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Abstract

This note describes new techniques for the reconstruction/validation and the simulation of pixel hits.
The techniques are based upon the use of pre-computed projected cluster shapes or “templates”. A
detailed simulation called Pixelav that has successfully described the profiles of clusters measured in
beam tests of radiation-damaged sensors is used to generate the templates. Although the reconstruction
technique was originally developed to optimally estimate the coordinates of hits after the detector be-
came radiation damaged, it also has superior performance before irradiation. The technique requires a
priori knowledge of the track angle which makes it suitable for the second in a two-pass reconstruction
algorithm. However, the same modest angle sensitivity allows the algorithm to determine if the sizes
and shapes of the cluster projections are consistent with the input angles. This information may be
useful in suppressing spurious hits caused by secondary particles and in validating seeds used in track
finding. The seed validation is currently under study but has the potential to significantly increase the
speed of track finding in the offline reconstruction. Finally, a new procedure that uses the templates to
re-weight clusters generated by the CMSSW simulation is described. The first tests of this technique
are encouraging and when fully implemented, the technique will enable the fast simulation of pixel
hits that have the characteristics of the much more CPU-intensive Pixelav hits. In particular, it may be
the only practical technique available to simulate hits from a radiation damaged detector in CMSSW.
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1 Introduction
The standard CMSSW [1] pixel hit reconstruction algorithm [2] works very well. It is relatively insensitive to the
knowledge of the track angles and functions well at the earliest stages of the track finding. It is quite insensitive
to charge fluctuations caused by delta rays and has nearly optimal resolution for unirradiated detectors. It is quite
simple and therefore quite fast which enables it to be used inthe High Level Trigger (HLT). However, after the pixel
detector becomes radiation-damaged, charge trapping willcause the projected cluster shapes to become distorted
and the standard technique will develop large biases especially along the global z-direction.

This note describes a new technique that was originally intended to be “calibratable”: to be driven by parameters
that could model the changing detector characteristics andto maintain optimal resolution after irradiation. The
technique is based upon the fitting of the cluster projections to pre-computed shapes or “templates”. A detailed
simulation called Pixelav [4] that has successfully described the profiles of clusters measured in beam tests of
radiation-damaged sensors is used to generate the templates. Although the template technique was designed to
function optimally after the detector became radiation-damaged, it also has superior performance before irradia-
tion. Unlike the standard technique, the template technique requires a priori knowledge of the track angle which
makes it suitable for the second in a two-pass reconstruction algorithm. However, the same modest angle sensitiv-
ity allows the algorithm to determine if the sizes and shapesof the cluster projections are consistent with the input
angles. This information is useful in suppressing spurioushits caused by secondary particles and potentially in
validating seeds used in track finding. Finally, a spin-off of the new reconstruction procedure is a parametric simu-
lation procedure that uses the templates to re-weight clusters generated by the CMSSW simulation. This technique
permits the fast simulation of pixel hits that have the characteristics of the much more CPU-intensive Pixelav hits.
In particular, it may be the only technique that has the potential to simulate hits from a radiation damaged detector
in CMSSW.

This note is organized as follows: a brief description of thepixel geometry is given in Section 2, the characteristics
of pixel clusters are described in Section 3, the Pixelav simulation is summarized in Section 5, the new “Template
Algorithm” is described in Section 6, the use of the templates in simulation is described in Section 7, and some
concluding remarks are given in Section 8.

2 CMS Pixel Geometry
The CMS pixel tracking system [5] is shown in Fig. 1. It consists of 3 cylindrical 0.5-m long barrels at radii of
4 cm, 7 cm, and 11 cm and endcaps of 2 forward disks having sensitive regions between radii 5.8 cm and 14.5 cm.
The disks are located at 32.5 cm and 48.5 cm from the interaction point which provides 3 hit coverage over the
region of pseudorapidity|η| ≤ 2.5. A complete description of the pixel system geometry is given on the pixel
geometry TWiki page [6].
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Figure 1: Layout of the CMS pixel tracking system and examples of local coordinate systems.
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The barrels and disks are composed of planar detector elements which have the sandwich structure shown in Fig. 1.
Barrel modules or forward plaquettes are rectangular arrays of (rectangular) silicon diodes that are bump-bonded
to readout chips. Each 150×100µm diode is connected to an individual readout circuit havingexactly the same
transverse dimensions. The readout chip, which provides analog signals to an 8-bit encoder, is described in detail
in Ref. [5]. Each module or plaquette has a local coordinate system defined by the intra-pixel electric field direction
(the z-direction) and the direction of first-order Lorentz drift ~E × ~B (the x-direction). The x-directions of all local
frames are sampled by the 100µm pitch of the pixels and the y-directions are sampled by the 150 µm pitch of
the pixels. As is shown in Fig. 1, the x-direction for barrel modules that have the sensors mounted on the outside
radius of the support structure (“unflipped” modules) is approximately in the negative azimuthal direction (−φ-
direction) of the global coordinate system. The x-direction for “flipped” modules that have the sensors mounted on
the inside radius of the support structure is in the positiveazimuthal direction. The y-axes for flipped and unflipped
modules point in the negative z-direction in the global coordinate system. As is shown in Fig. 1, forward pixel local
coordinate systems have their x-axes in the positive radialdirection on the blades facing away from the interaction
point (the 3-plaquette sides of the blades). The forward local frames have their x-axes pointing radially inward on
the sides of the blades that face the interaction point (4-plaquette sides) such that the y-directions of the frames on
either side of a blade are coincident.

3 Pixel Clusters
The deposition of charge by a track having anglesα andβ with respect to the local x- and y-axes of a barrel
module is shown in Fig. 2. The primary track deposits approximately 25,000 electron-hole pairs per 300µm of
track length more or less uniformly in the y-direction. For highly inclined tracks, about 12,500 pairs are deposited
in each 150µm wide pixel column. The n-in-n sensors collect electrons which have a large Lorentz angle (∼ 23◦

at 150V bias [7]) in the 4 T magnetic field of CMS. The charge from the larger local z-side of the sensor typically
drifts by more than a pixel x-width into the adjacent row of pixels producing clusters with the typical shape shown
in Fig. 3. The track projection is shown as the dashed red lineon the cluster. Note that track center, shown as
the cross, is contained in a pixel that does not have enough charge (the threshold is approximately 2.5k electrons)
to trigger its readout. The primary ionization process produces large fluctuations in charge along the track. Note
that any pixel signal larger than the most probable one for a full track-traversal of the pixel does not contain useful
position information. Energetic delta rays often cross pixel cell boundaries causing strong charge correlations
between adjacent pixel cells and sometimes causing unusualcluster shapes.
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Figure 2: Geometrical and Lorentz-drift induced charge sharing in a “flipped” pixel barrel module.

The single most important feature of pixel clusters is that the shape of the x-projection of the cluster is independent
of the y-position of the hit and the y-size of the cluster (independent of the angleβ). Similarly, the shape of the
y-projection of the cluster is independent of the x-position of the hit and the x-size of the cluster (independent of
the angleα). This x-y factorization is a consequence of the facts that the field configurations in the pixels don’t
couple the two coordinates except perhaps in the corners of the cells where there are small 2-d focusing effects
and that the pixels have a periodic structure. This propertyof the system is heavily exploited by the standard
reconstruction algorithm [2] and by the template algorithmdescribed in this note. They sum the x- and y- charge
projections of the two-dimensional clusters and treat the projections or profiles independently. The y-profiles for
a large sample ofβ = 15◦ tracks that were measured from several test sensors are shown in Fig. 4. Note that the
unirradiated sensor (fluenceΦ = 0) has a rectangular profile with well defined edges. The average signal in the
interior pixels of the projection is constant as expected. These (projected) pixels contain no position information.
A simple analysis shows that if one assumes that the statistical uncertainty on a signals(y) is proportional to

√
s,

then the uncertainty on the parametery, δy, is given by the following expression,

δy = C

√

s(y)

ds/dy
(1)
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wereC is a constant. This suggests that all of the position information is contained in the smaller signals near the
cluster edges where the slope is largest. After irradiationto fluenceΦ = 8×1014 neq/cm2, charge trapping causes
the cluster to have a bias-voltage-dependent shape. Note that although charge is preferentially lost from the “far”
end of the cluster, the interior pixels now contain positioninformation. A summary of the key features of the pixel
clusters follows:

• The shapes of x- and y-projections of the two-dimensional pixel clusters are independent.

• There is no position information in very large pixel signals. Once the maximum signal is exceeded, one only
learns about the likelihood of energetic delta ray emission(still useful information).

• The best position information is contained in the small pixel signals near the cluster ends.
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Figure 3: Cluster shape for the barrel hit shown in
Fig. 2. The signals in each pixel are given in kilo-
electrons. Those shown in green are below the read-
out threshold. The track projection is shown as the
dashed red line. The x- and y-projections are also
shown as one-dimensional arrays. The coordinates
of the boundaries between the first and second pixels
(xF /yF ) and the next-to-last and last pixels (xL/yL)

and the charges of the first and last pixelsP
x/y
F/L are

also shown.

Figure 4: Charge collection profiles for 125x125µm2

test sensors illuminated by aβ = 15◦ test beam.
An unirradiated sensor (fluenceΦ = 0) is com-
pared with a heavily irradiated sensor (fluenceΦ =
8 × 1014 neq/cm2) operated at several bias voltages.

4 Standard Reconstruction Technique
The standard technique for the reconstruction of pixel hitsin CMSSW is an “eta-like” technique that uses the
signals in the first and last pixels of the x and y cluster projectionsP

x/y
F/L. The use of the first and last projected

pixel charges reduces the sensitivity of the procedure to delta ray emission which becomes quite likely in long
clusters. The reconstructed hit coordinates in each projection are given by the following expressions [3],

xrec =
xF + xL

2
+

P x
L − P x

F

P x
L + P x

F

· W x
eff(cotα)

2
− ∆x

2
(2)

yrec =
yF + yL

2
+

P y
L − P y

F

P y
L + P y

F

· W y
eff(cotβ)

2
− ∆y

2
(3)

where: xF/L andyF/L are the coordinates of the first/second and last/next-to-last pixel boundaries (defined in
Fig. 3),W x

eff andW y
eff are the total charge widths in the end pixels, and∆x and∆y are the maximum Lorentz-drift

in the x- and y-directions. Note that∆y vanishes in the pixel barrel but is non-zero in the pixel endcaps. The
effective charge widths in the two projections are given by the following expression

W x
eff(cotα) = |T cotα + ∆x| − (xL − xF ) (4)

W y
eff(cotβ) = |T cotβ + ∆y | − (yL − yF ) ≈ pitchy

F + pitchy
L

2
(5)
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where: T is the sensor thickness, andpitchy
F/L are the pitches of the first and last pixels in the y-projection.

These expressions are valid when the cluster contains the double-size pixels that are present at the edges of the
readout chips. The use of the average pitch sizes to approximateW y

eff makes it insensitive to the track direction
and appropriate for the first pass of a two pass hit reconstruction algorithm without sacrificing much resolution.
Problems do arise, however, when equations 2 and 3 are used toreconstruct hits in a radiation damaged detector.
After an exposure of6 × 1014 neq/cm2, the residual distributions develop biases of 30-50µm and the resolutions
are significantly worsened. To overcome these difficulties,a new technique that uses a priori information to fit
the entire projected cluster shapes was developed. It is based upon a detailed simulation that was developed to
interpret several beam test measurements. The following sections describe the simulation and the new simulation-
based reconstruction technique.

5 Pixelav Simulation
The detailed sensor simulation, Pixelav [4], incorporatesthe following elements: an accurate model of charge
deposition by primary hadronic tracks (in particular to model delta rays) [8]; a realistic electric field map resulting
from the simultaneous solution of Poisson’s Equation, carrier continuity equations, and various charge transport
models; an established model of charge drift physics including mobilities, Hall Effect, and 3-D diffusion; a simula-
tion of charge trapping and the signal induced from trapped charge; and a simulation of electronic noise, response,
and threshold effects.

Several of the Pixelav details described in [4] have changedsince they were published. The commercial semicon-
ductor simulation code now used to generate a full three dimensional electric field map is the ISE TCAD package
[9]. The charge transport simulation originally integrated the position and velocity equations which required very
small step sizes to maintain stability. It was modified to integrate only the position equation by using the fully-
saturated drift velocity,

d~r

dt
=

µ
[

q ~E + µrH
~E × ~B + qµ2r2

H( ~E · ~B) ~B
]

1 + µ2r2
H | ~B|2

(6)

whereµ( ~E) is the mobility,q = ±1 is the sign of the charge carrier,~E is the electric field,~B is the magnetic field,
andrH is the Hall factor of the carrier. The use of the fully-saturated drift velocity permits much larger integration
steps and significantly increases the speed of the code. A final speed enhancement results from the implementation
of adaptive step sizing in the Runge-Kutta integrations using the Cash-Karp embedded 5th-order technique [10].
Pixelav was developed to use the vector (SIMD) processing onthe PowerPC G4 and G5 families of processors. A
port to the less capable Intel SSE architecture has recentlybeen performed. Early testing indicates that the speed
of the ported code running on a 2.8 GHz Xeon is approximately 50% of the speed achieved on a 2.5 GHz G5
processor.

