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Social Networks: Rational Learning

and Information Aggregation

by

Ilan Lobel

Submitted to the Sloan School of Management
on July 27, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

This thesis studies the learning problem of a set of agents connected via a general
social network. We address the question of how dispersed information spreads in social
networks and whether the information is efficiently aggregated in large societies. The
models developed in this thesis allow us to study the learning behavior of rational agents
embedded in complex networks.

We analyze the perfect Bayesian equilibrium of a dynamic game where each agent
sequentially receives a signal about an underlying state of the world, observes the past
actions of a stochastically-generated neighborhood of individuals, and chooses one of
two possible actions. The stochastic process generating the neighborhoods defines the
network topology (social network).

We characterize equilibria for arbitrary stochastic and deterministic social networks
and characterize the conditions under which there will be asymptotic learning—that is,
the conditions under which, as the social network becomes large, the decisions of the
individuals converge (in probability) to the right action. We show that when private
beliefs are unbounded (meaning that the implied likelihood ratios are unbounded), there
will be asymptotic learning as long as there is some minimal amount of expansion in
observations. This result therefore establishes that, with unbounded private beliefs,
there will be asymptotic learning in almost all reasonable social networks. Furthermore,
we provide bounds on the speed of learning for some common network topologies. We
also analyze when learning occurs when the private beliefs are bounded. We show
that asymptotic learning does not occur in many classes of network topologies, but,
surprisingly, it happens in a family of stochastic networks that has infinitely many
agents observing the actions of neighbors that are not sufficiently persuasive.

Finally, we characterize equilibria in a generalized environment with heterogeneity of
preferences and show that, contrary to a nave intuition, greater diversity (heterogeneity)
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facilitates asymptotic learning when agents observe the full history of past actions. In
contrast, we show that heterogeneity of preferences hinders information aggregation
when each agent observes only the action of a single neighbor.

Thesis Supervisor: Daron Acemoglu
Title: Professor of Economics

Thesis Supervisor: Munther Dahleh
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Asuman Ozdaglar
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Aggregation of Information in Social Networks

How is dispersed and decentralized information held by a large number of individuals ag-

gregated? Imagine a situation in which each of a large number of individuals has a noisy

signal about an underlying state of the world. This state of the world might concern,

among other things, earning opportunities in a certain occupation, the quality of a new

product, the suitability of a particular political candidate for office or payoff-relevant ac-

tions taken by the government. If signals are unbiased, the combination—aggregation—

of the information of the individuals will be sufficient for the society to “learn” the true

underlying state. The above question can be formulated as the investigation of what

types of behaviors and communication structures will lead to this type of information

aggregation.

This thesis investigates the learning behavior of rational agents who are embedded in

a social network. We aim to understand under what conditions do rational individuals

learning from each others’ actions are able to correctly identify an underlying state. The

analysis of the spread of information in social networks has a diverse set of applications,

and some of the most interesting questions relate to how businesses can leverage social
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networks in order to improve their operations. For example, when should a firm rely

on viral (word-of-mouth) marketing to spread the news that its products are of high

quality? Should the publicity campaign used to convince consumers to see a good film

be fundamentally different than the one deployed for a worse movie? How do traditional

ads compare in effectiveness to the novel “social ads”, which simply show you information

about your friends’ purchases? Are there particular individuals that should be targeted

in order to maximize one’s influence on a social network?

Condorcet’s Jury Theorem provides a natural benchmark for information aggrega-

tion, where sincere (truthful) reporting of their information by each individual is suf-

ficient for aggregation of information by a law of large numbers argument (Condorcet,

1788). Against this background, a number of papers, most notably Bikchandani, Hirsh-

leifer and Welch (1992), Banerjee (1992) and Smith and Sorensen (2000), show how this

type of aggregation might fail in the context of the (perfect) Bayesian equilibrium of a

dynamic game: when individuals act sequentially, after observing the actions of all pre-

vious individuals (agents), many reasonable situations will lead to the wrong conclusion

with positive probability.

An important modeling assumption in these papers is that each individual observes

all past actions. In practice, individuals are situated in complex social networks, which

provide their main source of information. For example, Granovetter (1973), Montgomery

(1991), Munshi (2003) and Iaonnides and Loury (2004) document the importance of

information obtained from the social network of an individual for employment outcomes.

Besley and Case (1994), Foster and Rosenzweig (1995), Munshi (2004), and Udry and

Conley (2001) show the importance of the information obtained from social networks

for technology adoption. Jackson (2006, 2007) provides excellent surveys of the work on

the importance of social networks in many diverse situations. In this thesis, we address

how the structure of social networks, which determines the information that individuals

receive, affects equilibrium information aggregation.
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We start with the canonical sequential learning problem, except that instead of full

observation of past actions, we allow for a general social network connecting individuals.

More specifically, a large number of agents sequentially choose between two actions. An

underlying state determines the payoffs of these two actions. Each agent receives a

signal on which of these two actions yields a higher payoff. Preferences of all agents are

aligned in the sense that, given the underlying state of the world, they all prefer the

same action. The game is characterized by two features: (i) the signal structure, which

determines how informative the signals received by the individuals are; (ii) the social

network structure, which determines the observations of each individual in the game.

We model the social network structure as a stochastic process that determines each

individual’s neighborhood. Each individual only observes the (past) actions of agents

in his neighborhood. Motivated by the social network interpretation, throughout it is

assumed that each individual knows the identity of the agents in his neighborhood (e.g.,

he can distinguish whether the action observed is by a friend or neighbor or by some

outside party). Nevertheless, the realized neighborhood of each individual as well as his

private signal are private information.

We also refer to the stochastic process generating neighborhoods as the network

topology of this social network. For some of our results, it will be useful to distinguish

between deterministic and stochastic network topologies. With deterministic network

topologies, there is no uncertainty concerning the neighborhood of each individual and

these neighborhoods are common knowledge. With stochastic network topologies, there

is uncertainty about these neighborhoods.

The environment most commonly studied in the previous literature is the full obser-

vation network topology, which is the special case where all past actions are observed.

Another deterministic special case is the network topology where each individual ob-

serves the actions of the most recent M ≥ 1 individuals. Other relevant social networks

include stochastic topologies in which each individual observes a random subset of past
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actions, as well as those in which, with a high probability, each individual observes the

actions of some “influential” group of agents, who may be thought of as “leaders” or the

media.

We provide a systematic characterization of the conditions under which there will be

equilibrium information aggregation in social networks. We say that there is information

aggregation or equivalently asymptotic learning, when, in the limit as the size of the

social network becomes arbitrarily large, individual actions converge (in probability) to

the action that yields the higher payoff. We say that asymptotic learning fails if, as the

social network becomes large, the correct action is not chosen (or more formally, the

lim inf of the probability that the right action is chosen is strictly less than 1).

Two concepts turn out to be crucial in the study of information aggregation in social

networks. The first is whether the likelihood ratio implied by individual signals is always

bounded away from 0 and infinity.1 Smith and Sorensen (2000) refer to beliefs that sat-

isfy this property as bounded (private) beliefs. With bounded beliefs, there is a maximum

amount of information in any individual signal. In contrast, when there exist signals

with arbitrarily high and low likelihood ratios, (private) beliefs are unbounded. Whether

bounded or unbounded beliefs provide a better approximation to reality is partly an

interpretational and partly an empirical question. Smith and Sorensen’s main result is

that when each individual observes all past actions and private beliefs are unbounded,

information will be aggregated and the correct action will be chosen asymptotically. In

contrast, the results in Bikchandani, Hirshleifer and Welch (1992), Banerjee (1992) and

Smith and Sorensen (2000) indicate that with bounded beliefs, there will not be asymp-

totic learning (or information aggregation). Instead, as emphasized by Bikchandani,

Hirshleifer and Welch (1992) and Banerjee (1992), there will be “herding” or “infor-

mational cascades,” where individuals copy past actions and/or completely ignore their

own signals.

1The likelihood ratio is the ratio of the probabilities or the densities of a signal in one state relative
to the other. The bounded likelihood ratio condition was first introduced by Cover (1969).
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The second key concept is that of a network topology with expanding observations.

To describe this concept, let us first introduce another notion: a finite group of agents is

excessively influential if there exists an infinite number of agents who, with probability

uniformly bounded away from 0, observe only the actions of a subset of this group. For

example, a group is excessively influential if it is the source of all information (except

individual signals) for an infinitely large component of the social network. If there exists

an excessively influential group of individuals, then the social network has nonexpanding

observations, and conversely, if there exists no excessively influential group, the network

has expanding observations. This definition implies that most reasonable social networks

have expanding observations, and in particular, a minimum amount of “arrival of new

information ” in the social network is sufficient for the expanding observations property.2

For example, the environment studied in most of the previous work in this area, where

all past actions are observed, has expanding observations. Similarly, a social network

in which each individual observes one uniformly drawn individual from those who have

taken decisions in the past or a network in which each individual observes his immedi-

ate neighbor all feature expanding observations. Note also that a social network with

expanding observations need not be connected. For example, the network in which even-

numbered [odd-numbered] individuals only observe the past actions of even-numbered

[odd-numbered] individuals has expanding observations, but is not connected. A simple,

but typical, example of a network with nonexpanding observations is the one in which

all future individuals only observe the actions of the first K <∞ agents.

2Here, “arrival of new information” refers to the property that the probability of each individual
observing the action of some individual from the recent past converges to one as the social network
becomes arbitrarily large.
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1.2 Contributions

In this section, we introduce the main results of the thesis. Theorem 1 shows that there

is no asymptotic learning in networks with nonexpanding observations. This result is not

surprising, since information aggregation is not possible when the set of observations on

which (an infinite subset of) individuals can build their decisions remains limited forever.

Our most substantive result, Theorem 2, shows that when (private) beliefs are un-

bounded and the network topology is expanding, there will be asymptotic learning. This

is a very strong result (particularly if we consider unbounded beliefs to be a better ap-

proximation to reality than bounded beliefs), since almost all reasonable social networks

have the expanding observations property. This theorem, for example, implies that when

some individuals, such as “informational leaders,” are overrepresented in the neighbor-

hoods of future agents (and are thus “influential,” though not excessively so), learning

may slow down, but asymptotic learning will still obtain as long as private beliefs are

unbounded.

The idea of the proof of Theorem 2 is as follows. We first establish a strong improve-

ment principle under unbounded beliefs, whereby in a network where each individual has

a single agent in his neighborhood, he can receive a strictly higher payoff than this agent

and this improvement remains bounded away from zero as long as asymptotic learning

has not been achieved. We then show that the same insight applies when individuals

stochastically observe one or multiple agents (in particular, with multiple agents, the

improvement is no less than the case in which the individual observes a single agent from

the past). Finally, the property that the network topology has expanding observations

is sufficient for these improvements to accumulate to asymptotic learning.

In Theorems 3 and 4, we present results on the speed of convergence for some common

network topologies, assuming the private beliefs are unbounded. We derive conditions on

the private belief distribution that guarantee that the error rate decays polynomially fast.

In contrast, when each agent observe the action of a single, uniformly selected neighbor,
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the error rate decays subpolynomially. We show that the previously derived conditions

on the private belief distribution guarantee logarithmic decay of the probability of error

in the case of uniform sampling.

Theorem 5 presents a partial converse to Theorem 2. It shows that for the most

common deterministic and stochastic networks, bounded private beliefs are incompatible

with asymptotic learning. It therefore generalizes existing results on asymptotic learning,

for example, those in Bikchandani, Hirshleifer and Welch (1992), Banerjee (1992), and

Smith and Sorensen (2000) to general networks.

One of our more surprising results is Theorem 6, which establishes that asymptotic

learning is possible with bounded private beliefs for certain stochastic network topologies.

In these cases, there is sufficient arrival of new information (incorporated into the “social

belief”) because some agents make decisions on the basis of limited observations. As

a consequence, even bounded private beliefs may aggregate and lead to asymptotic

learning. This finding is particularly important, since it shows how moving away from

simple network structures has major implications for equilibrium learning dynamics.

Our last set of results address the question of heterogeneity of preferences. In most

of the thesis, we assume that all agents have the same utility function and they differ

only in their knowledge of the state of the world. However, in most real-life situations,

idiosyncratic preferences serve as a confounding factor in learning. For example, when

an individual buys a piece of equipment, she will typically take into account factors such

as their belief about the product quality as well as their particular needs. When learning

from the actions of peers, an agent has to distinguish between perceived quality (belief

about the state) and the effect of individual preferences. Therefore, the näıve intuition

is that learning is harder in the presence of heterogeneous preferences. In Theorem 7,

we show that this is indeed the case when each agent can only observe the actions of one

neighbor. However, when agents observe the full history of actions, diverse preferences

have the opposite effect. Theorem 8 shows that asymptotic learning can occur in the
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full observation topology even under bounded beliefs, if the preferences are sufficiently

diverse.

1.3 Related Literature

The literature on social learning is vast. Roughly speaking, the literature can be sep-

arated according to two criteria: whether learning is Bayesian or myopic, and whether

individuals learn from communication of exact signals or from the payoffs of others, or

simply from observing others’ actions. Typically, Bayesian models focus on learning

from past actions, while most, but not all, myopic learning models focus on learning

from communication.

Bikchandani, Hirshleifer and Welch (1992) and Banerjee (1992) started the litera-

ture on learning in situations in which individuals are Bayesian and observe past actions.

Smith and Sorensen (2000) provide the most comprehensive and complete analysis of

this environment. Their results and the importance of the concepts of bounded and un-

bounded beliefs, which they introduced, have already been discussed in the introduction

and will play an important role in our analysis in the thesis. Other important contribu-

tions in this area include, among others, Welch (1992), Lee (1993), Chamley and Gale

(1994), and Vives (1997). An excellent general discussion is contained in Bikchandani,

Hirshleifer and Welch (1998). These papers typically focus on the special case of full

observation network topology in terms of our general model.

The two papers most closely related to ours are Banerjee and Fudenberg (2004) and

Smith and Sorensen (1998). Both of these papers study social learning with sampling of

past actions. In Banerjee and Fudenberg, there is a continuum of agents and the focus

is on proportional sampling (whereby individuals observe a “representative” sample of

the overall population). They establish that asymptotic learning is achieved under mild

assumptions as long as the sample size is no smaller than two. The existence of a
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continuum of agents is important for this result since it ensures that the fraction of

individuals with different posteriors evolves deterministically. Smith and Sorensen, on

the other hand, consider a related model with a countable number of agents. In their

model, as in ours, the evolution of beliefs is stochastic. Smith and Sorensen provide

conditions under which asymptotic learning takes place.

A crucial difference between Banerjee and Fudenberg and Smith and Sorensen, on

the one hand, and our work, on the other, is the information structure. These papers

assume that “samples are unordered” in the sense that individuals do not know the

identity of the agents they have observed. In contrast, as mentioned above, our setup

is motivated by a social network and assumes that individuals have stochastic neigh-

borhoods, but know the identity of the agents in their realized neighborhood. We view

this as a better approximation to learning in social networks. In addition to its descrip-

tive realism, this assumption leads to a sharper characterization of the conditions under

which asymptotic learning occurs. For example, in Smith and Sorensen’s environment,

asymptotic learning fails whenever an individual is “oversampled,” in the sense of being

overrepresented in the samples of future agents. In contrast, in our environment, asymp-

totic learning occurs when the network topology features expanding observations (and

private beliefs are unbounded). Expanding observations is a much weaker requirement

than “non-oversampling.” For example, when each individual observes agent 1 and a

randomly chosen agent from his predecessors, the network topology satisfies expanding

observations, but there is oversampling.3

Other recent work on social learning includes Celen and Kariv (2004) who study

Bayesian learning when each individual observes his immediate predecessor, Gale and

Kariv (2003) who generalize the payoff equalization result of Bala and Goyal (1998) in

connected social networks (discussed below) to Bayesian learning, and Callander and

Horner (2006), who show that it may be optimal to follow the actions of agents that

3This also implies that, in the terminology of Bala and Goyal, a “royal family” precludes learning
in Smith and Sorensen’s model, but not in ours, see below.
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deviate from past average behavior.

The second branch of the literature focuses on non-Bayesian learning, typically with

agents using some reasonable rules of thumb. This literature considers both learning

from past actions and from payoffs (or directly from beliefs). Early papers in this

literature include Ellison and Fudenberg (1993, 1995), which show how rule-of-thumb

learning can converge to the true underlying state in some simple environments. The

papers most closely related to our work in this genre are Bala and Goyal (1998, 2001),

DeMarzo, Vayanos and Zwiebel (2003) and Golub and Jackson (2007). These papers

study non-Bayesian learning over an arbitrary, connected social network, in a context

where agents act repeatedly but myopically. Bala and Goyal (1998) establish the impor-

tant and intuitive payoff equalization result that, asymptotically, each individual must

receive a payoff equal to that of an arbitrary individual in his “social network,” since

otherwise he could copy the behavior of this other individual. This principle can be

traced back, in the engineering literature, to the results on asymptotic agreement by

Borkar and Varaiya (1982) and Tsitsikis and Athans (1984). A similar, but strength-

ened, “imitation” intuition plays an important role in our proof of asymptotic learning

with unbounded beliefs and expanding observations.

DeMarzo, Vayanos and Zwiebel and Golub and Jackson also study similar environ-

ments and derive consensus-type results, whereby individuals in the connected compo-

nents of the social network will converge to similar beliefs. They provide characterization

results on which individuals in the social network will be influential and investigate the

likelihood that the consensus opinion will coincide with the true underlying state. Golub

and Jackson, in particular, show that social networks where some individuals are “influ-

ential” in the sense of being connected to a large number of people make learning more

difficult or impossible. A similar result is also established in Bala and Goyal, where

they show that the presence of a royal family, i.e., a small set of individuals observed

by everyone, precludes learning. This both complements and contrasts with our results.
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In our environment, an excessively influential group of individuals prevents learning,

but influential agents in Golub and Jackson’s sense or Bala and Goyal’s royal family

are not excessively influential and still allow asymptotic learning. This is because with

Bayesian updating over a social network, individuals recognize who the oversampled

individuals or the royal family are and accordingly adjust the weight they give to their

action/information.

The literature on the information aggregation role of elections is also related, since

it revisits the original context of Condorcet’s Jury Theorem. This literature includes,

among others, the papers by Austen-Smith and Banks (1996), Feddersen and Pesendorfer

(1996, 1997), McLennan (1998), Myerson (1998, 2000), and Young (1988). Most of these

papers investigate whether dispersed information will be accurately aggregated in large

elections. Although the focus on information aggregation is common, the set of issues

and the methods of analysis are very different, particularly since, in these models, there

are no sequential decisions.

Finally, there is also a literature in engineering, which studies related problems, espe-

cially motivated by aggregation of information collected by decentralized sensors. The

typical objective in this literature is to maximize the probability that a given agent,

called the fusion center, estimates correctly the state of the world. The agents use de-

cision rules chosen by a social planner, rather than equilibrium decision rules. Cover

(1969) shows that the fusion center asymptotically estimate the state in the case of

unbounded likelihood ratios and each agent observing only the action of their immedi-

ate predecessor. The work by Papastavrou and Athans (1990) contains a result that is

equivalent to the characterization of asymptotic learning in this same network topology.

Tay, Tsitsiklis and Win (2008) analyze the problem of information aggregation for se-

quences of trees in the limit as the number of leaves (agents that only know their private

signals) goes to infinity.
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1.4 Organization

The thesis is organized as follows. Chapter 2 introduces the model, the solution concept

and the decomposition lemma that describes the agents’ decisions in terms of their social

and private beliefs. Chapter 3 introduces the concept of expanding observations and

shows that it is a necessary condition for asymptotic learning and a sufficient condition

on the network in the case where private beliefs are unbounded. Chapter 4 contains

upper and lower bounds on the speed of learning. Chapter 5 presents the results on

learning under the assumption of bounded private beliefs. Chapter 6 extends the model

to include diverse preferences and Chapter 7 concludes the work.
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Chapter 2

The Model

2.1 Formulation

A countably infinite number of agents (individuals), indexed by n ∈ N, sequentially

make a single decision each. The payoff of agent n depends on an underlying state of

the world θ and his decision. To simplify the notation and the exposition, we assume

that both the underlying state and decisions are binary. In particular, the decision of

agent n is denoted by xn ∈ {0, 1} and the underlying state is θ ∈ {0, 1}. The payoff of

agent n is

un (xn, θ) =

 1 if xn = θ

0 if xn 6= θ.

Again to simplify notation, we assume that both values of the underlying state are

equally likely, so that P(θ = 0) = P(θ = 1) = 1/2.

The state θ is unknown. Each agent n ∈ N forms beliefs about this state from a

private signal sn ∈ S (where S is a metric space or simply a Euclidean space) and from

his observation of the actions of other agents. Conditional on the state of the world θ,

the signals are independently generated according to a probability measure Fθ. We refer

to the pair of measures (F0,F1) as the signal structure of the model. We assume that F0
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and F1 are absolutely continuous with respect to each other, which immediately implies

that no signal is fully revealing about the underlying state. We also assume that F0 and

F1 are not identical, so that some signals are informative. These two assumptions on

the signal structure are maintained throughout the paper and will not be stated in the

theorems explicitly.

In contrast to much of the literature on social learning, we assume that agents do

not necessarily observe all previous actions. Instead, they observe the actions of other

agents according to the structure of the social network. To introduce the notion of a social

network, let us first define a neighborhood. Each agent n observes the decisions of the

agents in his (stochastically-generated) neighborhood, denoted by B(n).1 Since agents

can only observe actions taken previously, B(n) ⊆ {1, 2, ..., n− 1}. Each neighborhood

B(n) is generated according to an arbitrary probability distribution Qn over the set of

all subsets of {1, 2, ..., n − 1}. We impose no special assumptions on the sequence of

distributions {Qn}n∈N except that the draws from each Qn are independent from each

other for all n and from the realizations of private signals. The sequence of probability

distributions {Qn}n∈N is the network topology of the social network formed by the agents.

The network topology is common knowledge, whereas the realized neighborhood B(n)

and the private signal sn are the private information of agent n. We say that {Qn}n∈N

is a deterministic network topology if the probability distribution Qn is a degenerate

(Dirac) distribution for all n. Otherwise, that is, if {Qn} for some n is nondegenerate,

{Qn}n∈N is a stochastic network topology.

A social network consists of a network topology {Qn}n∈N and a signal structure

(F0,F1).

Example 1 Here are some examples of network topologies.

1. If {Qn}n∈N assigns probability 1 to neighborhood {1, 2..., n− 1} for each n ∈ N,

1If n′ ∈ B(n), then agent n not only observes the action of n′, but also knows the identity of this
agent.

24



then the network topology is identical to the canonical one studied in the previous

literature where each agent observes all previous actions (e.g., Banerjee (1992),

Bikchandani, Hirshleifer and Welch (1992), Smith and Sorensen (2000)).

2. If {Qn}n∈N assigns probability 1/(n − 1) to each one of the subsets of size 1 of

{1, 2..., n− 1} for each n ∈ N, then we have a network topology of random sampling

of one agent from the past.

3. If {Qn}n∈N assigns probability 1 to neighborhood {n− 1} for each n ∈ N, then

we have a network topology where each individual only observes his immediate

neighbor (also considered in a different context in the engineering literature by

Papastavrou and Athans (1990)).

4. If {Qn}n∈N assigns probability 1 to neighborhoods that are subsets of {1, 2, ..., K}

for each n ∈ N for some K ∈ N. In this case, all agents observe the actions of at

most K agents.

5. Figure 2.1 depicts an arbitrary stochastic topology until agent 7. The thickness of

the lines represents the probability with which a particular agent will observe the

action of the corresponding preceding agent.

