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For relativistic field theories, in a sense specified in section 2, the
invariance under time reversal “of the second kind” (time reversal
including particle-antiparticle conjugation) is provéd mathematically.
Consequently, the postulate of invariance under time reversal (‘“‘of the
first kind) is, for field theories of this type, completely equivalent to
the postulate of invariance under particle-antiparticle conjugation.

Introduction.

N

It was found by several authors that the postulates of in-
variance of the laws of nature under time reversal or under
particle-antiparticle conjugation® allow one to rule out some
kinds of couplings which, nevertheless, are in accordance with
the postulate of relativistic invariance. Two applications are
hitherto known, viz.

(1) Coupling between one Bose field (““mesons”) and one
Dirac field (*‘nucleons’). Simultaneous coupling with and without
derivatives is forbidden for scalar and pseudovector fields™®.

(2) Fermi coupling of four Dirac fields. In a sum of several
covariant couplings, the phases of the coupling constants must
be the same®®

It is a remarkable fact that both results follow from each
of the two postulates. Therefore, one might be led to assume
that, quite generally, a relativistic field theory is invariant either

1 We prefer the term ‘particle-antiparticle conjugation” (though more
lengthy) to the more commonly used denotation ‘“charge conjugation’.

% As a consequence of particle-antiparticle conjugation, ¢f. LUpxrs, G., R.
OrngME, and W. E. TuIrRING, Z. Naturforschung 7 a, 213 (1952); Pai1s, A., and
R. Jost, Phys. Rev. 87, 871 (1952).

3 As a consequence of time reversal, cf. LUDERS, G., Z. Physik 133, 325 (1952).

4 As a consequence of time reversal, c¢f. BIEDENHARN, L. C., and M. E. Rosg,
Phys. Rev. 83, 459 (1951). '

5 As a consequence of both time reversal and particle-antiparticle conjugation,
cf. ToLmoex, H. A. and S. R. pe Groot, Phys. Rev. 84, 151 (1951).
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under both transformations or under neither of them. In the
present note, the proof of this conjecture will be given. For the
sake of simplicity, the considerations are restricted to local field
theories constituted by the usual fields of spin 0, 1, and */,.
The coupling Hamiltonians shall contain no derivatives of the
Dirac fields and no higher derivatives than the first of the Bose
fields. The theories shall be relativistic in a sense specified in
section 2 by the postulates I, 11, I', IT', Ia, Ila. It seems very
likely that the result of the considerations, i. e., the equivalence
of the two kinds of invariance postulates, holds true also under
more general conditions.

In the following, two types of time reversal will appear:
the time reversal “‘of the first kind”’ which, loosely speaking,
consists in a reversal of th )motionl of all particles, and the
time reversal “of the second 'kind”’, a simultaneous performance
of a proper time reversal and a particle-antiparticle conjugation®.
(The only type of time reversal which is of relevance for the

principle of detailed balance and, perhaps, for the foundation

of thermodynamics is that of the first kind3.) In this paper it
is proved that a relativistic field theory (in the sense specified
in section 2) is automatically invariant under time reversal of
the second kind* For the validity of the proof, one has explicitly
to assume that the field theory in question is invariant under
reflection in space; a formal reflection in time acts as an intex-
mediate step in the proof.

As the time reversal of the second kind is identical with a
simultaneous application of a time reversal of the first kind
(i. e., time reversal in the proper sense) and a particle-anti-
particle conjugation, a relativistic theory (in the restricted sense
of this paper) is either invariant under both operations or under
necither of them. Therefore, both of these invariance postulates

1 In a previous paper (Z. Physik 133, 325 (1952)), we preferred the term
“Bewegungsumkehr” (reversal of motion) to “Zeitumkehr” (time reversal) for this
operation.

