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1 Introduction

The path of a particle traversing the LHCb detector is reconstructed by the software

of the Brunel project [1]. This software performs several tasks, including the pattern

recognition and the track fit. Pattern recognition in the tracking system deals with assigning

the detected hits to tracks. These collections of hits are fitted by a Kalman filter [2] to

obtain a representation of the trajectory of the corresponding particle through the detector

volume.

As a result of the fit, a track contains the optimal estimates of the track’s defining

parameters at a set of locations specified by their z-coordinate. In the Kalman filter ap-

proach the track parameters at the next z-position of interest are predicted based on the

knowledge of the track parameters at the present z-position. This propagation step is

performed according to a mathematical model which describes how the track parameters

and the corresponding covariance matrix evolve, taking into account the influences of the

magnetic field, and the energy loss and multiple scattering due to traversing material. The

propagation model is based on the one designed by the Hera-B collaboration [3]. Depend-

ing on the specific use-case and the local magnetic field strength, a linear, parabolic, a

fifth-order Runge-Kutta or analytic power series expansion track evolution description can

be used.

The mathematics of the propagation models is described in section 2. These concepts

have been coded up in software tools named track extrapolators. Their technical imple-

mentation in the LHCb software is described in section 3.

2 Propagation models

The propagation of the track parameters through the LHCb detector volume is per-

formed in accordance with a suitable selection from the range of available models. Cal-

culating the change of the track parameters in the presence of a sufficiently weak and

homogeneous magnetic field is possible with a less complicated and consequently less CPU-

intensive model at a comparable accuracy as provided by a model which takes magnetic

field effects into account in a more detailed way. Also, for short distances a more accurate

model does not provide a significantly different result. The impact of multiple scattering

and energy loss on the track parameters and track covariance matrix is modelled separately

from the influence of the magnetic field.

These models and the equations of motion which they solve are discussed next.
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2.1 Equations of motion

The trajectory of a charged particle through a static magnetic field is described by

the equations of motion. In the absence of material effects, these are fully determined by

the Lorentz force. Formulated in terms of geometrical quantities and as a function of the

z-coordinate, the equations of motion are [4]:
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=
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ds

dz

[
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dz
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dz
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where Q is the charge of the particle, P is its momentum, s is the path length along its

trajectory and B is the local magnetic field vector.

Rewriting these equations using the LHCb track event model [5] parameters (x, y, tx, ty,
Q

P
)

results in:

dx

dz
= tx ,

dy

dz
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dtx
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=
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√
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−tx(tyBy + Bz) + (1 + t2y)Bx
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.

These equations need to be solved for the track parameters x, y, tx and ty in order to

determine their change during track propagation.

2.2 Linear model

In regions of negligible magnetic field strength, the particle is assumed to traverse the

detector in a straight line. Since the slopes tx and ty do not change in that case, the

solution of the equations of motion for the geometrical track parameters is uncomplicated:

x(ze) = x0 + tx0∆z ,

y(ze) = y0 + ty0∆z ,

tx(ze) = tx0 , (3)

ty(ze) = ty0 .

The subscript 0 refers to the parameter values before propagation and ∆z = ze − z0 is the

difference between the z-position after and before the propagation step.
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Figure 1: The magnetic field strength as a function of the z-position at x = y = 0. The

locations of the centres of the tracking detectors are shown as vertical dashed lines.

The magnet region is located between the Trigger Tracker (TT) and the T-stations

(T1-T3).
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2.3 Parabolic model

In the presence of a homogeneous magnetic field, the particle’s trajectory can be math-

ematically described by a parabola. A parabolic model is also an adequate approximation

of the particle’s path in case of a moderately inhomogeneous magnetic field or when deal-

ing with short propagation distances. This implies that the model can mainly be used for

propagation outside of the LHCb magnet, see figure 1.

The equations of motion describing a parabolic trajectory are formulated as follows:

x(ze) = x0 + tx0∆z +
1

2

dtx0

dz0
(∆z)2 ,

y(ze) = y0 + ty0∆z +
1

2

dty0

dz0
(∆z)2 ,

tx(ze) = tx0 +
dtx0

dz0
∆z , (4)

ty(ze) = ty0 +
dty0

dz0
∆z .