The simulation was originally written to interpret beam test data from several unirradiated and irradiated sensors. It
was extremely successful in this task, demonstrating that simple type inversion is unable to describe the measured
charge collection profiles in irradiated sensors and yielding unambiguous observations of doubly-peaked electric
fields in those same sensors [11]. In these studies, charge collection across the sensor bulk was measured using
the “grazing angle technique” [12]. As is shown in Fig. 5, thesurface of the test sensor was oriented by a small
angle (15◦) with respect to the pion beam. Several samples of data were collected with zero magnetic field and
at temperature of−10◦C. The charge measured by each pixel along they direction sampled a different depthz
in the sensor. Precise entry point information from the beamtelescope was used to produce finely binned charge
collection profiles.
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Figure 5: The grazing angle technique for determining charge collection profiles. The charge measured by each
pixel along they direction samples a different depthz in the sensor.

The charge collection profiles for a sensor irradiated to a fluence ofΦ = 5.9 × 1014 neq/cm2 and operated at bias
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voltages of 150V, 200V, 300V, and 450V are presented in Fig 6.The measured profiles are shown as solid dots
and thePixelav- simulated profiles are shown as histograms.The Pixelav simulations based upon the electric field
produced by a tuned two-trap model [11].
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Figure 6: The measured charge collection profiles at a temperature of−10◦C and bias voltages of 150V, 200V,
300V, and 450V are shown as solid dots for a fluence of5.9 × 1014 neq/cm2. The two-trap double junction
simulation is shown as the solid histogram in each plot.

The simulation describes the measured charge collection profiles well both in shape and normalization (the charge
scale of the data is uncertain at the 10% level). The apparently unphysical “wiggle” observed at low bias voltages
is actually the signature of a doubly peaked electric field having a minimum near the midplane of the sensor and
maxima at the n+ and p+ implants. The relative signal minimumneary = 700 µm corresponds to the minimum
of the electric fieldz-component,Ez , where both electrons and holes travel only short distancesbefore trapping.
This small separation induces only a small signal on the n+ side of the detector. At larger values ofy, Ez increases
causing the electrons drift back into the minimum where theyare likely to be trapped. However, the holes drift
into the higher field region near the p+ implant and are more likely to be collected. The net induced signal on the
n+ side of the detector therefore increases and creates the local maximum seen neary = 900 µm.

6 Template Reconstruction Algorithm
The template-based reconstruction algorithm is a procedure that translates pre-stored cluster projection shapes,
also called “templates”, across measured cluster projections to find the best fit and hence an estimate of the hit
position in both x and y. The Pixelav simulation is used to generate the templates which are stored as functions of
cotα andcotβ along with large quantities of auxiliary information in a template object. The following sections
describe this procedure.

6.1 Motivation

One of the original motivations for the template-based reconstruction algorithm was the realization that radiation
damage would significantly change the charge sharing functions of the detector during large portions of its useful
life. Any reconstruction algorithm that was not tunable would become biased and non-optimal as the detector
ages. Another motivation was the observation [shown in Fig.4] that the interior pixel signals in the y-projections
of long barrel clusters would acquire position sensitivityas the detector ages. The “Standard” algorithm uses only
the end pixels of the projections which is nearly optimal before aging but becomes less so after irradiation. The
implementation of an algorithm that uses all of the (projected) pixel information was an obvious choice. Since
Pixelav had demonstrated that it could describe the behavior of a heavily irradiated detector and since we had
demonstrated that we could tune that description, it seemedobvious to base a more capable algorithm on the
detailed simulation. This has numerous advantages in implementation over a purely data-driven approach. Once
the detailed simulation has been tuned, it can generate cluster shapes, predict resolutions, and provide goodness-of-
fit normalizations for a large range of track angles and cluster charges independently of other detector subsystems
and their state of operation (ie alignment). In effect, Pixelav becomes a “software test beam” replacing the very
limited pixel beam test data available.
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6.2 Coordinate System

The pixel system local coordinate systems were chosen to simplify the pixel software downstream of the event
unpacking (Raw2Digi step) as much as possible. The barrel and forward pixel systems are fundamentally different
because they have different orientations of the magnetic field in their local frames. The 4T magnetic field is
perpendicular to the electric fields of the barrel modules producing a Lorentz angle in the local x-z plane of
approximately 23◦ at 150V bias [7]. In the forward local frames, the magnetic field direction deviates fom the
electric field directions by 20◦ producing a much smaller Lorentz angle of approximately 7.2◦ in the local x-z
plane. In addition, because the angle between the electric and magnetic fields is between 0◦ and 90◦, a second-
order Lorentz drift also occurs in the local y-z plane [see equation 6] having an angle of approximately 4.5◦. The
direction of the second-order Lorentz drift changes sign onopposite sides of the forward blades (the local y-axes
on opposite sides of the blades are coincident). After irradiation, signal loss caused by carrier trapping makes
the clusters measured by both detectors asymmetric. These effects are shown in Figs. 7 and 8 for the barrel and
forward detectors, respectively.
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Figure 7: The flipped and non-flipped local barrel co-
ordinate systems for tracks having positive and nega-
tive pseudorapidity. The octants with charge lost from
trapping are also shown.

Figure 8: The 4-plaquette and 3-plaquette local coor-
dinate systems in the forward and backward encaps.
The y-components of the second-order Lorentz drift
are indicated by the black arrows.

The track direction, B-field direction, Lorentz-drift direction, and octant with reduced signal from trapping are
shown for positive and negative pseudorapidity (η) tracks in the flipped and non-flipped local barrel frames in
Fig. 7. A bit of scrutiny will reveal that the charge drift in the non-flipped frame at positiveη and the flipped frame
at negativeη is identical. They differ only in that the track direction isinverted. Note that the same is true of the
other two cases. This leads to the convenient conclusion that the charge drift and cluster shape can be entirely
described in terms ofcotα = nx/nz andcotβ = ny/nz where(nx, ny, nz) is the direction of the track. [Note
thatcotα andcotβ are invariant under the inversion of the track direction butdiffer in sign between cases (a)-(d)
and (b)-(c) in Fig. 7.] These are signed quantities that are related to the lengths of the x- and y-projections of the
cluster,Lx andLy,

Lx = |T cotα + ∆x|, Ly = |T cotβ + ∆y| (7)

whereT , ∆x, and∆y were defined in Section 4.

A similar analysis in the forward local frames is shown in Fig. 8 where the second-order Lorentz drift along the
y-axes is shown and the charge loss from trapping is suppressed for clarity. One can again see that the positive-η 4-
plaquette panel frame and the negative-η 3-plaquette panel frame differ only in the inversion of the track direction.
Similarly, the negative-η 4-plaquette panel frame and the positive-η 3-plaquette panel frame are equivalent. The
cluster shape is again described entirely by the two parameterscotα andcotβ. This choice of frames implies that
knowledge of detector IDs is completely unnecessary to reconstruct or simulate pixel hits. One needs only to know
cotα, cotβ, and whether a barrel for forward detector is involved.

The factorization of the x- and y-projections of the pixel clusters discussed in Section 3 implies that the shape of
the x-projection of a cluster depends only uponcotα and that the shape of the y-projection depends only upon
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cotβ. One final simplification is to note that the y-projections ofthe clusters in the (a)-(d) and (b)-(c) cases are
mirror images. This will simplify the storage of the templates discussed in the following section.

6.3 First Pass Template Generation

The template algorithm requires a-priori knowledge of the projected cluster shapes as functions ofcotα, cotβ, and
the hit position. This information is extracted from 30000-event samples simulated by Pixelav at fixed track angle
and random hit position. The charge distribution of a sampleof cotβ = 1.97 barrel clusters from an unirradiated
sensor is shown in Fig. 9. Note that the significant Landau tail is caused by energetic delta ray emission. Since
delta-rays distort the cluster shapes, the template generation procedure utilizes only those events having less than
the average cluster chargeQavg. This retains approximately 64% of the (asymmetrically-distributed) sample and
yields an accurate determination of the projected cluster shapes as caused by the geometrical, charge drift, trapping,
and charge induction effects. Note that the determination of the average cluster shapes is quite insensitive to the
exact value of the cluster charge requirement. The average RMS template resolutions in x and y are shown in
Table 1 as functions of the maximum cluster charge used to calibrate the technique. The resolutions and sample
fractions are averaged over all cluster lengths from 0 to 11.5 pixels (η = 0 − 2.5). Note that the resolutions are
improved by the cluster charge requirement but are also extremely insensitive to its exact value.
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Figure 9: The charge distribution of a sample ofcotβ = 1.97 barrel clusters in electrons. Removing events with
cluster charges larger than the 59,000 electron average retains about 64% of the sample.

Table 1: Comparison of the average RMS template resolution in x and y as functions of the maximum cluster
charge used to generate the template shapes and some auxiliary information. The average fraction of the calibration
sample that is retained is also listed. The averages includeall cluster lengths from 0 to 11.5 pixels (η = 0 − 2.5).

Maximum Cluster Charge Fraction of Events x RMS (µm) y RMS (µm)
0.85Qavg 0.29 8.60 20.03
1.00Qavg 0.69 8.61 20.32
1.15Qavg 0.87 8.59 20.68
10.0Qavg 1.00 9.10 22.51

The template generation is done in two passes. The first pass processing is described in this section and the second
pass is described in section 6.4. During the first pass, the x-and y-projections for each simulated cluster are
summed into respective 7-pixel and 21-pixel arrays. By construction, the struck pixel is the center pixel in each
projection. The x and y coordinates of the hit are each binnedin bins of width 0.125 pixel pitch. The bins are
chosen so that the middle bin is centered on the pixel center and the end bins are centered of the pixel boundaries.
This yields 9 bins spanning the central pixel (pixel 0) wherethe end pixels differ by a full pixel pitch as shown in
Fig. 10 for the y-projections of unirradiated and heavily irradiated (fluenceΦ = 6 × 1014neq/cm2) cotβ = 1.97
samples. The total charge, square of the charge, and number of entries are summed for each of the 9 (8 independent)
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bins. The template consists of the average signalS
y/x
i,j in each projected pixeli and binj. The resulting templates

for the unirradiated and irradiated sensors are shown in Fig. 10. Note that trapping reduces the projected signals but
produces apparently larger clusters from charge induction. The application of the 2500 electron readout threshold
actually reduces the observed cluster size.
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pixel 0
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Bin    Px-6     Px-5     Px-4     Px-3     Px-2     Px-1     Px 0     Px+1     Px+2     Px+3     Px+4     Px+5     Px+6

 0       .0       .0       .0       .0  11884.5  13587.8  13549.2  11913.7       .0       .0       .0       .0       .0

 1       .0       .0       .0       .0  10198.0  13727.3  13592.2  13404.4    252.2       .0       .0       .0       .0

 2       .0       .0       .0       .0   8512.6  13597.7  13559.3  13577.9   1688.0       .0       .0       .0       .0

 3       .0       .0       .0       .0   6762.7  13607.2  13677.0  13601.3   3428.0       .0       .0       .0       .0

 4       .0       .0       .0       .0   5165.2  13569.4  13603.1  13644.9   5039.3       .0       .0       .0       .0

 5       .0       .0       .0       .0   3412.1  13718.7  13604.0  13630.6   6812.7       .0       .0       .0       .0

 6       .0       .0       .0       .0   1703.1  13589.0  13566.5  13567.4   8556.2       .0       .0       .0       .0

 7       .0       .0       .0       .0    216.7  13396.4  13685.1  13544.1  10208.5       .0       .0       .0       .0

 8       .0       .0       .0       .0       .0  11884.5  13587.8  13549.2  11913.7       .0       .0       .0       .0

pixel 1pixel -1

Bin    Px-6     Px-5     Px-4     Px-3     Px-2     Px-1     Px 0     Px+1     Px+2     Px+3     Px+4     Px+5     Px+6

 0       .0       .0       .0       .0   8741.4   8925.9   7156.1   5599.7    661.8    117.3       .0       .0       .0

 1       .0       .0       .0       .0   7476.2   9160.4   7301.2   6194.2    872.6    148.9       .9       .0       .0

 2       .0       .0       .0       .0   6160.6   9403.8   7423.7   6417.5   1429.4    187.5      9.6       .0       .0

 3       .0       .0       .0       .0   4736.1   9578.0   7614.0   6610.0   2081.9    233.6     20.6       .0       .0

 4       .0       .0       .0       .0   3432.4   9790.6   7814.7   6764.0   2789.8    291.1     34.0       .0       .0

 5       .0       .0       .0       .0   2112.5   9944.1   8087.9   6894.2   3490.9    357.9     49.4       .0       .0

 6       .0       .0       .0       .0    750.7  10174.1   8382.4   7018.6   4199.1    440.9     67.9       .0       .0

 7       .0       .0       .0       .0     33.3  10014.0   8695.2   7053.7   4882.2    538.5     90.1       .0       .0

 8       .0       .0       .0       .0       .0   8741.4   8925.9   7156.1   5599.7    661.8    117.3       .0       .0

Unirradiated Template

Φ=6x1014 n
eq

/cm2 Template

Figure 10: The signal averagesSy
i,j of 13 of the pixels in the y-projection ofcotβ = 1.97 barrel clusters for

each of 9 bins in the y hit position. They are shown for unirradiated and heavily irradiated sensors ((fluence
Φ = 6 × 1014neq/cm2).

