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Abstract

A new approach to the processing of sequences of full waveform acoustic logs is investigated.
The rationale for this approach is primarily based on the observation that processing and
interpretation tasks strongly depend on each other. Hence, a system that incorporates geologic
knowledge in data processing naturally and uses processing results for petrophysical evaluation
can improve the overall geological interpretation. The implementation of such ideas requires
the use of a versatile computer environment, allowing numeric and symbolic processing. The
new generation of Lisp machines satisfies these characteristics.

An interactive environment for the processing of sequences of acoustic signals was designed
using object-oriented programming. The package includes a novel method for acoustic full
waveform signal matching that uses dynamic time warping. The system is tested on synthetic
data and field data are processed.

The feasibility of an expert consultant system for full waveform processing and interpretation
was investigated by implementing a prototype knowledge-based system performing qualitative
reasoning in the rock physics domain. Examples of reasoning processes are presented and
discussed.

Thesis Supervisor: M. Nafi Toks6z
Title: Professor of Geophysics
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Chapter 1

Full Waveform Acoustic Logging

1.1 Introduction

Well logging measurements are records of the variation with depth of a physical property of

rocks in boreholes. The spatial resolution in depth is very high (order of 10 cm) compared to

classical resolution for surface geophysical methods (ranging from 10 m to 500 m). Classical

surface seismic methods give a geometric picture of the subsurface showing large stratigraphic

units. However, a precise knowledge of the lithology and of the petrophysical properties of

formations, such as porosity, permeability, fluid saturation, necessitates in-situ measurements.

Thus, downhole measurements are devoted to provide detailed geologic characterization. One

of the most widely used property for this purpose is the travel time of compressional acoustic

waves. In classical sonic logging, the onsets of P-waves refracted through the formations are

picked in real time, allowing the computation of compressional velocities. In full waveform

logging, the entire wavetrain propagating in the borehole-formation medium is recorded with

a multi-receiver acoustic tool. Figure 1-1 shows a typical tool configuration during data ac-

quisition. The sampled wave field theoretically enables to recover P- and S-wave velocities

and attenuations, mechanical parameters of the formation, and furthermore estimates of other

petrophysical properties such as porosity and permeability. Since a more accurate and reliable



lithological identification is gained through the additional knowledge of S-wave velocities and

P- and S-waves attenuations (see Winkler and Nur, 1982; Newman and Worthington, 1982)

full waveform logging is a powerful tool for formation evaluation. The full waveform logging

technique presents also the important advantage of giving results in cased boreholes.

The drawback of the method is the large amount of collected data that precludes manual

interpretation and calls for automatic methods to determine the elastic parameters. Thus,

digital signal processing techniques must be developed to extract primitive information from

the digitized waveforms. A brief review of the physics of wave propagation in fluid-filled borehole

is necessary before describing classic processing techniques for the determination of formation

velocities and discussing their main limitations.

1.2 Modeling the borehole waveguide

The borehole-formation medium composes a waveguide in which different types of waves can

propagate. Their existence, energy, and frequency content depend on the geometrical char-

acteristics of the borehole environment, the mechanical properties of the formation, and the

frequency band of the source. The superposition of these diverse waves associated with different

propagations of elastic energy forms an overall complex arrival.

In the simplest configuration, the borehole environment can be represented as a fluid-filled

cylinder axially infinite surrounded by a radially semi-infinite homogeneous formation. More

realistic and complex geometries consider radially layered formations, which enables to represent

well- or poorly-bonded cased-holes as well as for the presence of a damaged zone in the vicinity

of the well bore. Figure 1-2 shows the principal geometrical configurations representing common

real-world situations. A cylindrical elastic tool in the center of the well can also be taken into

account.

A complete modeling of wave propagation in a borehole requires also the description of

the mechanical behavior of the formation. The simplest model assumes that formations are
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elastic and isotropic. More complex formulations consider multi-phase porous media. In the

elastic case, for an open hole and provided that P- and S-wave velocities in the formation are

greater than the P-wave velocity in the borehole fluid (the so-called "fast" formation case),

the signal received at the center of the hole is composed of 4 types of waves; two body waves

(compressional and shear 1) and two guided waves (pseudo-Rayleigh and Stoneley). Properties

of these waves in the elastic case have been discussed by many authors (Biot, 1952; White and

Zechman, 1968; Tsang and Rader, 1979; Cheng and Toks6z, 1981). When the S-wave velocity

in the formation is lower than the compressional fluid velocity (for a "slow" formation), the

S-wave and pseudo-Rayleigh wavetrains are no longer recorded, but the Stoneley wave carries

information about the shear-wave characteristics of the formation.

When radially non-homogeneous formations (succession of concentric annuli) are described,

the situation becomes more complex (see Tubman, 1984 ; Schmitt and Bouchon, 1985). In

particular, the presence of a casing can generate ringing arrivals if velocities in the casing

and in the formation are comparable. The bonding conditions between the different layers

(casing-cement and cement-formation) and their respective thicknesses determinate the relative

amplitudes of waves. The case of porous formations was modeled using Biot's theory (1956

a,b) by Rosenbaum (1974) and Schmitt (1985). These studies show that waves' propagation,

and especially guided waves' propagation, is also dependent on non-elastic parameters such as

porosity and permeability, fluid formation characteristics, and borehole wall conditions (see also

Burns, 1986).

The various theoretical forward models show the complexity of wave propagation in the

borehole environment. The trend in modeling has been towards describing more realistic and

complex geometries accompanied with more detailed and specific physical representations of

the media surrounding the borehole. These studies indicate that the existence of waves and

their responses to the different formation properties depend on geometrical parameters, elastic

properties, as well as on petrophysical determinants (such as porosity and permeability values,

saturant fluid). In fact, the choice of the adequate wave propagation model (i.e. geometri-

'This wave corresponds in fact to the S- to P-wave conversion of the shear wave refracted through the borehole
wall. Its phase velocity is equal to the velocity of the S-wave in the formation.



cal configuration plus mechanical type of the formation) is a requisite before a more refined

estimation of in-situ properties. This determination can be obtained in most cases with the

knowledge of a set of highly determinant parameters and thresholds such as presence of casing,

the quality of cement-formation bonding, the type of formation (fast or slow), and the porosity.

Reciprocally, these thresholds have a strong influence upon the waveforms' main features so

that model characteristics can be recognized when looking at the waveforms.

1.3 Data processing

The primary purpose of processing is to obtain an automatic, accurate and robust determination

of P-, S-, and Stoneley wave velocities for all borehole environments and for all formations. This

goal is reasonably well achieved by digital processing methods in the simple configuration of

an open borehole and for a "fast" formation. Most techniques provide good results in well-

bonded cased holes. Difficulties arise when logging in poorly bonded cased boreholes and in

any borehole when the shear wave is weak or absent ("slow" formation). The diverse methods

estimate the formation shear wave velocity with the first cycles of the pseudo-Rayleigh arrival.

The estimation of other wave properties (attenuation, amplitude, frequency) is possible only

when the position of compressional and shear arrivals in the wavetrain is located.

Automatic velocity determination

Statistical techniques are the basic approach for velocity determination since they are robust.

Two strategies were adopted to obtain velocities from full waveform tools with arrays of receivers

- the choice of a particular technique is motivated in part by the tool characteristics, i.e. the

number of receivers and the offset range.

1. The first approach consists in computing move-outs on a couple of waveforms, this opera-

tion being repeated (if required) for the whole array at a given depth. In the time domain,

the different methods use some type of cross-correlation (with or without normalization)
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for an accurate move-out computation. The frequency band can be narrowed and tuned

to the expected frequency range of each wave if the correlation is done in the Fourier

domain (Ingram et al., 1985). The rationale for this approach lies on the expectation that

the separation of arrivals is better in the frequency domain. The separation in the time

domain, however, is certainly very good when considering medium to large offsets, which

limits the need for such techniques.

All approaches suppose an a priori model of the different waves propagating in the bore-

hole. In practice, the first energy arrival picked by a threshold detection is granted to be a

P-wave, then it is assumed there exists an S-wave. In the P-correlated S-method (Willlis

and Toks6z, 1983), the S-wave arrival time is estimated by correlating the P-wavetrain

with the entire wave. The assumption is that "the shear arrival is similar or greater in am-

plitude than the P-wave." The frequency domain phase determination method described

by Ingram et al. (1985) also assumes there is a S-wave propagating with a sufficient

energy. Furthermore, it makes strong assumptions about the frequency band location of

the correct phase velocity 2 that may not be correct in all situations.

2. The second approach consists in estimating average velocities from an array of waveforms.

In the time domain, this can be done with the semblance technique (Kimball et al., 1984),

which is a normalized linear slant-stacking of the sequence of waveforms. The algorithm's

output is a map of the relative energy of coherent arrivals in the plane (time, slowness).

A recognition problem is then to be solved, since slownesses corresponding to maxima of

energy have to be associated with a given type of wave. In the case of interfering arrivals,

resolution can be improved with the Maximum Likelihood Method, but computational

cost is then too high for routine applications (Hsu and Baggeroer, 1986).

These techniques make no assumption about the generation of waves. The only assump-

tion is that the existence of a coherent arrival will give a coherent stacking of energy at a

given slowness. Thus, velocity analysis methods can detect the existence of any number of

arrivals. This later characteristic makes these methods appropriate in a complex borehole

environment where the prediction of the existing waves is difficult. It was shown to be

2 For the P-wave, the band chosen corresponds to the maximum amplitude; for the S-wave, the phase lag is
picked at the central frequency of the S arrival band.



effective for well-bonded cased hole data (Kimball et al., 1984) and in some cases when

there is a poor bonding between cement and formation (Block et al., 1986). 0

Pitfalls in full wave data processing

All processing techniques face an important trade-off between resolution in depth and precision.

Summations are required to improve the signal-to-noise ratio, hence to gain accuracy on velocity

estimates and robustness. For instance, semblance analysis must use an array of at least 4

waveforms to give a sufficient precision . This involves averaging measurements, hence a loss

of spatial resolution. An efficient solution to overcome this problem consists in making velocity

analysis or signal matching on waveforms corresponding to overlapping tool positions (Arditty

et al., 1981). This affords to maintain a high spatial sampling rate while stacking signals at the 0
same time, at the price, however, of a costly array processing.

All processing schemes presuppose that arrivals are not dispersed. When arrivals are even

slightly dispersive (for instance in formations where intrinsic attenuation is high), we are no a
longer certain we are estimating the phase velocity. In fact, for average to large spacings

between source and receiver, correlation-like and stacking methods certainly provide an estimate

somewhere between phase and group velocity. This is particularly true for S-wave velocities

that are estimated from the first cycles of the pseudo-Rayleigh arrival. Thus, we obtain a

correct phase velocity estimate for hard formations with little attenuation and very likely an

underestimate for softer formations.

Difficulties also arise for cased-holes when the P-wave velocity is close to casing velocity

or when the bonding is of poor quality. In these cases, correlation methods generally fail to

pick the true compressional velocity of the formation. Semblance analysis methods, however,

because of the absence of assumptions about wave's existences give better results. *

The other weakness that all techniques suffer is the determination of S-wave velocities when

S-wave energy is low. Semblance analysis methods cannot resolve the S-arrival in this case.

