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ABSTRACT
Myelodysplastic syndromes (MDSs) are potentially devastating monoclonal deviations of hematopoiesis that lead to bone mar-
row dysplasia and variable cytopenias. Predicting severity of disease progression and likelihood to undergo acute myeloid
leukemia transformation is the basis of treatment strategy. Some patients belong to a low-risk cohort best managed with con-
servative supportive care, whereas others are included in a high-risk cohort that requires decisive therapy with hematopoietic
cell transplantation or hypomethylating agent administration. Risk scoring systems for MDS prognostication were traditionally
based on karyotype characteristics and clinical factors readily available from chart review, and validation was typically conducted
on de novo MDS patients. However, retrospective analysis found a large subset of patients incorrectly risk-stratified. In this
review, the most commonly used scoring systems are evaluated, and pitfalls therein are identified. Emerging technologies such
as personal genomics andmachine learning are then explored for efficacy inMDS risk modeling. Barriers to clinical adoption of
artificial intelligence-derived models are discussed, with focus on approaches meant to increase model interpretability and clin-
ical relevance. Finally, a guiding set of recommendations is proposed for best designing an accurate and universally applicable
prognostic model for MDS, which is supported by more than 20 years of observation of traditional scoring system performance,
as well as modern efforts in creating hybrid genomic-clinical scoring systems.

© 2020 International Academy for Clinical Hematology. Publishing services by Atlantis Press International B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Myelodysplastic syndromes (MDSs) are malignant clonal diseases
of hematopoiesis which present with bone marrow (BM) dysplasia
and variable cytopenias. The etiology of MDS is usually idiopathic,
although environmental causes have been identified (exposure to
benzene, radiation, alkylating agents), which may lead to an accu-
mulation of oncogenic mutations in a clonal progenitor cell [1].
The progression and extent of disease is difficult to predict, with
a spectrum of outcomes occurring in seemingly similar cohorts
of patients, ranging from relatively benign with only occasional
transfusions being needed, to rapid progression to acute myeloid
leukemia (AML) and death [2–5]. The current standard of care for
MDS patients depends upon early risk stratification according to
predicted overall survival (OS), given that the choice of interven-
tion is guided by prognosis [6]. In today’s treatment of the MDS
patient, an initial encounter with a poor prognosis warrants aggres-
sive therapy, possibly including hematopoietic cell transplantation
(HCT) or a hypomethylating agent (HMA) [5], whereas patients
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stratified to a low-risk cohort for disease progression have less-
invasive options available, such as erythropoiesis support, serial
transfusions, and adjunct therapies [6]. This dichotomy empha-
sizes the need for accurate prognostication and explains why so
much research has historically been dedicated to building prognos-
tic models, both for guiding therapeutic care and for establishing
realistic expectations for the patient and physician.

In recent years, the most widely used risk stratification scoring sys-
tems in clinical practice and in clinical trial eligibility are the inter-
national prognostic scoring system (IPSS) and the revised IPSS
(IPSS-R) [3,7–10]. These systems attempt to predict a patient’s gen-
eral prognosis using clinical features, such as blood count, BM
blast percentage, and cytogenetic characteristics. Numerous other
scoring systems have been reported and more still currently under
development [11–13]. Here, we detail the landscape of MDS prog-
nostication and offer insight into the evolution of the field.

2. CURRENT CLINICAL MDS
PROGNOSTICATION

The IPSS, developed in 1997, provided clinicians with useful risk
stratification by assessing BM blast percentage, karyotype catego-
rization for deletions and abnormalities, and cytopenias defined as
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hemoglobin <100 g/L, absolute neutrophil count (ANC) <1,000/µL,
and platelets < 100,000/mm3. It ranked patients into four cohorts
of risk: low, intermediate-1, intermediate-2, and high. A revi-
sion of the IPSS was released in 2012, which improved risk
prediction by redefining cutoffs for BM blast percentages and
cytopenias, adding numerous additional cytogenetic features, and
establishing five risk cohorts instead of four: very low, low, inter-
mediate, high, and very high. The IPSS-R is now the most widely
used prognostic mechanism for MDS, but several other scor-
ing systems are available, the most notable being the Global MD
Anderson Prognostic Scoring System (MDAPSS) and the WHO
Prognostic Scoring System (WPSS). All these systems attempt to
combine clinical features into a simplified model that predicts
disease outcomes.

