
SOFTWARE DEVELOPMENT AND TESTING: APPROACH AND
CHALLENGES IN A DISTRIBUTED HEP COLLABORATION

D. Burckhart-Chromek, CERN, Geneva, Switzerland

Abstract
In developing the ATLAS [1] Trigger and Data

Acquisition (TDAQ) software, the team is applying the
iterative waterfall model, evolutionary process
management, formal software inspection, and lightweight
review techniques. The long preparation phase, with a
geographically widespread development team required
that the standard techniques be adapted to this HEP
environment. The testing process is receiving special
attention. Unit tests and check targets in nightly project
builds form the basis for the subsequent software project
release testing. The integrated software is then being run
on computing farms that give further opportunites for
gaining experience, fault finding, and acquiring ideas for
improvement. Dedicated tests on a farm of up to 1000
nodes address the large-scale aspect of the project.
Integration test activities on the experimental site include
the special purpose-built event readout hardware.
Deployment in detector commissioning starts the
countdown towards running the final ATLAS experiment.
These activities aim at both understanding and completing
the complex system, and help in forming a team whose
members have a variety of expertise, working cultures,
and professional backgrounds.

INTRODUCTION
ATLAS is one of the LHC experiments at CERN that

will start taking data in 2008. The ATLAS Trigger and
Data Acquisition (TDAQ) system [2] will consist of more
than 2000 PC nodes, which take part in the control,
physics data readout, event building and event selection
operations.

Following a Software Development Process (SDP) is
well established in the software industry. Various
techniques are being employed depending on factors like
project size, project life time, and team size. Traditional
models derived from the Waterfall Model and the Spiral
Model are being applied for mission critical long term
projects. Agile methods are being used for projects with a
shorter life time and rapidly changing requirements like
Internet oriented tasks.

The TDAQ development for the control and physics
data readout software spreads over a time span of a
decade with a large number of collaborating institutes
from all over the world. The project has applied an SDP
that is based on the traditional methods but needed
significant adaptation while retaining emphasis on
result-oriented aspects such as requirements specification
and testing. Sub-systems working in small groups apply
ideas taken from agile methods at times.

 SDP OVERVIEW

The Traditional SDP
The traditional SDP methods impose a structure on the

software product development. A list of distinct
development phases provides the frame of a model. The
software development models describe a variety of tasks
and activities that take place during the process.

Most commonly Domain Analysis is followed by a
Software Element Analysis or Brainstorming phase before
Specifications are gathered during the Requirements
phase. Once the requirements have been reviewed,
Software Architecture and Design Phases serve to
describe the project or task in an abstract design.
Implementation and Testing including Review and
Inspection will bring the product to life. Documentation
and Software Training of the product introduce the
newcomer to the product. These phases are followed by
the Deployment, Support and Maintenance, which
continue throughout the lifetime of a software component
to adapt it to new operating system releases and
compilers. This Waterfall Model, published first in 1970
by W. W. Royce can be enriched by feedback paths to
one or more previous phases suggesting iterative
development. These aim at improving the product and
responding to the evolution of the software system in
which the component is embedded. The Spiral Model
defined by Barry Boehm in 1988 introduces risk
management. Each iteration phase is carefully planned
from the start to increase the system’s functionality and
complexity.

Agile Methods
Agile software development is a conceptual framework

that embraces and promotes rapid evolutionary change
throughout the entire life-cycle of the project. In Extreme
Programming (XP) [3] for example the development
iterations take a few weeks after which the new software
is released. Document writing is largely omitted, face-to-
face communication is preferred and pair programming is
favoured. Interestingly, testing is strongly emphasized.
The test program is written before the code of the product
is produced. XP is aimed at small projects where
programmers are located very closely together, in most
cases in the same room. It does not contain a concept
which foresees collaboration with remote sites. A big
project can be broken into distinct working areas and can
make use of some of the advantages of an agile method
like XP if the boundaries of a sub-project and its required
functionality are well-defined and if it involves few
developers.

A
T

L
-D

A
Q

-C
O

N
F-

20
08

-0
08

06
 Ju

ly
 2

00
8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44187995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SDP CHALLENGES FOR ATLAS ONLINE
IN THE HEP ENVIRONEMNT

ATLAS will have a lifetime of 15 years and the
development of the TDAQ project has started 10 years
before the start-up of the experiment. The development
team comprises physicists and software engineers with
varying professional backgrounds who often have short
term contracts or additional duties at their home institutes.