2.4 Runge-Kutta model

A considerable, non-homogeneous magnetic field influences the path of a charged parti-

cle in a way which has no exact analytical solution. As seen in figure 1, the LHCb magnetic

field inside the magnet region is non-homogeneous and strong enough to disfavour the

use of a parabolic propagation model. This situation calls for a numerical solution of the

track propagation equations. An iterative method using numerical integration by Runge

and Kutta is a well-known technique, suitable for dealing with this problem. The classi-

cal implementation is a fourth-order formulation of the approximation to a exact solution.

An appropriate solution for the LHCb track propagation purposes is the fifth-order Runge-

Kutta method [3]. In this formulation, the track parameter vector ~x = (x, y, tx, ty, Q/P )

is expanded in terms of ∆z [6]:

~x(∆z) = ~x0 +
6
∑

m=1

cm
~km ,

~km =
d~xm

dz
∆z , (5)

~xm = ~x0 +
m−1
∑

n=1

bmn
~kn .

The coefficients cm and bmn are known as the Cash-Karp parameters and are chosen such

as to obtain a precision which is proportional to (∆z)6, making this a fifth-order method.
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2.5 Analytic model

An alternative approach to the Runge-Kutta method has been developed by I. Kisel

et al [7]. It is based on the possibility to expand the track parameters which are being

propagated in a power series of the magnetic field components. Like the Runge-Kutta

formulation, this approach is valid in the presence of an inhomogeneous magnetic field.

The inhomogeneity is taken into account by the coefficients of the power series expansion.

The magnetic field components are small parameters in the expansion, resulting in little

dependence on the field shape. This feature also allows for higher-order terms of the power

series to be neglected without it having a significant impact on the obtained result. In the

expansion, same-order terms have vastly different weights. This implies that for a specific

order of the expansion, using the few terms with a relatively high weight is sufficient to

represent the contribution of that order to the result of the propagation. The desired

precision of this model can be controlled by the number of orders taken into account.

The slopes tx and ty can be obtained to any order (n) from the following equation,

when substituted for T [7]:

T (ze) = T (z0) +
n
∑

k=1

∑

i1,...,ik

Ti1,...,ik(z0)

×
(
∫ ze

z0

Bi1(z1) . . .

∫ zk−1

z0

Bik(zk)dzk . . . dz1

)

+O
(

(B(Q

P
)∆z)n+1

(n + 1)!

)

, (6)

where the last term in this equation provides an estimate of the propagation error in tx and

ty, being of order (n + 1).

Once the track slopes have been determined, the change in the x and y parameters can

be calculated by respectively integrating tx and ty over the propagation range in z:

x(ze) = x(z0) +

∫ ze

z0

tx(z)dz + O
(

(B(Q

P
)∆z)n+1

(n + 1)!

)

∆z ,

y(ze) = y(z0) +

∫ ze

z0

ty(z)dz + O
(

(B(Q

P
)∆z)n+1

(n + 1)!

)

∆z . (7)

2.6 Multiple scattering model

A charged particle traversing the material of the LHCb detector can scatter in the

Coulomb field of the nuclei. Given the relative mass difference between the particle and

the nucleus, this will be an elastic scattering, changing only the particle’s direction, not the

absolute value of its momentum.
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In case of a thin material layer, the scattering changes the angles without significantly

affecting the particle’s displacement, due to the limited distance which it travelled. This

scenario is modelled by adding contributions to the tx and ty variances and their covariance

in the track covariance matrix, reflecting the reduced knowledge of the particle’s direction.

These additions are made after the prediction step:

cov(tx, tx) = (1 + t2x)(1 + t2x + t2y)CMS ,

cov(ty, ty) = (1 + t2y)(1 + t2x + t2y)CMS , (8)

cov(tx, ty) = txty(1 + t2x + t2y)CMS .

The angular distribution corresponding to multiple Coulomb scattering is taken to be the

one derived by Molière [8]. Its approximate projected angle distribution is fitted by a

Gaussian. The quantity CMS is the square of the root-mean-squared of that fit. The

root-mean-squared θ0 is given by the Highland-Lynch-Dahl formula [9]:

θ0 =
13.6 MeV

βPc

√

l
√

1 + t2x + t2y
χ0

[

1 + 0.038 ln

(

l
√

1 + t2x + t2y
χ0

)]

. (9)

The variable β = v/c refers to the particle’s velocity, P to its momentum, l is the distance

in z and χ0 is the radiation length of the traversed material.

In case of an extended material layer, the effect of the change of angles on the propa-

gated position of the particle can no longer be ignored. For a thick scatterer, the covariance

matrix gets additions as defined by the following:
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where the covariances are given by equations 8 and D is a sign signifying the track direction,

being positive for tracks propagating in increasing z.

