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Considering the large value of the top Yukawa coupling, we investigate the leading one-loop Yukawa
electroweak corrections that can be induced by the top quark in a process such as Higgs production in
association with a tagged bottom-antibottom pair at the LHC. At next-to-leading order these contributions
are found to be small at the LHC both for the total cross section and for the distributions. In the limit of
vanishing bottom Yukawa coupling where the leading order contribution vanishes, the process can still be
induced at one-loop through the top quark transition. Though this contribution which can be counted as
part of the next-to-next-to-leading order correction is small for Higgs masses around 120 GeV, it quickly
picks up for higher Higgs masses. This contribution represents the rescattering of the top quarks and their
decay into W’s leading to Higgs production through WW fusion.
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I. INTRODUCTION

The most important goal of the Large Hadron Collider
(LHC) is the discovery of the Higgs and the concomitant
study of the mechanism of electroweak (EW) symmetry
breaking. Especially if no new phenomenon is unraveled
through the direct production of new particles, the study of
the Higgs properties such as its self-couplings and cou-
plings to the other particles of the standard model (SM)
will be crucial in order to establish the nature of the scalar
component of the model. In this respect most prominent
couplings, in the SM, are the Higgs, the top, and to a much
lesser degree the bottom, Yukawa couplings. The top
Yukawa coupling is after all of the order of the strong
QCD coupling and plays a crucial role in a variety of
Higgs related issues. The dominant mechanism for Higgs
production at the Large Hadron Collider is the gluon fusion
process, which incidentally is initiated through a top loop.
Electroweak gauge boson fusion and W=ZH associated
production [1] are also of importance. Higgs production
associated with heavy quarks like the top or bottom quark
is not considered as a discovery channel because of its
small total cross section, the top suffering further from a
complicated final state topology. However, if one wants to
determine the bottom-Higgs Yukawa coupling, �bbH, then
Higgs production associated with a bottom-antibottom pair
could provide a direct measurement of this coupling. In the
minimal supersymmetric standard model (MSSM) the bot-
tom Yukawa coupling is enhanced by a factor tan�, the
ratio of the vacuum expectation values of the two Higgs
doublets. For high tan� and not too large Higgs masses this
provides an important discovery channel for the super-
symmetric Higgses.

The next-to-leading order (NLO) QCD correction to
pp! b �bH has been calculated by different groups relying
on different formalisms. In a nutshell, in the five-flavor
scheme (5FNS) [2,3], use is made of the bottom distribu-

tion function so that the process is approximated [at lead-
ing order (LO)] by the fusion b �b! H. This gives an
approximation to the inclusive cross section dominated
by the untagged low pT outgoing b jets. If only one final
b is tagged, the cross section is approximated by gb! bH.
The four flavor scheme (4FNS) has no b parton initiated
process but is induced by gluon fusion gg! b �bH, with a
very small contribution from the light quark initiated pro-
cess q �q! b �bH.1 Here again the largest contribution is due
to low pT outgoing b’s which can be accounted for by
gluon splitting into b �b. The latter needs to be resummed
and hence one recovers most of the 5FNS calculation while
retaining the full kinematics of the reaction. QCD NLO
corrections have been performed in both schemes [3–6]
and one has now reached a quite good agreement [7].

The 5FNS approach, which at leading order is a two-to-
one process has allowed the computation of the next-to-
next-to-leading order (NNLO) QCD correction [8,9] and
very recently the electroweak/supersymmetry (SUSY) cor-
rection [10] to b �b! �, � any of the neutral Higgs boson
in the MSSM. SUSY QCD corrections have also been
performed for gg! b �bh [11,12] where h is the lightest
Higgs in the MSSM as well as to gb! b� [13].

In order to exploit this production mechanism to study
the Higgs couplings to b’s, one must identify the process
and therefore one needs to tag both b’s, requiring some-
what large pT b. This reduces the cross section but gives
much better signal over background ratio. For large pT
outgoing quarks one needs to rely on the 4FNS to properly
reproduce the high pT b quarks. The aim of this paper is to
report on the calculation of the leading electroweak cor-

1In fact q �q! b �bH is dominated by q �q! HZ� ! b �bH and
does not vanish for vanishing bottom Yukawa coupling.
However this contribution should be counted as ZH production
and can be excluded by imposing an appropriate cut on the
invariant mass of the b �b pair.
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rections to the exclusive bbH final state, meaning two b’s
are detected. These leading electroweak corrections are
triggered by top-charged Goldstone loops whereby, in
effect, an external b quark turns into a top. This transition
has a specific chiral structure whose dominant part is given
by the top mass or, in terms of couplings, to the top Yukawa
coupling. Considering that the latter is of the order of the
QCD coupling constant, the corrections might be large. In
fact, as we shall see, such type of transitions can trigger
gg! b �bH even with vanishing �bbH in which case the
process is generated solely at one-loop. We will quantify
the effect of such contributions.

This calculation belonging to the class of the 2! 3
processes at the LHC, we will also cover some technical
issues pertaining to such calculations, like among other
things the helicity amplitude method we use and the oc-
currence of vanishingly small (inverse) Gram determinant.
This determinant occurs when solving the system of (lin-
early independent) tensor integrals in terms of the basis of
scalar integrals. The Gram matrix is constructed out of the
scalar products of the �N � 1� linearly independent mo-
menta for a process with N external legs. The Gram
determinant can vanish if the momenta of the set are, for
example, for some exceptional point in phase space no
longer linearly independent.

In this paper we restrict ourselves to a Higgs mass in
the range preferred by the latest electroweak data [14]; in
particular, we confine the present study toMH < 150 GeV.
Another reason for this choice is that, as we will briefly
point out, as the Higgs mass increases the loop induced
cross section increases and the loop integral starts showing
instabilities. This we have identified as a Landau singular-
ity which is a pinch singularity of the loop integral. This
has an interesting physical origin: the rescattering of on-
shell top quarks into W bosons, giving rise to W boson
fusion into Higgs. We leave this important issue to another
study though.