The same procedure is also used to calculate the expected rms, ∆S
y/x
i,j of the average signals. The∆S

y/x
i,j for the

unirradiatedcotβ = 1.97 sample are plotted vs the projected signals in Fig. 11. The signal/rms points for pixels
from either side of the cluster projection are shown as different colors. The signals from the “near” side, the side
with the shorter carrier drift path to the readout chip, are shown as red points. The signals from the “far” side,
the side with the longer carrier drift path, are shown as bluepoints. The two sets of points are fit to independent
functions of the form

∆S
y/x
i,j =

√

a + bS
y/x
i,j + c(S

y/x
i,j )2 + d(S

y/x
i,j )3 + e(S

y/x
i,j )4 (8)

where a-e are constants. The best fits to the near and far side data are shown as red and blue solid curves in
Fig. 11. Note that there are no differences between the cluster ends for an unirradiated sensor and that the RMSs

scale dominantly as∆S
y/x
i,j ∝

√

S
y/x
i,j . The same information is shown for the irradiated sensor in Fig. 12. Note

that the fluctuations of the far end are significantly reducedby charge trapping and that the scaling of∆S
y/x
i,j is

approximately linear inSy/x
i,j .

An identical procedure is applied to the x-projection of each cluster at each set of track angles. As was discussed in
Section 3, the shapes of the x-projections are independent of cotβ and depend uponcotα only. The normalization
of the projected x-signals does depend uponcotβ, however, the fitting algorithm discussed in Section 6.4 is
insensitive to the normalization. Therefore, a single set of x-projections spanning the relevant range incotα is
sufficient to fit all clusters. The predicted RMS uncertainties of the signals do depend uponcotβ, however, they
do so in a scalable way. This is shown in Fig. 13 where the rms and average x-signals are plotted for three values
of cotβ corresponding to the three values of pseudorapidity: 0.5, 1.5, and 2.0. The best fits for the near and far
cluster ends atη = 2.0 are scaled by the factor

√

Qavg(η)/Qavg(2.0) and shown as the dashed (η = 1.5) and

8



Figure 11: The rms versus signal for the y-projected
pixels of the unirradiatedcotβ = 1.97 sample. The
signals from the near side, the side with the shorter
carrier drift path to the readout chip, are shown as red
points. The signals from the far side, the side with
the longer carrier drift path, are shown as blue points.
The solid curves are best fits to equation 8.

Figure 12: The rms versus signal for the y-projected
pixels of thecotβ = 1.97 sample irradiated toΦ =
6 × 1014neq/cm2.The signals from the near side are
shown as red points and the signals from the far side
are shown as blue points. The solid curves are best fits
to equation 8.

dotted (η = 0.5) curves. It is clear that a single set of rms functions can be scaled to other values ofcotβ.

Figure 13: The rms and average x-signals are plotted for three values ofcotβ corresponding to the three values of
pseudorapidity: 0.5, 1.5, and 2.0. The best fits for the near and far cluster ends atη = 2.0 are scaled by the factor
√

Qavg(η)/Qavg(2.0) and shown as the dashed (η = 1.5) and dotted (η = 0.5) curves.

The first pass of the template generation algorithm produces9-bin templates in both x and y; 5-parameter de-
scriptions of the x-rms and y-rms functions for both near andfar ends of the clusters; the average chargeQavg;
and maximum signals for the x- and y-projections,Sx

max andSy
max. These are stored in individual files for each

each set of track angles. The barrel track angles are chosen to sample the y-cluster lengthT cotβ in 0.25 pixel
increments from 0 pixels (η = 0) to 11.5 pixels (η = 2.5) [it was found that coarser 0.5 pixel sampling lead to
interpolation errors and resolution loss at the 5% level forthe worst cases (midway between the points)]. Since
displaced vertices produce acceptance tails toη = 2.9 and the long clusters in this region are very expensive
computationally, coarser 0.5 pixel sampling was chosen from 11.5 to 18 pixel y-cluster lengths. Thecotα values
are chosen to sampleα′ = α − π/2 in 0.075 radian increments from -0.225 to 0.225 radians in the barrel. Even
though a single set ofcotα angles at a common value ofcotβ is adequate to describe the x-shapes of all clus-
ters, some x-related information generated in the second-pass of the template generation procedure does require
additional sampling incotβ. Therefore, fivecotα sweeps atT cotβ values of 0, 1.75, 3.5, 7.0, and 11.0 pixels
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are performed. All generated (cotα, cotβ) points are shown graphically in Fig. 14. For the forward pixels, the
acceptance is much smaller so thatT cotβ is sampled in three 0.25-pixel increments between 0.45 and 0.95 pixels.
Theα′ acceptance in the forward pixels is enlarged by displaced vertices and is sampled in 0.075 radian increments
from 0.075 to 0.675 radians. These points are sampled at the extreme values ofcotβ and are shown in Fig. 14.

The templates are chosen to sample only positivecotβ because, as was mentioned at the end of Section 6.2,
negativecotβ y-projections are mirror images of the positivecotβ projections in the barrel and forward systems.
The following expression is used to create 9-bin templates at negativecotβ,

Sy
i,j(− cotβ) = Sy

20−i,8−j(cotβ) (9)

where 20 is the maximum pixel index in a y-template, and 8 is the maximum bin index.
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Barrel FPix

Figure 14: The values ofα′ = α − π/2 andT cotβ used to generate a set of templates are plotted as red points
for the barrel and forward detectors. The values of pseudorapidity η corresponding to various values ofT cotβ are
also shown for reference.

6.4 Second Pass Template Generation: Reconstruction Algorithm

The second pass of the template generation uses the pre-stored results of the first pass to apply the actual template
reconstruction algorithm to the same data samples used to generate the 9-bin templates. The second pass generates
information on biases, errors, corrections, and goodness-of-fit that are combined with the results of the first pass
to build a 448 kB ascii template summary file that represents agiven set of operating conditions as simulated by
Pixelav.

6.4.1 Philosophy and Strategy

A simple description of the template algorithm is that it translates and fits the pre-tabluated projected cluster shapes
to the measured projections of real data clusters to estimate the best hit position. This is a loaded statement because
the measured signals have large fluctuations caused by deltarays. The delta rays also produce strong correlations
in the fluctuations of adjacent pixels. A correct statistical treatment involves considerable technical complexity.
Luckily, we can appeal to the observation made in Section 3 that the hit position information is contained primarily
in the small signals. Large signals carry no information andare also likely to involve the large fluctuations that
complicate any analysis. Our use of the lowQ events to make the 9-bin templates avoided the effects of the
fluctuations on the template shapes. We will try to do the sameon the entire sample by limiting the size of
individual pixel signals. The analysis in Section 6.3 also produced expected signal rms’s. These are obviously
highly biased quantities that apply only to the smaller signals, those that carry position information. We will
therefore use them to weight our chisquare function. To avoid the complexity of correlations between projected
pixel neighbors, we choose to define a simple diagonal chisquare function. We don’t expect it to be correctly
normalized even for clusters with truncated pixel charges,but we can normalize our goodness-of-fit criterion to
account for our ignorance. This is a somewhat academic discussion because the performance of the algorithm is
quite insensitive to the weighting of projected pixel signals in the chisquare function.

Finally, we note that the template reconstruction algorithm makes the implicit assumption that there is prior knowl-
edge of the track direction before the algorithm is invoked.The algorithm is therefore suitable for a second pass to
refine the estimates of hit position and its uncertainty. This is not a major constraint because of the high granularity
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of the pixel detector and the relatively large spacing between pixel planes. Any multi-plane pixel-based recon-
struction algorithm should be able to establish a sufficiently accurate knowledge of the track direction to achieve
the full resolution of this algorithm.

6.4.2 Description of the Template Algorithm

The following is a description of the template algorithm. The reader should note that the template-based approach
implicitly incorporates all of the relevant detector physics into the templates themselves. Lorentz drift manifests
itself as an offset in the projected cluster shapes with respect to bin number. Non-uniformity of the Lorentz drift
modifies the shapes of the templates. Charge loss and trapping makes them asymmetric. This implies that although
the templates themselves depend upon which projection is being analyzed, the actual procedure does not depend
upon projection. The following description applies to the general reconstruction of a pixel cluster. Not all steps are
needed for the second-pass template processing. The differences between these cases are noted.

Preliminary Template Processing: The first step is to interpolate the templates and auxiliary information in
cotα andcotβ. Simple linear interpolation incotβ is used for all y-related quantities. The x-template is interpo-
lated linearly incotα only whereas other x-related quantities are interpolated in bothcotα andcotβ. Parameter-
ized quantities are not interpolated until after the entirefunction has been evaluated at each (cotα, cotβ) point.
The interpolation step is unnecessary for the second-pass template processing because the requisite information
was prepared during the first-pass processing.

The 9-bin templates in x and y are shifted by±1 and±2 pixels to span the 5 central pixels of the cluster for the
possible locations of the x- and y-hit coordinates. This is illustrated in Fig. 15 for the unirradiated y-template
shown in Fig. 10. The resulting templates now have 41 bins so that bins 4, 12, 20, 28, and 36 correspond to hit
positions at the centers of pixels -2, -1, 0, 1, and 2, respectively. The templates are also padded with zeros to
increase their lengths to 25 pixels in y and 11 pixels in x to match the size of the working buffers used to contain
the cluster data.

Preliminary Cluster Processing: The total charge of the two-dimensional input cluster is calculated before the
individual pixel charges are truncated to a maximum size given by the angle-interpolated value ofSy

max. After this
truncation (also called “decapitation”) step, the 1-d projectionsP y/x

i are calculated. These working buffers have
lengths 11 in x and 25 in y to accommodate the following processing procedure. Any double pixels are expanded to
occupy 2 adjacent elements in the projection arrays where each contains one half of the total double-pixel charge.
The first and last pixels of the projections are identified andthe clusters are shifted to center them in the projection
arrays (the shiftsshifty/x are stored for later use). A set of double pixel flags is also shifted to track the locations
of the expanded double pixels. These flags are then used to modify the interpolated templates by replacing the
contents of the corresponding adjacent single pixels by their average value. The entire procedure of replacing a
single double-pixel with a pair of half-signal single pixels has exactly the same pull in the final chisquare analysis
as would have a single entry for a double pixel in the limit that the rms uncertainty on the pixel signals∆P

y/x
i

scale as
√

P
y/x
i . Note that the second-pass template processing assumes that all pixels are single size.

A key idea in the template-based algorithm is the recognition that there is important information in the absence of
information. Since the readout chip is zero-suppressed, all pixels at the periphery of a cluster must have signals
less than the readout thresholdPmin. To force the fitting procedure to recognize this fact, the two pixels adjacent to
either end of of the projected clusters are set equal toPmin/2 and they are assigned uncertaintiesPmin/2. These
“pseudo-pixels” improve the resolution of the algorithm. The use of doubled pseudo-pixels helps to ensure that
misaligned clusters and templates always have large valuesof chisquare even when the input clusters are small.