Over 60 institutes are participating in TDAQ and thus
the 400 team members are located worldwide. The
collaborators accept that they may have to travel to the
CERN site, but the use of collaborative tools is
indispensable. Unlike industry, there is no strong
executive power. Consensus has to be reached by
agreement amongst the participants. Traditionally,
physicists are reluctant if faced with a working
framework, rules to obey and suspicious about being
controlled in their work. They are creative but have little
training in modern programming language. It was
necessary to adapt the traditional SDP, lighten it and
introduce it gently to this working environment which
lacks homogeneous starting conditions. The project
benefited from a supportive framework and the
integration activities which provide the SDP methods at
given check points.

Introducing the SDP
The ATLAS online activities are grouped into the

infrastructure software which includes control,
configuration and monitoring services, the readout and
transport of physics data, the event selection and the event
building tasks. An initial infrastructure system with
reduced functionality and scope was needed early in the
preparation phase of the project for detector test activities
in labs and at the test beam site. Twelve packages with 30
components were developed by ten team members
working only part time on the project.

By applying a SDP the development has been divided
into sequential phases intended to help pace and organise
the work. Typically, a single institute has taken
responsibility for developing a component and thereby
simplifying communication and reducing travel. Each
development phase has been defined to produce an
obvious deliverable, i.e. document and/or code. Each
deliverable from each phase was reviewed before
progressing to the next phase. The phases, after an initial
brainstorming phase, are to: collect requirements; identify
and evaluate candidate technologies and techniques
capable of addressing the common issues identified from
the requirements; produce a design for each component
covering the most important aspects; refine the design to
add more detail; implement and unit test according to the
design; integrate with other components. Phases were not
taken up strictly sequentially but overlapped occasionally.
Design could start when the prime requirements were
known and code was written for evaluating candidate
technologies. The use of a prototype helped clarifying the
requirements.

Informal reviews took the form of presentations
followed by discussions during open meetings with all
developers involved in the project. The review of each
deliverable in the project at each of its phases has lead to
a coherent set of end-product components. Modifications
of a component due to the evolution in ideas or due to
technical constraints could be accommodated in
agreement with other components and their developers. A
drawback was that the reviews were not performed
thoroughly and team members often did not find the time
to write or read the documents before the meeting. Formal
Inspection was introduced to get reviewers to pinpoint
their work and to help them justify spending valuable
working time on such tasks.

Widening the Scope
When the integration of the various TDAQ sub-groups

started, a forum was build with one representative per
sub-group. The SDP was documented in web pages
through a team effort. Guidelines were summarized in
short and easily digestible checklists and document
templates and example documents were provided.
Training for software inspection took place. Newcomers
were integrated into the software development activities
for example as peer reviewers. The members of the forum
acted as link persons to their respective sub-group.

The integration of the sub-system functionalities to
encompass the software of TDAQ and thus the integration
of the development teams were exercised in steps. The
SDP which had been applied in the infrastructure group
was followed in parts, notably for components which
interfaced between sub-systems. Formal inspection with a
review team composed of members from several sub-
systems brought the breakthrough and acceptance in the
community for technically important and politically
prominent components like the control software and the
physics selection software.

With time, the principle of the development process
and the guidelines had been assimilated. The project had
moved to the implementation, testing and deployment
phases. The regular integration testing activities gave the
opportunity to continue integrating newcomers who had
gained experience in a different setting.

SOFTWARE INSPECTION

Principle Aims
Inspection is performed before testing as part of the

Defect Detection Process and it complements testing.
Documents are checked for cleanness and consistency
against rules. The objective is to identify and correct
major defects in the candidate product before releasing it
from the current development phase.

The Defect Prevention Process is concerned with
learning from the defects found, and suggesting ways of
improving the processes to prevent them from recurring
in the future. It involves process analysis, which is carried
out off-line from the normal inspection of specific
documents. Team participants benefit from the experience

gained during the inspection and subsequently improve
their own work while the inspection process is improved
from participant’s suggestions and according to changes
in technology.