The plan of the paper is as follows. In the next section we
present some general considerations concerning the prop-
erties and structure of the calculation we have performed.
We first briefly review the tree-level LO amplitude and
highlight some symmetries of the helicity amplitudes.
These symmetries are maintained by QCD corrections
but not by the electroweak corrections we are studying.
We then discuss the leading approximation as given by the
insertions of the top-bottom-Goldstone Yukawa vertex. We

classify the contributions into three classes in the cases of
the NLO correction as well as the contributions that survive
at one-loop even for �bbH � 0. In Sec. III we give our
renormalization scheme and discuss the inclusion of a top/
Higgs Yukawa enhanced contribution which can be con-
sidered as a universal correction to Higgs processes related
to the Higgs wave function renormalization and the renor-
malization of the vacuum expectation value. Section IV
gives an overview of some calculational details, in particu-
lar, how the calculation is organized. Discussion on the
loop integrals, the appearance of spurious instabilities
related to vanishing Gram determinants, and how these
are cured depending on how the phase space integration
is carried out is also presented. We also discuss in this
section how we checked our results through ultraviolet
finiteness and gauge invariance. Section V presents and
discusses the numerical results we find for the total cross
section and various distributions both at the level of the
NLO electroweak correction as well as the one-loop con-
tribution that survives in the limit of vanishing �bbH.
Details about the helicity amplitude method we used as
well as the optimization of the code are presented in the
two appendices.

II. GENERAL CONSIDERATIONS

Before discussing the details of the calculation it is
educative to expose some key features that appear when
one considers the electroweak corrections at one-loop
compared to the structure we have at tree-level or even
the structure that emerges from QCD loop calculations. In
particular the helicity structure is quite telling. So let us set
our definition first. The process we consider is g�p1; �1� �
g�p2; �2� ! b�p3; �3� � �b�p4; �4� �H�p5�. �i � � with
i � 1; 2; 3; 4 are the helicities of the gluons, the bottom,
and antibottom while pi are the momenta of particles. The
corresponding helicity amplitude will be denoted by
A��1; �2;�3; �4�.

A. Leading order considerations

At tree-level, see Fig. 1 for the contributing diagrams,
the Higgs can only attach to the b quark and therefore each
diagram, and hence the total amplitude, is proportional to
the Higgs coupling to b �b, �bbH. Compared to the gluon
coupling this scalar coupling breaks chirality. These fea-
tures remain unchanged when we consider QCD correc-

g(p2,λ2)

g(p1,λ1) b(p3,λ3)

b(p4, λ4)

H(p5)

FIG. 1. All the eight Feynman diagrams can be obtained by inserting the Higgs line to all possible positions in the bottom line.
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tions. Moreover the QCD coupling and the Higgs coupling
are parity conserving which allows to relate the state with
helicities ��1; �2;�3; �4� to the one with ���1;��2;
��3;��4� therefore cutting by half the number of helicity
amplitudes to calculate. With our conventions for the
definition of the helicity states, see Appendix A, parity
conservation for the tree-level helicity amplitude gives

 A 0���1;��2;��3;��4� � �3�4A0��1; �2;�3; �4�
?:

(1)

This can be generalized at higher order in QCD with due
care of possible absorptive parts in taking complex
conjugation.

The number of contributing helicity amplitudes can be
reduced even further at the leading order, in fact halved
again, in the limit where one neglects the mass of the b
quark that originates from the b-quark spinors and there-
fore from the b quark propagators. We should in this case
consider the �bbH as an independent coupling, intimately
related to the model of symmetry breaking. In this case
chirality and helicity arguments are the same, the b and �b
must have opposite helicities for the leading order ampli-
tudes, and hence only A0��1; �2;�;��� remain nonzero.
In this limit, this means that only a string containing an
even number of Dirac � matrices, which we will label in
general as �even as opposed to �odd for a string with an odd
number of �’s, can contribute.

In the general case and reinstating the b mass, we may
write the helicity amplitudes as

 A ��1; �2;�3; �4� � �u��3���
even
�1;�2
� �odd

�1;�2
�v��4�

� ��3;��4
�Aeven �mb

~Aodd�

� ��3;�4
�Aodd �mb

~Aeven�: (2)

The label ‘‘even’’ in Aeven and ~Aeven are the contribu-
tions of �even to the amplitude and likewise for ‘‘odd.’’ This
way of writing shows that mb originates from the mass
insertion coming from the massive spinors and is respon-
sible for chirality flip. In the limitmb ! 0, �even

�1;�2
and �odd

�1;�2

contribute to different independent helicity amplitudes. In
general �even and �odd differ by a (fermion) mass insertion.
In fact �odd is proportional to a fermion mass insertion
from a propagator. At leading order the mass insertion is
naturally mb, such that �odd is O�mb�. This shows that at
leading order, corrections from mb � 0 to the total cross
section are of order O�m2

b�. Of course there might be some
enhancement of the O�m2

b� terms if one remembers that the
cross section can bring about terms of order m2

b=�p
b
T�

2.
However, in our calculation where we require the b’s to be
observed hence requiring a pbT cut, the effect will be
minimal. With mb � 4:62 GeV, the effect of neglecting
mb is that the cross section is increased by 3.7% for
jpb;

�b
T j> 20 GeV and 1.1% for jpb;

�b
T j> 50 GeV. At one-

loop, the chiral structure of the weak interaction and the

contribution of the top change many of the characteristics
that we have just discussed for the tree-level.

B. New electroweak Yukawa-type contributions, novel
characteristics

Indeed, look at the two contributions arising from the
one-loop electroweak corrections given in Fig. 2. Now the
Higgs can attach to the top or to the W. Therefore these
contributions do not vanish in the limit �bbH � 0. Because
now the fermion loop is a top loop, the mass insertion in
what we called �odd is proportional to the top mass and is
not negligible. In fact the diagrams in Fig. 2 show the
charged Goldstone boson in the loop. The latter triggers
a t! b�W transition whose dominant coupling is propor-
tional to the Yukawa coupling of the top. We will in fact be
working in the approximation of keeping only the Yukawa
couplings. This reduces the number of diagrams and if
working in the Feynman gauge as we do in this computa-
tion, only the Goldstone contributions survive. The neutral
Goldstone bosons can only contribute corrections of order
�2
b. We will neglect these O��2

b� contributions at the am-
plitude level. However the order O��b� corrections will be
kept. All the corrections are then triggered by t! b�W ,
and apart from the QCD g! b �b vertex, only the Yukawa
vertices shown in Fig. 3 below are needed to build up the
full set of electroweak corrections.

