() const = 0
int getLVL1A()const = 0
int getLVL1ID()const = 0

SCT_RDORawData

int getGroupSize() const = 0
int getStrip() const = 0

TRT_RDORawData

bool highLevel() const=0
double timeOverThreshold() const=0
int driftTimeBin() const=0

Pixel1RawData

int getToT()
int getBCID() const
int getLVL1A() const
int getLVL1ID() const

SCT1_RawData

int getGroupSize() const
int getStrip() const

SCT3_RawData
float m_errorCondensedHit[20]

int getGroupSize() const
int getStrip() const
int getTimeBin() const
int getErrors() const
bool OnTime() const
bool SyncronizationError() const
bool PreambleError() const
bool LVL1Error() const
bool BCIDError() const
bool FormatterError() const
bool FirstHitError() const
bool SecondHitError() const
float *getErrorCondensedHit()

TRT_LoLumRawData

~TRT_LoLumRawData()
bool highLevel() const
double timeOverThreshold() const
int driftTimeBin() const

TRT_TB04_RawData
unsigned int m_timeword

~TRT_LoLumRawData()
bool highLevel() const
double timeOverThreshold() const
int driftTimeBin() const
unsigned int getTrigType() const

Figure 2: The inner detector classes for raw data objects, the offline representation of
byte stream data from the read-out drivers.

LocalPosition member, not every measurement is truly two-dimensional. The SCT
barrel modules and the TRT provide a one-dimensional measurement with the second co-
ordinate set to the centre of the module, resp. wire. The SCT end-cap modules are special
because the radial orientation of the strips inside a module necessitates a rotation from
the strip frame to the module frame. The measurement of the second co-ordinate in the
strip’s frame is assumed to be the strip centre with an error of 1/

√
12·strip length. Two

dimensions are already given by the Pixels at this level. The class diagram is shown in
Figure 3. To exploit the common characteristics of the silicon detectors, an intermediate
class SiCluster is used from which PixelClusters and SCT Clusters inherit. For the
ATLAS offline release 13 the TRT DriftCircle class has been overhauled to provide all
properties of the original drift tube signal in addition to the drift radius measurement.
For that purpose it stores the bitted word from the ROD driver and provides methods
to decode its content on the fly. All inner-detector specific classes are maintained in the
package InDetPrepRawData [8].

2.3 Silicon Space Points

The SpacePoint class represents three-dimensional information of detector responses. It
is an abstract base class. For the representation of silicon detector hits two classes are
derived from the SpacePoint class: the PixelSpacePoint class and the SCT SpacePoint

class, held by the package SiSpacePoint [9].
The SpacePoint class itself is derived from the MeasurementBase abstract base class.

This enables SpacePoint objects to be handled by the Track class. The SpacePoint

class provides basic access functionalities for e.g. global position or local parameter infor-
mation. Additionally, it provides a private method to calculate the errors of the global
position from the errors of the local parameters of a measurement. Error matrices are
not calculated automatically on instantiation of a SpacePoint for performance reasons,
but set up on request and buffered thereafter in the object. As an alternative option, an
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Trk::PrepRawData
m_clusId : Identifier
m_localPos : const Trk::LocalPosition*
m_rdoList : std::vector<Identifier>
m_localErrMat : const Trk::ErrorMatrix*

PrepRawData &operator=(const PrepRawData &)
PrepRawData(Id : const Identifier&, locpos : const Trk::LocalPosition*,
                        rdoList : const std::vector<Identifier>&,
                        locerr : const Trk::ErrorMatrix*=0)
identify() : Identifier
localPosition() : const Trk::LocalPosition&
rdoList() : const std::vector<Identifier>&
localErrorMatrix() : const Trk::ErrorMatrix&
setErrorMatrix(Trk::ErrorMatrix* locErr)
detectorElement() : const TrkDetElementBase*

InDet::SiCluster
m_width : const InDet::SiWidth*
m_globalPosition : const Trk::GlobalPosition*
m_gangedPixel : bool
m_detEl : const InDetDD::SiDetectorElement*

