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Abstract

As device size scales down, there have been challenges to design conventional analog
circuits, such as low voltage headroom and the low intrinsic gain of a device. Although
ever-decreasing device channel length in CMOS technology has mainly negative effects
on analog circuits, it increases device speed and reduces the power consumption of
digital circuits. As a result, time-based signal processing has been attracting attention
because time-based circuits take advantage of high speed and low power devices to
deal with analog information in the time domain.

In this thesis, we focus on a ring oscillator as a core time-based circuit for com-
munication systems. Ring oscillators are employed in analog-to-time conversion or
time-to-digital conversion. In this work, we present A/D converters and an RF mod-
ulator based on ring oscillators in deep sub-micron CMOS processes.

We introduce a VCO-based Σ∆ A/D converter utilizing a voltage-controlled ring
oscillator (ring VCO) as a continuous-time integrator. We propose to replace conven-
tional integrators designed with analog circuits in a Σ∆ modulator with a ring VCO
and a phase detector, thereby implementing an A/D converter without traditional
analog circuits.

We also propose a single-slope A/D converter using time-to-digital conversion. By
combining a few analog circuits and a ring oscillator based Time-to-Digital Converter
(TDC), we achieve highly digital A/D conversion.

Finally, we demonstrate a VCO-based RF modulator. The proposed RF modula-
tor generates an RF signal by simply switching transistors. As opposed to an RFDAC
approach, the proposed RF modulator is not limited by quantization noise because
it employs multiphase PWM signals. A VCO-based OP amp is also introduced as an
alternative method of designing an OP amp in deep sub-micron CMOS. The proposed
VCO-based OP amp is utilized to generate the multiphase PWM signals in the RF
modulator.

This thesis also presents the fundamental limitations of a ring oscillator as a time-
based circuit. Although the idea of time-based signal processing employing a ring
oscillator has its own limitations such as non-linear tuning characteristics and phase
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noise, the basic idea is worth investigating to solve the serious problems of analog
circuits for future CMOS technology.

Thesis Supervisor: Michael H. Perrott, Ph.D.
Title: Visiting Associate Professor of Electrical Engineering
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Chapter 1

Introduction

Designing analog building blocks in modern CMOS technology is getting more and

more difficult as device size scales down. International Technology Roadmap for Semi-

conductors (ITRS) predicts that less than 1 V power supply voltage will be needed for

smaller than 40 nm CMOS, which leaves a small voltage headroom for analog circuits.

Intrinsic device gain is getting lower because of a short channel effect as the channel

length of a transistor is getting shorter [1]. These are some of the examples of chal-

lenges for analog circuit design in deep sub-micron CMOS processes. It is meaningful

to investigate analog circuit topology to solve these problems. However, there is an

intriguing trend in using time-based signal processing in order to avoid using analog

building blocks which are vulnerable to device scaling.

Time-based signal processing deals with time information rather than voltage

or current information. Pulsewidth Modulation (PWM) and a phase signal from a

Voltage-Controlled Oscillator (VCO) are two examples of time-based signals. Abso-

lute voltage or current of those signals is unimportant because analog information

is represented by the width of a pulse or the location of a signal edge in the time

domain. Therefore, time-based signals do not suffer from the issues of device scaling.

Moreover, the ever decreasing channel length of modern CMOS processes helps to

improve the resolution of time-based signals because transistors are getting faster.
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1.1 Time-Based Signal Processing and Circuits in

Modern CMOS Technology

Since time-based signal processing has advantages over conventional voltage or cur-

rent based signal processing in future deep sub-micron CMOS technology, time-based

signal processing has recently been attracting attention from industry as well as re-

searchers.

A digital Phase-Locked Loop (PLL) is a good example of the recent advances for

the systems employing the time-based circuit concept [2, 3, 4, 5, 6]. One of the

most important building blocks in [2, 3, 4, 5, 6] for time-based signal processing is a

Time-to-Digital Converter (TDC). A TDC converts time information into a digital

code. The digital PLLs use a TDC as a phase detector such that the phase difference

between a reference clock and a VCO is converted into a digital value. Since the TDC

output is a digital signal, a charge pump and a loop filter of the PLLs are replaced

with reconfigurable digital filters. By employing a TDC, most of the building blocks

of the PLLs are implemented with digital circuits which benefit from Moore’s Law.

Time-based signal processing can also be employed to modulate the amplitude

of an RF power amplifier [7, 8]. The approach presented in [7, 8] proposes to use

pulse-width and pulse-position modulation for amplitude modulation of an RF power

amplifier. Since pulse-width and pulse-position modulation is done by a simple switch-

ing of transistors, even an RF power amplifier could be integrated onto a single chip

without dealing with all the issues related to analog circuits. The proposed approach

in [7, 8] proves that the time-based signals such as pulse-width and pulse-position can

be translated into the amplitude of an RF signal.

A/D converters employing time-based circuits have also been reported. The ap-

proaches in [9, 10] use a voltage-controlled ring oscillator (ring VCO) as a quantizer.

A VCO converts voltage into frequency, and the output frequency of a VCO is easily

digitized by a counter. Thus, the pairing of a ring VCO and a digital counter can

replace a quantizer in a Sigma-Delta (Σ∆) A/D converter. A VCO-based quantizer,

which is composed of a ring VCO and a digital counter, will be easily implemented
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even in future CMOS processes. The resolution of a VCO-based quantizer is depen-

dent on a device delay; this means that the quantizer’s resolution improves by device

scaling, and it is thus another example of the advantages of time-based circuits in

modern CMOS technology. On the other hand, the A/D converter presented in [11]

employs a time-to-digital conversion method for A/D conversion. Once an analog

signal is converted into a time-based signal, digitization of the time-based signal can

be done in an efficient way with modern CMOS processes because the time resolution

of a TDC benefits from Moore’s Law.

1.2 A Ring Oscillator as a Time-Based Circuit

In this thesis, we will focus on a ring oscillator as a time-based circuit. A ring oscillator

is composed of cascaded delay stages which are readily implemented regardless of

device channel length or power supply voltage, as long as digital circuits can be built.

Therefore, it is guaranteed that a ring oscillator will be built in future deep sub-

micron CMOS processes. The output signal of a ring oscillator is a time-based signal.

We are interested only in the oscillator’s frequency or phase information, not in its

output voltage. In this work, the time information of a ring oscillator output will be

utilized for two purposes: analog-to-time conversion and time-to-digital conversion.

A ring VCO converts an input analog voltage into phase or frequency information.

A VCO-based quantizer utilizes the voltage-to-frequency conversion function of a ring

VCO. We can also take advantage of the voltage-to-phase conversion function of a ring

VCO where the VCO is modeled as a voltage-input phase-output integrator [12, 13].

Digitization of time information is also possible if one uses a ring oscillator by

comparing input time information with a delay in a ring oscillator’s delay stages

[14, 15]. Accordingly, a ring oscillator can also be used for time-to-digital conversion.

In this work, we demonstrate A/D converters and an RF modulator which employ

ring oscillators. By presenting the measured results of the prototype chips, we show

that the use of time-based circuits, such as a ring oscillator, can serve as an alternative

approach to implementing the basic building blocks of communication systems, which
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traditionally require analog circuits.

In Chapter 2, we propose using a ring VCO as a continuous-time integrator in a

Σ∆ A/D converter. The prototype chip of the proposed VCO-based A/D converter in

45 nm CMOS proves that an A/D converter can be implemented without traditional

analog circuits in deep sub-micron CMOS by employing time-based circuits.

In Chapter 3, a single-slope A/D converter utilizing a ring oscillator based TDC

is introduced. The proposed single-slope A/D converter is composed of two main

building blocks: a voltage-to-time converter and a time-to-digital converter. The

voltage-to-time converter requires two analog circuits: a sampler and a current source.

Time-to-digital conversion is done in two steps: one through a low-resolution ring os-

cillator based TDC and the other through a high-resolution multi-path gated ring

oscillator TDC which is introduced in [15]. Therefore, the single-slope A/D con-

verter in Chapter 3 requires only two analog circuits, and all other building blocks

are implemented by ring oscillators and digital circuits. The prototype chip of the

A/D converter in 0.13 µm CMOS shows that the measured resolution and power con-

sumption are mainly limited by the ring oscillator based TDCs. Therefore, better

performance of the proposed single-slope A/D converter is expected for future CMOS

technology by virtue of device scaling.

In Chapter 4, we introduce an alternative method to designing an OP amp in

deep sub-micron CMOS. By using a ring VCO as a continuous-time integrator, we

suggest the concept of a VCO-based OP amp. The VCO-based OP amp utilizes the

analog-to-time conversion function of a ring VCO and requires some simple analog

circuits such as an RC filter, thereby making it possible to build the OP amp even

in 45 nm CMOS. In order to demonstrate the feasibility of the proposed VCO-based

OP amp, we introduce an RF modulator driven by multiphase PWM signals which

are generated by the VCO-based OP amp. The proposed RF modulator creates RF

signals by simply switching transistors, and the baseband signal is generated by the

PWM signals. The baseband PWM signals are generated by the VCO-based OP amp.

Using ring oscillators, Chapter 4 demonstrates a novel RF modulator architecture

which is compatible with deep sub-micron CMOS processes.
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This thesis is concluded in Chapter 5. The presented A/D converters and an

RF modulator employing time-based circuits are summarized. The fundamental lim-

itations of a ring oscillator as a time-based circuit are also discussed based on the

measured results of the three prototype ICs presented. Finally, the benefits and draw-

backs of time-based signal processing of an analog signal utilizing a ring oscillator will

be described.

1.3 Primary Contributions

In this thesis, three prototype chips are fabricated to demonstrate the feasibility and

limitations of the systems employing time-based circuits, especially a ring oscillator, in

deep sub-micron CMOS technology. A ring oscillator is the core circuit building block

of this thesis for two important functions: analog-to-time conversion and time-to-

digital conversion. This work proves the validity of the concept of the proposed system

architecture using time-based circuits, and also presents the fundamental limitations

of a ring oscillator by showing the measured results of the three prototype chips. With

respect to time-based circuits for communication systems, the main contributions of

this thesis are:

• The demonstration of a second order Σ∆ A/D converter utilizing a ring VCO

as a continuous-time integrator in 45 nm CMOS process.

• The analysis of the proposed ring VCO-based Σ∆ A/D converter by applying

a fractional-N frequency synthesizer modeling technique.

• The demonstration of a single-slope A/D converter employing ring oscillator

based time-to-digital converter in 0.13 µm CMOS process.

• The introduction and analysis of the VCO-based OP amp employing a ring

VCO as a continuous-time integrator.

• The demonstration of a VCO-based RF modulator driven by a multiphase PWM

generator using the VCO-based OP amp in 45 nm CMOS process.
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• The analysis and demonstration of the fundamental limitations of a ring oscil-

lator for time-based signal processing.

• The demonstration of the advantages and disadvantages of time-based signal

processing by the experimental results of various circuits.
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Chapter 2

A VCO-Based Continuous-Time

Σ∆ A/D Converter

2.1 Introduction

There has recently been increasing interest in developing highly digital analog-to-

digital converter (ADC) structures for on-chip testing and ease of integration in future

CMOS processes. An intriguing circuit to utilize in such cases is a ring VCO, which

outputs a clock waveform whose frequency is a function of an input tuning voltage.

By comparing the clock frequency to that of a separate clock reference using digital

counters, one can create an ADC that can readily be utilized for on-chip monitoring of

supply voltage variations and other on-chip waveforms [16]. Such VCO circuits have

also been employed to realize multi-bit quantizers with first order noise shaping, which

allow simplified implementation of high order Σ∆ ADCs [9, 17, 18]. A shortcoming

of approach [16] is that the effective conversion rate must be quite low to achieve

high resolution. Utilizing a multiphase ring VCO contributes to improvement of

the resolution, but the conversion rate is still limited [19, 20]. The shortcoming

of approaches in [9, 17, 18] is that the overall A/D implementation ends up being

primarily analog in nature.

In this chapter, we propose a VCO-based ADC structure that allows second-order

Σ∆ noise shaping to be achieved with a highly digital structure along with time-based
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signal processing. The proposed VCO-based ADC is implemented in 45 nm CMOS

for proof of concept. The proposed ADC can also be implemented in future CMOS

technology without difficulty because the ADC is composed of digital circuits and a

time-based circuit, which is a ring VCO in this case, and requires no traditional analog

circuits. The topology presented here leverages a previously suggested structure for

Σ∆ frequency discrimination described in [21]. Our contribution is in showing the

utility of this structure for A/D conversion, applying fractional-N PLL modeling

approaches [22] to quantify its behavior.

We begin by discussing the integrating characteristics of VCO structures and their

application to Σ∆ A/D conversion in section 2.2. We then show the application of

the structure in [21] to achieve a second-order Σ∆ ADC in Section 2.3. An analyt-

ical model of this ADC based on a fractional-N frequency synthesizer model is then

presented in Section 2.4. Unique issues and benefits to the proposed structure are

then discussed in Section 2.5 and 2.6. The prototype chip in 0.18 µm CMOS is briefly

discussed in Section 2.7. Another prototype chip is fabricated in 45 nm CMOS pro-

cess to address the issues revealed in the 0.18 µm CMOS prototype. The circuits for

the 45 nm CMOS prototype are discussed in Section 2.8 followed by the simulated

results of the proposed ADC in Section 2.9. The measured results will be presented

in Section 2.10, and the chapter is concluded in Section 2.11.

