LUminosity measurement with a **C**herenkov **I**ntegrating **D**etector

LUCID A Cherenkov Tube Based Detector for Monitoring the ATLAS Experiment Luminosity

A. Sbrizzi On behalf of the ATLAS Luminosity and Forward Physics working group

NUCLEAR & PLASMA SCIENCES

2007 Nuclear Science Symposium and Medical Imaging Conference

Outline

- LUCID in ATLAS
- Phase I and II detectors
- Test beam results
- Radiation hardness
- Conclusions

Two symmetrical arms at 17 m from the *pp* interaction region.

- Measure the LHC luminosity.
- Count the number of charged particles per BX, pointing to the primary *pp* interactions.

LUCID location

Expected dose: 7 Mrad/year @ higest luminosity (10³⁴ cm⁻²s⁻¹)

LUCID detector

 C_4F_{10} pressure mantained at 1.25/1.5 bar (Leak <10 mbar/day).

LUCID detector principle

- Background suppression:
 - Cherenkov threshold in the gas (10 MeV for e^- and 2.8 GeV for p)
 - Tubes are pointing to the *pp* interaction region.
- The fast response (few ns) allows for single bunch crossing detection.

Read-Out scheme

Direct coupling to Photo-Multiplier Tubes (PMT, Hamamatsu R762). PMT must be radiation hard.

Optical fibers (PUV700) via Winston Cone to multi-anode PMT (Hamamatsu H7546B). Better for high luminosity runs (MAPMT not exposed to high radiation doses).

Phase I and II detectors

LUCID under construction

LUCID vessel

PMT (Hamamatsu R762)

Gas pressure test

PMT holders

Fiber bundles

LUCID assembly

LUCID assembled at CERN by the Alberta, Bologna, LUND, CERN team.

31 October 2007

LUCID cooling system

During beam pipe bake-out LUCID could reach ~250 °C. The temperature must be well below 50°C (PMT specs.).

Aluminum cylinder with 6 copper cooling loops (20 litres/hr each). Assuming perfect connection between cooling pipes and Aluminum: T ~20°C.

Test Beam results: PMT read-out

Test Beam results: Fiber read-out

Radiation hardness test

γ: ⁶⁰Co, E = 1.22 MeV Dose = 20±1 Mrad 30 years of LHC in phase I

n: ENEA-Casaccia reactor E = 100 KeV Dose = 10 years of LHC in phase I

No visible damage to metal and quartz. Glass opacity increased.

No visile damage to matal, glass and quartz

Radiation hardness

31 October 2007

Radiation hardness

A. Sbrizzi - NSS 2007, Hawaii

Conclusions

- LUCID was approved at the ATLAS review in 01/2007.
- LUCID has been successfully assembled in 07/2007.
- Beam tests have shown that the behavior of phase I detector is satisfactory and under control.
- The PMT R762 is radiation hard [at least for phase I].
- The cooling system and the alignment system have been designed and are being assembled.
- A phase II detector is being studied.

Back-up slides

31 October 2007

Angular scan

Asymmetry is due to rotation around the vessel, rather than the tube.

Higher selectivity on track direction with fiber read-out (better IP pointing).

31 October 2007

Wavelength parameterisation

The wavelength of read-out photo-electrons is [160, 650] nm.

LUCID simulation

Luminosity with LUCID

The Monte Carlo simulation is used for cross-check (via ϵ and $\sigma_{\text{inelastic}}$).

$$L = \frac{N_{LUCID}}{\varepsilon_{LUCID} \sigma_{inelastic}}$$

Being calibrated on the absolute luminosity provided by the ALFA detector (via k_{ALFA}), LUCID is only partially based on the Monte Carlo simulation.

$$L = k_{ALFA} N_{LUCID}$$

Still, MC important for showing the work of principle (linearity).

31 October 2007

The Alignment system

Alignment to a fraction of a degree to the beam axis is required.

31 October 2007

LUCID electronics

- The PMT readout is produced tested and installed (upper photos).
- The MAPMT readout (lower photos) is in a advanced state of readiness. Final commissioning will start as soon as the MAROC3 chip is available next spring
- The LUCID processor VME card (LUMAT) (trigger, data output, on-line luminosity measurement) is in an advanced state of design (ready next spring).