On the job training is a valuable benefit of a dynamic
and open inspection process. It provides implicit
integration and education of people who are new to the
project. Process guidelines and checklists are available for
convenient entry into the project, while being open to
easy modifications and additions of new ideas.

The Inspection Process
The inspection process [4] is managed by an inspection

leader who chooses the reviewers, prepares the logistics
and runs the kick-off and the logging meetings. The
inspection process is based on the method from Tom Gilb
and Dorothy Graham [5]. While formal software
inspection relies on a given framework, it was a guiding
principle that everything be allowed which may help to
improve the product, the overall production process,
communication amongst project participants and the
inspection process itself; at the same time keeping
consistency and improving efficiency. Formal software
inspection had served as a major vehicle to build the
rules, guidelines and working habits, to familiarize team
members with them and to experience the benefits of
helpful criticism and improvement suggestions by
colleagues. Logging meetings helped to integrate remote
team members and clarify deliverables.

Light Inspection
Once inspection had been accepted in the development

community, a lighter form of inspection which would take
peer reviewers less time and reduce the work load to
organize the inspections was sought. Logging meetings
were replaced by the use of electronic communication
tools. This helped saving time while retaining the primary
benefits of inspection. Documentation and checking
followed the same in house standards, rules and checklists
as for the formal inspection. For example, once having
become familiar with the specific style of writing
requirements, it could be written quickly if only the
technical specification were clear. It was easy for
colleagues to read the document and understand subtleties
in the expressions. This form of light review was applied
when team members who were familiar with the process
were involved. It was not beneficial in cases which
included neighbouring sub-systems and review members
who were not familiar with the inspection process
because there was too much room for misunderstandings.
Preference for formal inspection was also given when
agreement on a prominent component by several sub-
systems or users was sought.

Experience
Requirements inspection was found to be the most

important. Requirement inspection is done because
according to experience in industry it takes about one
hour to find a major defect by inspection at an early stage

and about nine hours when testing. Requirement
inspection is also the least time consuming because no or
few mother documents must be read and they are
generally only a few pages long. They turned out to be
useful to re-visit and clarify strategy and goals.

Design inspection is the hardest to perform. It was
found to be difficult to define a good set of guidelines
which is not trivial but also not too restrictive.

Code inspection is the most time consuming one.
Many documents are involved: code must be checked for
internal consistency and against coding rules; the users’
guide and the implementation documentation must be
inspected and compared against the design and
requirements documents. Automatic checking tools [6]
were employed. Sampling was performed in most cases
and is recommended to be undertaken regularly by
concentrating on critical areas.

TESTING AND DEPLOYMENT
Functionality and verification testing is performed

throughout the software lifecycle. New components are
tested according to a test plan, preferably by non-authors.
Software release testing is performed involving the
overall system before integration tests are conducted in
test labs at remote institutes and at CERN.

Test-ware is written in small units and is run separately
grouped. The tests standardize on command, output and
exit codes. They are part of the software repository and
follow the evolution of the component. Emphasis is put
on critical areas and boundaries. Testing tools are used for
code coverage and memory leak checking.

Large Scale Performance Tests
Large scale performance tests [7] have been conducted

at the CERN LXBATCH farm. Starting in 2001 by
exercising the TDAQ infrastructure on hundred nodes, the
scale grew to the use of 1000 dual CPU nodes including
most of the sub-systems in November 2006.

On large scale, trend analysis of performance data
allows identifying critical areas. Rare problems occur
more often and become reproducible. Process
communication between several thousands of processes is
exercised. The scalability of the state machine for the
control of TDAQ is verified. Multiple simultaneous
database access is tested. Variants introducing
intermediate server levels are studied.

Experience showed that the complexity of the system
and the potential for problems grow exponentially with
scale. Further development concentrates on improving
fault tolerance and stability of the TDAQ system and of
the farm management.

The Pre-Series Setup
A dedicated test system of 80 PC’s, the so called "pre-

series" setup [8] together with the final event data readout
hardware was installed at the ATLAS experimental area
to allow for testing the complete physics event data
readout chain.

The pre-series setup is used to validate the technology
and implementation choices by comparing the final
ATLAS readout requirements with the results of
performance, functionality and stability studies. These
results are also used to validate the simulations of the
components and subsequently to model the full size
ATLAS system.