Given the description above, it is evident that the information set In of agent n is

given by her signal sn, her neighborhood B(n), and all decisions of agents in B(n), that

is,

In = {sn, B(n), xk for all k ∈ B(n)}. (2.1)

The set of all possible information sets of agent n is denoted by In. A strategy for

individual n is a mapping σn : In → {0, 1} that selects a decision for each possible

information set. A strategy profile is a sequence of strategies σ = {σn}n∈N. We use the

standard notation σ−n = {σ1, . . . , σn−1, σn+1, . . .} to denote the strategies of all agents

other than n and also (σn, σ−n) for any n to denote the strategy profile σ. Given a
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Figure 2-1: The figure illustrates the world from the perspective of agent 7. Agent 7
knows her private signal s7, her realized neighborhood, B(7) = {4, 6} and the decisions
of agents 4 and 6, x4 and x6. She also knows the probabilistic model {Qn}n<7 for
neighborhoods of all agents n < 7.

strategy profile σ, the sequence of decisions {xn}n∈N is a stochastic process and we

denote the measure generated by this stochastic process by Pσ.

Definition 1 A strategy profile σ∗ is a pure-strategy Perfect Bayesian Equilibrium

of this game of social learning if for each n ∈ N, σ∗n maximizes the expected payoff of

agent n given the strategies of other agents σ∗−n.

In the rest of the thesis, we focus on pure-strategy Perfect Bayesian Equilibria, and

simply refer to this as “equilibrium” (without the pure-strategy and the Perfect Bayesian

qualifiers).

Given a strategy profile σ, the expected payoff of agent n from action xn = σn(In) is

simply Pσ(xn = θ | In). Therefore, for any equilibrium σ∗, we have

σ∗n(In) ∈ argmax
y∈{0,1}

P(y,σ∗−n)(y = θ | In). (2.2)
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It is worthwhile to highlight that the decision rule above is indeed the result of a

strategic equilibrium. At first glance, the behavior described by Eq. (2.2) does not

appear to be truly game-theoretical as agents are not strategic about the information

they reveal through their actions. However, agents are in fact strategic with respect to

the actions they observe: when selecting their actions, they take into consideration that

all other agents are utility-maximizers, and all other agents realize that every one is a

utility-maximizer and so on.

We denote the set of equilibria (pure-strategy Perfect Bayesian Equilibria) of the

game by Σ∗. It is clear that Σ∗ is nonempty. Given the sequence of strategies {σ∗1, . . . , σ∗n−1},

the maximization problem in (2.2) has a solution for each agent n and each In ∈ In.

Proceeding inductively, and choosing either one of the actions in case of indifference

determines an equilibrium. We note the existence of equilibrium here.

Proposition 1 There exists a pure-strategy Perfect Bayesian Equilibrium.

Our main focus is whether equilibrium behavior will lead to information aggregation.

This is captured by the notion of asymptotic learning, which is introduced next.

Definition 2 Given a signal structure (F0,F1) and a network topology {Qn}n∈N, we say

that asymptotic learning occurs in equilibrium σ if xn converges to θ in probability

(according to measure Pσ), that is,

lim
n→∞

Pσ(xn = θ) = 1.

Notice that asymptotic learning requires that the probability of taking the correct

action converges to 1. Therefore, asymptotic learning will fail when, as the network

becomes large, the limit inferior of the probability of all individuals taking the correct

action is strictly less than 1.

Our goal in Chapters 3 and 5 is to characterize conditions on social networks—on

signal structures and network topologies—that ensure asymptotic learning.
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2.2 Equilibrium Strategies

In this section, we provide a characterization of equilibrium strategies. We show that

equilibrium decision rules of individuals can be decomposed into two parts, one that

only depends on an individual’s private signal, and the other that is a function of the

observations of past actions. We also show why a full characterization of individual

decisions is nontrivial and motivate an alternative proof technique, relying on developing

bounds on improvements in the probability of the correct decisions, that will be used in

the rest of our analysis.

2.2.1 Characterization of Individual Decisions

Our first lemma shows that individual decisions can be characterized as a function of

the sum of two posteriors. These posteriors play an important role in our analysis. We

will refer to these posteriors as the individual’s private belief and the social belief.

Lemma 1 Let σ ∈ Σ∗ be an equilibrium of the game. Let In ∈ In be an information set

of agent n. Then, the decision of agent n, xn = σ(In), satisfies

xn =

 1, if Pσ(θ = 1 | sn) + Pσ
(
θ = 1 | B(n), xk, k ∈ B(n)

)
> 1,

0, if Pσ(θ = 1 | sn) + Pσ
(
θ = 1 | B(n), xk, k ∈ B(n)

)
< 1,

and xn ∈ {0, 1} otherwise.

Proof. We prove that if

Pσ(θ = 1 | sn) + Pσ
(
θ = 1 | B(n), xk for all k ∈ B(n)

)
> 1, (2.3)
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then xn = 1. The proofs of the other clause follows the same line of argument. We first

show that Eq. (2.3) holds if and only if

Pσ(θ = 1 | In) > 1/2, (2.4)

therefore implying that xn = 1 by the equilibrium condition [cf. Eq. (2.2)]. By Bayes’

Rule, Eq. (2.4) is equivalent to

Pσ(θ = 1 | In) =
dPσ(In | θ = 1)Pσ(θ = 1)∑1
j=0 dPσ(In | θ = j)Pσ(θ = j)

=
dPσ(In | θ = 1)∑1
j=0 dPσ(In | θ = j)

> 1/2, (2.5)

where the second equality follows from the assumption that states 0 and 1 are equally

likely. Hence, Eq. (2.4) holds if and only if

dPσ(In | θ = 1) > dPσ(In | θ = 0). (2.6)

Conditional on state θ, the private signals and the observed decisions are independent,

i.e.,

dPσ(In | θ = j) = dPσ(sn | θ = j)Pσ(B(n), xk, k ∈ B(n)|θ = j).

Combining the preceding two relations, it follows that Eq. (2.6) is equivalent to

Pσ(B(n), xk, k ∈ B(n) | θ = 1)∑1
j=0 Pσ(B(n), xk, k ∈ B(n) | θ = j)

>
dPσ(sn | θ = 0)∑1
j=0 dPσ(sn | θ = j)

.

Since both states are equally likely, this can be rewritten as

Pσ(B(n), xk, k ∈ B(n) | θ = 1)Pσ(θ = 1)∑1
j=0 Pσ(B(n), xk, k ∈ B(n) | θ = j)Pσ(θ = j)

>
dPσ(sn | θ = 0)Pσ(θ = 0)∑1
j=0 dPσ(sn | θ = j)Pσ(θ = j)

.
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Applying Bayes’ Rule on both sides of Eq. (2.7), we see that the preceding relation is

identical to

Pσ(θ = 1 | B(n), xk, k ∈ B(n)) > Pσ(θ = 0 | sn) = 1− Pσ(θ = 1 | sn),

completing the proof.

The lemma above establishes an additive decomposition in the equilibrium decision

rule between the information obtained from the private signal of the individual and from

the observations of others’ actions (in his neighborhood). The next definition formally

distinguishes between the two components of an individual’s information.

Definition 3 We refer to the probability Pσ(θ = 1 | sn) as the private belief of agent

n, and the probability

Pσ
(
θ = 1

∣∣ B(n), xk for all k ∈ B(n)
)
,

as the social belief of agent n.

Notice that the social belief depends on n since it is a function of the (realized)

neighborhood of agent n.

Lemma 1 and Definition 3 imply that the equilibrium decision rule for agent n ∈ N

is equivalent to choosing xn = 1 when the sum of his private and social beliefs is greater

than 1. Consequently, the properties of private and social beliefs will shape equilibrium

learning behavior. In the next subsection, we provide a characterization for the dynamic

behavior of private beliefs, which will be used in the analysis of the evolution of decision

rules.
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2.2.2 Private Beliefs

In this subsection, we study properties of private beliefs. Note that the private belief is

a function of the private signal s ∈ S and is not a function of the strategy profile σ since

it does not depend on the decisions of other agents. We represent probabilities that do

not depend on the strategy profile by P. We use the notation pn to represent the private

belief of agent n, i.e.,

pn = P(θ = 1 | sn).

The next lemma follows from a simple application of Bayes’ Rule.

Lemma 2 For any n and any signal sn ∈ S, the private belief pn of agent n is given by

pn =

(
1 +

dF0

dF1

(sn)

)−1

. (2.7)

In the lemma above, dF0/dF1 denotes the Radon-Nikodym derivative of the measures

F0 and F1 (recall that these are absolutely continuous with respect to each other). If F0

and F1 have densities, then for each j ∈ {0, 1}, dFj can be replaced by the density of

Fj. If both measures have atoms at some s ∈ S, then dF0/dF1(s) = F0(s)/F1(s).

We next define the support of a private belief. In our subsequent analysis, we will see

that properties of the support of private beliefs play a key role in asymptotic learning

behavior.

Definition 4 The signal structure has bounded private beliefs if there exists some

0 < m, M <∞ such that the Radon-Nikodym derivative dF0/dF1 satisfies

m <
dF0

dF1

(s) < M,

for almost all s ∈ S under measure (F0 + F1)/2. The signal structure has unbounded

private beliefs if the infimum of the support of dF0/dF1(s) is 0 and the supremum of

the support of dF0/dF1(s) is ∞ under measure (F0 + F1)/2.
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Bounded private beliefs imply that there is a maximum amount of information that

an individual can derive from his private signal. Conversely, unbounded private beliefs

correspond to a situation where an agent can receive an arbitrarily strong signal about

the underlying state. Smith and Sorensen (2000) show that, in the special case of full

observation network topology, i.e., B(n) = {1, ..., n − 1} for every agent n ∈ N, there

will be asymptotic learning if the private beliefs are unbounded and, conversely, there

will not asymptotic learning if the private beliefs are bounded. In this thesis, we do

not analyze the case where there are arbitrarily strong signals in favor of one state, but

not in favor of the other. Such a scenario would occur, for example, if the support of

dF0/dF1(s) is (0,M) for some M <∞.

Since the pn are identically distributed for all n (which follows by the assumption

that the private signals sn are identically distributed), in the following, we will use agent

1’s private belief p1 to define the support and the conditional distributions of private

beliefs.

Definition 5 The support of the private beliefs is the interval [β, β], where the end

points of the interval are given by

β = inf {r ∈ [0, 1] | P(p1 ≤ r) > 0}, and β = sup {r ∈ [0, 1] | P(p1 ≤ r) < 1}.

Combining Lemma 2 with Definition 4, we see that beliefs are unbounded if and

only if β = 1 − β = 0. When the private beliefs are bounded, there is a maximum

informativeness to any signal. When they are unbounded, agents may receive arbitrarily

strong signals favoring either state (this follows from the assumption that (F0,F1) are

absolutely continuous with respect to each other). When both β > 0 and β < 1, private

beliefs are bounded.
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We represent the conditional distribution of a private belief given the underlying

state by Gj for each j ∈ {0, 1}, i.e.,

Gj(r) = P(p1 ≤ r | θ = j). (2.8)

We say that a pair of distributions (G0,G1) are private belief distributions if there exist

some signal space S and conditional private signal distributions (F0,F1) such that the

conditional distributions of the private beliefs are given by (G0,G1). The next lemma

presents key relations for private belief distributions.

Lemma 3 For any private belief distributions (G0,G1), the following relations hold.

(a) For all r ∈ (0, 1), we have
dG0

dG1

(r) =
1− r
r

.

(b) We have

G0(r) ≥
(

1− r
r

)
G1(r) +

r − z
2

G1 (z) for all 0 < z < r < 1,

1−G1(r) ≥ (1−G0(r))

(
r

1− r

)
+
w − r

2
(1−G1(w)) for all 0 < r < w < 1.

(c) The ratio G0(r)/G1(r) is nonincreasing in r and G0(r)/G1(r) > 1 for all r ∈ (β, β).

Proof.

(a) By the definition of a private belief, we have for any pn ∈ (0, 1),

P(θ = 1|sn) = P(θ = 1|pn).
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Using Bayes’ Rule, it follows that

pn = Pσ(θ = 1|pn) =
dP(pn|θ = 1)P(θ = 1)∑1
j=0 dP(pn|θ = j)P(θ = j)

=
dP(pn|θ = 1)∑1
j=0 dP(pn|θ = j)

=
dG1(pn)∑1
j=0 dGj(pn)

.

Because of the assumption that no signal is completely informative, i.e., pn /∈ {0, 1}, we

can rewrite this equation as
dG0

dG1

(pn) =
1− pn
pn

,

completing the proof.

(b) For any p ∈ (0, 1),

G0(p) =

∫ p

r=0

dG0(r) =

∫ p

r=0

1− r
r

dG1(r) =

(
1− p
p

)
G1(p) +

∫ p

r=0

(
1

r
− 1

p

)
dG1(r),

where the second equality follows from part (a) of this lemma. We can provide a lower

bound on the last integral as

∫ p

r=0

(
1

r
− 1

p

)
dG1(r) ≥

∫ z

r=0

(
1

r
− 1

p

)
dG1(r)

≥
∫ z

r=0

(
1

z
− 2

z + p

)
dG1(r) ≥ p− z

2
G1 (z) ,

for any z ∈ (0, p). Equivalently, the second relation is obtained by

1−G1(p) =

∫ 1

r=p

dG1(r) =

∫ 1

r=p

r

1− r
dG0(r)

= (1−G0(p))

(
p

1− p

)
+

∫ 1

r=p

(
r

1− r
− p

1− p

)
dG0(r),
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where the following bound is valid for any p < w < 1,

∫ 1

r=p

(
r

1− r
− p

1− p

)
dG0(r) ≥

∫ 1

r=w

(
r

1− r
− p

1− p

)
dG0(r)

≥
∫ 1

r=w

(
w

1− w
− p+ w

2− p− w

)
dG0(r) ≥ w − p

2
(1−G0(w)).

(c) From part (a), we have for any r ∈ (0, 1),

G0(r) =

∫ r

x=0

dG0(x) =

∫ r

x=0

(
1− x
x

)
dG1(x)

≥
∫ r

x=0

(
1− r
r

)
dG1(x) =

(
1− r
r

)
G1(r). (2.9)

Using part (a) again,

d

(
G0(r)

G1(r)

)
=

dG0(r)G1(r)−G0(r)dG1(r)

(G1(r))2

=
dG1(r)

(G1(r))2

[(
1− r
r

)
G1(r)−G0(r)

]
.

Since G1(r) > 0 for r > β, dG1(r) ≥ 0 and the term in brackets above is non-positive

by Eq. (2.9), we have

d

(
G0(r)

G1(r)

)
≤ 0,

thus proving the ratio G0(r)/G1(r) is non-increasing.

We now show that

G0(r) ≥ G1(r) for all r ∈ [0, 1]. (2.10)

From Eq. (2.9), we obtain that Eq. (2.10) is true for r ≤ 1/2. For r > 1/2,

1−G0(r) =

∫ 1

x=r

dG0(x) =

∫ 1

x=r

(
1− x
x

)
dG1(x) ≤

∫ 1

x=r

dG1(x) = 1−G1(r),
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thus proving Eq. (2.10).

We proceed to prove the second part of the lemma. Suppose G0(r)/G1(r) = 1 for

some r < β. Suppose first r ∈ (1/2, β). Then,

G0(1) = G0(r) +

∫ 1

x=r

dG0(x)

= G1(r) +

∫ 1

x=r

dG0(x)

= G1(r) +

∫ 1

x=r

(
1− x
x

)
dG1(x)

≥ G1(r) +

(
1− r
r

)∫ 1

x=r

dG1(x)

≥ G1(r) +

(
1− r
r

)
[1−G1(r)] ,

which yields a contradiction unless G1(r) = 1. However, G1(r) = 1 implies r ≥ β – also a

contradiction. Now, suppose r ∈ (β, 1/2]. Since the ratio G0(r)/G1(r) is non-increasing,

this implies that for all x ∈ (r, 1], G0(x)/G1(x) ≤ 1. Combined with Eq. (2.10), this

yields G0(x)/G1(x) = 1 for all x ∈ (r, 1], which yields a contradiction for x ∈ (1/2, β).

The lemma above establishes several important relationships that are used through-

out the thesis. Part (a) establishes a basic relation for private belief distributions, which

is used in some of the proofs below. The inequalities presented in part (b) of this lemma

play an important role in quantifying how much information an individual obtains from

his private signal. Part (c) will be used in our analysis of learning with bounded beliefs.

2.2.3 Social Beliefs

In this subsection, we illustrate the difficulties involved in determining equilibrium learn-

ing in general social networks. In particular, we show that social beliefs, as defined in

Definition 3, may be nonmonotone, in the sense that additional observations of xn = 1
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Figure 2-2: The figure illustrates a deterministic topology in which the social beliefs are
nonmonotone.

in the neighborhood of an individual may reduce the social belief (i.e., the posterior

derived from past observations that xn = 1 is the correct action).

The following example establishes this point. Suppose the private signals are such

that G0(r) = 2r − r2 and G1(r) = r2, which is a pair of private belief distributions

(G0,G1). Suppose the network topology is deterministic and for the first eight agents,

it has the following structure: B(1) = ∅, B(2) = ... = B(7) = {1} and B(8) = {1, ..., 7}

(see Figure 2-2).

For this social network, agent 1 has 3/4 probability of making a correct decision in

either state of the world. If agent 1 chooses the action that yields a higher payoff (i.e.,

the correct decision), then agents 2 to 7 each have 15/16 probability of choosing the

correct decision. However, if agent 1 fails to choose the correct decision, then agents 2

to 7 have a 7/16 probability of choosing the correct decision. Now suppose agents 1 to

4 choose action xn = 0, while agents 5 to 7 choose xn = 1. The probability of this event
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happening in each state of the world is:

Pσ(x1 = ... = x4 = 0, x5 = x6 = x7 = 1|θ = 0) =
3

4

(
15

16

)3(
1

16

)3

=
10125

226
,

Pσ(x1 = ... = x4 = 0, x5 = x6 = x7 = 1|θ = 1) =
1

4

(
9

16

)3(
7

16

)3

=
250047

226
.

Using Bayes’ Rule, the social belief of agent 8 is given by

[
1 +

10125

250047

]−1

w 0.961.

Now, consider a change in x1 from 0 to 1, while keeping all decisions as they are.

Then,

Pσ(x1 = 1, x2 = x3 = x4 = 0, x5 = x6 = x7 = 1|θ = 0) =
1

4

(
7

16

)3(
9

16

)3

=
250047

226
,

Pσ(x1 = 1, x2 = x3 = x4 = 0, x5 = x6 = x7 = 1|θ = 1) =
3

4

(
1

16

)3(
15

16

)3

=
10125

226
.

This leads to a social belief of agent 8 given by

[
1 +

250047

10125

]−1

w 0.039.

Therefore, this example has established that when x1 changes from 0 to 1, agent 8’s

social belief declines from 0.961 to 0.039. That is, while the agent strongly believes the

state is 1 when x1 = 0, he equally strongly believes the state is 0 when x1 = 1. This

happens because when half of the agents in {2, . . . , 7} choose action 0 and the other half

choose action 1, agent n places a high probability to the event that x1 6= θ. This leads

to a nonmonotonicity in social beliefs.

Since such nonmonotonicities cannot be ruled out in general, standard approaches

to characterizing equilibrium behavior cannot be used. Instead, in the next section, we
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use an alternative approach, which develops a lower bound to the probability that an

individual will make the correct decision relative to agents in his neighborhood.
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Chapter 3

The Case of Unbounded Private

Beliefs

In this chapter, we present a property called expanding observations and show that it is a

necessary condition for asymptotic learning. We also prove that this property provides a

full characterization of asymptotic learning under the assumption of unbounded private

beliefs.

3.1 Expanding Observations as a Necessary Condi-

tion for Learning

We introduce a property of the network topology that is a requirement for asymptotic

learning. Intuitively, for asymptotic learning to occur, the information that each agent

receives from other agents should not be confined to a bounded subset of agents. This

property is established in the following definition. For this definition and throughout

the thesis, if the set B(n) is empty, we set maxb∈B(n) b = 0.

Definition 6 The network topology has expanding observations if for all K ∈ N,
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we have

lim
n→∞

Qn

(
max
b∈B(n)

b < K

)
= 0.

If the network topology does not satisfy this property, then we say it has nonexpanding

observations.

Recall that the neighborhood of agent n is a random variable B(n) (with values in the

set of subsets of {1, 2, ..., n−1}) and distributed according to Qn. Therefore, maxb∈B(n) b

is a random variable that takes values in {0, 1, ..., n − 1}. The expanding observations

condition can be restated as the sequence of random variables {maxb∈B(n) b}n∈N converg-

ing to infinity in probability. Similarly, it follows from the preceding definition that the

network topology has nonexpanding observations if and only if there exists some K ∈ N

and some scalar ε > 0 such that

lim sup
n→∞

Qn

(
max
b∈B(n)

b < K

)
≥ ε.

An alternative restatement of this definition might clarify its meaning. Let us refer to

a finite set of individuals C as excessively influential if there exists a subsequence of

agents who, with probability uniformly bounded away from zero, observe the actions of

a subset of C. Then, the network topology has nonexpanding observations if and only

if there exists an excessively influential group of agents. Note also that if there is a

minimum amount of arrival of new information in the network, so that the probability

of an individual observing some other individual from the recent past goes to one as the

network becomes large, then the network topology will feature expanding observations.

This discussion therefore highlights that the requirement that a network topology has

expanding observations is quite mild and most social networks satisfy this requirement.

When the topology has nonexpanding observations, there is a subsequence of agents

that draws information from the first K decisions with positive probability (uniformly

bounded away from 0). It is then intuitive that network topologies with nonexpanding
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observations will preclude asymptotic learning. Our first theorem states this result.

Theorem 1 Assume that the network topology {Qn}n∈N has nonexpanding observations.

Then, there exists no equilibrium σ ∈ Σ∗ with asymptotic learning.

Proof. Suppose that the network has nonexpanding observations. This implies that

there exists some K ∈ N, ε > 0, and a subsequence of agents N such that for all n ∈ N ,

Qn

(
max
b∈B(n)

b < K

)
≥ ε. (3.1)

For any such agent n ∈ N , we have

Pσ(xn = θ) = Pσ
(
xn = θ

∣∣∣ max
b∈B(n)

b < K

)
Qn

(
max
b∈B(n)

b < K

)
+ Pσ

(
xn = θ

∣∣∣ max
b∈B(n)

b ≥ K

)
Qn

(
max
b∈B(n)

b ≥ K

)
≤ Pσ

(
xn = θ

∣∣∣ max
b∈B(n)

b < K

)
Qn

(
max
b∈B(n)

b < K

)
+ Qn

(
max
b∈B(n)

b ≥ K

)
≤ 1− ε+ εPσ

(
xn = θ

∣∣∣ max
b∈B(n)

b < K

)
, (3.2)

where the second inequality follows from Eq. (3.1).

Given some equilibrium σ ∈ Σ∗ and agent n, we define zn as the decision that

maximizes the conditional probability of making a correct decision given the private

signals and neighborhoods of the first K − 1 agents and agent n, i.e.,

zn = argmax
y∈{0,1}

Py,σ−n(y = θ | si, B(i), for i = 1, . . . , K − 1, n). (3.3)

We denote a particular realization of private signal si by si and a realization of neigh-

borhood B(i) by B(i) for all i. Given the equilibrium σ and the realization s1, ..., sK−1

and B(1), ...,B(K − 1), all decisions x1, . . . , xK−1 are recursively defined [i.e., they are

non-stochastic; see the definition of the information set in Eq. (2.1)]. Therefore, for any
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B(n) that satisfies maxb∈B(n) b < K, the decision xn is also defined. By the definition

of zn [cf. Eq. (3.3)], this implies that

Pσ(xn = θ | si = si, B(i) = B(i), for i = 1, . . . , K − 1, n)

≤ Pσ(zn = θ | si = si, B(i) = B(i), for i = 1, . . . , K − 1, n).