Note that in models outside the standard model, the
Higgs coupling to the fermion f, �ffH, can involve other
parameters beside the corresponding Yukawa coupling �f.
The Higgs coupling to the charged Goldstone involves the
Higgs self-coupling or Yukawa coupling of the Higgs, � �
M2
H=2v2 proportional to the square of the Higgs mass. The

latter can be large for large Higgs masses. These consid-
erations allow us to classify the contributions into three
gauge invariant classes.

C. Three classes of diagrams and the chiral structure at
one-loop

All the one-loop diagrams are classified into three gauge
invariant groups as displayed in Fig. 4. The Higgs couples
to the bottom quark in the first group [Fig. 4(a)], to the top
quark in the second group [Fig. 4(b)], and to the charged
Goldstone boson in the third group [Fig. 4(c)]. As shown in
Fig. 4 each class can be efficiently reconstructed from the

t H

b

χW

t

b
g

g

b

b

χW

χW

g

t

t

g

H

FIG. 2. Sample of one-loop diagrams related to the Yukawa
interaction in the SM. �W represents the charged Goldstone
boson.
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one-loop vertex b �bH, depending on which leg one attaches
the Higgs, by then grafting the gluons in all possible ways.
We have also checked explicitly that each class with its
counterterms, see below, constitutes a QCD gauge invari-
ant subset. Note that these three contributions depend on
different combinations of independent couplings and there-
fore constitute independent sets.

The chiral structure t! b�W impacts directly on the
structure of the helicity amplitudes at one-loop. The split of
each contribution according to �even and �odd, see Eq. (2),
will turn out to be useful and will indicate which helicity
amplitude can be enhanced by which Yukawa coupling at
one-loop. We show only one example in class (b) of Fig. 4.
It is straightforward to carry the same analysis for all other
diagrams. We choose the first diagram in group (b) in
Fig. 4. For clarity we will here take mb � 0, we have

already shown how mb insertions are taken into account;
see Eq. (2). Leaving aside the color part which can always
be factorized out (see Appendix B) and the strong coupling
constant, we write explicitly the contribution of this dia-
gram as

 A b1��1; �2;�3; �4� � �ttH�
2
t �u��3; p3�6���1; p1�

�
�6p13

�p2
13

Cb1

�6p24

�p2
24

6���2; p2�u��4; p4�:

(3)

Cb1 is the Yukawa vertex correction. In D dimension, with
q the integration variable, the momenta as defined in Fig. 1
with pij � pi � pj and �pij � pj � pi, we have

 Cb1 �
Z dDq
�2��Di

�PR � "btPL��mt � q6 � �6p13��mt � q6 � �6p24��PL � "btPR�

�M2
W � q

2�	m2
t � �q� �p13�

2
	m2
t � �q� �p24�

2

: (4)

The numerator of the integrand of (4), neglecting terms of O��2
b�, can be rearranged such as

(a)

(b)

(c)

χW

χW

b

χW

b

b

b

t

t

t

bb

g(p1)

g(p2)

b(p3)

H(p5)

b(p4)

t χW

g(p2)

g(p1)

t

b(p3)

b(p4)

H(p5)

g(p1)

g(p2)

χW
t

b(p3)

b(p4)

H(p5)

χW
t

χW

H

H

H

FIG. 4. All the diagrams in each group can be obtained by inserting the two gluon lines or one triple gluon vertex (not shown) to all
possible positions in the generic bottom line, which is the first diagram on the left. We have checked the number of diagrams through
GRACE-LOOP [15].

FIG. 3. Relevant vertices appearing at one-loop. "bt � �b=�t, v is the vacuum expectation value, and � is the Higgs self-coupling,
related to the Higgs mass in the standard model. PL;R � �1� �5�=2.
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Ab1��1;�2;�3; �4� ���!numerator
�"bt�m2

t ��q6 � �6p13��q6 � �6p24��|���������������������������{z���������������������������}
�even

�mtPR�2q6 � �6p13�
�6p24�|������������������{z������������������}

�odd

: (5)

This shows explicitly that �odd structures with a specific
chirality, PR, can indeed be generated. They do not vanish
as �bbh ! 0. The even one-loop structures on the other
hand are O��b�. The structure in class (c), Higgs radiation
off the charged Goldstones, is the same. For class (a),
radiation off the b quark, the structure of the correction
is different; the odd part is suppressed and receives an
O��b� correction. To summarize, with mb � 0, making
explicit the Yukawa couplings and the chiral structure if
any, for example PR, that characterize each class and
comparing to the leading order, one has

�even �odd

Tree-level �bbH 0
(a) �2

t �bbH �b�t�bbH
(b) �b�t�ttH �2

t �ttH, �PR�
(c) �b�t���H �2

t ���H, �PR�

We have kept �ffH and �f separate to show how the
structures may change in the MSSM, for example, and also
why just by inspecting the couplings we can differentiate
between the three classes. We clearly see that all one-loop
�even contributions vanish in the limit �b � 0 or �bbH � 0.
On the other hand this is not the case for the one-loop �odd

contribution belonging to classes (b) and (c). However, for
these contributions to interfere with the tree-level LO con-
tribution requires a chirality flip through a mb insertion.
Therefore in the SM, for example, the NLO cross section is
necessarily of order m2

b, like the LO, with corrections
proportional to the top Yukawa coupling, for example.
On the other hand, in the limit of �bbH � 0, the tree-level
vanishes but gg! b �bH still goes with an amplitude of
order g2

s�
2
t �ttH or g2

s�
2
t ���H. For �bbH � 0 these contri-

butions should be considered as part of the NNLO ‘‘cor-
rections’’; however, they do not vanish in the limit mb ! 0
(or �bbH � 0) while the tree-level does. These contribu-
tions can be important and we will therefore study their
effects. For these contributions at the ‘‘NNLO’’ we can set
mb � 0.

The classification in terms of structures as we have done
makes clear also that the novel one-loop induced �odd

contributions must be ultraviolet finite. This is not neces-
sarily the case of the �even structures where counterterms to
the tree-level structures are needed through renormaliza-
tion to which we now turn.