2.7 Energy loss models

Besides scattering, a particle traversing material also loses energy, mainly by ionisation.

This energy loss is accurately described by the Bethe-Bloch equation. When all particles are

considered to be minimum ionising particles, the β dependence in the Bethe-Bloch equation

can be ignored. In that case the energy loss is given by:

∆E = −cion ρ
Z

A
l , (11)
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where cion is the energy loss factor and ρ is the material density.

Landau fluctuations in the energy loss are small compared to the momentum reso-

lution of the detector, eliminating the need to apply corrections to the track covariance

matrix. The change in the particle’s energy is taken into account by correcting the track’s

momentum parameter:

Q

P
(ze) =

1
(

P
Q

)

0
± δ

(

Q

P

)

0
> 0 → +

(

Q

P

)

0
< 0 → −

(12)

δ = ±cion ρ
Z

A
∆z
√

1 + t2x0 + t2y0

z decreasing → +

z increasing → −
.

The energy loss of electrons is treated with a separate model. Rather than ionisation,

bremsstrahlung is the dominant cause of energy loss for electrons. The change in energy

when passing through a material layer is given by:

∆E = −E
(

1 − e
−

l
χ0

)

. (13)

For electrons, both the momentum and its variance need to be updated at the end of

a prediction step through material:
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±
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+t2y0 − e
±2∆z
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√
1+t2x0

+t2y0

)

.
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3 Extrapolation tools

As described in section 2, tracks evolve in space following a propagation method. Dif-

ferent models may be used depending on the specific needs of the user and the local

magnetic field properties. The propagation models are implemented in a collection of

Gaudi tools named track extrapolators, which are located in the Tr/TrackExtrapolators

package [10].

These track extrapolation tools can propagate a track to a user-specified position and

provide the user with the track parameters, the corresponding covariance matrix, and op-

tionally the transport matrix 1 at that position. The track parameters are stored in a vector

called a state vector ~x = (x, y, tx, ty,
Q

P
), which is stored on the track together with the

covariance and transport matrices and the z-coordinate at predefined z-locations in track

states.

All track extrapolation tools derive from a common interface and an intermediate base

class. The inheritance diagram for the track extrapolators is shown in figure 2 and their

implementations are discussed in the following sections.

ITrackExtrapolator

TrackExtrapolator

TrackMasterExtrapolator TrackLinearExtrapolator TrackParabolicExtrapolator TrackHerabExtrapolator TrackKiselExtrapolator

TrackFastParabolicExtrapolator

Figure 2: Inheritance diagram for the track extrapolators.

3.1 Extrapolator interface

The ITrackExtrapolator tool interface for the extrapolators declares the method

signatures common to all concrete extrapolator classes. The code of the interface class can

be found in the Tr/TrackInterfaces package [11].

The complete set of method signatures, which comprises both the so-called “propaga-

tion” and “access” methods, is presented in tables 1 and 2.

1The transport matrix is defined as the transformation matrix from the vector of track parameters

before to the vector after propagation.
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virtual StatusCode propagate ( const Track& track,
double z,
State& state,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode propagate ( const Track& track,
const XYZPoint& point,
State& state,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode propagate ( const Track& track,
Plane3D& plane,
State& state,
double tolerance = 0.01,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode propagate ( State& state,
double z,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode propagate ( State& state,
double z,
TrackMatrix* transMat,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode propagate ( State& state,
const XYZPoint& point,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode propagate ( State& state,
Plane3D& plane,
double tolerance = 0.01,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode propagate ( StateVector& state,
double z,
TrackMatrix* transportmatrix=0,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode propagate ( TrackVector& stateVec,
double zOld,
double zNew,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode propagate ( TrackVector& stateVec,
double zOld,
double zNew,
TrackMatrix* transMat,
ParticleID pid = ParticleID(211) ) = 0;

Table 1: Signatures of the propagation methods of the extrapolator tool interface