2 The different types of time reversal were also considered by J. Tromwo in
his Princeton thesis. Further, S. WaTaNaBE (Phys. Rev. 84, 1008 (1951)) uses two
iypes of time reversal; his “standpoint I corresponds to our time reversal of
the second kind, and vice versa. : '

3 COESTER, F., Phys. Rev. 84, 1259 (1951), Ltpxrrs, G., Z. Physik 133, 325
{1952). :

4 This conjecture was suggested to the writer in a correspondence with B. Zu-
MIino, New York. '
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lead to the same consequences, e.g., the exclusion of some
couplings. It seems to be a matter of taste which of these two
postulates is considered the more fundamental one.

.VVe shall be concerned with various types of symmetry ope-
T‘aUOl:lS: viz., two types of time reversal, particle-antiparticle con-
Jugation, and reflections in space and in time. These operations
will be uniformly treated as substitutions ; the prescriptions for
th<?§e substitutions are summarized in Table 1. In this table,
@ (r) means the operator of a spin 0 field, qb(}*) the operator
corl‘i:sponding to its derivative with respect to time; furthermore
or (7) (]i='1, 2, 3) are the space components of a spin 1 field,
anq ®o (1) is the time component; finally, ¢, (7), ¢ () are the
der177al:ives ‘with respect to the time, and p (7) is the operator of
a‘Dlrac field. All operators shall be understood in the Schré-
dinger representation, where one, of course, has identities of
the form

¢ (%) = i[H, ¢ (F)]. (0.1)

Further, one has subsidiary conditions for spin 1 fields with
non-vanishing rest mass. In the table, the quantities &, &y, &y,
o> etc., are multiplicative c-numbers, whereas the symbolzs
U, €, T mean four-rowed matrices acting on the spinor indices.

I‘n section 1, the mathematical definitions of the two kinds
of time reversal and of particle-antiparticle conjugation are
summarized. In section 2, the proof is given for the invariance
of a relativistic field theory under time reversal of the second

kix_ld. Ivn Appendix 2, a lemma on the covariant quantities which
can be constructed from Dirac spinors is proved.

1. Time reversal of the first and second kind,
and particle-antiparticle conjugation.

The (ime reversal of the first kind was formulated for the
first time by WieNER'; the substitutions on the field operators,
corresponding to this operation, were given in a previous paper?.
These substitutions are summarized in the second column of
Table 1. The most essential prescription is that, according to the

: VV“IGNER, E. P., G{ttinger Nachr. math.-phys. KI. 1932, 546,
LUpErs, G., Z. Physik 133, 325 (1952), in the following quoted as A.
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(e.g., 7, = — 1 for the Maxwell field). For real fields one has,
of course, to identify ¢* (7), o} (7), @i (¥) with @ (7), ¢ (7),
@, (T) in the prescriptions for the substitutions.

The matrix C is defined by

CTY%C=+eg C'prC=—8 (1.3)
and
cct =1 (1.4)

uniquely up to a factor of modulus one. From a comparison
of (1.1) and (1.3), one sees that the malrix

T = C*U (1.5)

- - - - >
anticommutes with the Dirac matrices &, f
o

Tl T = —a, T?uﬁT:;ﬁ. (1.6)

As T is furthermore a unitary mairix, one may put
T = ozaga,fl = i y4ys, (1.7)

which gives a relation between the phase factors of U and C.
For a Majorana field' the anticommutator between y* )
and % (7') holds unchanged, but one has the subsidiary con-

dition?
v (F) = Cw (), v (&)= Cyp*(F). (1.8)

The operators y () and v (7") do not anticommute any longer
but, as a consequence of the foregoing equation, one finds

{pa (), vp(F) ) = Cap 5T — 7). (1.9)

From a special row of the table one sees that, for Majorana
fields, &, is restricted to + i and 7y, to - 1.

The time reversal of the second kind is obtained if one, first?,
performs a particle-antiparticle conjugation and, subsequently,
a time reversal of the first kind. The result of this sequence of

» Masorana, E., Nuove Cimento 14, 171 (1937).