Initial Chisquare Minimization: The basic goal of the procedure is to translate the expected cluster shape until
it best matches the observed cluster shape. This is shown in Fig. 16 where the y-projection of a cluster is shown as
the set of magenta data points. We note that the signal at pixel +2 falls below the readout threshold and is replaced
by a green pseudo-pixel. The basic cluster shape, encoded in1/8 pixel bins is shown as the blue histogram. It is
clear that translating the cluster to the left by 2/8 bins would produce much better agreement and suggests that true
hit is likely to be at -2 bins in pixel 0. To allow for less than perfect signal height calibration, we allow the overall
normalization of the template or of the data to float. This is accomplished by evaluating the following chisquare
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Bin    Px-6     Px-5     Px-4     Px-3     Px-2     Px-1     Px 0     Px+1     Px+2     Px+3     Px+4     Px+5     Px+6

 7       .0       .0    216.7  13396.4  13685.1  13544.1  10208.5       .0       .0       .0       .0       .0       .0

 8       .0       .0       .0  11884.5  13587.8  13549.2  11913.7       .0       .0       .0       .0       .0       .0

 9       .0       .0       .0  10198.0  13727.3  13592.2  13404.4    252.2       .0       .0       .0       .0       .0

10       .0       .0       .0   8512.6  13597.7  13559.3  13577.9   1688.0       .0       .0       .0       .0       .0

11       .0       .0       .0   6762.7  13607.2  13677.0  13601.3   3428.0       .0       .0       .0       .0       .0

12       .0       .0       .0   5165.2  13569.4  13603.1  13644.9   5039.3       .0       .0       .0       .0       .0

13       .0       .0       .0   3412.1  13718.7  13604.0  13630.6   6812.7       .0       .0       .0       .0       .0

14       .0       .0       .0   1703.1  13589.0  13566.5  13567.4   8556.2       .0       .0       .0       .0       .0

15       .0       .0       .0    216.7  13396.4  13685.1  13544.1  10208.5       .0       .0       .0       .0       .0

16       .0       .0       .0       .0  11884.5  13587.8  13549.2  11913.7       .0       .0       .0       .0       .0

17       .0       .0       .0       .0  10198.0  13727.3  13592.2  13404.4    252.2       .0       .0       .0       .0

18       .0       .0       .0       .0   8512.6  13597.7  13559.3  13577.9   1688.0       .0       .0       .0       .0

19       .0       .0       .0       .0   6762.7  13607.2  13677.0  13601.3   3428.0       .0       .0       .0       .0

20       .0       .0       .0       .0   5165.2  13569.4  13603.1  13644.9   5039.3       .0       .0       .0       .0

21       .0       .0       .0       .0   3412.1  13718.7  13604.0  13630.6   6812.7       .0       .0       .0       .0

22       .0       .0       .0       .0   1703.1  13589.0  13566.5  13567.4   8556.2       .0       .0       .0       .0

23       .0       .0       .0       .0    216.7  13396.4  13685.1  13544.1  10208.5       .0       .0       .0       .0

24       .0       .0       .0       .0       .0  11884.5  13587.8  13549.2  11913.7       .0       .0       .0       .0

25       .0       .0       .0       .0       .0  10198.0  13727.3  13592.2  13404.4    252.2       .0       .0       .0

26       .0       .0       .0       .0       .0   8512.6  13597.7  13559.3  13577.9   1688.0       .0       .0       .0

27       .0       .0       .0       .0       .0   6762.7  13607.2  13677.0  13601.3   3428.0       .0       .0       .0

28       .0       .0       .0       .0       .0   5165.2  13569.4  13603.1  13644.9   5039.3       .0       .0       .0

29       .0       .0       .0       .0       .0   3412.1  13718.7  13604.0  13630.6   6812.7       .0       .0       .0

30       .0       .0       .0       .0       .0   1703.1  13589.0  13566.5  13567.4   8556.2       .0       .0       .0

31       .0       .0       .0       .0       .0    216.7  13396.4  13685.1  13544.1  10208.5       .0       .0       .0

32       .0       .0       .0       .0       .0       .0  11884.5  13587.8  13549.2  11913.7       .0       .0       .0

33       .0       .0       .0       .0       .0       .0  10198.0  13727.3  13592.2  13404.4    252.2       .0       .0

25262728 323130298 9 10 11 12 13 14 15 16 17 18 19 20 21 232422
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Figure 15: The signal averagesSy
i,j of 13 of the pixels in the y-projection ofcotβ = 1.97 unirradiated barrel

clusters for 27 of the 41 bins in the y-hit position after shifting the 9-bin template by±1 and±2 pixels.

function for some or all of the template bins,

χ2(j) =
∑

i

(P
y/x
i − NjS

y/x
i,j )2

(∆P
y/x
i )2

(10)

Nj =
∑

i

P
y/x
i

(∆P
y/x
i )2

/

∑

i

S
y/x
i,j

(∆P
y/x
i )2

where the projected pixel uncertainties∆P
y/x
i are calculated using equation 8 from the pre-stored parameters

and interpolated incotα andcotβ if appropriate (not needed in second-pass template generation). The actual
χ2 minimization search can be performed in several ways that trade-off speed for robustness. The slowest and
most robust search evaluates equation 10 for each of the 41 bins and finds the absolute minimum. A faster and
still secure alternative is to limit the search to the central 25 bins if there are no double-pixels at the ends of the
projected cluster and to use the central 33 bins if there is anend double-pixel. Still faster but having slightly less
than optimal resolution is to search every fourth bin for a minimum and then to expand the search just to the second
nearest neighbors to find another minimum and then to the nearest neighbors of until a group of 3 consecutive bins
has been evaluated and a minimum established. This minimization scheme is roughly four times faster than the
slowest one but relies on the smooth parabolic shape of theχ2 function. It works well for most clusters with
single-size pixels but must be started at the finer step size for those with double-size pixels.

Position Estimation for Single Pixel Projections: The procedure described to this point is applied to all cluster
projections and always results in the bin number and value ofthe chisquare minimum. For single pixel cluster
projections, the chisquare value is stored and a simplified position estimation is performed. The reconstructed
position of the hit,yrec or xrec, is determined by correcting the position given by the pixelcenter for the centering
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Figure 16: The y-projection of a cluster is shown as the set ofmagenta data points. The signal at pixel +2 falls
below the readout threshold and is replaced by a green pseudo-pixel. The basic cluster shape, encoded in 1/8 pixel
bins is shown as the blue histogram.

step (shifty/x) and for the biasDy/x
1/2

where the subscript indicates single and double pixels separately,

yrec = ypix − shifty − Dy
k (11)

xrec = xpix − shiftx − Dx
k . (12)

The bias is determined from the average residual of all one-pixel clusters during the second-pass template genera-
tion. It is also calculated separately for single double-pixel clusters by merging adjacent rows and columns of the
Pixelav events. This is done with two adjacent pixel pairings to span all possible situations. The bias calculation
automatically corrects single pixel clusters for Lorentz-drift and for bias caused by radiation damage which can
cause two-pixel clusters to become single pixel clusters. The same procedure is also used to calculate the rms
spreads in hit residual for single pixel clusters,∆

y/x
1/2

. These can differ significantly from the usual product of

(12)−1/2 and the pixel pitch because single pixel clusters often occur only in limited regions hit position depend-
ing upon incident track angles and Lorentz drift. The uncertainties on the reconstructed pixel hits,σy andσx, are
taken to be∆y

1/2
and∆x

1/2
, respectively, for one-pixel projections.

Note that the quantitiesDy/x
1/2

and∆
y/x
1/2

are interpolated incotβ andcotα in ordinary hit processing whereas they
are actually generated during second-pass template processing.

Position Estimation for Multiple Pixel Projections: For multiple pixel projections, the bin number of the
chisquare minimum is used to seed a two-bin interpolation calculation to refine the knowledge of the chisquare
minimum in terms of a continuous parameter. This is done by defining the bins adjacent to the minimum bin as
bins l andh as is shown in Fig. 17. The chisquare function is then redefined in terms of a linear combination of
the functionsSy/x

i,l andS
y/x
i,h . For simplicity, we drop thex/y superscripts from the quantities and then express the

chisquare function for each projection as

χ2 =
∑

i

{Pi − N [(1 − r)Si,l + rSi,h]}2

∆P 2
i

(13)

r =

∑

i Pi(Si,h − Si,l)/∆P 2
i

∑

i PiSi,l/∆P 2
i −

∑

i P 2
i /∆P 2

i

∑

i Si,l(Si,h − Si,l)/∆P 2
i

∑

i P 2
i /∆P 2

i

∑

i(Si,h − Si,l)2/∆P 2
i − [

∑

i Pi(Si,h − Si,l)/∆P 2
i ]2

(14)

whereN is a common normalization factor andr is a dimensionless ratio that is bounded by 0 and 1 and determines
the position of theχ2 minimum between the centers of binsl andh. The resulting estimates of the hit position are
given by the following expressions,

yrec = ybin[l] + r (ybin[h] − ybin[l]) − shifty (15)

xrec = xbin[l] + r (xbin[h] − xbin[l]) − shiftx (16)
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whereybin[i] andxbin[i] are the x and y positions of bini. The templates corresponding to binsl andh for the
example shown in Fig 16 are shown as the blue solid and red dashed histograms in Fig. 18. It is clear that a
something close to anr = 0.5 combination of the templates will yield the best fit.

pixel 1pixel -1

y

pixel 0

25262728 323130298 9

minimum χ2

bin l bin h

10 11 12 13 14 15 16 17 18 19 20 21 232422

Figure 17: The definition of binsl andh for the ex-
ample shown in Fig 16.

Figure 18: The templates corresponding to binsl and
h for the example shown in Fig 16 are shown as the
blue solid and red dashed histograms.

ResidualQFL Corrections: There are a number of processes that can cause the observed topology of a cluster
to differ from its “true” topology. Signals can fluctuate above and below the readout threshold or charge can
migrate to neighboring pixels, or trapping can effectivelyshorten clusters. These effects are more likely when
one of the edge pixels has a small charge. To study and correctfor them (on average), the average residuals
Dy = yrec − yhit andDx = xrec − xhit measured during the second processing pass are plotted against the
quantityQFL = (PF − PL)/(PF + PL) constructed from the first and last pixel charges,PF andPL, of the
projected cluster. This is done for y- and x-projections at each value of (cotβ, cotα). Like most quantities
produced in the second template generation pass, these are sliced into four bins ofQ/Qavg: Q/Qavg > 1.5,
1.5 > Q/Qavg > 1, 1 > Q/Qavg > 0.85, and0.85 > Q/Qavg. These ranges are chosen to contain roughly
30% of the sample in each of the three lower bins and∼5% of the sample in the largest bin (contains mostly
delta rays). As an example, the distributions ofDx versusQFL for cotβ = 1.97 and1 > Q/Qavg > 0.85
are shown in Fig. 19 for new and heavily irradiated sensors. Note that the corrections for the unirradiated sensor
are approximately odd inQFL and are small except at large values of|QFL| where they approach 50% of the
resolution. Since they contribute in quadrature to the resolution, theQFL corrections do not significantly improve
the resolution of the unirradiated sensors. The corrections for the irradiated sensor are quite different: they are
generally larger even have the opposite sign for the sameQFL! During the second pass, these corrections are
parameterized by fifth-order polynomials for each set of track angles and charge bin (see Fig. 19 for an example),

D
y/x
FL (QFL) = d0 + d1QFL + d2Q

2
FL + d3Q

3
FL + d4Q

4
FL + d5Q

5
FL (17)

whered0-d5 are stored for each set of angles and each of 4 charge bins. During the second-pass template gener-
ation, these are applied to a “third pass” that stores theQ

y/x
FL values and results of equations 15 and 16 from the

second pass.

In actual operation, the corrections for the observed charge bin are interpolated in track angle and then applied to
the reconstructed hit positions estimated from equations 15 and 16,

yrec = ybin[l] + r (ybin[h] − ybin[l]) − shifty − D̄y
FL(QFL, cotβ, Q) (18)

xrec = xbin[l] + r (xbin[h] − xbin[l]) − shiftx − D̄x
FL(QFL, cotα, cotβ, Q), (19)
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where the quantities̄Dy/x
FL are interpolated over track angles.
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Figure 19: The average residualsDx = xrec − xhit are shown versusQFL for unirradiated (a) and irradiated (b)
samples of (cotα, cotβ)=(0, 1.97) clusters in the1 > Q/Qavg > 0.85 charge bin. The results of fits to fifth-order
polynomials are also shown as solid blue lines.

Final Error and Bias Estimates: The second template pass also generates and stores final biasand resolution
information for each set of track angles and charge bin. The residuals from the application of equation 17,D

y/x
final,

are accumulated for eachQ bin and final Gaussian fits are performed as shown in Fig. 20 fortheDx
final distribu-

tions of unirradiated (a) and irradiated (b) samples of (cotα, cotβ)=(0, 1.97) clusters in the1 > Q/Qavg > 0.85
charge bin. The mean, rms, Gaussian center, and Gaussian sigma are stored for each set of angles and charge bin.
In actual operation, the means are interpolated in the trackangles and are used to correct the final position estimates
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Figure 20: The residualsDx
final are shown for unirradiated (a) and irradiated (b) samples of(cotα, cotβ)=(0,

1.97) clusters in the1 > Q/Qavg > 0.85 charge bin.

given by equations 18 and 19. The interpolated rms widths areused to estimate the uncertainties of the position
estimates. This choice includes any non-Gaussian tails that may be present and represents a better estimate of the
true resolution than the Gaussian fit parameters.

Chisquare Probabilities: The second-pass of the template generation stores the averages of the minimum y-
and x-chiqsquare functions for later use in the calculationof goodness-of-fit probabilities. This single parameter
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is adequate to reproduce the actual distributions as is shown in Fig. 21 for the y-chisquare distribution. The
histograms show the actual distributions in the1 > Q/Qavg > 0.85 bin. The solid blue curves show the differential
chisquare function for the observed mean value. While not perfect, it is clear that the single parameter is adequate
to describe the differential distribution and by extension, it should be adequate to describe the integrated probability
distribution.
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Figure 21: The y-chisquareχ2
y distribution for unirradiated (a) and irradiated (b) samples of (cotα, cotβ)=(0,

1.97) clusters in the1 > Q/Qavg > 0.85 charge bin. The theoretical differential distribution having the correct
mean value is plotted as the solid blue curves.

In actual operation, the chisquare minima are converted to probabilities to test the projected cluster shapes against
the a-priori expectations provided by the templates.