III. RENORMALIZATION

We use an on-shell renormalization scheme exactly
along the lines described in [15]. Ultraviolet divergences

are regularized through dimensional regularization. In our
approximation we only need to renormalize the vertices
b �bg and b �bH as well as the bottom mass mb. For the b �bg
vertex, from the point of view of the corrections we are
carrying, only wave function renormalization for the b= �b

field is required: b
���

L;R ! �1� �Z
1=2
bL;R
� b
���

L;R. �Z1=2
bL;R

can be
taken real; see [15]. The counterterm to mb, �mb, and the
wave function renormalization for the b= �b are set by
imposing the usual conditions for pole position and residue
on the renormalized bottom propagator. In terms of the
self-energy correction �bb�q� with momentum q [15]:

 ��q2� � K1 � K�q6 � K5�q6 �5: (6)

This translates into

 

�mb � Re�mbK��m2
b��K1�m2

b��;

�Z1=2
bL
�

1

2
Re�K5��m

2
b��K��m

2
b��

�mb
d

dq2 �mbReK��q2��ReK1�q2��jq2�m2
b
;

�Z1=2
bR
��

1

2
Re�K5��m

2
b��K��m

2
b��

�mb
d

dq2 �mbReK��q2��ReK1�q2��jq2�m2
b
:

(7)

We calculate the coefficients K1;�;5� of the bottom self-
energy in the same spirit we calculate the other one-loop
corrections, i.e., only through the t! b�W transition; see
the first diagram of class (a) in Fig. 4. We get

 

K1�q
2� � �

�2
t

16�2 �CUV � F0�mt;MW; q
2��;

K��q2� � �K5��q2�

�
�2
t

64�2 �CUV � 2F1�mt;MW; q2��

with CUV �
1

�
� �E � ln4�;

D � 4� 2�;

Fn�m1; m2; q
2� �

Z 1

0
dxxn ln��1� x�m2

1 � xm
2
2

� x�1� x�q2�:

(8)

The reason we get K��q2� � �K5��q
2� is due to the

particular chiral structure of the t! b�W loop insertion. In
particular, for mb � 0, one recovers that these corrections
only contribute to �Z1=2

bL
and not �Z1=2

bR
.

The counterterms needed to renormalize the b �bH vertex
are �mb, �Z1=2

bL;R
, as well as the Higgs wave function renor-

malization �Z1=2
H and the counterterm to the vacuum

LEADING YUKAWA CORRECTIONS TO HIGGS . . . PHYSICAL REVIEW D 77, 033003 (2008)

033003-5



expectation value, 	, �	. Indeed we have �bbH �

�bbH�
�mb
mb
� �Z1=2

bL
� �Z1=2

bR
� ��Z1=2

H � �	��. The t!

b�W loop insertion does not contribute to �Z1=2
H (which

originates from the Higgs self-energy two-point function)
nor to �	, the renormalization of the vacuum expectation
value. On the other hand, ��Z1=2

H � �	� can be seen as a

universal correction to Higgs production processes. We
will include this correction as it has potentially large con-
tributions scaling like �2

t and � which fall into the category
of the corrections we are seeking. Within the calculation
we have performed this means that the combination
��Z1=2

H � �	� must be finite. Indeed, we find

 

�Z1=2
H � �

1

8�2 Re
�
3�2

t

4
�CUV � F0�mt;mt;M2

H� �M
2
HG0�mt;mt;M2

H� � 4m2
t G0�mt;mt;M2

H��

�
�
4
�9G0�MH;MH;M

2
H� � 2G0�MW;MW;M

2
H� �G0�MZ;MZ;M

2
H��

�
;

�	 � �
1

8�2 Re
�
3�2

t

4
�CUV � 2F1�mb;mt;M

2
W�� � ��F0�MH;MW;M

2
W� � F1�MH;MW;M

2
W� �

1

2
lnM2

H�

�
c2
W

s2
W

�
3�2

t

4
�F0�mt;mt;M2

Z� � 2F1�mb;mt;M2
W�� � ��F0�MH;MZ;M2

Z� � F1�MH;MZ;M2
Z�

� F0�MH;MW;M
2
W� � F1�MH;MW;M

2
W��

��
;

Gn�m1; m2; q2� � q2 d

dq2 Fn�m1; m2; q2� � q2
Z 1

0
dx

�xnx�1� x�

�1� x�m2
1 � xm

2
2 � x�1� x�q

2 ;

(9)

which shows that ��Z1=2
H � �	� is finite.

In the actual calculation, the counterterm �
bbg belongs
to class (a) in the classification of Fig. 4. This makes
class (a) finite. The counterterm we associate to class (b)
is the part of �bbH from the t! b�W loops and therefore
does not include what we termed the universal Higgs
correction, i.e., does not include the contribution ��Z1=2

H �
�	�. This is sufficient to make class (b) finite. In our
approach (c) is finite without the addition of a counterterm.
We will keep the ��Z1=2

H � �	� contribution separate from
the contributions in classes (a), (b), (c). We will of course
include it in the final result.

IV. CALCULATION DETAILS

We have written two independent codes. In the first one
we set mb � 0 in all propagators and other spinors that
emerge from the helicity formalism we follow. In this limit,
the helicity formalism is very much simplified and the
expression quite compact. This code is in fact subdivided
in two separate subcodes. One subcode is generated for the
‘‘even’’ part [constituted by the �even contributions, see
Eq. (2)] and the other by the ‘‘odd’’ part. We also generate
a completely independent code for the case mb � 0 where,
in particular, we use the helicity formalism with massive
fermions. Details of the helicity formalism that we use are
given in Appendix A.

The steps that go into writing these codes are the follow-
ing. In the first stage, we use FORM [16] to generate
expressions for the tree-level and one-loop helicity ampli-
tudes. Each helicity amplitude is written in terms of

Lorentz invariants, scalar spinor functions �A;B;C��i�j
defined in Appendix A, and the Passarino-Veltman [17]
tensor functions TNM for a tensor of rank M for N-point
function. We have also sought to write the contribution of
each amplitude as a product of different structures or
blocks that reappear for different graphs and contributions.
For example, color factorization is implemented; this fur-
ther allows us to rearrange the amplitude into an Abelian
part and a non-Abelian part which will not interfere with
each other at the matrix element squared level. The helicity
information is contained in a set of basic blocks for further
optimization. Another set of blocks pertains to the loop
integrals and other elements. The factorization of the full
amplitude in terms of independent building blocks is easily
processed within FORM. These building blocks can still
consist of long algebraic expressions which can be effi-
ciently abbreviated into compact variables with the help of
a PERL script which also allows us to convert the output of
FORM into the FORTRAN code ready for a numerical evalu-
ation. More details on the connection between FORM and
FORTRAN as well as the optimization we implemented in
the codes can be found in Appendix B.