2 These two equations are compatible because of eq. (A 1.2) in Appendix 1.

3 This special order of the operations was chosen only to make the prescrip-
tion unique. :
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operations is summarized in the fourth column of the table. In
all cases, one has

end =1 ‘ (1.10)

(Note that d6* = 11). The matrix T has been defined by eq.
(1.7).

All these symmetry operations can be applied to state vectors
by the preseription given in A: Write any state vector ¥ in the
form

Y —_0Y,, (1.11)

where ¥, is the vacuum of the free fields, and perform the sub-
stitutions on the creation operator £2. This prescription is unique
in spite of the various possibilities of writing down £ as pointed
out in A. The prescription just formulated does not lead to con-
tradictions, as all three operations transform creation operators
into creation operators and annihilation operators into anni-
hilation operators. '

'A given field theory is invariant under a symmetry operation
if, in the Schrodinger representation, the commutation relations
between the field operators, the Hamiltonian H, and possible
subsidiary conditions are preserved. One easily cbecks that this
is true for all symmetry operations considered so far if one has
non-interacting fields, If we restrict ourselves to interaction
Hamiltonians without derivatives, the commutation relations hold
unchanged and one has only to examine the interaction part,
Hj;, of the Hamiltonian. That means that we have to investigate
whether such a choice of the ¢-number factors in the substitutions
can be made so that H; is simply multiplied by 4 1. Therefore,
it is quite clear that a non-irivial problem occurs only if the
interaction Hamiltonian is a sum of elementary interactions,
where the interaction density, #,(7), is given by a simple product
of field operators, supplemented, if necessary, by the Hermitian
adjoint expression. If one allows for first derivatives of the Bose
fields in the interaction, one has to examine both cormumutation
relations and Hamiltonian; we shall, however, avoid this dif-
ficulty by constructing a *“‘nucleus of the interaction representa-
tion”” which gives commutation relations as in the case without
interaction.
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A substitution which does not affect c-numbers and the order
of factors in products can be generated by a canonical trans-
formation. Consequently, the particle-antiparticle transformation
1s the only transformation considered in this section, which is
equivalent to a canonical transformation.

2. Invariance of relativistic field theories under time
reversal of the second kind.

In order to prove; for relativistic field theories, the invariance
under time reversal of the second kind it is, primarily, necessary-
to give a specified definition of these field theories. Only the case
of non-derivative couplings will be treated in some detail. The:
modifications of the cons1delat10n/s for derivative couplings (first
order derivatives of Bose fields) are discussed at the end of the

section.

A relativistic field theory with non-derivative coupling, con-
stituted by fields of spin 0, 1, /,, will be defined by the fol-
lowing two postulates. .

I. The commutation relations are identical with those for th‘
free fields.

II. The interaction part, H;, of the Hamiltonian is a Hermitian
operator containing no derivatives of the field operators, and
the corresponding localized density transforms like a scalar
under the orthochronous Lorentz group (including reflections

in space, but not in time).

It would certainly be more satisfactory to give a more fund

mental definition of relativistic field theories, using the Lagrangian
formulation, etc. But, for the present purpose, this would involve

the introduction of comparatively complicated general consider

tions. We are convinced that our results hold also for widé;
classes of relativistic field theories which are not covered by the

postulates I, IT and I, IT', respectively.

In addition to postulate I, we impose a restriction on th
relation between different Dirac fields which, in principle, migh
either commute or anticommute®. We explicitly assume

1 In contrast to opinions occasionally expressed in the literature, there seem:
not to exist a simple correspondence between theories with anticommuting Dirac
fields and those with commuting Dirac fields if one has more than two such fields:
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Ia. Kinematically independent Dirac fields anticommute.

This is a necessary condition for the general validity of the proof
to be given below.

