LONGITUDINAL VARIATION OF LARGE SCALE VERTICAL

MOTION IN THE TROPICS

by

ARTHUR C. KYLE B.A., Texas A&M University (1965) B.S., Pennsylvania State University (1966)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 15, 1970

Signature of Author. Department of Meteorology, Jan. 1970

Certified by

(Thesis Supervisor

LONGITUDINAL VARIATION OF LARGE SCALE VERTICAL

MOTION IN THE TROPICS

$\mathbf{B}\mathbf{Y}$

ARTHUR C. KYLE

Submitted to the Department of Meteorology on 15 January 1970 in partial fulfillment of the requirements for the degree of Master of Science.

ABSTRACT

Vertical motion is computed from the continuity equation from 40N to 30S for long term seasonal means. A three cell standing eddy structure was found in each season. The patterns are compared with rainfall climatology and satellite cloud data and found to show good agreement. The \overline{w} patterns for December 1962-February 1963 and December 1963-February 1964 are computed, and deviations in \overline{w} for each year from the long term mean for this season are compared with precipitation deviation from normal throughout the tropics, again with good results. The year to year change in $\overline{\boldsymbol{w}}$ is presented and discussed. It was found that the east-west gradient of vertical motion was much weaker in December 1963-February 1964. This is attributed to a change in phase of Walker's Southern Oscillation from positive to negative. This decrease in the east-west circulation was followed by an increase in the meridional Hadley cell circulation. This, coupled with an increase in the strength of the polar vortex, led to stronger mid-latitude westerlies during December 1963-February 1964.

Thesis Supervisor: Reginald E. Newell Title: Professor of Meteorology

TABLE OF CONTENTS

Ι.	INTRODUCTION	5
II.	DATA AND ANALYSIS	9
III.	LONG TERM SEASONAL OMEGA	12
IV.	COMPARISON OF DECEMBER 1962-FEBRUARY 1963 AND DECEMBER 1963-FEBRUARY 1964 WITH THE LONG TERM MEAN	17
V.	COMPARISON BETWEEN DECEMBER 1962-FEBRUAR	Y
	1963 AND DECEMBER 1963-FEBRUARY 1964	21
VI.	CONCLUSION	30
	ACKNOWLEDGEMENTS	

BIBLIOGRAPHY

.

ş

.

LIST OF TABLES

•

,

.

.

\$

Table 3.1 Zonal avera seasons.	age of $\overline{\boldsymbol{\omega}}$ (10 ⁻⁴ mb/sec) for the four	35
Table 4.1 Zonal avera February.	age $\overline{\boldsymbol{\omega}}$ (10 ⁻⁴ mb/sec) for December-	36
Table 4.2Total precipionfrom 30 year notand December 19	pitation (mm) and total deviation (mm) rmal for December 1962-February 1963 963-February 1964.	37
Table 5.1 Mean meric transport (m ² /se	lional velocity (m/sec) and momentum ec^2) by transient eddies for 200 mb.	44

.

.

f

.

• .

•

LIST OF FIGURES

Figure 1.1	Mean sea-surface temperature for January (°C) (Hydrographic Office, U.S. Navy, 1944)	45
Figure 3.1	Mean vertical velocity at 500 mb for December- February. Units: 10 ⁻⁴ mb/sec.	46
Figure 3.2	Mean vertical velocity at 500 mb for March-May. Units: 10^{-4} mb/sec.	47
Figure 3.3	Mean vertical velocity at 500 mb for June-August. Units: 10^{-4} mb/sec.	48
Figure 3.4	Mean vertical velocity at 500 mb for September- November. Units: 10^{-4} mb/sec.	49
Figure 4.1	Mean vertical velocity at 500 mb for December 1962-February 1963. Units: 10^{-4} mb/sec.	50
Figure 4.2	Mean vertical velocity at 500 mb for December 1963-February 1964. Units: 10^{-4} mb/sec.	51
Figure 4.3	Deviation of mean vertical velocity at 500 mb for December 1962-February 1963 from the long term mean for December-February. Units: 10^{-4} mb/sec.	52
Figure 4.4	Deviation of mean vertical velocity at 500 mb for December 1963-February 1964 from the long term mean for December-February. Units: 10 ⁻⁴ mb/sec.	53
Figure 4.5	Total deviation of precipitation for December 1962- February 1963 from the 30 year mean. Units: mm.	54
Figure 4.6	Total deviation of precipitation for December 1963- February 1964 from the 30 year mean. Units: mm.	55
Figure 5.1	Change in mean vertical velocity from December 1962-February 1963 to December 1963-February 1964. Units: 10^{-4} mb/sec.	56

.

I. INTRODUCTION

It has long been thought that air-sea interaction plays an important part in the general circulation of the atmosphere. The sea-surface temperature depends on the wind field, and a change in one will bring about a change in the other. Therefore, it is of particular interest to look at a case of a significant departure from normal of sea-surface temperature over a large area.

A map of sea-surface temperatures for the equatorial South Pacific (Fig. 1.1) shows that the water from about 160W to the South American coast is colder than the global average for these latitudes and that the Pacific waters west of 160W are warmer than the global average. The air above the cold water belt is too cold and heavy to join in the ascending motion in the Hadley circulation. Instead, the equatorial air flows westward to the warm west Pacific where it can take part in large-scale moist-adiabatic ascent (Bjerknes, 1969). There is then a return flow toward the east in the upper troposphere or lower stratosphere and accompanying descent in the eastern Pacific. Thus there should be large-scale cloudiness over areas of warm water and relatively clear skies over areas of cold water. This can be easily seen on maps of global cloudiness obtained by satellite observations (Hubert et al., 1969).

8

Bjerknes (1969) calls this exchange of air between eastern and western hemispheres the "Walker Circulation". This is a part of the mechanism of the "Southern Oscillation" statistically defined by Sir Gilbert Walker and Walker and Bliss in the World Weather I to VI sequence of research reports (referenced in the Bjerknes article). Troup (1965) discusses the Southern Oscillation and also suggests that changes in the direct toroidal circulation between the warmer eastern and cooler western hemispheres have a major effect on the Southern Oscillation.

The westward extent of the cold water of the South Equatorial Current depends on upwelling of colder water from below, which depends on the distribution and strength of the easterlies along the Equator. Bjerknes (1969) presents a time series of sea and air temperature from 1950 to 1967 for Canton Island (02^o 48'S, 171^o 43'W). Most of the time water of equatorial upwelling reaches Canton Island, but in three cases (late 1957, late 1963 and late 1965) the sea-surface temperature is warmer than the air temperature. These periods are also marked by above average precipitation. Krueger and Gray (1969) show these same data in a time series as well as showing that the easterly component of the surface wind approaches zero during these periods. In addition, Krueger and Gray show maps of December-February seasonally averaged sea-surface temperature anomalies for the eastern tro-

8

-6-

pical Pacific for the five year period 1962 to 1967. These maps show that Canton Island is fairly representative of most of the equatorial Pacific in that the whole area from 180° to South America was abnormally warm during December 1963 - February 1964 and December 1965 - February 1966. Bjerknes concludes that during these periods, the large-scale ascending air cell has moved eastward to include Canton Island. Support for this hypothesis is shown by satellite nephanalyses (Bjerknes et al., 1969). The position of the $\frac{6}{10}$ isoneph at the Equator moves eastward as the sea-surface temperature decreases. Bjerknes et al., (1969) present monthly mean cloud nephanalyses (taken from Godshall et al., 1969) for several periods, showing that on the average there is little cloudiness from the Equator to 10S east of 180° except during those months when the warm water has moved eastward.