Template Information: The second-pass of the template generation produces a considerable quantity of in-
formation. Except for the single-pixel projection information, all of it is stored in the four bins ofQ/Qavg:
Q/Qavg > 1.5, 1.5 > Q/Qavg > 1, 1 > Q/Qavg > 0.85, and0.85 > Q/Qavg. A final step in the second pass
writes each (cotα, cotβ) entry into an ascii summary file. Although this discussion has been careful to consis-
tently use the local pixel coordinate system defined in Section 6.2, the Pixelav uses a different coordinate system.
These are shown in Fig. 22. The information is transformed from Pixelav coordinates to the local pixel coordinates
in the final step. The total information generated in the two passes for each set of track angles constitutes 301
4-byte integer and floating point words. An additional 20 4-byte words is reserved for possible growth, yielding a
single track angle entry size of 331 words. Since each full template constitutes 116 separate (cotα, cotβ) points,
the total size of a template is 153.6 kbytes. The ascii summary file is somewhat larger and requires 448 kB of
storage although it does compress to 88 kB after processing with gzip. In the future, it will be stored in a database.

6.5 Performance

Unfortunately, very limited beam test data are available for the final pixel geometry and readout chip. All of the
available data were collected at normal incidence or near normal incidence so that all clusters have one or two
pixel sizes. Therefore, the characterization of the template algorithm depends almost entirely upon simulated data.
The native performance of template algorithm was studied byreconstructing large samples clusters generated
by Pixelav with random positions and track angles. This workis summarized in Section 6.5.1. There are a
number of effects that are more easily studied with the full CMSSW simulation than with the standalone code.
These include the effects of double-size pixels, the effects of detector edges, and the effects secondary particle
production upstream the pixel sensors. These are discussedin Section 6.5.2. The production of secondary particles
yields cluster shapes that are inconsistent with the track angles and reconstructed hit coordinates that are not
well correlated with the position of the primary track. These can be suppressed by the use of the goodness-of-fit
information generated by the template algorithm. This is discussed in Section 6.5.3. Finally, the impact of the
template reconstruction on CMSSW tracking is discussed in Section 6.5.4. The reader should note that all of the
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resolution plots shown in Section 6.5 are root-mean-square(rms) quantities and include the effects of tails. The
exception occurs in Section 6.5.4 which reports the Gaussian sigma results generated by the tracking validation
process.

6.5.1 Native Performance

The performance of the template algorithm is compared with that of the standard algorithm by plotting the rms
y- and x-residuals for a sample of reconstructed barrel clusters generated by Pixelav as shown in Fig. 23. The
residuals are plotted as functions of pseudorapidity for the two cluster charge bands1.5 > Q/Qavg > 1 ( 30% of
all clusters) and1 > Q/Qavg ( 70% of all clusters). The clusters were simulated for an unirradiated physical sensor
(includes focusing effects near the n+ implants) operated at 150V bias. The rms residuals are used to measure the
effects of non-Gaussian tails on the performance of the algorithms. Note that the template and standard algorithms
perform similarly in the lower charge band which has less delta-ray activity. Nearη = 0, the projected y-clusters
consist of single pixels and have poor resolution. Nearη = 0.5, the y-projections consist of two-pixel clusters
and the y-resolution is quite good. It then worsens at largerη where the template algorithm has approximately
10% better resolution. The x-resolutions for the lower charge band improve with increasingη (and increasingQ).
The algorithms perform comparably at lowη and diverge a bit at largeη where the template resolution is about
20% better than the standard resolution. In the larger charge band where there is increased delta-ray activity, the
template algorithm has significant advantages over the standard algorithm at nearly all pseudorapidities.

(a) (b)

Figure 23: The rms y-residuals (a) and x-residuals (b) of a sample of reconstructed barrel clusters for the
template (blue) and standard (red) algorithms are plotted versus pesudorapidity for the cluster charge bands
1.5 > Q/Qavg > 1 (dashed lines) and1 > Q/Qavg (solid lines). The event sample is generated by Pixelav
and models an unirradiated detector operated at 150V bias.

The two algorithms were also compared using a Pixelav-generated sample of clusters from a heavily irradiated
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physical sensor (Φ = 6× 1014 neq/cm2) operated at 300V bias. A calibrated template is used to reconstruct these
events. The Lorentz-shift used by the standard algorithm isreduced from 121µm to 75.3µm to account for the
higher operating bias and the loss of charge sharing caused by trapping. The resulting rms residuals are plotted
versusη in Fig. 24 for the cluster charge bands1.5 > Q/Qavg > 1 and1 > Q/Qavg. We note that the resolutions
of both algorithms are degraded, but template algorithm is less affected (as it was designed to be). In particular,
the standard algorithm develops largeη-dependent bias in the y-direction after irradiation whichis reflected in
the significant degradation of the y-resolution. The template algorithm has a much smaller intrinsic bias that is
automatically corrected.

(b)(a)

Figure 24: The rms y-residuals (a) and x-residuals (b) of a sample of reconstructed barrel clusters for the
template (blue) and standard (red) algorithms are plotted versus pesudorapidity for the cluster charge bands
1.5 > Q/Qavg > 1 (dashed lines) and1 > Q/Qavg (solid lines). The event sample is generated by Pixelav
and models a detector with significant radiation-damage (Φ = 6 × 1014 neq/cm2) operated at 300V bias.

6.5.2 Performance in CMSSW

The template algorithm was also tested using samples of events with six 20 GeV muons generated by the CMSSW
simulation. Special templates corresponding to the simpler sensor physics in the CMSSW simulation were gen-
erated using a highly simplified electric field map that is uniform and does not include focusing effects near the
n+ implants. The simplified templates and event samples predict performance that is similar to the more physical
ones as shown in Fig. 25. The predicted rms resolutions are shown for the two cases. Note that even the “crossed”
cases of physical templates analyzing simplified events or vice-versa predict the same resolutions. These distribu-
tions justify the simplifications used in the CMSSW simulation to model overdepleted, unirradiated sensors. The
templates corresponding to the simplified Pixelav modelingwere then used to reconstruct clusters generated by the
CMSSW simulation. A comparison of the performance of the template algorithm operating on CMSSW clusters
and simplified Pixelav clusters is shown in Fig. 26. The rms resolutions are shown in the two charge bands. We
note that they quite similar and that the Pixelav-calibrated template procedure produces the expected results when
applied to CMSSW-generated clusters.

Although the CMSSW simulation has a simplified model of the sensor physics, it does correctly model the geome-
try of the entire tracking system and the spatial distribution of vertices. The resolution of the pixel tracking system
is affected by the presence of double-size pixels at readoutchip boundaries and by the sensor edges. Additionally,
the CMSSW simulation includes showering by the primary charged particles as they transit the detector. The sec-
ondary charge particles produced by the showering are visible as low charge clusters for larger pseudorapidities
in the barrel and present a potential background for the tracking. These effects can be quantified by comparing
the rms template resolutions for a sample of CMSSW-generated barrel clusters before (dashed red lines) and af-
ter (solid blue lines) the removal of low-charge clusters and clusters containing double pixels and edge pixels as
shown in Fig. 27. Note that additional effects produce on a small increase in the rms residuals for the charge
band1.5 > Q/Qavg > 1 but significantly affect the rms residuals in the lower charge band1 > Q/Qavg. This
effect is directly traceable to low-charge clusters produced by secondary charged particles. These clusters have
shapes that differ from those produced by the primary charged particles and also have small charges that become
distinguishable at large pseudorapidity where the primaryclusters become large.
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(a) (b)

Figure 25: The rms y-residuals (a) and x-residuals (b) of a sample of template-reconstructed barrel clusters for
the physical (blue) and simplified (red) electric field maps are plotted versus pesudorapidity for the cluster charge
bands1.5 > Q/Qavg > 1 (dashed lines) and1 > Q/Qavg (solid lines). Both event samples are generated by
Pixelav and model an unirradiated detector operated at 150Vbias.

(a) (b)

Figure 26: The rms y-residuals (a) and x-residuals (b) of Pixelav-generated (blue) and CMSSW-generated (red)
samples of template-reconstructed barrel clusters are plotted versus pesudorapidity for the cluster charge bands
1.5 > Q/Qavg > 1 (dashed lines) and1 > Q/Qavg (solid lines). Both samples model an unirradiated detector
operated at 150V bias.

This problem is illustrated in Fig. 28 which shows the CMSSW-generated cluster charge distribution for 10 0.25-
slices of pseudorapidity. The charge distributions for primary muons are shown in red and black and the charge
distribution for secondary electrons is shown in magenta. Edge clusters appear as muons with low cluster charge
and become more prominent in the larger-η bins. The secondary electrons are present in all slices but are particu-
larly pronounced at largeη where they comprise nearly 20% of all hits. The presence of reconstructed secondary
clusters on tracks is somewhat smaller but still comprises approximately 6% of hits in the largestη slice. To help
suppress the secondary clusters, the template code stores aminimum chargeQmin for eachcotβ entry. If the clus-
ter charge if found to be less thanQmin, the qbin flag returned from PixelTempReco2D is set to the value 4. This
allows the rejection or flagging of high-η, low-charge clusters with no loss of efficiency but does not suppress the
low-η secondaries. A more powerful discriminant based upon template probabilities is discussed in Section 6.5.3.

A comparison of the template and standard algorithms operating on a sample of CMSSW-generated clusters with
all effects is shown in Fig. 29. The rms resolutions in the twocharge bands are shown in the standard algorithm
(red lines), the template algorithm (blue lines), and the template algorithm after the low charge clusters have been
removed with a simple charge cut (green lines). Note that thetemplate algorithm still outperforms the standard
one with all effects present and improves further when the low charge clusters are removed.
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Figure 27: The rms y-residuals and x-residuals of a CMSSW-generated sample of template-reconstructed barrel
clusters are plotted versus pseudorapidity for the clustercharge bands1.5 > Q/Qavg > 1 and1 > Q/Qavg. The
dashed red curves represent the entire sample whereas the solid blue curves represent a sub-sample that does not
contain the low-q clusters from secondary charged particles or clusters with double-pixels or edge pixels.
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Figure 28: The charge distribution of clusters (not necessarily track associated) in 10 slices ofη for primary muons
(red/black) and secondary electrons (magenta) from a sample of CMSSW-generated muon events.

The performance of the template reconstruction in the forward pixel system with CMSSW-simulated clusters is
shown in Fig. 30. The dashed red lines show the the rms template resolutions for all clusters and the solid blue
lines show the same quantities after the removal of clusterscontaining double pixels and edge pixels. Note that the
additional effects produce only a small increase in the rms x-residuals but significantly affect the rms y-residuals.
It is not possible to remove clusters produced by secondary particles because tracks transiting the forward detectors
have nearly normal incidence angles and produce small y-clusters and low cluster charge. The presence of double-
size pixels moves some clusters from the well-resolved two pixel size into the very poorly resolved one double
pixel size worsening the rms y-resolution. Although the Lorentz-drift is suppressed by a factor ofsin 20◦ = 0.34
and the x-projections of the clusters are smaller than similar cotα tracks would produce in the barrel, they are
generally larger than the y-projections and are less affected by the presence of double-size pixels.

A comparison of the template and standard algorithms operating on a sample of CMSSW-generated clusters with
all effects is shown in Fig. 31. The rms resolutions in the twocharge bands are shown for: the standard algorithm
(red lines), the template algorithm (blue lines), and the template algorithm after the low charge clusters have been
removed (green lines). Note that the template algorithm still outperforms the standard one in the x-projection with
all effects present. There is essentially no difference between the algorithms in the y-reconstruction.
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Figure 29: The rms y-residuals and x-residuals of a CMSSW-generated sample of standard- and template-
reconstructed barrel clusters are plotted versus pseudorapidity for the cluster charge bands1.5 > Q/Qavg > 1
and1 > Q/Qavg. The red curves show the standard algorithm, the blue curvesshow the template algorithm and
the green curves show the template algorithm after the removal of the low charge clusters. Note that the green and
blue curves are coincident for the1.5 > Q/Qavg > 1 band.
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Figure 30: The rms y-residuals and x-residuals of a CMSSW-generated sample of template-reconstructed forward
pixel clusters are plotted versus pseudorapidity for the cluster charge bands1.5 > Q/Qavg > 1 and1 > Q/Qavg.
The dashed red curves represent the entire sample whereas the solid blue curves represent a sub-sample that does
not contain clusters with double-pixels or edge pixels.
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Figure 31: The rms y-residuals and x-residuals of a CMSSW-generated sample of standard- and template-
reconstructed forward clusters are plotted versus pseudorapidity for the cluster charge bands1.5 > Q/Qavg > 1
and1 > Q/Qavg. The red curves show the standard algorithm and the blue curves show the template algorithm.

6.5.3 Cluster Shape Information

The template algorithm was designed to use the a-priori cluster shape information generated by Pixelav to optimize
the resolution of the hit reconstruction. As part of the process, it minimizes the chisquare function defined by
equations 10 and 13. This also provides information that canbe used to test the compatibility of the observed
cluster shapes with the shapes expected for the input track angles. In order to interpret the minimum chisquare
information, the simple charge-bin-dependent one-parameter description discussed in Section 6.4.2 and illustrated
in Fig. 21 was implemented. These are interpolated in the track angles and are applied to the problem in the usual
way to estimate the chisquare tail probabilities in each projection,

Proby/x = 1 − Γ(χ̄2
y/x/2, χ2

y/x/2) (20)
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where: Γ is the incomplete Gamma function,χ̄2
y/x is the expected average of the distribution, andχ2

y/x is the
minimum determined from the template algorithm. This description is not perfect and the resulting y- and x-
probability distributions shown in Fig. 32 for a sample of Pixelav-generated clusters are not uniform (note that
the peaks in the y-probability distribution are caused by pseudo-pixel contribution to single pixel clusters and an
arbitrary normalization choice). Nevertheless, the probabilities can be used to test the consistency of the observed
clusters with the expected template shapes.
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Figure 32: The y- and x-probabilities for a large sample of Pixelav-generated hits.