As one of the steps in our proof, viz. the formal reflection
in time, leads to a veversal of the order of factors in products,
we assume that all products in #; (7) are symmetrized in the
ame way as they are in the so-called ‘‘charge symmetrical”’

la. Each product of m Bose fields and 2 n Dirac fields is to

.. -be replaced by the sum, divided by (m + 2n)!, of all
‘permutations of the factors, each of the terms being multi-

© plied by + 1 or — 1 for an even or odd permutation of the
Dirac fields, respectively.

aking use of postulate Ia, it is seen that this symmetrized pro-
ct has the simple property that it is multlphed by (—)" if

he order of all factors is reversed.

“Before entering into the proof that the invariance under time
ersal is a mathematical consequence of the postulates I, Ia,
I, Ila, we have first to make clear the way in which Dirac
ields can ilppeal‘ in #A; and then to formulate in more detail
he refléction in space. The form in which Dirac fields enter
rould be restricted by a further postulate, but this is not necessary
we make use of a lemma proved in Appendix 2. According
this- lemma -every covariant quantity consisting of products
)] 2n spmors can be represented as a hneal combmatlon of

Py, Py, IRV IPYLYsy, pysy. (2.1)

In postulate II, the invariance of H; under reflections in space
s-stated. The substitutions corresponding to a reflection at
e origin of the coordinate system are summarized in column 5

2 HEISENBERG, W., Z. Physik 90, 209, 92, 692 (1934); ScmwiNGER, J., Phys.
V. 74, 1439 (1948).
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of Table 1. The expressions given there are more general than
necessary, as one usually restricts &,, &, to the values 4 1. Fields
with £y ; = + 1 are denoted as proper fields and those with
50,1 = — 1 as pseudofields. We shall, however, not restrict a,’-‘%
apart from having modulus one. One easily checks that the
quantiiies (2.1), constructed from Dirac fields, transform just like
ordinary scalars, vectors, tensors of rank two, pseudovectors,
and pseudoscalars, if one disregards for the moment the factors
&y, Invariance under reflection in space means that the factors
& can be chosen in such a way that the interaction density, apart
from the substitution of ¥ by — 7, is simply multiplied by + 1.
Then the integrated interaction Hamiltonian Hj is evidently in-
variant.

After these preliminaries we are able to give the proof of
the invariance under time reversal of the second kind. This
proof proceeds in two steps. First, we shall show that a field
theory covered by the postulates given above is invariant under
a “formal reflection in time”, which essentially is the Loreniz
transformation of the operators corresp)onding to a reversal of
the direction of the time axis. Subsequently, we shall demon-
strate that this reflection in time is equivalent to just the time
reversal of the second kind, to which one can go over by the
process of Hermitian conjugation.

The substitutions corresponding to the formal reflection in
time are summarized in column 6 of the table. It is an essential
feature of this reflection that the matrix 7' (eq. (1.7)) plays the
role of the corresponding spinor transformation. It should, per-
haps, be mentioned that this operation is the only one of all
substitutions considered in this paper which cannot be applied
to state vectors in a simple manner, as it transforms creation
operators into annihilation operators, and vice versa. But this
does not matter in our connection, as this reflection enters only
as an intermediate step in our proof.

This formal reflection in time is to be accompanied by a
reversal of the order of factors in products in order to preserve
the commutation relations of the Bose fields. The symmetrization
postulate 1la was made in order to have simple behaviour under
this reversal of the order of factors. Under this reversal, sym-
metrized products of operators, among them 2n Dirac fields, are

Nr. 5 13
multiplied by ()" as already pointed out. This result may be
expressed by saying that each covariant quantity (2.1) takes up
an additional factor — 1. Consequently, one can easily check
that the bilinear covariants transform under formal reflection
in time, just as ordinary scalars, vectors, etc., and as it was
postulated in the table for Bose fields. Thus, as the interaction
density 9{; (¥) is formally a scalar under the proper Lorentz
group, and as we choose for the reflection in time the same
factors £ which made the Hamiltonian invariant under reflection
in space (cf. Table 1), the field theory in question is also invariant
under formal time reflection®.