A. Loop integrals, Gram determinants, and
phase-space integrals

The highest rank M of the Passarino-Veltman tensor
functions TNM with M � N that we encounter in our calcu-
lation isM � 4 and is associated to a pentagon graph, N �
5. We use the library LOOPTOOLS [18] to calculate all the
tensorial one-loop integrals as well as the scalar integrals,
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this means that we leave it completely to LOOPTOOLS to
perform the reduction of the tensor integrals to the basis of
the scalar integrals. In order to obtain the cross section one
needs to perform the phase-space integration and convolu-
tion over the gluon distribution function (GDF), g�x;Q�
with Q representing the factorization scale. We have

 

��pp! b �bH� �
1

256

Z 1

0
dx1g�x1; Q�

Z 1

0
dx2g�x2; Q�

1

F̂

�
Z d3p3

2e3

d3p4

2e4

d3p5

2e5

� jA�gg! b �bH�j2

� �4�p1 � p2 � p3 � p4 � p5�; (10)

where 1
256 �

1
4�

1
8�

1
8 is the spin and color average factor

and the flux factor is 1=F̂ � 1=��2��52ŝ� with ŝ �
x1x2s  �2mb �MH�

2.
The integration over the three body phase space and

momentum fractions of the two initial gluons is done by
using two ‘‘integrators’’: BASES [19] and DADMUL [20].
BASES is a Monte Carlo that uses the importance sampling
technique while DADMUL is based on the adaptive quad-
rature algorithm. The use of two different phase-space
integration routines helps control the accuracy of the re-
sults and helps detect possible instabilities. In fact, some
numerical instabilities in the phase-space integration do
occur when we use DADMUL but not when we use BASES,
which gives very stable results with small integration error,
typically 0.08% for 105 Monte Carlo points. For the range
of Higgs masses we are studying in this paper, the insta-
bilities that are detected with DADMUL were identified as
spurious singularities having to do with vanishing Gram
determinants for the three and four point tensorial func-
tions calculated in LOOPTOOLS by using the Passarino-
Veltman reduction method.2 Because this problem always
happens at the boundary of phase space, we can avoid it by
imposing appropriate kinematic cuts in the final state. In
our calculation, almost all zero Gram determinants disap-
pear when we apply the cuts on the transverse momenta of
the bottom quarks relevant for our situation; see Sec. VA
for the choice of cuts. The remaining zero Gram determi-
nants occur when the two bottom quarks or one bottom
quark and the Higgs are produced in the same direction.
Our solution, once identified as spurious, was to discard
these points by imposing some tiny cuts on the polar, �, and
relative azimuthal angles, � of the outgoing b quarks, the
value of the cuts is �b;

�b
cut � j sin� �bjcut � 10�6. DADMUL

then produces the same result as BASES within the integra-
tion error.

B. Checks on the results

i) Ultraviolet finiteness: The final results must be ultra-
violet finite. It means that they should be independent of
the parameter CUV defined in Eq. (8). In our code this
parameter is treated as a variable. The cancellation of
CUV has been carefully checked in our code. Upon varying
the value of the parameter CUV from CUV � 0 to CUV �
105, the result is stable within more than 9 digits using
double precision. This check makes sure that the divergent
part of the calculation is correct. The correctness of the
finite part is also well checked in our code by confirming
that each helicity configuration is QCD gauge invariant.

ii) QCD gauge invariance: In the physical gauge we use,
the QCD gauge invariance reflects the fact that the gluon is
massless and has only two transverse polarization compo-
nents. In the helicity formalism that we use, the polariza-
tion vector of the gluon of momentum p and helicity � is
constructed with the help of a reference vector q; see
Appendix A for details. The polarization vector is then
labeled as "
�p; �; q�. A change of reference vector from q
to q0 amounts essentially to a gauge transformation (up to a
phase)

 "
�p; �; q0� � ei��q
0;q�"
�p; �; q� � ��q0; q�p
: (11)

QCD gauge invariance in our case amounts to indepen-
dence of the cross section in the choice of the reference
vector q. We have carefully checked that the numerical
result for the norm of each helicity amplitude at various
points in phase space is independent of the reference
vectors, say q1;2 for gluon 1 and 2, up to 12 digits using
double precision. By default, our numerical evaluation is
based on the use of q1;2 � �p2; p1�. For the checks in the
case of massive b quarks the result with the default choice
q1;2 � �p2; p1� is compared with a random choice of q1;2,
keeping away from vectors with excessively too small or
too large components; see Appendix A for more details.

iii) As stated earlier, the results based on the use of the
massive quark helicity amplitude are checked against those
with the independent code using the massless helicity
amplitude by setting the mass of the b quark to zero.
This is however just a consistency check.

iv) At the level of integration over phase space and
density functions we have used two integration routines
and made sure that we obtain the same result once we have
properly dealt with the spurious Gram determinant as we
explained in Sec. IVA.

v) Moreover, our tree-level results have been success-
fully checked against the results of CALCHEP [23].

V. RESULTS

A. Input parameters and kinematical cuts

Our input parameters are �0� � 1=137:035 999 11,
MW � 80:3766 GeV, MZ � 91:1876 GeV, s�MZ� �
0:118, mb � 4:62 GeV, mt � 174:0 GeV with sW ����������������������������

1�M2
W=M

2
Z

q
. The Cabibbo-Kobayashi-Maskawa

2The reduction of the five point function using the method of
Denner and Dittmaier [21] and Hahn and Rauch [22] which
avoids the Gram determinant at this stage as implemented in
LOOPTOOLS gives very stable results.
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(CKM) parameter Vtb is set to be 1. We consider the case at
the LHC where the center of mass energy of the two initial
protons is

���
s
p
� 14 TeV. Neglecting the small light quark

initiated contribution, we use CTEQ6L [24] for the GDF in
the proton. The factorization scale for the GDF and energy
scale for the strong coupling constant are chosen to beQ �
MZ for simplicity.

As has been done in previous analyses [5,25], for the
exclusive b �bH final state, we require the outgoing b and �b
to have high transverse momenta jpb;

�b
T j  20 GeV and

pseudorapidity j�b; �bj< 2:5. These kinematical cuts reduce
the total rate of the signal but also greatly reduce the QCD
background. As pointed out in [4] these cuts also stabilize
the scale dependence of the QCD NLO corrections com-

pared to the case where no cut is applied. In the following,
these kinematical cuts are always applied unless otherwise
stated.