Correlation methods may give an estimate of shear wave velocity, because of the presence of
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correlated noise, even when the arrival is absent (i.e. in slow formations). In most cases,

the uncertainty about the S-wave existence is not resolved, and additional processing and

interpretation must be taken into account to obtain decisive information.

The general pitfall in automatic velocity determination is the large variability of signals.

There exists not a unique, but several possible configurations of waves, depending on a somewhat

limitated set of geometrical, mechanical and physical parameters. An ideal processing scheme

should be context-dependent to behave correctly in all field situations. In practice, when a

priori constraints are given, accuracy and computational cost are improved, at the depend

of robustness. Without a priori assumptions, unconstrained algorithms may give answers in

almost any cases. In fact, the important problem not addressed by the different processing

techniques is the primordial choice of the model corresponding to the actual physical situation.

The interpretation phase and the processing of signals must not be totally independent in order

to make possible the adaptation of processing operations to diverse real world configurations.

1.4 Full waveform and formation evaluation

The main contribution of full waveform processing is to bring information about shear wave

properties. Recording the entire wavetrain enables one to recover the characteristics of the

S-wave from the low frequency portion of the pseudo-Rayleigh wave for all configurations (see

Burns, 1986). The knowledge of the S-wave velocity makes possible the development of novel

interpretative methodologies based on the conjoint utilization of compressional and shear waves

characteristics. Information about the pore structure of rocks can be deduced from the P- and

S-wave velocities (Cheng and Toks6z, 1979). For most lithologies, P- and S- waves velocity

ratios (or Poisson's ratios) are powerful indicators. Moreover for clastic rocks Vp and V, were

shown to be linearly proportional (Castagna et al., 1985). The additional knowledge of the P-

and S- wave attenuations has also a high potential for lithology determination and formation

evaluation, in particular to characterize the saturant fluid (see Newman and Worthington, 1982;

Winkler and Nur, 1982).



The estimation of formation permeability is another important application of full waveform

logging. Theoretical studies (Schmitt, 1985) show that relative values can be deduced from

the characteristics of the Stoneley wave (velocity and attenuation). However, more accurate

analyses necessitate to take into account P- and S-waves velocities and attenuations and to

compare the respective attenuations of the pseudo-Rayleigh and Stoneley waves.

1.5 The knowledge-based approach

Sources of knowledge

In the following chapters a new approach for the digital processing of sequences of full waveform

data is investigated. This approach will allow the integration of relevant knowledge in the

treatment, and therefore the ability to make processing operation dependent from the geologic

context. The knowledge necessary to reach this goal comes from three primary sources:

1. Description of the geologic and physical environment, i.e. rough information about the

lithology (especially shale content) and the main physical characteristics of the borehole

(diameter, presence of casing, etc.).

2. Knowledge of the physics of wave propagation in fluid-filled boreholes, gained by theo-

retical modeling and studies. This includes the description of the relationships between

physical properties of formations surrounding the borehole and properties of waves.

3. Knowledge about the signal itself, i.e. about waveforms' attributes and principal features

(presence and location of energy peaks, frequency content, etc.).

These three types of knowledge are required for the processing and interpretation tasks and

come forth at different stages. Initially, basic and even crude information about the borehole

and the formation can provide a general insight for the choice of the wave propagation model.

Let us consider a simple example to illustrate how the different types of knowledge are taken

into account for the understanding of signals. If we deal with a shallow zone in an open borehole,
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knowing from a -- ray log that the lithology is mainly shale, we may want to check first if there is

some energy at the reasonable arrival time for a S-wave in such a formation, instead of directly

applying a correlation-like method that will give no solution or a wrong one. This decision

involves two types of knowledge:

* First, from a simple geologic description of the zone of interest we are able to infer a

qualitative estimate of petrophysical parameters; this first step tells us that the S-wave

velocity may happen to be lower than the borehole fluid velocity - which is known to be

about 1500 m/s.

* Second, we know that if the S-wave velocity in the formation is less than the compressional

fluid velocity, the S-wave cannot be recorded. This is the physical understanding of the

wave propagation problem.

Given this knowledge, we can determine that S-waves may or may not be present and test

for the waves' existence, i.e. estimate the energy in a reasonable S-wave time-window. Clearly,

by considering geologic and physical knowledge, we improve the adequacy of processing actions

and furthermore improve their efficiency and accuracy, since we are able to add constraints s

Drawing inferences about the geologic environment and wave propagation will be generally

unsufficient. After all, once we have picked the P-wave arrival time, we are able to infer

more about the other components of the wavetrain, hence we can put more constraints on the

following processing actions. For instance, for a clastic rock, a linear relationships between P-

and S-wave velocities holds (Castagna et al., 1985). This knowledge provides an initial estimate

of the S-wave arrival time. This type of feedback between sources of information involves using

newly acquired knowledge about data as well as about characteristics of the signal.

A knowledge-based approach to geophysical processing certainly necessitates an adequate

representation of relevant geologic knowledge and of physical knowledge about the wave propa-

gation problem. The conjunction of these two sources of knowledge enables to draw inferences

3In the shale formation example, the qualitative geologic information also provide information about the range
of the S-wave arrival time - if the S-wave is recorded at all.



which determine a model of propagation and constrain the choice of the processing operators

and of their parameters. The limitation of such an approach is that the final output of the

reasoning process will be a rather rigid automatic planning of (hopefully) optimal processing

operations. However, this may not be sufficient in the full wave logging domain for two reasons.

First, processing results are not the ultimate goal, but rather a step toward a complete litho-

logical identification and an estimation of the physical properties of formations. Second, an

intelligent system must allow for different processing choices based on intermediary results, i.e.

provide enough flexibility for changing the initial planning when new information is acquired.

Therefore, a more general and useful structure should favor the manipulation of processing

operators, so that they can be readily embedded in the overall interpretative system.

1.6 Overview

Building a system that naturally favors symbolic manipulations of procedures and arguments,

hence the integration of relevant knowledge during the processing, requires flexible processing

tools with three main design requisites:

* The first requirement is the ability to handle and apply operators independently one by

one, without presupposed ordering or interdictions except mathematical incompatibilities.

* The second is being able to start over an operation, which involves that previously trans-

formed signals and intermediary results are in any situation readily available.

* Finally, an efficient system for user interaction calls for an easy access to accumulated

information and efficient displays of results.

An interactive system for the processing of arrays of waveforms that satisfies these specifications

was designed and is described in chapter 2. The modular architecture due to object-oriented

programming is outlined and a new processing tool for accurate velocity analysis and signal

matching with dynamic time warping is described. Applications to synthetic and real full

waveform data are presented and discussed.



In chapter 3, knowledge-based reasoning techniques are used to draw inferences in the petro-

physical domain. The reasoning system is intended to provide a more complete description of

the geologic environment based on an initial set of qualitative field data. A frame-like rep-

resentation for lithologies is used as a foundation for rule-based reasoning about the physical

properties of rocks. Examples of reasoning processes are presented and discussed.



sources

receivers

Figure 1-1: Full Waveform Logging with a multi-transmitter, multi-receiver tool.

After Garcia and Cheng, 1985.
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Mud Cake

Figure 1-2: Different Borehole Geometries:

a - The open borehole. The formation can be elastic or porous.

b - Well bonded cased borehole with layers of steel and cement. Poor bonding situations

can be modeled by inserting an additional fluid layer between the steel and cement or

between the cement and the formation.

c - Open borehole including a mud-cake and an invaded zone; this zone is created by

the filtration of drilling mud in a porous formation.

After Tubman, 1984.
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Chapter 2

An Object-Oriented System for Full

Waveform Data Processing

2.1 Introduction

The motivation for the ANIS 1 system is twofold: first, provide an interactive processing envi-

ronment for sequences of full waveforms (as well as single waveforms), second, enable to combine

numeric and symbolic operations on signals. These two goals are complementary since achieving

these tasks require a flexible structure oriented toward an easy manipulation of arrays of signals,

elementary signals, and segments of signals. The general philosophy of the system is to make

few assumptions about the specific methodologies of processing. The implementation on Lisp

machine uses object-oriented programming and takes advantage of the powerful programming

environment - especially for graphical applications.

A determinant design choice was to define the concept of sequence of waveforms as the

elementary object, as opposed to more general-purpose data processing systems that represent

isolated signals (see for instance Kopec, 1984; Dove et al., 1984). This choice is essential in

'Acronym for A Nice Interactive System



full wave acoustic data processing where the principal processing operations concern arrays of

waveforms. It would be awkward to implement a velocity analysis or a controlled threshold

detection technique if the elementary concept were a single signal. User interaction is an im-

portant facet of the system; Appendix A illustrates the "style" of interaction and demonstrates

the use of some operators and the geophysical applications of the ANIS system.

Since the system's philosophy and performance are strongly influenced by LISP program-

ming and more specifically object-oriented programming, the main characteristics of these pro-

gramming techniques are briefly described before describing the system's structure, the pro-

cessing operators and presenting applications to full waveform acoustic data.

2.2 LISP and object-oriented programming

LISP 2 is a language primarilily devoted to symbol manipulation that originated at the same

period as FORTRAN - late fifties. It is being widely used since suitable hardware has became

available. LISP is a functional language, i.e. most programming is done by combining existing

functions at different levels of specialization rather than by describing a sequence of operations.

This process, called procedural abstraction, favors the partition of the task to more manageable

subtasks and therefore makes incremental programming easy. LISP's structure encourages

this type of programming characterized by an "applicative" style close to the composition of

functions in mathematics. Furthermore, recursive applications of functions are possible and

commonly used to describe procedures. In fact, the representation of programs is done with

the same data structure (lists) as any other data. This enables to handle complex programs

with the same ease as elementary data. Despite its orientation toward symbolic operations,

compiled versions of LISP are also suitable for arithmetic computations (Winston, 1984).

Another strategy to augment abstraction in programming is to encourage the organization

of data. Suppose we are to write processing operators for single seismic waveforms; a simple

and useful data structure that describes a general concept WAVEFORM will be composed of a

2Acronym for List Programming.
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time-serie, a sampling rate and some identification. These components are also called the slots

(or attributes) of the abstract data type (or object) WAVEFORM. The strength of data-abstraction

is that pieces of related data can be treated as a unique entity. In addition, specific procedures

are defined to construct, access and modify the elementary slots. This suppresses the burden

of retrieving and organizing the diverse components for every specific task and enables better

programming since, according to Winston (1984), "keeping track of such details can cause brain

damage". Data abstraction aids concentrating on high-level concepts and makes programs easier

to modify since information is concentrated in well-defined compound structures.

A systematic recourse to data abstraction where objects are also responsible for the manage-

ment of functions is called object-oriented (or object-centered) programming. In object-oriented

programming, procedures are attached to objects in much the same way as any other attribute.

LISP makes it easy to handle since data and programs are represented with the same basic

structure: a list. Message-centered languages are subspecies of object-oriented languages char-

acterized by an original syntactic feature: a given procedure attached to an object is executed

in response to a message sent by another object. Suppose we have two data types WAVEFORM and

SEQUENCE (representing sequences of waveforms). We can associate a procedure "draw-self"

to both objects that operates differently for a single waveform and for a sequence of waveforms.