In the second step of the proof, we go over from the Hamil-

tonian reflected in time to that obtained by time reversal of the
second kind by means of Hermitian conjugation®. The Hamil-
tonian or, more explicitly, its interaction part, was assumed to
be a Hermitian quantity (postulate II) and is, therefore, not
changed by this operation®. On the other hand, all field operators
are now replaced by the Hermitian adjoint operators, all c-num-
bers by the complex conjugated numbers, and the order of
factors in all products is reversed. Therefore, the original order
of factors in all individual, not symmetrized, products is resti-
tuted. In this way one gets in fact that Hamiltonian which one
can obtain from the original one by a time reversal of the second
kind if one chooses the factors 4, entering in the time reversal
of the second kind, in such a way that

£6 = 1. (2.2)

This can be seen from a detailed study of the table. The con-

dition (2.2) can be fulfilled also for real Bose_ fields and for
Majorana fields.

i Perhaps it should be emphasized that this reflection in time is treated as
a purely formal operation. The problem whether Dirac. fields are measurable
quantities or not does, therefore, not occur. ‘

2 This connection between the formal reflection in time and the time reversal
of the second kind throws some light on a discrepancy between results obtained
by ScawiNgERr (Phys. Rev. 82, 914 (1951)) and by Watawnase (I. c.). The time
reversal applied by ScHWINGER is, in our language,{ a formal reflection in time;
on the other hand, WaranaBe pointed out that only time reversal of the second
kind (his standpoint I), but not time reversal of the first kind, leads to a determina-
tion of the commutation relations.

3 In this connection, it should perhaps be noted that proofs of the invariance
under time reversal or under particle-antiparticle conjugation, for a given field
theory, as a rule make use of the Hermitian character of the Hamiltonian.
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In this way the proof is finished; the invariance under time
reversal of the second kind is a mathematical consequence of
the postulates I, II, Ia, ITa. Then, the equivalence of time reversal
of the first kind and of particle-antiparticle conjugation is ex-
pressed by eq. (1.10), which allows us to go over from one
operation to the other.

Finally, the proof has to be extended to couplings involving
first derivatives of the Bose fields. To this purpose we make a
transformation which can be considered as going over to a
“nucleus of the interaction representation’”. We postulate! that
it is possible to express the operators ¢ @), ¢ @), g (F), ete.
by other operators @ (¥), ¢ (¥), @, (¥), in such a way that

I'’. The commutation relations for the fields @ (T) etc. are form-
ally identical with those. for the original free fields (with-
out ~).

II'. The Hermitian Hamiltonian becomes a sum of a part H 0>
which is formally identical with the free field Hamiltonian
for the original fields, and an intere’/i@tion part Hj, the density
of which is the 00-component ¢f a relativistic tensor (if
expressed by the fields ¢ (¥) etc.!).

We further retain the postulates Ia, IIa, but formulate them
now, of course, for the fields (;ND(T) etc. Then, the whole proof
runs as in the case with no derivatives if one applies the sub-
stitutions given in the table on the fields ¢ (7). ete.

Usually, the fields with and without ~ are different only for
time derivatives of Bose fields. From

rH=i® @3

and the identity (0.1), it then follows that one actually has the
right substitution for ¢ () if one simply applies the substitutions

on the original fields. But, for the argwment of relativistic co- = -

variance, the transition to the fields ¢ (%) etc. is a rather essential
step.

1 Cf. the remarks on the notion of relativistic field theories succeeding postu-
lates 1 and IL
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Appendix 1
Pz'bperties of the matrices U, C, and T

The four-rowed matrices U and C are uniquely defined up
to a factor of modulus one by egs. (1.1), (1.2), or (1.3), (1.4),
respectively. For the transposed matrices one has!?