SiCluster(const SiCluster&)
SiCluster(Id : const Identifier&, lp : const Trk::LocalPosition*,
                rdoList : const std::vector<Identifier>&,
                width : const InDet::SiWidth*,
                detEl : const InDetDD::SiDetectorElement*,
                locErr : const Trk::ErrorMatrix* = 0)
width() : const InDet::SiWidth&
globalPosition : const Trk::GlobalPosition&
gangedPixel() : bool
setGangedPixel(bool ganged)
detectorElement() : const InDetDD::SiDetectorElement*

InDet::PixelCluster
m_omegax : float
m_omegay : float

PixelCluster( ... ,
     omegax : float = -1.0,
     omegay : float = -1.0)
~PixelCluster()
omegax() : float
omegay() : float

InDet::SCT_Cluster

SCT_Cluster( ... )

InDet::TRT_DriftCircle
m_word : int
m_detEl : const InDetDD::TRT_BaseElement*

TRT_DriftCircle(Id : const Identifier&, r : const Trk::LocalPosition*,
                    rdoList : const std::vector<Identifier>&,
                    errDR : const Trk::ErrorMatrix*, highLevel : bool,
                    TOT : double, detEl : const InDetDD::TRT_BaseElement*,
                    word : int = 0)
getWord() : unsigned int
driftTimeBin() : int
trailingEdge() : int
highLevel() : bool
firstBinHigh() : bool
lastBinHigh() : bool
timeOverThreshold() : double
rawDriftTime() : double
driftTimeValid() : bool
detectorElement() : const InDetDD::TRT_BaseElement*
setDriftTimeValid()
isNoise() : bool

Figure 3: The inner detector classes representing clusters and drift circles at the level of
PrepRawData. The default and copy constructors and the destructors are omitted in the
diagram.
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already calculated global error matrix can be provided to the constructor.
The formation of a PixelSpacePoint object is straight forward. The two-dimensional

measurement of the pixel cluster’s local coordinates together with the constraint of the de-
tector surface result in a three-dimensional global position. Therefore, a PixelSpacePoint
object can be instantiated with only the cluster information (a PrepRawData object) and
the IdentifierHash of the corresponding detector module. The global position is derived
from this information on creation.

An SCT SpacePoint represents the combination of information from two different
SCT modules, which are glued back to back with their sensitive strips rotated with
respect to each other by 40mrad. This small rotation allows for the combination of
the two one-dimensional measurements together with the constraints from the surface
boundaries into a three dimensional global position. This combination is done by the
SiSpacePointMakerTool. With s1 and s2 as vectors along the two strips and c1 and c2

as vectors pointing from the initial vertex to the centers of the two strips, any position on
a strip can be written as pi = ci + mi · si, where mi is a real number between -0.5 and
0.5. In order for two strips to be hit by the same track, the two positions and the initial
vertex have to lie in a common plane, i.e. p1 has to be orthogonal to c2 × s2. From this
condition m1 can be obtained:

m1 = −c1 · (c2 × s2)

s1 · (c2 × s2)
. (1)

m2 is obtained correspondingly. If both, m1 and m2 are in the allowed range [-0.5;0.5],
the combination is valid and the combined position is obtained by inserting m1 into the
definition of p1. In order to account for deviations of the track’s perigee from the initial
vertex, a tolerance to the allowed range is given, which is typically 1% for tracks from
proton collisons, but can be chosen larger when processing cosmic tracks. The resulting
space point is always located on the surface of one of the two contributing modules.

To instantiate an SCT SpacePoint three pieces of information are required: a Stan-
dard Template pair containing the IdentifierHashes of the two contributing detector
modules, a pair with the two combined PrepRawData objects as well as the combined
global position. The local position is taken from the transformation method of the cor-
responding Surface object. Due to the nature of an SCT SpacePoint as a combined
global position, the error of the global position would be the primary error from which
the error matrix for the local parameters would have to be derived. However, this would
either introduce unwanted dependencies into the code or require to calculate the global
error matrix always before instantiation, which is too time consuming. Therefore, an
estimate for the error matrix of the local parameters is made and the error matrix of the
global parameters is derived from this via a transformation. Assuming a tilting angle of
α = 40mrad between the two strips, the covariance matrix for the local coordinates is

