Low m ass stellar evolution w ith W IM P capture and annihilation
P.C.Scott and J.Edsjo

C osm ology, P article A strophysics and String Theory, Physics, Stockholm U niversity \& H igh E nergy A strophysics and C osm ology C entre (HEAC),
A lbaN ova U niveristy C entre, SE-106 91 Stockholm, Sw eden
Presenting author; patd physto.se

M . Fainbaim
PH-TH,CERN, G eneva, Switzerland \& K ing's C ollege London, W C 2R 2LS, UK

Abstract

R ecent work has indicated that $W \mathbb{I M} P$ annihilation in stellar cores has the potential to contribute signi cantly to a star's total energy production. We report on progress in sim ulating the e ects of W \mathbb{M} P capture and annihilation upon stellar structure and evolution near superm assive black holes, using the new D arkStars code. Prelim inary results indicate that low -m ass stars are the m ost in uenced by $W \mathbb{I M}$ P annihilation, which could have consequences for upcom ing observational program s.

K eyw ords: cosm ology; stellar evolution; dark matter; W \mathbb{M} Ps; galactic centre; W $\mathbb{I M}$ P bumers

O ur current understanding of cosm ology is that over 20% of the m assenergy in the universe is in the form of 'dark m atter', ${ }^{1,3}$ the com position of which rem ains unknow n. O ne prom ising group of dark m atter candidates are weakly interacting m assive particles (W IM Ps), attractive because the m asses and couplings associated w ith the weak scale naturally lead to a relic abundance of dark m atter consistent w ith present-day observations.

W IM P s should posses a sm allbut non-zero w eak scattering cross-section w ith standard m odel particles. This m eans that they could scatter o atom ic nuclei in stars, becom e gravitationally captured and eventually congregate in stellar cores. W \mathbb{M} P accretion by stars has been studied extensively, ${ }^{4\{7}$ typically w ith a view to observing neutrinos produced by W \mathbb{M} P self-annihilation in the core of the Sun. O thers have considered the in uence of larger concentrations of $W \mathbb{I M}$ Ps upon the structure of the stars them -
selves, focusing on conductive energy transport ${ }^{8112}$ and energy production by anninilations. ${ }^{13\{15}$

W e provide prelim inary results from sim ulations of the in uence of W IM P capture and annihilation upon m ain sequence stars, using the evolutionary code D arkStars. W e have also presented results obtained with a sim pler static stellar structure code, ${ }^{16}$ using som e results presented herein for com parison. D arkStars is built upon the stellar evolution package EZ, ${ }_{1}^{17}$ derived from Eggleton's stars code, ${ }^{18\{20}$ and a generalised version of the capture routines in D arkSU SY, ${ }^{21}$ which are based upon the capture expressions of G ould. ${ }^{7}$ The code includes a detailed treatm ent of conductive energy transport by $W \mathbb{I M} P s$, using the expressions of G ould \& R a ell ${ }^{2}$ with correction factors derived from their accom panying num erical solutions to the Boltzm ann equation. ${ }^{23} \mathrm{~T}$ heW $\mathbb{I M}$ P radialdistribution is allow ed to deviate from a strictly isothem alG aussian in a m anner consistent w ith the treatm ent of the conductive energy transport. D arkStars, its theoreticalunderpinnings and application to a range of di erent stars w ill be described in full in a com ing publication. ${ }^{24}$