The features used in determining risk scores can be themati-
cally divided into a patient-related group and a disease-related
group. Patient-related factors are those that describe the patient’s
health apart from MDS-modified attributes, such as demograph-
ics, comorbidities, performance status, and other scoring system
assignments. Disease-related factors encompass markers of MDS
pathology, such as BM blast percentage, presence of anemia and
karyotype characteristics, but also include emerging technologies,
such as personal genomics. Despite the validated efficacy of IPSS-R,
inherent limitations to themodel’s design prevent it frombeing uni-
versally applicable, including being built without mutational anal-
ysis apart from general cytogenetic findings. This lack of genetic
insight, along with shortcomings regarding universal applicability
and flexibility, argues for the creation of a new model taking into
account the lessons learned from years of IPSS-R usage, such as how
to accommodate treatment failure, cases of MDS due to therapy or
medication, intermediate-risk group assignment, and accuracy in
risk stratification.

2.1. Predicting Outcomes in
Nonstandard Patients

The IPSS was developed using a cohort of 816 MDS patients seen
at clinic onset and prior to treatment with HMA or HCT. This
means that the initial feature selection and statistical validation
were contingent upon the specific population being considered.
Later research validated this rigid scoring system’s ability to risk
stratify patients in various disease states, but it has not been found
to predict outcomes after disease modifying treatment failure. The
importance of scoring system flexibility is well demonstrated by
considering a patient risk stratified into the low-risk cohort based
on IPSS-R, resulting in an expected survival of 5.7 years. After trial-
ing HMA therapy and ultimately failing to respond, and assuming
the pre- and post-HMA clinical presentation is generally similar,
the patient would be risk stratified into the same low-risk group
and have the same expected survival of 5.7 years, despite empiric
evidence indicating that the average mortality is about 4–6 months
from failed HMA treatment [14–16]. Similarly, attempts have been
made to extrapolate the IPSS and IPSS-R algorithms to stratify
patients with therapy-related or secondaryMDS, but againwere not
found to be predictive, likely owing to the homogeneity of the pop-
ulation used to build the scoring system and simplicity of features
utilized [17–19].

2.2. Struggling with Intermediate-Risk
Groups

The original IPSS assignedmany patients to the intermediate-1 and
intermediate-2 groups, which were redefined and simplified to a
single intermediate group with the release of IPSS-R. The interme-
diate group is difficult to interpret andmay be inflated, due to a lack
of predictive features in the scoring system, which would otherwise
drive a patient’s classification to low versus high risk. This is exem-
plified by intermediate-risk patients with unusual ferritin, LDH,
EXH2, or TP53 characteristics, all of which correlate with high-risk
status but are missing from IPSS-R [13]. Reducing the number of
patients assigned to intermediate-risk statusmay improve outcomes
and greatly facilitate clinical trial enrolment, which frequently seeks
either high- or low-risk patients only.

2.3. Risk Stratification Accuracy

The purpose of prognostic modeling early in the clinical course of
MDS is to guide management and improve OS. While any model
will be imperfect, the popularity of IPSS and IPSS-R allows for real-
world evaluation. The IPSS often underestimates OS, with a differ-
ence between predicted mean and observed mean OS being -23.3
months for the low-risk patient cohort, and -11.1 months for the
high-risk patient cohort. Conversely, the IPSS-R frequently overes-
timates OS, with a mean difference of 70.6 months in the low-risk
group and 6.7 months in the high-risk group.