By integrating over all possible s1, ..., sK−1, sn,B(1), ...,B(K − 1), this yields

Pσ(xn = θ | B(n) = B(n)) ≤ Pσ(zn = θ | B(n) = B(n)),

for any B(n) that satisfies maxb∈B(n) b < K. By integrating over all B(n) that satisfy

this condition, we obtain

Pσ
(
xn = θ

∣∣∣ max
b∈B(n)

b < K

)
≤ Pσ

(
zn = θ

∣∣∣ max
b∈B(n)

b < K

)
. (3.4)

Moreover, since the sequence of neighborhoods {B(i)}i∈N is independent of θ and the

sequence of private signals {si}i∈N, it follows from Eq. (3.3) that the decision zn is given

by

zn = argmax
y∈{0,1}

Pσ(y = θ | s1, ..., sK−1, sn). (3.5)

Therefore, zn is also independent of the sequence of neighborhoods {B(i)}i∈N and we

have

Pσ
(
zn = θ

∣∣∣ max
b∈B(n)

b < K

)
= Pσ (zn = θ) .

Since the private signals have the same distribution, it follows from Eq. (3.5) that for

any n,m ≥ K, the random variables zn and zm have identical probability distributions.

Hence, for any n ≥ K, Eq. (3.5) implies that

Pσ (zn = θ) = Pσ (zK = θ) .
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Combining the preceding two relations with Eq. (3.4), we have for any n ≥ K,

Pσ
(
xn = θ

∣∣∣ max
b∈B(n)

b < K

)
≤ Pσ

(
zn = θ

∣∣∣ max
b∈B(n)

b < K

)
= Pσ (zn = θ) = Pσ (zK = θ) .

Substituting this relation in Eq. (3.2), we obtain for any n ∈ N , n ≥ K,

Pσ(xn = θ) ≤ 1− ε+ εPσ (zK = θ) .

Therefore,

lim inf
n→∞

Pσ(xn = θ) ≤ 1− ε+ εPσ(zK = θ). (3.6)

We finally show that in view of the assumption that F0 and F1 are absolutely contin-

uous with respect to each other [which implies Pσ(x1 = θ) < 1], we have Pσ(zK = θ) < 1

for any given K. If Pσ(x1 = θ) < 1 holds, then we have either Pσ(x1 = θ | θ = 1) < 1 or

Pσ(x1 = θ | θ = 0) < 1. Assume without loss of generality that we have

Pσ(x1 = θ | θ = 1) < 1. (3.7)

Let S denote the set of all private signals such that if s1 ∈ Sσ, then x1 = 0 in equilibrium

σ. Since the first agent’s decision is a function of s1, then Eq. (3.7) is equivalent to

Pσ(s1 ∈ Sσ | θ = 1) > 0.

Since the private signals are conditionally independent given θ, this implies that

Pσ(si ∈ Sσ for all i ≤ K | θ = 1) = Pσ(s1 ∈ Sσ | θ = 1)K > 0. (3.8)
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We next show that if si ∈ Sσ for all i ≤ K, then zK = 0. Using Bayes’ Rule, we have

Pσ(θ = 0 | si ∈ Sσ for all i ≤ K) =

[
1 +

Pσ(si ∈ Sσ for all i ≤ K | θ = 1)

Pσ(si ∈ Sσ for all i ≤ K | θ = 0)

]−1

=

[
1 +

∏K
i=1 Pσ(si ∈ Sσ | θ = 1)∏K
i=1 Pσ(si ∈ Sσ | θ = 0)

]−1

=

[
1 +

(
Pσ(s1 ∈ Sσ | θ = 1)

Pσ(s1 ∈ Sσ | θ = 0)

)K]−1

, (3.9)

where the second equality follows from the conditional independence of the private sig-

nals and the third equality holds since private signals are identically distributed. Ap-

plying Bayes’ Rule on the second term in parentheses in Eq. (3.9), this implies that

Pσ(θ = 0 | si ∈ Sσ for all i ≤ K) =

[
1 +

(
1

Pσ(θ = 0 | s1 ∈ Sσ)
− 1

)K]−1

.(3.10)

Since s1 ∈ Sσ induces x1 = 0, we have Pσ(θ = 0 | s1 ∈ Sσ) ≥ 1/2. Because the function

on the right-handside of Eq. (3.10) is nondecreasing in Pσ(θ = 0 | s1 ∈ Sσ) for any value

in [1/2,1], we obtain

Pσ(θ = 0 | si ∈ Sσ for all i ≤ K) ≥ 1

2
.

By the definition of zK , this implies that if si ∈ Sσ for all i ≤ K, then zK = 0

(we can let zn be equal to 0 whenever both states are equally likely given the private

signals). Combined with the fact that the event {si ∈ Sσ for all i ≤ K} has positive

conditional probability given θ = 1 under measure Pσ [cf. Eq. (3.8)], this implies that

Pσ(zK = θ) < 1. Substituting this relation in Eq. (3.6), we have

lim inf
n→∞

Pσ(xn = θ) < 1,
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thus showing that asymptotic learning does not occur.

This theorem states the intuitive result that with nonexpanding observations, asymp-

totic learning will fail. This result is not surprising, since asymptotic learning requires

the aggregation of the information of different individuals. But a network topology with

nonexpanding observations does not allow such aggregation. Intuitively, nonexpanding

observations, or equivalently the existence of an excessively influential group of agents,

imply that infinitely many individuals will observe finitely many actions with positive

probability and this will not enable them to aggregate the dispersed information collec-

tively held by the entire social network.

3.2 Expanding Observations as a Sufficient Condi-

tion for Learning

The main question is then whether, once we exclude network topologies with nonex-

panding observations, what other conditions need to be imposed to ensure asymptotic

learning. The following theorem shows that for general network topologies, unbounded

private beliefs and expanding observations are sufficient to guarantee asymptotic learn-

ing in all equilibria.

Theorem 2 Assume that the signal structure (F0,F1) has unbounded private beliefs and

the network topology {Qn}n∈N has expanding observations. Then, asymptotic learning

occurs in every equilibrium σ ∈ Σ∗.

The proof of this theorem is provided in Section 3.3. However, many of its implica-

tions can be discussed before presenting a detailed proof.

Theorem 2 implies that unbounded private beliefs are sufficient for asymptotic learn-

ing for most (but not all) network topologies. In particular, the condition that the
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network topology has expanding observations is fairly mild and only requires a mini-

mum amount of arrival of recent information to the network. Social networks in which

each individual observes all past actions, those in which each observes just his neighbor,

and those in which each individual observes M ≥ 1 agents independently and uniformly

drawn from his predecessors are all examples of network topologies with expanding ob-

servations. Theorem 2 therefore implies that unbounded private beliefs are sufficient to

guarantee asymptotic learning in social networks with these properties and many others.

Nevertheless, there are interesting network topologies where asymptotic learning does

not occur even with unbounded private signals. The following corollary to Theorems

1 and 2 shows that for an interesting class of stochastic network topologies, there is a

critical topology at which there is a phase transition—that is, for all network topologies

with greater expansion of observations than this critical topology, there will be asymp-

totic learning and for all topologies with less expansion, asymptotic learning will fail.

The proof of this corollary is also provided in Section 3.3.

Corollary 1 Assume that the signal structure (F0,F1) has unbounded private beliefs.

Assume also that the network topology is given by {Qn}n∈N such that

Qn(m ∈ B(n)) =
A

(n− 1)C
for all n and all m < n,

where, given n, the draws for m,m′ < n are independent and A and C are positive

constants. If C < 1 then asymptotic learning occurs in all equilibria. If C ≥ 1, then

asymptotic learning does not occur in any equilibrium.

Given the class of network topologies in this corollary, C < 1 implies that as the

network becomes large, there will be sufficient expansion of observations. In contrast,

for C ≥ 1, stochastic process Qn does not place enough probability on observing recent

actions and the network topology is nonexpanding. Consequently, Theorem 1 applies

and there is no asymptotic learning.
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To highlight the implications of Theorems 1 and 2 for deterministic network topolo-

gies, let us introduce the following definition.

Definition 7 Assume that the network topology is deterministic. Then, we say a finite

sequence of agents π is an information path of agent n if for each i, πi ∈ B(πi+1) and

the last element of π is n. Let π(n) be an information path of agent n that has maximal

length. Then, we let L(n) denote the number of elements in π(n) and call it agent n’s

information depth.

Intuitively, the concepts of information path and information depth capture the

intuitive notion of how long the “trail” of the information in the neighborhood of an

individual is. For example, if each individual observes only his immediate neighbor

(i.e., B(n) = {n − 1} with probability one), each will have a small neighborhood, but

the information depth of a high-indexed individual will be high (or the “trail” will be

long), because the immediate neighbor’s action will contain information about the signals

of all previous individuals. The next corollary shows that with deterministic network

topologies, asymptotic learning will occur if only if the information depth (or the trail

of the information) increases without bound as the network becomes larger.

Corollary 2 Assume that the signal structure (F0,F1) has unbounded private beliefs.

Assume that the network topology is deterministic. Then, asymptotic learning occurs

for all equilibria if the sequence of information depths {L(n)}n∈N goes to infinity. If the

sequence {L(n)}n∈N does not go to infinity, then asymptotic learning does not occur in

any equilibrium.

The notion of information depth extends to stochastic network topologies. In fact,

expanding observations is equivalent to L(n) going to infinity in probability. That is,

expanding observations occurs if, and only if, for every ε > 0 and every K ∈ N, there

exists some N ∈ N such that for all n ≥ N , Q (L(n) < K) ≤ ε.

49



3.3 Learning under Unbounded Private Beliefs

This section presents a proof of our main result, Theorem 2. The proof follows by com-

bining several lemmas and propositions provided in this section. In the next subsection,

we show that the expected utility of an individual is no less than the expected utility of

any agent in his realized neighborhood. Though useful, this is a relatively weak result

and is not sufficient to establish that asymptotic learning will take place in equilibrium.

Subsection 3.3.2 provides the key result for the proof of Theorem 2. It focuses on the

case in which each individual observes the action of a single agent and private beliefs

are unbounded. Under these conditions, it establishes (a special case of) the strong im-

provement principle, which shows that the increase in expected utility is bounded away

from zero (as long as social beliefs have not converged to the true state). Subsection

3.3.3 generalizes the strong improvement principle to the case in which each individual

has a stochastically-generated neighborhood, potentially consisting of multiple (or no)

agents. Subsection 3.3.4 then presents the proof of Theorem 2, which follows by combin-

ing these results with the fact that the network topology has expanding observations, so

that the sequence of improvements will ultimately lead to asymptotic learning. Finally,

subsection 3.3.5 provides proofs of Corollaries 1 and 2, which were presented in Section

3.2.

3.3.1 Information Monotonicity

As a first step, we show that the ex ante probability of an agent making the correct

decision (and thus his expected payoff) is no less than the probability of any of the

agents in his realized neighborhood making the correct decision.

Proposition 2 (Information Monotonicity) Let σ ∈ Σ∗ be an equilibrium. For any
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agent n and neighborhood B, we have

Pσ(xn = θ | B(n) = B) ≥ max
b∈B

Pσ(xb = θ).

Proof. Let h : {(n,B(n)) : n ∈ N,B(n) ⊆ {1, 2, ..., n−1}} → N be an arbitrary function

that maps an agent and a neighborhood of the agent into an element of the neighborhood,

i.e., h(n,B(n)) ∈ B(n). In view of the characterization of the equilibrium decision xn [cf.

Eq. (2.2)], it follows that for any private signal sn, neighborhood B(n) ⊆ {1, 2, ..., n−1},

and decisions xk, k ∈ B(n), we have

Pσ(xn = θ | sn, B(n), xk, k ∈ B(n)) ≥ Pσ(xh(n,B(n)) = θ | sn, B(n), xk, k ∈ B(n)).

By integrating over all possible private signals and decisions of agents in the neighbor-

hood, we obtain that for any n and any B(n) = B,

Pσ(xn = θ | B(n) = B) ≥ Pσ(xh(n,B(n)) = θ | B(n) = B) = Pσ(xh(n,B) = θ),

where the equality follows by the assumption that each neighborhood is generated inde-

pendently from all other neighborhoods. By taking the maximum over all functions h,

we obtain

Pσ(xn = θ | B(n) = B) ≥ max
b∈B

Pσ(xb = θ),

showing the desired relation.

Information monotonicity is similar to the (expected) welfare improvement principle

in Banerjee and Fudenberg (2004) and in Smith and Sorensen (1998), and the imitation

principle in Gale and Kariv (2003) and is very intuitive. However, it is not sufficiently

strong to establish asymptotic learning. To ensure that, as the network becomes large,

decisions converge (in probability) to the correct action, we need strict improvements.

This will be established in the next two subsections.
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3.3.2 Observing a Single Agent

In this subsection, we focus on a specific network topology where each agent observes

the decision of a single agent. For this case, we provide an explicit characterization

of the equilibrium, and under the assumption that private beliefs are unbounded, we

establish a preliminary version of the strong improvement principle, which provides a

lower bound on the increase in the ex ante probability that an individual will make a

correct decision over his neighbor’s probability (recall that for now there is a single agent

in each individual’s neighborhood, thus each individual has a single “neighbor”). This

result will be generalized to arbitrary networks in the next subsection.

For each n and strategy profile σ, let us define Y σ
n and Nσ

n as the probabilities of

agent n making the correct decision conditional on state θ. More formally, these are

defined as

Y σ
n = Pσ(xn = 1 | θ = 1), Nσ

n = Pσ(xn = 0 | θ = 0). (3.11)

The unconditional probability of a correct decision is then

1

2
(Y σ

n +Nσ
n ) = Pσ(xn = θ). (3.12)

We also define the thresholds Lσn and Uσ
n in terms of these probabilities:

Lσn =
1−Nσ

n

1−Nσ
n + Y σ

n

, Uσ
n =

Nσ
n

Nσ
n + 1− Y σ

n

. (3.13)

The next proposition shows that the equilibrium decisions are fully characterized in

terms of these thresholds.

Proposition 3 Let B(n) = {b} for some agent n. Let σ ∈ Σ∗ be an equilibrium, and let
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Figure 3-1: The equilibrium decision rule when observing a single agent, illustrated on
the private belief space.

Lσb and Uσ
b be given by Eq. (3.13). Then, agent n’s decision xn in equilibrium σ satisfies

xn =


0, if pn < Lσb

xb, if pn ∈ (Lσb , U
σ
b )

1, if pn > Uσ
b .

The proof is omitted since it is an immediate application of Lemma 1 [use Bayes’

Rule to determine Pσ(θ = 1|xb = j) for each j ∈ {0, 1}].

Note that the sequence {(Un, Ln)} only depends on {(Yn, Nn)}, and is thus determin-

istic. This reflects the fact that each individual recognizes the amount of information

that will be contained in the action of the previous agent, which determines his own

decision thresholds. Individual actions are still stochastic since they are determined by

whether the individual’s private belief is below Lb, above Ub, or in between (see Figure

3-1).

Using the structure of the equilibrium decision rule, the next lemma provides an
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expression for the probability of agent n making the correct decision conditional on his

observing agent b < n, in terms of the private belief distributions and the thresholds Lσb

and Uσ
b .

Lemma 4 Let B(n) = {b} for some agent n. Let σ ∈ Σ∗ be an equilibrium, and let Lσb

and Uσ
b be given by Eq. (3.13). Then,

Pσ(xn = θ | B(n) = {b})

=
1

2

[
G0(Lσb ) +

(
G0(Uσ

b )−G0(Lσb )
)
Nσ
b + (1−G1(Uσ

b )) +
(
G1(Uσ

b )−G1(Lσb )
)
Y σ
b

]
.

Proof. By definition, agent n receives the same expected utility from all his possible

equilibrium choices. We can thus compute the expected utility by supposing that the

agent will choose xn = 0 when indifferent. Then, the expected utility of agent n (the

probability of the correct decision) can be written as

Pσ(xn = θ | B(n) = {b})

= Pσ(pn ≤ Lσb | θ = 0)P(θ = 0) + Pσ(pn ∈ (Lσb , U
σ
b ], xb = 0 | θ = 0)P(θ = 0)

+Pσ(pn > Uσ
b | θ = 1)P(θ = 1) + Pσ(pn ∈ (Lσb , U

σ
b ], xb = 1 | θ = 1)P(θ = 1).

The result then follows using the fact that pn and xb are conditionally independent given

θ and the notation for the private belief distributions [cf. Eq. (2.8)].

Using the previous lemma, we next strengthen Proposition 2 and provide a lower

bound on the amount of improvement in the ex ante probability of making the correct

decision between an agent and his neighbor.

Lemma 5 Let B(n) = {b} for some agent n. Let σ ∈ Σ∗ be an equilibrium, and let Lσb
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and Uσ
b be given by Eq. (3.13). Then,

Pσ(xn = θ | B(n) = {b}) ≥ Pσ(xb = θ) +
(1−Nσ

b )Lσb
8

G1

(
Lσb
2

)
+

(1− Y σ
b )(1− Uσ

b )

8

[
1−G0

(
1 + Uσ

b

2

)]
.

Proof. In Lemma 3(b), let r = Lσb , z = Lσb /2, so that we obtain

(1−Nσ
b )G0(Lσb ) ≥ Y σ

b G1(Lσb ) +
(1−Nσ

b )Lσb
4

G1

(
Lσb
2

)
.

Next, again using Lemma 3(b) and letting r = Uσ
b and w = (1 + Uσ

b )/2, we have

(1− Y σ
b )[1−G1(Uσ

b )] ≥ Nσ
b [1−G0(σb )] +

(1− Y σ
b )(1− Uσ

b )

4

[
1−G0

(
1 + Uσ

b

2

)]
.

Combining the preceding two relations with Lemma 4 and using the fact that Y σ
b +Nσ

b =

2Pσ(xb = θ) [cf. Eq. (3.12)], the desired result follows.

The next lemma establishes that the lower bound on the amount of improvement

in the ex ante probability is uniformly bounded away from zero for unbounded private

beliefs and when Pσ(xb = θ) < 1, i.e., when asymptotic learning is not achieved.

Lemma 6 Let B(n) = {b} for some n. Let σ ∈ Σ∗ be an equilibrium, and denote

α = Pσ(xb = θ). Then,

Pσ(xn = θ | B(n) = {b}) ≥ α +
(1− α)2

8
min

{
G1

(
1− α

2

)
, 1−G0

(
1 + α

2

)}
.

Proof. We consider two cases separately.

Case 1: Nσ
b ≤ α. From the definition of Lσb and the fact that Y σ

b = 2α − Nσ
b [cf. Eq.
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(3.12)], we have

Lσb =
1−Nσ

b

1− 2Nσ
b + 2α

.

Since σ is an equilibrium, we have α ≥ 1/2, and thus the right hand-side of the preceding

inequality is a nonincreasing function of Nσ
b . Since Nσ

b ≤ α, this relation therefore

implies that Lσb ≥ 1− α. Combining the relations 1−Nσ
b ≥ 1− α and Lσb ≥ 1− α, we

obtain
(1−Nσ

b )Lσb
8

G1

(
Lσb
2

)
≥ (1− α)2

8
G1

(
1− α

2

)
. (3.14)

Case 2: Nσ
b ≥ α. Since Y σ

b + Nσ
b = 2α, this implies that Y σ

b ≤ α. Using the definition

of Uσ
b and a similar argument as the one above, we obtain

(1− Y σ
b )(1− Uσ

b )

8

[
1−G0

(
1 + Uσ

b

2

)]
≥ (1− α)2

8

[
1−G0

(
1 + α

2

)]
. (3.15)

Combining Eqs. (3.14) and (3.15), we obtain

(1−Nσ
b )Lσb

8
G1

(
Lσb
2

)
+

(1− Y σ
b )(1− Uσ

b )

8

[
1−G0

(
1 + Uσ

b

2

)]
≥ (1− α)2

8
min

{
G1

(
1− α

2

)
, 1−G0

(
1 + α

2

)}
,

where we also used the fact that each term on the left hand-side of the preceding in-

equality is nonnegative. Substituting this into Lemma 5, the desired result follows.

The preceding lemma characterizes the improvements in the probability of making

the correct decision between an agent and his neighbor. To study the limiting behavior

of these improvements, we introduce the function Z : [1/2, 1]→ [1/2, 1] defined by

Z(α) = α +
(1− α)2

8
min

{
G1

(
1− α

2

)
, 1−G0

(
1 + α

2

)}
. (3.16)
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Lemma 6 establishes that for n, which has B(n) = {b}, we have

Pσ(xn = θ|B(n) = {b}) ≥ Z (Pσ(xb = θ)) , (3.17)

i.e., the function Z acts as an improvement function for the evolution of the probability

of making the correct decision. The function Z(·) has several important properties,

which are formally stated in the next lemma.

Lemma 7 The function Z : [1/2, 1] → [1/2, 1] given in (3.16) satisfy the following

properties:

(a) The function Z has no upwards jumps. That is, for any α ∈ [1/2, 1],

Z(α) = lim
r↑α
Z(r) ≥ lim

r↓α
Z(r).

(b) For any α ∈ [1/2, 1], Z(α) ≥ α.

(c) If the private beliefs are unbounded, then for any α ∈ [1/2, 1), Z(α) > α.

Proof. Since G0 and G1 are cumulative distribution functions, they cannot have down-

wards jumps, i.e., for each j ∈ {0, 1}, limr↑α Gj(r) ≤ limr↓α Gj(r) for any α ∈ [1/2, 1],

establishing Part (a). Part (b) follows from the fact that cumulative distribution func-

tions take values in [0, 1]. For Part (c), suppose that for some α ∈ [1/2, 1), Z(α) = α.

This implies that

min

{
G1

(
1− α

2

)
, 1−G0

(
1 + α

2

)}
= 0. (3.18)

However, from the assumption on the private beliefs, we have that for all α ∈ (0, 1) and

any j ∈ {0, 1}, Gj(α) ∈ (0, 1), contradicting Eq. (3.18).

The properties of the Z function will be used in the analysis of asymptotic learning

in general networks in subsection 3.3.3. The analysis of asymptotic learning requires

the relevant improvement function to be both continuous and monotone. However,
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Z does not necessarily satisfy these properties. We next construct a related function

Z : [1/2, 1]→ [1/2, 1] that satisfies these properties and can be used as the improvement

function in the asymptotic analysis. Let Z be defined as:

Z(α) =
1

2

(
α + sup

r∈[1/2,α]

Z(r)

)
. (3.19)

This function shares the same “improvement” properties as Z, but is also nondecreasing

and continuous. The properties of the function Z(·) stated in the following lemma.

Lemma 8 The function Z : [1/2, 1] → [1/2, 1] given in (3.19) satisfy the following

properties:

(a) For any α ∈ [1/2, 1], Z(α) ≥ α.

(b) If the private beliefs are unbounded, then for any α ∈ [1/2, 1), Z(α) > α.

(c) The function Z is increasing and continuous.

Proof. Parts (a) and (b) follow immediately from Lemma 7, parts (b) and (c) respec-

tively. The function supr∈[1/2,α]Z(r) is nondecreasing and the function α is increasing,

therefore the average of these two functions, which is Z, is an increasing function, es-

tablishing the first part of part (c).