Because these periods of anomalously warm water at Canton Island are accompanied by increases in precipitation, they are periods of greater release of latent heat. The Hadley circulation, which is primarily driven by the release of latent heat in its ascending branch, is thus, accelerated to produce a greater transport of heat and momentum to higher latitudes. This is then shown (Bjerknes, 1966, 1969) to maintain stronger than normal westerlies in the middle latitudes.

2

The purpose of this paper is to examine large-scale vertical motion patterns in the tropics by computing $\boldsymbol{\omega} \left(\frac{\partial p}{\partial t} \right)$. First, the long term seasonal means are looked at and related to the observed precipitation patterns. Next, $\boldsymbol{\omega}$ is computed for December 1962-February 1963, a period of near normal sea-surface temperature at Canton Island, and for December 1963-February 1964, a period of above normal sea-surface temperature for the eastern equatorial Pacific. Each period is compared with the long term mean. Finally, the change from one year to the next is investigated with special interest in the relationship between vertical motion and sea-surface temperature in the eastern equatorial Pacific. Also of interest is the relationship between changes in the Hadley cell circulation and the circulation at higher latitudes.

II. DATA AND ANALYSIS

The data used in this paper were originally put in working form by J. W. Kidson and a detailed explanation of the data and its sources can be found in Chapter 2 of Newell et al., (1970). The data are from 303 radiosonde and radar wind stations within the overall period July 1957 to December 1964. All available stations between latitudes 35N and 30S were used and some additional stations were used to extend the area covered to 45N. Many stations did not report regularly throughout the entire period, so the quantity and quality of the data varied considerably between stations. Most data were taken at 0000 GMT, but 0600 GMT and 1200 GMT data were included where necessary. A complete station list along with the source and reporting period is presented in Newell et al., (1970).

The daily data for each station were first used to compute monthly mean statistics at all available levels from the surface to 7 mb including the quantities \overline{u} , \overline{v} and $\overline{u'v'}$ used here. The long term means for four seasons, December-February, March-May, June-August and September-November were computed, using the seven years of data. Maps of the long term means for the quantities \overline{u} , \overline{v} and $\overline{u'v'}$ can be found in Chapter 3 of Newell et al., (1970).

-9-

The continuity equation

.

z

$$\frac{\partial \Phi}{\partial m} = -\Delta \cdot \Lambda$$

is used to obtain w, the vertical velocity in pressure coordinates. It is assumed that w=0 at 1000 mb as was done for example by Lateef (1967). Since the vertical velocities thus computed tend to increase with height, the result is a non-zero value for the net divergence in a column. In this study w at 100 mb was set to zero and the w at each lower level was reduced proportionately.

i.e.
$$w'(p) = w(p) - \left[\frac{1000 - p}{900}\right] w(100)$$

The grid used was 20 dcgrees of longitude and 10 degrees of latitude. The vertical velocity was computed at the center of the grid using the three monthly means of \overline{u} and \overline{v} as read from the respective maps at the significant levels from 1000 mb to 100 mb. Whereas \boldsymbol{w} was computed for each level, it was decided that the value at 500 mb would be the best to be used to compare with rainfall.

In order to study the difference in the vertical motion patterns from year to year, the December-February season for 1963 and 1964 was chosen. The zonal and meridional wind components were averaged to give a three month mean for each station reporting during December 1962-February 1963. These were then plotted and hand analyzed for each significant level from 1000 mb to

100 mb. The December 1963-February 1964 season was chosen because during this time the sea-surface temperature at Canton Island was abnormally warm. Thus, one purpose of this paper is to investigate the "Walker Circulation" (Bjerknes, 1969). It was found that most of the station wind data north of 30N had been obtained from the five years of data under the Northern Hemisphere General Circulation Study of Professor V.P. Starr, and this data ended in April 1963. Therefore, the analysis region was reduced to 30N for December 1963-February 1964. The u and \overline{v} maps for these two periods are in Chapter 10 of Newell et al., (1970). Whereas there were 260 stations available for December 1962-February 1963, there were only 110 stations for December 1963-February 1964. Since nearly all the stations for which datawere not available for the second period were north of 30N, it was not thought that this would greatly influence the equatorial regions which are of primary concern in this paper. The $\overline{\boldsymbol{\omega}}$ map for December 1962-February 1963 was computed from 35N to 25S as were the seasonal long term $\overline{\omega}$ maps. The w map for December 1963-February 1964 covers 25N to 25S.

8

-11-

III. LONG TERM SEASONAL OMEGA

In this chapter the long term means of \vec{w} for the seasons December-February, March-May, June-August and September-November are presented. To check on the accuracy of these maps, computed as outlined in Chapter 2, they are compared with rainfall climatology and with satellite cloud nephanalyses. Because of the scarcity of wind reporting stations in all but the continent sections of the tropics and because of the large grid used in the computation of \vec{w} , it is not assumed that the numerical values shown on these \vec{w} maps are entirely correct. However, it is thought that the patterns fit well with what is to be expected for vertical motion and that the numbers can be compared relative to each other.

The long term seasonal \overline{w} maps are presented in Figs. 3.1-3.4. The units are 10^{-4} mb/sec (≈ 1.5 mm/sec). Easily seen is the Intertropical Convergence Zone (ITCZ) and its movement throughout the year. To further show this, zonal averages for \overline{w} are computed for each season in Table 3.1. In the December-February season, the ITCZ is slightly south of the equator in all regions. In June-August the ITCZ has moved north of the equator, to about 5N north over South America and Africa. There is widespread ascent in the monsoon regions of Southeast Asia and

-12-

the western Pacific, with the centers of ascent at 10N. For both the March-May season and the September-November season the ITCZ is found north of the equator, being somewhat further north during September-November. It is also noted that the Hadley cell is a little stronger in June-August than in December-February. Kidson et al.,(1969) found that the mass circulation of the northern winter cell is approximately 1.7×10^{14} g/sec and that the southern winter cell is about 2.0×10^{14} g/sec.

Perhaps the most interesting result of this study was the finding of the three cell structure of vertical motion in the equatorial regions. For each season there are three main areas of upward motion: over South America, over Africa, and a broad area of ascent with centers near Indonesia and in the western Pacific. There are areas of descending air between the areas of rising air or in some cases a large decrease in the magnitude of the upward motion. In the past most studies of the Hadley circulation have used zonal averages, and this three cell pattern is hidden by the averaging. Recent satellite cloud picture studies have shown alternating clear and cloudy regions in the tropics, and Hubert et al., (1969) have suggested that there is an east-west gradient of vertical motion. Troup (1965) and Bjerknes (1969) show how a torodial circulation exists between the hemispheres in the Pacific. It is assumed that part of the air that rises in these three cells is carried zonally as well as meridionally. This study seems to confirm that hypothesis.

The upward cell over South America is markedly constant in longitude throughout the year. The center is along 70W for each season, moving only north and south with the sun. It is strongest during December-February when it is furthest south. The large area of ascent in the western Pacific and near Indonesia has little variation with longitude also. One center is generally near 95-100E and the other remains on 170E. Whereas the center over South America was weakest in June-August, both centers in the western Pacific are strongest in this season.