The adequate response is given when an instance of SEQUENCE or WAVEFORM receives the message

"draw-self". The specific details for the actual execution of the task, however, are transparent

for the higher level operations.

ZetaLisp is a dialect of LISP that includes a message-centered language called the flavor

system. Flavors are non-hierarchically structured objects that can be mixed together to form a

new concept. The "mixed" flavor inherits the attributes of each parent flavor as well as attached

messages (also called methods). Invoking the application of a method is called message passing.

A thorough description of the principles of message-centered programming and flavors can be

found in Winston (1984).

In pure message-centered programming, an operation can occur only when an object sends

a message to another object. In practice, every operation does not need to be initiated by



message passing and low level procedures are performed via basic LISP functions. Operators on

arrays are also written in LISP since compiled ZetaLisp is as fast as FORTRAN for arithmetic

operations and includes powerful built-in function for the description and manipulation of

arrays.

2.3 The ANIS system

The ANIS system owes much to object-oriented programming concepts as described in the

section below. The description of a few basic data types forms the core of the processing

environment. This confers the ability of a fast and simple access to data, operators, and results.

Another advantage of an object-oriented design for signal. processing is that the development

of processing algorithms and the practical utilization on real data are done with a unique

language (Kopec, 1984). Thus, the tasks of development and utilization can be tackled within

the same environment, which allows incremental improvement of the processing operators.

Also, this type of structure is very well suited for encapsulating the processing operators into

a knowledge-based system, both from the standpoints of data and result description and of the

planning of processing operations.

Since data and results are represented as abstract objects, they can be easily manipulated

and accessed. The only drawback of the actual implementation may be that instances of objects

and attributes have no memory of their past values, i.e. application of an operator twice leads

to loss of the first result. This type of bookkeeping can be handled by a higher level object

structure. Since processing operators are defined as messages attached to data structures, they 0

are manipulated with the same ease as data. Their applications can be easily controlled by

high level constructor procedures.

The basic data-types for signals in the ANIS system are TRACE and SEQUENCE representing re-

spectively waveforms and arrays of waveforms. Processing operators are attached to sequences

3Basic mathematical operators on arrays could also be implemented with FORTRAN subroutines, using either
network links or the Symbolice FORTRAN.



and/or traces depending on the nature of the task they perform. Some operators applied on

certain classes of data can produce side effects, i.e. related processing results are assigned to the

adequate slots of traces. Initial arrays of waveforms can be transformed with operators or they

can be segmented: this leads to the creation of new instances of specialized sequences, respec-

tively TRANSFORMED-SEQUENCE and SUB-SEQUENCE. Thanks to the object-centered structure,

any creation of more specific instances confers also the ability of invoking the same collection

of operators and of accessing all relevant information. In particular, "images" (i.e. graphical

representation of objects in windows), stay physically present and are readily available in the

environment. Again, an illustration of the possibilities of the system, with the help of practical

sessions, is given in Appendix A.

General structure

The objects in ANIS are structured hierarchically. Two main concepts are defined at the root of

the tree, representing for one part waveforms and arrays of waveforms (DATA-TYPE), for another

part abstract data types useful for results and for the practical implementation (ABSTRACT-

TYPE). A concept subsumed by other objects inherits their slots. Figure 2-1 shows a portion of

the hierarchical relations between ANIS objects subsumed by DATA-TYPE. The data type SUB-

SEQUENCE has an instance sub-sequence-03 that is an actual piece of data. It is subsumed

by the object SEQUENCE which is a specific DATA-TYPE. The list of the definitions of objects is

presented in Appendix B. The central concept is the data type SEQUENCE that embodies two

important slots, image and list-of-traces.

Image represents the abstracted part of the object SEQUENCE, related to graphical representa-

tions. Processing operations are primarily attached to images of sequences rather than

to sequences themselves.

list-of-traces relates a sequence to its primary components i.e. the individual waveforms,

represented by the data type TRACE.



Since every data type slot is assumed to be an instance of some defined object in the

environment, the overal structure forms a description of the semantic of the domain, i.e. of the

meaning of links between the various concepts. A piece of this network is shown on Figure 2-

2. This network shows, in particular, that a SEQUENCE has an image, which is an instance of

the particular object SEK-IMAGE, that is itself an ABSTRACT-TYPE containing other members of

ABSTRACT-TYPE called REGIONS that contain DATA-TYPE objects.

Processing operators

Processing operators in ANIS are messages that can be sent to instances of SEQUENCE or TRACES.

The listing of theses messages is given in Appendix C. Most operators are built on lower level

array processing functions. The most important operators on SEQUENCE are:

1. Operators for single signals, generalized for sequences of traces, including normalization,

interpolation with cubic splines, estimation of maxima in time-windows and computation

of envelopes via moving average.

2. Two methods for picking:

* Automatic threshold detection for all kind of waves. The legal time-band for picking

is restricted by taking into account the nature of the wave.

* Manual picking with the mouse 4. A minimum of two picked points is required. The

values for other waveforms in the sequence are linearly extra- or interpolated.

3. An accurate computation of move-out between traces using dynamic time warping 5 with

the possibility of interactively adapting and optimizing the parameters - i.e. the position

of windows and the number of points.

4. Waves' dispersion study in the time domain - computation of phase velocity variations

as a function of the length of the path of propagation.

4This technique is not intended to give precise arrival time estimates since there is the limitation of the initial
sampling rate. Nevertheless, it can provide high manual precision picking if done after spline interpolation.

"The technique is described in the next section.



Some operators are very general and can be invoked for any type of sequences and traces,

other are restricted to certain data types. The two following examples illustrate why the field

of application of operators is sometimes restricted:

* The message "envelope" can be sent to any type of traces and sequences, including

fragments of sequences and already transformed sequences. The operator is not task-

dependent, hence messages for traces and for sequences are built on the same very general

LISP function.

* The message "handpick-arrival-time" is only defined for instances of RAW-SEQUENCE of at

least two traces, and does not make sense for an instance of SUB-SEQUENCE except when

the value of the type slot of SUB-SEQUENCE is P-, S-, or Stoneley waves.

Processing results are described by two objects linked with the instances of TRACE. These ob-

jects are INITIAL-PROCESSING-VALUES and FINAL-PROCESSING-VALUES. Picking methods (i.e.

automatic threshold detection and manual picking) fill the "initial-values" slots of waveforms.

The initial arrival time values are then used to compute velocities with signal matching and the

results are affected to the "final-values" slots of waveforms. All results, as well as the history

of operations applied to a given instance of SEQUENCE can be retrieved with the help of specific

messages (see the list of operators in Appendix C).

2.4 Signal matching with dynamic time warping

Dynamic time warping

Dynamic time warping can be regarded as a generalization of cross-correlation that allows not

only shifting but also stretching and squeezing of one signal with respect to the other. A general

signal matching problem consists of estimating a mapping function between two time series at

any point in time. This mapping function must be such that it minimizes a given measure of

dissimilarity or distance between the two signals. Therefore, the problem can be formulated as



an optimization problem, and was tackled with two different approaches:

* A non-linear least-square inversion for estimating the mapping function as a sum of simple

analytical functions. Martinson et al. (1982) used truncated Fourier series and applied

successfully this technique to geophysical data.

* The problem can also be formulated as a search in the two-dimensional discrete space

of accumulated distances between the two signals. Sakoe and Chiba (1971) proposed an

algorithm using dynamic programming. The technique, called dynamic time warping,

was widely used and developed for speech recognition problems (see Rabiner et al., 1978).

Anderson (1983) reviews some possible applications in the geophysical domain, among

which waveform classification and well-to-well log correlation (Lineman, 1986) were de-

veloped. He suggested the use of dynamic time warping for the processing of entire sonic

waveforms.

Figure 2-3 shows the dynamic time warping problem for two discrete signals ai and bj of

respective lengths N and M. We need to determine a discrete mapping function ck = [i(k), j(k)]

that corresponds to a minimum distance between each couple of samples. Choosing a local cost

function d(c(k)), we are to minimize the overall cost function D(c) = C d(c(k)). This problem

is equivalent to a path finding problem in the N x M discrete domain of accumulated costs

(see Figure 2-3). Given constraints on endpoints and with the definition of the legal local

moves (the set of allowed moves from any point [i, j] to its neighbors), it can be shown that

the minimum cost path from the origin [0, 0] to any point [i, j] is independent of what happens

beyond this point. The minimum cost path is determined recursively by minimizing more

and more local costs. An optimal path finding algorithm using dynamic programming can be

applied to evaluate the mapping function ck (Sakoe and Chiba, 1971). A complete description

of the algorithm can be found in Parson (1986).
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Application to full waveform processing

The mapping function ck = [i(k),j(k)] is a representation of time shifts between the two input

signals for all samples. The time-shifts are 6tk =1 i(k) - j(k) i. Figure 2-4-a illustrates the

case where the two signals are identical: we have i(k) = j(k) for all k, hence ck is a straight

line between the initial and final tie-points, and 8tk = 0, for all k. Figure 2-4-b shows that if

two identical signals are shifted by a constant number of samples s (corresponding to a time

move-out t,), the theoretical mapping function is a straight line beginning at cl = [0, s]. If the

time shift between the two signals increases with time, as shown in Figure 2-5, the mapping

function departs from the constant slope. The dynamic time warping technique presents two

interests for full waveform matching applications in the context of the ANIS system.

* The method is potentially very accurate for recovering the variation of move-out with

time due to wave's dispersion between a couple of waveforms.

* The nature of the algorithm enables to control the mapping and to set constraints in

order to limit the space of possible matches. These constraints can drastically prune the

search tree, hence make the matching computationally effective.

This signal matching technique was applied to two slightly distinct purposes: first, to per-

form fast correlations on short windows to estimate travel times (and therefore waves velocities);

second, to make detailed analyses of the dispersion of arrivals in the time domain. The first

task could be addressed with traditional cross-correlation techniques since the very beginning

of arrivals is in general not dispersed. However, for dispersed waves (i.e. PL modes, pseudo-

Rayleigh and Stoneley) determining the phase velocity as a function of time can be done by

non-linear matching techniques.

Velocity determination The determination of a wave velocity with dynamic signal matching

involves five steps:



1. Determination of the arrival-time to of the wave for each waveform in the sequence using

a fast picking method.

2. Windowing the arrival around to; the window length depends on the dominant frequency

- for instance, the window is longer for the S wavetrain for the P-wave.

3. Interpolation of the windowed waveform with cubic spline. The interpolation factor de-

pends on the precision required.

4. Correlation by dynamic time warping with a maximum time shift constraint. The max-

imum time shift is the result of a trade-off between confidence in the first estimate and

computational cost.

5. Computation of the wave velocity from the initial move-out and the dynamic time warping

time shift.

The process is repeated for every couple of waveforms in the sequence. The first step is essential

for the reliability of results, especially in the case of a S-wave detection. For an interactive

process, P- and S-wave first arrival estimates are obtained with automatic or manual picking

and errors can be easily and quickly corrected. For an automated process, a priori assumptions

must be made (choice of a model) and control procedures must be set in order to check the

validity of the picks.