3. RECENT ADVANCEMENTS IN MODEL
CREATION

The strength of a risk stratifying model comes from the predictive
features it is built upon. Although the available patient-factors today
aremuch the same as when IPSS was first published, disease-factors
have beenmultiplying, as a result of next generation DNA sequenc-
ing and mutation discovery, culminating in a nearly overwhelming
source of patient data to interpret. These mutations require careful
consideration to determine prognostic usefulness, as feature inter-
action can easily exaggerate or mask a mutation’s ability to mod-
ify patient outcomes [20]. Now that genome mutability is readily
interpretable on a research basis and, likely soon, on a clinical basis,
the utility of DNA mutations in MDS prognostication needs to be
interrogated.

3.1. Including Mutation Features

An abundance of mutations has been described as implicated in
MDS. Many such mutations simply correlate with the presence of
disease and offer only questionable prognostic value, while oth-
ers significantly modulate OS and are strong candidates for future
modeling, such as TP53, RUNX1, and more [11–13,20–25]. Prior
to the mutational analysis advent, most models differed primarily
by patient-factor cutoffs or arrangement of stepwise classification
algorithms based on roughly the same available features. Lever-
aging this influx of new prognostic indicators has the potential
to accelerate MDS modeling, but the complexity of this genomic
data brings new challenges. The interdependence of features at
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different times during disease progression or in conjunction with
certain other feature states dramatically complicates identification
of truly prognostic mutations. This phenomenon has been demon-
strated by numerous studies, including a survey of 104 genes among
944 MDS patients in which 26 mutations were initially found to
alter OS, but after correcting for confounding features, onlyASXL1,
KRAS, PRPF8, RUNX1, and SF3B1 remained significant [11]. Sim-
ilarly, 12 mutations were found to independently decrease OS in
a study of 3,392 patients, but correction for confounding IPSS-R
stratification negated the prognostic ability of all but 4 mutations
[26]. Another example found CBL, NRAS, and TP53 to correlate
with decreased OS, but the effect was magnified in patients catego-
rized as having a complex karyotype (CK),withTP53-mutated indi-
viduals with normal karyotypes enjoying a 5-year post-procedure
survival of 73% [27]. Genotypes can also inform therapy choices,
with a study of 1,514 HCT patients demonstrating molecular sub-
groups that strongly correlated with outcomes [28]. Untangling
thesemutations is burdensome, but having new features with strong
OS correlation fromwhich predictivemodels can be builtmore than
justifies the endeavor.

3.2. Assessing Mutational Heterogeneity

An additional consideration for this modern class of prognostic
features is variability within a particular mutated gene. The major-
ity of experimental models now attempting to incorporate muta-
tional data do so in a binary present/absent manner. This allows for
ease of downstream analysis and reduces the sample size needed to
reach significance, but disregards a wealth of detail that may deter-
mine a mutation’s actual effect on OS. The type of mutation (silent,
missense, nonsense, etc.) and variant allele frequency (VAF) can
be more informative than knowing if a gene contains a mutation,
since the functional effect of a wildtype gene with a silent mutation
is different from that of a gene with s a nonsense mutation. Cat-
aloguing mutational attributes with this specificity, and moreover,
collecting enough patients with each intra-mutational variation to
allow statistical analysis pose new challenges. However, similarly
to the decision to use mutational features in MDS prognostication,
the promise of improvedmodel accuracywarrants the effort. Again,
considerTP53, known to be detrimental to OS. A patient withTP53
and a VAF of 50% or greater has a predicted median survival of 3.4
months but, it theVAF is of less than 25%, the predictedmedian sur-
vival will be 12.4 months, which is 3.6 times longer. Similarly, the
VAF of mutations associated with poor prognosis in HCT patients
before and after treatment correlates with risk of disease progres-
sion 30 days after transplant [29]. The breadth of intra-mutational
heterogeneity is heavily prognostic and allows more personalized
results.

3.3. Combining Traditional and Mutational
Models

Despite these challenges, mutational data is proving to be instru-
mental in improving upon established scoring systems. A model
comprised solely of mutational data has achieved similar accuracy
to IPSS-R and, more tellingly, combining some of those mutations
with traditional clinical features has yielded prognostic abilities that
surpassed IPSS-R [11]. Another study used IPSS-R score combined

with age (which is not directly assessed by IPSS-R) and mutational
data from EZH2, SF3B1, and TP53, and succeeded in surpassing
the accuracy of IPSS-R alone when applied to the same cohort of
508 patients. Similarly, adding age and these same mutational fea-
tures to the other major classifying schemes uniformly resulted in
increased accuracy, and in the case of IPSS-R, reassignment of 26%
of patients in the low-risk cohort to the high-risk cohort.