We finally show that Z is a continuous function. We first show Z(α) is continuous

for all α ∈ [1/2, 1). To obtain a contradiction, assume that Z is discontinuous at

some α∗ ∈ [1/2, 1). This implies that supr∈[1/2,α]Z(r) is discontinuous at α∗. Since

supr∈[1/2,α]Z(r) is a nondecreasing function, we have

lim
α↓α∗

sup
r∈[1/2,α]

Z(r) > sup
r∈[1/2,α∗]

Z(r),
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from which it follows that there exists some ε > 0 such that for any δ > 0

sup
r∈[1/2,α∗+δ]

Z(r) > Z(α) + ε for all α ∈ [1/2, α∗).

This contradicts the fact that the function Z does not have an upward jump [cf. Lemma

7 (a)], and establishes the continuity of Z(α) for all α ∈ [1/2, 1). The continuity of the

function Z(α) at α = 1 follows from part (a).

The next proposition shows that the function Z is also a (strong) improvement

function for the evolution of the probability of making the correct decision.

Proposition 4 (Strong Improvement Principle) Let B(n) = {b} for some n. Let σ ∈ Σ∗

be an equilibrium. Then, we have

Pσ(xn = θ | B(n) = {b}) ≥ Z (Pσ(xb = θ)) . (3.20)

Proof. Let α denote Pσ(xb = θ). If Z (α) = α, then the result follows immediately from

Proposition 2. Suppose next that Z (α) > α. This implies that Z(α) < supr∈[1/2,α]Z(r).

Therefore, there exists some α ∈ [1/2, α] such that

Z(α) > Z(α). (3.21)

We next show that Pσ(xn = θ|B(n) = b) ≥ Z(α). Agent n can always (privately)

make the information from his observation of xb coarser (i.e., not observe xb according

to some probability). Let the observation thus generated by agent n be denoted by x̃b,

and suppose that it is given by

x̃b =


xb, with probability (2α− 1)/(2α− 1)

0, with probability (α− α)/(2α− 1)

1, with probability (α− α)/(2α− 1),
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where the realizations of x̃b are independent from agent n’s information set. Next observe

that Pσ(x̃b = θ) = α. Then, Lemma 6 implies that Pσ(xn = θ|B(n) = b) ≥ Z(α). Since

Z(α) > Z(α) [cf. Eq. (3.21)], the desired result follows.

3.3.3 Learning from Multiple Agents

In this subsection, we generalize the results of the previous subsection to an arbitrary

network topology. We first present a stronger version of the information monotonicity

relation (cf. Proposition 2), where the amount of improvement is given by the improve-

ment function Z defined in Eq. (3.20). Even though a full characterization of equilibrium

decisions in general network topologies is a nontractable problem (recall the discussion

in subsection 2.2.3), it is possible to establish an analogue of Proposition 4, that is, a

generalized strong improvement principle, which provides a lower bound on the amount

of increase in the probabilities of making the correct decision. The idea of the proof

is to show that improvements can be no less than the case in which each individual’s

neighborhood consisted of a single agent.

Proposition 5 (Generalized Strong Improvement Principle) For any n ∈ N, any set

B ⊆ {1, ..., n− 1} and any equilibrium σ ∈ Σ∗, we have

Pσ (xn = θ | B(n) = B) ≥ Z
(

max
b∈B

Pσ(xb = θ)

)
.

Proof. Given an equilibrium σ ∈ Σ∗ and agent n , let hσ be a function that maps

any subset of {1, . . . , n − 1} to an element of {1, . . . , n − 1} such that for any B ⊂

{1, . . . , n− 1}, we have

hσ(B) ∈ argmax
b∈B

Pσ(xb = θ). (3.22)
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We define wn as the decision that maximizes the conditional probability of making the

correct decision given the private signal sn and the decision of the agent hσ(B(n)), i.e.,

wn ∈ argmax
y∈{0,1}

Pσ
(
y = θ

∣∣ sn, xhσ(B(n))

)
.

The equilibrium decision xn of agent n satisfies

Pσ(xn = θ | sn, B(n), xk, k ∈ B(n)) ≥ Pσ(wn = θ | sn, B(n), xk, k ∈ B(n)),

[cf. the characterization of the equilibrium decision rule in Eq. (2.2)]. Integrating over all

possible private signals and decisions of neighbors, we obtain for any B ⊂ {1, . . . , n−1},

Pσ (xn = θ | B(n) = B) ≥ Pσ (wn = θ | B(n) = B) . (3.23)

Because wn is an optimal choice given a single observation, Eq. (3.20) holds and yields

Pσ(wn = θ | B(n) = B) ≥ Z
(
Pσ(xhσ(B) = θ)

)
. (3.24)

Combining Eqs. (3.22), (3.23) and (3.24) we obtain the desired result.

This proposition is a key result, since it shows that, under unbounded private beliefs,

there are improvements in payoffs (probabilities of making correct decisions) that are

bounded away from zero. We will next use this generalized strong improvement principle

to prove Theorem 2. The proof involves showing that under the expanding observations

and the unbounded private beliefs assumptions, the amount of improvement in the

probabilities of making the correct decision given by Z accumulates until asymptotic

learning is reached.
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3.3.4 Proof of Theorem 2

The proof consists of two parts. In the first part of the proof, we construct two sequences

{αk} and {φk} such that for all k ≥ 0, there holds

Pσ(xn = θ) ≥ φk for all n ≥ αk. (3.25)

The second part of the proof shows that φk converges to 1, thus establishing the result.

Given some integer K > 0 and scalar ε > 0, let N(K, ε) > 0 be an integer such that

for all n ≥ N(K, ε),

Qn

(
max
b∈B(n)

b < K

)
< ε,

(such an integer exists in view of the fact that, by hypothesis, the network topology

features expanding observations). We let α1 = 1 and φ1 = 1/2 and define the sequences

{αk} and φk recursively by

αk+1 = N

(
αk,

1

2

[
1− φk
Z(φk)

])
, φk+1 =

φk + Z(φk)

2
.

Using the fact that the range of the function Z is [1/2, 1], it can be seen that φk ∈ [1/2, 1]

for all k, therefore the preceding sequences are well-defined.

We use induction on the index k to prove relation (3.25). Since σ is an equilibrium,

we have

Pσ(xn = θ) ≥ 1

2
for all n ≥ 1,

which together with α1 = 1 and φ1 = 1/2 shows relation (3.25) for k = 1. Assume that

the relation (3.25) holds for an arbitrary k, i.e.,

Pσ(xj = θ) ≥ φk for all j ≥ αk. (3.26)

Consider some agent n with n ≥ αk+1. By integrating the relation from Lemma 5 over
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all possible neighborhoods B(n), we obtain

Pσ (xn = θ) ≥ EB(n)

[
Z
(

max
b∈B(n)

Pσ(xb = θ)

)]
,

where EB(n) denotes the expectation with respect to the neighborhood B(n) (i.e., the

weighted sum over all possible neighborhoods B(n)). We can rewrite the preceding as

Pσ(xn = θ) ≥ EB(n)

[
Z
(

max
b∈B(n)

Pσ (xb = θ)

) ∣∣∣ max
b∈B(n)

b ≥ αk

]
Qn

(
max
b∈B(n)

b ≥ αk

)
+ EB(n)

[
Z
(

max
b∈B(n)

Pσ (xb = θ)

) ∣∣∣ max
b∈B(n)

b < αk

]
Qn

(
max
b∈B(n)

b < αk

)
.

Since the terms on the right hand-side of the preceding relation are nonnegative, this

implies that

Pσ(xn = θ) ≥ EB(n)

[
Z
(

max
b∈B(n)

Pσ (xb = θ)

) ∣∣∣ max
b∈B(n)

b ≥ αk

]
Qn

(
max
b∈B(n)

b ≥ αk

)
.

Since maxb∈B(n) b ≥ αk, Eq. (3.26) implies that

max
b∈B(n)

Pσ(xb = θ) ≥ φk.

Since the function Z is nondecreasing [cf. Lemma 8(c)], combining the preceding two

relations, we obtain

Pσ(xn = θ) ≥ EB(n)

[
Z (φk)

∣∣∣ max
b∈B(n)

b ≥ αk

]
Qn

(
max
b∈B(n)

b ≥ αk

)
= Z(φk)Qn

(
max
b∈B(n)

b ≥ αk

)
,

where the equality follows since the sequence {φk} is deterministic. Using the definition
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of αk, this implies that

Pσ(xn = θ) ≥ Z (φk)
1

2

[
1 +

φk
Z(φk)

]
= φk+1,

thus completing the induction.

We finally prove that φk → 1 as k → ∞. Since Z(α) ≥ α for all α ∈ [1/2, 1]

[cf. Lemma 8(a)], it follows from the definition of φk that {φk}k∈N is a nondecreasing

sequence. It is also bounded and therefore it converges to some φ∗. Taking the limit in

the definition of φk, we obtain

2φ∗ = 2 lim
k→∞

φk = lim
k→∞

[
φk + Z(φk)

]
= φ∗ + Z(φ∗),

where the third equality follows since Z is a continuous function [cf. Lemma 8(c)]. This

shows that φ∗ = Z(φ∗), i.e., φ∗ is a fixed point of Z. Since the private beliefs are

unbounded, the unique fixed point of Z is 1, showing that φk → 1 as k → ∞ and

completing the proof. �

3.3.5 Proofs of Corollaries 1 and 2

Proof of Corollary 1. We first show that if C ≥ 1, then the network topology has

nonexpanding observations. To show this, we set K = 1 in Definition 6 and show

that the probability of infinitely many agents having empty neighborhoods is uniformly

bounded away from 0. We first consider the case C > 1. Then, the probability that the

neighborhood of agent n+ 1 is the empty set is given by

Qn+1(B(n+ 1) = ∅) =

(
1− A

nC

)n
,
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which converges to 1 as n goes to infinity. If C = 1, then

lim
n→∞

Qn+1(B(n+ 1) = ∅) = lim
n→∞

(
1− A

n

)n
= e−A.

Therefore, for infinitely many agents, Qn+1(B(n+1) = ∅) ≥ e−A/2. The preceding show

that the network topology has nonexpanding observations for C ≥ 1, hence the result

follows from Theorem 1.

We next assume that C < 1. For any K and all n ≥ K, we have

Qn+1

(
max

b∈B(n+1)
b ≤ K

)
=

(
1− A

nC

)n−K
,

which converges to 0 as n goes to infinity. Hence the network topology is expanding in

observations and the result follows from Theorem 2. �

Proof of Corollary 2. We show that {L(n)}n∈N goes to infinity if and only if the de-

terministic sequence {maxb∈B(n) b}n∈N goes to infinity. Suppose first {L(n)}n∈N diverges

to infinity. Then, for every K there exists N such that for all n ≥ N , L(n) ≥ K. Note

that

L(n) ≤ 1 + max
b∈B(n)

b

because the longest information path must be a subset of the sequence

(1, 2, ..., max
b∈B(n)

b, n).

So, for n ≥ N , if L(n) ≥ K, then maxb∈B(n) b > K, thus proving the first part of the

lemma. Suppose next that {maxb∈B(n) b}n∈N goes to infinity as n goes to infinity. We

show by induction that for each d ∈ N, there exists some integer Cd such that L(n) ≥ d

for all n ≥ Cd. Since L(n) ≥ 1 for all n, then C1 = 1. Assume such Cd exists for some

d. Then, we show that such a Cd+1 also exists. Since {maxb∈B(n) b}n∈N goes to infinity,
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there exists some Nd such that for all n ≥ Nd,

max
b∈B(n)

b ≥ Cd.

Now, for any n ≥ Nd, there exists a path with size d up to some k ≥ Cd and then

another observation from k to n, therefore L(n) ≥ d+ 1. Hence, Cd+1 = Nd. �
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Chapter 4

The Rate of Learning

4.1 Decay of the Error Probabilities

The key metric of this thesis, asymptotic learning, measures how informed the action of

agent n of the social network is in the limit as n goes to infinity. This metric determines

whether agents learn from the actions of peers in very large societies. However, in any

application of this model, a social network would be described by a finite graph. To

understand how well asymptotic learning serves as a good approximation for finite-sized

networks, we need to analyze the speed of learning. The rate at which learning happens

is therefore of considerable interest since convergence to approximately correct beliefs

and actions might require an arbitrarily large network.

Another important consideration that leads us to study of the rate of learning is the

problem of comparing the impact of different network topologies on the learning process.

In Chapter 3, we determine that a minimal amount of communication (expanding obser-

vations) is sufficient to produce asymptotic learning. Therefore, analyzing the speed of

learning is important for understanding how network topology affects learning in social

networks.

We explore in this chapter the rate of decay of the probability of error under Bayesian
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learning in the case of unbounded private beliefs. We investigate the rate of convergence

of individual beliefs and actions to the correct beliefs and actions in a simplified version

of our general model. In particular, instead of general network topologies, we focus on

situations in which individuals observe only one past action. We distinguish two cases.

In the first, which we refer to as immediate neighbor sampling, each individual observes

the most recent action, i.e., B(n) = {n − 1} for each n ∈ N. In the second, which we

refer to as random sampling, each individual observes any one of the past actions with

equal probability. That is, for each n ∈ N and each b ∈ {1, ..., n− 1}, B(n) = {b} with

probability 1/(n− 1).

We develop a method of estimating an upper bound on the error probability in both

cases, based on approximating this bound with an ordinary differential equation. Our

results are as follows:

• With random sampling, the probability of the incorrect action converges to zero

faster than a logarithmic rate [in the sense that this probability is no greater than

(log(n))−1/(K+1) where n is the number of individuals in the network and K is a

constant].

• With immediate neighbor sampling, the probability of the incorrect action con-

verges to zero faster than a polynomial rate [in the sense that this probability is

no greater than n−1/(K+1)].

• We show by means of an example that the bounds are tight. That is, we construct

a signal structure where the probability of error decays at a logarithmic rate with

random sampling and at a polynomial rate with immediate neighbor sampling.

The immediate neighbor sampling enables faster aggregation of information, because

each individual is sampled only once. In contrast, with random sampling, each individual

is sampled infinitely often. Thus, with a random sampling, there is slower rate of arrival

of new information into the system. While real-world social networks are much more
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complex than the two stylized topologies we study, our results already suggest some

general insights. In particular, they suggest that social networks in which the same

individuals are the (main or only) source of the information of many others will lead to

slower learning than networks in which the opinions and information of new members

are incorporated into the “social belief” more rapidly.

The most closely related paper is Tay, Tsitsiklis and Win (2007), who study the

problem of information aggregation over sensor networks. They consider decision rules

that minimize the error probability of the final agent of a finite sequence (different

model from the perfect Bayesian equilibrium characterized here) and provide lower and

upper bounds on the rate of convergence of posteriors generated by decentralized agents.

The formal model is similar to our model of social learning with immediate neighbor

sampling, though our bounds on the rate of convergence are not present in Tay, Tsitsiklis

and Win. Their lower bounds apply to our model of immediate neighbor sampling. In

addition, to the best of our knowledge, our results on the speed of learning in the random

sampling case are also not present in the previous literature.

4.2 Upper Bounds on the Error Probability

In this section, we prove the upper bounds on the error probability in social networks.

We first introduce an important property of the private belief distributions that will

impact the rate of convergence results.

Definition 8 The private belief distributions have polynomial shape if there exist

some constant C ′ > 0 and K > 0 such that

G1 (α) ≥ C ′αK and G0 (1− α) ≤ 1− C ′αK (4.1)

for all α ∈ [0, 1/2]. If Eq. (4.1) holds only for α ∈ [0, ε] for some ε > 0, then the private
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belief distributions have polynomial tails.

This condition guarantees that strong signals in favor of both states of the world

occur fairly frequently. It eliminates, for example, unbounded private beliefs generated

by two Gaussian distributions F0 and F1 with different mean values. In such cases, there

are very strong signals in favor of both states of the world (hence, unbounded private

beliefs), but they occur very infrequently because normally distributed random variables

rarely deviate several standard deviations away from the mean. If the probability of a

very informative signal is small, then learning will be slower since a large number of

agents will need to arrive before a well-informed agent acts.

For simplicity, the results in this paper assume polynomial shape, but they extend

immediately to private belief distributions with polynomial tails. Note that polynomial

shape implies there exist some constants C > 0 and K > 0 such that

min

{
G1

(
1− α

2

)
, 1−G0

(
1 + α

2

)}
≥ C(1− α)K (4.2)

for all α ∈ [1/2, 1].

We assume in this section that G0 and G1 are continuous distributions in order

to guarantee that there is almost surely unique Perfect Bayesian equilibrium. This

assumption could be relaxed at the expense of more notation.

We now restate Lemma 6 from Chapter 3 that establishes a lower bound on the

amount of improvement in the ex ante probability of making the correct decision between

an agent and his neighbor. This bound will be key in the subsequent convergence rate

analysis.

Lemma 6 Let B(n) = {b} for some n and denote α = Pσ(xb = θ). In equilibrium,

Pσ(xn = θ|B(n) = {b}) ≥ α +
1

8
(1− α)2 min

{
G1

(
1− α

2

)
, 1−G0

(
1 + α

2

)}
.
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When the private beliefs have polynomial shape, we obtain from Lemma 6 and Eq.

(4.2) that for some C > 0 and K > 0,

Pσ(xn = θ|B(n) = {b}) ≥ α +
C

8
(1− α)K+2, (4.3)

where α = Pσ(xb = θ). Note that the right-hand side of Eq. (4.3) is increasing in α over

[1/2, 1] if

C <
2K+1

K + 2
. (4.4)

Note that if Eq. (4.3) holds for some C > 0, then it also holds for any C ′ ∈ (0, C). So, we

can assume without loss of generality that Eq. (4.4) holds and, therefore, the right-hand

side of Eq. (4.3) is increasing in α.

We now state and prove the bound on the speed of learning for the immediate

neighbor sampling network topology.

Theorem 3 Suppose agents sample immediate neighbors and the private beliefs have

polynomial shape, then

Pσ(xn 6= θ) = O
(
n
−1
K+1

)
.

Proof. To prove this bound, we construct a pair of functions φ and φ̃, where φ can be

represented by a difference equation and φ̃ by a differential equation and show that for

all t ∈ N, Pσ(xt = θ) ≥ φ(t) ≥ φ̃(t).

When the conditions of the proposition hold, we have from Eq. (4.3) that for all

n ∈ N,

Pσ(xn+1 = θ) ≥ Pσ(xn = θ) +
C

8
(1− Pσ(xn = θ))K+2 . (4.5)

We construct a sequence {φ(n)}n∈N where φ(1) = Pσ(x1 = θ) and, recursively, for all

n ∈ N,

φ(n+ 1) = φ(n) +
C

8
(1− φ(n))K+2
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and proceed to show by induction that for all n ∈ N ,

Pσ(xn = θ) ≥ φ(n). (4.6)

The relation holds for n = 1 by construction. Suppose the relation holds for some n.

Then,

Pσ(xn+1 = θ) ≥ Pσ(xn = θ) +
C

8
(1− Pσ(xn = θ))K+2

≥ φ(n) +
C

8
(1− φ(n))K+2

= φ(n+ 1),

where the second inequality holds because we assumed that the right-hand side of Eq.

(4.3) is increasing in α. Therefore, Eq. (4.6) holds for all n.

Let us now define φ(t) on non-integer values of t by linear interpolation of the integer

values. That is, for any t ∈ [1,∞),

φ(t) = φ(btc) +
C

8
(t− btc) (1− φ(btc))K+2 .

Finding such a φ is equivalent to solving the following differential equation (where deriva-

tives are defined only at non-integer times):

dφ(t)

dt
=
C

8
(1− φ(btc))K+2 .

Let us now construct yet another continuous time function φ̃(t) to bound φ(t). Let

φ̃(1) = φ(1) and

dφ̃(t)

dt
=
C

8

(
1− φ̃(t)

)K+2

. (4.7)
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Note that both φ and φ̃ are increasing functions. We now show that

φ̃(t) ≤ φ(t) for all t ∈ [1,∞). (4.8)

Let t∗ be some value such that φ̃(t∗) = φ(t∗). Then, for any ε ∈ [0, 1− (t∗ − bt∗c)],

φ(t∗ + ε) = φ(t∗) + ε
C

8
(1− φ(bt∗c))K+2

≥ φ(t∗) + ε
C

8
(1− φ(t∗))K+2

= φ̃(t∗) + ε
C

8

(
1− φ̃(t∗)

)K+2

≥ φ̃(t∗) +

∫ t∗+ε

t∗

C

8

(
1− φ̃(t)

)K+2

dt

= φ̃(t∗ + ε),

where the first equality comes from φ’s piecewise linearity, the following inequality from

the monotonicity of φ, the second equality from φ̃(t∗) = φ(t∗) and the second inequality

from the monotonicity of φ̃. Therefore, for any t∗ such that φ̃(t∗) = φ(t∗), we have that

for all ε ∈ [0, 1− (t∗ − bt∗c)], φ̃(t∗ + ε) ≤ φ(t∗ + ε). Hence, φ̃ does not cross above φ at

any point and, since both functions are continuous, it implies Eq. (4.8) holds.

Combining Eqs. (4.6) and (4.8) we obtain that for any n ∈ N,

Pσ(xn = θ) ≥ φ(n) ≥ φ̃(n).

See Figure 4-1 for a graphical representation of this bound. We can solve the ODE of

Eq. (4.7) exactly and calculate φ̃(n) for every n. The solution is as follows: there exists

some other constant C (which is determined by the boundary value Pσ(x1 = θ) = φ̃(1))

such that for each n,

φ̃(n) = 1−
(

1

8(K + 1)C(n+ C)

) 1
K+1

.
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Figure 4-1: Bound used to prove Theorems 3 and 4. The values of Pσ(xn = θ) are
lower bounded by the difference equation φ, which in turn are lower bounded by the
differential equation φ̃.

Therefore,

Pσ(xn 6= θ) ≤
(

1

8(K + 1)C(n+ C)

) 1
K+1

and the desired result follows.

Theorem 4 Suppose that agents use random sampling and the private beliefs have poly-

nomial shape, then

Pσ(xn 6= θ) = O
(

(log n)
−1
K+1

)
.

Proof. To prove this result, we again construct a pair of functions φ and φ̃ and show

that for all t ∈ N, Pσ(xn = θ) ≥ φ(t) ≥ φ̃(t).

Under a random sampling topology, we have for all n ∈ N,

Pσ(xn+1 = θ) =
1

n

n∑
b=1

Pσ(xn+1 = θ|B(n+ 1) = {b})

=
1

n
[Pσ(xn+1 = θ|B(n+ 1) = {n}) + (n− 1)Pσ(xn = θ)] ,
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because conditional on observing the same b < n, agents n and n + 1 have identical

probabilities of making an optimal decision. From Eq. (4.3), we obtain that

Pσ(xn+1 = θ) ≥ Pσ(xn = θ) +
C

8n
(1− Pσ(xn = θ))K+2 . (4.9)

Note that the right-hand side of Eq. (4.9) is increasing in Pσ(xn = θ) for any n ≥ 1

because we assumed the right-hand side of Eq. (4.3) is increasing in α.

Let’s recursively construct a sequence φ(n) with φ(1) = Pσ(x1 = θ) and, for all

n ∈ N,

φ(n+ 1) = φ(n) +
C

8n
(1− φ(n))K+2 .

Now, we show by induction that

Pσ(xn = θ) ≥ φ(n). (4.10)

The relation holds for n = 1 by construction. Suppose the relation holds for some n.

Then,

Pσ(xn+1 = θ) ≥ Pσ(xn = θ) +
C

8n
(1− Pσ(xn = θ))K+2

≥ φ(n) +
C

8n
(1− φ(n))K+2

= φ(n+ 1).

where the second inequality holds because the right-hand side of Eq. (4.9) is increasing

in Pσ(xn = θ). Therefore, Eq. (4.10) holds for all n.

