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Wilkinson Microwave Anisotropy Probe (WMAP) observations have accurately determined the

position of the first two peaks and dips in the cosmic microwave background (CMB) temperature power

spectrum. These encode information on the ratio of the distance to the last scattering surface to the sound

horizon at decoupling. However prerecombination processes can contaminate this distance information. In

order to assess the amplitude of these effects, we use the WMAP data and evaluate the relative differences

of the CMB peak and dip multipoles. We find that the position of the first peak is largely displaced with

respect to the expected position of the sound horizon scale at decoupling. In contrast, the relative spacings

of the higher extrema are statistically consistent with those expected from perfect harmonic oscillations.

This provides evidence for a scale dependent phase shift of the CMB oscillations which is caused by

gravitational driving forces affecting the propagation of sound waves before recombination. By account-

ing for these effects we have performed a Markov Chain Monte Carlo likelihood analysis of the location of

WMAP extrema to constrain, in combination with recent BAO data, a constant dark energy equation of

state parameter w. For a flat universe we find a strong 2� upper limit w<�1:10, and including the

Hubble Space Telescope prior, we obtain w<�1:14, which is only marginally consistent with limits

derived from the Supernova Legacy Survey sample. On the other hand, we infer larger limits for nonflat

cosmologies. From the full CMB likelihood analysis, we also estimate the values of the shift parameter R

and the multipole la of the acoustic horizon at decoupling for several cosmologies, to test their

dependence on model assumptions. Although the analysis of the full CMB spectra should always be

preferred, using the position of the CMB peaks and dips provides a simple and consistent method for

combining CMB constraints with other data sets.
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I. INTRODUCTION

Cosmic microwave background (CMB) observations
have provided crucial insights into the origin and evolution
of present structures in the universe [1–3]. Physical pro-
cesses that occurred before, during, and after recombina-
tion have left distinctive signatures on the CMB. The most
prominent feature is a series of peaks and dips in the
anisotropy power spectrum, the remnant imprints of acous-
tic waves propagating in the primordial photon-baryon
plasma at the time of decoupling [4–6]. This oscillatory
pattern carries specific information about several cosmo-
logical parameters [7]. As an example, the angular scale at
which these oscillations are observed provides a distance
measurement of the last scattering surface to the sound
horizon at decoupling, and hence a clean test of cosmic
curvature [8].

Observations from the Wilkinson Microwave
Anisotropy Probe (WMAP) satellite have accurately de-
tected the peak structure of the CMB power spectrum.
These data have constrained the geometry of the universe
to be nearly flat and have precisely determined other
cosmological parameters [9]. On the other hand, con-
straints on dark energy are less stringent; this is because
its late time effects leave a weaker imprint of the CMB,

which is diluted by degeneracies with other parameters.
Indeed, other cosmological tests can be more sensitive to
the signature of dark energy; nonetheless, they still require
additional information from CMB to break the parameter
degeneracies. As an example, CMB constraints are usually
combined with those from supernova type Ia (SN Ia)
luminosity distance data. Alternatively, the CMB can be
used in combination with measurements of the baryon
acoustic oscillations (BAO) in the galaxy power spectrum
[10]. In fact, the same acoustic signature present in the
CMB is also imprinted in the large scale distribution of the
galaxy, thus providing a complementary probe of cosmic
distances at lower redshifts.
A likelihood analysis of the CMB spectra is certainly the

more robust approach to implement CMB constraints with
those from other data sets. This can be very time consum-
ing; henceforth, one can try to compress the CMB infor-
mation into a few measurable and easily computable
quantities. Recent literature has focused on the use of the
shift parameter R, and the multipole of the acoustic scale at
decoupling la [11,12]. However, these quantities are not
directly measured by CMB observations; they are inferred
as secondary parameters from the cosmological constraints
obtained from the full CMB likelihood analysis.
Consequently their use as data can potentially lead to
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results which suffer from model dependencies, as well as
prior parameter assumptions made in the analysis from
which the values of R (la) have been inferred in the first
place. In contrast the multipole location of the CMB ex-
trema can be directly determined from the observed tem-
perature power spectrum through model-independent
curve fitting. These measurements can then be used to
constrain cosmological parameters provide that prerecom-
bination corrections are properly taken into account.