Dispersion studies Signal matching with dynamic time warping allows the study of the

dispersion of arrivals in the time domain for two waveforms. This information could also be

obtained in the frequency domain or via r-p transform but these methods require to work on

arrays of waveforms. The study of dispersion is restricted to a part of the waveform for two

reasons:

* The measure of similarity between signals emphasizes the resemblance of the prominent

waves. Because high amplitude arrivals have a prevailing contribution on the cost function,

weak arrival are matched less accurately. For instance, in a hard formation and for short



offsets, the method cannot resolve the P-wave time delays because of the dominant energy

in the pseudo-Rayleigh wave.

* The computational cost is too high when two entire waveforms are matched 6 with the

high sampling-rate required for a sufficient precision.

2.5 Results

Synthetic microseismograms

Resultsusing synthetic waveforms are presented first in order to test the accuracy of the method.

Synthetic microseismograms were generated with the discrete wavenumber method in the case

of an open borehole surrounded by an homogeneous formation. The mechanical properties

are: Vp = 4000 m/s, Vs = 2310 m/s, Qp = 50, Qs = 25, p = 2.4 x 103 kg/m 3 . The time

sampling rate is 11.84 microseconds. The borehole radius is 10 cm and the center frequency

of the source is 5 kHz. Figure 2-6 shows the complete sequence of synthetic waveforms. The

source to receiver distances range from 2.50 m to 8.00 m in increments of 0.50 m. The energy

in the Stoneley wave is preponderant for all the waveforms.

Velocity determination A P-wave velocity analysis was performed on the synthetic data

shown on Figure 2-6. For the sake of illustration, the initial automatic threshold detection step

was ill-done. There is a cycle-skipping for the 7.00 m offset. This cycle-skipping was the result

of a relatively poor signal-to-noise ratio for large offsets due to the attenuation. Figure 2-7 and

2-8 show the time-windowed P-waves after spline interpolation. The window length is about

two and a half cycle and the time sampling is less than a microsecond.

As shown on figures 2-9 and 2-10, the mapping functions are nearly perfect straight lines

for offsets less than 5.00 m. The quality of match decreases for larger offsets, as the level of

6The computational cost of dynamic time warping is theoretically proportional to the product of the two
signal lengths. In fact, the internal building of the recursion slows down the computation when signal lengths
pass a given threshold.



numerical noise increases. Note also that the mapping function between the 6.50 m and 7.00 m

offsets - involving a cycle-skipping - shows a linear part that corresponds to the maximum

shift constraint on the match. This indicates that paths with lower cost could be found if

larger move-outs were tolerated. The move-out value is estimated by taking the average of the

three most common time-shift values, excluding the extremities of the mapping function. This

estimate was found to be more robust than the straightforward average value.

Since the mapping function is constrained to stay in a diagonal band defined by a maximum

time shift, the matching with the offset 7.00 m (with initial cycle-skipping) corresponds to a

wrong estimate. In order to make the proper correlation the initial window length must be

larger so that it includes the first skipped cycle and the constraint on the maximum shift must

be relaxed. These increase the computational cost significantly.

Excluding results corresponding to the arrival detected with a cycle skipping, all final ve-

locity values are within 2.0 % of the theoretical value. The average value for the entire array

is 3960 m/s (the theoretical value being 4000 m/s). The determination of the S-wave velocity

(not shown here) was done with the same relative error. This example is representative of the

order of precision of the method as applied to a few sequences of synthetic seismograms. Tests

for formations without attenuation showed less deviation. All results, including for P-wave

velocity determination, have a systematic negative bias, i.e. an underestimation of velocities,

in the order of 0.5 % to 1 %. This is consistent with the fact that body waves velocities are in

all cases upper bounds to the phase velocities of guided arrivals and leaky waves.

Dispersion study A study of dispersion in the time domain was done on the same set of

microseismograms, for the first cycles of the pseudo-Rayleigh arrival. Figure 2-11 shows the

initial sequence, from which the beginning of the pseudo-Rayleigh wavetrains corresponding to

the offsets 5.00 m and 5.50 m were correlated with dynamic time warping. The two signals are

normalized and interpolated before signal matching.

The result is shown on Figure 2-12. As expected, the general trend is a decrease of the

phase velocity with time. The very beginning of the arrivals is weak in amplitude and contains
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a small component of P-wave arrival which explain the scatter in the results. For the first

500 microseconds, the average velocity is about 2300 m/s (the theoretical S-wave velocity being

2310 m/s). The last 300 microseconds correspond to a decreasing phase velocity, from 2300 m/s

to about 2100 m/s. Thus, the underestimation of the S-wave velocity depends on the length

of the window estimate. Nevertheless, taking the average over a 1000 microsecond window still

provides a good estimate of the S-wave phase velocity (2250 m/s).

Field data

The sequence displayed on Figure 2-13 is twelve traces of field data. The first receiver is ten feet

from the source and the distance between successive traces is a half foot. Each trace contains

a P-wave, a pseudo-Rayleigh wavetrain and a Stoneley arrival. The relative amplitude of the

pseudo-Rayleigh arrival is low.

A velocity analysis with signal matching was performed for each couple of traces for the P-,

S- and Stoneley waves. The respective average values for the velocities are 4100 m/s, 2440 m/s

and 1460 m/s. These values agree very well with results obtained with the semblance method

and the maximum likelyhood method (Block, 1986). (Ellefsen, personal communication). The

velocities between every successive slices of formation, however, show important variations. For

the P-wave, velocities vary between 3400 m/s and 4500 m/s, for the S-wave between 2140 m/s

and 2900 m/s. Accurate signal matching gave no significant trend for the variation of P- and

pseudo-Rayleigh wave phase velocities. As shown on Figure 2-14, the pseudo-Rayleigh arrival

seems to be fairly non dispersive.

2.6 Conclusions

The ANIS system proved to be well-suited for an interactive processing of sequences of wave-

forms. The primary advantage over other types of structure is that the core concept of sequence

makes possible the easy manipulation of complex two-dimensional objects.
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The system is adequate for a moderate amount of data, i.e. for sets of a few dozens of traces

for the present implementation. The operators are flexible and accurate, as demonstrated by

tests on synthetic data. These tests also confirm that the S-wave velocity is in general well-

estimated from the characteristics of the pseudo-Rayleigh arrival. Nevertheless, the general

trend is to underestimate velocities, by an amount that depends on the mechanical properties

of the formation.

Working with graphical representations of signals provides an instantaneous understanding

of the effects of operators. Thus the user has the ability to redo operations easily, until the

processing results are satisfactory. This type of approach is very useful for development and

for testing tasks.

The meaaage-oriented style of programming allows modularity. Operators can be easily

encapsulated in more complex and general structures. This later characteristics is essential for

further development and provides a wide range of applicability. Basic operators form a very

top-level language that can serve as a basis to construct more specific tools. The ability to treat

the operators as abstract structures is also essential for the integration in a knowledge-based

system for full waveform interpretation.
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Figure 2-1: Hierarchical relations between ANIS objects: raw-sequence-16 and sub-sequence-

03 are instances of the abstract data types RAW-SEQUENCE and SUB-SEQUENCE.
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Figure 2-2: A partial representation of the network of relations between ANIS objects and

attributes. IS-A links represent subset-set relations between concepts.
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Figure 2-7: Windowed P-waves for signal matching. Offsets from 2.50 m to 5.00 m.
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Figure 2-8: Windowed P-waves for signal matching. Offsets from 5.50 m to 8.00 m.
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Figure 2-9: The mapping functions for adjacent waveform pairs. Offsets between 2.50 m and

5.00 m.
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Figure 2-10: The mapping functions for adjacent waveform pairs. Offsets between 5.00 m and

8.00 m. As the signal-to-noise ratio decreases the mapping function becomes more noisy

Note the effect of the maximum time shift constraint on the beginning of the mapping

function at 650-700.
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Figure 2-11: Picking the S-wave onset with the mouse. Small rectangles correspond to the

arrival times picked by the user. Arrows point at interpolated time values for all traces.
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Figure 2-13: Raw array of full waveforms. The first receiver is 10 feet from the source and the

distance between two successive traces is 0.5 foot.
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Figure 2-13.
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Chapter 3

Qualitative Reasoning in Rock

Physics

3.1 Introduction

The aim of this chapter is to investigate the application of knowledge-based techniques in

the rock physics domain. Qualitative reasoning about rock properties provides a foundation

for symbolic reasoning about the physics of wave propagation in boreholes. The problem

addressed is the following: given a set of qualitative information about the properties of a

rather homogeneous zone of a formation, infer other qualitative values that are of interest for

the wave propagation. For instance, an interesting qualitative information is the porosity of

the formation. If we are in a non-porous formation, the right model for wave propagation is

the elastic model. Since waveforms are highly sensitive to changes in lithological properties

and in borehole parameters, even qualitative information in these domains is of importance

to adapt proper processing operations. Some petrophysical properties are generally known, at

least qualitatively, and can be used during the interpretation process. Other basic information

needed for a qualitative modeling of the wavetrain include the range of wave velocities and the

presence of fractures. Knowledge of the borehole environment is also required to choose the
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adequate model (diameter, casing, presence of mud-cake, etc.).

A reasoning module performing qualitative reasoning in the rocks physics domain was imple-

mented. In the next section, basic principles of knowledge-based systems are briefly reviewed.

3.2 Principles of knowledge-based systems

Knowledge-based techniques have already been developed for interpretative tasks in the geologic

and geophysical domain. Well-logging interpretation is one of the most frequently addressed

problems. In particular, the Dipmeter Advisor system (Davis et al., 1981) was the precursor

in this field and demonstrated the basic possibilities of knowledge-based techniques as well

as the principal pitfalls and limitations. Appendix D reviews the diverse applications in the

geophysical domain. Before describing the prototype developed for qualitative reasoning in rock

physics, some general principles of knowledge-based programming techniques must be outlined.

The general hypothesis of knowledge-based programs is that it is possible to represent

adequately with some language the knowledge about a domain, without having to specify in

advance the actual way in which this knowledge is to be used to perform a given task.

The first important type of representation is based on associational networks that attempts

to describe the relations between the concepts involved in the description of the domain. When

these networks are structured and include a mechanism for an automatic inheritance of proper-

ties based on the hierarchical relations between objects, they are called frame-based represen-

tations. As introduced originally by Minsky (1975), the rationale for frames was based on the

consideration that a good deal of reasoning uses the recognition of some prototype situations

rather than performing inferences based on very primitive evidences. Inheritance mechanisms

reduce the need for theorem proving and allow to recognize the truth of a given statement with

a limitated amount of search.

The second important representation tool captures the relevant pieces of knowledge in simple

autonomous structures called rules. These rules, in their simplest form, consists in an antecedent
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clause (or a conjunction of clauses) and a consequent clause. More knowledge about the domain

is then obtained when all facts in the antecedent part of a rule are true, which causes the

consequent part to be true. The actual mechanism of inference can be controlled, basically

either by initiating the reasoning process by a query (backward-chaining strategy) or by letting

any data in the knowledge base trigger the application of every relevant rule (forward-chaining).

Rule-based (or production system) were the first successfully developed system for diagnosis

tasks, using a backward-chaining (or goal-driven) control strategy.