There are two distinct uses for the goodness-of-fit information. The first is to validate that the cluster is likely
to have been produced by the transit of primary charged particle. It was shown in Section 6.5.2 that some of the
clusters observed in the CMSSW simulation are produced by secondary showers. These can have the wrong cluster
charge or shape and should not be included in reconstructed tracks. The template probabilities are a useful tool
to reject these. The second application is to test the compatibility of the cluster with the track angle hypotheses.
In principle, this could be a powerful constraint in track seeding and is discussed in Section 6.8. In either use
case, it is essential to understand the inefficiencies of y- or x-probability requirements. These are estimated from a
large sample of Pixelav clusters and are plotted as functions of the base 10 logarithm of the minimum probability
in Fig. 33. The inefficiencies arising from the clusters withlarge delta ray activity in the largest charge band,
Q/Qavg > 1.5, are shown as dashed curves. Since these events comprise only 4.5% of the entire sample, it is
clear that poorly measured events with large delta rays are disproportionately removed by reasonable values of
the minimum probabilities. Furthermore, as one might expect given the factorization of the y- and x-projections,
the inefficiencies associated with y- and x-probabilities are largely independent. The total inefficiency of separate
y-probability and x-probability requirements is quite close to the sum of the two functions.

Figure 33: The inefficiencies of y- (blue) and x-probability(red) are shown as functions of the base 10 logarithm
of the minimum probability as solid lines. The inefficiencies arising from the loss of poorly measured clusters in
the largest charge band,Q/Qavg > 1.5, are shown as dashed curves.
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The utility of a minimum probability requirement is illustrated in Fig. 34 which shows the same CMSSW-generated
cluster charge distributions that were shown in Fig. 28 after the application of the requirementsProby > 10−3,
Probx > 10−3. We note that the secondary electron induced clusters are eliminated at largeη and are suppressed
at smallerη. The low charge distribution of edge clusters is also removed. The particular probability requirements
shown in Fig. 34 are not optimized. It is clear that one would like to remove hits due to secondaries at the earliest
stage of track finding. This suggests that the probabilitiesshould be used in track seed finding and that any
probability cuts must be optimized for that purpose. This isdiscussed in Section 6.8.
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Figure 34: The charge distribution of clusters (not necessarily track associated) in 10 slices ofη for primary
muons (red/black) and secondary electrons (magenta) from asample of CMSSW-generated muon events after the
application of minimum y-probability and x-probability requirements of 10−3.

6.5.4 Impact on Tracking

The impact of the second-pass template reconstruction uponthe final track parameters was studied using a sample
of 14,600 simulated 10 GeV muon tracks and version 16 0 of the tracking-validation code. The inclusion of tem-
plates does not affect the efficiency of the Kalman Filter tracking and the mean number of hits as is shown in Fig. 35
where the template (blue) and standard (red) algorithm results are shown in red as functions of pseudorapidity. The
inclusion of templates does improve the quality of the trackfitting at all pseudorapidities as is shown in Fig. 36(a)
where the track fit chisquare is plotted as a function ofη for the template reconstruction (blue) and the standard
reconstruction (red). The improvement in track quality also manifests itself in the improved resolution in a number
of track parameters. Note that the tracking-validation code characterizes the track resolution with Gaussian fits to
residual distributions. The Gaussian resolution of thed0 parameter, the transverse distance of closest approach to
the beam axis, is shown as a function ofη in Fig. 36(b) for the template reconstruction (blue) and thestandard
reconstruction (red). Note that the improvement is significant especially at largeη. The Gaussian resolutions of
z0, the longitudinal displacement of the point of closest approach, andcot θ, the track polar direction at the point
of closest approach are plotted as functions ofη in Fig. 37 for the template reconstruction (blue) and the standard
reconstruction (red). The Gaussian resolutions of thepT andφ parameters are plotted as functions ofη in Fig. 38
for the template reconstruction (blue) and the standard reconstruction (red). It is clear that the Gaussian resolution
of all parameters is improved by the use of the second-pass template reconstruction especially at largeη.

It is also instructive to examine the effect of the template algorithm on the rms pulls for each of the five track
parameters. Unlike the Gaussian resolutions, they are sensitive to the presence of tails in the residual distributions
and they also test the accuracy of the error estimates returned by the reconstruction algorithms. The rms pulls are
listed in Table 2 for the two algorithms. It is clear that the template algorithm does somewhat better ford0 andφ. It
is likely that the rms resolutions of these quantities are significantly improved by the template algorithm. It is quite
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Figure 35: The tracking efficiency (a) and the mean number of hits (b) are plotted versus pseudorapidity for second-
pass pixel hit reconstruction using the template algorithm(blue) and the standard algorithm (red). Note that the
blue and red points overlap completely.
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Figure 37: The Gaussian resolutions of thez0 (a) andcot θ (b) parameters are plotted as functions ofη for the
template reconstruction (blue) and the standard reconstruction (red).

possible that these improvements will manifest themselvesin the form of improved tagging efficiency/purity for
b-quarks andτ -leptons. Finally, we note that the use of the template algorithm in pixel seeding (see Section 6.8)
would avoid the association of secondary electrons with tracks and might improve the track parameter resolution
even more than has been shown in this section. Additional study is needed to determine if this is the case.
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Table 2: RMS track parameter pulls for a sample of simulated 10 GeV muon tracks.

Parameter Standard Reco Template Reco
d0 1.81 1.16
z0 1.65 1.35

cot θ 1.43 1.27
pT 1.31 1.26
φ 1.54 1.16

6.6 Tuning and Calibration

The template algorithm is based upon the premise that the Pixelav simulation can be tuned to accurately describe
the pixel sensors as they are gradually damaged by exposure to the large LHC radiation field. This premise rests
upon the demonstrated success in the modeling of charge collection profiles measured with test sensors irradiated
to several fluences [11]. The parameters of the double-junction model were tuned by hand until the simulation
reproduced the profiles measured at the fluenceΦ0 = 6 × 1014neq/cm2 as is shown in Fig. 6. Although this was
extremely tedious, it was also shown that the parameters of the model could then be scaled to lower fluences using
separate scale factors for the acceptor densityNA, donor densityND, and trapping ratesΓe/h:

NA(Φ) = RA(Φ)NA(Φ0), ND(Φ) = RD(Φ)ND(Φ0), Γe/h(Φ) = RΓ(Φ)Γe/h(Φ0) (21)

where the scale factorsR are given by the following expressions,

RΓ(Φ) =
Φ

Φ0

, RA(Φ) = RΓ(Φ)(1 + α), RD(φ) = RΓ(Φ)(1 − α) (22)

and whereα depends upon the fluence. The scale factors that were determined at the fluences2 × 1014neq/cm2

and0.5 × 1014neq/cm2 are plotted in Fig. 39. These provide essentially a one-parameter prescription to tune the
model to intermediate fluences and should greatly expedite the calibration process.

The actual calibration procedure is to repeat the beam test measurements in-situ in CMS. This requires that samples
of large-η tracks and pixel clusters be recorded at a series of pixel bias voltages. It has already been shown [13]
that due to displaced primary vertices, it is possible to acquire such samples even in the central barrel modules. In
principle, the in-situ measurement could acquire large statistics in only a few hours of dedicated operation at several
bias voltages. Since it will require several years of operation to reach fluences comparable toΦ0, the calibration
procedure will not have to be performed frequently. However, because the readout chip is zero-suppressed, the
very useful information in the small tails of the charge collection profiles will not be available. This is illustrated
in Fig. 40 which shows the effect of the readout threshold upon the charge collection profile that was measured in
the beam test with an un-suppressed prototype readout chip.The essential tail information is visible at only one
bias setting. This implies that finer, carefully-targeted voltage scans will be required to calibrate the sensor model.
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Figure 39: The scale factorsRA, RD, andRΓ as defined in equations 21 and 22 are plotted as functions of fluence.
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Figure 40: The measured charge collection profiles at a temperature of−10◦C and bias voltages of 150V, 200V,
300V, and 450V are shown as solid dots for a fluence of5.9 × 1014 neq/cm2. The two-trap double junction
simulation is shown as the solid histogram in each plot and the shaded region shows the effect of the readout
threshold. Any signal dot inside the shaded region will be invisible in-situ in CMS.

Unfortunately, the template calibration cannot be automated. The calibration procedure will always require some
iteration and hand adjustment of the modeling parameters. We are planning to develop a suite of CMSSW software
packages to facilitate this. After the implementation of the template-based simulation package in CMSSW (see
Section 7) it will be possible to develop this software usingdata from simulated irradiated sensors.

6.7 Alignment Sensitivity

Although the template reconstruction algorithm is moderately sensitive to the knowledge of the track direction,
the sensitivity is far below the angle resolution of the tracker and is less than any likely angle offsets caused by
misalignment of the pixel system even in the earliest running. To demonstrate this, we assume that the local track
direction is entirely determined by two pixel planes separated by 4 cm. The effects of y- and x-misalignments
upon the resolutions are shown in Fig. 41. It is clear that a 2 mm misalignment in y and a 1 mm misalignment in x
have negligible effects on the resolutions. Note that the angle offsets caused by the misalignments do not bias the
residual distributions.

6.8 Track Seeding

The sensitivity of the template algorithm to the cluster shapes was discussed in Section 6.5.3 in the context of
identifying secondary electron backgrounds. The templateprobabilities test the consistency of the observed cluster
shapes with the shapes expected for the input angle hypotheses. This technology can also be used to test the
consistency of the observed shapes with the angle hypotheses. Pixel doublets and triplets are used to seed the
Kalman Filter track finding algorithm. Each pair of pixel hits defines theβ-direction of a possible track and each
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Figure 41: The rms y-residuals and x-residuals of a Pixelav-generated sample of template-reconstructed barrel
clusters are plotted versus pseudorapidity for the clustercharge bands1.5 > Q/Qavg > 1 (dashed curves) and
1 > Q/Qavg (solid curves). The blue curves assume that two adjacent planes are aligned and the red curves
assume that the planes are misaligned by 2 mm in the y-direction and 1 mm in the x-direction.

triplet of hits defines theα-direction of a possible track. The cluster shapes crudely measure both of these angles
and can, in principle, be used to “validate” possible track seeds. This idea is sketched schematically in Fig. 42
which shows (not to scale) the y- and x-projections of a possible triplet of pixel hits. We note that the lengths of
both cluster projections in the middle layer are inconsistent with the triplet hypothesis. Rejecting inconsistent track
seeds before the Kalman Filter is invoked can significantly reduce the track-finding time.

flipped

y-projection x-projection

Figure 42: A schematic diagram of a pixel triplet seed and a track hypothesis. Note that the projected sizes of the
clusters (shaded green) in the outer layers are consistent with the track angles whereas the projected sizes of the
cluster (shaded red) in the middle layer are not consistent with the track angles.

A simpler version of this procedure that compares the y-lengths of pairs of barrel clusters was developed by the
Nebraska Group [14] and is implemented in CMSSW/RecoTracker/PixelStubs. The intrinsiccotβ resolution of
the y-length technique is compared with that of the templatealgorithm in Fig. 43. A special version of the template
code that searched a range ofcotβ hypotheses for a chisquare minimum was implemented for thisstudy. The rms
widths of thecotβ residuals are plotted as functions of the track direction incotβ bins (note thatcotβ = 6 is
approximatelyη = 2.5) in the charge bands1.5 > Q/Qavg > 1 (dashed lines) and1 > Q/Qavg (solid lines).
They are compared with the rms resolutions of thecotβ derived from the cluster length in pixels according to the
following expression,

cotβ = (yL − yF )/T, (23)

where:yL andyF are the y-coordinates of the first and last pixels in the cluster andT is the sensor thickness. Note
that the intrinsic template resolution is better by a factorof two.

The procedure used to extractcotβ information from cluster shapes searches a fairly large space for the chisquare
minimum and is fairly slow. A more elegant approach is to use the reconstructed coordinates of pixel doublets
or triplets to generate angle hypotheses and to cut on template probabilities to test consistency with those angles.
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Figure 43: The rmscotβ resolutions of a special
version of the template algorithm (blue lines) are
compared with the resolutions of a simple cluster
length estimator (shown as red lines, see equation 23)
as functions ofcotβ in the charge bands1.5 >
Q/Qavg > 1 (dashed lines) and1 > Q/Qavg (solid
lines).

Figure 44: The relationship betweencotβ and pseu-
dorapidityη in the pixel barrel. Note that the cluster
lengths (proportional tocotβ) increase rapidly with
η.