In this paper we analyze in detail the cosmological
information encoded in the position of the CMB extrema
as measured byWMAP. Our aim is to provide a simple and
unbiased method for incorporating CMB constraints into
other data sets, which is an alternative to that of using R
and/or la [11,12]. First we estimate the amplitude of pre-
recombination mechanisms that can displace the location
of the CMB extrema with respect to the angular scale of the
sound horizon at decoupling. In particular, we show that
the WMAP location of the first peak is strongly affected by
such mechanisms, while the displacements induced on the
higher peaks and dips are smaller. By accounting for these
effects we perform a cosmological parameter analysis and
infer constraints on dark energy under different prior as-
sumptions, including the cosmic curvature. We then com-
bine these results with measurements of BAO from the
Sloan Digital Sky Survey (SDSS) and 2-degree field (2dF)
data [13], and confront the inferred constraints with those
obtained using SN Ia data from the Supernova Legacy
Survey (SNLS) [14]. Finally we test for potential model
dependencies of R (and la) by performing a full likelihood
analysis of the WMAP spectra for different sets of cosmo-
logical parameters.

The paper is organized as follows: in Sec. II we review
the physics of the CMB acoustic oscillations. In Sec. III we
discuss the relative shifts of the multipoles of the WMAP
peaks and dips. In Sec. IV we present the results of the
cosmological parameter inference using the location of the
CMB extrema in combination with BAO. In Sec. V we
confront the results with the SN Ia likelihood analysis from
the Supernova Legacy Survey (SNLS) sample. We discuss
the results on the shift parameter in Sec. VI and present our
conclusions in Sec. VII.

II. CMB ACOUSTIC OSCILLATIONS

The onset of acoustic waves on the subhorizon scales of
the tightly coupled photon-baryon plasma before recombi-
nation is a natural consequence of photon pressure resisting
gravitational collapse. The properties of these oscillations
depend both on the background expansion and the evolu-
tion of the gravitational potentials associated with the
perturbations present in the system. In the following we
will briefly review the basic processes which affect the
propagation of these waves before decoupling. Interested
readers will find more detailed discussions in [6,7]. Let us
consider the photon temperature fluctuation �0 � �T

(monopole); following Hu and Sugiyama [6] its evolution
is described by

€� 0 þ
_R

1þ R
_�0 þ k2c2s�0 ¼ Fð�Þ; (1)

where the dot is the derivative with respect to conformal
time, R ¼ 3�b=4�� is the baryon-to-photon ratio, k is the

wave number, and cs ¼ c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ RÞp

is the sound speed of
the system with c the speed of light. The source term

F ¼ � €�� _R

1þ R
_�� k2

�

3
(2)

represents a driving force, where � and � are the gauge-
invariant metric perturbations, respectively.
During recombination the sound speed is slowly vary-

ing; in such a case it is easy to see from Eq. (1) that the
homogeneous equation (F ¼ 0) admits oscillating solu-
tions of the form

�hom
0 ð�Þ ¼ A1 coskrsð�Þ þ A2

k
sinkrsð�Þ (3)

where A1 and A2 are set by the initial conditions and
rsð�Þ ¼

R�
0 csð�0Þd�0 is the sound horizon at time �. At

the time of decoupling, ��, the positive and negative ex-
trema of these oscillations appear as a series of peaks in the
anisotropy power spectrum. Their location in the multipole
space is a multiple integer of the inverse of the angle
subtended by the sound horizon scale at decoupling,

namely, lpeakm ¼ mla with m ¼ 1; 2; . . . and

la ¼ �
rKðz�Þ
rsðz�Þ ; (4)

where z� is the recombination redshift and rðzÞ the comov-
ing distance to z,

rKðzÞ ¼ c

H0

1
ffiffiffiffiffiffiffiffiffiffiffij�Kj

p
fð

ffiffiffiffiffiffiffiffiffiffiffi

j�Kj
q

IðzÞÞ; (5)

with H0 the Hubble constant, j�Kj ¼ �K=H2
0 with K the

constant curvature, fðxÞ ¼ sinðxÞ; sinhðxÞ; x for K > 0,
K < 0, and K ¼ 0, respectively, and IðzÞ ¼
R

z
0 dz

0H0=Hðz0Þ.
Scales for which the monopole vanishes also contribute

to the anisotropy power spectrum. In such a case the signal
comes from the nonvanishing photon velocity �1 (dipole)
which oscillates with a phase shifted by �=2 with respect
to the monopole [6]. Therefore photons coming from these
regions are responsible for a series of troughs in the an-

isotropy power spectrum at multipoles ldipn ¼ nla with n ¼
mþ 1=2.
The full solution to Eq. (1) at decoupling reads as [15]