One of the general principles of knowledge representation is that declarative knowledge, i.e.

"static" knowledge about the domain, must be kept clearly separated from deduced or evolutive

knowledge. In fact, languages tend to be developed separately for these two tasks.

3.3 Qualitative petrophysical reasoning

Since there is no exact and complete formulation of the inter-dependencies between properties,

the interpretative process is often based on qualitative physical laws and relies on practical

situations observed on the field and on laboratory experiments.

Two components were constructed for the representation of relevant petrophysical knowl-

edge. First, the explicit knowledge about the domain is represented in a frame-like knowledge

base. Second, implicit knowledge, i.e. knowledge that can be deduced from the facts embedded

in the knowledge-base, is captured via a rule-based formalism.

The Litho knowledge-base

The declarative knowledge about rocks is described in a frame-like structure representing the

materials useful for the full waveform interpretation problem. The hierarchical tree of this

knowledge base (called Litho) is shown on Figure 3-1. The definition of slots alone does not

constitute a complete description of the knowledge in the data base. A complete description of

the semantic of the domain is more explicitly illustrated by the network of relations between

__~ ____I_______LYL1.



the different concepts. Figure 3-2 shows a part of the declarative knowledge enbedded in the

LITHO knowledge base.

An important characteristic of the geologic knowledge used in this problem is its hierar-

chical nature. The lithological taxonomy is adequately represented by a frame structure with

a mechanism for an automated inheritance of properties. One can easily reason about clastic *

rocks or evaporites without explicitly saying all relevant information. The knowledge embedded

in the associational network of frames enables to recognize that a sandstone is a type of clastic

rock, and therefore to apply any rule about clastic rocks to sandstones.

The declarative knowledge embedded in the knowledge base is a straightforward represen-

tation of the classical taxonomy of rocks. This data base could be extended easily if necessary,

but the nature of qualitative rules does not necessitate a more detailed structure. Most of

relevant information is in fact embedded in the slots of rock individuals themselves. Once we

know that a rock is a carbonate, its real petrophysical properties (fracturing, porosity) are

more determinant than a more subtle geologic classification. The knowledge base covers the

description of some useful materials in well logging. In particular, the presence of material such

as mudcakes, casings, fluids allow a more complete description of the domain, if needed.

The other advantage of the frame-based structure is that the description of attributes is

done at different levels of specialization. For example, a density slot will be attached to all

materials, including fluids, whereas a porosity slot will exist only for rocks. Therefore, the

natural structure of knowledge is clearly apparent in the implementation.

The geologic rules

The geologic rules were designed with the help of qualitative petrophysical principles that link

properties of rocks. Detailed sample examples of reasoning processes are exposed in the next

section. A complete listing of these rules is given in Appendix E. The translation of these

principles into the rule formalism is in most cases simple and allows flexibility and incremental

refinement. Nevertheless some remarks must be made:
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* A typical reasoning tree is one or two levels deep. This is mostly due to the fact that

the rule base is too sparse. Nothing is said, for instance, about the relations between the

conductivity of rocks and the others properties. The reasoning process tends to invoke

"dual" properties (fracturing and permeability for instance).

* The representation makes sometimes awkward to reason with negations or exceptions. We

had to define artificial rules (see Appendix E, "rules x") to take into account assertions

such as "this fact is true except for shales". The choice, is to define either a new frame

concept such as a "non-shale" rock or to capture this fact with a rule.

* The last difficulty is to try to formalize a more physical knowledge of the problem. The

rule-based formalism makes difficult to express, for instance, that if the porosity increases,

the P-wave velocity will decrease (all other parameters remaining unchanged).

3.4 Examples of reasoning processes

The reasoning process of the system is described with the help of two simple examples. The

strategy for these two cases study is backward chaining (or goal-driven) and leads to the depth

first search of a tree. The depth of reasoning is shallow. Typical successful queries generally

involve the application of one or two rules only. The basic object in the knowledge structure

is a zone. A zone has an attribute lithology whose slot-filler is a given instance of any frame

subsumed by the frame ROCKS. The declarative knowledge about rocks is embodied in the LITHO

knowledge-base. The rules are listed in Appendix E.

Example 1

The complete search tree 1 for this example is displayed in Figures 3-3, 3-4. Given a zone whose

lithology slot-filler is halite, deep in the borehole, what is the value of its attribute permeability?

1For illustration, the whole search tree is explored. Of course, for practical applications the search ends after
the first successful match.



The first rule that has the datum permeability in its premises is rule A-5. The first assertion

in the antecedent part of the rule is common to all petrophysical rules and doesn't interfere

with the reasoning process. This clause takes into account the fact that we are dealing with

the lithology related to a given instance of the frame zone. Thus the slot lithology is bound to

the given instance of rock (rock 1 in this example). The second clause is false since a halite is

a sedimentary rock. Therefore, a second rule must be tried out.

Rule A-3 is not successful since one of its premises requires to try rule A-9 which involves

in turn permeability. Hence, this way is a dead-end.

The second clause of rule A-2 (that is itself a conjunction of clauses) is satisfied thanks

to the hierarchical structure of the knowledge - a halite being a kind of evaporite. The third

clause cannot be matched in the actual database, thus two rules are invoked to try to bind the

slot fracturation to some value.

* The second premise of Rule C-5 cannot be matched in the actual database. Two rules

are then invoked to find out about the porosity:

- Rule MC-1 can be successfully applied but this is worthless since the second clause

of rule-C-5 is about permeability - which is the initial query.

- Rule X-3 is irrelevant.

* Rule C-4 allows to conclude since a halite is an evaporite. Taking into account the initial

assertion "The max.depth of rock 1 is deep", all the clauses of rule A-2 are matched in

the database. A solution is found.

Rule A-i cannot be satisfied since its antecedent clause mentions null porosity and there

is no rule in the rule-base to demonstrate that the porosity of a rock is nul. Rule A-4 fails in

finding any fact to infer that the porosity of the rock is high. Applying rule A-7 leads to a loop

and therefore the backtracking stops. Rule A-6 does not help since the slotfiller maz.depth of

the rock is not shallow.
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The winning path that infers a null permeability which involves rule A-2 and rule C-4 is

displayed again in Figure 3-5.

Example 2

The second example is about a zone where we know there exists a mud cake. This type of

information can be obtained,for instance, by comparing two different caliper tool logs. The rock

in the zone is a limestone with no permeability. Considering these assumptions, the fracturation

of the rock must be absent since the mud cake indicates that the formation is porous and, since,

for all rocks, the existence of fracture is not compatible with both near-null permeability and

non-null porosity. Figures 3-6 and 3-7 show the backward chaining search tree. The rule base

allows to find a solution, which involves rule C-5 and rule MC-1. This example shows the

decisive contribution of practical well-logging knowledge to obtain qualitative property values.

The first path involving rule C-6 shows a weakness of our rule-based representation. Being

told that the permeability of the rock is nul (the initial assertion), the system tries to match

the fact "the permeability of the rock is high" because of the existence of rule A-4. Rule A-4

states that if the permeability of a rock is not high, medium, or low, then it is null - which

seems fairly straightforward since these qualitative values are theoretically the only allowed .

The problem here is that the set of legal values has to be restricted either in the declarative

part of the system (which implies multiple cross-checkings and hence loss in computational

efficiency) or explicitly specified by rules. In our case, rule-X4 enables us to write rules about

"non-null" permeability. The drawback is that the theorem prover looses time in attempting

to match the clauses of rule-X4, searching in branches that should be pruned.

3.5 Discussion

The actual limitations of the system come from the size of the rule base (about 25 rules). The

conductivity, the saturant fluid characteristics and other attributes of the rock should be taken



into account. This would relate more efficiently acoustic parameters to general petrophysical

properties in the reasoning process. The borehole environment characteristics are another useful

source of information to consider.

The rules about the mud cake existence show the importance of the well logging rules of

thumb. Simple evidence about the borehole environment can provide decisive information about

the qualitative properties of the formations. Such additional knowledge can be determinant in

the estimate of properties and for reasoning about waves' characteristics. In fact, this type

of knowledge, together with statistical heuristic knowledge about the effects of a given set

of geological conditions on the recorded waveforms, could be as well encoded with the same

formalism. This was, however, out of the scope of the present study.

Another direction of improvement would be to use a planning of reasoning in order to adapt

the choice of rules to the general geologic context. For instance, one could use different sets of

rules for sedimentary basins and igneous regions. This strategy will also help in pruning the

search tree.
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MATEMALS

Figure 3-1: The hierarchical frame-based representation of materials for the full waveform inter-

pretation problem. This.mudcake and Rock.1 are specific instances of the frames mudcakes

and halites.
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WELL-SOLIDS

Existence 

Thickness

Figure 3-2: A piece of the network of concepts in the Litho knowledge-base.
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The slot permeability was bound to nul, after applying rule C-4 and rule A-2.
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Chapter 4

Conclusions

In this work, a novel approach to the processing and interpretation of geophysical data was

investigated. The ultimate goal, which is to incorporate geologic knowledge in the processing of

full waveform acoustic data was tackled with the help of two primordial subtasks. First, for the

processing part, operators suitable for symbolic manipulation were implemented. Second, in

order to test the interest of geologic symbolic reasoning, a prototype knowledge-based system

performing qualitative reasoning in the rock physics domain was designed.

In order to favor intelligent processing, a workstation-based system was developed using

object-oriented programming. This style of implementation was found to be convenient, and

furthermore necessary to provide the high flexibility necessary for manipulating the operators.

The principal advantage of the processing package is to be built around the concept of sequence

of waveforms. This favors the development of functions for complex two-dimensional signals.

Synthetic data were used to test the reliability and accuracy of the processing operators. In

particular, a novel method for acoustic waveforms matching, using dynamic time warping was

shown to be suitable for very accurate correlations. A set of field data was also processed with

the system.

The prototype knowledge-based system demonstrated that the geologic knowledge can be



adequately represented with a frame-like language. Moreover, additional qualitative evidence

is gained by using rule-based techniques. The conjunction of these techniques enables one to

maximize the amount of information (explicit and implicit) about the geologic environment.

Nevertheless, one limitation of the actual system is that the knowledge embedded in the

rule-base is often too general in nature to provide decisive information. More effectiveness can &

be gained by capturing heuristic observations about the domain. In well-logging simple rules

of the thumb are powerful ways to obtain qualitative results about rock properties. This type

of development, however, was beyond the scope of the present study.
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Appendix A

Sessions with ANIS

This section describes some important facets of the practical use of the ANIS system. An initial

sequence of waveforms can be segmented in depth (by selecting a subset of offsets), and in time,

by creating new subsequences. In order to extract subsignals, the user clicks on the mouse,

that is, for this application, the computer analogue for scissors. As illustrated by the examples

below, the ability of dissecting signals is not restricted by the nature of these signals. Any

sequence can be transformed and cut apart without loosing track of the absolute arrival time

and sampling rate values. The examples also illustrate the graphical facilities of the system.