Speaking of the NLO QCD scale uncertainty and before
presenting our results, let us remind the reader of the size
of the QCD corrections. Taking a renormalization/factori-
zation scale as we take here at MZ, the QCD corrections in
a scheme where the bottom Yukawa coupling is taken on
shell amount to �� 22% for a Higgs mass of 120 GeV.

B. NLO EW correction with �bbH � 0

The cross sections with two high-pT bottom quarks at
LO and NLO at the LHC are displayed in Fig. 5 as a
function of the Higgs mass. The NLO EW correction
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H � �	� is the correction due to the universal correction contained in the renormalization of the b �bH vertex. ‘‘Total’’ refers to the
total electroweak correction, of Yukawa type, at one-loop.
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reduces the cross section by about 4% to 5% as the Higgs
mass is varied from 110 to 150 GeV. The first conclusion to
draw is that this correction is small if we compare it to the
QCD correction or even to the QCD scale uncertainty.

Considering that we have pointed to the fact that the
contributions could be grouped into three gauge invariant
classes that reflect the strengths of the Higgs coupling to
the b, the t, or its self-coupling, one can ask whether this is
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FIG. 7. The one-loop induced cross section as a function of MH in the limit of vanishing bottom-Higgs Yukawa coupling. The right
panel shows the percentage contribution of this contribution relative to the tree-level cross section calculated with �bbH � 0.
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the result of some cancellation. It turns out not to be the
case. All contributions are below 3%; see Fig. 5. Class (a)
with a Higgs radiated from the bottom line is totally
negligible ranging from �0:09% to �0:06%. We have
failed in finding a good reason for the smallness of this
contribution compared to the others. Those due to the
Higgs self-coupling are below 1%. Radiation from the
top contributes about �2% and is of the same order as
the contribution of the universal correction. We had argued
that the Yukawa corrections brought about by the top might
be large. It seems that the mass of the top introduces also a
large scale which cannot be neglected compared to the
effective energy of the hard process even for LHC energies.

The NLO corrections are spread rather uniformly on all
the distributions we have looked at. We have chosen to
show in Fig. 6 the effect on pseudorapidity and transverse
momentum distributions of the Higgs for two cases MH �
120 GeV and MH � 150 GeV. As Fig. 6 shows, the rela-
tive change in these two distributions is sensibly constant
especially for MH � 120 GeV. For MH � 150 GeV, the
corrections are largest for pHT around 140 GeV; however,
this is where the cross section is very small. A similar
pattern, i.e., a constant change in the distributions, is
observed for the bottom variables.

C. EW correction in the limit of vanishing �bbH
The cross section for �bbH � 0 can be induced at one-

loop through the top loop. This NNLO contribution rises
rather quickly as the Higgs mass increases even in the
narrow range MH � 110–150 GeV, as can be seen in
Fig. 7. Indeed relative to the tree-level, the cross section
with MH � 120 GeV amounts to 3% while for MH �
150 GeV it has increased to as much as 17%. Going past
MH  2MW we encounter a Landau singularity [26] (a
pinch singularity in the loop integral) from diagrams like
the one depicted in Fig. 2 (right) with the Higgs being
attached to the W’s or their Goldstone counterpart. It
corresponds to a situation where all particles in the loop
are resonating and can be interpreted as the production and
decay of the tops into (longitudinal) W’s with the later
fusing to produce the Higgs. This leading Landau singu-
larity is not integrable, at the level of the loop amplitude
squared, and must be regulated by the introduction of a
width for the unstable particles. We leave this issue to-
gether with a general discussion of Landau singularities in
such situations to another publication.

Figure 8 shows the pseudorapidity and transverse mo-
mentum distributions of the Higgs as well as the pT of the
bottom for two casesMH � 120 GeV andMH � 150 GeV
in the limit of vanishing bottom-Higgs Yukawa coupling.
These distributions are significantly different from the ones
we observed at tree-level (and with the electroweak NLO
corrections); see Fig. 6. The Higgs prefers being produced
at high value of transverse momentum, about 130 GeV. In
the case of a Higgs with MH � 150 GeV this contribution

can significantly distort the shape of the pHT distribution for
high pHT with a ‘‘correction’’ of more than 70% over a
rather large range. The distribution in the pT of the bottom
is also very telling. The new contributions do not produce
the bottom preferentially with low pbT as the case of the LO
contribution.

VII. CONCLUSIONS

We have calculated the EW radiative corrections trig-
gered by the Yukawa coupling of the top to the process
pp! b �bH at the LHC through gluon fusion in the SM.
This process is triggered through Higgs radiation of the
bottom quark with a small coupling proportional to the
mass of the bottom. Yet in order to analyze this coupling,
precision calculations that include both the QCD and elec-
troweak corrections are needed. In this perspective, to
identify the process one needs to tag both b jets. Our
calculation is therefore conducted in this kinematical con-
figuration. Inserting a top quark loop with a Yukawa tran-
sition of the type t! b�W , �W is the charged Goldstone,
allows now the Higgs to be radiated from the top or from
the Goldstone boson. The latter coupling represents the
Higgs self-coupling and increases with the Higgs mass.
The former, the top Yukawa coupling, is also large. As a
consequence, the one-loop amplitude gg! b �bH no longer
vanishes as the Higgs coupling to b’s does, like what
occurs at leading order. We find that in the limit of vanish-
ing �bbH, the one-loop induced electroweak process should
be taken into account for Higgs masses larger than
140 GeV or so. Indeed, though this contribution is quite
modest for a Higgs mass of 110 GeV it increases quite
rapidly as the Higgs mass increases, reaching about 17% of
the leading order value, calculated with mb � 4:62 GeV,
for MH � 150 GeV. For these new corrections to interfere
with the leading order requires helicity flip. Therefore at
next-to-leading order in the Yukawa electroweak correc-
tions, all corrections involve either a bottom mass insertion
or a bottom Yukawa coupling. At the end the total Yukawa
electroweak NLO contribution brings in a correction which
is within the range �4% to �5% for Higgs masses in the
range 110<MH < 150 GeV. They are therefore negli-
gible compared to the NLO QCD correction and even the
remaining QCD scale uncertainty. This modest effect
translates also as a uniform rescaling of the distributions
in the most interesting kinematical variables we have
looked at (pseudorapidities and pT of both b quarks and
the Higgs). This is not the case of the one-loop induced
contributions which survive in the limit of mb ! 0 (and
�bbH ! 0). Here the distributions for the Higgs masses
where the corrections for the total cross section are large
are drastically different from the LO distributions. A sum-
mary for the corrections including the NLO with �bbH � 0
and the part of the NNLO counted as loop induced in the
limit �bbH ! 0 is shown in Fig. 9.