Let us now define φ(t) on non-integer values of t by linear interpolation of the integer

values. That is, for any t ∈ [1,∞),

φ(t) = φ(btc) +
C

8btc
(t− btc) (1− φ(btc))K+2 .
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Finding such a φ is equivalent to solving the following differential equation (where deriva-

tives are defined only at non-integer times):

dφ(t)

dt
=

C

8btc
(1− φ(btc))K+2 .

Let us now construct yet another continuous time function φ̃(t) to bound φ(t). Let

φ̃(1) = φ(1) and

dφ̃(t)

dt
=
C

8t

(
1− φ̃(t)

)K+2

. (4.11)

Note that both φ and φ̃ are increasing functions. We now show that

φ̃(t) ≤ φ(t) for all t ∈ [1,∞). (4.12)

Let t∗ be some value such that φ̃(t∗) = φ(t∗). Then, for any ε ∈ [0, 1− (t∗ − bt∗c)],

φ(t∗ + ε) = φ(t∗) + ε
C

8bt∗c
(1− φ(bt∗c))K+2

≥ φ(t∗) + ε
C

8t∗
(1− φ(t∗))K+2

= φ̃(t∗) + ε
C

8t∗

(
1− φ̃(t∗)

)K+2

≥ φ̃(t∗) +

∫ t∗+ε

t∗

C

8t

(
1− φ̃(t)

)K+2

dt

= φ̃(t∗ + ε),

where the first equality comes from φ’s piecewise linearity, the following inequality from

the monotonicity of φ, the second equality from φ̃(t∗) = φ(t∗) and the second inequality

from the monotonicity of φ̃. Therefore, for any t∗ such that φ̃(t∗) = φ(t∗), we have that

for all ε ∈ [0, 1− (t∗ − bt∗c)], φ̃(t∗ + ε) ≤ φ(t∗ + ε). Hence, φ̃ does not cross above φ at

any point and, since both functions are continuous, it implies Eq. (4.12) holds.
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Combining Eqs. (4.10) and (4.12) we obtain that for any n ∈ N,

Pσ(xn = θ) ≥ φ(n) ≥ φ̃(n).

Again, we can solve the ODE of Eq. (4.11) exactly and calculate φ̃(n) for every n.

The solution is that there exists some other constant C (which is determined by the

boundary value Pσ(x1 = θ) = φ̃(1)) such that for each n,

φ̃(n) = 1−
(

1

8(K + 1)C(log n+ C)

) 1
K+1

.

Therefore,

Pσ(xn 6= θ) ≤
(

1

8(K + 1)C(log n+ C)

) 1
K+1

and the desired result follows.

4.3 Tightness of the Bounds

This section presents an example of a signal structure that demonstrates a signal struc-

ture for which learning with immediate neighbor sampling occurs at a polynomial rate

and learning with a random sampling network topology occurs at a logarithmic rate,

thus establishing the tightness of Theorems 3 and 4.

Example 2 For each n, let the signal sn ∈ [0, 1] be generated by the following signal

structure:

F0(sn) = 2sn − s2
n and F1(sn) = s2

n.

Note that F0 and F1 above are not probability measures, but cumulative distribution

functions. In this example, the signals are identical to the private beliefs, i.e., pn(sn) =

77



sn. Therefore, the state-conditional distributions of private signals [cf. Eq. (2.8)] are

G0(r) = 2r − r2 and G1(r) = r2. (4.13)

Therefore, this signal structure has polynomial shape. We now show that under this

particular signal structure, for any n,

Pσ(xn+1 = θ|B(n+ 1) = {n}) = Pσ(xn = θ) + (1− Pσ(xn = θ))2. (4.14)

From Lemma 4, we obtain a recursion on Pσ(xn = θ) that is defined in terms of

Y σ
n , N

σ
n , U

σ
n and Lσn [cf. Eqs. (3.11) and (3.13)]. Since the signal structure is symmetric,

the state-conditional probabilities must be identical, i.e.,

Pσ(xn = θ) = Pσ(xn = θ|θ = 0) = Nσ
n = Pσ(xn = θ|θ = 1) = Y σ

n ,

and furthermore, the decision thresholds satisfy

Pσ(xn = θ) = Uσ
n = 1− Lσn.

To simplify the notation, denote Pσ(xn = θ) = z. The recursion of Lemma 4 can thus

be written as

Pσ(xn+1 = θ|B(n+ 1) = {n}) =
1

2
[G0(1− z)+

(G1(z)−G0(1− z))z + (1−G1(z)) + (G1(z)−G1(1− z))z] ,

which reduces to

Pσ(xn+1 = θ|B(n+ 1) = {n}) = z + (1− z)2,
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once we replace G0 and G1 according to Eq. (4.13), thus proving Eq. (4.14). Using

an ODE bound similar to the proof method of Theorems 3 and 4, we obtain that the

probability Pσ(xn = θ) can be approximated by w(t) in the immediate neighbor sampling

case (B(n) = {n− 1}) and
dw(t)

dt
= (1− w(t))2.

Solving this ODE yields that for some constant C,

w(t) = 1− 1

t+ C
.

Thus, 1− w(t) = Θ (t−1), which implies that

Pσ(xn 6= θ) = Θ
(
n−1
)
.

For the random sampling case, the ODE that bounds the probability of optimal decision

is
dw(t)

dt
=

(1− w(t))2

t
.

Solving this ODE we obtain that for some constant C,

w(t) = 1− 1

log(t) + C

and thus obtain

Pσ(xn 6= θ) = Θ
(
(log n)−1

)
.

Therefore, we conclude that learning is significantly slower with random sampling than

with immediate neighbor sampling, at least for signal structures with polynomial shape.
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Chapter 5

The Case of Bounded Private Beliefs

In this chapter, we show that for several families of network topologies, asymptotic

learning does not occur under bounded private beliefs. We also show that, surprisingly,

learning occurs in a class of stochastically-generated social networks where infinitely

many agents observe the actions of a set of neighbors that is not sufficiently persuasive.

5.1 No Learning under Bounded Private Beliefs

In the full observation network topology, bounded beliefs imply lack of asymptotic learn-

ing. One might thus expect a converse to Theorem 2, whereby asymptotic learning fails

whenever signals are bounded. Under general network topologies, learning dynamics

turn out to be more interesting and richer. The next theorem provides a partial con-

verse to Theorem 2 and shows that for a wide range of deterministic and stochastic

network topologies, bounded beliefs imply no asymptotic learning.

Theorem 5 Assume that the signal structure (F0,F1) has bounded private beliefs. If

the network topology {Qn}n∈N satisfies one of the following conditions,

(a) B(n) = {1, . . . , n− 1} for all n,
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(b) |B(n)| ≤ 1 for all n, or

(c) there exists some constant M such that |B(n)| ≤M for all n and

lim
n→∞

max
b∈B(n)

b =∞ with probability 1,

then, asymptotic learning does not occur in any equilibrium σ ∈ Σ∗.

This theorem implies that in most common deterministic and stochastic network

topologies, bounded private beliefs imply lack of asymptotic learning. The three parts

of Theorem 5 are discussed and proved separately as propositions. Although Part (a) of

this theorem is already proved by Smith and Sorensen (2000), we provide an alternative

proof that highlights the importance of the concepts emphasized here.

The next proposition states the result corresponding to part (a) of Theorem 5.

Proposition 6 Assume that the signal structure (F0,F1) has bounded private beliefs

and B(n) = {1, . . . , n − 1} for all n. Then, asymptotic learning does not occur in any

equilibrium.

Proof. The proof consists of two steps. We first show that the lower and upper supports

of the social belief qn = Pσ(θ = 1|x1, ..., xn−1) are bounded away from 0 and 1. We next

show that this implies that xn does not converge to θ in probability.

Let xn−1 = (x1, ..., xn−1) denote the sequence of decisions up to and including n− 1.

Let ϕσ,xn−1(qn, xn) represent the social belief qn+1 given the social belief qn and the

decision xn, for a given strategy σ and decisions xn−1. We use Bayes’ Rule to determine

the dynamics of the social belief. For any xn−1 compatible with qn, and xn = x with
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x ∈ {0, 1}, we have

ϕσ,xn−1(qn, x) = Pσ(θ = 1 | xn = x, qn, x
n−1)

=

[
1 +

Pσ(xn = x, qn, x
n−1, θ = 0)

Pσ(xn = x, qn, xn−1, θ = 1)

]−1

=

[
1 +

Pσ(qn, x
n−1 | θ = 0)

Pσ(qn, xn−1 | θ = 1)

Pσ(xn = x | qn, xn−1, θ = 0)

Pσ(xn = x | qn, xn−1, θ = 1)

]−1

=

[
1 +

(
1

qn
− 1

)
Pσ(xn = x | qn, xn−1, θ = 0)

Pσ(xn = x | qn, xn−1, θ = 1)

]−1

. (5.1)

Let ασ,xn−1 denote the probability that agent n chooses x = 0 in equilibrium σ when he

observes history xn−1 and is indifferent between the two actions. Let

G−j (r) = lim
s↑r

Gj(s),

for any r ∈ [0, 1] and any j ∈ {0, 1}. Then, for any j ∈ {0, 1},

Pσ(xn = 0 | qn, xn−1, θ = j) = Pσ(pn < 1− qn | qn, θ = j)

+ασ,xn−1Pσ(pn = 1− qn | qn, θ = j)

= G−j (1− qn) + ασ,xn−1

[
Gj(1− qn)−G−j (1− qn)

]
.

From Lemma 3(a), dG0/dG1(r) = (1− r)/r for all r ∈ [0, 1]. Therefore,

1− r
r
≤ G0(r)

G1(r)
, and

G−0 (r)

G−1 (r)
≤

1− β
β

.

Hence, for any ασ,xn−1 ,

Pσ(xn = 0 | qn, xn−1, θ = 0)

Pσ(xn = 0 | qn, xn−1, θ = 1)
=

G−0 (1− qn) + ασ,xn−1

[
G0(1− qn)−G−0 (1− qn)

]
G−1 (1− qn) + ασ,xn−1

[
G1(1− qn)−G−0 (1− qn)

]
∈
[

qn
1− qn

,
1− β
β

]
.
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Combining this with Eq. (5.1), we obtain

ϕσ,xn−1(qn, 0) ∈

[(
1 +

(
1

qn
− 1

)(
1− β
β

))−1

,

(
1 +

(
1

qn
− 1

)(
qn

1− qn

))−1
]

=

[
βqn

1− β − qn + 2βqn
,
1

2

]

Note that
βqn

1−β−qn+2βqn
is an increasing function of qn and if qn ∈ [1− β, 1− β], then this

function is minimized at 1− β. This implies that

ϕσ,xn−1(qn, 0) ∈

[
β(1− β)

−β + β + 2β(1− β)
,
1

2

]
=

[
∆,

1

2

]
,

where ∆ is a constant strictly greater than 0. An analogous argument for xn = 1

establishes that there exists some ∆ < 1 such that if qn ∈ [1− β, 1− β], then

ϕσ,xn−1(qn, 1) ∈
[

1

2
,∆

]
.

We next show that qn ∈ [∆,∆] for all n. Suppose this is not true. Let N be the first

agent such that

qN ∈ [0,∆) ∪ (∆, 1] (5.2)

in some equilibrium and some realized history. Then, qN−1 ∈ [0, 1 − β) ∪ (1 − β, 1]

because otherwise, the dynamics of qn implies a violation of Eq. (5.2) for any xN−1. But

note that if qN−1 < 1− β, then by Lemma 1 agent N − 1 chooses action xN−1 = 0 and,

thus by Eq. (5.1),

qN =

[
1 +

(
1

qN−1

− 1

)
Pσ(xN−1 = 0 | qN−1, x

N−2, θ = 0)

Pσ(xN−1 = 0 | qN−1, xN−2, θ = 1)

]−1

=

[
1 +

(
1

qN−1

− 1

)
1

1

]−1

= qN−1.
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By the same argument, if qN−1 > 1−β, we have that qN = qN−1. Therefore, qN = qN−1,

which contradicts the fact that N is the first agent that satisfies Eq. (5.2).

We next show that qn ∈ [∆,∆] for all n implies that xn does not converge in proba-

bility to θ. Let yk denote a realization of xk. Then, for any n and any sequence of yk’s,

we have

Pσ(θ = 1, xk = yk for all k ≤ n) ≤ ∆Pσ(xk = yk for all k ≤ n),

Pσ(θ = 0, xk = yk for all k ≤ n) ≤ (1−∆)Pσ(xk = yk for all k ≤ n).

By summing the preceding relations over all yk for k < n, we obtain

Pσ(θ = 1, xn = 1) ≤ ∆Pσ(xn = 1) and Pσ(θ = 0, xn = 0) ≤ (1−∆)Pσ(xn = 0).

Therefore, for any n, we have

Pσ(xn = θ) ≤ ∆Pσ(xn = 1) + (1−∆)Pσ(xn = 0) ≤ max{∆, 1−∆} < 1,

which completes the proof.

Briefly, this result follows by showing that under bounded private beliefs there exist

0 < ∆ < ∆ < 1 such that the social belief of each agent belongs to the interval [∆,∆].

This establishes that either individuals always make use of their own signals in taking

their actions, leading to a positive probability of a mistake, or individuals follow a

potentially incorrect social belief.

The next proposition shows that asymptotic learning fails when each individual ob-

serves the action of at most one agent from the past.

Proposition 7 Assume that the signal structure (F0,F1) has bounded private beliefs and

|B(n)| ≤ 1 for all n. Then, asymptotic learning does not occur in any equilibrium.

Proof. The first step is the following lemma.
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Lemma 9 Let B(n) = {b} for some n. We define

f(β, β) = max

{
1−

β

2(1− β)
,
3

2
− 1

2β

}
, (5.3)

where β and β are the lower and upper supports of the private beliefs (cf. Definition 5).

Let σ be an equilibrium. Assume that Pσ(xb = θ) ≤ f(β, β). Then, we have

Pσ(xn = θ | B(n) = {b}) ≤ f(β, β).

Proof. We first assume that Pσ(xb = θ) = f(β, β) and show that this implies

Uσ
b ≥ β, and Lσb ≤ β, (5.4)

where Uσ
b and Lσb are defined in Eq. (3.13). We can rewrite Uσ

b as

Uσ
b =

Nσ
b

1− 2Pσ(xb = θ) + 2Nσ
b

=
Nσ
b

1− 2f(β, β) + 2Nσ
b

.

This is a decreasing function of Nσ
b and, therefore,

Uσ
b ≥

1

1− 2f(β, β) + 2
.

Using f(β, β) ≥ 3
2
− 1

2β
, the preceding relation implies Uσ

b ≥ β. An analogous argument

shows that Lσb ≤ β.

Since the support of the private beliefs is [β, β], using Lemma 3 and Eq. (5.4), there

exists an equilibrium σ′ = (σ′n, σ−n) such that xn = xb with probability one (with respect

to measure Pσ′). Since this gives an expected payoff Pσ′(xn = θ |B(n) = b) = Pσ(xb = θ),

it follows that, Pσ(xn = θ | B(n) = b) = Pσ(xb = θ). This establishes the claim that

if Pσ(xb = θ) = f(β, β), then Pσ(xn = θ | B(n) = {b}) = f(β, β). (5.5)
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We next assume that Pσ(xb = θ) < f(β, β). To arrive at a contradiction, suppose

that

Pσ(xn = θ | B(n) = {b}) > f(β, β). (5.6)

Now consider a hypothetical situation where agent n observes a private signal generated

with conditional probabilities (F0,F1) and a coarser version of the observation xb, i.e.,

the random variable x̃b distributed according to

P(x̃b = 1 | θ = 1) = 1−Y σ
b

[
1− f(β, β)

Pσ(xb = θ)

]
and P(x̃b = 0 | θ = 0) = 1−Nσ

b

[
1− f(β, β)

Pσ(xb = θ)

]
.

It follows from the preceding conditional probabilities that P(x̃b = θ) = f(β, β). We

assume that agent n uses the equilibrium strategy σn. Using a similar argument as in

the proof of Eq. (5.5), this implies that

P(xn = θ | B(n) = {b}) = f(β, β). (5.7)

Let z be a binary random variable with values {0, 1} and is generated independent of θ

with probabilities

P(z = 1) = 1− 2Y σ
b

Pσ(xb = θ)
and P(z = 0) = 1− 2Nσ

b

Pσ(xb = θ)
.

This implies that P(z = j | θ = j) = P(z = j) for j ∈ {0, 1}. Using x̃b with prob-

ability 1
1+f(β,β)

[
2 +

(Y σb −1)Pσ(xb=θ)

Y σb

]
and z otherwise generates the original observation

(random variable) xb. Therefore, from Eq. (5.6), P(xn = θ|B(n) = {b}) > f(β, β),

which contradicts Eq. (5.7), and completes the proof.

Let f be defined in Eq. (5.3). We show by induction that

Pσ(xn = θ) ≤ f(β, β) for all n. (5.8)
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Suppose that for all agents up to n−1 the preceding inequality holds. Since |B(n)| ≤ 1,

we have

Pσ(xn = θ) = Pσ(xn = θ | B(n) = ∅)Qn(B(n) = ∅) (5.9)

+
n−1∑
b=1

Pσ(xn = θ | B(n) = b)Qn(B(n) = {b})

≤ Pσ(xn = θ | B(n) = ∅)Qn(B(n) = ∅) +
n−1∑
b=1

f(β, β)Qn(B(n) = {b}),

where the inequality follows from the induction hypothesis and Lemma 9. Note that

having B(n) = ∅ is equivalent to observing a decision b such that Pσ(xb = θ) = 1/2.

Since 1/2 ≤ f(β, β), Lemma 9 implies that Pσ(xn = θ|B(n) = ∅) ≤ f(β, β). Combined

with Eq. (5.9), this completes the induction.

Since the private beliefs are bounded, i.e., β > 0 and β < 1, we have f(β, β) < 1 [cf.

Eq. (5.3)]. Combined with Eq. (5.8), this establishes that lim infn→∞ Pσ(xn = θ) < 1,

showing that asymptotic learning does not occur at any equilibrium σ.

The proof of the result above follows by establishing an upper bound on the amount of

improvement in the ex ante probability of the correct action, hence providing a converse

to the Strong Improvement Principle (cf. Propositions 4 and 5). Under bounded private

beliefs, this upper bound is uniformly bounded away from 1, establishing no learning.

Finally, the following proposition establishes Part (c) of Theorem 5.

Proposition 8 Assume that the signal structure (F0,F1) has bounded private beliefs.

Assume that there exists some constant M such that |B(n)| ≤M for all n and

lim
n→∞

max
b∈B(n)

b =∞ with probability 1.

Then, asymptotic learning does not occur in any equilibrium.

Proof. We start with the following lemma, which will be used subsequently in the proof.
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Lemma 10 Assume that asymptotic learning occurs in some equilibrium σ, i.e., we

have limn→∞ Pσ(xn = θ) = 1. For some constant K, let D be the set of all subsets of

{1, ..., K}. Then,

lim
n→∞

min
D∈D

Pσ(xn = θ | xk = 1, k ∈ D) = 1.

Proof. First note that since the event xk = 1 for all k ≤ K is the intersection of events

xk = 1 for each k ≤ K,

min
D∈D

Pσ(xk = 1, k ∈ D) = Pσ(xk = 1, k ≤ K).

Let ∆ = Pσ(xk = 1, k ≤ K). Fix some D̃ ∈ D. Then,

Pσ(xk = 1, k ∈ D̃) ≥ ∆ > 0,

where the second inequality follows from the fact that there is a positive probability of

the first K agents choosing xn = 1. Let A = {0, 1}|D̃|, i.e., A is the set of all possible

actions for the set of agents D̃. Then,

Pσ(xn = θ) =
∑
ak∈A

Pσ(xn = θ | xk = ak, k ∈ D̃)Pσ(xk = ak, k ∈ D̃).

Since Pσ(xn = θ) converges to 1 and all elements in the sequence Pσ(xk = 1, k ∈ D̃) are

greater than or equal to ∆ > 0, it follows that the sequence Pσ(xn = θ | xk = 1, k ∈ D̃)

also converges to 1. Hence, for each ε > 0, there exists some Nε(D̃) such that for all

n ≥ Nε(D̃),

Pσ(xn = θ | xk = 1, k ∈ D̃) ≥ 1− ε.

Therefore, for any ε > 0,

min
D∈D

Pσ(xn = θ | xk = 1, k ∈ D) ≥ 1− ε for all n ≥ max
D∈D

Nε(D),
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thus completing the proof.

Proof of Proposition 8. To arrive at a contradiction, we assume that in some equi-

librium σ ∈ Σ∗, limn→∞ Pσ(xn = θ) = 1. The key part of the proof is to show that this

implies

lim
n→∞

Pσ(θ = 1 | xk = 1, k ∈ B(n)) = 1. (5.10)

To prove this claim, we show that for any ε > 0, there exists some K̃(ε) such that for

any neighborhood B with |B| ≤M and maxb∈B b ≥ K̃(ε) we have

Pσ(θ = 1 | xk = 1, k ∈ B) ≥ 1− ε. (5.11)

In view of the assumption that maxb∈B(n) b converges to infinity with probability 1, this

implies the desired claim (5.10).

For a fixed ε > 0, we define K̃(ε) as follows: We recursively construct M thresholds

K0 < ... < KM−1 and let K̃(ε) = KM−1. We consider an arbitrary neighborhood B with

|B| ≤M and maxb∈B b ≥ KM−1, and for each d ∈ {0, ...,M − 1}, define the sets

Bd = {b ∈ B : b ≥ Kd} and Cd = {b ∈ B : b < Kd−1},

where C0 = ∅. With this construction, it follows that there exists at least one d ∈

{0, ...,M − 1} such that B = Bd ∪ Cd, in which case we say B is of type d. We show

below that for any B of type d, we have

Pσ(θ = 1 | xk = 1, k ∈ Bd ∪ Cd) ≥ 1− ε, (5.12)

which implies the relation in (5.11).
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We first define K0 and show that for any B of type 0, relation (5.12) holds. Since

limn→∞ Pσ(xn = θ) = 1 by assumption, there exists some N0 such that for all n ≥ N0,

Pσ(xn = θ) ≥ 1− ε

2M
.

Let K0 = N0. Let B be a neighborhood of type 0, implying that B = B0 and all

elements b ∈ B0 satisfy b ≥ K0. By using a union bound, the preceding inequality

implies

Pσ(xk = θ, k ∈ B0) ≥ 1−
∑
k∈B0

Pσ(xk 6= θ) ≥ 1− ε

2
.

Hence, we have

Pσ(xk = θ, k ∈ B0 | θ = 1)
1

2
+ Pσ(xk = θ, k ∈ B0 | θ = 0)

1

2
≥ 1− ε

2
,

and for any j ∈ {0, 1},

Pσ(xk = θ, k ∈ B0 | θ = j) ≥ 1− ε. (5.13)

Therefore, for any such B0,

Pσ(θ = 1 | xk = 1, k ∈ B0) =

[
1 +

Pσ(xk = 1, k ∈ B0 | θ = 0)Pσ(θ = 0)

Pσ(xk = 1, k ∈ B0 | θ = 1)Pσ(θ = 1)

]−1

≥
[
1 +

ε

1− ε

]−1

= 1− ε,

showing that relation (5.12) holds for any B of type 0.

We proceed recursively, i.e., given Kd−1 we define Kd and show that relation (5.12)

holds for any neighborhood B of type d. Lemma 10 implies that

lim
n→∞

min
D⊆{1,...,Kd−1−1}

Pσ(xn = θ | xk = 1, k ∈ D) = 1.
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Therefore, for any δ > 0, there exists some Kd such that for all n ≥ Kd,

min
D⊆{1,...,Kd−1−1}

Pσ(xn = θ | xk = 1, k ∈ D) ≥ 1− δε.