ITrackExtrapolator. The default particle identity “ParticleID(211)” refers to a pion.
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virtual StatusCode positionAndMomentum ( const Track& track,
double z,
XYZPoint& pos,
XYZVector& mom,
SymMatrix6x6& cov6D,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode positionAndMomentum ( const Track& track,
double z,
XYZPoint& pos,
XYZVector& mom,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode position ( const Track& track,
double z,
XYZPoint& pos,
SymMatrix3x3& errPos,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode position ( const Track& track,
double z,
XYZPoint& pos,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode slopes ( const Track& track,
double z,
XYZVector& slopes,
SymMatrix3x3& errSlopes,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode slopes ( const Track& track,
double z,
XYZVector& slopes,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode p ( const Track& track,
double z,
double& p,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode pt ( const Track& track,
double z,
double& pt,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode momentum ( const Track& track,
double z,
XYZVector& mom,
SymMatrix3x3& errMom,
ParticleID pid = ParticleID(211) ) = 0;

virtual StatusCode momentum ( const Track& track,
double z,
XYZVector& mom,
ParticleID pid = ParticleID(211) ) = 0;

Table 2: Signatures of the access methods of the extrapolator tool interface

ITrackExtrapolator.

12



The propagation methods listed in table 1 can propagate tracks, track states, state

vectors and “statevectors”, which are pairs of state vectors and their z-coordinates. In the

LHCb tracking software, the corresponding classes are Track, State, TrackVector and

StateVector, respectively.

Track and state propagation destinations can be specified by a z-coordinate, a point

(XYZPoint) in space or a plane (XYZPlane). The latter includes the option of specifying

a tolerance for the acceptable distance between the propagated state vector and the plane.

There also exist signatures for the extrapolation of a state vector or a StateVector class

to a z-coordinate.

Some of the methods take a pointer to a transport matrix (TrackMatrix) as well. If a

NULL pointer is supplied, then the transport matrix is not calculated, resulting in a faster

extrapolation. Otherwise the requested transport matrix is filled with the information from

the propagation operation.

The access methods listed in table 2 provide direct information on the parameters of the

propagated track. They require the track and z-position of interest as input. In addition one

must supply references to objects of the proper type to be filled with the desired information

by the access method. These objects are points for positions, vectors for momenta and

matrices for covariances. The methods determine which is the closest state on the track to

the specified z-position and propagate there in order to obtain the requested information.

3.2 Extrapolator base class

The extrapolator base class TrackExtrapolator implements a number of the propa-

gation methods and all of the access methods declared in the interface. Its propagation

methods interpret the information given as arguments and use it to formulate a call to the

next method in the delegation tree. For instance, all of the methods taking a track as an

argument determine the state on that track which is closest to the propagation destination

and pass the call on to the appropriate state propagation method. The delegation flow of

propagation calls is shown in figure 3.

All of the calls end up at the state vector to z-coordinate with optional transport matrix

method or at the state-to-point method. These are not implemented in the base class, but

in the deriving classes, which use the specific propagation models described in section 2 for

calculating the propagated track parameters.
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Track to Plane

State to Plane

State to Z

Track to Point

State to PointTrack to Z

State to Z, TransMat

TrackVector, zOld to zNew, TransMat

StateVector, zNew, TransMat TrackVector, zOld to zNew

Figure 3: Delegation flow diagram of propagation methods.

A special case is the state-to-plane propagation method. It is implemented as a recursive

algorithm, applying the following steps:

1. determine the length of the plane’s normal to the present position;

2. stop if that distance is smaller than the user-defined tolerance;

3. determine the origin point of the plane’s normal to the present position;

4. propagate the state to the z-coordinate of that point;

5. iterate the above until the distance from the extrapolated state to the plane is less

than the tolerance value (user input, 10 µm default). The configurable tool option

Iterations, see table 3, specifies the maximum allowed number of such iteration

steps.

Option name Description Default value

Iterations Maximum number of iterations when propagating to a plane 5

Table 3: Set of user-definable options of the TrackExtrapolator tool base class.
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3.3 Master extrapolator

The collection of extrapolator tools contains a special extrapolator, named the “master”

extrapolator, TrackMasterExtrapolator. It is the only one which takes multiple scat-

tering and energy loss effects into account, as described by the models in subsections 2.6

and 2.7. All of the calculations required for determining which material the particle tra-

verses, what multiple scattering and energy loss corrections are to be applied and how the

magnetic field changes the propagated track parameters, are taken care of by separate tools.

The choice of tools is steered by job options, which are given in table 4.

The MaterialLocator job option of the master extrapolator specifies which tool to

use for determining the materials encountered along the track’s path during the propaga-

tion step. There are two of these tools, both deriving from a common base class called

MaterialLocatorBase:

1. DetailedMaterialLocator:

locates the materials using the full detector geometry description.

2. SimplifiedMaterialLocator:

locates the materials using a simplified geometry description.

The material locators provide a list of positions of the material layers crossed by the track.