�0ð��Þ ¼ �hom
0 ð��Þ þ A3

k

Z ��

0
d�0½1þ Rð�0Þ�3=4

� sin½krsð��Þ � krsð�0Þ�Fð�0Þ; (6)
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where A3 is set by the initial conditions. As we can see
from Eq. (6), including the driving force F induces a scale
dependent phase shift of the acoustic oscillations, which is
primarily caused by the time variation of the gravitational
potential�. In fact, perturbations on scales which enter the
horizon at the matter-radiation equality experience a varia-
tion of the expansion rate which causes a time evolution of
the associated gravitational potentials. This mechanism is
dominant on the large scales and is responsible for the so-
called early integrated Sachs-Wolfe (ISW) effect [16]. The
overall effect is to displace the acoustic oscillations with
respect to the pure harmonic series. For a spectrum of
adiabatic perturbations we may expect this displacement
to become negligible on higher harmonics since the gravi-
tational potentials decay as � / ðk�Þ�2 on scales well
inside the horizon. This is not the case if active perturba-
tions were present on such scales before the epoch of
decoupling.

In order to account for these prerecombination effects, a
realistic modeling of the multipole position of the CMB
maxima and minima is given by [17]

lm ¼ laðm� ’mÞ; (7)

where m ¼ 1; 2; . . . for peaks and m ¼ 3=2; 5=2; . . . for
dips; ’m parametrizes the displacement caused by the
driving force. Because of the scale dependent nature of
the driving effect discussed above, it is convenient to
decompose the correction term as ’m ¼ �’þ �’m, where
�’ � ’1 is the overall shift of the first peak with respect to
the sound horizon, and �’m is the shift of the mth extrema
relative to the first peak [18].

It is worth noticing that the relative spacing of the CMB
peaks and dips is independent of the geometry and late
time expansion of the universe, and it is only sensitive to
prerecombination physics.

III. PHASE SHIFT OF WMAP PEAKS AND DIPS

WMAP observations have provided an accurate deter-
mination of the CMB power spectrum. The multipoles of
the CMB extrema have been inferred using a functional fit
to the uncorrelated band powers as described in [19].
Hinshaw et al. [3] have applied this method to the
WMAP 3-year data and found the position of the first
two peaks and dips to be at l1 ¼ 220:8� 0:7, l3=2 ¼
412:4� 1:9, l2 ¼ 530:9� 3:8, and l5=2 ¼ 675:2� 11:1,
respectively.

We want to determine whether these measurements
provide any evidence for driving effects affecting the
acoustic oscillations. In order to do so, we evaluate the
relative spacings between the WMAP measured mth and
m0th extrema,

�m;m0 ¼ lm0

lm
� 1; (9)

and the propagated errors ��m;m0 .

Let us first consider the spacings relative to the location
of the first peak. We find �1;3=2 ¼ 0:87� 0:01, �1;2 ¼
1:40� 0:02, and �1;5=2 ¼ 2:06� 0:05, respectively.

These estimates are shown in Fig. 1 (black solid circles),
where we also plot the relative spacings as expected from a
sequence of perfect acoustic oscillations (open circles). It
is evident that the WMAP inferred values of �1;m lie many

sigmas away from those expected from the harmonic se-
ries. This provides clear evidence that the position of the
first peak is largely affected by the driving force at decou-
pling. Such a large displacement is most likely caused by
the early ISW, although an additional contribution from
isocurvature fluctuations [20] or active gravitational poten-
tials [21] cannot be excluded.
Let us focus now on the displacement of the second peak

relative to the first one; since �1;2 > 1 it follows that �’>
�’2. This implies that the overall shift of l1 with respect to
la is larger than the shift of l2 relative to l1. As discussed in
the previous section this is consistent with having the
gravitational potentials inside the sound horizon scaling
as � / ðk�Þ�2, thus inducing a weaker driving force. This
can be seen more clearly in Fig. 2, where we plot �3=2;2,

�2;5=2, and �3=2;5=2.