Ul =—vu, C¢%'=+4cC. (A1.1)
From (1.2) or (1.4) and (A 1.1), it follows that
UU* = —1, CC* = 4+ 1. (A1.2)

For the matrix T (eq. (1.7)) one finds

UTUY = €TCY = — T, (A 1.3)

1t is, according to eq. (1.5),

T = C*U = — U*C A1.4)
where use was made of
T = Tt ' (A 1.5)
and (A 1.1). Finally, one has |

TTH = 1. (A 1.6)

1 Proof either explicitly using a special representation or, more generally,
Iollowing a method by Haanrtses and Pavrr. Cf. Pauri, W., Ann. Inst. H. Poin-
caré 6, 137 (1936).
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Appendix 2

Covariant quantities constructed from Dirac spinors

Lemma: Each covariant quantity constructed from linear
combinations of products of n spinors with star (%*) and n spinors
© without star (y)* can be represented as a linear combination of

products of n bilinear covariant quantities (eq. (2.1)). It is further
possible to build these bilinear covariants for a special pairing,
i. e., a special correspondence between the ¥ = y*8 and v ope-
rators so that each pair is connected by a general y matrix (1,
Yur ViV €iC.).

Additional remark: A special case of this lemma was proved
by PavLr and Fierz®: For four spinors, all scalars constructed
from the bilinear covariants for any pairing can be expressed
as a linear combination of products of bilinear covariants for
a special pairing. Our lemma is more general in several respects.
It asserts that, e. g., any expressioiﬁ/ w?a Yap 1/)3;, Wi Faﬁya trans-
forming like a scalar can be writtén as a linear combination of
(P1%2) (Pava), (¥1vuwe) (Ps¥uya), etc. Further, the proof is not
restricted as regards number of spinors and rank of the tensor
to be constructed. The wider validity of our lemma is counter-
balanced by the fact that we use a more abstract tool for our
proof than Pavir and Fierz did.

Preliminaries to the proof: Every finite irreducible representa-
tion of the proper Lorentz group can be characterized by two
integral or half integral numbers. One denotes such a representa-
tion by the symbol D(j,, j,). A Dirac spinor (without star as well
as with star) transforms according to the representation D (*/5,0)

4+ D(0,%,), which is reducible under the proper Lorentz
group, but irreducible under the orthochronous Lorentz group.
To the construction of all possible covariant quantities from a
pair of Dirac spinors corresponds the decomposition of the
Kronecker product of the representations, which can be done
according to general rules

(D2 0) + D(0, Y5))? =
2 D(0, 0) + 2 D(Ya, 1) + D(1, 0) + D(0, 1). |

1 This assumption means no loss of generality, as the matrix € always allows
us Lo go over from one Dirac spinor to another which behaves like the Hermitian
adjoint spinor.

2 Fierz, M., Z. Physik 104, 553 (1937).

(A2.1)
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On the right hand side, one has just the well known bilinear
covariants 2 scalars D(0,0), 2 four vectors D(%/y, /5), and
one general six vector D(1,0) 4+ D(0, 1). Note that we here
classify only with respect to the proper Lorentz group, where
no difference between proper tensors and pseudo-tensors exists.

Proof of the lemma: For 2 n Dirac spinors, the representation

(D(Yar 0) + D(0, /)™ (A2.2)

gives, if decomposed into irreducible constituents,

(1) the linear independent covariant quantities which can be
constructed from these 2 n spinors (as (A'2.2) is the 2 n™ power
of D(¥fa, 0) +.D(0, 12)),

(2) the covariant quantities which can be constructed from
the products of r bilinear covariants for a special pairing (as
(A 2.2) is the n™ power of (A 2.1)).

Consequently, the number of linearly independent tensors of
given rank which can be constructed from n bilinear covariants
for a given pairing is not less than the number of linearly in-

dependent tensors of that.rank which can be constructed from
2 n spinors.

Indleveret til selskabet den 23. oktober 1953.
Feerdig fra trykkerjet den 14. februar 1954,