Cov =

(
1 cot α

cot α cot2 α + (cot α cos α + sin α)2

)
∆x2 '

(
1 25
25 1250

)
∆x2 (2)

where the first coordinate is directly measured by the module and the second is derived
from the combination of the hits on both modules. ∆x represents the resolution of an SCT
wafer along its sensitive coordinate and is usually assumed as 20µm. However, this leads
to an error on the second coordinate of ∼ 700µm which is slightly below the realistically
expected value of 800µm. To account for this, the lower right entry of the covariance
matrix is corrected to 1600. This estimation is sufficent to fulfill the requirements of all
present SpacePoint clients.
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Trk::SpacePoint
mutable const std::pair<const PrepRawData*, const PrepRawData*> *m_clusList
Trk::LocalParameters* m_locPar
std::pair<IdentifierHash, IdentifierHash> m_elemIdList
const Trk::GlobalPosition* m_position
mutable const Trk::ErrorMatrix* m_globalErrMat
static unsigned int s_numberOfInstantiations

virtual SpacePoint* clone() const = 0
virtual const ErrorMatrix& localErrorMatrix() const = 0
virtual MsgStream&    dump( MsgStream& out ) const
virtual std::ostream& dump( std::ostream& out ) const =0
const Surface& associatedSurface() const
const GlobalPosition& globalPosition() const
const LocalParameters& localParameters() const
const Trk::ErrorMatrix& globErrorMatrix() const
const std::pair<IdentifierHash, IdentifierHash>& elementIdList() const
const std::pair<const PrepRawData*, const PrepRawData*>& clusterList() const
double eta(double z0=0) const
double r() const
double phi() const
static unsigned int numberOfInstantiations()
const ErrorMatrix* setupGlobalFromLocalErr() const

Trk::MeasurementBase

virtual MeasurementBase* clone() const = 0
virtual const ErrorMatrix& localErrorMatrix() const = 0
virtual MsgStream&    dump( MsgStream& out ) const = 0
virtual std::ostream& dump( std::ostream& out ) const = 0
virtual const Surface& associatedSurface() const = 0
virtual const GlobalPosition& globalPosition() const = 0
virtual const LocalParameters& localParameters() const = 0

InDet::PixelSpacePoint

virtual SpacePoint* clone() const
virtual const Trk::ErrorMatrix& localErrorMatrix() const
virtual MsgStream&    dump( MsgStream& out ) const
virtual std::ostream& dump( std::ostream& out ) const

InDet::SCT_SpacePoint
mutable const Trk::ErrorMatrix* m_localErrMat

virtual Trk::SpacePoint* clone() const
virtual const Trk::ErrorMatrix& localErrorMatrix() const
virtual MsgStream&    dump( MsgStream& out ) const
virtual std::ostream& dump( std::ostream& out ) const
const Trk::ErrorMatrix* SetupLocalErrMatSCT() const

Figure 4: Inner detector space points.

2.4 Measurements on Track

Once the inner detector tracking algorithms have decided that a certain set of measure-
ments (PrepRawData) belongs to a track candidate, the measurements are converted into
a new type of object associated to the track through ownership. The most common of
these object types are the RIO OnTracks which like the PrepRawData represent a single
hit position measurement.

Once more an inheritance scheme with one child class per sub-detector is used, extend-
ing the RIO OnTrack abstract base class to either PixelClusterOnTrack, SCT Cluster-

OnTrack or TRT DriftCircleOnTrack. Their structure is shown in Fig. 5 and allows to
carry over technology-dependent information from PrepRawData to RIO OnTrack, thus
removing the need to store PrepRawData objects along the tracks. More important, it
allows to re-calculate the measurement position and uncertainty taking information from
the direction and intersection of the track candidate at the tracking surface into account.
For TRT DriftCircleOnTrack the track intersection point is used to solve the inherent
left/right ambiguity or to replace the drift-time measurement with a less precise wire or
tube hit. The exact calibration process is in the hands of the sub-detectors and therefore
not described in full detail here. InDetRIO OnTrack is the package holding these classes
[10].