W e focus on conditions obtained near superm assive black holes, where the highest am bient dark m atter densities are expected to be found.$^{25,26} \mathrm{We}$ use the m axim alvalues of both the spin-dependent ${ }^{27}\left(\begin{array}{ll}10 & \mathrm{~cm}^{2}\end{array}\right)$ and spinindependent ${ }^{28}\left(10{ }^{44} \mathrm{~cm}^{2}\right) \mathrm{W} \mathbb{I M}$ P -nucleon cross-sections currently allow ed by direct and indirect detection experim ents, and assum e a 100 GeV W $\mathbb{I M}$ P m ass. T he annihilation cross-section is set to $310{ }^{26} \mathrm{~cm}^{3} \mathrm{~s}^{1}$, asdem anded by relic abundance considerations. ${ }^{3}$ For sim plicity we currently w ork w ith dark matter halo param eters for the Sun, assum ing a Gaussian W $\mathbb{I M}$ P velocity distribution of width $270 \mathrm{~km} \mathrm{~s}^{1}$ and a stellar proper m otion of $220 \mathrm{~km} \mathrm{~s}{ }^{1}$ relative to the halo. W e assum e a m etallicity of $Z=0: 02$, which is in the vicinity of the Sun's. ${ }^{29}$

G iven a large, constant am bient $W \mathbb{I M} P$ density, capture and annihilation quickly equilibrate inside stars, such that annihilation provides a roughly constant source of additional energy. B eacuse the W IM P s congregate very close to the stellar centre, this energy is produced in a much sm aller region than that from nuclear buming. The initial, concentrated, rapid in jection of energy raises the lum inosity gradient in the core of a star, steepening the tem perature gradient and prom pting the creation of a central convection zone (or the rapid expansion of the existing one). T he increased e ciency of energy transport causes the core to cooland expand, increasing the stellar radius and decreasing surface tem perature and central density. The top panel of F ig. 1 shows the evolution of a $1.0 \mathrm{M} \quad \mathrm{W} \mathbb{I} \mathrm{P}$ bumer

Fig.1. The path followed in the HR (top) and central equation of state (bottom) diagram s by a 1.0 M star, evolved for 100 M yr in a $10^{10} \mathrm{GeV} \mathrm{cm}{ }^{3} \mathrm{~W} \mathbb{I M} \mathrm{P}$ halo. The dashed lines indicate the zero age m ain sequence, which de nes the boundary for hydrogenbuming in the low er plot (to the left of the line, hydrogen fusion cannot occur). The red points indicate the starting (0) and nal (1) positions.
in the HR diagram as it adjusts to the presence of the extra energy in its core from $W \mathbb{I M} P$ annihilations. T he low er panel show s the corresponding

4

Fig. 2. The positions in the HR diagram at which m ain sequence stars stabilise when em bedded in W $\mathbb{I M} P$ halos of $10^{7}\left\{5 \quad 10^{10} \mathrm{GeV}\right.$ cm ${ }^{3}$. Points closest to them ain sequence are those com puted with $10^{7} \mathrm{GeV} \mathrm{cm}^{3}$ halos. For every m ass show n , points are given over the entire range of $W \mathbb{I M} P$ densities, but not necessarily w ith the sam e resolution (e.g.m ore points were com puted in the 2.0 M case).
changes in the central equation of state (tem perature and density) during this process. N uclear buming eventually sw itches o as the central tem perature and density becom e too low to support it, leaving W IM Ps to power the star alone.

The surface cooling brought about by the star's expansion allow s H ions to survive to increasing depths, with the resulting opacity increase causing the surface convection zone to expand. If enough $W \mathbb{M}$ Ps are present, the expanding surface and core convection zones willm eet. T his results in a fully convective starw ith a total lum inosity which rises once again, as the further enhancem ent in energy transport allow s the energy reaching the surface to outstrip that pow ering the overallexpansion. F igure 2 show s the location in the HR diagram of m ain sequence stars of various m asses in di ering am bient dark m atter densities from $10\left\{5 \quad 10^{10} \mathrm{GeV} \mathrm{cm}^{3}\right.$,
after having com pletely ad justed to the e ects of the $W \mathbb{I M}$ Ps. The change in direction of the 'tracks' approxim ately corresponds to the point at w hich nuclear buming tums o entirely, the star becom es fully convective and its lum inosity undergoes som e increase after the in itial decrease.