The area of rising motion over Africa varies the most longitudinally. The center goes from about 30E in December-February to 10E in June-August. It is this region which can best be compared with rainfall climatology, using the mean monthly rainfall maps for Africa as compiled by Thompson (1965). For December-February, Thompson shows the area of maximum rainfall to be 300-400 mm per month at about 13S and 30E, a little south of the area of maximum ascent on Fig. 3.1. From March to April, the rainfall area moves to north of the equator, being centered on the equator in April with the maximum (200-300 mm per month) nearer the western coast. This agrees well with Fig. 3.2. During

-14-

June-August the maximum rainfall area has moved almost entirely north of the equator, becoming centered at 5N. There are two centers of heavy precipitation, the coast of Nigeria with about 400-600 mm per month and along the coast of Sierra Leone, Liberia and Ivory Coast with a maximum of 1000 mm in Sierra Leone in August. Fig. 3.3 shows the center over Nigeria but not the western one. From September to November, the maximum rainfall area moves southward along the western coast of Africa to become centered over Gabon in November. The three monthly average would show the center of the rainfall belt to be slightly north of the equator and mainly in the western half of the continent with 400-600 mm per month. This is in good agreement with Fig. 3.4. It is also noted that the March-May season has the least monthly precipitation and the weakest rising motion and that the June-August season has the greatest monthly precipitation and the strongest rising motion. The areas of subsidence on Figs. 3.1-3.4 also correspond well with areas of Africa which Thompson shows as having very little rain. In particular, the continent north of the equator is dry during December-February and south of the equator is dry during June-August. The satellite nephanalyses of monthly cloudiness of Kornfield and Hasler (1969) show the same thing.

Figs. 3.1-3.4 show several interesting features recently seen in analyses of satellite cloud brightness data. A band of

-15-

cloudiness maximum is oriented southeast to northwest in the southwestern Pacific from about 30S and 150W to the equator. It intersects the equator at different longitudes, depending on the westward extent of the upwelling of the South Equatorial Current (Bjerknes et al., 1969). Corresponding with this cloudiness band is the southeastward extension of ascent from New Guinea to 30S and 150W on Figs. 3.1 and 3.2. There is downward motion in June-August (Fig. 3.3) in this region, and Hubert et al., (1969) show that the cloudiness band is less defined in this season. A southeastward extension of cloudiness from South America shown by Hubert et al., (1969) is not evident in Figs. 3.1-3.4, except possibly in December-February.

The $\overline{\omega}$ maps computed in this study also would not support the theory of a double ITCZ for most areas. It is only in June-August that there is a continuous belt of ascent through the Atlantic and Indian Oceans, and even then it is narrow and weak. There is subsidence in the eastern Pacific extending generally to 20S in all seasons, with only a weak ascent belt stretching from South America to 130W in the Northern Hemisphere in summer. The satellite cloud pictures of Hubert et al., (1969) show two cloud bands exist over the western Pacific during three seasons. This cannot be seen on Figs. 3. 1-3.4 due to the great distance between wind reporting stations in this area and in part to the grid size used

-16-

in the computation of $\overline{\boldsymbol{\omega}}$.

IV. COMPARISON OF DECEMBER 1962-FEBRUARY 1963 AND DECEMBER 1963-FEBRUARY 1964 WITH THE LONG TERM

MEAN

Based on the evidence presented in Chapter 3, it appears that the maps computed in this study present a true picuture of the large scale vertical motions in the tropics. In this chapter, this technique is used to look at \overline{w} for two particular December-February seasons and their differences from the long term \overline{w} for December-February.

Figs. 4.1 and 4.2 are the December 1962-February 1963 and December 1963-February 1964 maps for $\overline{\boldsymbol{w}}$ at 500 mb. The units are the same as used for the long term seasonal means in Chapter 3. It was assumed at the beginning that December 1962-February 1963 was an "average" year, and the major features are the same as on the long term $\overline{\boldsymbol{w}}$ maps for this season (Fig. 3.1). There is a shift in the position of some centers of vertical motion. The descent area in the eastern Pacific has pushed further southward and the descent areas in the Atlantic have strengthened as did the area in the western North Pacific. There are increases in ascent along the western coast of Mexico and the center over South America. The center over southern Africa is situated southward

and is stronger. These and other changes can be seen in Fig. 4.3, a difference map found by graphically subtracting the long term $\overline{\boldsymbol{\omega}}$ for December-February from $\overline{\boldsymbol{\omega}}$ for December 1962-February 1963 (Fig. 4.1 minus Fig. 3.1). December 1963-February 1964 was a season of abnormally warm sea-surface temperature in the equatorial regions of the eastern Pacific. Therefore, it is of particular interest to see what effect this has on the $\overline{\omega}$ pattern for this three month period (Fig. 4.2). There are several significant differences between \overline{w} for December 1963-February 1964 and the long term mean (Fig. 3.1). The descent in the warm water region of the eastern Pacific is weaker. Also there is a large shift to the southeast by the center of the ascent region over South America and the center over Africa. The Gulf of Mexico and Caribbean waters have become a region of strong descent and China has become a region of strong ascent. These changes are presented in the difference map Fig. 4.4 (Fig. 4.2 minus Fig. 3.1).

Table 4.1 is zonal averages of \tilde{w} for the three periods under investigation. The latitude of maximum ascent is 5S for all periods, with the long term mean being the greatest. It is noted that the rising branch of the Hadley cell for December 1963-February 1964 is stronger than for the preceding year at all latitude circles except 5N, and is appreciably stronger at 10S and 15S. This reflects the southeastward shift of the maximums over South America

\$

and Africa and the decreases in the subsidence cells in the oceans at these latitudes for this year.

As a check on the differences from normal of the $\overline{\omega}$ maps for these two December-February seasons, monthly precipitation records for stations in the tropics were looked at. Table 4.2 is a list of the three monthly total of precipitation and the three monthly total deviation from the 30 year normal for as many stations as could be found for December 1962-February 1963 and December 1963-February 1964. The deviations were then plotted for each station and the shaded areas on Figs. 4.5 and 4.6 represent greater than normal precipitation. The solid lines were drawn where there was sufficient data coverage to justify this being done. The clear areas represent below normal precipitation or lack of data. Therefore, Fig. 4.5 may be compared directly with Fig. 4.3 which shows the difference between $\overline{\boldsymbol{\nu}}$ for December 1962-February 1963 and the long term mean. Negative areas on Fig. 4.3 indicate an increase in upward motion which should correlate well with the shaded areas on Fig. 4.5. In general there is good agreement between Fig. 4.3 and Fig. 4.5. The increased ascent regions are South America below the equator, almost all of Africa, Indonesia and western Australia, and the western Pacific from the equator to 20N. All of these areas received above average rainfall during this period. The major areas which had an increase in descent were Southeast Asia and the Philippines and the eastern Pacific west of 150W. The same comparison can be made between Fig. 4. 4 and Fig. 4. 6 (December 1963-February 1964). Here the regions with an increase in upward motion are the southern half of South America, northwestern and southeastern Africa, Southeast Asia, and the islands in the equatorial western Pacific. For the most part, these regions were wetter than normal. The northern half of South America, central Africa, and Australia received less than normal precipitation. It can be seen in Table 4.2 that some stations had significantly large departures from normal, and that all of these were in agreement with the $\overline{\boldsymbol{w}}$ departure maps.