From the equation above and definition of Cd it follows that for any Cd,

Pσ(xn = θ | xk = 1, k ∈ Cd) ≥ 1− δε.

By a union bound,

Pσ(xk = θ, k ∈ Bd | xk = 1, k ∈ Cd) ≥ 1−
∑
k∈Bd

Pσ(xk 6= θ | xk = 1, k ∈ Cd)

≥ 1− (M − d)δε.

Repeating the argument from Eq. (5.13), for any j ∈ {0, 1},

Pσ(xk = θ, k ∈ Bd | θ = j, xk = 1, k ∈ Cd) ≥ 1− (M − d)δε

Pσ(θ = j | xk = 1, k ∈ Cd)
.

Hence, for any such Bd,

Pσ(θ = 1 | xk = 1, k ∈ Bd ∪ Cd)

=

[
1 +

Pσ(xk = 1, k ∈ Bd | θ = 0, xk = 1, k ∈ Cd)Pσ(θ = 0, xk = 1, k ∈ Cd)

Pσ(xk = 1, k ∈ Bd | θ = 1, xk = 1, k ∈ Cd)Pσ(θ = 1, xk = 1, k ∈ Cd)

]−1

≥

1 +

(M−d)δε
Pσ(θ=0 | xk=1, k∈Cd)

Pσ(θ = 0, xk = 1, k ∈ Cd)(
1− (M−d)δε

Pσ(θ=1 | xk=1, k∈Cd)

)
Pσ(θ = 1, xk = 1, k ∈ Cd)

−1

= 1− (M − d)δε

Pσ(θ = 1 | xk = 1, k ∈ Cd)
.

Choosing

δ =

(
1

M − d

)
min

D⊆{1,...,Kd−1−1}
Pσ(θ = 1 | xk = 1, k ∈ D),
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we obtain that for any neighborhood B of type d

Pσ(θ = 1 | xk = 1, k ∈ Bd ∪ Cd) ≥ 1− ε.

This proves that Eq. (5.12) holds for any neighborhood B of type d, and completing the

proof of Eq. (5.11) and therefore of Eq. (5.10).

Since the private beliefs are bounded, we have β > 0. By Eq. (5.10), there exists

some N such that

Pσ(θ = 1|xk = 1, k ∈ B(n)) ≥ 1−
β

2
for all n ≥ N.

Suppose the first N agents choose 1, i.e., xk = 1 for all k ≤ N , which is an event with

positive probability for any state of the world θ. We now prove inductively that this

event implies that xn = 1 for all n ∈ N. Suppose it holds for some n ≥ N . Then, by

Eq. (5.11),

Pσ(θ = 1 | sn+1) + Pσ(θ = 1 | xk = 1, ∈ B(n+ 1)) ≥ β + 1−
β

2
> 1.

By Lemma 1, this implies that xn+1 = 1. Hence, we conclude there is a positive probabil-

ity xn = 1 for all n ∈ N in any state of the world, contradicting limn→∞ Pσ(xn = θ) = 1,

and completing the proof.

The following corollary illustrates an implication of Theorem 5. It shows that, when

private beliefs are bounded, there will be no asymptotic learning (in any equilibrium) in

stochastic networks with random sampling.

Corollary 3 Assume that the signal structure (F0,F1) has bounded private beliefs. As-

sume that each agent n samples M agents uniformly and independently among {1, ..., n−

1}, for some M ≥ 1. Then, asymptotic learning does not occur in any equilibrium

σ ∈ Σ∗.
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Proof. For M = 1, the result follows from Theorem 5 part (b). For M ≥ 2, we show

that, under the assumption on the network topology, maxb∈B(n) b goes to infinity with

probability one. To arrive at a contradiction, suppose this is not true. Then, there exists

some K ∈ N and scalar ε > 0 such that

Q
(

max
b∈B(n)

b ≤ K for infinitely many n

)
≥ ε.

By the Borel-Cantelli Lemma (see, e.g., Breiman, Lemma 3.14, p. 41), this implies that

∞∑
n=1

Qn

(
max
b∈B(n)

b ≤ K

)
=∞.

Since the samples are all uniformly drawn and independent, for all n ≥ 2,

Qn

(
max
b∈B(n)

b ≤ K

)
=

(
min{K,n− 1}

n− 1

)M
.

Therefore,

∞∑
n=1

Qn

(
max
b∈B(n)

b ≤ K

)
= 1 +

∞∑
n=1

(
min{K,n− 1}

n

)M
≤ 1 +

∞∑
n=1

(
K

n

)M
<∞,

where the last inequality holds since M ≥ 2. Hence, we obtain a contradiction. The

result follows by using Theorem 5 part (c).

5.2 Learning under Bounded Private Beliefs

We next show that with general stochastic topologies asymptotic learning is possible

even under bounded private beliefs. Let us first define the notion of a nonpersuasive

neighborhood.

Definition 9 A finite set B ⊂ N is a nonpersuasive neighborhood in equilibrium
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σ ∈ Σ∗ if

Pσ (θ = 1|xk = yk for all k ∈ B) ∈
(
1− β, 1− β

)
for any set of values yk ∈ {0, 1} for each k. We denote the set of all nonpersuasive

neighborhoods by Uσ.

A neighborhood B is nonpersuasive in equilibrium σ ∈ Σ∗ if for any set of decisions

that agent n observes, his behavior still depends on her private signal. A nonpersua-

sive neighborhood is defined with respect to a particular equilibrium. However, it is

straightforward to see that B = ∅, i.e., the empty neighborhood, is nonpersuasive in

any equilibrium. The following two propositions present two classes of nonpersuasive

neighborhoods.

Proposition 9 Let (G0,G1) be private belief distributions. Assume that the first K

agents have empty neighborhoods, i.e., B(n) = ∅ for all n ≤ K, and K satisfies

K < min

 log
(

β

1−β

)
log
(

G0(1/2)
G1(1/2)

) , log
(

β

1−β

)
log
(

1−G0(1/2)
1−G1(1/2)

)
 . (5.14)

Then any subset B ⊆ {1, 2, ..., K} is a nonpersuasive neighborhood.

Proof. For simplicity, we assume in this proof that all agents break ties in favor of action

0. Relaxing this assumption does not change the result but requires more notation.

Using Bayes’ Rule and the assumption of equal priors on the state θ, we have that the

social belief given by observing neighborhood B, with actions xk = yk for each k ∈ B in

equilibrium σ is given by

Pσ (θ = 1|xk = yk for all k ∈ B) =

(
1 +

Pσ (xk = yk for all k ∈ B|θ = 0)

Pσ (xk = yk for all k ∈ B|θ = 1)

)−1

. (5.15)
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Since the neighborhoods of the agents in B are all empty, their actions are independent

conditional on the state θ. Hence,

Pσ (θ = 1|xk = yk for all k ∈ B) =

(
1 +

∏
k∈B Pσ (xk = yk|θ = 0)∏
k∈B Pσ (xk = yk|θ = 1)

)−1

.

Given the assumption that all agents break ties in favor of action 0, we can obtain that

for each agent n with an empty neighborhood, and each j ∈ {0, 1}, Pσ(x1 = 0|θ = j) =

Gj(1/2) and Pσ(x1 = 1|θ = j) = 1− Gj(1/2). Therefore, the social belief of Eq. (5.15)

can be rewritten as

Pσ (θ = 1|xk = yk for all k ∈ B) =

(
1 +

(1−G0(1/2))
∑
k∈B ykG0(1/2)|B|−

∑
k∈B yk

(1−G1(1/2))
∑
k∈B ykG1(1/2)|B|−

∑
k∈B yk

)−1

.

(5.16)

From Lemma 3(c), we have that

G0(1/2)

G1(1/2)
> 1 >

1−G0(1/2)

1−G1(1/2)
,

which combined with Eq. (5.16) implies

min
B⊆{1,...,K},{yk}k≤K∈{0,1}K

Pσ (θ = 1|xk = yk for all k ∈ B)

= Pσ (θ = 1|xk = 0 for all k ∈ {1, ..., K}) =

(
1 +

G0(1/2)K

G1(1/2)K

)−1

and

max
B⊆{1,...,K},{yk}k≤K∈{0,1}K

Pσ (θ = 1|xk = yk for all k ∈ B)

= Pσ (θ = 1|xk = 1 for all k ∈ {1, ..., K}) =

(
1 +

(1−G0(1/2))K

(1−G1(1/2))K

)−1

.

Therefore, any such neighborhood B ⊆ {1, ..., K} is nonpersuasive if it satisfies the

conditions

(
1 +

G0(1/2)K

G1(1/2)K

)−1

> 1− β and

(
1 +

(1−G0(1/2))K

(1−G1(1/2))K

)−1

< 1− β, (5.17)
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which together yield Eq. (5.14).

To understand the inequality in Eq. (5.14) it is easier to consider the rearranged, but

equivalent, the pair of inequalities in Eq. (5.17). The factor of (1−(G0(1/2)/G1(1/2))K)−1

represents the probability that the state θ is equal to 1 conditional on K agents indepen-

dently selecting action 0. For such a neighborhood of K agents acting independently to

be nonpersuasive, there must exist a signal strong enough in favor of state 1 such that

an agent would select action 1 after observing K independent agents choosing 0. From

Lemma 1, we know this is possible if (1− (G0(1/2)/G1(1/2))K)−1 + β > 1. Repeat the

same argument for action 0 to obtain the second inequality in Eq. (5.17).

Proposition 10 Let (G0,G1) be private belief distributions. Assume that the first K

agents observe the full history of past actions, i.e., B(n) = {1, ..., n− 1} for all n ≤ K,

and K satisfies

K < min

 log
(

β

1−β

)
log
(

G0(1/2)
G1(1/2)

) , log
(

β

1−β

)
log
(

1−G0(1/2)
1−G1(1/2)

)
 . (5.18)

Assume also that the private belief distributions (G0,G1) satisfy the following mono-

tonicity conditions: the functions

(
1

q
− 1

)
G0(1− q)
G1(1− q)

and

(
1

q
− 1

)
1−G0(1− q)
1−G1(1− q)

(5.19)

are both nonincreasing in q. Then any subset B ⊆ {1, 2, ..., K} is a nonpersuasive

neighborhood.

Proof. As in the previous proposition, we assume in this proof for simplicity, and

without loss of generality, that all agents break ties in favor of action 0. We start

by showing inductively that all networks of the form {1, ..., n} for any n ≤ K are

nonpersuasive. In particular, we first show that for all n ≤ K, and any set of values
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yk ∈ {0, 1} for each k ≤ n,

Pσ(θ = 1|xk = yk for all k ≤ n) ≥
(

1 +

(
G0(1/2)

G1(1/2)

)n)−1

. (5.20)

The upper bound on Pσ(θ = 1|xk = yk for all k ≤ n) is symmetric and we do not prove

it to avoid repetition.

Note that Eq. (5.20) is trivially true for n = 0, i.e., Pσ(θ = 1) = 1/2. Assume that

Eq. (5.20) is true for n − 1 as an inductive hypothesis. We now show it is true for n.

Let the social belief given the neighborhood {1, ..., n} and decisions yn = (y1, ..., yn) be

given by q∗(yn) = Pσ(θ = 1|xk = yk for all k ≤ n). Then, using Bayes’ Rule, we obtain

that

1

q∗(yn)
− 1 =

(
1

q∗(yn−1)
− 1

)
Pσ(xn = yn|θ = 0, xk = yk for all k ≤ n− 1)

Pσ(xn = yn|θ = 1, xk = yk for all k ≤ n− 1)
.

Since agent n observes the full history of past actions and breaks ties in favor of action

0, we have

1

q∗(yn)
− 1 =


(

1
q∗(yn−1)

− 1
)

1−G0(1−q∗(yn−1))
1−G1(1−q∗(yn−1))

, if yn = 1;(
1

q∗(yn−1)
− 1
)

G0(1−q∗(yn−1))
G1(1−q∗(yn−1))

, if yn = 0.

If yn = 1, then q∗(yn) ≥ q∗(yn−1) because

1−G0(1− r))
1−G1(1− r))

≤ 1 for any r ≥ β,

by Lemma 3(c). Using the inductive hypothesis,

q∗(yn) ≥ q∗(yn−1) ≥

(
1 +

(
G0(1/2)

G1(1/2)

)n−1
)−1

≥
(

1 +

(
G0(1/2)

G1(1/2)

)n)−1

,
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thus proving Eq. (5.20) for yn = 1. If yn = 0, then we need to consider two separate

cases. Suppose first q∗(yn−1) < 1/2. Then, by Lemma 3(c), we have that

G0(1− q∗(yn−1))

G1(1− q∗(yn−1))
≤ G0(1/2)

G1(1/2)
.

Combining the relation above with the inductive hypothesis, we obtain

(
1

q∗(yn−1)
− 1

)
G0(1− q∗(yn−1))

G1(1− q∗(yn−1))
≤
(

1

q∗(yn−1)
− 1

)
G0(1/2)

G1(1/2)
≤
(

G0(1/2)

G1(1/2)

)n
,

thus proving that Eq. (5.20) holds in this case as well. Finally, consider the case where

q∗(yn−1) ≥ 1/2. Here, we use the monotonicity assumption from Eq. (5.19) to show that

1

q∗(yn)
−1 =

(
1

q∗(yn−1)
− 1

)
G0(1− q∗(yn−1))

G1(1− q∗(yn−1))
≤
(

1

1/2
− 1

)
G0(1/2)

G1(1/2)
≤
(

G0(1/2)

G1(1/2)

)n
,

thus completing the proof of Eq. (5.20). We thus conclude that any neighborhood

{1, ..., n} is unpersuasive if n ≤ K and K satisfies

(
1 +

(
G0(1/2)

G1(1/2)

)K)−1

> 1− β,

as well as the symmetric (upper bound)

(
1 +

(
1−G0(1/2)

1−G1(1/2)

)K)−1

< 1− β.

Both conditions on K combined yield the condition of Eq. (5.18).

We have proved that the set {1, ..., K} is nonpersuasive given the conditions of the

proposition. We now show that any subset of B ⊆ {1, ..., K} is also nonpersuasive. To

prove this result, we bound by the worst possible event in terms of the actions of agents
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not B with respect to the social belief, i.e.,

Pσ(θ = 1|xk = yk for all k ∈ B)

=
∑

zn∈{0,1}{1,...,K}\B
Pσ(θ = 1|xk = yk for k ∈ B, xk = zk for k ∈ {1, ..., K}\B)

Pσ(xk = zk for all k ∈ {1, ..., K}\B|xk = yk for all k ∈ B)

≥ min
zn∈{0,1}{1,...,K}\B

Pσ(θ = 1|xk = yk for k ∈ B, xk = zk for k ∈ {1, ..., K}\B).

Use a symmetric bound to show the maximum value of the social belief. The proof is,

therefore, complete since we have previously proven that for the neighborhood {1, ..., K}

is unpersuasive.

The monotonicity condition of Eq. (5.19) guarantees the following: let 0 ≤ q′ ≤ q′′ ≤

1; then Pσ(θ = 1|qn = q′, xn = 0) ≤ Pσ(θ = 1|qn = q′′, xn = 0) and Pσ(θ = 1|qn =

q′, xn = 1) ≤ Pσ(θ = 1|qn = q′′, xn = 1). That is, an agent n with a given social belief

qn = q′ selecting action 0 (or action 1) represents a stronger signal in favor of state θ = 0

than an agent with social belief qn = q′′ ≥ q′ choosing action 0 (or, respectively, action

1).

Our main theorem for learning with bounded beliefs, which we state next, provides

a class of stochastic social networks where asymptotic learning takes place even under

bounded private beliefs.

Theorem 6 Let (F0,F1) be an arbitrary signal structure. Let M be a positive integer

and let C1, ..., CM be sets such that Ci ∈ Uσ for all i = 1, . . . ,M for some equilibrium

σ ∈ Σ∗. For each i = 1, . . . ,M , let {ri(n)} be a sequence of non-negative numbers such

that

lim
n→∞

M∑
i=1

ri(n) = 0 and
∞∑
n=1

M∑
i=1

ri(n) =∞, (5.21)

with
∑M

i=1 ri(n) ≤ 1 for all n and ri(n) = 0 for all n ≤ maxb∈Cib. Assume the network
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topology satisfies

B(n) =

 Ci, with probability ri(n) for each i from 1 to M ,

{1, 2, ..., n− 1}, with probability 1−
∑M

i=1 ri(n).

Then, asymptotic learning occurs in equilibrium σ.

Clearly, this theorem could have been stated with Ci = ∅ for all i = 1, . . . ,m, which

would correspond to agent n making a decision without observing anybody else’s action

with some probability r(n) =
∑M

i=1 ri(n) ≤ 1.

This is a rather surprising result, particularly in view of existing results in the liter-

ature, which generate herds and information cascades (and no learning) with bounded

beliefs. This theorem indicates that learning dynamics become significantly richer when

we consider general social networks. In particular, certain stochastic network topologies

enable a significant amount of new information to arrive into the network, because some

agents make decisions with limited information (nonpersuasive neighborhoods). As a

result, the relevant information can be aggregated in equilibrium, leading to individuals’

decisions eventually converging to the right action (in probability).

Proof of Theorem 6. To simplify the exposition of the proof, we assume that the

corresponding private belief distributions (G0,G1) are continuous, which implies that

the equilibrium is unique.

For each n, let xn = (x1, . . . , xn) represent the sequence of decisions up to and

including xn. Let q∗(xn) denote the “social belief” when xn is observed under equilibrium

σ, i.e.,

q∗(xn) = Pσ(θ = 1 | xn).

The social belief q∗(xn) is a martingale and, by the martingale convergence theorem,

converges with probability 1 to some random variable q̂. Conditional on θ = 1, the
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likelihood ratio
1− q∗(xn)

q∗(xn)
=

Pσ(θ = 0 | xn)

Pσ(θ = 1 | xn)

is also a martingale [see Doob, 1953, Eq. (7.12)]. Therefore, conditional on θ = 1, the

ratio (1−q∗(xn))/q∗(xn) converges with probability 1 to some random variable (1−q̂1)/q̂1.

In particular, we have

Eσ

[
1− q̂1

q̂1

]
<∞,

[see Breiman, Theorem 5.14], and therefore q̂1 > 0 with probability 1. Similarly,

q∗(xn)/(1 − q∗(xn)) is a martingale conditional on θ = 0 and converges with proba-

bility 1 to some random variable q̂0/(1− q̂0), where q̂0 < 1 with probability 1. Therefore,

Pσ(q̂ > 0 | θ = 1) = 1 and Pσ(q̂ < 1 | θ = 0) = 1. (5.22)

The key part of the proof is to show that the support of q̂ is contained in the set {0, 1}.

This fact combined with Eq. (5.22) guarantees that q̂ = θ (i.e., the agents that observe

the entire history eventually know what the state of the world θ is).

To show that the support of q̂ is contained in {0, 1}, we study the evolution dynamics

of q∗(xn). Suppose xn+1 = 0. Using Bayes’ Rule twice, we have

q∗ ((xn, 0)) =
Pσ(xn+1 = 0, xn | θ = 1)∑1
j=0 Pσ(xn+1 = 0, xn | θ = j)

=

[
1 +

Pσ(xn+1 = 0, xn | θ = 0)

Pσ(xn+1 = 0, xn | θ = 1)

]−1

=

[
1 +

(
1

q∗(xn)
− 1

)
Pσ(xn+1 = 0 | θ = 0, xn)

Pσ(xn+1 = 0 | θ = 1, xn)

]−1

.

To simplify notation, let

fn(xn) =
Pσ(xn+1 = 0 | θ = 0, xn)

Pσ(xn+1 = 0 | θ = 1, xn)
, (5.23)
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so that

q∗ ((xn, 0)) =

[
1 +

(
1

q∗(xn)
− 1

)
fn(xn)

]−1

. (5.24)

We next show that if q∗(xn) ≥ 1/2 for some n, we have

fn(xn) ≥ 1 + δ for some δ > 0, (5.25)

which will allow us to establish a bound on the difference between q∗(xn) and q∗((xn, 0)).

By conditioning on the neighborhood B(n+ 1), we have for any j ∈ {0, 1},

Pσ(xn+1 = 0 | θ = j, xn) =
M∑
i=1

ri(n+ 1)Pσ(xn+1 = 0 | θ = j, xn, B(n+ 1) = Ci)

+

(
1−

M∑
i=1

ri(n+ 1)

)
Pσ(xn+1 = 0 | θ = j, xn, B(n+ 1) = {1, ..., n}).

For each i = 1, . . . ,M , we define

qi(x
n) = Pσ(θ = 1|xk, k ∈ Ci).

Using the assumption that G0 and G1 are continuous, Lemma 1 implies that

Pσ(xn+1 = 0 | θ = j, xn, B(n+ 1) = Ci)

= Pσ(pn+1 ≤ 1− qi(xn) | θ = j, xn, B(n+ 1) = Ci) = Gj (1− qi(xn)) .

Therefore,

Pσ(xn+1 = 0 | θ = j, xn) =
M∑
i=1

ri(n+ 1)Gj(1− qi(xn)) +
(

1−
M∑
i=1

ri(n+ 1)
)
Gj(1− q∗(xn)).
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Hence, Eq. (5.23) can be rewritten as

fn(xn) =

∑M
i=1 ri(n+ 1)G0(1− qi(xn)) +

(
1−

∑M
i=1 ri(n+ 1)

)
G0(1− q∗(xn))∑M

i=1 ri(n+ 1)G1(1− qi(xn)) +
(

1−
∑M

i=1 ri(n+ 1)
)

G1(1− q∗(xn))
.

LetN ⊆ N be the set of all n such that
∑M

i=1 ri(n) ∈ (0, 1). The setN has infinitely many

elements in view of the assumptions that limn→∞
∑M

i=1 ri(n) = 0 and
∑∞

n=1

∑M
i=1 ri(n) =

∞ [cf. Eq. (5.21)]. To simplify notation, let ωi(n) = ri(n)/(1−
∑M

k=1 rk(n)) for all n ∈ N .

Note that for all n ∈ N , there exists some i such that ωi(n) > 0. Then, for any n ∈ N ,

fn(xn) =

∑M
i=1 ωi(n+ 1)G0(1− qi(xn)) + G0(1− q∗(xn))∑M
i=1 ωi(n+ 1)G1(1− qi(xn)) + G1(1− q∗(xn))

. (5.26)

If q∗(xn) ≥ 1/2, it follows from Lemma 3(c) that

G0(1− q∗(xn)) ≥
(

G0(1/2)

G1(1/2)

)
G1(1− q∗(xn)). (5.27)

Furthermore, since Ci is a nonpersuasive neighborhood, we have

qi(x
n) ∈ (1− β, 1− β) for all xn,

which implies the existence of some c′i with infxn qi(x
n) = c′i > 1 − β, where the strict

inequality follows since the infimum is over a finite set. Lemma 3(c) then implies that

G0(1− qi(xn)) ≥
(

G0(1− c′i)
G1(1− c′i)

)
G1(1− qi(xn)). (5.28)

Combining Eqs. (5.26), (5.27) and (5.28), we see that for all n ∈ N with q∗(xn) ≥ 1/2,

fn(xn) ≥

∑M
i=1 ωi(n+ 1)

(
G0(1−c′i)
G1(1−c′i)

)
G1(1− qi(xn)) +

(
G0(1/2)
G1(1/2)

)
G1(1− q∗(xn))∑M

i=1 ωi(n+ 1)G1(1− qi(xn)) + G1(1− q∗(xn))
.
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Notice the right-hand side of the equation above is merely a weighted average. Therefore,

if n ∈ N and q∗(xn) ≥ 1/2, then

fn(xn) ≥ min

{
G0(1/2)

G1(1/2)
, min
i∈{1,...,M}

G0(1− c′i)
G1(1− c′i)

}
= 1 + δ,

for some δ > 0 using Lemma 3(c), proving Eq. (5.25).