Example 1

Figure A-1 shows a raw sequence of 12 synthetic microseismograms in a fast formation with

offsets ranging from 2.50 m to 8.00 m, by steps of 0.50 m. The characteristics of the formation

are: Vp = 4000 m/s, Vs = 2310 m/s, Qp = 50, Qs = 25, p = 2.40 x 103 kg/m 3 . The

borehole radius is 10 cm, the central frequency of the source 5 kHz and the sampling rate is

11.84 microseconds.

The first weak arrival corresponds to the pseudo-Rayleigh wavetrain. The relative amplitude

of the P-wave is too low so that the wave does not appear on the plot shown in figures A-1



and A-2. With the help of the mouse, the user picks arrival times on a few waveforms in the

window attached to the sequence. These arrival times correspond to the onsets of the Stoneley a

wave. The small arrows point at the arrival time values as interpreted and interpolated by the

procedure "extract-wave". In Figure A-2, ending points of arrivals were chosen by the user on

some of the waveforms, so that the extraction of the Stoneley wave is completed automatically

for the whole sequence. A new instance of the data type TRANSFORMED-SEQUENCE is created

and its graphical representation is displayed. This new instance can be accessed for additional

manipulations.

Example 2

A second example of segmentation is shown on figures A-3, A-4, A-5, and A-6. The initial

sequence of synthetic microseismograms displayed on Figure A-3 contains nine waveforms. The

characteristics of the formation are: Vp = 4500 m/s, Vs = 2670 m/s, p = 2.45 x 103 kg/m s ,

Qp = Qs = oo, V = 1600 m/s. The borehole radius is 10 cm, the central frequency of the

source 5 kHz and the sampling rate is 11.84 microseconds. The last heigh traces were selected

for analysis.

The S-wave arrival times are estimated by automatic threshold detection (see Figure A-4).

Note that two attempts were necessary to pick correctly the onset of the S-wave for all traces.

The first threshold given as argument to "autopick-arrival" was too low which leads to

detect the onset of the P-wave arrival instead. As shown on Figure A-5, the S-wave extraction

only requires picking the ending points of the arrival since the beginning of the S arrival is

already determined. The envelopes of the initial waveforms were computed, which produced

the creation of an instance of the data type TRANSFORMED-SEQUENCE, whose image is displayed

on Figure A-6. Finally, the segments of the envelopes identified as the Airy phases of the

arrivals are extracted (Figure A-6).
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Example 3

Synthetic seismograms were generated for a slow formation with the following characteristics:

Vp = 2800 m/s, Vs = 1300 m/s, V = 1600 m/s, p = 2.45, Qp = Qs = Qf = oo, p = 2.45 x 103

kg/m 3 , pf = 1.20 x 103 kg/m 3 . The borehole radius is 10 cm. The sampling rate is about 11.84

microseconds and the center frequency of the source is 5 kHz.

The original data set, with offsets ranging from 1.00 m to 5.00 m by 50 cm steps, is displayed

on Figure A-7. Note that some part of the screen are "mouse-sensitive", i.e., useful information

is displayed when the mouse is on them. Envelopes are computed (Figure A-8) that show the

respective well-separated energy packets of the P- and Stoneley waves. All traces are associated

with mouse-sensitive regions in the window, so that the offset is indicated automatically when

the mouse points to a given waveform.
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Figure A-i: Example 1. Extraction of a Stoneley arrival from a sequence of synthetic micro-

seismograms. Small rectangles in (a) and (b) are echos of the times picked manually with

the mouse. Arrows in (b) point at interpolated values for all traces. 0
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Figure A-2: Example 1. Picking of the ending times for the Stoneley wave extraction.

(a) Leftward arrows point at the interpolated end-time values.

(b) The extracted Stoneley wave: a new instance of the data type SUB-SEQUENCE is created.

Extracted Stoneley - wave
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Figure A-3: Example 2. Synthetic microseismograms in an elastic formation with Vp = 4500

m/s, Vs = 2670 m/s, p = 2.45 x 103 kg/m s , Qp = Qs = oo, V = 1600 m/s. The

borehole radius is 10 cm, the central frequency of the source 5 kHz, the sampling rate is

11.84 microseconds.
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Figure A-4: Example 2. S-wave arrival time determination with threshold. The selected offsets

range from 1.50 m to 5.00 m by increment of 50 cm.. Triangles mark the detected arrivals.

Note that the first attempt detected in part the onset of the P-wave arrival. A higher

threshold corresponds to the first cycle of the S-wave for all traces.
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Figure A-5: Example 2.

(a) Extraction of the first cycles of the pseudo-Rayleigh arrival for the offsets ranging from

1.50 m to 5.00 m.

(b) The extracted subsequence.



Sub-wave extraction done

1000 Ms

Figure A-6: Example 2. Extraction of a "sub-envelope", i.e. creation of an instance of SUB-

SEQUENCE from an instance of TRANSFORMED-SEQUENCE, for the offsets ranging from 1.50 m

to 5.00 m. Points actually picked by the user are marked by small hollow rectangles. Circles

mark the interpolated arrival times for the first cut of the segmentation.
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Soo 1000 /O0 2000 250 So00o 00 0 4000 100 5000 5O0o

TIME (mrcroserr)

Conmend: (send slou :shou-self)
N(SEK-IMAGE 57311534)

Cornand: (tu:kopy)

,MIS listener

Figure A-7: Example 3. Initial sequence of synthetic microseismograms for a slow formation.

Offsets ranging from 1.00 m to 5.00 m by increment of 0.50 m. The black stripe at the

bottom of the screen (the "who-line") displays information about the sequence when the

mouse arrow is on a "mouse-sensitive" region.



Connsand: (send (send slou :get-transformed-sequence 'envelope) :drau-self .9 1.)
I<SEK-IMRGE 49257712>
Command: (tv:kopy)

RMIS listener

Figure A-8: Example 3. Envelopes of the waveforms shown in Figure A-7. Note the well-

separated energy packets corresponding to the P and Stoneley wavetrains. Each region

corresponding to a given trace on the screen is "mouse-sensitive"; the offset of the trace is

displayed on the "who-line".
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Appendix B

ANIS Objects

This appendix lists the descriptions of objects that form the skeleton of the ANIS system. The

implementation uses ZetaLisp objects (the so-called flavors). The ANIS flavors are structured

hierarchically 1 with root ANIS and two main top-level types: DATA-TYPE for the description of

data (i.e. waveforms and sequences) and ABSTRACT-TYPE for the manipulation of information

and processing results. An object inherits all the slots of its parents. Objects can be declared

abstract when they are not supposed to have instances by themselves but rather serve as the

basis for the definition of more specific concepts. The very top-level object (called ANIS) is an

abstract object similar to the default ZetaLisp basic object 2. Basic types (integer, real, array,

character, etc. ) are ZetaLisp data types.

The general form of descriptions is:

< object > c < super - object >

< attribute > E < type >

< attribute > E < type >

IFlavors are non-hierarchically structured objects but allow to build a hierarchical structure, if needed.
2That is "Vanilla flavor".



where < type > is generally a restriction of the form:

* member-of < ZetaLisp data type >

* one-of (list-of < Lisp object >)

* member-of < anis object >

* member-of (list-of < anis object >)

Data description

The two principal concepts are TRACE-TYPE and SEQUENCE.

DATA-TYPE C anis

name E variable

SEQUENCE C data-type

number-of-traces e integer

list-of-traces E (list-of trace-type)

selected-offsets E (list-of integer)

sub-sequences-list e (list-of SUB-SEQUENCE)

transformed-sequences-list E (list-of TRANSFORMED- SEQUENCE)

image e sek-image

sampling-rate e real

RAW-SEQUENCE C sequence

traces-in E (list-of symbol)

matrix e 2D-array

SUB-SEQUENCE C sequence

from-sequence e RAW-SEQUENCE

type e ('P' 'S' 'Stoneley' any-string)
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TRANSFORMED-SEQUENCE C sequence

from-sequence E (or RAW-SEQUENCE SUB-SEQUENCE)

transform E symbol

TRACE-TYPE C data-type

parent-sequence E sequence

infos E trace-info

portrait E simple-image

graph-location e region

parameters E temp-values

transformed-traces-list E (list-of transformed-trace)

sub-traces-list E (list-of sub-trace)

time-serie E 1D-array

TRACE C trace-type

qualitative-values E qualitative-processing-values

initial-values E initial-processing-values

final-values e final-processing-values

SUB-TRACE C trace-type

parent-trace E trace-type

wave-type e (one-of 'P' 'S' 'Stoneley' 'X')

processing-values E processing-values

TRANSFORMED-TRACE C trace-type

parent-trace e (or trace sub-trace)

processing-values e processing-values

transform E symbol

Representation of information and results

ABSTRACT-TYPE C anis

owner E anis



TRACE-INFO C abstract-type

offset e integer

number-of-points e integer

first-time-index E integer

sampling-rate e real

SEK-IMAGE C abstract-type

name E symbol

window E tv:window

io-sheet E tv:window

region-list E (list-of region)

list-of-actions e (list-of string)

REGION C abstract-type

object-in E data-type

scaling-factors E (real real)

upper-left-corner E (real real)

lower-right-corner E (real real)

SIMPLE-IMAGE C abstract-type

window e tv:window

TEMP-VALUES C abstract-type

time-value e (list-of real)

any-value E (list-of real)

TRACE-PROCESSING-VALUES C abstract-type

P-velocity e real

S-velocity E real

St-velocity E real

Vp-Vs-ratio e real

P-amplitude e real

S-amplitude E real
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St-amplitude E real

QUALITATIVE-VALUES C trace-processing-values

S-existence E (one-of 'yes' 'no' 'unknown')

P-S-amp-ratio E real

INITIAL-PROCESSING-VALUES C trace-processing-values

P-arrival-time E real

S-arrival-time E real

St-arrival-time e real

FINAL-PROCESSING-VALUES C trace-processing-values

P-arrival-time E real

S-arrival-time E real

St-arrival-time e real
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Appendix C

ANIS Operators

This appendix lists the main top-level messages (or methods) that can be sent to instances

of objects (or flavors) TRACE-TYPE and SEQUENCE and to objects below in the hierarchy. Oc-

casionally, a message may not make sense for a given subobject. For instance, the method

"compute-velocities" can be invoked for instances of SEQUENCE-I only, i.e. for unmodified

sequences of entire waveforms. The general form of a description is:

MESSAGE Al A2... ( B1 B2...)

where Al, A2 ... are required parameters and B1, B2 ... are optional parameters - whose

default values are presumably reasonable.

The Zetalisp syntax to send messages is:

send flavor-instance :message argument1 argument2 ...

In addition to listed methods, automatic methods are generated to get or to set any slot

value - these are access procedures 1. For instance, the ZetaLisp messages to get and set a

new value for the slot sampling-rate are respectively "sampling-rate" and "set-sampling-

rate". A few procedures for data initialization and affectation are defined as regular LISP

1ANIS objects and slots are listed in Appendix B.



functions rather than ZetaLisp messages.