V. COMPARISON BETWEEN DECEMBER 1962-FEBRUARY 1963 AND DECEMBER 1963-FEBRUARY 1964

In the preceding chapter it was shown how the $\overline{\boldsymbol{\omega}}$ pattern for December 1962-February 1963 and December 1963-February 1964 differed from the pattern for the long term mean for this season. In this chapter the $\overline{\boldsymbol{\omega}}$ difference between the two years is looked at. The Southern Oscillation is examined in an attempt to find a cause for the change. The relation between this change in the ascending branch of the Hadley cell and the circulation at higher latitudes is also looked at.

In previous studies of changes of the circulation in the eastern Pacific (Bjerknes, 1969, Kruger and Gray, 1969), it was shown that when the sea-surface temperature at Canton Island becomes abnormally warm, there is an increase in cloudiness and rainfall, and a decrease in the strength of the easterlies. Bjerknes (1969) concluded that this is caused by an easterly shift in the ascending branch of the "Walker Circulation", a toroidal circulation between the eastern Pacific (cold water and persistent high pressure) and the western Pacific (warm water and low pressure). In a time sequence graph Bjerknes shows that significantly above normal precipitation at Canton

8

Island occurs only with the warm sea-surface temperature anomaly. It can be seen in Table 4.2 that this is true for the warm water period of December 1963-February 1964 at Canton Island. Also an eastward shift by the ascent region of the western Pacific can be seen on Figs. 4.1 and 4.2, where the $\overline{\omega} = o$ line has moved about 8 degrees to include Canton Island in the second year.

Looking once again at Fig. 4.1, we find that for December 1962-February 1963, the centers of upward motion and the centers of downward motion are stronger than for the long term mean (Fig. 3.1). The change in $\overline{\omega}$ from December 1962-February 1963 to December 1963-February 1964 shows there are some interesting differences throughout the equatorial regions. This is shown in Fig. 5.1 (Fig. 4.2 minus Fig. 4.1). Here the negative areas show an increase in upward motion or a decrease in downward motion for the second year, depending on the region in which the change takes place. It is noted that for the second year, the centers of ascent (South America, Africa, Indonesia) are weaker and the centers of descent (eastern Pacific, Atlantic and Indian Oceans) are weaker also. In other words, the east-west gradient of vertical motion, which was stronger than normal in December 1962-February 1963, is greatly diminished in December 1963-February 1964. Therefore

it appears that the "Walker Circulation" has been decreased in strength in this year. It also appears that there is an east-west "Walker" type of circulation between South America and the Atlantic Ocean and between Africa and the Indian Ocean as well.

The 1000 mb \overline{u} maps (Chapter 10, Newell et al., 1970) for these two years show that the equatorial easterlies in all three oceans were weaker in December 1963-February 1964.

It is the strength of the southeast Pacific anticyclone which affects the strength of the equatorial Pacific easterlies (Troup, 1965). The pressure variations of this anticyclone are influenced by Walker's Southern Oscillation, which shows a strong negative correlation between pressure anomalies in the southeast Pacific and the tropical Indian Ocean. Easter Island (29S, 109W) appears to be the center of the eastern Pacific pressure anomaly and Djakarta the center of the Indian Ocean pressure anomaly. A positive phase of the Southern Oscillation means above normal pressure at Easter Island and below normal pressure at Djakarta. This leads to a strong "Walker Circulation" between the eastern and western hemispheres. Therefore it appears that a change of phase of the Southern Oscillation could cause such a change as occurred in the "Walker Circulation" from December 1962-February 1963 to December 1963-February 1964.

-23-

The author was unable to obtain any of Walker's original papers, but he did find an excellent review of Walker's work (including numerous figures and tables) by Montgomery (1939). It was not possible to compute the Southern Oscillation Index for the two years in question, but it was found that Canton Island, which Walker shows to be positively correlated with the Southern Oscillation, had a pressure deviation of +1.2 mb in December 1962-February 1963 and a pressure deviation of -0.8 mb in December 1963-February 1964. Djakarta had a pressure deviation of -0.6 mb and +0.3 mb for these two periods. respectively. Walker also has a correlation between the Southern Oscillation in December-February and precipitation for the same season. This shows that Canton Island precipitation deviation is negatively correlated and Djakarta precipitation deviation positively correlated with the Southern Oscillation. Table 4.2 shows this is consistent for the two stations. Other areas with precipitation positively correlated with the Southern Oscillation in December-February are South America north of 20S, central Africa, and northern Australia and the islands in the western Pacific near Yap. These areas all had above average precipitation in December 1962-February 1963 and below average precipitation the year later (Fig. 4.5 and Fig. 4.6). Therefore it was concluded that

-24-

the Southern Oscillation was positive during December 1962-February 1963 and was negative the following year. Since positive sea-surface temperature anomalies in the equatorial eastern Pacific occur when the "Walker Circulation" is weak, this must mean that they occur when there is a change from a positive to a negative phase of the Southern Oscillation.

Krueger and Gray (1969) show three periods of abnormally warm water at Canton Island: April 1957-May 1958, June 1963-March 1964, and June 1965-May 1966. Bjerknes (1969) has carefully analyzed the various parameters during 1963. He found that from March to April there was a pressure drop at Easter Island. This decrease in the southeast Pacific anticyclone was followed one month later by an increase in sea-surface temperature at 165W along the equator. In June the pressure at Djakarta rose nearly 2 mb. Thus was the pressure gradient for the "Walker Circulation" reduced during 1963. Troup (1965) says that the changes in phase of the Southern Oscillation occur mainly in late southern autumn or early winter. Walker found a correlation of +0.84 between the Southern Oscillation in June-August and the Southern Oscillation in the following December-February (Montgomery, 1939). Thus, it appears that the change in phase of the Southern Oscillation which occurred during the se-

-25-

cond quarter of 1963 could explain the change in the vertical motion pattern in December 1963-February 1964.

The effect that the change in the east-west gradient of vertical motion has on the zonal average of $\overline{\boldsymbol{\omega}}$ can be seen in Table 4.2. As was pointed out in Chapter 4, the ascending branch of the Hadley is stronger in December 1963-February 1964 than in the previous year. This should be followed by a greater export of angular momentum from the equatorial regions. Kidson et al (1969) show that the region of strongest divergence of total momentum is near 200 mb and about 10 degrees of latitude in the winter hemisphere, and that most of the transport is contributed by the transient eddies. The zonal average for $\overline{\mathbf{v}}$ and the transient eddies for the two northern winter seasons is shown in Table 5.1. It is noted that the momentum transport by the transient eddies into both hemispheres occurs at about 15N, and the larger transport occurs in December 1963-February 1964. This larger momentum transport would contribute to stronger westerlies at higher latitudes, as was shown by Bjerknes (1969). Krueger and Gray (1969) show that there was a larger transformation from eddy to zonal kinetic energy in the Northern Hemisphere north of 20N during the 1963-64 autumn and winter.