Apart from �2;3=2 ¼ 0:29� 0:01, whose value suggests

the presence of a non-negligible driving effect still on the

FIG. 1. WMAP spacings of l3=2, l2, and l5=2 relative to l1
(black solid circles) and propagated errors. The values expected
from the harmonic series are �1;3=2 ¼ 1=2, �1;2 ¼ 1, and

�1;5=2 ¼ 3=2 (open circles). Vertical dashed lines delimit the

expected interval of variation of the relative spacings obtained by
including the shift corrections as parametrized in [18] and
evaluated over a conservative range of cosmological parameter
values (see text). The dotted vertical lines include the effect of
three massless neutrinos.
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scale of the first dip, we may notice that all other spacings
are statistically consistent with the prediction of the har-
monic series.

Therefore these results suggest the existence of a scale
dependent phase shift of the CMB acoustic oscillations.
The effect is larger on the scale of the first acoustic peak,
while it is weaker for the higher harmonics. The upcoming
Planck mission will map more accurately the location of
the higher peaks and dips and provide a cleaner detection
of this shift.

Indeed, driving effects are well accounted for by the
CMB theory as incorporated in standard Boltzmann codes
[22]. For instance, a standard adiabatic spectrum of initial
density perturbations leads to phase shifts which are con-
sistent with those we have inferred here. To show this we
have used the fitting formulas provided in [18] for adia-
batic models which parametrize ’m in terms of the total
matter density �mh

2, the baryon density �bh
2, the dark

energy density at decoupling �dec
DE , and the scalar spectral

index ns. Assuming �dec
DE ¼ 0 we evaluate these formulas

over the following range of parameter values, 0:08<
�mh

2 < 0:11, 0:020<�bh
2 < 0:024, 0:92< ns < 1:1,

and infer the corresponding intervals for the relative spac-
ings �m;m0 . These are drawn in Figs. 1 and 2 as vertical

dashed lines. It can be seen that these intervals are statis-
tically consistent with the measured spacings. Including
the contribution of three massless neutrinos (dotted vertical
lines) slightly shifts the �1;m intervals further from the

expected values of the perfect harmonic oscillator. This
is because the presence of relativistic neutrinos extends the

radiation era and therefore leads to a more effective early
ISW effect on large scales. In contrast we find no differ-
ences for the intervals of the other peak and dip spacings.

IV. PARAMETER INFERENCE

We perform a Markov Chain Monte Carlo (MCMC)
likelihood analysis to derive cosmological parameter con-
straints using the measurements of the WMAP extrema
discussed in the previous section. Again we account for the
shift corrections by evaluating the model prediction for lm
using Eq. (7), with the displacements ’m parametrized as
in [18]. We compute the recombination redshift z� using
the fitting formulas provided in [23]. Cosmological con-
straints derived from the location of the CMB peaks have
been presented in previous works (e.g. [24–26]). Here our
aim is to derive bounds on dark energy which are indepen-
dent of supernova Ia data and rely only on the cosmic
distance information encoded in the angular scale of the
sound horizon as inferred from the multipole position of
the WMAP peaks and dips, and BAO measurements.
First we consider flat models with dark energy parame-

trized by a constant equation of state w. We then test the
stability of the inferred constraints by extending the analy-
sis to models with nonvanishing curvature, �k � 0. We
also consider flat dark energy models with a time varying
equation of state parametrized as w ¼ w0 þ w1ð1� aÞ,
the Chevallier-Polarski-Linder (CPL) parametrization
[27,28]. We want to remark that for models with w1 �
1, the dark energy density can be non-negligible at early
times. Therefore, in order to consistently account for the
shifts induced on the location of the CMB peaks and dips,
we compute for each model in the chain the corresponding
value of �dec

DE so as to include its value in the shift fitting
formulas.
The credible intervals on the parameters of interest are

inferred after marginalizing over h, �bh
2, and ns, respec-

tively. We let them vary in the following intervals: 0:40<
h< 1:00, 0:020<�bh

2 < 0:024, and 0:94< ns < 1:10.
Marginalizing over these parameters is necessary due to
the parameter degeneracies in rK, rs, and to properly
account for the shift corrections ’m.
As a complementary data set we use the cosmic distance

as inferred from the BAO in the SDSS and 2dF surveys
[13]. These measurements consists of the ratio
rsðz�Þ=DVðzÞ, where DVðzÞ is a distance measure given by