Technical Runs and Deployment in Detector
Commissioning Phases

Technical runs are held every one to two months and
are interleaved with detector commissioning phases.
Both are conducted on the final system and are run for a
time period of one to two weeks. These activities are
organized in the same way as the data taking will be
conducted in the final experiment and are controlled from
the final ATLAS control room. The work program and
the detailed readout system configuration are prepared in
advance. Collaborators take shifts and developers are on-
call for help. Information about the run is kept in an
electronic log book to keep colleagues informed about the
current status. The TDAQ technical run includes the
TDAQ hardware and aims at integrating software
releases, new versions of components, performance
studies of critical parts of the system or interfaces to
external components like conditions database writing or
event storage in the computer center. The functionality
which is required for the next commissioning phase is
verified where the software is then deployed in tests
which involve the detector specific readout electronics.

Technical runs and commissioning runs give the
collaborators the chance to get hands-on experience in
running the complete system in conditions which are
close to final. It provides an efficient feedback loop with
prompt corrections and suggestions for enhancements.
These activities also attract team members who are not
normally resident at CERN and give a momentum to the
work and to the people who have invested many years on
the development of hardware and software.

ATLAS ONLINE SOFTWARE
MANAGEMENT

The ATLAS TDAQ system includes currently 160
packages, 4000 source files written in C++, Java and
Python with a total size of 60 Mbytes for over a million
lines of code provided by 30 developers. The system is
built each night on two platforms for the optimized and
the debug versions, which take a total size of 2 GBytes.
At the beginning of the project ten releases per year were
built, now only three major releases per year. CVS [9] is
used for source code version control, and CMT [10], an
open source tool provided and maintained by the ATLAS
collaboration, is used as a configuration management tool.
Serialisation of the release building over a cluster of
nodes and parallelism by executing several different
targets in different threads in parallel enables the build
process to terminate in 3-4 hours. A custom made script
presents the build status of each package on a web page

and allows the user to retrieve more detailed information.
RPM [11] is used as package manager. The preferred
memory debugger and performance profiler is
VALGRIND [12]. Documentation for the application
interfaces is automatically generated for each release.

Basic check targets are run automatically with the
nightly builds for each component and for the integrated
system. A check target for the integrated software is
helpful for finding incompatibilities of modifications in
libraries and process communication software. These
regular checks ease tracing problems promptly while the
details of the code modifications are still fresh.

Release testing is performed in two or more steps. First
the infrastructure software is verified by its experts.
Corrections and refinements are done and when
confident, the token is passed onto the next sub-group for
the testing of its applications. Once the software from all
the sub-groups is integrated, the release is built with the
tested software. If necessary, corrections are applied later
in the form of software patches.

THE ALICE ONLINE SDP
The approach of the development of the Data

Acquisition (DAQ) system of the ALICE experiment [13]
at CERN was investigated. The ALICE detector and its
collaboration are much smaller than ATLAS but the DAQ
has high requirements on the performance of event data
storage.

The core development group started off with a team of
four very experienced developers who had been working
together on data acquisition development and support for
more than a decade. The common working habits,
working language and common understanding, together
with the technical knowledge and experience in the field
was a given from the start. The team, who was based at
CERN, grew one by one to about 10 members and the
newcomers could be integrated smoothly. The team was
asked early on to develop a DAQ system to be used
immediately for related smaller fixed target experiments
at CERN. This system can be regarded as a prototype
featuring the main architectural lines of the final ALICE
DAQ system notably in the sector of event building.

Given the exceptional composition of the team, the
Domain Analysis and Brainstorming phases could be
reduced to a minimum. Formal user requirements were
written only for those parts of the system which were new
to the team and for interface definitions to the hardware.
Software had to be delivered in short time for the on-
going experiments and therefore the software lifecycle
was very short. Helped by the small size of the team and
its location at a single place, the adopted SDP resembled
the XP method. Common understanding of the technical
issues and familiarity with colleagues made this method
work. Unlike in XP, the team provided and maintained
thorough user documentation from the very start. This
was not only beneficial to the user but allowed team
members to discover inconsistencies.

Currently, the ALICE central DAQ consists of O(10)
packages and 120 000 lines of code. CVS is used as code
management system and RPM as package manager. Fife
to ten software releases per year are provided.