2

Walker devised North Atlantic and North Pacific Oscillations in addition to his Southern Oscillation (Montgomery, 1939). He found that there was a high positive correlation between pressure in the 20N to 50N belt and both oscillations, and a high negative correlation between pressure poleward of 50N and both oscillations. When the North Atlantic Oscillation is positive. there is a decrease in pressure in the polar regions and an increase in pressure in the subtropical regions, which leads to an increase in the general circulation over the Atlantic Ocean. There is not only an increase in the north-south pressure gradient, but a poleward displacement of the Icelandic Low and the Azores High. The North Pacific Oscillation has much the same effect in that ocean. In relating these oscillations to the Southern Oscillation, Walker found the North Pacific Oscillation in December-February has coefficients of -0.52 with the Southern Oscillation both in the same quarter and in the June-August before. Therefore we find a linkage between the east-west pressure gradient (Southern Oscillation) and the north-south pressure gradient (two northern oscillations) and their related circulations. When the Southern Oscillation is positive, the east-west "Walker" type circulation is strong. When the Southern Oscillation changes to the negative, usually in June-August, the North Atlantic and North Pacific Oscillations are positive six months later. Thus, when the

\$

east-west circulation is weak the north-south circulation is strong. The author concludes that this happened in December 1963-February 1964. The pressure change from January 1963 to January 1964 (Bjerknes, 1969) indicates a strengthening of the Aleutian Low and the subtropical Pacific High, showing an increase in the north-south pressure gradient after the decrease in the east-west pressure gradient which occurred in March-July of 1963. In Fig. 5.1 we see a decrease in the east-west gradient of vertical motion in December 1963-February 1964, and in Table 4.1 we see an increase in the north-south gradient of vertical motion for this season. The author concludes that it is a combination of the two which leads to the increase in westerlies in December 1963-February 1964.

Since it appears that a change in phase of the Southern Oscillation has a pronounced effect on the circulation both in the tropics and at higher latitudes, it is important to find a cause for the change. Several explanations have been offered. Troup (1965) found no periodicity for the Southern Oscillation. He concluded that since the change is most likely in southern winter, variations in cyclonic activity in the southeast Pacific could initiate a change in the anticyclone of that region. Professor H. C. Willett (personal communication) has pointed out that since June-August is the monsoon season in Asia, a change in the monsoon circulation could be reflected through the Southern Oscillation to the Southeast Pacific anticyclone. Schell (1956) says that the strength of the Southeast Pacific anticyclone depends on the outflow of subantarctic water along the west coast of South America. Therefore, a variation in corpuscular radiation acting on the Antarctic circulation could influence the strength and extent of the cold ocean current. The physics involved in this is not clear.

It is not possible from the present study to conclude which of the above is the source of change of the Southern Oscillation, as they all could be a factor. A close look at the circulation in the equatorial regions during the second and third quarter of 1963 might help in solving this intriguing question.

VI. CONCLUSION

From the results presented in this paper, it appears that the method of computing vertical motion from the equation of continuity is indeed valid. While there are large areas in the tropics with very few reporting stations, the data are adequate to reveal the large scale circulation. Good agreement was found between the computed $\overline{\omega}$ patterns and rainfall and satellite cloud data.

The results of this study offer support for an east-west toroidal circulation between the major areas of ascent and descent in the equatorial regions. It appears that the strength of this circulation depends on the phase of Walker's Southern Oscillation, the circulation being stronger when the Southern Oscillation is positive. The changes in sea-surface temperature and precipitation patterns that took place in the equatorial Pacific during 1963 are attributed to a change of phase of the Southern Oscillation. The change in the general circulation at higher latitudes which was found to follow the Southern Oscillation change makes it necessary to monitor the Southern Oscillation, perhaps in the abbreviated form of Willett and Bodurtha (1952), as an aid to long range forecasting.

2

-30-

There is still some question as to the role of sea-surface temperature in the general circulation of the atmosphere (Bjerknes, 1969). This author agrees with the results of Helland-Hansen and Nansen (reviewed by Montgomery, 1939) that water and air temperature anomalies result from anomalies in the local winds. It is evident that more research in the area of air-sea interaction is necessary.

ACKNOWLEDGEMENTS

The author is grateful to the United States Air Force who sponsored his work at MIT through the Air Force Institute of Technology. This study developed from a suggestion by Professor Reginald E. Newell, and the author is forever thankful to him for his continued guidance and encouragement. Thanks are also due to Miss Isabelle Kole for drawing the figures and to Miss Kora Gordon for typing the manuscript.

BIBLIOGRAPHY

- Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, pp. 820-829.
- Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, pp. 163-172.
- Bjerknes, J., L.J. Allison, E.R. Kreins, F.A. Godshall and G. Warnecke, 1969: Satellite mapping of the Pacific tropical cloudiness. <u>Bull. Amer. Meteor. Soc.</u>, 50 pp. 313-322.
- Godshall, F.A., L.J. Allison, E.R. Kreins and G. Warnecke, 1969: An atlas of average cloud cover over the tropical Pacific Ocean, Part II of examples of the usefulness of satellite data in general circulation research. NASA Technical Note, Goddard Space Flight Center, Greenbelt, Md.
- Hubert, L. F., A. F. Krueger and J. S. Winston, 1969: The double Intertropical Convergence Zone fact or fiction?J. Atmos. Sci., 26, pp. 771-773.
- Hydrographic Office, U.S. Navy, 1944: World atlas of sea surface temperatures. 2nd Edition, H.O. Pub. No. 225, 1954 reprint. pp 49.
- Kidson, J.W., D.G. Vincent and R.E. Newell, 1969: Observational studies of the general circulation of the tropics: long term mean values. Q. J. Roy. Meteor. Soc., 95, pp. 258-287.
- Kornfield, J. and A. F. Hasler, 1969: A photographic summary of the earth's cloud cover for the year 1967. J. App. Meteor., 8, pp. 687-700.
- Krueger, A. F., and T. I. Gray, 1969: Long-term variations in equatorial circulation and rainfall. <u>Mon. Wea. Rev.</u>, 97, pp. 700-711.

- Lateef, M.A., 1967: Vertical motion, divergence, and vorticity in the troposphere over the Caribbean, August 3-5, 1963. Mon. Wea. Rev., 95, pp. 778-790.
- Montgomery, R.B., 1939: Report on work of G.T. Walker. Mon. Wea. Rev., Supp. 39, pp. 1-22.
- Montgomery, R.B., 1939: Discussion of some theories on temperature variations in the North Atlantic Ocean and the atmosphere. <u>Mon. Wea. Rev.</u>, Supp. 39, pp. 52-57.
- Newell, R. E., J. W. Kidson and D. G. Vincent, 1970: The general circulation of the tropical atmosphere and interactions with extra-tropical latitudes. (To be published by M.I.T. Press).
- Schell, I.I., 1956: On the nature and origin of the Southern Oscillation. J. Meteor., 13, pp. 592-598.
- Thompson, B.W., 1965: The Climate of Africa. Oxford University Press, Nairobi, pp. 132.
- U.S. Department of Commerce- Weather Bureau: <u>Monthly</u> <u>Climatic Data for the World</u>. December 1962, January, February, December, 1963, January, February 1964.
- Willett, H.C. and F.T. Bodurtha, 1952: An abbreviated Southern Oscillation. Bull. Amer. Meteor. Soc., 33, pp. 429-430.

\$

TABLE 3.1

Zonal Average of $\overline{\boldsymbol{\omega}}$ (10⁻⁴ mb/sec) For The Four Seasons

	[w]	[ພັ]	[[w]
	Dec-Feb	Mar-May	Jun-Aug	Sep-Nov
2 5N	3.32	1.97	-0.97	-0.03
15N	5.43	4.12	-2.23	-1.01
0 5N	-0.52	-3.14	-5.82	-3. 38
EQ	-3.16	-3.57	-2.28	-2.28
05S	-5.40	-2.82	0.83	-0.59
15S	-1.87	1.37	5.90	4.49
25S	0.48	2.30	6.14	3.06

.