DVðzÞ ¼ ½ð1þ zÞ2DAðzÞcz=HðzÞ�1=3; (10)

with DAðzÞ ¼ rKðzÞ=ð1þ zÞ the angular diameter distance
at z. In particular, Percival et al. [13] have found
DVð0:35Þ=DVð0:2Þ ¼ 1:812� 0:060.
In order to reduce the degeneracy with the Hubble

parameter, we also infer constraints assuming a Gaussian
prior, h ¼ 0:72� 0:08, as inferred from the Hubble Space
Telescope (HST) project [29]. In Fig. 3 we plot the margi-

FIG. 2. As in Fig. 1 for l3=2, l2, and l5=2 relative spacings. The
harmonic series values are �3=2;2 ¼ 1=3, �2;5=2 ¼ 1=4, and

�3=2;5=2 ¼ 2=3.
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nalized 1� and 2� contours in the�m- w, w-�K, and w0-
w1 planes, respectively. The upper panels correspond to
constraints inferred from WMAP extrema alone, while the
lower panels include the BAO data. Dashed contours are
inferred under the HST prior. To be conservative, we only
quote marginalized 2� limits. We now discuss these results
in more detail.

A. Limits from CMB peaks and dips

As it can be seen in Fig. 3 (upper left panel) the CMB
extrema alone poorly constrain the �m-w plane. In par-
ticular, the 1� and 2� regions are larger than those ob-
tained from theWMAP analysis [9]. This is because, due to
the late ISW effect, more information about dark energy is
contained in the full CMB spectrum than just in the dis-
tance to the last scattering surface as encoded in the
position of the CMB peaks and dips. Besides, several
degeneracies with other parameters are strongly reduced.
A direct consequence of this is that our limits on w are
unbounded from below. After marginalizing over all pa-
rameters we find�m ¼ 0:29�0:41

0:23 andw<�0:18 at 2�. A
model with �m ¼ 1 is consistent at the 95% confidence
level with the location of theWMAP extrema provided that
h � 0:42. This is in agreement with the results presented in
[30]. On the other hand, imposing an HST prior (dash
contours) reduces the degeneracy in the �m- w plane,
and the marginalized 2� limits are �m ¼ 0:16�0:15

0:11 and

w<�0:25, respectively. The upper limit on w improves if
a strong prior on �bh

2 and ns is assumed (dotted contours
in the upper left panel). As an example, imposing �bh

2 ¼
0:0223 and ns ¼ 0:96, we find w<�0:65 at 2�. Indeed,

using the analysis of the full CMB power spectrum pro-
vides better constraints. For instance, in Fig. 4 we plot the
1� and 2� contours inferred from a MCMC likelihood
analysis of the WMAP 3-year spectra in combination with
the HST prior. The limits are more stringent than in the
previous case. This is because the amplitude of the first
peak as well as the relative amplitude of the other peaks are
particularly sensitive to �m, �b, and h. Hence, degener-
acies contributing to the uncertainties in the �m-w plane
are further reduced. As mentioned before, a robust dark
energy parameter inference needs the analysis of the full
CMB spectrum. However, in this case one aims to infer

FIG. 4 (color online). Marginalized 1� and 2� likelihood
contours inferred from the full WMAP 3-year spectra.
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FIG. 3 (color online). Marginalized 1� and 2� likelihood contours from WMAP extrema (upper panels) and in combination with
BAO (lower panels). Dashed lines correspond to contours inferred under HST priors. The dotted lines in the upper left panel
correspond to limits inferred assuming �b ¼ 0:023 and ns ¼ 0:96.
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constraints from other data sets such as SN Ia or BAO and
to include CMB information in a rapid and simple manner;
the position of the CMB extrema provides a very efficient
tool. In fact, while the CMB power spectrum analysis
requires the solution of the Boltzmann equation for a given
cosmological model, the evaluation of the position of the
CMB peaks and dips is only a semianalytical computation.
As an example, running publicly available Boltzmann
codes [22] on a CPU at 2.3 GHz requires about one minute
to compute the CMB spectra of a single model. Hence,
using a MCMC sampling method, the evaluation of the full
CMB likelihood requires about a few hours to reach full
convergence of the MCMC chains, while using the CMB
extrema only takes a few minutes.