2.2 Background

VCO-based ADCs typically utilize a VCO and a frequency counter as a quantizer.

The approach [16] uses a VCO-counter pair for A/D conversion of supply voltage

noise as illustrated in Figure 2-1 (a). The supply voltage noise is sampled and it

controls a ring oscillator frequency. A frequency counter following the ring oscillator

measures the frequency. As a result, the digital word from the counter is a digitized

version of the input voltage. This technique is advantageous since it requires only

digital circuits. The resolution improves by reducing the conversion rate. Employing

a multiphase ring VCO also helps to improve the resolution, but the improvement is
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limited [19, 20]. On the other hand, the approach [17, 18] use a VCO-counter pair for

a multi-bit quantizer of a Σ∆ ADC as shown in Figure 2-1 (b). The main advantage

of the VCO-based quantizer over the conventional flash ADC is the inherent first-

order noise shaping effect of the quantization noise [17]. As shown in Figure 2-1 (b),

however, this approach requires analog circuits including an integrator and a DAC.

A VCO will be utilized as an integrator rather than a quantizer in the proposed

VCO-based ADC in this chapter. Figure 2-2 illustrates the classical VCO model used

for PLL modeling, which identifies its behavior as an ideal integrator with an input
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signal in voltage and an output signal in phase. Note that a phase detector can be

used to convert the output phase to voltage or current in order to use the VCO as a

voltage-to-voltage or voltage-to-current integrator.

Figure 2-3 illustrates how a first-order continuous-time (CT) Σ∆ modulator can

be implemented with a VCO. Instead of using a conventional integrator, we use a

VCO for an integrator stage in a Σ∆ modulator. The advantage of using a VCO as

an integrator is its infinite DC gain. Unlike a conventional integrator, a VCO does

not have any leakage mechanism in its integral operation; hence, a Σ∆ modulator

employing a VCO does not suffer from issues caused by finite DC gain of an inte-

grator, such as signal-to-noise ratio (SNR) degradation [23] and a dead zone issue

[24]. Here we assume that the VCO frequency is essentially locked to the reference

clock frequency such that all phase deviations of the VCO are confined to one refer-

ence cycle interval. The VCO operates as a voltage-to-phase integrator, thus we need

a phase detector to implement voltage-to-voltage or voltage-to-current integrator as
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mentioned earlier. However, the phase detector is unnecessary in this case because

the one-bit quantizer operates as a one-bit time-to-digital converter — the quantizer

output goes to low if the VCO output signal lags behind the sampling clock, and it

goes to high if the VCO output signal leads the sampling clock as shown in Figure 2-4.

Thus, the output phase signal of the VCO, which is the integral of the VCO input

voltage, is quantized and then fed back to the input of the VCO.

Note that a practical VCO requires a band-limited input control voltage to per-

form accurate voltage-to-phase integration, and a square waveform from the DAC in

Figure 2-3 is not band-limited; hence, the integration of the VCO is not accurate in

practice. A more practical A/D structure that solves this issue is proposed in the

next section.

2.3 The Proposed VCO-Based A/D Converter

It is impractical to replace an integrator with a VCO integrator in traditional Σ∆

A/D architecture because the fast-varying analog signal from a feedback DAC causes

inaccurate phase integration of the VCO integrator, as explained earlier. We propose

an A/D architecture that solves this issue. The proposed architecture also employs

second-order noise shaping for higher resolution. Figure 2-5 (a) and (b) shows the

proposed second-order Σ∆ ADC architecture using a VCO as a first-stage integrator,

and Figure 2-6 shows an ideal second-order continuous-time Σ∆ ADC as a point of

comparison [24, 25, 26]. By using a dual-modulus divider, the quantizer output need

not be fed back to the input of the VCO. Therefore, the VCO input is influenced only

by a band-limited analog input signal, and accurate voltage-to-phase integration is

achieved. Note that the analog integrator stage is implemented with a charge pump

and a capacitor as shown in Figure 2-5 (a), and the analog integrator corresponds

to the second stage integrator in Figure 2-6. The feedback DAC is also implemented

with a charge pump. The charge pump currents and capacitance of the capacitor

determines the integrator gain and the feedback coefficient. We use a one-bit quantizer

for higher linearity of the quantizer as well as simplicity of its implementation. Note
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that the divide value of the divider is 3 when out[k] is +1, and 2 when out[k] is –1.

A similar structure to the one shown in Figure 2-5 has been previously suggested

for use as a Σ∆ frequency discriminator [21], which converts the instantaneous fre-

quency of an input signal to a digital sequence. Here we focus on converting the

input tuning voltage of the VCO to a digital sequence, so that we are performing
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voltage-to-digital conversion rather than frequency-to-digital conversion. The benefit

of this structure for A/D conversion is that it performs second-order noise shaping

with a highly digital implementation — the only analog elements are essentially the

charge pump shown in Figure 2-5 (a).

2.4 Modeling

To understand the operation of the proposed ADC structure in Figure 2-5, consider

the linearized analytical model shown in Figure 2-7 (a), which is a direct analogy of

the fractional-N PLL model described in [22]. Here the VCO is modeled as an ideal

integrator; the multi-modulus divider is modeled as a sampler, accumulator, and

scaling factor of 1
Nnom

; and the phase detector is modeled as a subtractor and scaling

factor of αT
2π

[22]. Figure 2-7 (a) clearly shows how the quantizer output signal, which

is not band-limited, is effectively fed back to the ADC input without impacting the

actual VCO input. The signal paths from the VCO input and the quantizer output

are physically separated, but the output phase of the divider is the difference between

the integration of those two signals as shown in Figure 2-7 (a). Hence, the divider

creates an all-digital negative feedback loop that allows the ADC architecture to

operate as a second order Σ∆ modulator without the need for fast analog signals at

the VCO input. Note that the gain of 0.5 is included in the feedback path so that

the appropriate n[k] value is set. In the proposed ADC architecture, a divide-by-2/3

divider is used, and Nnom is 2.5 when the VCO center frequency is properly set [22].

N [k] is 3 and 2, when out[k] is 1 and –1, respectively, as shown in Figure 2-7 (a);

hence n[k] should be 0.5 and – 0.5, when out[k] is 1 and –1, respectively [22]. The

gain of 0.5 in Figure 2-7 (a) is used to convert the out[k] values to the proper n[k]

values.

In the model, the accumulator in the feedback path can be replaced with an

integrator as shown in Figure 2-8 because the frequency response of an integrator is

approximately the same as that of an accumulator. By replacing the accumulator in

the feedback path, the frequency-domain model in Figure 2-7 (a) can be simplified

31



Φn[k]

Φout[k]
vin(t)

VCO

Nnom

1

2π

Φclk[k]
Divider

E(t)T

2π
α

Phase Detector

Φout(t)
out[k]

clk

b

z-1

1-z-1

jf
Kv

T
1

z=ej2πfT

Φn[k]

Φout[k]
vin(t)

VCO

Nnom

1

Φclk[k]
Divider

E(t)T

2π
α

Phase Detector

Φout(t)
out[k]

clk

b

jf
Kv

T
1

T
1

vin(t)

Nnom

1 E(t)T

2π
α out[k]

clk

b

T
12KvT

T

DAC

j2fT
1

T

DAC
T

DAC

e-j2πfT

unit delay

j2fT
1

T

DAC

e-j2πfT

unit delay

0.5
n[k]

n[k]=N[k]-Nnom

out[k]=1

out[k]=-1

N[k]=3

N[k]=2

(a)

(b)

(c)

sampler

sampler

j2πf
1

C
I1 .

j2πf
1

C
I1 .

j2πf
1

C
I1 .

Figure 2-7: (a) Frequency-domain model of the proposed VCO-based ADC. (b) Sim-
plification of frequency-domain model of the proposed VCO-based ADC by replacing
the accumulator with an integrator. (c) Final simplification of the frequency-domain
model of the proposed VCO-based ADC.

32



integratoraccumulator

1

1-z-1

z=ej2πfT

j2πfT
11

1-e-j2πfT

Figure 2-8: Replacement of an accumulator with an integrator.

as shown in Figure 2-7 (b) and finally Figure 2-7 (c). One can easily see the analogy

of the model to an ideal Σ∆ ADC by comparing Figure 2-7 (c) and Figure 2-6. Note

that Φclk[k] is always zero because it is the reference phase so that it is omitted in the

model in Figure 2-7 (c).

Given the simplified model in Figure 2-7 (c), design of the ADC follows that

of classical second-order Σ∆ ADC structures. In particular, the feedback gain in

Figure 2-5 (a) should be appropriately set to realize second-order noise shaping in a

stable manner.

Note that there is a unit delay in the feedback path of the simplified model in

Figure 2-7 (c). The delay in the feedback path generally causes a stability issue

in a high-order Σ∆ modulator. However, CppSim behavioral level simulation [27]

shows that the proposed Σ∆ modulator is stable with the second-order configuration.

Theoretically achievable SNR of the proposed VCO-based ADC may be lower than

the ideal second-order Σ∆ modulator shown in Figure 2-6 because of the delay in the

feedback path. However, in-band noise floor is dominated by the input referred noise

such as device thermal noise of the conventional Σ∆ modulator and VCO phase noise

of the proposed ADC rather than by the quantization noise. Hence, SNR degradation

due to the delay is negligible in reality.

2.5 Phase Locking Range Issues

The proposed ADC structure introduces a unique constraint over that of a classi-

cal Σ∆ ADC, in that the VCO center frequency must be appropriately set. This

constraint is imposed by the fact that the phase detector within the proposed VCO-

based ADC must operate within its phase locking range (i.e., cycle slipping must be

avoided) in order to achieve the desired Σ∆ noise shaping behavior. Therefore, the
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center frequency of the VCO should be set to be Nnom times the clock frequency,

where Nnom corresponds to the nominal divide value [22]. As an example, in the

simulation results presented in Figure 2-10, Nnom equals 2.5 and the reference clock

frequency equals 800 MHz, so that the center frequency of the VCO should be set to

2 GHz.

The phase detector locking range also sets the achievable dynamic range of the

proposed ADC. Since the output frequency of the VCO varies by the signal level of

its input tuning voltage, a large input signal level causes a rapid phase change that

can, in turn, cause the phase difference seen by the phase detector to go outside its

locking range. The Σ∆ loop operation fails if the phase detector incurs cycle slips

— this condition corresponds to a classical Σ∆ ADC becoming unstable due to the

saturation of an internal integrator. In addition, the saturation of internal integrators

can happen to the charge pump/capacitor integrator in the proposed ADC structure.

However, CppSim behavioral simulation [27] of the proposed architecture shows the

cycle slips occur before the saturation of the charge pump integrator. Therefore, the

locking range of the phase detector in this architecture determines the upper limit of

the input signal amplitude. In practice, the finite rise and fall times of the output

voltage of the XOR further narrow the locking range because the XOR fails to operate

when the edges of the two input signals are close to each other as shown in Figure 2-9.
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Figure 2-10: SNR vs. DC gain of the charge pump/capacitor integrator.

2.6 Benefits of the Proposed A/D Structure

The proposed ADC architecture is advantageous because the second-order noise shap-

ing is possible in a highly digital manner. All the building blocks except for the second

stage integrator can be implemented with digital circuitry as shown in Figure 2-5 (a).

Even the second stage integrator can be implemented with simple inverters as will be

presented in section 2.8.

Infinite DC gain of the first stage integrator, which is a VCO integrator, relaxes

the design requirement of the second stage analog integrator in Figure 2-5 (a). Since

the first stage integrator has infinite DC gain, low DC gain of the charge pump

integrator in Figure 2-5 (a) does not degrade the overall performance much. The

calculated SNR using CppSim behavioral simulations with different DC gains of the

charge pump integrator is shown in Figure 2-10. In this simulation, the sampling

rate is 800 MHz, and the VCO center frequency is 2 GHz. The behavioral simulation

includes the VCO phase noise, and the signal bandwidth is 1 MHz. Figure 2-10 shows

SNR drops less than 3 dB even if the DC gain of the charge pump/capacitor is as
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low as 6, and it drops much less than 1 dB with the DC gain of 80. It is known that

the performance degradation is on the order of 1 dB if the DC gain of the integrator

is comparable to the oversampling ratio [23]. The simulation results in Figure 2-

10 clearly show that this DC gain requirement for the charge pump integrator is

significantly relaxed because of the infinite DC gain of the VCO integrator.

2.7 Prototype in 0.18 µm CMOS

The first prototype ADC was fabricated to prove the concept in 0.18 µm CMOS

technology [28]. Figure 2-11 shows the simplified circuit block diagrams of the proto-

type VCO-based ADC in 0.18 µm CMOS. All digital circuits are implemented with

source-coupled logic (SCL) for high-speed operation and common-mode noise rejec-

tion. SCLs are power hungry, and are not appropriate for low-power operation of

an ADC. However, the SCL implementation has the benefit of decreasing the rise

and fall times of the XOR phase detector, which improves its locking range. A 3-

36



Figure 2-12: Die photograph of the prototype IC in 0.18 µm CMOS.

Figure 2-13: Measured output spectrum with –18 dBFS input of the prototype IC in
0.18 µm CMOS.

stage pseudo-differential ring VCO1 is employed. Additional coarse and fine tuning

inputs are included to adjust the center frequency of the VCO. The buffer is used as

a preamplifier for the quantizer to reduce the occurrence of metastable behavior.