5

•

TABLE 4.1

Zonal Average $\overline{\boldsymbol{w}}$ (10⁻⁴ mb/sec) For December-February

	[][]	[w]	[w]
	long term	62-63	63-64
25N	3.32	5.44	4. 05
15N	5.43	2. 32	2.07
0 5N	-0.52	-0.92	-0.70
EQ	-3.16	-2.36	-3.07
5S	-5.40	-3.68	-4.34
10S	-3.56	-3.07	-4.11
15S	-1.87	-1.65	-3.09
2 5S	0.48	0.51	0.27

•

\$

TABLE 4.2 TOTAL PRECIPITATION (MM) AND TOTAL DEVIATION (MM) FRUM 30 YEAR NORMAL FOR DECEMBER 1962-FEBRUARY 1963 AND DECEMBER 1963-FEBRUARY 1964

STATION	LAT	LONG	TOTAL DEV	TOTAL DEV
			DEC62-FEB63	DEC63-FEB64
UNITED STATES	_			
SAN DIEGO	32 44	N 117 IUW	40 -118	45 -113
PHOENIX	33 26	N 112 U1W	55 -8	6 -57
EL PASO	31 48	N 1u6 24w	24 -10	1 -34
SAN ANTONIO	29 32	N 98 28W	156 +26	158 +28
BROWNSVILLE	25 55	N 97 28w	7∪ ⊶46	113 -3
LITTLE ROCK	34 44	N 92 14W	133 -204	161 - 176
SHREVEPORT	32 2	N 349W	15 -1 4	211 - 1 u
NEW ORLEANS	29 59	N 90 15W	396 +93	513 +210
CHARLESTON	32 54	N 80 02W	241 +20	418 +187
JACKSONVILLE	30 25	N 81 39W	387 +181	442 +250
MIAMI	25 49	N 80 17W	110 -31	175 +34
NASSAU	25 03	N 77 28w	92 -26	240 +122
MEXICO				
MAZATI AN	23 11	N 106 26W	6 -41	
	22 12	N 97 51W	41 -46	140 +63
			41 - 40	140 .00
MURELIA	19 42			
	19 12	N 96 U8W	41 -23	
ACAPULCO	16 50	N 99 55W	20 +2	
CENT AMER AND ISLANDS	1.0.4.1			050 1201
PUERTO PLATA	19 41	N 70 40W	413 -265	959 +281
SANTO DOMINGO	18 27	N 69 53W	258 +99	147 -12
SAN PEDRO SULA	15 30	N 88 01W	90 -137	
CATAMAS	14 54	N 85 55w	90 +1	50 - 39
SAN SALVADOR	13 43	N 89 12W	60 +45	1 -15
SWAN ISLAND	17 24	v 83 56w	111151	123 -136
SAN JUAN ISLA VERDE	18 26	N 66 UUW	219 -112	111 - 220
KINGSTON	17 56	V 76 47w	9u +27	90 +27
RAIZET	16 16	N 61 31W	170 -130	170 -130
FORT-DE-FRANCE	14 37	V 61 U4W	340 +72	200 -90
DR A PLESMAN APT	12 11	N 68 59W	120 -73	39 -159
PIARCO APT	10 37	V 61 21W	200 -91	170 -121
VENEZUELA				
MARACAIBO	10 39	N 71 36W	40 +30	1 -9
BARCELONA	10 07	N 64 41W	61 +28	10 -23
	08 09	V 63 33W	56 -33	30 -59
			20 22	50 57
	u. 5	52 22	164. +469	49681
	04 261			00 -187
SANTELENA	04 501	N DI UIW	224 - 55	90 -107
EQUADOR		70.20	2	1(1) = 104
QUITO	00 08	5 18 298	300 -54	160 -194
QUAYAQUIL	02 103	5 79 50W	303 -226	380 -149
BRAZIL	-			
UAUPES	00 08:	5 61 USW	800 +30	
BELEM	01 28	5 48 29W	630 - 292	780 -142
QUIXERAMBOIM	U 5 12:	5 39 18w	350 +154	460 +226
PORT VELHO	08 46	5 63 55W	91u - 67	740 -237
REMANSO	09 41	5 42 U4W		830 +557

PORTO NACIONAL	10	42S	48	25 W	820	-60		
UTIARITI	13	02S	58	17W	1250	+276		
CUIABA	15	36S	56	06W	730	+89	390	-231
SANTA CRUZ	15	435	52	45W	830	+3	850	+23
CARAVELAS	17	44S	39	15W			340	-124
CORUMBA	19	005	57	39W	· 61u	+122	230	-258
BELO HORIZONTE	19	565	43	57w	790	-77		
TRES LAGOAS	20	475	51	42W			630	+60
RIO DE JANEIRO	22	545	43	luw	370	-4		
SAO PAULO	23	335	46	38W	700	+124		
CURITIBA	25	265	49	16w	540	+70		
BOLIVIA								
RIBERALTA	11	UUS	66	υŚw	500	-287	630	-157
RURRENABAQUE	14	28S	67	35W	840	+88	550	-202
TRINIDAD	14	455	64	48w	610	-233	59u	-253
COCHABAMBA	17	235	66	100	480	+156	180	-144
SANTA CRUZ	17	475	63	100	530	+63	370	-97
	20	165	63	33w	350	-131	320	-161
	20	015	63	43W	420	-125	290	-155
	22	010	05	451	720	127	270	222
	22	015	60	374	3211	0	270	-50
MCAL ESTIGARRIDA	62	013	00	21W	520	Ŭ	210	20
ARGENTINA	2.2	045	45	2614	250	±120	250	±20
	22	100	40	50W	220	-129	250	
	24	105	62	24W	250	-120	220	-97
LAS LUMITAS	24	425	00	55W	550	- 	250	-01
SALTA	24.	515	62	29W	600	+123	210	110
POSADAS	27	225	55	28M	430	+10	310	-110
RESISTENCIA	27	285	58	59W	380	+37	350	+ /
CATAMARCA	28	26S	65	46W	180	-23	220	+17
LA RIOJA	29	235	66	49w	250	+83	200	+33
CERES	29	535	61	57w	320	-5	290	-35
URAGURAY								
SALTO	31	235	57	58W	170	-119	310	+51
MONTEVIDEO	34	585	56	12W	250	+16		
CHILI								
ANTOFAGASTA	23	285	70	26W	0	0	0	0
LA SERENA	29	55S	71	13W	0	Û	0	0
PORTUGAL								
FUNCHAL	32	38N	16	54W	500	+248	307	+144
SAL CAPE VERDE	16	44N	22	57W	11	-5	7	-10
GIBRALTAR				2.11		-		
	36	UON	115	21 w	031	+551	630	+250
	20	0 314	00	2 I W	<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1771	050	. 270
MALIA	25	61.	14	205	346	L1 26	253	+32
	22	DIN	14	290	540	+12J	233	1 22
	05		20	1-7-	14.6	1. (1.7	
	55	UAN	ود	1/5	146	-40	14/	-40
	27	5.9 M	22	435	22	+61		
	21	211	25		250	+10 +10		
HIRARLIUN	22	2 T IN	20	UDE	250	T 1 7		