The template reconstruction procedure can be applied to doublets to test just thecotβ/y-projection consistency
(cotα can be set to zero) and it can be applied to triplets to test consistency in both projections. The efficiencies
of angle hypotheses that are displaced by∆cotβ and∆cotα are shown in Fig. 45 for several values of template
probability cuts. We note that the relationship betweencotβ and pseudorapidity in the pixel barrel is quite simple,

cotβ =
e−η − eη

2
= − sinh η, (24)

and is plotted in Fig. 44. The acceptance of the detector is approximately| cotβ| < 6 and| cotα| < 0.225. This
suggests that the y-probability requirement could significantly reduce the number of seeds especially at largeη
where tracks that are relatively close inη can deviate incotβ, but that an x-probability requirement will have a
less dramatic effect.

The development of a template-based “seed cleaner” is in progress. The Modified Pixel Seeder processes pixel
doublet seeds generated by the Global Pixel Seeder by applying the template algorithm to both pixel hits and by
requiring that the y-probabilities exceed 10−3. The results of the application of the seeder and the seeder/cleaner
combination to a sample of 750 simulatedtt̄ events are summarized in Table 3. The cleaner reduces the number
of seeds by more than a factor of two and reduces the tracking time by almost a factor of two. Taking into account
the additional overhead of the template algorithm, the total time for seeding and tracking is reduced by 40%. The
template-based procedure loses about 1.6% of the tracks. The quality of the lost tracks is unknown and is currently
under study.

The use of the template algorithm for seed cleaning has the additional advantage that it can be calibrated to match
the degrading performance of the pixel detector. At a minimum, this should keep the efficiencies of the seed-
cleaner reasonably constant in time even if the rejection power for poor seeds declines. In actuality, the reverse
may be true. As the detector ages, the template algorithm will acquire the ability to distinguish between positive
and negativecotβ due to the asymmetry of charge trapping. This may actually improve the ability to reject some
backgrounds. The use of the template algorithm to validate pixel seeds would also improve the resolution of track
parameters even in the first pass of the track finding since it would automatically reject non-primary particles and
would improve the resolution of RecHits used in the first-pass track fitting.
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Figure 45: The average efficiencies of several y-probability and x-probability requirements for samples of tracks
that have angle hypotheses shifted by∆cotβ and∆cotα. Narrower distributions imply greater angle sensitivities
of the probability functions.

Table 3: Comparison of the normal pixel seed builder (GlobalPixel Seeder) and a template-based seed cleaner
(Modified Pixel Seeder) for a sample of 750 simulatedtt̄ events.

Quantity Global Pixel Seeder Modified Pixel Seeder
Total Seeds (103) 1085 476
Total Tracks (103) 37.6 37.0

Seeding Time 0.13 s/event 0.19 s/event
Tracking Time 1.80 s/event 0.96 s/event

Total Time 1.92 s/event 1.15 s/event

7 Template-Based Simulation Algorithm
It should be clear from the discussion in Section 6.5.1 that radiation damage will significantly degrade the perfor-
mance of the pixel system. It is obviously desirable to reproduce the changes in detector response in the CMSSW
simulation. The modeling of irradiated sensors by the vectorized Pixelav code requires approximately 1.5 s per hit
on a 2.5 GHz G5 processor and more than 3 s per hit on a 2.8 GHz Xeon processor. This code is obviously much
too slow to be integrated into the CMSSW pixel simulation. Itis clear that another approach is required. This
section describes a technique that is based upon the same template object used in hit reconstruction. The template-
based simulation technique has the advantages that it utilizes the same calibration and modeling developed for the
reconstruction thereby eliminating a separate calibration for the simulation and it ensures that the simulation and
reconstruction processes remain synched as the detector ages.

The template-based simulation technique is less developedthan is the template-based reconstruction technique
but a proof of principle has recently been developed and tested. A c++ procedure that is analogous to PixelTem-
pReco2D has been developed but the full details of its implementation in CMSSW have not been designed and
implemented.

7.1 Philosophy

There are three observations upon which the template-basedsimulation is built. The first is that the existing
CMSSW simulation works well enough and is fast enough to describe pixel detector before the detector becomes
radiation damaged. The second is that it is not possible to model the physics of a radiation-damaged sensor rapidly
enough for use in CMSSW. The Pixelav simulation does model the important physics and after years of effort
and orders of magnitude of improvement, it is still much too slow. The third observation is that the effects of
radiation-damage are already encoded in the projected cluster shapes that are stored in the template object. The
obvious idea is to try to modify the clusters generated by thestandard CMSSW simulation to exhibit the effects of
radiation-damage using the information stored in the templates. In principle, this is a straightforward procedure.
It is complicated by the fact that the templates store one-dimensional projections of the two-dimensional clusters
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but the simulation generates two-dimensional clusters. A procedure is needed that can modify the 2-D clusters to
achieve the changes in the 1-D projections predicted by the ratios of the templates for the generated and desired
events.

7.2 Description of the Template-Based Simulation Algorithm

The template-based simulation algorithm re-weights individual pixel signals to modify the one dimensional pro-
jections as suggested by the ratios of the one-dimensional templates. This is possible because the number of pixels
in a typical clusterN is usually (97% of all cases) less than or equal to the number constraintsM provided by
the one-dimensional projections. The following algorithmis designed to identify and re-weight the “core” of the
cluster. Additional pixels from delta rays are treated in anad-hoc manner.

Cluster Preparation: The inputs to the algorithm are the CMSSW-generated two-dimensional cluster, track
angles, and hit position. The first step is to prepare the input cluster based upon information from templates
corresponding to the physics model of the CMSSW simulation.Using the generated track angles and hit position,
y- and x-templates corresponding to the “generating” modelare interpolated and labeledGy

i , Gx
j . The columns and

rows having template signal larger than 50% of the readout threshold are identified. This defines the “inside” region
where the re-weighting problem will be formulated. The pixels of the CMSSW input cluster are then categorized
and sequentially labeled at insideIk or outsideOl pixels as shown in Fig. 46. In order to avoid the effects of large
signal fluctuations on the re-weighting procedure, the inside signals are then truncated at the same angle-dependent
maximum signalImax(cotβ) used in the reconstruction procedure. The truncated signals Ĩk are then summed into
y- and x-projectionsP y

i andP x
j as shown in Fig. 47.
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Figure 46: The categorization of the insideIk and out-
sideOl pixels in the input cluster .

Figure 47: The truncated inside pixels are summed
into y- and x-projections.

Formulation of Re-weighting Problem: The next step is to use the input track angles and hit positionto in-
terpolate the y- and x-templates,T y

i andT x
j , which correspond to the “target” physical model. These templates

would normally correspond to the Pixelav model of an irradiated detector. The goal of the procedure is to find the
N pixel weightsrk that modify the truncated pixel signals so that the re-weighted signalsrk Ĩk have the y- and
x-projectionsP y

i T y
i /Gy

i andP x
j T x

j /Gx
j as shown in Fig. 48.

The cluster re-weighting problem is therefore a linear problem inN unknownri with M conditions (M is the sum
of the numbers of columns and rows in the inside region) and can be expressed in matrix form

A · r = b (25)

where theM × N matrix A is composed of truncated signalsĨk, theN -vectorr = (rk), and theM -vectorb
contains the re-weighted projectionsPiTi/Gi. Unfortunately, standard techniques for the solution of this problem
like Singular Value Decomposition (SVD) often yield unphysical (negative) values for the weights. Note however,
that whenM > N , SVD actually minimizes the least square difference|A · r − b|2. Clearly, we would like to do
exactly this but with the additional constraints that allrk be positive. This is a standard problem in the field known
as Quadratic Programming. Our problem can be cast into standard form by subtracting a constant from the least
square difference and minimizing the new functionL,

L = |A · r − b|2 − |b|2 = rT · AT ·A · r − 2bT · A · r = rT · Q · r + 2cT · r (26)
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Figure 48: Formulation of the pixel re-weighting problem.

where theN ×N symmetric matrixQ is given byQ = AT ·A and theN -vectorc is given byc = −AT ·b. There
are a number of commercial codes that solve this problem numerically. We were able to find a non-commercial
code written mostly in c++ called OOQP for Object-Oriented Quadratic Programming [15]. It is available under
a GPL-like license from the University of Chicago and reliesupon the BLAS3 linear algebra package and also
upon the fortran-coded MA27 sparse linear solver from the HSL archive. This code is freely available and can
be compiled with f2c and gcc. OOQP can also work with the faster MA57 sparse linear solver but a commercial
license is needed (except to UK academics who can receive it free from the RAL Numerical Computation Group).

Note that double pixels are treated differently in the re-weighting procedure than in the reconstruction procedure.
The expansion of double pixels into pairs of single-size pixels simplified the coding of the reconstruction proce-
dure. A similar treatment would only complicate the re-weighting procedure. Therefore, the generated and target
templates are modified to model the double pixels by merging appropriate adjacent columns or rows. This is done
starting at the central “struck” pixel and proceeds in both directions away from the central pixel.

Final Re-Weighting The actual re-weighting of the cluster depends upon the integersM andN . If M is larger
than or equal toN (97% of all cases), OOQP is used to solve forr and the weights are applied to the un-truncated
inside pixels. Any outside pixels are reweighted using the weight applied to the nearest inside pixel. This procedure
is illustrated in Fig. 49. IfM is less thanN or if OOQP fails to find a solution (approximately 0.15% of allcases),
a simpler re-weighting is peformed. If the number of columnsis equal to or larger than the number of rows (normal
case), the columns of cluster are re-weighted using the weightsT y

i /Gy
i . If the number of columns is less than the

number of rows, the rows are reweighted using the weightsT x
j /Gx

j .
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Figure 49: Application of weights to un-truncated inside pixels and outside pixels.

7.3 First Tests: Performance and Speed the Template-Based Simulation Algorithm

The simulation algorithm was tested using clusters generated by Pixelav with a simplified electric field map cor-
responding to the CMSSW simulation. They were re-weighted to model a sensor that was irradiated to a fluence
of 6 × 1014 neq/cm2. The re-weighted clusters were reconstructed using the template algorithm and the residuals
were compared with those produced by reconstructing full Pixelav simulations of the irradiated sensor. Initial
testing showed that attempts to re-weight these CMSSW-likeevents lead to residual distributions with offsets in
the 10-11µm range. It was noted that the input clusters were generated assuming that the detector was operated
at the nominal 150V bias whereas the output template corresponded to an irradiated sensor operated at 300V bias.
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The different bias voltage leads to a different average Lorentz drift and therefore different typical topologies of
the output clusters. To overcome this problem, another set of CMSSW-like events was generated with Pixelav
that corresponded to the uniform field approximation for a detector operated at 300V bias. The Lorentz angle
was reduced from 23◦ to 16.1◦ making the topologies of the generated clusters closer to those of the irradiated
detector. Using the new event stream and its corresponding template, the residual offsets of the re-weighted and
reconstructed events were reduced to values less than 1µm. The resulting rms residuals from this second attempt
are compared with those from the full Pixelav simulation of the irradiated sensor as shown in Fig. 50. The local
y (global z) residuals for the two simulations are very similar. The local x (globalφ) residuals are similar but
exhibit a somewhat differentη dependence. It is clear that the simulation of irradiated sensors will require that the
parameters of the CMSSW simulation be “matched” with individual templates to achieve the best results.

(a) (b)

Figure 50: The rms y-residuals (a) and x-residuals (b) of Pixelav-generated (blue) and reweighted CMSSW-like
(red) samples of reconstructed barrel clusters using the template algorithm are plotted versus pesudorapidity for
the cluster charge bands1.5 > Q/Qavg > 1 (dashed lines) and1 > Q/Qavg (solid lines). Both samples model an
irradiated detector (Φ = 6 × 1014 neq/cm2) operated at 300V bias.

The speed of the algorithm is dominated by the time needed to solve the quadratic programming problem. As
tested on a 2.5 GHz G5 processor, the simulation can process approximately 3300 clusters per second which yields
0.3 ms/cluster. The CMSSW digitizer has a tested speed of 12 ms/cluster on a standard Xeon processor [16]. Even
allowing for 10-20% differences in processor speed and overhead from the unwritten CMSSW interface, the speed
of the re-weighting procedure is easily sufficient for use inCMSSW and is much faster than the 1.5(3) s/cluster
speed of the vectorized Pixelav simulation operating on available G5(Intel) processors.

7.4 Future Development

This technique is currently the only alternative for the simulation of the Pixel system after it has become radiation-
damaged. We regard the results shown in Fig. 50 as an encouraging proof of principle, but we intend to study and
develop the algorithm further before final implementation.Additionally, the CMSSW interface for the template
simulation has not yet been designed. Since the algorithm re-weights already-generated clusters, there are a number
of possible implementation schemes. It could be invoked from within the pixel digitizer. This has the advantage
that it could be applied before the response of the readout electronics and electronic noise are simulated. It is
also possible to create an independent module that could re-weight “noisy” clusters after generation and before
clusterization. The performance of this scheme is slightlyworse than the first, but it simplifies the implementation.