2.5 Competing Measurements on Track

Special track reconstruction algorithms like the Deterministic Annealing Filter use fuzzy
assignments of measurements to a track. The base class CompetingRIOsOnTrack (cp. [4])
therefore represents a group of mutually exclusive hits which are nevertheless all included
on a track based on assignment probabilities.
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Trk::MeasurementBase

MeasurementBase()
~MeasurementBase()
clone() : MeasurementBase
localParameters() : const LocalParameters&
localErrorMatrix() : const ErrorMatrix&
associatedSurface() : const Surface&
globalPosition() : const GlobalPosition&

Trk::RIO_OnTrack
m_localParams : const LocalParameters*
m_localErrMat : const ErrorMatrix*
m_identifier : Identifier

RIO_OnTrack() <<4x>>
~RIO_OnTrack()
clone() : const RIO_OnTrack
localParameters() : const LocalParameters&
localErrorMatrix() : const ErrorMatrix&
associatedSurface() : const Surface&
globalPosition() : const GlobalPosition&
prepRawData() : const PrepRawData*
idDE() : const IdentifierHash
detectorElement() : const TrkDetElementBase*
identify() : Identifier
setValues(detEl, PRD) : void

InDet::SiClusterOnTrack
m_idDE : IdentifierHash
m_globalPosition : Trk::GlobalPosition*

SiClusterOnTrack() <<5x>>
~SiClusterOnTrack()
globalPosition() : const Trk::GlobalPosition&
iDE() : const IdentifierHash
setValues(detEl, PRD) : void

InDet::PixelClusterOnTrack
m_rio : ElementLink<PixelClusterContainer>
m_hasClusterAmbiguity : bool
m_detEl : const InDetDD::SiDetectorElement*

PixelClusterOnTrack() <<5x>>
~PixelClusterOnTrack()
clone() : PixelClusterOnTrack*
associatedSurface() : const Trk::Surface
prepRawData() : const PixelCluster*
detectorElement() : InDetDD:SiDetectorElement*
hasClusterAmbiguity() : bool
setValues(detEl, PRD) : void

InDet::SCT_ClusterOnTrack
m_rio : ElementLink<SCT_ClusterContainer>
m_detEl : const InDetDD::SiDetectorElement*

SCT_ClusterOnTrack() <<5x>>
~SCT_ClusterOnTrack()
clone() : SCT_ClusterOnTrack*
associatedSurface() : const Trk::Surface
prepRawData() : const SCT_Cluster*
detectorElement() : InDetDD:SiDetectorElement*
setValues(detEl, PRD) : void

InDet::TRT_DriftCircleOnTrack
m_globalPosition : const Trk::GlobalPosition*
m_rio : ElementLink<TRT_DriftCircleContainer>
m_idDE : IdentifierHash
m_status : Trk::DriftCircleStatus
m_highLevel : bool
m_timeOverThreshold : double
m_detEl : const InDetDD::TRT_BaseElement*

TRT_DriftCircleOnTrack() <<4x>>
~TRT_DriftCircleOnTrack()
clone() : TRT_DriftCircleOnTrack*
globalPosition() : const Trk::GlobalPosition*
associatedSurface() : const Trk::Surface
prepRawData() : const SCT_Cluster*
idDE() : const IdentifierHash
detectorElement() : InDetDD:TRT_BaseElement*
side() : Trk::DriftCircleSide
status() : Trk::DriftCircleStatus
highLevel() : bool
timeOverThreshold() : double
setValues(detEl, PRD) : void

Figure 5: The classes for the Pixel, SCT and TRT measurements at the stage when they
are assigned to tracks. Handled by the track object and used by tracking algorithms is
MeasurementBase while its extension RIO OnTrack denotes a single-measurement repre-
sentation. Only the inner detector objects can be instantiated, so that the track object
always stores the full inner detector measurements. The m rio pointer member allows
access to the original, unmodified PrepRawData input and in practice is an ElementLink,
a class allowing re-creation of pointers after reading event data from file.
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In analogy to the standard RIO OnTrack, the package InDetCompetingRIOsOnTrack
holds the inner detector specific implementations which derive from CompetingRIOsOn-