F. BOUDJEMA AND LE DUC NINH PHYSICAL REVIEW D 77, 033003 (2008)

033003-10



The analysis we have performed in this paper does not
cover Higgs masses over 150 GeV and rests within the
range of Higgs masses preferred by indirect precision
measurements. In fact as the threshold forH ! WW opens
up, important phenomena take place. Foremost a Landau
singularity, or a pinch singularity in some loop integrals,
develops. This corresponds to the rescattering of on-shell
top quarks that decay to on-shell W with Higgs production
via WW fusion. We leave this important issue to a forth-
coming publication especially that the identification and
handling of such singularities can be applied to other
processes. In our case the singularity can be tamed by
introducing the width of the unstable particles. At NLO,
for MH � 2MW for example, the wave function renormal-
ization of the Higgs, which involves the derivative of the
two-point function Higgs self-energy, diverges. This can
also be regulated by including the width of the W; see for
example [27].

There is another contribution which does not vanish for
vanishing �bbH and which contributes to gg! b �bH
through a closed top quark loop. This contribution repre-
sents gg! Hg� ! Hb �b. We have not included this con-
tribution in the present paper as we do not consider it to be
a genuine b �bH final state. This correction can be counted
as belonging to the inclusive gg! H process. The same
line of reasoning has been argued in [7]. Nonetheless, from
the experimental point of view it would be interesting to
include all these effects together with the NLO QCD
corrections and the electroweak corrections that we have
studied here.
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APPENDIX A: THE HELICITY AMPLITUDE
METHOD

1. Method

We use a combination of helicity amplitude methods as
described in [28,29] to calculate the total cross section. In
the following we only want to highlight some key features
that were most useful for our calculation; for details of the
method we refer to [28,29]. For our process g�p1; �1� �
g�p2; �2� ! b�p3; �3� � �b�p4; �4� �H�p5� where the
particles are denoted by their momentum pi and helicity
�i we write the corresponding helicity amplitude as
A��1; �2;�3; �4�.

 

A��1; �2;�3; �4� � "
�p1; �1; q1�"��p2; �2; q2�

�M
���3; �4�;

M
���3; �4� � �u�p3; �3��

�v�p4; �4�: (A1)

�
� is a string of Dirac � matrices. These � matrices
represent either interaction vertices or momenta from the
fermion propagators. In our case the interaction vertices
are the vectorial gluon vertices in which case they represent
6�i, the scalar Higgs vertex and at one-loop the pseudoscalar
Goldstone coupling. For the momenta, in our implementa-
tion we reexpress them in terms of the independent exter-
nal momenta p1, p2, p3, p4. This applies also to the loop
momenta after the reduction formalism of the tensor inte-
grals has been performed. The first step in the idea of the
helicity formalism we follow is to turn each of these �
matrices (apart from the pseudoscalar and the trivial scalar)
into a combination of spinor function u �u. We therefore
transform our helicity amplitude into products of spinors
such as the helicity amplitude could be written like a
product �uu �u . . . u �u with the possible insertion of �5’s in
the string. The different u, �u, v in the string we have
written have of course, in general, different arguments.
Nonetheless one can turn each spinor product of two
adjacent �uu, etc. into a complex number written in terms
of the momenta in our problem as we will see.

In the first step, for the momentum p6 i with p2
i � m2

i we
use

 p6 i � u�pi;�� �u�pi;�� � u�pi;�� �u�pi;�� �mi: (A2)

The polarization vector of the initial gluon i, "
�pi; �i; qi�,
is also first expressed in terms of spinors such as

 �
�pi; �i; qi� �
�u�pi; �i��
u�qi; �i�

	4�pi � qi�
1=2
; (A3)

where qi is an arbitrary reference vector satisfying the
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following conditions

 q2
i � 0; pi � qi � 0: (A4)

Gauge invariance (transversality condition) requires that
the cross sections are independent of the choice of the
reference vector as we will see later. This acts as an
important check of the calculation; see later. It is not
difficult to prove that the choice (A3) satisfies all the
conditions for a transverse polarization vector. In particu-
lar,

 pi � "�pi; �i� � 0; "�pi; �i� � "�pi; �i� � 0;

"
�pi;��i� � "
�pi; �i�
�;

"�pi; �i� � "�pi;��i� � �1;

(A5)

where the reference vector is not written down explicitly.
i � 1; 2 and no sum over i must be understood. Then for
6�i � �
�
 one uses the so-called Chisholm identity

 

�u�p; ���
u�q; ���
 � 2	u�p;��� �u�q;���

� u�q; �� �u�p; ��
; (A6)

where all the spinors in Eq. (A6) are for massless states in
view of the lightlike condition on the reference frame
vector and of course the momentum of the real gluon.

With U�pi; �i� representing either u�pi; �i� or v�pi; �i�
one uses the general formulas

 

�U�pi; �i�U�pj; �j� �
A�i�j�pi; pj� �MiB�i�j�pi; pj� �MjC�i�j�pi; pj����������������������������������

�pi � k0��pj � k0�
q ;

�U�pi; �i��5U�pj; �j� � ��i
A�i�j�pi; pj� �MiB�i�j�pi; pj� �MjC�i�j�pi; pj����������������������������������

�pi � k0��pj � k0�
q ;

(A7)

where
 

Mi � �mi if U�pi; �i� � u�pi; �i�;

Mi � �mi if U�pi; �i� � v�pi; �i�;

A�i�j � ��i��j�i��k0 � pi��k1 � pj�

� �k0 � pj��k1 � pi� � i�i�
���k


0 k

�
1p

�
i p

�
j �;

B�i�j � ��i�j�k0 � pj�; C�i�j � ��i�j�k0 � pi�;

(A8)

with k0;1 being auxiliary vectors such that k2
0 � 0, k2

1 �
�1, and k0 � k1 � 0. No sum over repeated indices must be
understood. For instance, we can choose k0 � �1; 0; 1; 0�
and k1 � �0; 1; 0; 0�. With this choice, it is obvious to see
that the denominator in (A7) can never vanish if the bottom
mass is kept. If one would like to neglect mb, that choice
can bring p3 � k0 or p4 � k0 to zero in some cases. If this
happens, one can tell the code to choose k0 � �1; 0;�1; 0�
instead of the above choice. In fact, that is what we did in
our codes.