8 Conclusions
This note has described new techniques for the reconstruction/validation and the simulation of pixel hits. The
techniques are based upon the use of pre-computed projectedcluster shapes or “templates”. A detailed simulation
called Pixelav that has successfully described the profilesof clusters measured in beam tests of radiation-damaged
sensors is used to generate the templates. Although the reconstruction technique was originally developed to opti-
mally estimate the coordinates of hits after the detector became radiation damaged, it also has superior performance
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before irradiation. The technique requires a priori knowledge of the track angle which makes it suitable for the
second in a two-pass reconstruction algorithm. However, the same modest angle sensitivity allows the algorithm
to determine if the sizes and shapes of the cluster projections are consistent with the input angles. This information
may be useful in suppressing spurious hits caused by secondary particles and in validating seeds used in track
finding and has the potential to significantly increase the speed of track finding in the offline reconstruction. The
improved tracking performance shown in Section 6.5.4 is likely underestimated. The characterization of the track
parameter resolutions by Gaussian fit sigmas ignores the effects of tails which are well controlled by the template
algorithm. It also uses the template algorithm in a second-pass which does not eliminate hits caused by secondary
particles from the reconstructed tracks. The use of template algorithm at the seeding level would remove these
and might further reduce resolution tails. Nevertheless, it seems quite possible that the already-demonstrated im-
provements in tracking resolution will manifest themselves in the form of improved tagging efficiency/purity for
b-quarks andτ -leptons.

The implementation of the template reconstruction algorithm in CMSSW is well advanced. It can already be used
to reconstruct simulated data. A suite of calibration toolsneeds to be developed and some additional but straight-
forward implementation enhancements are needed before thetemplate algorithm could be used to reconstruct real
data. Investigations of its use in seeding and track finding are just beginning.

Finally, a new procedure that uses the templates to re-weight clusters generated by the CMSSW simulation was
described. The first tests of this technique are encouragingand when fully implemented, the technique will enable
the fast simulation of pixel hits that have the characteristics of the much more CPU-intensive Pixelav hits. In
particular, it may be the only practical technique available to simulate hits from a radiation damaged detector in
CMSSW. Additional work is required to finish the algorithm development and to integrate it into CMSSW.
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10 Appendix
10.1 Implementation of the Template Reconstruction Algorithm

The template code separates into two main categories: template production and pixel hit processing. Only the latter
task is integrated into CMSSW. This section first gives a brief overview of the template production processing and
then describes the CMSSW implementation of the hit processing in more detail.

10.1.1 Template Production

Template production begins with the generation of the electric field map for 1/4 of a pixel cell using TCAD 9.0 [9].
The user must prepare boundary description and command filesthat define the structure of the pixel cell. These
are processed using a TCAD utility calledMESH that generates the mesh, an array of nodes, interconnections
and doping profiles that describe the boundary value problem. This file and another command file describing the
physics options and solution techniques are then processedby the codeDESSISwhich actually solves the coupled
partial differential equations on the mesh. As the solutionis iteratively solved for the ramping bias voltage, DESSIS
stores the field information at a series of preselected bias voltages. It typically takes about 8 hours of computing
on a multiprocessor workstation to calculate a complete setof bias voltages. Although TCAD is a commercial
product, JHU and several CMS institutions hold licenses. Luckily, this step must be performed only when some
change in temperature or irradiation-level is required.

The mesh and electric field output files from the TCAD step are processed by a small standalone c-program called
gen efield. This code interpolates the field values on the very non-uniform mesh to produce the regular rectangular
grid of electric field points that is needed for fast field lookups in Pixelav. It also transforms the fields from the
TCAD coordinate system to the Pixelav coordinate system. The ascii output file from genefield is augmented to
include Pixelav control information. Slightly different control information is used for the Pixelav processes that
simulate multiplecotβ increments and multipleα′ increments. These Pixelav processes generate samples of pixel
hits at fixed angle but random position on the “struck” pixel.A total of seven Pixelav jobs generate 116 sequentially
numbered output files. The first-pass template processing isperformed by a standalone fortran program called
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gen xy templateq that sequentially processes the 116 Pixelav-produced filesand outputs an x-template file, a y-
template file, and two rms-signal plots for each input file. The second pass processing is performed by a standalone
fortran program calledgen zp templateqp7 that reads all 116 Pixelav, x-template, and y-template filesand then
produces a single file called “templatesummaryzpIJKL.out” where IJKL are four integer digits. This file contains
all of the information for a single template.

The time needed for the generation of a full template is significant and is determined entirely by the speed of
Pixelav. The four 2.5 GHz and two 2.0 GHz G5 processors currently available at JHU require about 2 days to
generate a template corresponding to the simplified physicsin the CMSSW pixel simulation. The generation of a
template for an unirradiated “physical” sensor with all electrostatic effects requires about 5 days and the generation
of a template for a heavily irradiated physical sensor requires about 12 days.

10.1.2 Pixel Hit Processing in CMSSW

The implementation of the template reconstruction algorithm in CMSSW is incorporated into three c++ compo-
nents: the template object which is a single instance of the classSiPixelTemplate, the reconstruction procedure
SiPixelTemplateReco::PixelTempReco2D, and the classPixelCPETemplateRecothat invokes the procedure
and serves as an interface to the CMSSW infrastructure. Thisarchitecture was chosen to encapsulate the tem-
plate reconstruction procedure so that it could be developed and tested using Pixelav-simulated data inside simple
standalone codes and could then be seamlessly incorporatedin the CMSSW framework with no alterations. It
has proven to be an extremely powerful design since the standalone codes can process 200,000 simulated hits and
generate large numbers of diagnostic plots in only 30 seconds. In addition, since the CMSSW simulation does not
describe all of the sensor physics that is relevant to actualoperation, it is the only way to test the reconstruction
algorithm to its full potential.

SiPixelTemplate: The classSiPixelTemplateis stored in “CondFormats/SiPixelObjects” to facilitate its inclu-
sion in the pixel hit reconstruction and also in the pixel hitsimulation. The latter task is in development (see
Section 7) and has not been deployed yet. The class stores andinterpolates all of the information contained in
each templatesummary zpIJKL.out file needed by the reconstruction process. This information is stored in a
structure of structures that is too complex to be described here (see SiPixelTemplate.h for documentation). The
single instance of this class is initialized by invoking themethodpushfile(int filenum) that reads the summary file
ending in digits IJKL = filenum and then adds the structure to aprivate vector of structures. It can store and manage
an arbitrary number of templates. The methodinterpolate(int id, bool fpix, float cotalpha, float cotbeta) causes
the template object to interpolate the barrel (fpix=false)or forward detector (fpix=true) template having identity
id. All of the information is interpolated incotβ and x-related information is also interpolated incotα. The
interpolated values are stored in private variables which are accessed by a series of methods. The interpolation
of the parameterized functions for(∆P

y/x
i )2 andD

y/x
FL require arguments before the interpolations can be carried

out. The interpolate method initializes the appropriate pointers and interpolation ratios for these quantities so that
calls to the methodsysigma2, xsigma2, yflcorr , andxflcorr can calculate the interpolated quantities.

SiPixelTemplateReco::PixelTempReco2D: The template algorithm as described in Section 6.4.2 is implemented
in the procedurePixelTempReco2D(int id, bool fpix, float cotalpha, float cotbeta, array 2d cluster, std::vector〈bool〉
ydouble, std::vector〈bool〉 xdouble, SiPixelTemplate& templ, float& yrec, float& sigmay, float& proby,
float& xrec, float& sigmax, float& probx, int& qbin, int speed) which is stored in “RecoLocalTracker/SiPixelRecHits”.
The first four quantities of the argument list are identical to those of SiPixelTemplate::interpolate. Additional in-
puts are the actual 2-dimensional cluster “cluster” which is stored in a 2-d Boost multiarray container, two vectors
of boolean flags to indicate which of the rows and columns of the cluster are double-size pixels, the template object,
and an integer to choose between speed and robustness in the chisquare search algorithm. The output quantities are
the reconstructed y- and x-coordinates, their estimated uncertainties, the chisquare probabilities in the two projec-
tions, and an integer to indicate the cluster charge bin which is useful for diagnostic purposes. The hit coordinates
are returned in micron units with respect to the origin located at the center of the multiarray element cluster[0][0].

PixelCPETemplateReco: The classPixelCPETemplateRecoprovides the infrastructure needed to support the
use of PixelTempReco2D in the CMSSW environment. The template is stored in a private class variable. The
methodlocalPosition(const SiPixelCluster& cluster, const GeomDetUnit& det) unpacks the cluster and de-
codes the region (barrel or forward). It then calls PixelTempReco2D and returns the coordinates of the hit. The
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coordinate uncertainties, probabilities, and cluster charge bin are stored in private class variables. The method
localError() must be called after localPosition to access the errors. Thetemplate probabilities are accessed
by the methodsprobabilityX() andprobabilityY() . Finally the methodqBin() returns an integer from 0 to 4
where 0-3 define the physical charge bands:Q/Qavg > 1.5, 1.5 > Q/Qavg > 1, 1 > Q/Qavg > 0.85, and
0.85 > Q/Qavg > Qmin/Qavg. A value of 4 indicates thatQ is less than the minimum physical chargeQmin

and that the cluster likely to have been generated by secondary particle.

10.1.3 Speed

The template algorithm involves considerably more processing than does the standard CMSSW algorithm. To
improve its speed, the original coding was modified to avoid memory allocation and deallocation by placing most
of the working variables in static memory. Additionally, the original extremely robust algorithm was modified to
implement several different search schemes for the initialminimumχ2 bin (see Section 6.4.2. These can varied
from the original scheme (speed=0) to the most aggressive one (speed=3). The performance of the algorithm is
quite insensitive to this choice. The actual timing of the hit reconstruction scales with the number of pixel clusters
in an event. The timing of the standard algorithm, and the template algorithm with speed=0 and speed=3 are
listed in Table 4. We note that the template algorithm variesfrom three (speed=3) to four (speed=0) times slower
than the standard algorithm but that it is still quite fast ascompared with many other CMSSW tracking processes.
Using the templates in the second pass hit reconstruction module “ctfWithMaterialTracks” increases its processing
time by only about 5%. Since the actual track finding is very slow (nine times slower than the second pass hit
reconstruction), the processing-time impact of second-pass template use is less than 1% of the total tracking chain
time. Note that the application of the template algorithm to“seed cleaning” as discussed in Section 6.8 could
significantly reduce the total tracking chain time.

Table 4: Tested Speed of the Template Reconstruction Algorithm (2.5 GHz Xeon)

Algorithm Time/Cluster (µs/hit)
Standard 12.4

Template (speed 0) 52.1
Template (speed 3) 37.9

10.1.4 Future Improvements

Database Storage of Template Information: As of this writing, the template information is loaded from ascii
files when the template object is initialized. Each file contains header information and 116 entries each of which
contains the information to initialize a c++ struct. An improvement planned for the near term is to store this
information using CMS database technology so that it is properly archived and distributed to potential offline and
HLT clients.

Detector to Template Matching: At the current time, a single template is used to reconstructall of the data
from the simulated detector. In actual operation, different parts of the detector may be operated under differ-
ent conditions (eg. bias voltages and temperatures may vary) and will age at different rates. This suggests that
several templates will be needed to reconstruct data at any given time. The template object is designed to store
multiple templates and the reconstruction procedure is designed to use them. The clusters processed by Pixel-
CPETemplateReco object are already associated with detector elements. A mechanism to match detector elements
to templates must implemented to achieve this functionality.

10.2 Implementation of the Template Simulation Algorithm

The CMSSW implementation of the template reconstruction algorithm in the form of standalone and CMSSW-
interface components has been very successful. The template object and reconstruction procedure can be tested
from Pixelav-generated events with a standalone code and then they can be included with no changes directly into
CMSSW. This same model is being developed for the template simulation algorithm. The algorithm is encapsulated
into a procedure calledSiPixelTemplateRewgt::PixelTempRewgtwhich uses a single instance of the template
classSiPixelTemplate. This procedure has been tested in standalone mode using Pixelav-generated events. A
CMSSW interface has not yet been implemented.
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SiPixelTemplateRewgt::PixelTempRewgt: The template-based simulation algorithm as described in Section 7.2
is implemented in the procedurePixelTempRewgt(int id0, int id1, bool fpix, std::vector〈float〉 track, ar-
ray 2d& cluster, std::vector〈bool〉 ydouble, std::vector〈bool〉 xdouble, SiPixelTemplate& templ, double&
lsq). The quantitiesid0 andid1 are the identifiers of the templates that correspond to the input and output mod-
els. Usually, the id0 template corresponds to the simplifiedCMSSW physics used to generate the clusters and
id1 template corresponds to the radiation-damaged detector. The vectortrack contains the six parameters of the
track in the pixel local frame: three coordinates in micronsand three direction cosines. It is assumed thatz = 0
defines the midplane of the sensor and that the origin of the coordinate system in at the center of cluster[3][10].
The quantity lsq returns the total square deviation from thesolution of the quadratic programming problem in units
of square charges. All of the other quantities in the argument list are identical to those used for PixelTempReco2D
(see Section 10.1.2) except that the Boost multitarraycluster contains the 7x21 pixel input cluster and returns a
7x21 pixel re-weighted output cluster.
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