Combining Eq. (5.25) with Eq. (5.24) yields

q∗ ((xn, 0)) ≤
[
1 +

(
1

q∗(xn)
− 1

)
(1 + δ)

]−1

for all n ∈ N , q∗(xn) ≥ 1/2. (5.29)

Suppose now n ∈ N and q∗(xn) ∈ [1/2, 1− ε] for some ε > 0. We show that there exists

some constant K(δ, ε) > 0 such that

q∗(xn)− q∗ ((xn, 0)) ≥ K(δ, ε). (5.30)

Define g : [1/2, 1− ε]→ [0, 1] as

g(q) = q −
[
1 +

(
1

q
− 1

)
(1 + δ)

]−1

.

It can be seen that g(q) is a concave function over q ∈ [1/2, 1− ε]. Let K(δ, ε) be

K(δ, ε) = inf
q∈[1/2,1−ε]

g(q) = min{g(1/2), g(1− ε)} = min

{
δ

2(2 + δ)
,
εδ(1− ε)

1 + εδ

}
> 0.

From Eq. (5.29), it follows that

q∗(xn)− q∗ ((xn, 0)) ≥ q∗(xn)−
[
1 +

(
1

q∗(xn)
− 1

)
(1 + δ)

]−1

≥ g (q∗(xn)) ≥ K(δ, ε),

thus proving Eq. (5.30).
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Recall that q∗(xn) converges to q̂ with probability 1. We show that for any ε > 0,

the support of q̂ does not contain (1/2, 1− ε). Assume, to arrive at a contradiction, that

it does. Consider a sample path that converges to a value in the interval (1/2, 1 − ε).

For this sample path, there exists some N such that for all n ≥ N , q∗(xn) ∈ [1/2, 1 −

ε]. By the Borel-Cantelli Lemma, there are infinitely many agents n within N that

observe a neighborhood Ci for some i because the neighborhoods are independent and∑∞
n=1

∑M
i=1 ri(n) =∞. Since these are nonpersuasive neighborhoods, an infinite subset

will choose action 0. Therefore, for infinitely many n that satisfy n ≥ N and n ∈ N , by

Eq. (5.30),

q∗(xn+1) ≤ q∗(xn)−K(δ, ε).

But this implies the sequence q∗(xn) is not Cauchy and, therefore, contradicts the fact

that q∗(xn) is a convergent sequence. Hence, we conclude that the support of q̂ does not

contain (1/2, 1 − ε). Since this argument holds for any ε > 0, the support of q̂ cannot

contain (1/2, 1). A similar argument leads to the conclusion that the support of q̂ does

not include (0, 1/2]. Therefore, the support of q̂ is a subset of the set {0, 1}. By Eq.

(5.22), this implies that q̂ = θ with probability 1.

We finally show that q̂ = θ with probability 1 implies the convergence of actions xn

to θ in probability. Suppose first θ = 1. Then, q∗(xn) converges to 1 with probability 1.

Therefore, Pσ(pn+1 + q∗(xn) ≥ 1 | θ = 1) converges to 1. Therefore, for any n,

Pσ(xn = θ | θ = 1) ≥ Pσ(xn = θ | θ = 1, B(n) = {1, ..., n− 1})Q(B(n) = {1, ..., n− 1})

= Pσ(pn+1 + q∗(xn) ≥ 1|θ = 1)

(
1−

M∑
i=1

ri(n)

)
.

Since
∑M

i=1 ri(n) converges to 0, the preceding relation implies that Pσ(xn = θ | θ = 1)

converges to 1. By the same argument, Pσ(xn = θ | θ = 0) also converges to 1, thus
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proving asymptotic learning occurs in equilibrium σ.�

It is important to emphasize the difference between this result and that in Sgroi

(2002), which shows that a social planner can ensure some degree of information ag-

gregation by forcing a subsequence of agents to make decisions without observing past

actions. With the same reasoning, one might conjecture that asymptotic learning may

occur if a particular subsequence of agents, such as that indexed by prime numbers, has

empty neighborhoods. However, there will not be asymptotic learning in this determin-

istic topology since lim infn→∞ Pσ(xn = θ) < 1. For the result that there is asymptotic

learning (i.e., lim infn→∞ Pσ(xn = θ) = 1) in Theorem 6, the feature that the network

topology is stochastic is essential.
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Chapter 6

Heterogeneity of Preferences

6.1 The Role of Preferences

In the model of social learning introduced in Chapter 2 and analyzed in Chapters 3-5, all

agents have the same preferences. This assumption allowed us to focus on information

dynamics in a context where actions were selected based on beliefs about the state of

the world. However, in most real-life learning problems, different individuals also have

different preferences over possible states of the world. For example, when a consumer

decides on a new product to purchase, his choice is not merely a function of whether

the product will yield long-term value, but it also rests on whether this product fits

this consumer’s particular needs. The element of personal preferences arises in contexts

as varied as choosing an operating system for your computer, where a given operating

system is best suited for a particular type of user, or selecting a retirement fund, where

different risk-reward profiles are recommended based on a person’s age and wealth, or

picking a political party, where different individuals would prefer different tax rates.

Once we incorporate the element of diverse preferences into our social learning model,

each individual agent faces a more complex task when trying to estimate the state from

the actions of her peers. Suppose you observe a person entering a Japanese restaurant
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rather than the similarly priced Italian alternative next door. When learning from his

action, you have to consider whether the person selected that option because he believes

the Japanese restaurant serves meals of higher quality or because he enjoys eating sushi

more than eating pasta. If the former explanation is true, then his action is informative

and you should consider following him into the Japanese parlor, but if the latter reason is

correct, then his action is completely uninformative and you should completely disregard

his action. Therefore, a given action is less informative about the state of the world in a

context of private preferences and it would be natural that rational agents would perform

worse (learn less) than they would in an environment without private preferences.

The intuition above is confirmed in Smith and Sorensen (2000) where diverse types

generically lead agents to an equilibrium called confounded learning. That is, the history

of actions eventually becomes uninformative about the state because agents cannot

determine whether the actions are a product of the signals (and therefore correlated to

the state of the world) or a consequence of the diverse preferences. Therefore, diverse

preferences are an obstacle to social learning in this model.

However, a key assumption in Smith and Sorensen’s model is that preferences are

not “monotonic in the state”. For example, suppose an agent n of type A would select

action xn = θ if she knew the state θ, but a different agent m of type B would choose

action xn = 1 − θ if she knew the state. That is, if we increase the likelihood that

state is equal to 1 rather than 0, some agents will react by changing their actions from

0 to 1, while others will do exactly the opposite and change their actions from 1 to 0.

This phenomenon reduces an agent’s power to make inferences on the state based on

the actions of others.

In this chapter we consider preferences that are monotonic on the state. Monotonic

preferences satisfy the following property: for a given belief about the state of the world

different agents might select different actions, but if we increase the probability that

the state is 1, then all agents either maintain their current actions or change to action
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1. Preferences are monotonic in many scenarios where agents have to learn from their

peers. For example, given a belief about the quality of a given product, some individuals

would choose to buy it, while others would not. However, if the belief about the product

quality decreases, no one will become more likely to buy it than they previously were.

The selection of a financial product is also a good example. Different people have distinct

risk-reward preferences, but everyone prefers higher returns to lower returns.

We study the problem of learning under diverse preferences with two different models

for the social network topology. In Section 6.3, we assume agents observe only the action

of their immediate neighbors. In this case, the näıve intuition that diverse preferences

hinder learning is indeed verified. We first show that no learning occurs under bounded

private beliefs. This result is based on the intuitive notion that learning from a single

agent is less informative if her preferences are unknown. We then show by means of an

example that asymptotic learning might fail even under unbounded beliefs given diverse

preferences.

In Section 6.4, we assume agents observe the entire history of past actions. Under

this topology, we show that diverse preferences improve learning. The wider the support

of preferences, the higher will be the probability that an agent n will choose the best

action, for large n.1 In particular, if preferences are very diverse, learning occurs for

any signal structure. The rationale behind this result is the following: heterogeneous

preferences reduces the ability of the first few agents to learn from the actions of others;

the immediate consequence is that these agents need to give greater consideration to their

own private signals; for an agent that comes later into the game (large n), the history

will contain more information about the signals and, therefore, yield more learning.

1Note that this is a set-valued result, please see Section 6.4 for the precise statement.
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6.2 Formulation

The model studied in this chapter is an extension of the one introduced in Chapter

2. A countably infinite number of agents, indexed by n ∈ N, sequentially make a

single decision (take an action). Each agent n has a type tn ∈ R and makes a decision

xn ∈ {0, 1}. The payoff of agent n depends on her type, her decision and some underlying

state of the world θ. Similarly to the model in Chapter 2, we assume that both values

of the underlying state are equally likely, so that P(θ = 0) = P(θ = 1) = 1/2. For each

n, the payoff of agent n is

u(tn, xn, θ) =

 (1− θ) + tn, if xn = 0,

θ + (1− tn), if xn = 1.

Note that this utility function has two components: the first one depends on whether

xn = θ and the second one depends on tn and whether xn = 1. This means agents

need to balance between two objectives, they all want to choose their actions xn equal

to the state θ, but they also have a preference for choosing one particular action. The

type tn indicates how agent n makes this trade-off: if the type tn = 1/2, agent n is

neutral between actions 0 and 1 and, therefore, makes her choice solely based on which

action is more likely to realize xn = θ; the higher her value of tn, the more she prefers

decision 0. If the value of tn is greater than or equal to 1, then agent n’s preference

for action 0 always overrides her preference for xn = θ and, therefore she will certainly

choose that action. In this case, we say agent n is committed to action 0. Similarly,

if tn ≤ 0, then agent n is committed to action 1. For simplicity, we assume all agents

are non-committed, i.e., tn ∈ (0, 1) for all n. Our results can easily be extended to

include committed agents if we modify slightly the definition of asymptotic learning by

considering only the convergence of actions of the non-committed agents.

The types {tn} are independently generated according to probability measure H.
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For each n, the type tn is private information of agent n. The measure H is common

knowledge. We assume that H has full support in some range [γ, γ], where 0 ≤ γ ≤

1/2 ≤ γ ≤ 1. The support of the distribution H, [γ, γ], is a measure of the diversity

of preferences. If both γ and γ are close to 1/2, then all agents are close to indifferent

between the two possible actions prior to receiving information about the state θ. If, on

the other hand, γ is close to 0 and γ is close 1, then there are agents with strong prior

preference for one of the two choices in the action set.

Definition 10 The preferences are said to be unbounded if γ = 0 and γ = 1. The

preferences are said to be bounded if γ > 0 and γ < 1.

The concept of unbounded preferences should not be confused with the notion of

unbounded private beliefs. Unbounded preferences indicates that there are agents ar-

bitrarily more likely to take each one of the possible actions before they know any

information about the state. Unbounded private beliefs means that there are arbitrarily

strong signals in favor of both actions. If agent n knew that agent b chose action 0

because of a very strong signal, she would be inclined to follow suit since it indicates

the state is likely to be θ = 0. However, if agent n knew that agent b selected action 0

because of a strong personal preference, agent n should disregard decision b’s action as

it is uninformative about the state. In our model, both types and signals are private,

so agents make Bayesian estimates of the likelihood of each scenario and make decisions

based on their estimates.

Apart from the private types and the modified utility functions, the model analyzed

in this chapter is the same as the one described in Chapter 2. Each agent n obtains a

signal sn ∈ S generated from one of two probability measures, F0 or F1, conditional on

the state θ. An agent n also observes the actions of agents in a neighborhood B(n). The

information set In of agent n is composed of his type tn, signal sn, neighborhoodB(n) and

all decisions of agents xk for k ∈ B(n). We analyze the pure-strategy perfect Bayesian
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equilibria and denote the set of equilibria by Σ∗. The following lemma establishes the

equilibrium decision rule used by the agents.

Lemma 11 Let σ ∈ Σ∗ be an equilibrium of the game. Let In ∈ In be an information

set of agent n. Then, the decision of agent n, xn = σ(In), satisfies

xn =

 1, if Pσ(θ = 1 | sn, B(n), xk for all k ∈ B(n)) > tn,

0, if Pσ(θ = 1 | sn, B(n), xk for all k ∈ B(n)) < tn,

and xn ∈ {0, 1} otherwise.

Proof. Agent n maximizes her expected utility given her information set and the

equilibrium σ ∈ Σ∗ and, thus, selects action 1 if Eσ[(1− θ) + tn|In] > Eσ[θ+ (1− tn)|In],

where Eσ represents the expected value in a given equilibrium σ ∈ Σ∗. The agent n

knows her type tn and, therefore, the previous condition is equivalent to Eσ[θ|In] > tn.

Since θ is an indicator function and tn is independent of θ, we have that Eσ[θ|In] =

Pσ(θ = 1 | sn, B(n), xk for all k ∈ B(n)), proving the clause for xn = 1. The proof for

the case xn = 0 is identical with the inequalities reversed.

Agent n’s posterior belief Pσ(θ = 1 | sn, B(n), xk for all k ∈ B(n)) can be de-

composed in two parts, the private belief pn = Pσ(θ = 1 | sn)) and the social belief

qn = Pσ(θ = 1 | B(n), xk for all k ∈ B(n)). The following lemma shows the equilibrium

decision rule in terms of the type, private and social beliefs.

Lemma 12 Let σ ∈ Σ∗ be an equilibrium of the game. Let In ∈ In be an information

set of agent n. Then, the decision of agent n, xn = σ(In), satisfies

xn =

 1, if pn >
tn(1−qn)

tn(1−2qn)+qn
,

0, if pn <
tn(1−qn)

tn(1−2qn)+qn
,

and xn ∈ {0, 1} otherwise.
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To avoid repetition, we refer the reader to the proof of Lemma 1, which is very

similar. The only difference in the two results is that while in Lemma 1 the threshold

on agent n’s posterior belief is 1/2, here it is tn.

In the next two sections, we study respectively the role of preferences under the

immediate neighbor network topology, i.e., B(n) = {n−1} and under the full information

topology, i.e., B(n) = {1, ..., n− 1}.

6.3 Observing a Single Agent

In this section, we show that diverse preferences hinder learning under the immediate

neighbor network topology, i.e., B(n) = {n− 1}.

We first show that if the private beliefs are bounded, agents do not learn the state

irrespective of the distribution of private preferences H.

Theorem 7 Suppose the private beliefs are bounded and the network topology satisfies

B(n) = {n − 1} for all n ∈ N. Then, asymptotic learning does not occur in any

equilibrium σ ∈ Σ∗.

Proof. The first step of the proof is to show that agent n’s ex ante probability of choosing

the best action is maximized with type tn = 1/2. We first condition Pσ(xn+1 = θ) on

sn+1 and xn,

Pσ(xn+1 = θ) =
1∑

x=0

∫
s∈S

Pσ(xn+1 = θ|sn+1 = s, xn = x)dPσ(sn+1 = s, xn = x), (6.1)

and observe that for any x ∈ {0, 1} and any s ∈ S,

Pσ(xn+1 = θ|sn+1 = s, xn = x) ≤ max
y∈{0,1}

Pσ(y = θ|sn+1 = s, xn = x) (6.2)

since xn+1 is a function solely of xn, sn+1 and tn+1 (tn+1 being independent from
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θ, xnandsn+1). Note that if tn+1 = 1/2, the agent solves exactly this maximization

problem, i.e.,

Pσ(xn+1 = θ|sn+1 = s, xn = x, tn+1 = 1/2) = max
y∈{0,1}

Pσ(y = θ|sn+1 = s, xn = x). (6.3)

Combining Eqs. (6.1), (6.2) and (6.3) we obtain

Pσ(xn+1 = θ) ≤
1∑

x=0

∫
s∈S

Pσ(xn+1 = θ|sn+1 = s, xn = x, tn+1 = 1/2)dPσ(sn+1 = s, xn = x),

which integrates out to

Pσ(xn+1 = θ) ≤ Pσ(xn+1 = θ|tn+1 = 1/2). (6.4)

The integration is valid since xn and sn+1 are independent of tn+1. We have thus shown

that having type tn+1 = 1/2 maximizes agent n+1’s probability of choosing the optimal

action given the state.

We now invoke Lemma 9 from the Appendix to complete the result. The lemma was

proved in the context of a single utility function for all agents and, thus, we need to add

the condition tn+1 = 1/2 to adapt it to the model with heterogeneous preferences. From

Lemma 9 we obtain that if Pσ(xn = θ) ≤ f(β, β), then,

Pσ(xn+1 = θ | tn+1 = 1/2) ≤ f(β, β), (6.5)

where the function f is defined as

f(β, β) = max

{
1−

β

2(1− β)
,
3

2
− 1

2β

}
.
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Combining Eqs. (6.4) and (6.5), we obtain that if Pσ(xn = θ) ≤ f(β, β), then

Pσ(xn+1 = θ) ≤ Pσ(xn+1 = θ | tn+1 = 1/2) ≤ f(β, β).

We can apply this result inductively to obtain that Pσ(xn = θ) ≤ f(β, β) for all n ∈ N

– note: the base case is a random variable x0 that is equally likely to be 0 or 1 and is

independent of θ. The proof is thus complete, since f(β, β) < 1 when the private beliefs

are bounded.

In the theorem above, we proved that no distribution of preferences H will lead to

learning when the private beliefs are bounded in the immediate neighbors topology. We

next address the question of whether diverse preferences can stop asymptotic learning

when both private beliefs and preferences are unbounded. We show by means of an

example that learning might not occur with unbounded preferences and private beliefs.

Example 3 For each n, assume the type tn is generated from a uniform distribution

between 0 and 1. Furthermore, let the signal sn ∈ [0, 1] be generated by the following

signal structure:

F0(sn) = 2sn − s2
n and F1(sn) = s2

n.

In this example, the signals are identical to the private beliefs, i.e., pn(sn) = sn. There-

fore, the state-conditional distributions of private signals [cf. Eq. (2.8)] are

G0(r) = 2r − r2 and G1(r) = r2. (6.6)

Using the decision rule stated in Lemma 12, the probability of agent n making the
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correct decision is given by

Pσ(xn = θ) =
1

2

1∑
x=0

Pσ
(
pn ≤

tn(1− qn)

tn(1− 2qn) + qn

∣∣∣∣xn−1 = x, θ = 0

)
Pσ(xn−1 = x|θ = 0)

+
1

2

1∑
x=0

Pσ
(
pn >

tn(1− qn)

tn(1− 2qn) + qn

∣∣∣∣xn−1 = x, θ = 1

)
Pσ(xn−1 = x|θ = 1).

Because of the symmetry of the signal structure (as well as continuity of private belief

distributions which guarantee a unique equilibrium), we have that

Pσ(xn = θ) =
1∑

x=0

Pσ
(
pn >

tn(1− qn)

tn(1− 2qn) + qn

∣∣∣∣xn = x, θ = 1

)
Pσ(xn−1 = x|θ = 1).

Based on symmetry, we also obtain that Pσ(xn−1 = 1|θ = 1) = 1−Pσ(xn−1 = 0|θ = 1) =

Pσ(xn−1 = θ) and that qn = Pσ(xn−1 = θ) when xn−1 = 1 and qn = 1 − Pσ(xn−1 = θ)

when xn−1 = 0. By conditioning on tn and substituting the private belief distribution,

we obtain that

Pσ(xn = θ) =

∫ 1

t=0

(α− 1)2t(3αt− 2α− t)
(2αt− α− t)

dH(t),

where α = Pσ(xn−1 = θ). Solving this integral we obtain that Pσ(xn = θ) = r(Pσ(xn−1 =

θ)), where the mapping r is defined below

r(α) =
12α3 − 18α2 + 8α− 1− 4α2(1− α)2 ln

(
1
α
− 1
)

(2α− 1)3
.

The mapping r is plotted in Figure 6.1. The function r has two fixed points at 0.7196

and 1, and lies below the identity line in (0.7196, 1). The implication of this curve is that

an agent n observing the action of an agent n−1 has a lower probability of choosing the

optimal action given the state than his neighbor if Pσ(xn = θ) ∈ (0.7196, 1). Therefore,

the fixed point at 0.7196 is stable, but the one at 1 is not. The implication is that the

improvement principle, which was at the heart of the Theorem 2, does not hold in this
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Figure 6-1: This graph shows the lack of improvement principle in a model with hetero-
geneous preferences.

model. Asymptotic learning does not occur and limn→∞ Pσ(xn = θ) = 0.7196 for this

particular signal structure.

6.4 Observing the Full History

In Section 6.3, we showed that diverse preferences have a negative effect on learning in

a network where agents observes only the action of their immediate neighbors. Here, we

show that heterogeneous preferences facilitate learning when agents can observe all past

actions.

To simplify the proofs, we assume that H, G0 and G1 have densities. This assumption

guarantees unique equilibrium.

Lemma 13 Assume that B(n) = {1, ..., n− 1} for all n ∈ N. Then, the social belief qn
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converges with probability 1.

Proof. The social belief qn is a non-negative martingale adapted to the filtration gen-

erated by the sequence of decisions (x1, . . . , xn−1) and, by the martingale convergence

theorem, converges with probability 1.

We denote the limit of {qn} by the random variable q̂. We now show several lemmas

on the support of the limiting social belief q̂.

The intuition behind the results to follow (Lemmas 14 and 15) is captured in Figure

6.2. In the network topology where agents observe the entire history of past actions, the

dynamics of the social belief sequence {qn} can be described by a pair of curves that

map the social belief of an agent n, qn, to the social belief of agent n + 1, qn+1. The

lower curve maps the value of qn into qn+1 if xn = 0, while the upper curve maps the

value of qn into qn+1 if xn = 1. That is, the pair of curves incorporate the the action xn

into the social belief qn to form the next agent’s social belief qn+1.

Lemma 13 establishes that the sequence {qn} converges with probability 1 to some

random variable q̂. Therefore, for almost all realizations, the sequence {qn} must be a

converging sequence. However, the sequence {qn} can only converge to a point where at

least one of the mappings, the xn = 0 or the xn = 1, is equal to the identity (represented

by the dashed line in Figure 6.2). A convergent sequence of real numbers is Cauchy, so

the sequence |qn+1−qn| must to go to 0. If the sequence {qn} were to converge to a point

where neither mapping is equal to the identity, it would contradict the convergence of

|qn+1 − qn| to 0.

Lemmas 14 and 15 show that the support of q̂ is contained in the union of the

two highlighted regions on the horizontal axis of Figure 6.2. Lemma 14, in particular,

uses the reasoning outlined above to prove that the support of q̂ does not contain any

intermediary points between the two highlighted intervals. An important consequence of

this lemma is that agents, in the limit as n grows to infinity, ignore their private beliefs

and types. The sequence of social beliefs {qn} converges, with probability 1, to a region
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Figure 6-2: The dynamics of the social beliefs are captured by two mappings from qn
to qn+1, one for the case where xn = 0 and the other one for the case where xn = 1.
Lemmas 14 and 15 show that the highlighted regions on the horizontal axis contain the
support of q̂.

where it overwhelms any agent’s private information.

Lemma 14 Assume that B(n) = {1, ..., n− 1} for all n ∈ N. Then, the limiting social

belief q̂ satisfies

q̂ /∈

([
1 +

(
β

1− β

)(
1− γ
γ

)]−1

,

[
1 +

(
β

1− β

)(
1− γ
γ

)]−1
)

with probability 1.