Figure 2-12 shows the die photograph of the first prototype IC in 0.18 µm CMOS.

The total active area is about 0.5 mm2. The total power consumption is 34 mW

1This VCO is designed by Charlotte Y. Lau, the former graduate student of MIT High-speed
Circuit and System Group.
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excluding the VCO and its buffer stage. The VCO and the buffer consume 32 mW

and 84 mW, respectively.

The measured output spectrum using a Hann window with –18 dBFS input signal

is shown in Figure 2-13. The second harmonic components are about 22 dB lower

than the desired input signal due to the non-linear voltage-frequency relation of the

ring VCO.

The maximum SNR and SNDR measured are 60 dB and 39 dB over 1 MHz band-

width, respectively. The SNDR is much lower than the SNR due to large harmonic

components in band.

2.8 Circuit Design for the Prototype in 45 nm CMOS

Although the prototype in 0.18 µm CMOS proved the concept, there are several flaws.

First, it wastes too much power in the high-speed digital circuits because it employed

SCLs to maximize the speed. Second, non-linearity of the VCO leads to low SNDR

[28]. Finally, it still uses analog circuits such as charge pumps. Another prototype

IC in 45 nm CMOS is fabricated to address those problems.

The 45 nm CMOS prototype chip for the proposed VCO-based ADC employs

single-ended full-swing CMOS logic circuits, thereby minimizing the power consump-

tion of the digital circuits. The digital circuits in 45 nm CMOS are fast enough for

higher than 5 GHz full-swing digital signals without difficulty. Figure 2-14 shows the

ring VCO design for improved linearity of tuning characteristics. Using an NMOS
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source follower, the control voltage changes the VDD voltage of the 3-stage ring os-

cillator, thereby changing the output frequency. The output voltage swing of the

VCO core part depends on vctrl. The two cascaded inverter stage at the output of the

ring VCO guarantees that the final output voltage swing of the ring VCO is VDD,

1.1 V in this case. The simulation results show the relationship between vctrl and the

output frequency is more linear than the ring VCO in [28]. The prototype chip uses

simple inverters for charge pumps as depicted in Figure 2-15. An inverter is similar

to a charge pump in that the NMOS and PMOS of an inverter also sinks or sources

a current to the output node. However, the amount of a current by a single NMOS

and PMOS is highly dependent on the output voltage. Thus, the inverter-capacitor

pair in Figure 2-15 makes a non-linear low-DC-gain integrator. The DC gain of the

second stage integrator — gm · ro of a single transistor is about 10 in this process —

does not degrade the overall performance of a Σ∆ ADC if the first stage integrator

has an infinite DC gain as discussed in Section 2.6; hence, a simple inverter can be

employed as a charge pump without sacrificing the performance. Non-linearity of the

ADC is dominated by the VCO’s tuning characteristics; thus, the non-linearity of the

second stage integrator is also tolerable.

2.9 CppSim Simulation Results for the Prototype

in 45 nm CMOS

The proposed ADC is simulated with the CppSim behavioral simulation tool. In the

simulation, the sampling rate is 1 GHz, and the VCO center frequency is 2.5 GHz. The

DC gain of the charge pump is only 10. The noise profiles for the ring VCO and the

charge pumps are from the Spectre RF simulations for the circuits described in Section

2.8. The phase noise of the ring VCO is about – 108 dBc at 20 MHz, and the flicker

noise corner frequency is about 1 MHz. According to the Spectre RF simulations, the

charge pump noise is dominated by the flicker noise because minimum channel length

devices are used. In addition, the noise profiles for the NMOS transistors and the
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Figure 2-15: Circuit diagrams of the VCO-based continuous-time Σ∆ ADC in the
45 nm CMOS prototype IC.

PMOS transistors of the charge pumps are different. Thus, each noise source for the

positive and the negative current are separately modeled in the CppSim simulations.

The post-layout simulations of the ring VCO have created the look-up-table for the

voltage-frequency relationship of the ring VCO. The non-linear tuning characteristics

of the ring VCO are also modeled in the CppSim simulations based on the look-up-

table.

Figure 2-16 shows the simulated output spectrum including the VCO phase noise.

The charge pump noise is not included. The SNDR is 43.4 dB over 10 MHz. We can

see the effect of the ring VCO’s flicker noise whose corner frequency is around 1 MHz.

Figure 2-17 shows the simulated output spectrum including the charge pump noise.

The VCO phase noise is not included. The SNDR is 44.1 dB over 10 MHz, and we

can see only the quantization noise in Figure 2-17 because the noise from the charge

pump is relatively smaller than the quantization noise. According to this simulation

result, the in-band noise of the ADC will be dominated by the VCO phase noise.

Figure 2-18 shows the simulated output spectrum including both the VCO phase

noise and the charge pump noise. Since the phase noise dominates the in-band noise,

the SNDR is 43.4 dB over 10 MHz, which is the same as the result of the simulation

including only the VCO phase noise.
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Figure 2-16: Output spectrum of the CppSim simulation including the VCO phase
noise.
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Figure 2-17: Output spectrum of the CppSim simulation including the charge pump
noise.
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Figure 2-18: Output spectrum of the CppSim simulation including both the VCO
phase noise and the charge pump noise.
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Figure 2-19: Die photograph of the prototype IC in 45 nm CMOS.

2.10 Measured Results

Figure 2-19 shows the die photograph of the prototype chip fabricated in 45 nm CMOS

technology. The total active area including an interdigitated finger capacitor is about

1834 µm2. The total power consumption is 1 mW. The VCO consumes 440 µW out

of the total power.

As is described in Section 2.5, the center frequency of the VCO should be set to 2.5

times the sampling clock frequency. During the measurement, the center frequency of
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Figure 2-20: Measured output spectrum of the VCO-based ADC in 45 nm CMOS.

the VCO is controlled by the DC offset of the input signal. For the measurement, the

sinusoidal input signal is AC-coupled to the A/D converter, and a separate, off-chip

DC voltage source sets the offset of the input signal. The proper input DC offset is

important to maximize the input dynamic range. If the input DC offset is inaccurate,

the center frequency of the VCO is not 2.5 times the sampling frequency; thus, even

a small input signal variation easily makes the input of the phase detector go outside

the locking range and causes a cycle slipping.

The measured output spectrum using a Hann window is shown in Figure 2-20. The

spectrum shows quantization noise shaping, as does the spectrum of the prototype in

0.18 µm CMOS. The second harmonic components are about 32 dB lower than the

desired input signal due to the non-linear tuning characteristics of the ring VCO. The

measured harmonics are bigger than those predicted in Figure 2-18. Compared with

the prototype IC in 0.18 µm CMOS, however, the new prototype chip shows better

linearity — the second harmonic of the 0.18 µm CMOS prototype is 22 dB lower than

the main tone, whereas the second harmonic of the 45 nm CMOS prototype is 32 dB

lower than the main tone. The maximum SNR measured is 33.7 dB over 10 MHz.

The maximum SNDR is 31.1 dB due to the relatively large second harmonic.
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Figure 2-21: Output spectrum of the CppSim simulation with large charge pump
noise.

The in-band noise floor shown in Figure 2-20 is higher than expected in the Cpp-

Sim simulations. One possible reason of the higher in-band noise is an inaccurate

charge pump noise model. Figure 2-21 shows the CppSim simulation results with

large charge pump noise. The in-band noise in Figure 2-21 is similar to the measured

results. Thus, the flicker noise model of the charge pumps for the Spectre RF sim-

ulations may not be accurate. If the flicker noise of the charge pumps is indeed the

dominant in-band noise source, we can employ larger devices for the charge pumps

instead of minimum length devices. However, we need to increase the power con-

sumption to properly drive those large charge pumps. Adding degeneration resistors

can be another solution since they decrease the flicker noise of the transistors. Note

that the large thermal noise of the ring VCO or metastability of the quantizer can

also be other possible causes of the large in-band noise.

Table 2.1 summarizes the performance comparison of the proposed VCO-based

ADCs in 0.18 µm CMOS and 45 nm CMOS. The optimum signal bandwidth of the

prototype in 45 nm CMOS has increased to 10 MHz due to the higher in-band noise,

which is possibly caused by the large flicker noise from the charge pumps. However,
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Table 2.1: The performance comparison of the proposed VCO-based ADCs in 0.18 µm
CMOS and 45 nm CMOS

Prototype 0.18 µm CMOS 45 nm CMOS

Sampling Frequency 800 MHz 1 GHz

Signal Bandwidth 1 MHz 10 MHz

Peak SNR 60 dB ( @ Vin=201 kHz ) 33.7 dB ( @ Vin=200 kHz )

Peak SNDR 39 dB ( @ Vin=201 kHz ) 31.1 dB ( @ Vin=200 kHz )

ENOB 6.2-bit 4.9-bit

Total Power 150 mW ( VCO : 32 mW ) 1 mW ( VCO : 440 µW )

Figure of Merit 1 nJ/level 1.7 pJ/level

Power supply 1.8 V ( VCO : 1.8 V ) 1.1 V ( VCO : 1.8 V )

Acitve Area 0.5 mm2 1834 µm2

the total power consumption in the new prototype IC in 45 nm CMOS has improved

greatly because of the low-power full-swing logic circuits employed in the new proto-

type; thus, the figure of merit of the ADC in 45 nm CMOS has improved by almost

600 times. The total active area has also reduced by almost 300 times in the 45 nm

CMOS prototype IC.

2.11 Conclusions

A VCO-based ADC that achieves second order Σ∆ quantization noise shaping has

been presented in this chapter. Fractional-N PLL modeling approaches have been

applied to the proposed ADC to understand and quantify its behavior. The novel

ADC architecture using time-based circuits makes it possible to realize an ADC in

deep sub-micron CMOS with only digital circuits. The presented ADC is implemented

in 45 nm digital CMOS process and achieves 33.7 dB SNR over 10 MHz bandwidth

with 1 GHz of sampling rate.

The VCO phase noise is one of the bottlenecks of the proposed ADC. Although

the phase noise of a ring oscillator improves by burning more power, there is a certain

limitation on the phase noise unless new oscillator topology is employed, such as an
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LC oscillator. The VCO non-linearity is another obstacle. We show that the linearity

of the ring VCO can improve by using a different oscillator topology, but the linearity

is not as good as that of an analog circuits. Therefore, the proposed ADC architecture

is most suitable for the applications that require modest resolution and linearity in

advanced digital CMOS technology, such as on-chip power supply monitoring.
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Chapter 3

A Single-Slope A/D Converter

Using Two-Step Time-to-Digital

Conversion

3.1 Introduction

Single-slope conversion or integrating conversion is a classical means of implementing

an ADC [29, 30, 31] and has the advantage of having a very simple implementation

with minimal analog content. The key operating principle of such structures is to

translate an input voltage to a ramp in time, and then measure the time duration it

takes for the ramp to pass a given threshold voltage. Typically, the time measurement

is performed with a digital counter, whose time resolution corresponds to the counter

clock period. Since the clock frequencies of even the most modern CMOS processes

are typically limited to less than 10 GHz, the time resolution offered by digital counter

structures is constrained to be no better than hundreds of picoseconds. As a result,

single-slope conversion is often constrained to very low sample rates even when only

moderate resolution is desired of the ADC.

Recently, researchers have been investigating alternative approaches to using time-

based quantization within an ADC in order to achieve a highly digital ADC imple-
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mentation. One example of this trend is to tune the frequency of a VCO according to

the input analog voltage, and then measure the period of the oscillator to determine

the quantized output value [16]. Unfortunately, this approach yields limited conver-

sion rates due to the limited frequency of the VCO and also introduces non-linearity

into the ADC due to the non-linear frequency tuning characteristics of a practical

VCO. The conversion rates can be increased by utilizing all phases of a multiphase

VCO rather than just its overall output [19]. Still, the non-linear characteristics pre-

vail as we could see from the measured results in Chapter 2. By surrounding the

VCO-based quantizer with an analog feedback loop, the resulting ADC characteristic

can be made much more linear [9, 10, 17], but the cost of such an approach is higher

analog complexity in the system which will be difficult to apply in future CMOS

technology.

In this chapter, we revisit the idea of using a single-slope conversion structure to

leverage time-based quantization in the ADC. Rather than using a digital counter

as the quantizer element, we instead draw off of recent advances in time-to-digital

conversion (TDC) to perform this operation. The approach in [11] employs a similar

concept for A/D conversion by utilizing a delay line based TDC. Instead of using a

straightforward delay line for a TDC, in this work, we employ a ring oscillator to deal

with a time-based signal. In particular, we leverage a recently published TDC based

on a multipath gated ring oscillator (GRO) structure that achieves better than 10 ps

of time resolution with a wide dynamic range [15]. To improve the power efficiency,

we propose two-step conversion in which a low-frequency ring oscillator period is used

to provide the initial coarse quantization, and the GRO TDC is used to provide fine

quantization of the resulting residue. Measured results of the proposed architecture

in 0.13 µm CMOS demonstrate 80 Ms/s conversion rate with an ENOB of 6.45 bits

with a simple, compact ADC structure that has minimal analog complexity.

In contrast to the VCO approach in Chapter 2, the proposed A/D converter in this

chapter is a hybrid approach that combines analog circuits and time-based circuits.