Track [11]. A CompetingPixelClustersOnTrack for example contains a group of Pixel-
ClusterOnTrack on the same Pixel module which compete against each other in being
assigned to a track. Similarly represents CompetingSCT ClustersOnTrack a group of
SCT ClusterOnTrack on the same SCT wafer. The calculation of the weighted mean m̃

(and its covariance matrix Ṽ) of the competing measurements {mi}i=1,...,n using their
assignment probabilities {pi}i=1,...,n according to

Ṽ−1 =
∑

i

piV
−1

i (3)

m̃ = Ṽ

(
∑

i

piV
−1

i mi

)
(4)

is simple for Pixel and SCT clusters because the measurements are expressed on the
same surface, namely the silicon wafer. Hence CompetingPixelClustersOnTrack and
CompetingSCT ClustersOnTrack can employ the general base class implementation for
these calculations in lazy initializition.

The TRT case is more complicated though, because each TRT straw is mapped on a
surface of its own in the Tracking Geometry. Lazy initializition of the weighted mean m̃

and its covariance matrix Ṽ is not possible for CompetingTRT DriftCirclesOnTrack and
those objects have to be passed by the constructor. If only a single straw is considered –
yielding two competing TRT DriftCircleOnTrack corresponding to the “left” and “right”
solution of the ambiguity – the weighted mean measurement can be expressed to the
related surface. If more than one straw compete against each other, the measurements
can be projected onto a single straw in the barrel TRT, but for the end cap TRT a disc
surface is chosen as a common reference frame for the competing measurements. Special
AlgTools exist in the package InDetCompetingRIOsOnTrackTool for the creation of the
various CompetingRIOsOnTrack objects.

2.6 Inner Detector Segments and Tracks

The inner detector reconstruction eventually provides tracks and vertices. While the data
model for the latter is described in a separate document, the Track object used by the
inner detector is the common ATLAS Track class as described in [4]. It stores the inner
detector hits and reconstructed track parameters as link to their common ATLAS base
classes, so that information specific to the inner detector and the surface geometry can
be accessed via run-time type identification.

The TRT seeded track finding, for example, uses TrackSegments to store its output,
indicating that they are only a section of an ID trajectory and that some of their track pa-
rameters will remain unconstraint. If those segments can not be extended sufficiently back
into the silicon detectors, the pattern recognitions adds a PseudoMeasurementOnTrack

with the a crude estimate for the missing parameters in order to integrate these tracks
seamlessly into the subsequent track fitting and analysis.

3 Monte Carlo Truth Objects

Validation and performance studies in the track reconstruction itself as well as in the
physics analyses of the reconstructed event require access to the truth information on
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simulated data. The ATLAS EDM prohibits a direct link between the EDM object
and the underlying truth particle, but established the relation between the two through
an associative container. This association is done independently on each stage of the
reconstruction, as explained in Figure 6: on the level of RawDataObject, PrepRawData,
Track and finally the Particle objects entering the physics analyses. Several Algorithms
and AlgTools exist which establish the association between each container of EDM objects
and the truth, depending on what parts of the reconstruction are executed in a given job.
Of course they are only executed if the reconstruction chain runs over simulated data.
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Figure 6: Truth objects in the Inner Detector. The link between true and reconstructed
particles is made solely via the -TruthCollection container classes and their associative
links to both true and reconstructed hits, tracks or particles.

Truth association at hit level As described in [4] there are different sources which
can lead to a detector hit, i.e. a signal over the simulated thresholds in each detector.
This leads to two possible situations in the truth association:

• There is a SimulatedDataObject (SDO) associated to an RDO. Each SDO con-
tains one or more links (HepMcParticleLink) to the truth particle(s) which is/are
responsible for the given hit.

• An RDO has no corresponding SDO, or the SDO has no valid HepMcParticleLink.
This RDO is produced by a low-energy particle (from either signal or pile-up event)
or is pure noise.