Thee ects ofW $\mathbb{I M}$ Psupon m ain sequence stars are m ost pronounced at low stellar m asses, sim ply because the energy from nuclear buming scales as roughly the third or fourth pow er ofM, whereas the W IM P capture rate is alm ost linear in M. Since $W \mathbb{I M}$ Ps are in principle an etemal source of energy, W $\mathbb{I M}$ P bumers w ill shine and occupy the sam e position in the HR diagram inde nitely. (A fter being evolved for a further 30 Gyr beyond what we show here, the star in Fig. 1 was virtually indistinguishable from itself at age 100 M yr .) This suggests that m ain sequence $W \mathbb{I M}$ P bumers could be found by exam ining regions where stars cannot have form ed recently, looking for populations where low er m ass stars appear oddly younger than higher m ass ones. W hilst the stars we describe are far too cool to solve the 'paradox of youth' reported at the centres of M 31 and our own galaxy, 30,31 som e of the explanations for this paradox dem and the presence of a fainter, as-yet unobserved population of low er-m ass stars. If m ain sequence $W \mathbb{I M} P$ bumers exist anyw here, such stars would be prim e exam ples. Since upcom ing observations of the galactic centre will soon reach the sensitivity required to detect such a population, discovery of W \mathbb{M} P bumersm ight be just around the comer.
R eferences

1. L. Bergstrom , Rep. P rog. Phys. 63, 793 (2000).
2. G . Bertone, D . H ooper and J. Silk, Phys. Rep. 405, 279 (2005).
3. D.N. Spergelet al,A pJS 170,377 (2007).
4. W . H. Press and D.N. Spergel, A pJ 296,679 (1985).
5. K. G riest and D. Seckel, Nucl. Phys. B 283,681 (1987).
6. A. G ould, A pJ 321, 560 (1987).
7. A. G ould, ApJ 321,571 (1987).
8. D.N. Spergel and W . H. Press, A pJ 294, 663 (1985).
9. A . B ouquet and P. Salati, A pJ 346, 284 (1989).
10. P. Salati, A pJ 348, 738 (1990).
11. D. Dearbom, G.Ra elt, P. Salati, J. Silk and A. Bouquet, A pJ 354, 568 (1990).
12. A. B ottino, G.F iorentini, N.Fomengo, B.R icci, S.Scopeland F .L.V illante, Phys. Rev. D 66,053005 (2002).
13. P. Salati and J. Silk, A pJ 338,24 (1989).
14. I.V.M oskalenko and L.L.W aí, A pJ 659, L29 (2007).
15. G . Bertone and M . Fairbaim (2007), arX iv :0709.1485.
16. M . Fairbaim, P. Scott and J. Edsjo (2007), arX iv:0710.3396.

6
17. B. Paxton, PA SP 116,699 (2004).
18. P.P.Eggleton, M NRAS 151, 351 (1971).
19. P. P. Eggleton, M NRAS 156,361 (1972).
20. O.R.Pols, C.A.Tout, P.P.Eggleton and Z.H an, M NRAS 274 , 964 (1995).
21. P. G ondolo, J. Edsjo, P. U llio, L . B ergstrom , M . Schelke and E. A . B altz, J. C osm ology A stropart. Phys. 7, 8 (2004).
22. A. G ould and G.R a elt, A pJ 352 , 654 (1990).
23. A. G ould and G.Ra elt, A pJ 352, 669 (1990).
24. P. Scott, J. Edsjo and M . Fainbaim, in preparation.
25. D. M erritt, Phys. Rev. Lett. 92, 201304 (2004).
26. G. Bertone and D.M erritt, Phys. Rev. D 72,103502 (2005).
27. J. A ngle et al. (2007), arX iv:0706.0039.
28. S. D esaiet al., Phys. Rev. D 70, 083523 (2004).
29. M . A splund, N . G revesse and A. J. Sauval, in C osm ic A bundances as Records of Stellar Evolution and Nucleosynthesis, eds. T. G. B ames III and F.N. B ash, A SP C onf. Ser. 336, 25 (2005).
30. A. M . G hez et al, A pJ 586, L127 (2003).
31. P. D em arque and S.V irani, A \& A 461, 651 (2007).