By employing small analog circuits at the front-end, we can eliminate the issue of

non-linearity in the VCO.
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Figure 3-1: A/D conversion using a linear VTC and a two-step TDC.

In Section 3.2, we begin by showing the basic concept of the proposed ADC, which

is composed of a linear voltage-to-time conversion (VTC) and a two-step TDC. We

then show the circuit implementation of the linear VTC, followed by details of the

two-step TDC. Following this discussion, we present a post-processing technique to

mitigate the impact of mismatch in the two-step conversion process. Finally, measured

results are shown for a custom IC prototype implementing the ADC in section 3.3.

The chapter is concluded in section 3.4.

3.2 The Proposed Single-Slope A/D Converter

Figure 3-1 shows the basic concept of the proposed ADC architecture which utilizes

a linear VTC and a two-step TDC. The VTC transforms a sampled input voltage to

a pulse whose duration is linearly proportional to the input voltage. The duration

of the pulse signal is measured by the two-step TDC, which yields a corresponding

digital output. By using two-step architecture for the TDC, the power consumption

is reduced while still achieving large range and fine resolution. The key idea is to first

perform the time measurement with a coarse TDC that has low power consumption,

and then use a fine TDC to measure the resulting residue. We will show that the

two-step TDC implementation can be achieved with minimal analog complexity.

The key challenges of the ADC are to achieve a linear VTC structure along with

an efficient circuit implementation of a two-step TDC.
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3.2.1 Linear Voltage-to-Time Conversion (VTC)

Figure 3-2 shows the block diagrams and timing diagrams of the suggested linear

VTC. It is composed of a sample-and-hold circuit, a current source, and a comparator.

The sample-and-hold circuit charges the sampling capacitor up to the input voltage

while the current source is turned off. The current source is then turned on so that the

voltage across the sampling capacitor decreases linearly as a function of time. When

the voltage of the sampling capacitor crosses the threshold voltage of the comparator,

the output of the comparator goes high. Assuming constant current drain on the

capacitor, the resulting time duration between turning the current source on and

having the comparator go high is linearly related to the input voltage, so that the

desired VTC function is achieved.

By quantizing the time duration of the pulse output by the VTC with the two-

step TDC, a digital representation of the input voltage is achieved. Therefore, the

combination of the VTC and the TDC yields the desired ADC functionality.

A key issue in achieving good linearity in the proposed ADC is to maintain con-

stant current drain on the capacitor within the VTC, which requires high output
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resistance of the current source. Figure 3-3 shows a simplified circuit diagram of

the voltage-to-time converter which achieves a high output resistance current source

through double cascode. The drawback of having two cascode devices is limited volt-

age swing at the output of the current source. However, high output resistance is

only needed for voltages above the threshold voltage of the comparator since voltages

below that value have no influence on the timing of the comparator decision. There-

fore, the threshold voltage of the comparator is simply chosen to be large enough such

that the cascode devices are in saturation above the threshold voltage.

Figure 3-3 also depicts the comparator implementation, which consists of a simple

cascade of inverters. Although an inverter cannot be used as a general purpose

comparator, it is suitable as a threshold-voltage-crossing detector if the input voltage

is a constant slope ramp [32, 33, 34, 35]. Several stages of inverters achieve high

enough sensitivity as a threshold-voltage-crossing detector, and inverters are easily

implemented in advanced CMOS technology. The precise threshold voltage of the

inverters cannot be controlled, but the threshold voltage affects only the offset of the

voltage-to-time converter, which is easily subtracted out by post-processing in the

digital domain.
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3.2.2 Two-Step Time-to-Digital Conversion (TDC)

The fine resolution portion of the two-step TDC corresponds to a multipath GRO

TDC which was first introduced in [14]. The GRO TDC performs time-to-digital

conversion by counting transitions of a ring oscillator which is enabled only during

the measurement interval. The raw resolution of this TDC corresponds to an inverter

delay, but the structure interestingly achieves first order noise shaping of its quanti-

zation noise [14]. A further improvement in resolution is achieved by connecting the

input for each delay stage to a combination of previous delay stages, which is referred

to as a multipath GRO TDC as proposed in [15]. By doing so, the delay per stage can

be dramatically reduced below that of an inverter. In 0.13 µm CMOS, a multipath

GRO TDC yields about 6 ps of raw time resolution [15], which is far less than the

35 ps inverter delay offered by this technology [14].

A critical issue related to a GRO TDC is that its power consumption increases

as the duration of the input pulse signal increases due to the longer time duration

that the ring oscillator and transition counting circuits must be active. In order to

save power consumption, the proposed ADC utilizes a GRO TDC only to measure

the residue of a quantization operation performed by a lower power, coarse TDC.

The challenge in achieving this two-step conversion is that the time residue cannot be

stored, so that the coarse/fine quantization must operate on the same pulse produced

by the VTC.

To explain the two-step TDC structure, Figure 3-4 displays simplified block dia-

grams of the overall ADC, and Figure 3-5 shows its corresponding timing diagrams.

The coarse TDC is composed of a ring oscillator and a counter. The oscillator’s fre-

quency is set to be relatively low so that low-power operation is obtained. The ring

oscillator is enabled to start oscillating at the same moment that the current source is

turned on to start discharging the sampling capacitor. A simple digital counter keeps

track of the number of cycles that occur for the oscillator while the comparator is still

low. At the point at which the comparator output goes high, a register stores the

counter output so that coarse quantization of the pulse duration is achieved. The fine
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Figure 3-4: Simplified block diagrams of the proposed ADC.

quantization measurement is then performed by measuring the time duration from

when the comparator went high to the next edge of the oscillator output, as depicted

in Figure 3-5. By knowing the ring oscillator period, the resulting measurement by

the GRO TDC can be easily utilized to compute the residual error of the coarse

quantization performed by the ring oscillator. Since the GRO TDC is active for only

the short time period, its power consumption is minimized.

One key issue of the GRO TDC is that it requires minimum input pulse duration

to perform correctly since the internal ring oscillator of a GRO TDC requires a finite

amount of time to turn on and off. As shown in Figure 3-4 and 3-5, two D flip-flops

are utilized to add a half oscillator period to the GRO TDC pulse duration. As such,

the minimum pulse duration will be half the coarse ring oscillator period and the

maximum pulse duration will be one-and-a-half coarse ring oscillator periods.

Because of the addition of the half oscillator period, the final digital word from

the GRO TDC includes a corresponding offset value. This offset must be considered

during post-processing, as discussed in the next section.

3.2.3 Calibration and Post-Processing

The key issues in performing post-processing are to calibrate the relative scale fac-

tors between the coarse and fine TDC measurements, and to compensate for any
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Figure 3-5: Timing diagrams of the proposed ADC.

systematic second order effects. The key second order effect that we will address

is that the frequency of the ring oscillator used for coarse measurement takes some

time to settle to its final frequency after being turned on. The resulting transient in

frequency manifests itself as non-linearity in the coarse measurement. However, since

the transient is entirely repeatable, it can be compensated by post-processing as will

soon be discussed.
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Figure 3-6: Input voltage vs. digital output code of the proposed ADC.

We first address the issue of calibrating the scale factors between coarse and fine

TDC measurements. Figure 3-6 depicts an example of the GRO TDC and course TDC

outputs as a function of input voltage, as well as the desired post-processed data

output. As seen in the figure, the minimum and maximum values from the GRO

TDC correspond to the half period and one-and-a-half period of the coarse TDC,

respectively, as measured in increments of the GRO TDC unit step size. Therefore,

to calibrate the relative scale factors between the coarse and fine TDC measurements,

we simply need to measure the half period and one-and-a-half period of the coarse

TDC oscillator with the GRO TDC. Once the minimum and maximum values of the
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GRO TDC are obtained, the desired digital output is

out = outTDCC
· (maxGRO − minGRO) + (maxGRO − outGRO) (3.1)

outTDCC
is the output from a coarse TDC, outGRO is the output from a GRO TDC,

maxGRO is the maximum value from a GRO TDC, and minGRO is the minimum value

from a GRO TDC.

To deal with the issue of the transient in the coarse TDC ring oscillator frequency,

more elaborate calibration is required which involves generating a known waveform at

the input of the ADC that spans its full dynamic range, and performing a curve fitting

operation to remove the observed non-linearity. However, one should note that only

the coarse TDC need to be calibrated, which greatly simplifies the complexity of this

operation. A more careful design of the coarse TDC ring oscillator should eliminate

the need for this calibration in future designs. One could also eliminate this issue by

keeping the coarse TDC ring oscillator on at all times, and then synchronizing the

start time of the current source that drains the sample capacitor to the appropriate

edges of the coarse TDC ring oscillator. However, such an approach would increase

power consumption.

3.2.4 Noise Sources of the Proposed A/D Converter

Figure 3-7 illustrates three major noise sources in the proposed ADC. kT
C

noise of

a sampling capacitor is omitted since choosing a large capacitor can make kT
C

noise

negligible compared with other noise sources [36]. Thermal noise and flicker noise

of the current source are integrated before influencing the comparator output, which

influences the decision time of the comparator and, therefore, causes degradation in

the ENOB of the ADC. Note that jitter of the coarse TDC ring oscillator has a similar

effect on degrading the ENOB of the ADC.

In addition to the influence of the above noise sources, the quantization noise of the

GRO TDC is another important noise source in the proposed ADC. The quantization

noise of the GRO TDC is determined by its time resolution, which is set by the delay
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Figure 3-7: Noise sources of the proposed ADC.

per stage of its internal ring oscillator, as well as mismatch between the delays across

the various stages. While the GRO TDC does offer noise shaping, this property is

not of benefit in the Nyquist rate application considered here. However, due to the

natural barrel-shifting action through the delay stages in the GRO TDC, the presence

of mismatch does not impact the non-linearity of the ADC due to the noise shaping

property of the barrel-shifting action [9, 15]. Therefore, while the GRO TDC does

not provide noise shaping advantages in this application, it does provide linearity

advantages in the presence of mismatch.

3.3 Measured Results

The prototype custom IC is implemented in 0.13 µm CMOS. A bootstrap circuit is

employed for the sample-and-hold switches [37, 38], and a 20 pF sampling capaci-

tor value is chosen. Digital circuits for calibration are included on the IC, though

MATLAB is used to construct the final digital output sequence of the ADC.

During the calibration phase, a simple digital control circuit is used to measure

the minimum and maximum values of the GRO TDC1, and these values are retrieved

by MATLAB through a USB interface for post-processing of the ADC output as

1This GRO TDC is designed by Matthew Z. Straayer, the former graduate student of MIT
High-speed Circuit and System Group.
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Figure 3-8: Die photograph of the prototype IC.

explained in the previous section. Non-linearity of the coarse TDC is measured by

applying a full swing sinusoidal wave in the input of the ADC. By using a curve fitting

method, the adjusted gains for the coarse TDC are calculated and stored for use by

the MATLAB post-processing script.

Figure 3-8 shows the die photograph. The total active area is about 0.09 mm2

including a sampling capacitor. Figure 3-9 shows the 4096 point FFT spectrum with

38 MHz input signal at 80 MS/s sampling rate without calibration of the coarse TDC

non-linearity, and Figure 3-10 shows the spectrum with calibration. The maximum

ENOB measured is 6.45 bit at 80 MS/s sample rate with calibration. The total power

consumption is 6.4 mW, of which the GRO TDC consumes about 4 mW. The calcu-

lated Figure Of Merit (FOM) is 0.92 pJ/level. Table 3.1 summarizes the measured

performance.

Note that most of power is consumed by the GRO TDC and the digital circuits. As

we discussed in Chapter 1, both time-based circuits such as a ring oscillator and digital

circuits benefit from Moore’s Law. Therefore, the total power consumption of the

proposed ADC is expected to decrease if it is fabricated in future CMOS technology.

One of the analog circuits of the proposed ADC, a current source, will suffer from

various issues if the channel length of the device shrinks; hence, it is unavoidable to

use high supply voltage thick oxide devices for a current source. However, most of the
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Figure 3-9: Output spectrum without calibration of coarse TDC non-linearity.
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Figure 3-10: Output spectrum with calibration of coarse TDC non-linearity.

circuits of the proposed ADC are still scalable. The more advanced CMOS processes

will make the performance and area of the proposed ADC improve.
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Table 3.1: Performance summary of the proposed TDC-based single-slope ADC

Sampling frequency 80 MHz

Peak SNDR 40.6 dB (freqin=38 MHz)

ENOB 6.45 bit

Power consumption

GRO TDC 4 mW

Digital Circuits 1.4 mW

Analog Circuits 1 mW

Total 6.4 mW

Process 0.13 µm CMOS

Area 0.09 mm2

FOM 0.92 pJ/level

3.4 Conclusions

A single-slope ADC which leverages two-step time-to-digital conversion along with

post-processing was presented. The resulting structure is simple and compact, and

the two-step conversion allows a power-efficient means of performing the time-to-

digital conversion operation with wide range and high resolution. The overall ADC

achieves 6.45 bit of ENOB at 80 MS/s with 6.4 mW of power dissipation.