In the case of spinors representing a massless state, the
helicity formalism simplifies considerably. Only A�i�j is
needed. Traditionally we introduce the C numbers s�p; q�
and t�p; q�,

 s�p; q� � �u�p;��u�q;�� � A���p; q�;

t�p; q� � �u�p;��u�q;�� � �s�p; q��:
(A9)

These are the functions that appear in our code for the
massless b quark. The massless case is also used when
expressing the gluon polarization vector to which we now
turn.

2. Transversality and gauge invariance

The reference vector used for the polarization of the
gluon can be changed at will. Changing the reference
vector from q to q0 amounts essentially to a gauge trans-
formation. Indeed one has [28]

 "
�p; �; q0� � ei��q
0;q�"
�p; �; q� � ��q0; q�p
; (A10)

where

 ei��q
0;q� �

�
s�p; q�
t�p; q�

t�p; q0�
s�p; q0�

	
1=2
;

��q0; q� �
2

	4�q0 � p�
1=2

t�q; q0�
t�q; p�

:

(A11)

Therefore up to the phase factor, the difference is contained
in the momentum vector of the gluon. QCD gauge invari-
ance for our process leads to the important identity

 jA��1; �2;�3; �4; q1; q2�j
2 � jA��1; �2;�3; �4; q01; q

0
2�j

2;

(A12)

as long as q01;2 satisfy the condition (A4). We have carefully
checked that the numerical result for the norm of each
helicity amplitude at various points in phase space is
independent of the reference vectors q1;2 up to 12 digits
using double precision. By default, our numerical evalu-
ation is based on the use of q1;2 � �p2; p1�. For the checks
in the case of massive b quarks the result with q1;2 �
�p2; p1� is compared with the one using any q1;2 such as
the conditions (A4) are obeyed. In the case of massless b
quarks it is simplest to take q1;2 � �p3; p4�.
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This check is an important check on many ingredients
that enter the calculation: the Dirac spinors, the gluon
polarization vectors, the propagators, the Lorentz indices,
the loop integrals. It has been used extensively in our
numerical calculation.

APPENDIX B: OPTIMIZATION

Each helicity amplitude A��1; �2;�3�4� �A��̂�, a C
number, is calculated numerically in the FORTRAN code.
The price to pay is that the number of helicity amplitudes
to be calculated can be large, 16 in our case for the
electroweak loop part. Some optimization is necessary.
The categorization of the full set of diagrams into three
gauge invariant classes as shown in Sec. II C is a first step.
We have sought to write each diagram as a compact
product of blocks and structures containing different prop-
erties of the amplitude. We write the amplitude according
to a color ordering pattern that defines three channels. The
ordering is in a one-to-one correspondence with the three
channels or diagrams shown in Fig. 1. The T type is the
direct channel, the U type is the crossed one obtained from
the T type by interchanging the two gluons, and the S type
is the one involving the triple gluon vertex. The helicity
amplitude for each diagram can thus be represented as

 A ��̂�T;U;S � CME�a; b� � Cc� FFE� SME��i�;

(B1)

where
(i) CME�a; b� is the color matrix element. a, b are the

color indices of the two initial gluons.3 The color
products can be �TaTb�, �TbTa�, or 	Ta; Tb
 corre-
sponding to the 3 T, U, S channels, respectively

(ii) Cc contains all the common coefficients like the
strong coupling constant gs or factors common to all
diagrams and amplitudes such as the normalization
factor entering the representation of the polarization
vector of the gluon; see Eq. (A3)

(iii) FFE, form factor element, contains all the denom-
inators of propagators, loop functions as well as
various scalar products of external momenta
fp1; p2; p3; p4g, i.e., all the scalar objects which
do not depend on the helicity �i

(iv) SME��̂�, standard matrix element, is a product of
the scalar spinor functions A�i�j , B�i�j , and C�i�j
defined in Appendix A.

For each channel, say A��̂�T , the most complicated and
time-consuming part is the FFE. That is why we want to
factorize it out and put it in a common block so that in
order to calculate all the 16 helicity configurations of
A��̂�T we just need to calculate FFE once. This is done

at every point in phase space. This kind of factorization can
be easily carried out in FORM.
SME��̂� is also complicated because the bottom quark is

massive and �5 occurs in the ‘‘helicity strings.’’ Thus we
have to optimize this part as well. The way we do it for all
the 3 groups is as follows. In FORM, we have to find out all
the generic expressions of SME��̂�. There are 12 of them at
tree-level and 68 at one-loop if we choose q1;2 � p2;1 for
the reference vectors. For instance,

 SME1 � 	 �u��3; p3�v��4; p4�
 � 	"
��1; p1; p2�p


4 


� 	"���2; p2; p1�p
�
4
;

� BME1��3; �4� � BME2��1� � BME3��2�

(2.2)

can be expressed in terms of 3 basic matrix elements
(BME). Each BME occurs several times when calculating
all the SME��̂�. The number of BME is 31. Each BME is
written in terms of scalar spinor functions A�i�j , B�i�j ,
C�i�j . All the SME or BME can be found and abbreviated
in FORM. As an alternative, we can use PERL for such an
operation. The FORM output is converted directly into a
FORTRAN code for numerical evaluation. Needless to say,
all the abbreviations of SME or BME must be put in
common blocks.

To get the final result, we have to sum over all the
channels. The grouping can be rearranged in terms of an
Abelian part and a non-Abelian part according to

 

A��̂� �A��̂�T �A��̂�U �A��̂�S;

� fTa; TbgA��̂�Abel � 	Ta; Tb
A��̂�non-Abel; (B3)

where

 

A��̂�Abel � 1
2�A��̂�

T �A��̂�U�;

A��̂�non-Abel �A��̂�S � 1
2�A��̂�

T �A��̂�U�;
(B4)

corresponding to the Abelian and non-Abelian parts, re-
spectively. The amplitude squared then contains no inter-
ference term between the Abelian and non-Abelian parts:

 jA��̂�j2 �
1

256

�
28

3
jA��̂�Abelj2 � 12jA��̂�non-Abelj2

�
;

(B5)

where 1
256 �

1
4�

1
8�

1
8 is the spin- and color-averaging

factor.
3Other color indices of the bottom quarks are omitted here for

simplicity
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