4. FUTURE CONSIDERATIONS—TOWARD
PERSONAL PROGNOSTICATION

Next generation DNA sequencing has identified a significant num-
ber of mutations implicated in MDS prognosis, and the breadth
of MDS features available for analysis, both patient-related and
disease-related, has now quickly surpassed the limitations of tra-
ditional scoring systems. The unwieldy interactions within this
multitude of features argues for novel approaches when designing
the latest iteration of prognostic models. The path forward is best
informed by critical analysis of current prognostic models, and by
identifying guiding mechanisms that likely need to be considered
to allow for a new generation of prognostic accuracy.

4.1. Handling Complexity

As the pool of features associated with MDS outcomes grows,
the task of choosing which features to include in scoring sys-
tem creation based on expert opinion becomes unsurmountable,
particularly when considering that such features have dramatic and
unpredictable interactions with other feature states. For example,
possessing a mutated TP53 gene is associated with worse outcomes
in many malignancies, MDS included. This may be inferred by
expert opinion and would therefore likely be considered for model
creation. However, the presence of a CK highlymodulates the effect
of a TP53mutation, decreasing survival from 73% of patients alive
at 60 months with TP53-only phenotype to less than 20% alive
within 2 years if TP53 is in combination with CK [27]. Such inter-
actions are unreliably predicted in best-case scenarios with known
genes, and completely unknown for the majority of new genomic
features that are now under scrutiny. Because the next generation
of prognostic scoring systems will need to incorporate large-scale
genomic data, as well as all the previously described patient and dis-
ease factors, unsupervised computational grouping and relevance
determination will be required to account for unknown or inex-
plicable feature interactions, given the complexity of the system.
Machine learning, an application of artificial intelligence, is particu-
larly suited for this task. Machine learning-poweredMDS prognos-
tication is already surpassing traditional models such as the IPSS-R
[30,31] (Table 1). Based on the breadth of support and development
of machine learning algorithms throughout the scientific commu-
nity, the continued improvement of this computationalmethod and
its ability to refine MDS OS prediction is assured.

4.2. Universal Applicability

As previously described, most major MDS scoring systems were
originally designed using data from de novo patients and later
extrapolated to patients with secondary MDS, treatment failure,
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Table 1 A summary of model features utilized in five MDS prognostic
scoring systems, and the resulting c-index of each.

Scoring System Model Features c-index

International Prognostic
Scoring System (IPSS)

Karyotype categories [3],
simple

0.65

BM blasts %
Cytopenias

Revised International
Prognostic Scoring

Karyotype categories [5],
complex

0.67

System (IPSS-R) BM blasts %
Hgb
Platelets
ANC

MD Anderson Cancer Center
(MDACC)

Karyotype categories [2],
simple

0.65

BM blasts %
Hgb
Platelets
WBC
Age
Performance status
Prior transfusion

World Health
Organization-Based

Karyotype categories [3],
simple

0.65

Prognostic Scoring WHO category
System (WPSS) Transfusion requirement
Nazha et al. Geno-clinical
model [13]

Cytogenetic categories of
IPSS-R [5], complex

0.71

BM blasts %
Hgb
Platelets
WBC
Age
WHO category
Secondary vs de novo MDS
TP53, RUNX1, ANC,
STAG2, SRSF2, NPM1,
PHF6, IDH1, EZH2, and
SF3B1

and other disease states, with variable success. To create a prog-
nostic algorithm that can model OS when implemented at vari-
ous times throughout the disease course, the initial training dataset
should include features collected from patients from each of these
disease phases. Beginning with a multitude of patient presentations
will allow unsupervised training to adjust the model to accommo-
date each permutation of MDS-associated illness, such as de novo
patients, secondary or therapy-related MDS, those who have failed
HMA or HCT therapy, etc. Because modeling with machine learn-
ing improves its accuracy with additional data points, accumulating
a large and diverse pool of MDS patients is needed to produce clin-
ically relevant predictions.