There are differences in treatment of the different sub-detectors:
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• Pixels: there is one RDO, and possibly one SDO, per cell which contains a signal.

• SCT: There is one RDO per group of consecutive strips with a signal (in order to
emulate the output of the ROD when working in condensed mode). However there
may be an SDO per each of the strips contained in the RDO.

• TRT: There is one RDO, and possibly one SDO, per fired straw. The TRT digitiza-
tion has implemented additional cuts on kinetic energy, below which SDOs are not
produced.

The package InDetSimData provides the underlying classes [12]. For the following recon-
struction stages after the formation of PrepRawData by clustering and calibration, the
precise information about the underlying truth is fully retained by the PRD MultiTruth-

Collection, which is the default for the Inner Detector.

Truth association at track level Also for the track level, the Inner Detector recon-
struction provides detailed truth information as described in [4] and shown in Figure 6.
Here the ambiguity (that a track corresponds to more than one generated particle) arises
mainly from close-by tracks and from inelastic interactions or decays, where the true par-
ticle type changes along the trajectory. This ambiguity is fully retained by the Detailed-
TrackTruthCollection which allows linking to more than one true track and uses the
TruthTrajectory object to describe particle type changes.

4 Transient and Persistified Objects

This document describes the transient inner detector event data model, that is the data
classes which all reconstruction algorithms work with when they create and access event
data in memory. The same event data, however, also needs to be stored (“persistified”)
on disk and read back. This has several serious implications on the class structure which
have led to the decision in ATLAS to separate the transient and persistent data model:

• pointers to data and detector geometry objects are replaced by an ATLAS-specific
object reference and identification scheme in the persistent model;

• object embedding and inheritance are replaced by a flat structure on the persistent
side;

• the transient data model can evolve while compatibility with old persistent data is
maintained;

• adapting the bit depth to the significance of measured quantities allows further
compression, e.g. use float instead of double for those data members;

• the sets and vectors of (persistent) EDM objects can be re-organised to speed up
file access.

ATLAS uses POOL as an interface to read/write data to root files [5].
Data is being copied between transient and persistent objects before writing and after

reading by a set of conversion methods. When this conversion method reads in EDM
objects which have pointers, these pointers have to be re-directed to the current memory
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address of the objects pointed at. This re-direction usually necessitates access to the EDM
object’s pointer member, which is by design not allowed to the reconstruction algorithms.
The transient-persistent converters therefore have private set-methods inside the EDM
classes, see for example Figure 5.

An example for the current sizes of the inner detector data objects on disk is given in
Table 1 for simulated pp → tt̄ (t → blν) events with on average 80 reconstructed tracks
per event. The actual data size per event will vary strongly with many different factors,
such as the type of event, luminosity as well as further improvements on the persistent
data model and number of events per file (i.e. fraction of file structure overhead).

Two alternatives for storing Tracks are available: as full tracks with the complete
trajectory estimate (a RIO OnTrack, TrackParameters and FitQuality at every detector
surface) and as “slimmed” Tracks with the fit results retained only at beginning and end
of the track. Using the latter saves a lot of space but drops information which is usually
needed by detailed track studies. This information can be fully recovered by fitting the
slimmed tracks once more.

Object Size [kB] Size [kB]
in memory on disk

PixelClusters 65 20
SCT_Clusters 150 51
TRT_DriftCircles 278 75
TrackSegments (TRT) 174 35
Tracks (full) 954 478
Tracks (slim) 496 102
TrackParticles 45 15
PRD_MultiTruth (Pixel) 10 4
PRD_MultiTruth (SCT) 27 10
PRD_MultiTruth (TRT) 83 20
DetailedTrackTruth 7 1.3
TrackParticleTruth 2 0.3

Table 1: Persistified inner detector objects and their compressed sizes on disk for simulated
tt̄ events (MCatNLO, ≥ 1 lepton). Reconstruction was performed and ESD written with
release 13.0.30. The per-event size was obtained from averaging over 100 events. The
sample contains in total 8044 tracks.
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