Proof. We only show that

q̂ /∈
[

1

2
,

γ(1− β)

γ(1− 2β) + β

)
(6.7)
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since the proof for the other half of the interval is symmetrical. Let Ω represent the

set of all possible sample paths of the equilibrium of this game. Let Ω′ = {ω ∈ Ω :

qn(ω) is a convergent sequence }. The set Ω′ has measure 1 because qn is a non-negative

martingale. For any ε > 0, let Ω′(ε) = {ω ∈ Ω′ : q̂(ω) ∈ [
1+3γ

6
,

γ(1−β)

γ(1−2β)+β
+ ε]}. Suppose,

for the sake of contradiction, that the support of q̂ does not satisfy Eq. (6.7). Then,

there exists some ε > 0 such that P(ω ∈ Ω′(ε)) > 0.

For any sample path ω ∈ Ω′(ε), let N(ω) be such that qn(ω) ∈ [
1+2γ

4
,

γ(1−β)

γ(1−2β)+β
+ ε

2
] for

all n ≥ N(ω). Let W(ω) be the set of all n such that xn(ω) = 0. By the Borel-Cantelli

Lemma, the set W(ω) contains infinitely many elements except for a set of events of

measure zero. Let Ω′′(ε) ⊆ Ω′(ε) be the subset of events where W(ω) contains infinitely

many elements. We now show that for any ε > 0, the set Ω′′(ε) is empty, therefore

producing a contradiction.

The bulk of the proof is to show that there exists some function K such that for any

n ≥ N(ω) and n ∈ W(ω),

qn(ω)− qn+1(ω) ≥ K(ε) > 0. (6.8)

In words, it means that when the belief qn(ω) is in [
1+2γ

4
,

γ(1−β)

γ(1−2β)+β
+ ε

2
], an action

xn(ω) = 0 will ’reduce’ the social belief by at least K(ε). Since there are infinitely

many n ∈ W ∩ {n ≥ N(ω)}, Eq. (6.8) implies that the sequence qn(ω) is not Cauchy.

This contradicts the fact that the sequence qn(ω) converges, therefore implying that

ω /∈ Ω′′(ε). This proves that Ω′′(ε) = ∅.

We now prove Eq. (6.8). To prove it, we show that for any n ∈ N and any sample

path ω, if xn(ω) = 0 and qn(ω) ∈ [
1+2γ

4
,

γ(1−β)

γ(1−2β)+β
+ ε

2
], then Eq. (6.8) holds. For the rest

of the proof, we consider a fixed sample path ω and, to simplify notation, we suppress
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the (ω) from qn and xn. Let xn−1 = (x1, ..., xn−1). Using Bayes’ Rule twice,

qn+1 = P(θ = 1|xn = 0, xn−1) =

[
1 +

P(xn−1|θ = 0)

P(xn−1|θ = 1)

P(xn = 0|xn−1, θ = 0)

P(xn = 0|xn−1, θ = 1)

]−1

=

[
1 +

(
1

qn
− 1

)
P(xn = 0|xn−1, θ = 0)

P(xn = 0|xn−1, θ = 1)

]−1

. (6.9)

To obtain Eq. (6.8) from Eq. (6.9), we need to lower bound the ratio P(xn=0|xn−1,θ=0)
P(xn=0|xn−1,θ=1)

.

Using Lemma 12 and subsequently conditioning on tn, we obtain that for any j ∈ {0, 1},

P(xn = 0|xn−1, θ = j) = P
(
pn ≤

tn(1− qn)

tn(1− 2qn) + qn

∣∣∣∣xn−1, θ = j

)
=

∫ γ

t=γ

P
(
pn ≤

t(1− qn)

t(1− 2qn) + qn

∣∣∣∣xn−1, θ = j, tn = t

)
dH(t).

Since qn is a deterministic function of xn−1, and tn and pn are independent (conditionally

on θ),

P(xn = 0|xn−1, θ = j) =

∫ γ

t=γ

P
(
pn ≤

t(1− qn)

t(1− 2qn) + qn

∣∣∣∣qn, θ = j

)
dH(t)

=

∫ γ

t=γ

Gj

(
t(1− qn)

t(1− 2qn) + qn

)
dH(t).

Therefore, the ratio that we need to lower bound from Eq. (6.9) is

P(xn = 0|xn−1, θ = 0)

P(xn = 0|xn−1, θ = 1)
=

∫ γ
t=γ

G0

(
t(1−qn)

t(1−2qn)+qn

)
dH(t)∫ γ

t=γ
G1

(
t(1−qn)

t(1−2qn)+qn

)
dH(t)

.

We now consider two cases. If qn ≥ γ, we obtain that

t(1− qn)

t(1− 2qn) + qn
≤ 1

2
for all t ∈ [γ, γ].

123



From Lemma 3(c), we know that the ratio G0(r)
G1(r)

is nonincreasing and thus, if qn ≥ γ,

P(xn = 0|xn−1, θ = 0)

P(xn = 0|xn−1, θ = 1)
≥ G0 (1/2)

G1 (1/2)
. (6.10)

Now we consider the case where qn < γ. We also have qn ≥
1+2γ

4
≥ γ. We can thus

break the numerator into two components,

P(xn = 0|xn−1, θ = 0)

P(xn = 0|xn−1, θ = 1)
=

∫ qn
t=γ

G0

(
t(1−qn)

t(1−2qn)+qn

)
dH(t) +

∫ γ
t=qn

G0

(
t(1−qn)

t(1−2qn)+qn

)
dH(t)∫ γ

t=γ
G1

(
t(1−qn)

t(1−2qn)+qn

)
dH(t)

.

From Lemma 3(c), we know that the ratio G0(r)
G1(r)

is nonincreasing and strictly greater

than 1 over the interval (β, β). Notice that for any fixed qn, the fraction t(1−qn)
t(1−2qn)+qn

is

increasing in t and, in particular, for t = qn the fraction attains the value 1/2. Hence,

we obtain that

P(xn = 0|xn−1, θ = 0)

P(xn = 0|xn−1, θ = 1)

≥

∫ qn
t=γ

(
G0(1/2)
G1(1/2)

)
G1

(
t(1−qn)

t(1−2qn)+qn

)
dH(t) +

∫ γ
t=qn

G1

(
t(1−qn)

t(1−2qn)+qn

)
dH(t)∫ γ

t=γ
G1

(
t(1−qn)

t(1−2qn)+qn

)
dH(t)

= 1 +

(
G0(1/2)

G1(1/2)
− 1

) ∫ qn
t=γ

G1

(
t(1−qn)

t(1−2qn)+qn

)
dH(t)∫ γ

t=γ
G1

(
t(1−qn)

t(1−2qn)+qn

)
dH(t)

.

Note that the denominator of the previous equation can be at most 1. Therefore, we

can relax this inequality and obtain

P(xn = 0|xn−1, θ = 0)

P(xn = 0|xn−1, θ = 1)
≥ 1 +

(
G0(1/2)

G1(1/2)
− 1

)∫ qn

t=γ

G1

(
t(1− qn)

t(1− 2qn) + qn

)
dH(t).

We can further relax this inequality by only considering t ≥ qn(2β+1)

3−2qn−2β+4βqn
. This partic-

ular value is chosen to guarantee that t(1−qn)
t(1−2qn)+qn

≥ 2β+1
4

, which is useful because for any
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r ≥ 2β+1
4

, G1(r) ≥ G1(2β+1
4

) > 0.

P(xn = 0|xn−1, θ = 0)

P(xn = 0|xn−1, θ = 1)

≥ 1 +

(
G0(1/2)

G1(1/2)
− 1

)∫ qn

t=
qn(2β+1)

3−2qn−2β+4βqn

G1

(
t(1− qn)

t(1− 2qn) + qn

)
dH(t)

≥ 1 +

(
G0(1/2)

G1(1/2)
− 1

)∫ qn

t=
qn(2β+1)

3−2qn−2β+4βqn

G1

(
2β + 1

4

)
dH(t)

= 1 +

(
G0(1/2)

G1(1/2)
− 1

)
G1

(
2β + 1

4

)[
H (qn)−H

(
qn(2β + 1)

3− 2qn − 2β + 4βqn

)]
.

To complete the bound, we just need to take a worst-case approach with respect to the

value of qn, that is, construct a bound that works for any qn ∈ ∆ = [
1+2γ

4
,

γ(1−β)

γ(1−2β)+β
+ ε

2
],

P(xn = 0|xn−1, θ = 0)

P(xn = 0|xn−1, θ = 1)

≥ 1 +

(
G0(1/2)

G1(1/2)
− 1

)
G1

(
2β + 1

4

)
inf
q∈∆

[
H (q)−H

(
q(2β + 1)

3− 2q − 2β + 4βq

)]
.

Note that the interval [ε/2, 1− ε/2] is compact and the function H is continuous. There-

fore, the infimum attains its minimum,

P(xn = 0|xn−1, θ = 0)

P(xn = 0|xn−1, θ = 1)

≥ 1 +

(
G0(1/2)

G1(1/2)
− 1

)
G1

(
2β + 1

4

)
min
q∈∆

[
H (q)−H

(
q(2β + 1)

3− 2q − 2β + 4βq

)]
.

Since H has full support (it’s strictly increasing),

min
q∈∆

[
H (q)−H

(
q(2β + 1)

3− 2q − 2β + 4βq

)]
> 0.

Combining this result for qn < β and Eq. (6.10) for q ≥ β, we obtain that for any ε > 0,
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there exists some K ′(ε) > 0 such that

P(xn = 0|xn−1, θ = 0)

P(xn = 0|xn−1, θ = 1)
≥ 1 +K ′(ε).

Plugging this result into Eq. (6.9), we obtain

qn+1 ≤
[
1 +

(
1

qn
− 1

)
(1 +K ′(ε))

]−1

.

Hence,

qn − qn+1 ≥ qn −
[
1 +

(
1

qn
− 1

)
(1 +K ′(ε))

]−1

=
qnK

′(ε)− q2
nK
′(ε)

1 +K ′(ε)− qnK ′(ε)
≥ qnK

′(ε)

1− qnK ′(ε)
≥ εK ′(ε)

2− εK ′(ε)
> 0.

Let K(ε) = εK′(ε)
2−εK′(ε) to obtain Eq. (6.8), thus completing the proof.

The lemma above says that the limiting social belief q̂ is sufficiently informative that

it leads agents to disregard their private beliefs. The lemma below, on the other hand,

is an upper bound on the informativeness of q̂. It says that if both private beliefs and

preferences are bounded, then q̂ will not approach 0 or 1, that is, the social belief will

not be completely informative about the state.

Lemma 15 Assume that B(n) = {1, ..., n− 1} for all n ∈ N. The limiting social belief

q̂ satisfies

q̂ /∈

[
0,

[
1 +

(
1− β
β

)(
β

1− β

)(
1− γ
γ

)]−1
)

⋃([
1 +

(
1− β
β

)(
β

1− β

)(
1− γ
γ

)]−1

, 1

]

with probability 1.
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Proof. Let

q =

[
1 +

(
β

1− β

)(
1− γ
γ

)]−1

.

If qn < q for some n, then xn = 0 with probability 1, and thus qk = qn for all k ≥ n,

implying that q̂ = qn. If qn ≥ q,

P(θ = 1|qn, xn = 0) =

1 +

(
1

qn
− 1

) ∫ G0

(
t(1−qn)

t(1−2qn)+qn

)
dH(t)∫

G1

(
t(1−qn)

t(1−2qn)+qn

)
dH(t)

−1

≥

[
1 +

(
1

qn
− 1

)
sup

r∈(β,β)

G0(r)

G1(r)

]−1

=

[
1 +

(
1

qn
− 1

)(
1− β
β

)]−1

,

where the last equality follows from the Lemma 3(c). Hence, if qn ≥ q,

P(θ = 1|qn, xn = 0) ≥
[
1 +

(
1

q
− 1

)(
1− β
β

)]−1

,

thus proving the desired result. For the upper interval, a symmetric proof applies.

The bound is tight in the following sense: in the most basic model of Bikchandani,

Hirshleifer and Welch (1992) [cf. page 996], with γ = γ = 1/2 and two symmetric signals

(thus β = 1−β), in the equilibrium where indifferent agents follow their private signals,

we obtain that q̂ satisfies

q̂ ∈

{[
1 +

(
1− β
β

)(
β

1− β

)(
1− γ
γ

)]−1

,

[
1 +

(
1− β
β

)(
β

1− β

)(
1− γ
γ

)]−1
}
.

This is true because the social belief follows a Markov Chain with 5 states in this example.

The states represent the number of private signals in favor of state 1 minus the number

of signals in favor of state 0, with the values -2 and +2 being absorbing states. In the

same game, if we consider the equilibrium where agents follow their social beliefs when
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indifferent, we obtain that all agents copy the action of agent 1 and q̂ satisfies

q̂ ∈

{[
1 +

(
β

1− β

)(
1− γ
γ

)]−1

,

[
1 +

(
β

1− β

)(
1− γ
γ

)]−1
}
.

We now define a property of the signal structure and preference distribution that

enables us to characterize exactly the random variable q̂.

Definition 11 The social belief is monotonic in the observations if

(
1

q
− 1

) ∫ G0

(
t(1−q)

t(1−2q)+q

)
dH(t)∫

G1

(
t(1−q)

t(1−2q)+q

)
dH(t)

and

(
1

q
− 1

) 1−
∫

G0

(
t(1−q)

t(1−2q)+q

)
dH(t)

1−
∫

G1

(
t(1−q)

t(1−2q)+q

)
dH(t)

are non-increasing functions of q.

Lemma 16 Assume that B(n) = {1, ..., n − 1} for all n ∈ N. If the social belief is

monotonic in the observations, then the limiting social belief q̂ satisfies

q̂ /∈

[
0,

[
1 +

(
β

1− β

)(
1− γ
γ

)]−1
)⋃([

1 +

(
β

1− β

)(
1− γ
γ

)]−1

, 1

]

with probability 1.

Proof. For

q =

[
1 +

(
β

1− β

)(
1− γ
γ

)]−1

,

we get that ∫
G0

(
t(1−q)

t(1−2q)+q

)
dH(t)∫

G1

(
t(1−q)

t(1−2q)+q

)
dH(t)

= 1.
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Therefore, by the monotonicity of social beliefs, if q ≥ q, we have that

1 +

(
1

q
− 1

) ∫ G0

(
t(1−q)

t(1−2q)+q

)
dH(t)∫

G1

(
t(1−q)

t(1−2q)+q

)
dH(t)

−1

≥

1 +

(
1

q
− 1

) ∫ G0

(
t(1−q)

t(1−2q)+q

)
dH(t)∫

G1

(
t(1−q)

t(1−2q)+q

)
dH(t)

−1

= q.

Therefore, for qn ≥ q, we have that P(θ = 1|qn, xn = 0) ≥ q. Since P(θ = 1|qn, xn = 1) ≥

qn, we obtain that qn ≥ q for all n. A symmetric argument yields the upper interval.

To connect the results concerning the limiting social belief q̂ and the measure of

learning used throughout the thesis, asymptotic learning, we need the define the following

two quantities. Let

gL(β, β, γ, γ) =
(−γ + β)β(−1 + γ)

−γγβ + γβ + γβγ − γββ − βγ + βγβ

and let gH(β, β, γ, γ) =

(−γβ + 2γββ − γβ + β − ββ)β(1− γ − β + βγ)

−γβ2
+ γβ

2
γ + 2γβ

2
β + 2γββ2γ − 2γβ

2
βγ − γβ2

β2 − β2γγ + β2γ − 2β2γβ + β2γβ
2 .

The following theorem shows that the quantity gL(β, β, γ, γ) lower bounds the amount

of learning, limn→∞ Pσ(xn = θ), possible for a given support of the private beliefs and

distribution of private preferences. It arises when the limiting social belief q̂ takes values

as close as possible to 1/2. Conversely, when the limiting social belief q̂ takes values as

close to 0 and 1 as possible, the social belief is at its most informative about the state

θ and limn→∞ Pσ(xn = θ) takes the highest value possible, gH(β, β, γ, γ).

Theorem 8 Assume that B(n) = {1, ..., n − 1} for all n ∈ N. Then, the limiting
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probability of an optimal action conditional on the state is bounded by

gL(β, β, γ, γ) ≤ lim
n→∞

Pσ(xn = θ) ≤ gH(β, β, γ, γ).

Furthermore, if social belief is monotonic in the observations then

lim
n→∞

Pσ(xn = θ) = gL(β, β, γ, γ).

Proof. Combining the results of Lemmas 14 and 15, we obtain that the limiting social

belief q̂ satisfies

q̂ /∈

[[
1 +

(
1− β
β

)(
β

1− β

)(
1− γ
γ

)]−1

,

[
1 +

(
β

1− β

)(
1− γ
γ

)]−1
]⋃

[[
1 +

(
β

1− β

)(
1− γ
γ

)]−1

,

[
1 +

(
1− β
β

)(
β

1− β

)(
1− γ
γ

)]−1
]
.

The limiting social belief is least informative when it takes values closest to 1/2, that is,

q̂ ∈

{[
1 +

(
β

1− β

)(
1− γ
γ

)]−1

,

[
1 +

(
β

1− β

)(
1− γ
γ

)]−1
}
. (6.11)

and most informative when it takes values closest to 0 and 1, that is,

q̂ ∈

{[
1 +

(
1− β
β

)(
β

1− β

)(
1− γ
γ

)]−1

,

[
1 +

(
1− β
β

)(
β

1− β

)(
1− γ
γ

)]−1
}
.

(6.12)

If, for any given agent n, her social belief qn satisfies qn ≤
[
1 +

(
β

1−β

)(
1−γ
γ

)]−1

, then she

will disregard her private belief and select xn = 0. Similarly, if qn ≥
[
1 +

(
β

1−β

)(
1−γ
γ

)]−1

,

agent n will select xn = 1. Since the sequence social beliefs {qn} converges with prob-

ability 1 to q̂ and q̂ satisfies Lemma 15, for almost every realization, the sequence of

decisions {xn} will converge with probability 1. In a realization where q̂ < 1/2, the
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sequence {xn} will converge to 0 and, conversely, if q̂ > 1/2 in a given realization, the

sequence {xn} will converge for that realization to 1. Therefore,

lim
n→∞

Pσ(xn = θ) =
1

2
[Pσ(q̂ < 1/2|θ = 0) + Pσ(q̂ > 1/2|θ = 1)] .

If the support of q̂ contains only two points, such as in Eqs. (6.11) and (6.12), the

following martingale equalities [see Breiman, Theorem 5.14] allow us to compute Pσ(q̂ <

1/2|θ = 0) and Pσ(q̂ > 1/2|θ = 1).

Eσ

[
1− q̂
q̂

∣∣∣∣θ = 1

]
= Eσ

[
q̂

1− q̂

∣∣∣∣θ = 0

]
= 1,

We thus obtain that if the support of q̂ is given by Eq. (6.11), then limn→∞ Pσ(xn =

θ) = gL(β, β, γ, γ) and if the support of q̂ is given by Eq. (6.12), then limn→∞ Pσ(xn =

θ) = gH(β, β, γ, γ).

In Lemma 16, we show that social beliefs monotonic in the observations guarantee

that the limiting social belief q̂ will support closest to 1/2 and, therefore, q̂ will attain

its least informative values.

Both gL(β, β, γ, γ) and gH(β, β, γ, γ) are increasing in γ and decreasing in γ. There-

fore, the more diverse the preferences are, the higher will be both the lower and upper

bounds on limn→∞ Pσ(xn = θ). The final corollary shows that in the case where prefer-

ences are most diverse (unbounded preferences), asymptotic learning occurs.

Corollary 4 Assume that B(n) = {1, ..., n−1} for all n ∈ N. If either the private beliefs

or the preferences are unbounded, then asymptotic learning will occur in equilibrium

σ ∈ Σ∗.

Proof. This result follows immediately from Theorem 8 since gL(β, β, γ, γ) = 1 if

β = 1− β = 0 or γ = 1− γ = 0.
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Chapter 7

Conclusion

In this thesis, we studied the problem of Bayesian (equilibrium) learning over a general

social network. A large social learning literature, pioneered by Bikhchandani, Hirshleifer

and Welch (1992), Banerjee (1992) and Smith and Sorensen (2000), has studied equilibria

of sequential-move games, where each individual observes all past actions. The focus has

been on whether equilibria lead to aggregation of information (and thus to asymptotic

learning).

In many relevant situations, individuals obtain their information not by observing

all past actions, but from their “social network”. This raises the question of how the

structures of social networks in which individuals are situated affects learning behavior.

To address these questions, we formulated a sequential-move equilibrium learning model

over a general social network.

In our model, each individual receives a signal about the underlying state of the

world and observes the past actions of a stochastically-generated neighborhood of in-

dividuals. The stochastic process generating the neighborhoods defines the network

topology. The signal structure determines the conditional distributions of the signals

received by each individual as a function of the underlying state. The social network

consists of the network topology and the signal structure. Each individual then chooses
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one of two possible actions depending on his posterior beliefs given his signal and the

realized neighborhood. We characterized pure-strategy (perfect Bayesian) equilibria for

arbitrary stochastic and deterministic social networks, and characterized the conditions

under which there is asymptotic learning. Asymptotic learning corresponds to individual

decisions converging (in probability) to the right action as the social network becomes

large.

Two concepts turn out to be crucial in determining whether there will be asymp-

totic learning. The first is common with the previous literature. Following Smith and

Sorensen (2000), we say that private beliefs are bounded if the likelihood ratio implied

by individual signals is bounded and there is a maximum amount of information that

can be generated from these signals. Conversely, private beliefs are unbounded if the

corresponding likelihood ratio is unbounded. The second important concept is that of

expanding or nonexpanding observations. A network topology has nonexpanding ob-

servations if there exists infinitely many agents observing the actions of only a finite

subset of (excessively influential) agents. Most network topologies feature expanding

observations.

Nonexpanding observations do not allow asymptotic learning, since there exists in-

finitely many agents who do not receive sufficiently many observations to be able to

aggregate information.

One of our main theorems shows that expanding observations and unbounded pri-

vate signals are sufficient to ensure asymptotic learning. Since expanding observations

is a relatively mild restriction, to the extent that unbounded private beliefs constitute

a good approximation to the informativeness of individual signals, this result implies

that all equilibria feature asymptotic learning applies in a wide variety of settings. An-

other implication is that asymptotic learning is possible even when there are “influential

agents” or “information leaders”, that is, individuals who are observed by many, most

or even all agents (while others may be observed not at all or much less frequently). It is
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only when individuals are excessively influential—loosely speaking when they act as the

sole source of information for infinitely many agents—that asymptotic learning ceases

to apply.

We also provide a partial converse to this result, showing that under the most com-

mon deterministic or stochastic network topologies, bounded beliefs imply no asymptotic

learning. However, we show that asymptotic learning is possible even with bounded be-

liefs for a certain class of stochastic network topologies. These networks feature infinitely

many agents observing the actions of a group of agents that are not sufficiently persuasive

and, therefore, always use their private signals to make decisions.

Finally, we explore the role of the diversity of preferences on asymptotic learning.

We show that, in a network topology where each agent observe only the actions of a

single neighbor, heterogeneous preferences make the agents’ inference problem harder,

and therefore, hinders observational learning. On the other hand, when agents observe

the entire history of past actions, diverse preferences enhance the agents’ ability to learn

the state.

We believe the framework developed here opens new ways to analyze how the struc-

ture of social networks affects learning dynamics and the process of information aggre-

gation in large societies. A fascinating question that we do not address in this thesis

is whether it is possible for a social planner to influence the learning process by mod-

ifying the network structure and what would be the optimal way to achieve it. Some

other very interesting questions that can be studied by building on this framework are

the following: equilibrium learning when the underlying state is changing dynamically;

information dynamics when there is a mix of communication (of signals or beliefs) and

observation of actions; the influence of a subset of a social network (for example, the

media or interested parties) in influencing the views of the rest as a function of the

network structure.
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