Operators for sequences

Functions

SET-SEQUENCE file-pathname ( sequence-name)

RESET-SEQUENCE (sequence-name)

CLEAN-SEQUENCE ( sequence-name )

Messages

Operators

DRAW-SELF ( gain time-stretch)

SHOW-SELF

CLEAN-UP

DRAW-TRACE offset ( gain time-stretch)

GET-TRACE offset

GET-SUB-SEQUENCE wave

GET-FIRST-SUB-SEQUENCE

GET-SECOND-SUB-SEQUENCE

GET-TRANSFORMED-SEQUENCE transform

AUTOPICK-ARRIVAL wave threshold



HANDPICK-ARRIVAL wave

EXTRACT-WAVE wave

SET-INITIAL-VELOCITIES wave

COMPUTE-VELOCITIES wave

COMPUTE-AMPLITUDES wave

KORRELATION

INTERPOLATION ( factor )

NORMALIZATION ( reference-value)

ENVELOPE ( window-length)

Information retrieval

DESCRIBE

NUMBER-OF-TRACES

OFFSETS

SAMPLING-RATE

SUB-SEQUENCES

TRANSFORMED-SEQUENCES

WHAT-ACTIONS

INITIAL-RESULTS (wave)

FINAL-RESULTS ( wave )

RESULTS ( wave)



Operators for traces

Setting-up

SET-TRACE file-pathname ( trace-name)

Messages

DRAW-SELF ( gain time-stretch)

ENVELOPE (window-length)

SPLINE-SELF (factor )

NORMALIZE-SELF ( maximum-value)

AMPLITUDE-MAX

MAX-IN-INTERVAL ( first-time-index last-time-index )

DESCRIBE

INFOS

L



Appendix D

Knowledge-Based System

Applications in Geophysics

D.1 Introduction

Among the applications of Artificial Intelligence (AI) techniques to real-world problems, there

exist a few systems in the fields of geology and geophysics. Generally, these systems address

geophysical interpretation problems in domains where a large amount of experience is required.

These applications investigated mainly two types of problem; Prospector tackles a broad di-

agnosis problem, very close in nature to medical AI applications, whereas most of the recent

applications described in the literature investigate the interpretation of well logging or reflection

seismic data in narrower domains, but which often involve solving a pattern extraction and/or

a recognition problem.

The most significant applications of artificial intelligence in the fields of geology and geo-

physics are briefly reviewed, with emphasis on the specific tasks to be achieved and on the

structures chosen to solve the problem.



D.2 Prospector

Prospector (Duda et al. 1978, 1979, 1980) is a knowledge-based system intended to assist

geologists in evaluating the hard-rock mineral resources of a potentially productive region (a

prospect).

The task The system is designed to work in a consultant mode; the user possesses a set of

field data in a region and wants the system to come up with a geologic diagnosis about the

existence of a class of mineral deposit. The field evidences consist of regional information about

the prospect (description of the structural environment) and more local data (existence and

composition of a given type of rock). Most evidence is affected by uncertainties. The interpreter

may have only presumptions or indirect signs that a type of rock is present.

A particular type of deposit is described with a specific geologic model that contains a

large amount of probabilistic reasoning. Since evidences contribute with a different strength

to the establishment of a new hypothesis, each inference step modifies the current probability

of assertions. The task is to match the data against a model in the direction of the most

promising hypothesis and ask for additional information when no more evidence is relevant.

The final output of the reasoning process is of course weighted by a certainty coefficient. The

quality of the conclusion depends heavily on the adequacy (was the model the good one?) and

on the completeness of the model.

Internal structure Each model is encoded as an inference network that captures the geologic

knowledge required to solve one of the deposit evaluation subtasks. The structure of models

is hierarchical, from assertions which can be matched by field evidences to several higher-

level assertions. The inference network is defined as the network of relations between pieces

of evidences and geologic hypotheses. Figure D-1-a shows a simplified part of the inference

network describing a massive sulfide deposit model. The relations in the network are mostly

inference rules (an example of their internal representation is shown in Figure D-1-b). Due to

the nature of the domain, these rules must take into account uncertainties at the same time:
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field evidences are assumed to be inaccurate and incomplete and conclusions drawn from each

piece of evidence are themselves uncertain.

Three different relations can be distinguished according to the nature of the uncertainty

contained in the assertions: logical relations, plausible relations and contextual relations. Each

type of relation is associated with a law of probability propagation. The probability of an

hypothesis defined as the logical conjunction or disjunction of a set of evidences is computed with

the Zadeh fuzzy-set formulae; there are respectively equal to the minimum and the maximum

of the probability of the antecedent facts. When each evidence has a probability and contribute

in a different way to the change of probability of the hypothesis (plausible relation), an ad-hoc

Bayesian formalism is used to propagate the variations of probability in the network (see Duda

et al., 1980). Contextual relations capture the fact that an evidence can be relevant for a

conclusion only in a given context.

Relations are invoked in a backward-chaining mode, the initial direction being the one of

the highest probability. Assertions are also connected by a taxonomic structure which allows

the system to recognize subsumption between geologic concepts.

D.3 Well logging interpretation

In well-logging operations, tools are lowered into a borehole, then raised to the surface while

they measure a variety of physical quantities (traveltime of compressional waves, resistivity,

radioactivity, etc.). The problem of inferring a geologic description given these measurements

and the responses of the different sensors, is a large inverse problem.

Two facts help in the geologic reconstruction task. First, the measurement of various in-

dependent parameters gives better constraints on the possible solutions together with sources

of information such as cores, cuttings, etc.. Second, interpreters use an important amount of

geologic knowledge. By applying general geologic laws, and more specifically, knowledge of

the local geologic environment, experts can drastically reduce uncertainties. This later char-
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acteristic of interpretation explains why purely algorithmic and statistical approaches are not

sufficient to solve the entire problem. Tentatives have been made to capture the interpretation

process with knowledge-based systems.

The Dipmeter Advisor

The first system that tackles a log interpretation problem was the Dipmeter Advisor (Davis et

al. 1981, Smith and Young 1984).

Nature of the task The dipmeter tool is composed of 4 coplanar sensors which measure

the resistivity of rocks in different directions around the borehole. By computing correlations

between the variations of resistivity it is possible to infer the magnitude and azimuth of the

dip of lithological layers. The data are represented in the following way: at each depth where

correlation is meaningful, the measure is plotted as a small arrow called tadpole. The position

of the tadpole in the inclination scale indicate the magnitude of the dip. The direction of the

dip is represented by the direction of the tail of the tadpole. Some patterns of tadpoles are

related to structural and sedimentary features. An example of such data with the corresponding

geologic interpretation is presented in Figure D-2. Interpreters first look for large-scale tilting

linked with structural dip, then identify zones showing more local patterns characteristic of the

stratigraphic environment. Combining these observations with other logs, they use geologic

knowledge to describe the stratigraphic features.

System structure Three main components were built to capture the reasoning process of

human interpreters:

* A set of pattern detection algorithms to identify lithology zones and tadpole patterns.

* About 90 production rules used to infer the presence of geologic features. The basic object

in the clauses of the rules is a zone corresponding to a given layer of formation. Each zone

is associated with two kinds of knowledge: the existence of significant patterns and their

102

-L --.~_~~~~Vrl~^.~CPIYY liCL-I---L - I"Q- - .Ir-_ip---^X1Y~..r._ _^I- i. .~ .II-_IIP-YIIIIY-I-~- rU1I-JI~L~~



geometry (derived from the pattern detection step) and geologic evidences that may be

added by the human interpreter.

* An inference engine that invokes rules in a forward-chained manner. The control strategy

is limitated to a rule ordering.

The system is designed to allow the user's intervention at every stage of the process and

the modification of conclusions reached by the inference engine.

Other well logs interpretation systems

Recently, a few systems were designed to solve parts of the well-log interpretation problem.

Their structures are very close to the Dipmeter Advisor organization.

* The SCAT hybrid expert system (Thadani, 1984) also interprets dipmeter data but both

inputs and outputs are different from the Dipmeter Advisor ones. Tilt information is

represented as a set of curves (dip as a function of azimuth, dip versus depth, etc.) and

outputs are diagrams (cross-sections and contour maps of the structure surrounding the

well). Thus the pattern vocabulary is different, but the structure of the program and the

scope of the rules are very similar to the Dipmeter Advisor ones.

* LITHO (Bonnet and Dahan, 1983) addresses the more general problem of building a

complete lithology log given a set of measurements in a borehole. The system uses the

same techniques: pattern detection and production rules to draw geologic inferences. The

pattern recognition step consists here of a syntactic parsing of logs. Shape of the curves

and geologic (external) knowledge are the two types of evidence used in the rule-base. A

large amount of geologic knowledge is required - about 500 rules are necessary.

This system uses certainty factors in order to assign a probability for the presence of

each plausible lithology. The final lithology log is obtained by a classic clustering method

but probabilities of existence are taken into account for the determination of lithology.

Geologic knowledge is used to help in deciding whether a formation is more likely to
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exist in a given context when a statistical analysis cannot discriminate between plausible

solutions. Symbolic reasoning appears as a solution to remove the ambiguities of a purely

statistical approach.

* The COREX system (Lineman et al., 1987) contains a set of rules that embodies knowl-

edge of the paleo-environment to guide an automatic correlation of logs. Geologic knowl-

edge helps in optimizing the dynamic programming algorithm used for signal matching,

and adding constraints on the solution space as well.

Other applications in well-logging interpretation were investigated by Wu and Nyland

(1986), and Startzman and Kuo (1986). In seismic reflection interpretation, similar issues

occur for pattern recognition and/or texture analysis. Addition of geologic constraints via a

rule-based formalism is a way to improve the performances of pattern analysis algorithms (see

for instance Zhen and Simaan, 1986).

D.4 Structural interpretation: the Imagining technique

The imagining technique (Simmons, 1983), has been developed to attack the problem of building

an interpretation of simplified two-dimensional cross-sections of the subsurface.

The problem A cross-section represents a "cut" of the spatial configuration of geologic forma-

tions. The interpreter's task is to infer a sequence of events that explains the present situation

(in agreement with a set of geologic laws and hypotheses). The imagining technique tackles

a subproblem of the interpretation task: the system uses both quantitative and qualitative

methods to simulate an hypothesized sequence of events that leads to the observed section.

A sequence of events generated by quantitative simulation is presented in Figure D-3. The

geologic interpretation model is the so-called layer cake model which assumes the initial depo-

sitions to be horizontal and laterally infinite. Two additional assumptions are made. First, the

only structural modifications are due to sedimentation, erosion, faulting, homogeneous tilting
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and intrusions (no folding or "curved" structures). Second, interacting simultaneous events are

not considered.

It should be noted that the success of the simulation does not guarantee the hypothesized

sequence to be the "right" one. Imagining is a test method, part of the general generate and

test paradigm. The goal is to check the validity of a particular solution; no indications are given

on the range of possible alternate solutions.

System organization The simulation builds on the representation of geologic objects (rock-

unit, formation, boundary, geologic point) and processes which cause the spatial change of these

objects. The overall simulation is done in two steps:

* The qualitative simulation reasons about objects (frame-like structures) whose existence

and attributes change over time. This representation (called history) enables to simulate

change qualitatively, checking constraints and determining the range of legal quantitative

values for the attributes.

* The estimated values are then used to simulate quantitatively changes in diagrams. Di-

agrams are two-dimensional representations of cross-sections at any point in time. Ge-

ometric objects are described as a collection of vertices, edges and faces which enables

to recover the spatial relations between units. Each process is a quantitative geometric

operation applied to the current state of the section.