MOROCCO								
MEKNES	33	53N	05	32W	460	+211	450	+201
CASABLANCA	33	34N	07	40W	440	+235	270	+65
MARRAKECH	31	. 37N	08	02W	170	+80	100	+10
OUARZAZATE	30	56N	06	57W	70	+44	23	-3
AGADIR	30	23N	09	34W	300	+179	340	+219
ALGERIA								
ALGER	36	43N	03	15E	250	-59	390	+81
ORAN	35	38N	υu	37w	140	-51	400	+109
LAGHOUAT	33	46N	02	56E	50	+8	110	+68
	31	38N	02	15W	100	+14	25	-1
	27	EAN	10	145			2.1.0	
GARES	20	50N	10				310	+123
	20	2 JIN	10	UTE			140	+87
	2 7	6 E M	1 0	05 <i>6</i>	144		100	105
	20	(1 N	12	USE 105	140	+20	190	+95
IURIS MISIDATA	22	41N	10	IUE	252	+105	208	+61
BENINA	22		20	UDE 14E	130	-29	220	+61
	22	51 M	20	10 <u>C</u>	170	+14	80	-16
	20	0 Q N	15	575	5 4	-14	54	+8
KUERA	29	121	22	205	15	+ 3 - T		-11
FGYPT	24	TON	20	206	0	-1	0	-,
MERSA MATRUH	31	20N	27	13F	30	-46	107	1 21
HELWAN	20	52N	30	206	7	-7	107	-7
SIWA	29	12N	25	20L 20F	1			-7
	25	201	20		,	- 1	•	- /
KHARGA	25	2 9 N	27	345	0	- I - T	0	- <u>1</u> -T
ISRAFI	27	2011	50	746	0	- 1	0	- 1
	20	00N	24	545	200	()		100
FILAT	20	33N	34	576	290		440	-10
SAUDI ARABIA	29	221	24	212	0	-10	0	-10
BAHRAIN	26	16N	50	37F		-49		
ADEN	12	50N	45	OTE	11	-11	12	-10
SUDAN	* -	2011			**	**	**	10
PORT SUDAN	19	35N	37	13F	111	+83	15	-15
TOKAR	18	26N	37	44F	75	+41	12	-22
FLOBEID	13	100	30	145		· • •		-22
	19	33N	21	305	0	_1	0	_ 1
	04	521	21	365	7	-21	1	-27
WAU	U7	42N	28	U1F	27	+23	4	-21
SENEGAL	• /	7211	20	016	21	125		
SAINT-LOUIS	16	01N	16	3014	т	- 5	5	0
MATAM	10	381	12	12W		-9	9	-4
	17	JON	10	TPM	U	-4	0	-4
ROBERTS FLD	06	111	10	1.9.4	199	163	77 -	100
IVORY COAST	00	TIN	10	10%	100	+0 j	11 -	109
ODIENNE	00	31N	Ο 7	344	4.0	+16	()	-24
ABIDIAN	05	15 M	0.2	54W	24	141	100	
TABOU	() ()	25 N	U 7	20W	240	-124	190	-194
GHANA		LJIN		<u> </u>	190	-124	100 -	-104
	üe	25 M	00	524	- A A	± 24	0	_14
KUMASI	UA	43N	u1	36w	21	+87	110	-12
ACCRA	05	36N	00	1 () W	100	+20	70	_1
TAKORADI	ЦА	53N	υ1	46w	7	-27	140	+33
	V4		0 I		10	<u> </u>	140	100

DAHOMEY								
KANDI	11	08N	02	56E	30	+29	0	-1
TCHAOUROU	U8	52N	υ2	36E	61	+32		-29
SAVE	07	59N	02	26E	31	-3	10	-24
TOGOLESE								
SOKODE	Ü8	59N	01	08E	196	+152	0	-44
NIGERIA								
MAIDUGURI	11	51N	13	05E	0	0	0	0
LAGOS	06	35N	03	20E	80	-58	131	-7
ENGU	06	28N	07	33E	70	+11	20	-37
CONGO								
OUESSO	01	37N	16	03E	370	+141	260	0
M POLIYA	02	375	16	13E	560	+90	380	-32
DOLISIE	04	115	12	40E	360	-38	350	-48
BRA77AVILLE	04	155	15	14E	370	-84	540	+103
GABON	- ,							
BITAM	02	05N	11	29E	824	+337	200	+9
	01	OON	09	36F	1180	+264	760	-152
		27N		25F	940	+271	644	-325
	00	425	0.8	45F	980	+327	680	-108
		525	11	115	500 640	-7.	640	-70
CEN AFRICA	01	123	**	UIL	040	10	040	10
N DELE	U 8	24N	20	39E	11	+1	U	-10
BRIA	06	32N	21	59E	33	+3	18	-12
BOUAR	05	56N	15	35E	50	+19	23	-8
BERBERATI	04	13N	15	47E	119	+23	82	-14
FR SOMALI								
DJIBOUTI	11	36N	43	09E	6	-27	25	-8
CHAD								
FORT-ARCHAMBAUL T	09	08N	18	23E	13	+12	υ	-1
MOLINDOLI	08	37N	16	.u4F	6	+6	U	- 1
KENYA	00	2111			-		-	
LODWAR	U 3	U7N	35	37E	. 18	-5	77	+54
NAIROBI	υī	185	36	45E	346	+168	441	+263
UGANDA								
GULU	02	45N	32	20E			102	-9
ENTERRE		U3	32	27F			416	+137
	•••	0.511						
	05	1155	32	5uF	619	+167	440	-2
	114	525	20	165	300	+01	265	+56
DAR ES SALAAM	1	JZ3 41.	25	255	75	+42	479	+271
SUNGEA	10	415	55	SOF	100	T 4 6	212	
	1	1.0.	21	45	707	- 16	i 10	1767
KASAMA	LU 1 /	123	21	JOL	131	-12 1007	1017 76 m	+ <u>4</u> 01
BRUKEN HILL	14	215	20	ZOL	889	7241	(0)	T100
LIVINGSTONE	17	495	25	49E	824	+331	448	8 <i>I</i>
MALAWI	1 F	. 1	24	5.05	020	1201	E 1 O	
CHILEKA	15	415	34	58F	838	+294	213	-16

RHODESIA					- 0		.	0.00
SALISBURY OBS	17	56S	31	35E	672	+198	246	-328
CHIPINGA	20	125	32	39E	985	+355	751	+119
PORT W AFRICA								
LUANDA	U8 4	495	13	13E	53	-41	4	-90
MALANGE	09	335	16	23E			500	+141
HENRIQUE	U9	395	20	24E	53u	-65	620	+25
LUSO	11 4	475	19	55E	73u	+156	55u	-24
LOBITO	12	225	13	32E	120	+61	20	-39
NOVALISBOA	12	485	15	45E	630	+56		
SA DE BANDEIRA	14	565	13	34Ē	540	+120	530	+11u
SERPA PINTO	14	395	13	41E	830	+326	420	-84
MOCAMEDES	15	125	12	J9E	15	-12	22	3
MALAGASY								
DIEGO-SUAREZ	12	215	49	18E	473	-26	565	-34
TAMATAVE	18 (u75	49	24E	1191	+7u	1237	+166
TANANARIVE	18	545	47	32F	702	+66	933	+172
	21	125	48	22E	894	-62	1055	+99
	23	245	43	44E	226	+96	102	-97
		L + 0						
MALIN	19	595	23	25E	380	+86		
	22	345	17	06E	300	+103	80	-117
	22	525	20	27F	172	-81	270	+17
PIETERSBURG	25	120 150	20	1/5	220	-142	330	-32
	20	423 520	20	14C 20E	220	-142	180	-74
MAFEKING	20	223	10	075	210		30	-40
KEEIMANSHOUP	20	545	10	UTE	10	0	50	40
ISLANDS	00	224	116	425			168	-106
ST TOME IS		23N	60	49E	1	T135	1 24	+143
MORONI COMORO IS	11 4	425	42	145	1020	+100	1024	+1+J 1067
SERGE-FROLOW	15	535	54	31E	560	+184	دوס	+221 +210
ST DENIS	20	535	22	31E	200	-41	020	-24
ILE EUROPA	22	215	40	ZIE	218	-5	249	- 54
W PAKISTAN						0	2.0	. 0
MULTAN	30	12N	71	26E	22	.0	30	+0
KALAT	29	U2N	66	35E	Tu	-109	157	+ 30
KARACHI	24	48in	66	59E			36	+12
E PAKISTAN								
BOGRA	24	51N	89	23E	ſ	-33	11	-22
INDIA								
LUDHIANA	30	56N	75	52E	32	-52	15	-69
NEW DELHI	28	35N	77	12E	37	-15	28	-24
JODHPUR	26	48N	73	01E	4	-10	0	-14
ALLAHABAD	25	27N	81	44E	40	-4	13	-19
SILCHAR	24	49N	92	48E	12	-56	58	-10
DUMKA	24	16N	87	45E	5	-45	i	-50
SAGAR	23	51N	78	45E	68	+28	3	-47
DWARKA	22	22N	69	05E	0	-6	0	-6
	22	32N	88	20E	υ	-40	10	-30
CUTTACK	20	48N	85	56E	U	-42	31	-11
BOMBAY	18	54N	72	49E	57	+52	 50	+45
	17	43	81	14E	6	~33	5	34
MADRAS	13	UUN	80	11E	Ū.		118	-70
BANGALUKE	12	580	77	35E	1.29	+8	15	14
PAMRAN	·	16.	79	18F	32	+39	233	48