The proposed hybrid approach that combines analog circuits and time-based cir-

cuits resolves the non-linearity issue, which was one of the bottlenecks of the VCO

approach introduced in Chapter 2. However, we could see the flicker noise effect

of the current source in the voltage-to-time converter. Accordingly, the proposed

single-slope ADC may not be suitable for high-resolution low-speed A/D conversion

due to the flicker noise dominance at the low frequency, unless very large devices

are employed for the current source. If the proposed ADC is designed for a moderate

sampling rate, however, the performance and power of the presented ADC will mainly

be limited by digital circuits and a GRO TDC, as the measured results have shown

in this chapter. Therefore, the performance of the proposed ADC is expected to im-

prove when it is fabricated in future CMOS processes, in which time-based circuits

and digital circuits perform better in terms of both the resolution and the power.
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We believe that the proposed single-slope ADC would be suitable for a highly digital

A/D conversion at a moderate sampling rate in deep sub-micron CMOS technology.
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Chapter 4

A VCO-Based RF Modulator

4.1 Introduction

More and more wireless applications require sophisticated digital operations to per-

form many functions, such as camera, audio/video, and even a video game. A mi-

croprocessor, various memories, and a DSP are required to perform such complicated

tasks. Therefore, digital circuits have dominated even wireless applications in terms

of area and power. Ideally, integrating analog and RF circuits with those digital

circuits is desired to lower the cost and power dissipation of chips.

For RF transmitters, some publications have suggested using an RFDAC for easier

System-on-Chip (SoC) implementation [39, 40, 41]. An RFDAC generates an RF

signal directly from a digital signal; hence, it eliminates a mixer and a DAC, of

which analog characteristics are important for performance. An RFDAC requires

fast switches for RF signal generation; on-going device scaling for modern CMOS

technology helps to make the switches faster. Thus, an RFDAC is more suitable to

integrate an RF transmitter with digital circuits in modern CMOS technology than

a conventional RF transmitter architecture.

One of the challenges of RFDAC design is its resolution. The resolution is lim-

ited by lithography and device mismatch as is a conventional baseband DAC. The

RF transmitter presented in [39] overcomes the resolution issue by Σ∆ modulation.

However, it requires a well-tuned high-order LC filter in order to suppress the large
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out-of-band noise generated by doing Σ∆ modulation. Such high quality LC filters

require longer design time.

PMW is another way of generating an RF signal by simple switching [42, 43, 44].

However, PWM creates a strong ripple signal close to a carrier frequency although

it does not suffer from a quantization noise issue. The ripple signal close to a car-

rier frequency requires a good filter. High PWM repetition rate relaxes the filter

requirement, but it limits a dynamic range as will be discussed in Section 4.2.

We propose a multiphase PWM method to avoid aforementioned issues of a simple

PWM RF transmitter. We also use a VCO-based OP amp to generate multiphase

PWM signals in deep sub-micron CMOS processes. Our target bandwidth of the pro-

posed RF modulator is 20 MHz. Compared with the bandwidth of the RF modulator

in [39], our target bandwidth is narrower. It means that a passive LC filter with

a higher Q is required for 20 MHz bandwidth in order to suppress the out-of-band

quantization noise if the RF modulator architecture in [39] — RFDACs driven by

Σ∆ modulation — is employed. However, we can eliminate such a high-Q filter by

driving RFDACs using multiphase PWM signals.

We start with discussing a PWM-based RF transmitter in Section 4.2. The pro-

posed VCO-based OP amp, which will be utilized for multiphase PWM signal gener-

ation in deep sub-micron CMOS, is introduced in section 4.3, followed by a proposed

VCO-based RF modulator based on multiphase PWM scheme in Section 4.4. Circuit

design of the proposed VCO-based RF modulator will be discussed in Section 4.5.

Since the proposed RF modulator omits a poly phase filter for IQ clock generation

in order to avoid using accurate passive components, the IQ LO clock signals are

generated by high-speed flipflops as will be discussed in Section 4.5. Accordingly, IQ

mismatch due to the delay of flipflops is inevitable. IQ mismatch compensation ap-

plying to the source baseband signal using digital filters will be mentioned in Section

4.6. The prototype chip was implemented in 45 nm CMOS. The measurement results

are presented in Section 4.7, and the chapter is concluded in Section 4.8.
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4.2 Background: An RF Modulator Based on PWM

Figure 4-1 illustrates a conventional direct-conversion RF modulator. It uses a base-

band DAC to directly drive a Gilbert Cell mixer. Although a direct-conversion mod-

ulator is very popular topology for an RF modulator even targeting state-of-the-art

wireless communication standards such as WiMax [45], it would be challenging to

implement the Gilbert Cell in deep sub-micron CMOS technology mainly because of

the analog operation of the transistors which the baseband DAC drives. One prob-

lem is a headroom issue. Limited voltage headroom in deep sub-micron CMOS may

result in non-linearity of the transistors performing analog functions. High ro of the

transistors are also required for the linear voltage-to-current conversion. In addition,

the input-offset of the analog transistors may cause a current imbalance of the differ-

ential signal paths — analog circuits are usually more sensitive to device mismatch

than digital circuits. Therefore, it would be challenging to deal with analog circuits

in the future CMOS processes, and the traditional RF modulator topology employing

a mixer may not be the best candidate.

iout+ iout-

LO+

LO-

ibaseband-ibaseband+

DAC
baseband

digital signal vDAC+

vDAC-

analog operation

Figure 4-1: A conventional Gilbert Cell mixer based RF modulator.
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An RFDAC eliminates the transistors that perform analog functions. However,

the resolution of an RFDAC is limited by device mismatch. The approach in [39]

employs ∆Σ modulation to increase in-band resolution, but it requires a precise on-

chip reconstruction filter to remove the out-of-band quantization noise. Such a precise

on-chip filter could lead to longer design cycles in order to properly tune the filter

characteristics for a given application.

We propose to use PWM to solve the resolution issue. PWM uses simple switch-

ing waveforms rather than precise control of current or voltage, thereby making the

resolution limited by the time resolution not by the current or voltage resolution.

Time resolution, which is involved with a transistor switching time, scales as device

size shrinks. Therefore, PWM could be a good solution for the resolution issue in

advanced CMOS technology.

The simplest method to utilize PWM for higher resolution is to generate a base-

band signal with PWM. Figure 4-2 depicts such an idea. As shown in Figure 4-2, the

low frequency contents of the PWM signal represent the desired baseband signal, and

ripples appear at the high frequency due to the periodic repetition of the pulses. The

transistors in the Gilbert Cell mixer no longer perform an analog function because

the PWM signal simply switches the transistors. Therefore, this topology will be eas-

ily implemented even in low cost digital CMOS processes with short channel length

devices. A similar idea has been suggested for an all-digital RF signal generation in

[44].

One drawback of a simple PWM approach for an RF modulator is that PWM

generates an unwanted ripple frequency component in the output due to the repeated

switching actions. The ripple component should be removed by filtering so that high

ripple frequency is desirable for easy filtering. However, the high PWM frequency

results in a dynamic range issue, as is shown in Figure 4-3. Because of the limited

rise and fall times of switching devices, the maximum dynamic range of the output

signal is also limited. In addition, the maximum dynamic range is proportional to

the switching period, which is the inverse of the PWM frequency. Therefore, there is

a trade-off between ripple frequency and dynamic range.
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Figure 4-2: Generating a baseband signal by PWM.

The approach combining an RFDAC and PWM can address the dynamic range

problem. Figure 4-4 depicts a Gilbert Cell driven by multiphase PWM signals. The

topology shown in Figure 4-4 can be considered as a 3-level RFDAC driven by 3-phase

PWM signals. The timing diagrams in Figure 4-5 present how the RFDAC driven

by multiphase PWM signals works. Although the RFDAC in Figure 4-4 has only 3

current levels to generate the baseband signal, each switching element is driven by a
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maximum
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Figure 4-3: Dynamic range of a PWM signal.

separate PWM signal so that the combined signal of 3 current sources shows infinite

resolution. In other words, a PWM signal does not create a quantization noise as

long as the time resolution of the pulsewidth is infinite. In practice, the pulse edge

contains timing jitter, which limits the resolution. Note that the individual PWM

signal switches at a lower rate, but the ripple frequency of the combined PWM signal

is higher, as is shown in Figure 4-5. Therefore, the ripple frequency of the combined

PWM can be high enough to make filtering of the ripple signal easy. The dynamic

range of the mixer in Figure 4-4 is higher than that of a single PWM RF modulator

because the mixer driven by multiphase PWM signals can create more voltage or

current levels. This multiphase PWM topology is introduced in [46]. For multiphase

PWM generation, however, the approach presented in [46] employs triangular wave-

form generators and multilevel comparators that are analog circuits. These analog

building blocks are inadequate since our goal for this RF modulator is to implement
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Figure 4-4: A mixer driven by multiphase PWM signals. 3-phase PWM signals are
shown.

it in deep sub-micron CMOS.

We propose to use multiphase ring VCOs and phase detectors to generate the

multiphase PWM signals. The behavior of the proposed architecture composed of

multiphase ring VCOs and phase detectors is similar to the behavior of an OP amp.

Thus, we will call the proposed architecture a VCO-based OP amp. The VCO-based

OP amp is a core part of the VCO-based RF modulator.
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Figure 4-5: Generation of multiphase PWM signals.

4.3 The Proposed VCO-Based OP Amp

4.3.1 VCO-Based OP Amp Architecture

The main idea of the proposed VCO-based RF modulator is to drive multiple Gilbert

Cell mixers with multiphase PWM signals using the VCO-based OP amp. Figure 4-

6 illustrates a basic concept of the proposed VCO-based OP amp. The two VCOs

work as integrators, and the phase detector converts the phase difference between the

two integrators’ outputs into a voltage or current signal. Because the phase detector
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Figure 4-6: The proposed VCO-based OP amp.

out =
2πKvG

s
H(s) (v+-v-)

-90
o

-180
o

-135
o

ωp

one pole at DC

(infinite DC gain)

ω (log scale)

gain

(dB)

phase

second pole

by LPF

1

1+ ωp

s
Assuming H(s) =

Figure 4-7: Bode plot of the suggested VCO-based OP amp.
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Figure 4-8: The proposed VCO-based OP amp vs. a conventional OP amp.

output has a ripple, a low-pass filter (LPF) is required for the output signal.

Figure 4-7 depicts the VCO-based OP amp’s bode plot when the LPF is a simple

one-pole filter, and Figure 4-8 compares the proposed VCO-based OP amp’s bode

plot with that of a conventional OP amp. As Figure 4-8 shows, the VCO-based OP

amp has an infinite DC gain while the DC gain of the conventional one is limited by

the finite gain of its gain stages. Achieving a high DC gain in conventional OP amps

becomes more and more difficult as the device scales down, but the DC gain of the

VCO-based OP amp is not limited by technology.

Note that the unity gain bandwidth of the VCO-based OP amp will generally need

to be lower than that of a conventional OP amp due to the second pole frequency,
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Figure 4-9: The proposed VCO-based OP amp with multiphase VCOs and phase
detectors.

ωp, required to filter the ripple. If the unity gain bandwidth is not low enough, the

phase margin would be too small as we can see in Figure 4-7.

The major difference between the proposed VCO-based OP amp and a conven-

tional OP amp is that a voltage ripple exists in the VCO-based OP amp due to the

nature of the phase detector. We propose to employ multiphase ring VCOs and mul-

tiple phase detectors to reduce the ripples from phase detectors. In Figure 4-9, there

are two ring VCOs and each output tap is connected to an XOR phase detector. Each

XOR gate drives one element of a current DAC. The output current of the DAC will

be the sum of the current of individual elements. The timing diagrams of the 5-phase

ring VCO-based OP amp are shown in Figure 4-10 to Figure 4-14, and output ripple

reduction by multiphase VCOs will be discussed later.

In Figure 4-10, an example of the timing diagrams of 5 XOR phase detectors is

illustrated. Each XOR gate drives an element of a DAC as mentioned earlier; hence

the output current of the DAC is proportional to the sum of the phase detector’s

output. If the phase difference between two ring VCOs is π
2
, then the output current

of the DAC will alternate between 2 and 3 unit-current at 50 % duty cycle, as is

illustrated in Figure 4-10.
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Figure 4-10: Timing diagrams of multiphase VCOs and phase detectors (1).
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Figure 4-11: Timing diagrams of multiphase VCOs and phase detectors (2).
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Figure 4-12: Timing diagrams of multiphase VCOs and phase detectors (3).
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Figure 4-13: Timing diagrams of multiphase VCOs and phase detectors (4).
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Figure 4-14: Timing diagrams of multiphase VCOs and phase detectors (5).

Figure 4-11 illustrates the timing diagrams when the phase difference is slightly

less than π
2
. The DAC output current also alternates between 2 and 3 unit-current,

but at a lower duty cycle.

When the phase difference decreases further, the DAC output current will be just

2 unit-current, as is illustrated in Figure 4-12. As the phase difference continues

to decrease, the DAC output current also keeps decreasing. Figure 4-13 and 4-14

illustrate how the DAC output current changes when the phase difference continues

to reduce. It is obvious that the average DAC output current represents the phase

difference, as shown in Figure 4-10 to Figure 4-14.

The peak-to-peak output ripple current can be as high as one unit-current. If only

one phase detector is used, the ripple current can be as high as the maximum DAC

output current. However, in the case of a multiphase ring VCO, the unit-current of a

DAC is much smaller than the maximum DAC output current, and the DAC current

becomes smaller as more ring VCO taps are employed. The frequency of the ripple

is inversely proportional to the delay of the delay cells in the ring VCO. It is more
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Figure 4-15: Modeling of the proposed VCO-based OP amp (1).

desirable to have a higher ripple frequency because removing a high frequency ripple

is easy even by a simple filter. Accordingly, many taps and the short delay of the

delay cells of ring VCOs are desired in order to reduce the output ripple.