Given a set of geologic and geometric laws and constraints, and a representation of physical

processes, the system simulates the hypothesized succession of events that explains the final

cross-section. Representations are chosen to do spatial and temporal reasoning both in a quan-

titative and qualitative ways. A valuable side-effect of this method is to give the values of the

geologic objects' attributes at any time during the geologic history.
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D.5 Conclusion

In the geologic and geophysical domains, the first rule-based approaches to solve interpreta-

tion tasks were partially successful. Whereas these techniques were found suitable to design

consultant systems, the expertize can fall abruptly when dealing with real-world situations. In

order to maintain performances in new environments, the rule-base must grow and embody

more specific and specialized pieces of knowledge. This observation motivated further research

to represent a deeper knowledge of geologic principles. The Imagining technique shows the

interest of using multiple representations for taking into account causal relationships. The ra- @

tionale for this approach is that different classes of knowledge about the domain are useful for

each subtask, and require different representational tools. The drawback is that a representa-

tion that attempts to describe very general physical processes can lead to untractability and

inefficiency.

When geophysical signals are actual inputs of the system, the extraction of significant

features is done by processing methods whose performance is controlled by the choice of a set

of parameters. In the Dipmeter Advisor system, for instance, original data (resistivity curves)

are processed to give the dip estimates. Then, the user specifies parameters to optimize the

pattern detection algorithms. The general data-flow in the program is from the processing

modules to symbolic translation and reasoning. The reverse path is not addressed. In fact, the

choice and optimization of processing parameters often depend on the actual geologic context

and could be constrained with the acquisition of geologic information.

4.
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Figure D-1: Prospector:

a- Simplified representation of a Prospector model implemented as an inference network.

b- Representation of the rule "barite overlying sulfides suggests the possible presence of a

massive sulfide deposit."

After Duda et al., 1978.
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Figure D-2: An example of dipmeter data representation.

Patterns of "tadpoles" are interpreted in terms of geologic situations.
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Geologic Cross-Section and Legend

* SHALE

LJ SANDSTONE

D7 MAFIC-IGNEOUS

Imagining Example -- Quantitative Simulatk
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Solution of Geologic Interpretation Problem

1. Depait sandstone
2 Depot shale
3. Uplift
4 Intrude mfic igneous through sandstone and shale
5& Tilt
6. Fault
7. Erode shale and mafl -Igneous

Figure D-3: Given a scenario of geologic events, the sequence of facts is quantitatively simulated

with diagrams. The final diagram can be matched against the initial geologic cross-section

at the top.

After Simmons, 1983.
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Appendix E

Rules for Qualitative Reasoning

The rules that draw inferences in the petrophysical domain are listed bellow. These rules,

implemented with the KEE shell (Fikes and Kehler, 1985), are translated in an English-like

form - very close to the actual KEE syntax. A description of the LITHO knowledge-base that

embodies the declarative part of the reasoning system can be found in Chapter 3, part 3. The

syntax for rules is:

IF < conjunction or disjunction of clauses >

THEN < clause or conjunction of clauses >,

where a clause can have two basic forms:

* 3-uples (attribute, object, value). Ex: The porosity of the rock is null,

where object must be an instance of the frame rock in the LITHO knowledge-base.

* Frame membership 1. Ex: The rock is a sandstone.

'This form is not used in the consequent part of the rules. It would be for classification purpose, i.e. identi-
fication of the lithology.
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The KEE syntax allows negation of clauses. In practice, negations are avoided whenever it

is possible. The declarative knowledge in LITHO is structured in a way that limitates the need

for negation. Attribute's values are restricted by the definition of frames; the legal values of

qualitative petrophysical parameters (0, k, Vp, etc.) are generally element of (null low medium

high) or (low medium high). Rock fracturation can be present or absent.

Petrophysical rules

This set of rules attempts to capture qualitatively the physical relationships between petro-

physical parameters. The porosity is supposed to be the connected one. Shales and evaporites

must often be excluded from the general behavior. Most rules capture general physical rela-

tionships. Some rules, however, should depend on the geological environment - for instance,

when relating the depth of the rock, its lithology and the wave velocities.

* RULE-A.1

IF

THEN

* RULE-A.2

IF

THEN

* RULE-A.3

IF

THEN

* RULE-A.4

THE POROSITY OF THE ROCK IS NULL

THE PERMEABILITY OF THE ROCK IS NULL

THE ROCK IS AN EVAPORITE or A SHALE or A CARBONATE

and THE FRACTURATION OF THE ROCK IS ABSENT

THE PERMEABILITY OF THE ROCK IS NULL

THE POROSITY OF THE ROCK IS LOW

and THE FRACTURATION OF THE ROCK IS ABSENT

THE PERMEABILITY OF THE ROCK IS NULL
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THEN

* RULE-A.5

IF

THEN

* RULE-A.6

IF

THEN

* RULE-A.7

IF

THEN

* RULE-A.8

IF

THEN

* RULE-A.9

IF

THEN

THE POROSITY OF THE ROCK IS HIGH

and THE FRACTURATION OF THE ROCK IS PRESENT

and THE ROCK IS not A SHALE or AN EVAPORITE

THE PERMEABILITY OF THE ROCK IS HIGH

THE ROCK IS A NON SEDIMENTARY ROCK

and THE FRACTURATION OF THE ROCK IS ABSENT

THE PERMEABILITY OF THE ROCK IS NULL

THE MAX DEPTH OF THE ROCK IS SHALLOW

and THE ROCK IS A CLASTIC ROCK

THE POROSITY OF THE ROCK IS HIGH

and THE ATTENUATION OF THE ROCK IS HIGH

THE PERMEABILITY OF THE ROCK IS MEDIUM or HIGH

and THE FRACTURATION OF THE ROCK IS ABSENT

THE POROSITY OF THE ROCK IS HIGH

THE PERMEABILITY OF THE ROCK IS NULL

and THE FRACTURATION OF THE ROCK IS PRESENT

THE POROSITY OF THE ROCK IS NULL

THE PERMEABILITY OF THE ROCK IS LOW

and THE FRACTURATION OF THE ROCK IS PRESENT

THE POROSITY OF THE ROCK IS LOW
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* RULE-B.1 I

IF

THEN

* RULE-B.2

IF

THEN

* RULE-B.3

IF

THEN

* RULE-B.4

IF

THEN

* RULE-B.5

IF

THE ROCK IS A SEDIMENTARY ROCK

and THE ROCK IS not AN EVAPORITE

and THE MAX DEPTH OF THE ROCK IS SHALLOW

THE P- and S-VELOCITY OF THE ROCK ARE LOW

THE ROCK IS A NON CLASTIC ROCK

and THE MAX DEPTH OF THE ROCK IS DEEP

THE P-VELOCITY OF THE ROCK IS HIGH

and THE S-VELOCITY OF THE ROCK IS HIGH

THE P-VELOCITY or THE S-VELOCITY OF THE ROCK IS HIGH

and THE MAX DEPTH OF THE ROCK IS MEDIUM or DEEP

THE ATTENUATION OF THE ROCK IS LOW

THE ROCK IS A NON SEDIMENTARY ROCK

and THE FRACTURATION OF THE ROCK IS ABSENT

and THE MAX DEPTH OF THE ROCK IS MEDIUM or DEEP

THE P-VELOCITY OF THE ROCK IS HIGH

and THE S-VELOCITY OF THE ROCK IS HIGH

THE FRACTURATION OF THE ROCK IS ABSENT

and THE ROCK IS A NON CLASTIC ROCK

and THE MAX DEPTH OF THE ROCK IS MEDIUM or DEEP

and THE POROSITY OF THE ROCK IS NULL or LOW
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THE P-VELOCITY OF THE ROCK IS HIGH

and THE S-VELOCITY OF THE ROCK IS HIGH

* RULE-C.1

IF

THEN

* RULE-C.2

IF

THEN

* RULE-C.3

IF

THEN

* RULE-C.4

IF

THEN

* RULE-C.5

IF

THEN

THE POROSITY OF THE ROCK IS LOW or MEDIUM

and THE PERMEABILITY OF THE ROCK IS HIGH or MEDIUM

THE FRACTURATION OF THE ROCK IS PRESENT

THE ROCK IS not A SHALE

and THE ROCK IS not AN EVAPORITE

and THE PERMEABILITY OF THE ROCK IS LOW

and THE POROSITY OF THE ROCK IS MEDIUM or HIGH

THE FRACTURATION OF THE ROCK IS ABSENT

THE ROCK IS A NON SEDIMENTARY ROCK

and THE PERMEABILITY OF THE ROCK IS MEDIUM or HIGH

THE FRACTURATION OF THE ROCK IS PRESENT

THE ROCK IS AN EVAPORITE

and THE MAX DEPTH OF THE ROCK IS DEEP

THE FRACTURATION OF THE ROCK IS ABSENT

THE POROSITY OF THE ROCK IS not NULL

and THE PERMEABILITY OF THE ROCK IS NULL

THE FRACTURATION OF THE ROCK IS ABSENT
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* RULE-C.6

IF

THEN

THE PERMEABILITY OF THE ROCK IS not NULL

and THE ROCK IS A SHALE or AN EVAPORITE or A CHALK

THE FRACTURATION OF THE ROCK IS PRESENT

The following rule illustratethe use of "well-logging knowledge" to get decisive information

about rocks' properties.

* RULE-MC 1

IF

THEN

THERE IS A MUD CAKE WITHIN THE ZONE

THE POROSITY OF THE ROCK IS not NULL

Negation rules

Reasoning with exceptions has several drawbacks. In particular, there is often a trade-off

between the transparency and expressive power of representation and the computational cost.

The following sample rules illustrate this point in two ways:

* Rules must be written to state explicitly that an individual is not member of a given frame

when this fact is relevant to draw inferences (see rules X-1, X-2).

* Similarly, when the legal slot values are not declared disjoint, one must explicit negations

such as in rules X-3 and X-4.

In the case of frame membership, the clauses required to express "non-membership" are

determinated by the given hierarchical structure of the knowledge base. The form of rules X-1

and X-2 are clearly justified when considering the tree structure of LITHO (see Figure E-1).

* RULE-X. 1

IF THE ROCK IS A NON SEDIMENTARY ROCK or A NON CLASTIC ROCK
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or A SANDSTONE or A SAND or A CONGLOMERATE

THE ROCK IS not A SHALE

* RULE-X.2

THE ROCK IS A NON SEDIMENTARY ROCK or A CLASTIC ROCK

or A CARBONATE or A COAL

THE ROCK IS not AN EVAPORITE

* RULE-X.3

THE POROSITY OF THE ROCK IS LOW or MEDIUM or HIGH

THE POROSITY OF THE ROCK IS not NULL

* RULE-X.4

THE PERMEABILITY OF THE ROCK IS LOW or MEDIUM or HIGH

THE PERMEABILITY OF THE ROCK IS not NULL
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Figure E-1: The graph of the LITHO knowledge-base.

Expressing that a rock is not a shale, requires few negative clauses thanks to the hierarchical

structure of the knowledge-base. Negations are needed only at the levels indicated by bars
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