In Fig. 3 (central upper panel) we extend our analysis of
the CMB peaks and dips to nonflat models. Allowing for a
nonvanishing curvature increases the geometric degener-
acy and consequently leads to larger uncertainties inw. For
instance, the 2� marginalized constraints are w<�0:34
and�K ¼ �0:01� 0:05, respectively, and do not improve
significantly under the HST prior.

The position of the CMB peaks and dips alone does not
provide any insight on the time variation of dark energy. As
it can be seen in Fig. 3 (right upper panel) the contours in
the w0- w1 plane are spread over a large range of values.
After marginalizing we find w0 <�0:55 and w1 < 1:68 at
2�. It is worth mentioning that for increasing values of w1,
dark energy becomes dominant at earlier times. In such a
case the presence of a non-negligible dark energy density
at recombination modifies the position of the CMB peaks
and dips primarily through its effect on the size of the
sound horizon at decoupling. Therefore the location of the
CMB extrema (after having accounted for the relative
shifts) can put an upper bound on the time evolution of
the equation of state at high redshifts (i.e.w1). Our analysis
shows that in order to be consistent with the observed peak
structure, large positive values of w1 � 1 are excluded
(see also Sec. V). This is consistent with the fact that the
analysis of the full CMB spectrum limits the amount of
dark energy density at recombination to be less than 10%
(otherwise it would strongly affect the amplitude and
location of the CMB Doppler oscillations), hence provid-
ing a stringent upper bound on the value of the dark energy
equation of state at early times (see [31,32]). In contrast,
models with large negative values of w1 < 0 leave no
imprint at high redshifts, since in this case the dark energy
density rapidly decreases for z > 0. Consequently, the
likelihood remains unbounded in this region of the parame-
ter space.

B. Combined constraints from CMB extrema and BAO

The baryon acoustic oscillations in the galaxy power
spectrum provide a cosmic distance test at low redshifts.
Therefore, in combination with CMB measurements they
can significantly reduce the cosmological parameter de-

generacies. In Fig. 3 (lower left panel) we plot the com-
bined 1� and 2� contours in the�m- w plane. At the 95%
confidence level we find �m ¼ 0:12� 0:12 and w<
�1:10, respectively. Imposing the HST prior further con-
straints the dark energy equation of state, w<�1:14.
These results are compatible with those found in [13]. A
model with �m ¼ 1 is now excluded with a high confi-
dence level since the combination of CMB extrema and
BAO constrain the Hubble parameter in the range h ¼
0:71� 0:20 at 2� (see also [30]). Interestingly, the
�CDM case (w ¼ �1) appears to be on the edge of the
2� limit, hence favoring nonstandard dark energy models.
Indeed, unaccounted systematics effects in the BAO data
can be responsible for such supernegative values of w. On
the other hand, if confirmed this would provide evidence
for an exotic phantom dark energy component [33] or
could be interpreted as the cosmological signature of
dark sector interactions (e.g. [34]).
The credible regions for nonflat models are shown in

Fig. 3 (central lower panel). In this case we find �K ¼
�0:011� 0:064 and w<�0:46 at 2�. These bounds do
not change significantly under the HST prior. In Fig. 3
(lower right panel) we plot the 1� and 2� contours in the
w0- w1 plane. Also in this case the bounds on a time
varying dark energy equation of state remain large. For
instance, we find the marginalized 2� limits to be w0 <
�0:74 and w1 < 1:6. Necessarily inferring tighter bounds
on w1 will require the combination of several other data
sets, such as SN Ia luminosity distance measurements [35],
which is the topic of next section.

V. CONSTRAINTS FROM SN IA

Here we want to compare the results derived in the
previous section with limits inferred from luminosity dis-
tance measurements to SN Ia. We use the SN data set from
the SNLS [14], and for simplicity, we limit our analysis to
flat models. The results are summarized in Figs. 5 and 6,
where we plot the 1� and 2� contours in the �m-w and
w0-w1 planes, respectively. The shaded regions correspond
to limits inferred by combining the SN data with the
location of the CMB extrema and assuming a hard prior
on the baryon density and the scalar spectral index, �b ¼
0:023 and ns ¼ 0:96, respectively. We have verified that
the constraints do not change significantly by assuming
different prior parameter values.
Let us first focus on Fig. 5. We can see that the degen-