4.3.2 Simplified Behavioral Model of the Proposed VCO-

Based OP Amp

The full behavioral model of the VCO-based OP amp will be used in CppSim sim-

ulations for the analysis and verification of the system. However, the simplified be-

havioral model of the VCO-based OP amp will be useful in the initial design and

analysis without also requiring long behavioral simulations because the closed form
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equation can be easily derived from the model. If the simplified behavioral models

include various design parameters such as the number of the stages of ring VCOs and

a DAC unit current, the model will be especially helpful in optimizing the circuits for

the VCO-based OP amp. The proposed VCO-based RF modulator’s performance is

determined by the characteristics of the included VCO-based OP amps for the most

part. Therefore, it is important to develop the simplified behavioral model and the

closed form equation of the VCO-based OP amp.

The proposed VCO-based OP amp is modeled with several functional building

blocks in Figure 4-15. The ring VCOs are modeled as integrators whose gain is

2πKV . The XOR phase detectors are modeled as subtractors and gain stages. The

DACs are modeled as PWM blocks that create a PWM signal. The DC component of

the PWM signal corresponds to the output from the phase detectors, and the ripple

frequency is 1
td

, where td is a delay of unit delay cells in a ring VCO. The current

signal from the PWM block goes into an RC filter. R
1+sRC

is the transfer function of

the RC filter with current as an input and voltage as an output.

Figure 4-16 and Figure 4-17 illustrate the DAC waveform from one DAC unit cell

with different relative phases of two VCOs. When the phase difference is zero, the

output current is zero. When the phase difference increases to π
4

and π
2
, the average

output current also grows to iunit

4
and iunit

2
, respectively. In contrast, when the phase

difference is higher than π, the average output current decreases as the phase grows.

The sign of the XOR phase detector gain alternates periodically at every π of the

relative phase difference. The total current from all the DAC cells will be the sum

of the currents of each unit DAC cell, and the current will have the ripple whose

frequency is 1
td

. In order to model the DAC current precisely, we need a behavioral

building block that generates PWM signals, shown in Figure 4-10 to Figure 4-14. The

ripple frequency of the PWM signals is also 1
td

, but their duty ratios are dependent

on the relative phase difference between two ring VCOs. However, the ripple will

eventually be filtered by the RC filter, and the effect of the ripple on the overall

function of the VCO-based OP amp is trivial. Therefore, in the simplified behavioral

models, only the average current of the DAC will be taken into account for calculation
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Figure 4-18: Modeling of the proposed VCO-based OP amp (2).

of the various transfer functions.

Figure 4-18 illustrates the final simplified behavioral model of the proposed VCO-

based OP amp. The sign of the gain stage that models the phase detector and the

DAC depends on the relative phase difference between the two ring VCOs. However,

the gain from v+ to vout should be positive by convention. Accordingly, Model B in

Figure 4-18 is the appropriate model of the VCO-based OP amp. In most cases, the

VCO-based OP amp is used in feedback configuration, and the design will be based

on Model B in Figure 4-18; this means that the transfer function of the feedback

system based on Model A in Figure 4-18 will be unstable and that the system ends
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up working based on Model B in Figure 4-18. A similar operation occurs during the

frequency locking process in a PLL using an XOR phase detector. The ripple current

from the DAC is not modeled mathematically, as is mentioned earlier. A fixed duty

ratio square wave will be applied in the actual CppSim simulations to roughly model

the ripple current as an option. The peak-to-peak amplitude of the square wave is

iunit, the unit current of a DAC, and the frequency of the square wave is 1
td

. This

method is not a precise modeling of the ripple current from the VCO-based OP amp,

but the modeling should be good enough for the initial design and optimization of

the system.

In order to verify the developed simplified behavioral model, we simulate unity

gain amplifiers using the VCO-based OP amp. Figure 4-19 compares a unity gain

amplifier composed of the full behavioral model of the VCO-based OP amp with

one composed of the simplified behavioral model of the VCO-based OP amp. DC

current sources are added to set the appropriate output DC voltage. According to

the simplified behavioral model shown in Figure 4-19, the transfer function is

vout =
−R

1 + sRC
·
−2KV · N · iunit

s
(vin − vout) +

−R

1 + sRC
· (iripple − iDC)

vout =
2RKV Niunit

s2RC + s + 2RKV Niunit

vin

+
−sR

s2RC + s + RKV Niunit

· (iripple − iDC) (Model B) (4.1)

vout =
−R

1 + sRC
·
2KV · N · iunit

s
(vin − vout) +

−R

1 + sRC
· (iripple − iDC)

vout =
−2RKV Niunit

s2RC + s − 2RKV Niunit

vin

+
−sR

s2RC + s − 2RKV Niunit

· (iripple − iDC) (Model A) (4.2)

As we mentioned earlier, with appropriate design parameters, only (4.1) based on

Model B in Figure 4-18, which shows a desirable low-pass filtering as a unity gain

amplifier, will be stable. Equation (4.1) reveals that all three signals, vin, iripple, iDC
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Figure 4-19: Full behavioral model vs. simplified behavioral model of a unity gain
amplifier using VCO-based OP amp.

impact vout through transfer functions that contain two poles. In the case of vin,

the transfer function is essentially a second order lowpass. In the case of iripple and

iDC , there is an additional zero at the origin which causes their transfer functions to

become bandpass in nature.
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Figure 4-20 displays the simulation results comparing the full, detailed behavioral

model with the simplified behavioral model. In the simulation, 16-stage ring VCOs

are used. KV is around 220 MHz/V, iunit is 125 µA, R is 550 Ω, and C is 3 pF. The

full behavioral model and the simplified behavioral model reasonably agree with each

other. Hence, the developed simplified behavioral model in Figure 4-18 is sufficient

for predicting the characteristics of the VCO-based OP amp. This model will also be

used to design the proposed VCO-based RF modulator.

4.3.3 Issues of the Proposed VCO-Based OP Amp

As described so far, an OP amp can be built with multiphase ring VCOs and multiple

phase detectors. The VCO-based OP amp does not require any gain stages, and

voltage headroom is no longer an issue because the OP amp can be implemented with

full-swing logic circuits. The output ripple is the major drawback of this architecture.

The ripple can be reduced by employing many taps of the VCOs and a short delay of

the delay cells in ring VCOs. However, the VCO gain, KV , decreases as the number of

taps increases1 so that the unity-gain bandwidth of the OP amp is limited. Moreover,

the minimum delay of the delay cells is limited by technology. Therefore, it may not be

possible to reduce the output ripple to the desired level in certain processes. Another

problem is that the transfer function of the OP amp is a function of KV , and KV may

vary with input common-mode voltages due to the non-linear tuning characteristics

of a ring VCO. When the transfer function varies, the OP amp can be unstable.

1Let the delay of one voltage-controlled delay cell dunit, then dunit = dnom + G · v, where dnom

is a nominal delay, G is a delay gain, and v is a control voltage.
KV of an N-stage ring VCO using the voltage-controlled delay cell is derived as follows:

fV CO =
1

2N · dunit

=
1

2N · (dnom + G · v)

KV =
dfV CO

dv
=

−G

{2N · (dnom + G · v)}2

KV

∣

∣

∣

∣

v=0

=
−G

{2Ndnom}2
(4.3)

Thus, KV decreases when the number of stage increases if the delay gain of the voltage-controlled
delay cell is fixed.
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Figure 4-20: Simulation results. Full behavioral model vs. simplified behavioral model
of a unity gain amplifier using the VCO-based OP amp.

Therefore, the input common-mode voltage should be limited in order to guarantee

its stability. The phase locking range of a phase detector is also related to this issue.

The maximum input phase variation of a phase detector is limited so that fast and

large phase variation may cause a cycle slip of a phase detector. Hence, the phase

locking range of a phase detector will limit the maximum input dynamic range. The

other issue of the suggested OP amp architecture is the phase noise of the VCO. The

phase noise in this OP amp is considered an input-referred voltage noise. Low phase

noise of a ring VCO is challenging, especially in deep sub-micron technology, because

of the large flicker noise of a small device.

While the above issues point to limitations in using the VCO-based OP amp for

general applications, we will see that it is nicely suited for the multiphase PWM
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generator presented here.

In this chapter, the VCO-based OP amp is utilized as a multiphase PWM gener-

ator that drives the proposed VCO-based RF modulator, and not as a substitution

for a conventional OP amp. Therefore, most of the issues mentioned in this section

can be addressed, especially the ripple and the VCO phase noise.

4.4 The Proposed VCO-Based RF Modulator

4.4.1 Proposed VCO-Based RF Modulator Architecture and

Its Model

The basic idea of the proposed RF modulator is to employ the VCO-based OP amp

to generate multiphase PWM signals that drive mixers, as introduced in Figure 4-4.

In Figure 4-21, the multiphase PWM signals, p0 ∼ p4, are generated from the phase

detectors of the VCO-based OP amp. Each PWM signal drives additional DAC

cells that generate ireplica. ireplica is the baseband signal that will be up-converted

by a mixer. In a Gilbert Cell mixer, the baseband current is differential, and the

architecture in Figure 4-21 can be simply modified to generate a differential baseband

current. iin is the baseband input signal of the multiphase PWM signal generator,

and ireplica is the output signal. The negative feedback loop tries to keep iout the same

as iin, and ireplica is simply the replica current of iout with a certain gain determined

by the ratio of iunit and iunit2. The maximum amplitude of ireplica is controlled by

the unit current of the baseband DAC, iunit2. The simplified behavioral model of the

proposed architecture helps to derive its transfer function in closed form equations.

According to the model shown in Figure 4-22, the transfer function is
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Figure 4-21: Multiphase PWM signal generation using the proposed VCO-based OP
amp.
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iout = iripple +

(

2πKV

s
·
−N · iunit

π

){

vREF −

(

iout −
vDC + vin

Rin

)

·
−R ‖ Rin

1 + s(R ‖ Rin)C

}

= iripple +

(

−2KV Niunit

s

)

vREF

+

(

−2KV Niunit

s

)(

R ‖ Rin

1 + s(R ‖ Rin)C

)(

iout −
vDC + vin

Rin

)

=
s{1 + s(R ‖ Rin)C}

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
iripple

−
2KV Niunit{1 + s(R ‖ Rin)C}

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
vREF

+
2KV Niunit(R ‖ Rin)

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
·
vDC + vin

Rin

ireplica = G · iout , where G =
iunit2

iunit

ireplica =
Gs{1 + s(R ‖ Rin)C}

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
iripple

−
2GKV Niunit{1 + s(R ‖ Rin)C}

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
vREF

+
2GKV Niunit(R ‖ Rin)

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
·
vDC + vin

Rin

(4.4)

According to (4.4), vDC and vin are filtered by a two-pole low-pass filter. vREF is

filtered by a one-zero two-pole filter although vREF will just be a DC voltage that

controls the average voltage of the RC filter. The DC component of iripple will be

suppressed according to (4.4). However, iripple has no DC component because it is

a ripple current from the PWM generator. The transfer function for iripple has two

zeros and two poles, and the zeros and the poles will eventually be canceled out at

high frequency. Considering that the ripple frequency of the proposed VCO-based

OP amp is meant to be high, iripple will appear at high frequency with almost no

filtering. Figure 4-23 illustrates an example of the transfer functions for iripple, vREF ,
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Figure 4-22: Simplified behavioral model of the multiphase PWM signal generator
using the proposed VCO-based OP amp.
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Figure 4-23: The transfer functions for iripple, vREF , and vin.

and vin. We assume that 16-stage ring VCOs are used in Figure 4-23. KV is around

220 MHz/V. iunit and iunit2 are 125 µA, which means G = 1. R is 2.8 kΩ, Rin is

550 Ω, and C is 2.5 pF. Note that the transfer function of vin falls off at a rate of

– 40 dB/ decade while that of vREF decreases at a rate of – 20 dB/decade. The two-

pole low-pass filter for vin, as shown in Figure 4-23, makes the proposed architecture

not only a multiphase PWM signal generator, but also a LPF for a baseband DAC

whose output is represented by vin in Figure 4-21. By choosing appropriate design
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Figure 4-24: Simplified block diagrams of the proposed VCO-based RF modulator
using RFDACs.

parameters, the two-pole low-pass filter for vin, or a baseband DAC, can lead to large

enough suppression at high frequency to relax the reconstruction filter requirement

of the RF modulator. The resistor, Rin, gives us more freedom to choose appropriate

pole locations of the low-pass filter for enough suppression.

The transfer function of iripple has two zeros and two poles as mentioned earlier.

One zero is located at DC so that iripple is suppressed at the low frequency. The other

zero is located near the two poles with the given parameters. Figure 4-23 shows that

there is a little bump due to one zero and two poles which are all located at around

100 MHz. As a result, iripple is not filtered at high frequency. As was explained in the

previous sections, the frequency of the ripple can be very high. For example, if the

delay of a delay cell of the VCOs is 50 ps, the ripple frequency is theoretically 20 GHz.