4.3. Clinical Interpretability

After the total pool of MDS features is evaluated by machine learn-
ing and a best-fit model is produced, iterative feature reduction is
necessary to distill a frequently overwhelming number of quasi-
significant features to the least number possible, while preserv-
ing the predictive power of the model. This can be accomplished
by determining the relative weight of each feature and culling the
least-weighted features followed by repeat modeling. Reducing the
feature burden after model creation disposes of those variables least

likely to contribute to OS, and simplifies future data acquisition
via a reduction in features necessary for a patient to be included
in the total pool of MDS data (allowing for primary data growth
and subsequent model refinement). Importantly, it also allows for
a more clinically relevant end model. An advantage of traditional
scoring systems is the degree of interpretability inherent to each sys-
tem’s design: the features assessed were mostly obtained by expert
opinion or known disease correlates, such as BM blast percentage
or degree of cytopenias. In addition to being statistically validated,
traditional scoring systems benefit from simple design with few
components, all of which put clinicians at ease because each pre-
diction can be questioned, if deemed necessary. The “black box”
nature of machine learning models remove this failsafe and instill
distrust, regardless of statistical methodology. To overcome this
barrier and allow for clinician adoption of a model, feature expla-
nation/weighting analysis should be made available for any given
prediction, which is a programmatic feat within the scope of mod-
ern machine learning today. These explanatory tools can take the
best available model, already bereft of minimally contributing fea-
tures due to iterative feature reduction, and produce patient-specific
outcome predictions that are fully annotated with descriptions and
relative weights to ensure maximum interpretability.

5. CONCLUSIONS

Using prognostic scoring systems to inform clinical expectations
and treatment paths has long been essential to MDS management,
with the most commonly used systems today dating back to 1997.
Over the past two decades, retrospective observation has identified
numerous areas of potential prognostic improvement, including
dynamicity to accommodate various stages of MDS (both at pre-
sentation and during or after treatment), relevance for secondary
or therapy-relatedMDS, andmore concise delineation of high- and
low-risk patients rather than using suboptimal intermediate groups.
Over the same time period, the advent of next generation sequenc-
ing has potentiated an influx of novel prognostic factors that are
now starting to appear in clinically relevant scoring systems. Simi-
larly, emerging machine learning strategies can now replace expert
opinion and informed guessing when first deciding which factors
to evaluate for statistical relevance, leading to more accurate scor-
ing models. MDS is best treated based on decisive and accurate
risk stratification for aggressive progression while early in the dis-
ease course. By assessing newgeneticmarkers alongwith traditional
clinical factors via machine learning, a new standard of prognosti-
cation may be possible.

6. PRACTICAL POINTS
• Individualized prognosis at the time of AML diagnosis has

significant influence over treatment decisions and patient
expectations.

• The most commonly used prognostic scoring system in the
clinic today is the revised IPSS, which relies on standard
patient-related and disease-related variables, including
cytogenetics, and also includes a small subset of
gene mutations.
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• Recent data suggest that greater prognostic accuracy can be
achieved through the inclusion of additional gene mutations
and the consideration of complex, difficult to predict variable
interactions.

• Contemporary genetic and clinical prognostic models have
now been found to outperform the revised IPSS, but are still
experimental and not yet widely adopted.

7. RESEARCH AGENDA
• As genetic and clinical prognostic models devised using

machine learning overtake current clinical standards, several
considerations pertaining to research involving artificial
intelligence need to be addressed.

• These models are able to determine meaningful associations
amidst the complexity of MDS feature interactions, but
improving each model through the optimization of different
machine learning algorithms, training parameters, and feature
reduction is still underway.

• More patient data are needed to generate better-fit models with
wider applicability, such as for re-prognostication after
treatment failure or for individuals with secondary or
therapy-related MDS.

• Additional avenues of model interpretability are needed to
improve clinical relevance and to assuage the practitioners’ fear
of the “black box.”
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