CEYLON								
MANNAR	U8	59N	79	55E	460	+125	410	+75
COLOMBO	U6	54N	79	52E	370	U	52u	+15u
HAMBANTOTA	U 6	87in	81	U8E	390	+102	410	+132
JAPAN	-							
TOKYO	35	41N	139	46E	84	-78	243	+60
YONAGO	35	26N	133	21E	54u	+83	41u	-37
NAGOYA	35	10N	136	58E	94	-76	184	+14
FUKUOKA	33	35N	13u	23E	277	+47	28u	+50
NAGASAKI	32	44N	129	53E	220	-20	248	+8
TORISHIMA	30	291	14u	18E	387	+46	282	69
NA7F	28	23N	129	3UE	321	-186	693	+186
MAWASHI	26	14.	127	41E	269	-155	369	55
MTYAKOJIMA	24	47N	125	17E	234	-183	592	+175
SOUTHEAST ASTA	- •							
TAIDEI	25	02N	121	31F	108	-207	423	+108
HONG KONG	22	18N	114	10F	11	-86	113	+6
BANGKOK	13	44N	100	30F		•••	14	-31
LUANC BRARANC	10	52N	102	0.95	10		- ·	
	19	571	102	245	10	- 50		
VIENTIANE	17	2211	102	24E	25	-05	100	()
PAILE	16	33N	111	21E	20	-15	100	21
STAGON	10	49N	106	40E	20	U	20	-21
RANGOON	16	46N	90	IUE			10	+ 24
VUCTORIA POINI	09	28N	98	375	45	10	110	- 7 20
KOTA BHARU	06	IUN	102	1/E	650	-180	260	-250
KUALA LUMPUR	03	07N	101	42E	320	-260	830	+200
SINGAPORE	∪ 1	21N	103	54E	780	+25	1050	+295
DJAKARTA	06	115	106	50E	1429	+569	360	-409
DILL	∪8	355	125	34E			287	-192
AUSTRALIA								
THURSDAY IS	lu	355	142	13E	680	-336	95u	+55
COCOS IS	12	055	96	53E	380	+52	222	-96
DARWIN	12	265	130	52E	830	-113	670	-242
DALY WATERS	16	165	133	23E	350	-53	200	-203
BROOME	17	575	122	13E	410	+ (450	+47
HALLS CREEK	18	160	127	37E			17	-152
TOWNSVILLE	19	155	146	46E	630	+5	720	- 8
CLONCURRY	20	400	140	3JE	220		3.4	- 6
NULLAGINE	21	545	12u	u6E	400	+110	46	-144
ROCKHAMPTON	23	235	15u	29E	330	-71	210	-191
LONGREACH	23	265	144	15F	190	+6	195	+6
ALLCE SPRINGS	23	48.	133	53E	دز	104	20	
BASCO	20	27N	121	58F	339	-335	612	-62
ΔΡΔΡΡΤ	1.8	22N	121	38F	413	-58	477	-14
ΜΔΝΤΙΔ	14	31N	121	00F	3	-78	132	+51
	10	42N	122	34E	34	-178	490	+278
ZAMBOANGA	06	54N	122	04E	350	+54	193	-3
	÷ ()							-

Ĵ

PACIFIC ISLANDS						
WAKE	19 17N	166 39E	84	-25	82	-27
GUAM	13 33N	144 5UE	81 0	+448	566	+204
ENIWETOK	11 21N	162 21E	25u	+106	255	+104
YAP	U9 31N	138 U8E	978	+392	482	-94
KWAJALEIN	08 43N	167.44E	438	+63	459	+84
TRUK	U7 28N	151 51E	753	+44	566	-153
MAJURO	07 05N	171 23E	983	+307	430	-116
PONAPE	06 58N	158 13E	1294	+300	824	-170
LIHUE	21 59N	159 21W	378	-29	284	-123
HILO	19 44N	155 04W	131	-884	855	-106
JOHNSON	16 44N	169 31W	32	-182	81	-133
RABAUL	04 135	5 152 11E	300	-378	640	-138
LAUTHALA BAY	18 09S	5 178 27E	810	-115	1240	+210
KOUMAC	20 325	5 164 15E	520	+126	276	-218
CANTON	02 46S	5 171 43W	19	-166	654	+469
ATOUNA	U9 48 5	139 U2w	21.	~38	270	+42
ΑΡΙΑ	13 485	1/1 48**	881	230	911	~ 252
TAKAROA	14 305	145 USW	540	-90	390	-240
BORA BORA	16 315	151 56w			730	-12
MOPELIA	16 555	154 UUW	370	220	640	-8
TAHITI	17 325	5 149 35w	715	-205	710	-205
RIKITEA	23 075	5 134 57 _W	665	- 45	360	285

1

.

TABLE 5.1

Mean Meridional Velocity (m/sec) And Momentum Transport (m²/sec²) By Transient Eddies For 200 mb.

	Dec 62-Feb 63		Dec 63-Feb 64	
	[v]	[u'v']	[v]	[u'v']
2 5N	-1.16	20.56	1.01	25.17
20N	0.60	8.75	1,12	15.36
10N	1.90	-6.36	1.71	-15.50
EQ	1.41	-7.92	1.43	-10.25
10S	0.22	-9.89	-0.48	-9.75
J				

Figure 3.1: Mean vertical velocity at 500 mb for December-February. Units: 10⁻⁴ mb/sec.

.

Figure 3.4: Mean vertical velocity at 500 mb for September-November. Units: 10^{-4} mb/sec.

•

.

Figure 4.4: Deviation of mean vertical velocity at 500 mb for December 1963-February 1964 from the long term mean for December-February. Units: 10^{-4} mb/sec.

-54-

Figure 4.5: Total deviation of precipitation for December 1962-February 1963from the 30 year mean. Units: mm.

- 55-