This frequency becomes even higher as more advanced technology is employed because

device delay becomes shorter. Moreover, the magnitude of the ripple current can be

lowered by employing more stages of VCOs and phase detectors, since the peak-to-

peak amplitude of the ripple current is iunit, which is inversely proportional to the

number of stages with a given maximum output current. Accordingly, even a low-Q

reconstruction filter at the output of the proposed RF modulator can suppress the

high frequency ripple signals well enough even though the ripple is not filtered by

the feedback operation of the proposed multiphase PWM generator. Thus, the ripple

current is not a critical issue in this architecture.

Figure 4-24 and Figure 4-25 depict the block diagrams of the proposed VCO-
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based RF modulator employing RFDACs. Only an in-phase signal path is shown in

Figure 4-24 and Figure 4-25, but a quadrature signal path will look exactly the same.

The input baseband signal is created by an on-chip or off-chip baseband DAC.

If the baseband DAC is a Σ∆ DAC, the shaped out-of-band quantization noise will

be filtered by the two-pole low-pass filter shown in Figure 4-23. Since the out-of-band

noise from vin will be suppressed at a rate of – 40 dB/decade, the baseband Σ∆ DAC

should be a first order or a second order. If a third or higher order baseband Σ∆ DAC

is used, the output reconstruction filter should have high enough Q to suppress the

excessive out-of-band quantization noise. Note that this RF modulator architecture

is proposed in order to eliminate such a high Q LC filter. Therefore, the order of the

baseband Σ∆ DAC should be up to 2.

If the baseband DAC is a Nyquist DAC, the image due to the DAC clock fre-

quency will be suppressed by the two-pole low-pass filter. Therefore, the proposed

architecture either eliminates the need of an additional reconstruction filter for the

Nyquist DAC or lessens the filter requirement.

Another advantage of this architecture is that the ring VCOs and the phase detec-

tors sequentially drive the RFDACs, such that Dynamic Element Matching (DEM)

is achieved for free. A similar DEM effect in a VCO-based A/D converter is reported

[9]. Accordingly, the matching requirement for the RFDACs in Figure 4-25 is more

relaxed. The output voltage dependency of the RFDAC current also affects the lin-

earity of the system. As is presented in [39], appropriate device sizing and additional

cascode devices for the RFDACs can guarantee a reduction in output voltage de-

pendency of the RFDAC current, such that good linearity of the RFDAC can be

achieved.

In addition to the mismatch of the RFDACs and the output voltage dependency

of the RFDAC current, the VCO’s linearity also affects the overall linearity of the

proposed RF modulator. The tuning characteristics of a practical VCO are non-

linear. Therefore, the multiphase PWM signals generated by the architecture shown

in Figure 4-21 are influenced by the VCO non-linearity. The non-linear relationship

between the control voltage and the output frequency makes the VCO gain, KV ,
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dependent on the control voltage, which results in a changing transfer function. In

Figure 4-21, the voltage of v− is determined by the loop dynamic while the voltage

of v+ is set to vREF . Ideally, the two input voltages should be virtually shorted by a

negative feedback operation. Thus, KV will be constant because the control voltage

is fixed, thereby suppressing the non-linearity of the VCOs. Similar non-linearity

suppression is also achieved by a negative feedback system employing a traditional

OP amp. However, with a large, fast-varying input signal coming in, the feedback

cannot catch up with the input signal variation; thus, v−, which is supposed to be

virtually shorted to v+, ends up being different from v+. Therefore, KV changes

due to the varying v−, and the non-linearity of the ring VCO cannot be suppressed

sufficiently by the negative feedback loop. In reality, the non-linearity resulting from

the non-linear VCO and loop dynamics is unavoidable. The harmonics caused by this

non-linearity are dependent on the characteristics of the VCO, but it is possible to

predict how much harmonic suppression is achieved by the negative feedback loop.

The suppression will be determined by the error voltage of the virtually shorted two

input nodes of the VCO-based OP amp, v+ and v−; the higher the error voltage, the

less the non-linearity suppression. The error voltage, e, can be easily derived by the

simplified behavioral model introduced in Figure 4-22.

e = v+ − v− = vREF − vout

vout =
2KV Niunit(R ‖ Rin)

s{1 + s(R ‖ Rin)C}
(vREF − vout) +

R ‖ Rin

1 + s(R ‖ Rin)C
·
vDC + vin

Rin

=
2KV Niunit(R ‖ Rin)

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
vREF

+
s(R ‖ Rin)

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
·
vDC + vin

Rin

∴ e =
s2(R ‖ Rin)C + s

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
vREF

−
s(R ‖ Rin)

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
·
vDC + vin

Rin

(4.5)
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Figure 4-26: The frequency response for error voltage (v+ − v−) with vin as an input.

vREF is a DC signal, and the DC term will be suppressed according to (4.5) due

to the zero located at DC in the transfer function for vREF . Hence, vREF does not

affect e. The baseband input signal, vin, however, affects e. Figure 4-26 shows

the frequency response for e with vin as an input. For Figure 4-26, all the design

parameters are the same as those for Figure 4-23. Obviously, the higher amplitude

of the baseband input signal results in a higher error voltage, which means higher

harmonics. Furthermore, Figure 4-26 implies that the non-linearity grows as the input

frequency increases because the suppression decreases — if the input frequency is

lower than 100 MHz, according to Figure 4-26. These changes can restrict the possible

bandwidth of the proposed VCO-based RF modulator. The frequency dependency of

the RF modulator’s non-linearity will be verified by behavioral simulations.

4.4.2 Noise Analysis of the Proposed Multiphase PWM Gen-

erator

The noise analysis of the proposed multiphase PWM generator is performed based on

the derived simplified behavioral model of the VCO-based OP amp. Two important

noise sources of the proposed VCO-based OP amp are in the ring VCOs and the
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Figure 4-27: Model of the multiphase PWM signal generator using a VCO-based OP
amp including noise sources.

DAC. They are easily modeled as input-referred noises or output-referred noises in

the simplified behavioral models, as is shown in Figure 4-27, where vn+ and vn− are

the input-referred phase noise of the ring VCOs, and in is the output-referred current

noise from the DAC. The input-referred VCO phase noise, vn+ and vn−, has the same

transfer function as vREF , and the output-referred current noise from the DAC inside

the VCO-based OP amp, in, has the same transfer function as iripple. The VCO phase

noise will increase the in-band noise floor, but the phase noise will be filtered at high

frequency since the transfer function for vREF decreases by 20 dB/decade, as is shown

in Figure 4-23. The proposed RF modulator is especially targeted for deep sub-micron

CMOS, which usually exhibits large flicker noise. Therefore, the flicker noise from the

VCO will appear at in-band without filtering. Conversely, the output-referred DAC

noise will be suppressed in-band because of the high-pass filtering effect for iripple, as

is shown in Figure 4-23. As a result, the VCO phase noise will dominate the in-band

noise floor if the input baseband DAC has adequately low noise and high resolution.

4.4.3 Locking Range of the Proposed Multiphase PWM Gen-

erator

The proposed multiphase PWM generator is similar to a PLL in that the PWM

generator consists of VCOs, phase detectors, and a loop filter. The proposed PWM
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generator has a limited locking range as influenced by its phase detector, as does a

PLL. The analysis method of a PLL can be also applied to the proposed multiphase

PWM generator to find out the locking range of the phase detector.

Figure 4-28 shows the phase detector input signal in the simplified behavioral

model of the proposed multiphase PWM signal generator. For the XOR phase de-

tector, the locking range is known to be π. Therefore, the phase detector input, y,

should also be within π to keep the feedback loop in lock.

y =
2πKV

s

{

vREF −

(

Niunit

π

)(

R ‖ Rin

1 + s(R ‖ Rin)C

)

y

}

−
2πKV

s

{

R ‖ Rin

1 + s(R ‖ Rin)C

(

iripple −
vDC + vin

Rin

)}

=
2πKV

s
vREF −

2KV Niunit(R ‖ Rin)

s{1 + s(R ‖ Rin)C}
y

−
2πKV (R ‖ Rin)

s{1 + s(R ‖ Rin)C{

(

iripple −
vDC + vin

Rin

)

=
2πKV {1 + s(R ‖ Rin)C}

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
vREF

−
2πKV (R ‖ Rin)

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)

(

iripple −
vDC + vin

Rin

)

(4.6)

Equation (4.6) shows that y is determined by vREF , iripple, vDC , and vin. Note that

vREF is set to a DC voltage, and the negative feedback loop tries to keep vout the

same as vREF . Because vout changes with the varying input voltage, vin, as is shown

in (4.5) and Figure 4-26, it is best to set vREF to V DD
2

so that vout can have the

maximum dynamic range. In addition, the purpose of vDC is to set the offset voltage

of the baseband signal such that the maximum voltage variation of vin is guaranteed.

For example, if the locking range of a phase detector is (0, π), vDC should be set such

that y is π
2

when vin is 0. Because vREF and vDC are static values, only the iripple

and vin terms from (4.6) affect the locking range. Interestingly enough, iripple term

will be filtered out by the two-pole low-pass filter according to (4.6). Note that the

frequency of iripple is 1
td

, where td is a unit delay of a ring VCO. Since the frequency of

iripple is typically very high, the iripple term in (4.6) is negligible. Therefore, only vin
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Figure 4-28: Phase detector input in the simplified behavioral model of the proposed
multiphase PWM signal generator.

determines the locking range of the system. Assuming that the gain of the two-pole

low-pass filter is flat over the in-band, the phase variation created by vin is

y =
2πKV (R ‖ Rin)

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
·

vin

Rin

∣

∣

∣

∣

s=0, at DC

=
2πKV (R ‖ Rin)

2KV Niunit(R ‖ Rin)
·

vin

Rin

=
π

Niunit

·
vin

Rin

(4.7)

where y is the phase detector input in Figure 4-28. (4.7) is an approximation. If there

is a peak at a certain frequency in the transfer function, (4.7) is an underestimation

of the phase variation created by vin at that frequency. If the gain decreases at a

certain frequency, (4.7) is an overestimation of the phase variation at that frequency.

However, with appropriate filter design, (4.7) offers us reasonable guidance for the

locking range. Assuming that vDC is set properly and the locking range of an XOR

phase detector is π, the value of y in (4.7) should be (−π
2
, π

2
) for proper phase detector

operation. Thus, the dynamic range of vin keeping the system locked is

−
π

2
<

π

Niunit

·
vin

Rin

<
π

2

−
NiunitRin

2
< vin <

NiunitRin

2
(4.8)

Therefore, with appropriate vDC , the maximum dynamic range of vin satisfying the
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locking range of an XOR phase detector is NiunitRin. In other words, the system will

not work if vin does not satisfy (4.8) due to the malfunction of the phase detector. Note

that non-linearity of the proposed RF modulator worsens as the input amplitude and

frequency grows. Accordingly, the maximum dynamic range of the input baseband

signal is also determined by the non-linearity requirement and by the locking range

of a phase detector.

4.4.4 Behavioral Level Simulations of the Proposed Multi-

phase PWM Generator

The proposed multiphase PWM generator employing the VCO-based OP amp is sim-

ulated with its behavioral model by CppSim. The output of the proposed VCO-based

RF modulator will correspond to the upconversion of ireplica, so that the performance

of the VCO-based RF modulator is predicted by the baseband spectrum of ireplica.

In the CppSim simulations, 16-stage ring VCOs are used. KV and the nominal

frequency of the ring VCO with V DD
2

of the control voltage are around 220 MHz/V

and 985 MHz, respectively. Both iunit and iunit2 are 125 µA. R is 2.8 kΩ, Rin is 550 Ω,

and C is 2.5 pF. The VCO phase noise is also included. The flicker noise component

of the VCO phase noise is not modeled, for simplicity. The VCO phase noise is – 115

dBc at 20 MHz offset from the center frequency. The current noise of the DAC is

not modeled because the VCO phase noise is assumed to dominate the in-band noise

floor. The delay mismatch between each delay cell of a ring VCO is modeled because

delay mismatch is unavoidable in reality.

In the full behavioral model, the ring VCO consists of linear voltage-controlled

delay cells, so the period of the ring VCO is linearly controlled by the voltage. This

means that the relationship between the control voltage and the output frequency

is non-linear. Therefore, the VCO non-linearity is roughly modeled in the CppSim

simulations. Note that the non-linearity of a VCO in practical circuits will be different

because the delay of a delay cell is not linearly controlled by the voltage. Thus, the

non-linearity of the VCO in the prototype chip will be different from that in the
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CppSim simulation results. Although the VCO non-linearity is not precisely modeled

in the behavioral model, we can still verify the effect of the VCO’s non-linearity on

the system because the voltage-frequency relationship of the model is non-linear. For

example, we can see that the harmonic tones due to the VCO non-linearity will grow

as the input frequency increases, as is predicted in Figure 4-26.

Figure 4-29 shows the CppSim simulation results for the proposed multiphase

PWM generator. The input baseband signal is a sinusoidal wave whose frequency is

9 MHz. The amplitude of the baseband signal is ± 522.5 mV , which is 95 % of the

maximum dynamic range: ±16×125µA×550Ω
2

= ± 550 mV , by (4.8). Figure 4-29 shows

that the VCO phase noise is filtered by the two-pole, one-zero, low-pass filter, as is

explained in section 4.4.2. The second harmonic of the baseband signal is created by

the VCO non-linearity. The second harmonic is about 60 dB below the main tone, and

this harmonic may not be appropriate when strict spectral requirements are imposed

by applications such as cellular phone standards. However, it can be tolerable for less

strict spectral requirement, such as the wireless LAN standards.