eracy line in the �m-w plane is almost orthogonal to that
probed by CMB and BAO, and indeed using the SN data
requires external information to extract tighter constraints
on dark energy. A common procedure is to assume a
Gaussian prior on �m consistently with the parameter
inference from CMB and large scalar structure measure-
ments, or alternatively to combine the SN analysis with
BAO or the CMB shift parameter. Here we derive limits by
combining the SN data with the position of the CMB peaks
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and dips. This breaks the parameter degeneracy, thus pro-
viding smaller ‘‘credible’’ contours (shaded contours). In
particular, after marginalizing, we find �m ¼ 0:24� 0:11
and w ¼ �1:01� 0:29 at 2�, respectively. We can notice
that these limits are only marginally consistent with those
inferred using BAO in the previous section, thus indicating
a potential discrepancy between the BAO measurements
obtained in [13] and the SNLS data [14].

Let us now consider the case of a time varying equation
of state. It is obvious that the parameter degeneracy be-
tween the matter density and the dark energy equation of
state increases when additional equation of state parame-
ters, which account for a possible redshift dependence, are
included in the data analysis. This can be clearly seen in

Fig. 6 were we plot the 1� and 2� contours in the w0-w1

plane. Nevertheless the SN data, differently from the case
of BAO data in combination with CMB extrema (see lower
left panel in Fig. 3), constrain w0 in a finite interval. This is
because SN Ia observations, by testing the luminosity
distance over a range of redshift where the universe evolves
from a matter dominated expansion to one driven by dark
energy, are sensitive to at least one dark energy parameter
(i.e. w or w0) [36]. In such a case adding external infor-
mation breaks the internal degeneracy and leads to finite
bounds on both dark energy parameters. For instance,
including the position of the CMB peaks and dips, the
root-mean-square value and standard deviation for w0

andw1 derived from the MCMC chains arew0 ¼ �1:04�
0:33 and w1 ¼ �0:27� 2:27, respectively, the best fit
model being w0 ¼ �1:02 and w1 ¼ 0:04. These results
are consistent with those from other analyses in the litera-
ture (see e.g. [12]).

VI. SHIFT PARAMETER

The geometric degeneracy of the CMB power spectrum
implies that different cosmological models will have simi-
lar spectra if they have nearly identical matter densities
�mh

2 and �bh
2, primordial spectrum of fluctuations, and

shift parameter R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�mH
2
0

q

rKðz�Þ [37]. The authors of

[12] have suggested that since la is nearly uncorrelated
with R, then both parameters can be used to further com-
press CMB information and can be combined with other
measurements in a user-friendly manner. For minimal ex-
tension of the dark energy parameters, the inferred values
of R and la do not significantly differ from those inferred
assuming the vanilla �CDM model [11,12]. Indeed, dif-
ferences may arise if additional parameters, such as the
neutrino mass, the running of the scalar spectral index, or
tensor modes, are considered [11]. We extend this analysis
to other models. In particular, by running a MCMC like-
lihood analysis of the full WMAP 3-year spectra, we infer
constraints on R and la for models with an extra back-
ground of relativistic particles (characterized by the num-
ber of relativistic species, Neff � 3) [38], neutrino mass
[39], a time varying equation of state parametrized in the
form of CPL, and a dark energy component with perturba-
tions characterized by the sound speed c2DE. We also con-
sider models with a running of the scalar spectral index,
with a nonvanishing tensor contribution (see e.g. [40]) and,
finally, with extra features in the primordial spectrum due
to a sharp step in the inflaton potential as in [41].
As we can see from Table I the constraints on R and la

are stable under minimal modifications of the dark energy
model parameters; differences are smaller than a few per-
cent, including the case of a clustered dark energy compo-
nent (c2DE ¼ 0). In contrast, the confidence interval of la is
shifted by a few percent in the �CDM model with the
neutrino mass or an extra background of relativistic parti-
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FIG. 6 (color online). As in Fig. 5 in the w0-w1 plane.
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FIG. 5 (color online). Marginalized 1� and 2� contours in
the �m-w plane from SNLS data (solid lines) and in combina-
tion with the location of the CMB extrema (dark and light grey
shaded regions).
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cles, while the values of R are slightly modified for a
running of the primordial power spectrum or the contribu-
tion of tensor modes. These results confirm previous analy-
ses [11,12].