Two complete test systems are permanently available,
one of them in the experimental area of ALICE.
Commissioning with individual detectors is ongoing.
Testing is emphasized in particular through the ALICE
Data Challenges [14], where simulated detector data is
moved from dummy data sources up to the recording
media using as realistic processing elements and data-
paths as possible. The nominal performance of 1 GB/s for
recording data onto tape has been reached.

DO’S AND DONT’S
In the HEP environment, project managers as well as

developers aim to spend as few resources as possible on a
process which does not seem to be part of the final
product. Compromises are made to realize a working
system in time and according to the objectives. From the
cases described above in the ATLAS TDAQ project and
in the ALICE DAQ project, the most prominent factors to
assure quality and success in developing a software
system in the HEP world are drawn as follows:
• Give ample time and importance to building up a

project culture. Common understanding of the
project and its environment, a common working
language, well defined terms and the use of external
and in house standards are the basis for a fruitful
development process. Means to include new team
members should be exploited.

• Build change management in the SDP to give
flexibility when requirements are modified and when
the software environment is evolving.

• Define the functionality of a project at an early stage
for maximum pay off in the development process.
Misunderstandings and mistakes made at this stage
when specifying the requirements make time
consuming re-work of design and code necessary.

• Review the requirements thoroughly. Formal
inspection is recommended for conceptually
prominent components and interfaces to hardware
and adjacent software projects. Light inspection can
be applied once the principle and mechanisms of
review are well accepted in the team.

• Make testing a habit and do it as early as possible
and throughout the development phases. Resources
and activities should be planned for prototype testing,
release testing, unit testing, integration testing in
small and in final scale, and for the support during
commissioning tests.

• Use a code management system, configuration
management and adopt from the start the concept
of planned releases and nightly builds with check
targets or an equivalent structure depending on the
state of the art at the given moment of project
development.

CONCLUSIONS
The SDP working environment of a large HEP
experiment like ATLAS is challenging in terms of project
size and life time, number of collaborating institutes and
changing team members. Adapting a flexible SDP
framework has helped the ATLAS TDAQ project to
overcome those difficulties and to build up a working
environment which eases communicating information
amongst colleagues and taking up innovative ideas of the
team members. The evolution of the SDP has followed
the changing phases of the project over time. Current
deployment in detector commissioning activities
demonstrates the success of the team and of the approach.

ACKNOWLEDGEMENTS
My thanks go to the ATLAS TDAQ project members

and its management for the fruitful collaboration we
experienced during the many years of project building.

I thank Pierre Vande Vyvre from the ALICE
experiment for kindly providing the information about the
ALICE online SDP.

REFERENCES
[1] ATLAS Collaboration, “ATLAS Technical

Proposal”, CERN/LHHCC/94-43, LHCC/P2, CERN,
Geneva, Switzerland, 1994

[2] B. Gorini et al, “The ATLAS Data acquisition and
High-Level Trigger: concept, design and status”,
CHEP 2006, Mumbai, India

[3] K. Beck, “Extreme Programming Explained”, 1999
[4] I. Alexandrov et al, “Impact of Software Review and

Inspection”, CHEP 2000, Padua, Italy
[5] Tom Gilb, Dorothy Graham, “Software Inspection”,

Addison Wesley Longman, Inc., 1993
[6] RuleChecker, http://www.itc.it/ ;
 http://atlas-computing.web.cern.ch/atlas-

computing/projects/qa/tools/RuleChecker.php
[7] D. Burckhart-Chromek et al., “Testing on a large

scale: Running the Atlas Data Acquisition and High
Level Trigger software on 700 pc nodes”, CHEP
2006, Mumbai, India

[8] N.G.Unel et al.,”Studies with the ATLAS Trigger and
Data Acquisition ‘pre-series’ setup”, CHEP 2006,
Mumbai, India

[9] Concurrent Versions System, http://www.cern.ch/cvs
[10] The configuration management environment,

http://www.cmtsite.org/
[11] Package Manager, http://www.rpm.org/
[12] A suite of tools for debugging and profiling Linux

programs, [http://valgrind.org/]
[13] ALICE Technical Proposal for A Large Ion Collider

Experiment at the CERN LHC”, CERN/LHCC/95-
71, 15 December 1995

[14] T.Anticic et al, “Challenging the challenge: handling
data in the Gigabit/s range”, CHEP2003, La Jolla,
California