The extrapolation is then performed in steps containing at most one material layer. For

each step an extrapolator as well as multiple scattering and energy loss correction tools are

called.

The master extrapolator uses a tool to decide which specific extrapolation model to use

for a propagation step. There is a set of selector tools available for making this decision:

1. TrackSimpleExtraSelector:

automatically selects the parabolic model for extrapolation and refers directly to the

TrackParabolicExtrapolator tool.

2. TrackDistanceExtraSelector:

selects the parabolic propagation model (TrackParabolicExtrapolator tool) for

distances shorter than 100 mm, otherwise the Runge-Kutta model

(TrackHerabExtrapolator tool).

3. TrackLongExtraSelector:

selects the parabolic propagation model in the T-stations region and for distances

shorter than 100 mm, otherwise the Runge-Kutta model.

One can choose which selector tool to use by setting the ExtraSelector job option, which

by default selects the TrackDistanceExtraSelector.
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TrackMasterExtrapolator options

Option name Description Default value

MaterialLocator specify which tool to use for finding material walls ””

ThickWall treat walls as thick when a t least this thick 0. mm

ExtraSelector extrapolation model selector tool name ”TrackDistanceExtraSelector”

ApplyEnergyLossCorr specify whether to appy energy loss corrections true

ApplyMultScattCorr specify whether to apply MS corrections true

ThinMSCorrectionTool MS correction tool name for thin walls ”StateThinMSCorrectionTool”

ThickMSCorrectionTool MS correction tool name for thick walls ”StateThickMSCorrectionTool”

GeneralDedxCorrectionTool general energy loss correction tool name ”StateSimpleBetheBlochEnergyCorrectionTool”

ElectronDedxCorrectionTool electron energy loss correction tool name ”StateElectronEnergyCorrectionTool”

ApplyElectronEnergyLossCorr specify whether to apply electron true

energy loss corrections

StartElectronCorr only apply electron energy loss corrections 2500. mm

after this z-coordinate

StopElectronCorr only apply electron energy loss corrections 9000. mm

before this z-coordinate

MaxStepSize maximum propagation step size in z 1000. mm

MaxSlope Acceptance in track slope 5.

(maximum state tx- and ty-slopes)

MaxTransverse LHCb transverse acceptance for extrapolation 10. m

(maximum state x- and y-positions)
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Option name Description Default value

MSFudgeFactor2 Scaling of θ0 distribution width 1.0

Table 5: Set of user-definable options of the StateThinMSCorrectionTool and

StateThickMSCorrectionTool tools.

Multiple scattering is taken into account by increasing some of the track’s covariance

matrix elements, reflecting the reduced precision with which the corresponding propagated

track state parameters are known. The master extrapolator’s ApplyMultScattCorr job

option can be set to true or false, depending on whether the multiple scattering correction

is to be applied or not.

As discussed in subsection 2.6, there are differences in how thin and thick material layers

are treated. Both approaches have been implemented in tools, which are located in the

Tr/TrackTools package [12]. They are called

StateThinMSCorrectionTool and StateThickMSCorrectionTool, respectively. Their

only job option, shown in table 5, is called MSFudgeFactor, which is a tuning variable that

scales the width of the θ0 distribution as defined by equation 9. It mainly impacts the pull

distributions of the fitted track parameters and is set to 1 by default.

Through the master extrapolator’s ThickWall job option, one can select the maximum

width of a thin layer, which is set to 0 mm by default. This implies that equations 10 are

used for all material layers during standard operation of the track fit.

The energy loss correction changes the value of the track state’s momentum at the end

of a propagation step. In case the particle is an electron, the momentum variance is also

increased. Whether or not to apply the general energy loss corrections is steered by the

ApplyEnergyLossCorr option. The ApplyElectronEnergyLossCorr option determines

whether the specialised electron energy loss corrections are applied to the propagated track.

The corresponding tools are named StateSimpleBetheBlochEnergyCorrectionTool

and StateElectronEnergyCorrectionTool, which are located in the Tr/TrackTools

package [12]. Tables 6 and 7 shows their job options. The EnergyLossFactor option

refers to the cion constant of equation 12. In order to prevent excessive loss of energy,

the correction is limited to a maximum value as specified by the MaximumEnergyLoss job

option, which is set to 100 MeV by default. The MaximumRadLength variable sets a limit

to the correction term for the electron energy correction.