Although the values of R and la are nearly the same for
the dark energy models we have considered, this should not
be considered as an incentive to use these parameters
without caution. For instance, there is no specific reason
as to why one should use the values of R and la inferred
from the vanilla �CDM, rather than those obtained ac-
counting for the neutrino mass. Consequently, one may
infer slightly different bounds on the dark energy parame-
ters depending on whether neutrinos are assumed to be
massless or not. Moreover, the reason that WMAP data
constrain R and la to be nearly the same for simple dark
energy models is because the effect of dark energy on the
epoch of matter-radiation equality and the evolution of the
density perturbations remain marginal. This might not be
the case for other models, such as those for which the dark
energy density is non-negligible at early times. Since this
effect is not accounted for in the values of R and la inferred
from the vanilla �CDM, their use may lead to strongly
biased results. In contrast, the location of the CMB extrema
is applicable to this class of models as well [18]. A similar
consideration applies to inhomogeneous models in which
the late time dynamics and geometry depart from that of
the standard Friedmann-Robertson-Walker universe [42].

The applicability to models of modified gravity, such as
the DGP scenario [43], deserves a separate comment. In
these models, not only does the Hubble law differ from the
standard �CDM, but also the evolution of the density
perturbations can be significantly different. Therefore, un-
less the evolution of the linear perturbations is understood
well enough as to allow for a precise calculation of the
CMB and matter power spectra, the use of R and la, or
alternatively of the position of the CMB extrema or the
distance measurements from BAO might expose one to the
risk of completely wrong results.

VII. CONCLUSIONS

The multipoles of the CMB extrema can be directly
measured from the WMAP spectra and used to combine
CMB information with other cosmological data sets.
Corrections to the location of the CMB peaks and dips
from prerecombination effects need to be taken into ac-
count for an unbiased parameter inference. Here we have
shown that the position of the first peak as measured by
WMAP 3-year data is strongly displaced with respect to
the actual location of the acoustic horizon at recombina-
tion. This displacement is caused by gravitational driving
forces affecting the propagation of sound waves before
recombination. These effects are smaller on higher har-
monics, indicating the presence of a scale dependent phase
shift which becomes negligible on scales well inside the
horizon.
We have performed a cosmological parameter inference

using the position of the WMAP peaks and dips in combi-
nation with recent BAO measurements, and derived con-
straints on a constant dark energy equation of state under
different model parameter assumptions.
The method we have presented here is an alternative to

using the shift parameter R and/or the multipole of the
acoustic horizon at decoupling la. We have tested for
potential model dependencies of R and la by running a
full CMB spectra likelihood analysis for different classes
of models. Indeed, for simple dark energy models the
inferred constraints on R and la do not differ from those
inferred assuming the vanilla �CDM. Nevertheless, we
have suggested caution in using these secondary parame-
ters as data, since hidden assumptions may lead to biased
results particularly when testing models which greatly
depart from the �CDM cosmology.
Indeed, we do advocate the use of the full CMB spectra,

particularly for constraining the properties of dark energy.
In fact, more information on dark energy is encoded in the
full CMB spectrum than just in the distance to the last
scattering surface. Nevertheless, we think that using the
location of the CMB extrema provides a fast and self-
consistent approach for combining, in a user-friendly
way, the CMB information with complementary cosmo-
logical data.
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TABLE I. The 68% C.L. on the shift parameter R and the
acoustic scale derived from the WMAP data. A top-hat age prior,
10 Gyrs< t0 < 20 Gyrs, is assumed.

Model R la

�CDM 1:707� 0:025 302:3� 1:1
wCDMðc2DE ¼ 1Þ 1:710� 0:029 302:3� 1:1
wCDMðc2DE ¼ 0Þ 1:711� 0:025 302:4� 1:1
�CDMm� > 0 1:769� 0:040 306:7� 2:1
�CDMNeff � 3 1:714� 0:025 304:4� 2:5
�CDM�k � 0 1:714� 0:024 302:5� 1:1
wðzÞCDMCPLðc2DE ¼ 1Þ 1:710� 0:026 302:5� 1:1
�CDMþ tensor 1:670� 0:036 302:0� 1:2
�CDMþ running 1:742� 0:032 302:8� 1:1
�CDMþ runningþ tensor 1:708� 0:039 302:8� 1:2
�CDMþ features 1:708� 0:028 302:2� 1:1
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