The electron energy loss correction is applied to propagation steps which fall within

a z-range defined by the StartElectronCorr and StopElectronCorr job options of

the TrackMasterExtrapolator tool. This range spans the magnet region, where the

magnetic field is strong enough to make the momentum change detectable.
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Option name Description Default value

EnergyLossFactor The energy loss multiplication factor 354.1 MeV*mm2/mole

MaximumEnergyLoss Maximum allowed energy loss per step 100. MeV

Table 6: Set of user-definable options of the

StateSimpleBetheBlochEnergyCorrectionTool tool.

Option name Description Default value

MaximumRadLength Maximum value for the radiation length correction factor 10.

Table 7: Set of user-definable options of the StateElectronEnergyCorrectionTool

tool.

3.4 Linear extrapolator

The linear extrapolator tool, TrackLinearExtrapolator, implements the extrapo-

lation method for a state vector to a z-coordinate, with optional determination of the

transport matrix. Since the model in this case is a straight line, only the x and y compo-

nents of the state vector are modified in accordance with equations 3. Analogously, only

the x and y slope elements of the transport matrix are filled with the z-displacement value.

The other implemented method is that for the propagation of a state to a point. In that

case the displacement in z is determined by calculating the zero-point of the derivative of

the distance between the track and the point with respect to the z-coordinate. Subsequently

the propagation call is diverted to the first propagation method.

3.5 Parabolic extrapolator

The parabolic extrapolator, TrackParabolicExtrapolator, uses equations 4 for track

propagation. Inside the state vector propagation method, it determines the magnetic field

value at the midway point in z, using the service set by the magnetic field service job

option, see table 8. This value is also used in the method which is called for updating the

transport matrix. Updating the transport matrix is performed by a separate method such

as to simplify the fast parabolic extrapolator, described in subsection 3.6.

Propagating a state to a point when dealing with a parabolic trajectory is performed

using a similar approach as for a straight line track. The distance between the track and the

point is minimised by determining the z-coordinate at which the derivative of the distance

with respect to z is zero and subsequently propagating to this z-coordinate. This however

is a cubic equation, having either one or three solutions. In case of three solutions, the

solution yielding a z-coordinate closest to the present z-position is selected.
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Option name Description Default value

FieldSvc The choice of magnetic field provider “MagneticFieldSvc”

Table 8: Set of user-definable options of the parabolic extrapolator

TrackParabolicExtrapolator.

Option name Description Default value

requiredPrecision Desired accuracy of the extrapolation 0.005 mm

FieldSvc Choice of magnetic field provider “MagneticFieldSvc”

Table 9: Set of user-definable options of the Runge-Kutta extrapolator

TrackHerabExtrapolator.

3.6 Fast parabolic extrapolator

The fast parabolic extrapolator, TrackFastParabolicExtrapolator, implements the

parabolic propagation model, just as the “standard” parabolic extrapolator, but relies on

a fast and less accurate determination of the track state parameters covariance matrix. It

inherits its propagation methods from the parabolic extrapolator. Only the method which

updates the transport matrix differs.

3.7 HERA-B extrapolator

The “HERA-B” extrapolator, TrackHerabExtrapolator, implements a fifth-order

Runge-Kutta method as described in subsection 2.4. It uses the state vector expansion

of equations 5 to numerically calculate the change in the geometrical track parameters

between two z-coordinates.

The size of the steps in z determines the precision with which the change in magnetic

field strength is taken into account for the propagation. A fourth-order Runge-Kutta result

is calculated after the fifth-order one by using an alternative set of cm coefficients in equa-

tions 5. The difference in their x and y determinations must not exceed a maximum value,

which is specified by the job option requiredPrecision, see table 9. When the step size

is determined to be too large, it is halved and the track parameters are recalculated.

3.8 Kisel’s analytic extrapolator

The analytic formula 6 for the slopes has been implemented to third order in the

tool TrackKiselExtrapolator, which provides equivalent performance to a fourth or-

der Runge-Kutta solution. It samples the magnetic field at the beginning, middle and end

of the propagation step, integrating to get the values in between. Like the
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Option name Description Default value

order Expand the slopes to this order 3

FieldSvc Choice of magnetic field provider “MagneticFieldSvc”

Table 10: Job options of the analytic extrapolator TrackKiselExtrapolator.

TrackHerabExtrapolator extrapolator, only the state vector to a z-position propagation

method has been implemented. A fourth order expansion may be coded at a later point

in time. In that case, this extrapolator is expected to be equivalent to the Runge-Kutta

extrapolator. The order of the expansion can then be set through the order job option,

see table 10.
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