Figure 4-30 shows the voltages of two input nodes of the VCO-based OP amp

used in the simulated multiphase PWM generator. v+ is set to V DD
2

, which is 0.55 V

in this case. v− is the output voltage of the VCO-based OP amp. v− is supposed

to be virtually shorted to v+ by the negative feedback loop. However, the feedback

loop is not fast enough to catch up with the 9 MHz input signal, so v− swings from

about 0.49 V to about 0.61 V, as is shown in Figure 4-30. Thus, the error voltage,

e, is about ± 60 mV . According to Figure 4-26, the gain for e is about – 18.5 dB at

9 MHz. Therefore, the expected error voltage from the simplified behavioral model is

e = ± 522.5 mV × 10
−18.5

20 = ± 62.1 mV , where the amplitude of the baseband signal

is ± 522.5 mV . The calculated value is close to the CppSim results. This voltage

swing changes the effective KV of one of the non-linear ring VCOs and results in the

harmonics of the baseband input signal.

The nominal delay of the delay cells in the ring VCO is about 32 ps. Thus, the

ripple from the phase detector causes the tone to be around 31 GHz and its harmonics,

and the harmonics appear in Figure 4-29, as expected. A tone close to 1 GHz and
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Figure 4-29: Spectrum of ireplica from the proposed multiphase PWM generator using
the VCO-based OP amp with its full, detailed behavioral model.
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Figure 4-30: The voltages of two input nodes of the VCO-based OP amp.
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Figure 4-31: Spectrum of ireplica from the proposed multiphase PWM generator using
the VCO-based OP amp with its simplified behavioral model.

its harmonics are the results of the delay mismatch of the ring VCOs. The delay

mismatch of two ring VCOs and an XOR phase detector generates the irregularity of

an XOR output signal which repeats at every VCO cycle. Accordingly, at the VCO

frequency, the repeated irregularity creates a tone that is about 985 MHz. Many

harmonics of this tone also appear in Figure 4-29.

Figure 4-31 shows the spectrum of ireplica from the proposed multiphase PWM

generator simulated using the simplified behavioral model. The core part including

the VCOs and the phase detectors are not modeled with the full, detailed behavioral

models, but they are modeled based on the s-domain filter shown in Figure 4-27.

The VCO phase noise is added to see the noise filtering characteristics of the system

modeled with the simplified behavioral models. The ripple from the phase detector

is simply modeled using a fixed duty ratio square wave. Since the VCO non-linearity

and the delay mismatch between the delay stages of a ring VCO are not modeled in

the simplified model shown in Figure 4-27, the spectrum shows only the ripple caused

by PWM.
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Figure 4-32: Comparison between the full behavioral model and the simplified be-
havioral model.

Figure 4-32 compares the full behavioral model and the simplified behavioral

model. The full behavioral and simplified behavioral models agree with each other

reasonably, except for the tones created by the VCO non-linearity and the delay

mismatch. Both models show a similar low-pass filtering for the VCO phase noise.

Therefore, we can verify that the core part modeled with the simplified behavioral

model shown in Figure 4-27 is good enough for the initial design and analysis of the

proposed VCO-based RF modulator.

Figure 4-33 shows the spectrum of ireplica when the input baseband signal is a

2 MHz sinusoidal wave. The input amplitude is still ± 522.5 mV . The harmonics

of the input signal disappear in Figure 4-33 since the non-linearity suppression is

better for the slower input signal, as is predicted in Figure 4-26. Figure 4-34 shows

the non-linearity suppression effect more clearly. The v− swing is about ± 12.5 mV .

Comparing with Figure 4-30, one can find out that the negative feedback loop can

better track the slower input signal, even with the same input amplitude. Hence, the

v− swing in Figure 4-34 is suppressed more than the one in Figure 4-30. According to
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Figure 4-33: Spectrum of ireplica from the proposed multiphase PWM generator using
the VCO-based OP amp with its behavioral model when the input signal frequency
is 2 MHz.
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Figure 4-34: The voltages of two input nodes of the VCO-based OP amp when the
input signal frequency is 2 MHz.
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Figure 4-26, the gain for e is about – 31.5 dB at 2 MHz. Therefore, the expected error

voltage from the simplified behavioral model is e = ±522.5mV ×10
−31.5

20 = ±13.9mV .

The calculated value agrees reasonably well with the CppSim results.

4.4.5 Behavioral Level Simulations of the Proposed VCO-

Based RF Modulator

The proposed VCO-based RF modulator is simulated with its behavioral model by

CppSim. Different filters are applied to the input baseband signal and the phase noise

of the VCOs according to (4.4). In Section 4.4.2, we described that the phase noise

has the same transfer function as vREF in (4.4). As a result, the input baseband signal

is filtered by a two-pole filter, and the phase noise is filtered by a one-zero two-pole

filter, according to (4.4) and Section 4.4.2. The characteristics of those filters are

determined by the RC filters of the VCO-based OP amps in the RF modulator. We

have an on-chip resistor (R) and a capacitor (C), as well as an off-chip resistor (Rin).

By selecting an appropriate Rin value, we obtain the optimized filtering for both the

input signal and the phase noise.

By replacing vREF with vn, which is the input referred VCO phase noise, in (4.4),

we can derive the transfer function of the phase noise. The DC gain of the VCO

phase noise is

ireplica

vn

∣

∣

∣

∣

s=0, at DC

= −
2GKV Niunit{1 + s(R ‖ Rin)C}

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)

∣

∣

∣

∣

s=0

=
G

R ‖ Rin

Thus, the bigger Rin value leads to the lower gain of the phase noise. However, too

big an Rin value can make complex poles for both the input signal and the phase noise

transfer functions, thereby resulting in peaking. Figure 4-35 illustrates the transfer

function of the input baseband signal with different Rin values. Figure 4-35 shows

that 1.1 kΩ of Rin causes a peaking and 50 Ω of Rin makes the bandwidth of the input

signal too narrow. Figure 4-36 also depicts the transfer function of the VCO phase

noise with different Rin values. Obviously, 50 Ω of Rin passes too much in-band noise.

1.1 kΩ of Rin leads to a peaking. Figure 4-35 and Figure 4-36 suggest that 550 Ω is
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the optimum value for both input filtering and in-band noise.

Figure 4-37 is the CppSim simulation result, with Rin = 50 Ω. The baseband

input signal is a 20 MHz OFDM signal. Figure 4-37 shows large in-band noise, as

is predicted in Figure 4-36. Moreover, the input signal is filtered such that the

modulated signal is not flat over in-band. The filtering of the input signal is also

predicted in Figure 4-35.

Figure 4-38 is the CppSim simulation result, with Rin = 550 Ω. The figure shows

the optimized spectrum for filtering of the input signal and for the phase noise.

Figure 4-39 is the CppSim results, with Rin = 1.1kΩ. The figure shows a peaking

of the phase noise, which can potentially violate the spectral mask. The peaking is

also predicted in Figure 4-36.

4.5 Circuit Design

4.5.1 RFDAC

A Gilbert Cell is employed for the unit RFDAC in this work, as it is in [39]. Figure 4-

40 illustrates the unit RFDAC cell. The Gilbert Cell is driven by full-swing pseudo-

differential signals. Thus, all transistors except for a current source work as simple

switches, and the mismatch of the RFDAC cells are dominated by the tail current

source. For one to reduce mismatch, the tail transistor must be sufficiently large. Full-

swing logic circuits do not draw static currents, but they are generally slower than

SCLs. The full-swill logic speed is fast enough to drive the RFDAC cells at higher

than 3 GHz in 45 nm CMOS. Moreover, full-swill logic circuits do not require resistors;

hence, they are more digital-friendly. Thus, full-swing logic circuits are employed for

the RFDAC in this work. The LO signals drive each RFDAC cell through a clock-tree

that guarantees an equal distance between the clock load to the source. Therefore, a

mismatch between LO+ and LO− nodes in Figure 4-40 should be minimal. However,

the data signals are generated from a multiphase PWM generator, and it is almost

impossible to route each phase of PWM signals to the RFDACs at an equal distance.
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Figure 4-35: The transfer function of the input baseband signal with different Rin

values.
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Figure 4-36: The transfer function of the VCO phase noise with different Rin values.
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Figure 4-37: The CppSim simulation result with Rin = 50 Ω.
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Figure 4-38: The CppSim simulation result with Rin = 550 Ω.
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Figure 4-39: The CppSim simulation result with Rin = 1.1 kΩ.
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Figure 4-40: Unit RFDAC cell.

Thus, the delay mismatch due to different routing distances for the PWM signals

are unavoidable. Local full-swing buffers for the PWM signals are included in each

RFDAC cell to make the signal slope steep enough. The cross-coupled inverters in

Figure 4-40 help to keep the pseudo-differential signal non-overlapping even with the

timing-skew due to device and route mismatch.

A 16-stage RFDAC has been chosen after considering device mismatch and com-
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Figure 4-41: 16-stage RFDAC with cascode transistors.

plexity. 2N stages for the RFDAC also allow equal distance clock-tree routing for

each RFDAC cell. Since all the unit RFDAC cells have the same size, the designed

RFDAC can be considered a 16-stage thermometer-code RFDAC. Cascode transis-

tors with thick-oxide are connected to the output of the employed 16-stage RFDAC,

as is shown in Figure 4-41, to reduce the voltage stress to the RFDACs, which are

composed of fast, thin-oxide transistors. The drains of the cascode transistors will be

connected to an off-chip balun. The supply voltage of the RFDAC output is 2.5 V,

and the cascode devices are sized such that VDS does not exceed 1.8 V, which is the

recommended supply voltage for the thick-oxide transistors.

The current noise of the RFDAC is dominated by flicker noise, according to the

Spectre simulations. The total integrated noise is about 3.04×10−13 A2, from 100 Hz

to 20 MHz, with about 1.1 mA of nominal current; this results in 65 dB of SNR over

20 MHz. The behavioral simulations, including the VCO phase noise, show a noise
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Figure 4-42: Voltage-controlled delay cell.

floor larger than the current noise floor of the RFDAC. Therefore, the noise from the

RFDAC is insignificant compared with the VCO phase noise.

4.5.2 Ring VCO

The number of ring VCO stages should be the same as the number of RFDAC stages

since each phase detector stage connected to the VCOs drives one RFDAC cell. Hence,

a 16-stage ring VCO should be designed. Since the number of the stages is an even

number, a differential delay cell is employed. A differential ring VCO is also a better

choice because the RFDAC has differential data inputs.

Figure 4-42 shows the voltage-controlled delay cell: a cross-coupled, pseudo-

differential delay cell [47]. A pseudo-differential ring oscillator is better than a dif-

ferential one in terms of phase noise [48]. Each unit delay cell is cross-coupled in

order to make a pair of input and output signals differential. vctrl weakly turns on the

NMOS and PMOS depending on the voltage, and changes the current that flows into

the output nodes, out+ and out−, which ends up changing the delay. The core part of

the delay cell does not consume static current due to its pseudo-differential topology

and rail-to-rail inputs. However, the NMOS and PMOS transistors controlling the

delay draw static currents. The output nodes, out+ and out−, are connected to the

input nodes, in+ and in−, of the next stage. The inverters in Figure 4-42 work as

buffers driving XOR phase detectors.

The proposed VCO-based OP amp requires two ring VCOs and one of them gen-

erates reference multiphase clock signals. For IQ baseband PWM signal generation by
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Figure 4-43: Ring VCOs and phase detectors for in-phase and quadrature VCO-based
OP amps.

the VCO-based OP amp, two VCO-based OP amps are necessary, but one ring VCO

that generates reference clock signals can be shared. In other words, three ring VCOs

and two sets of phase detectors are required for IQ baseband PWM signal generation.

In this case, the reference ring VCO drives two sets of XOR phase detectors. The

delay cell in Figure 4-42 is designed for such a purpose. Two inverters at each node

drive different XOR phase detectors. Other VCOs that create feedback paths in the

VCO-based OP amp drive only one set of XOR phase detectors, so only one inverter

per output node is required. However, the delay cell with two inverters per output

node in Figure 4-42 is used for all three ring VCOs to guarantee the same loading at

the output nodes, out+ and out−.

Figure 4-43 illustrates how the ring VCOs and phase detectors are connected for

IQ channel VCO-based OP amps. The outputs and inputs of the ring VCOs and

the XOR phase detectors are differential, but Figure 4-43 shows only single-ended

signals, for simplicity. Ring V CO0 generates multiphase reference clocks and drives

both I-channel phase detectors and Q-channel phase detectors. One set of the output

buffers in ring V CO1 and ring V CO2 is not used, as is shown in Figure 4-43, and

the unused output buffers effectively work as dummy devices for better matching of

the three ring VCOs.

As was discussed in Section 4.4.2, the VCO phase noise is a dominant in-band
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Figure 4-44: The post-layout simulation results for the phase noise of the ring VCO.
The VCO frequency is about 985 MHz

noise source of the proposed multiphase PWM generator. One can calculate the in-

band noise power caused by the phase noise of the ring VCOs. Post-layout simulations

with the ring VCO based on the delay cell in Figure 4-42 shows the phase noise of

–127 dBc/Hz at 20 MHz offset from the center frequency and about 185 MHz of KV

with 0.55 V of vctrl. As is shown in Figure 4-44, the phase noise grows up at a rate of

30 dB/decade below 10 MHz; this means that the flicker noise dominates the in-band

VCO phase noise.

In order to quantify the in-band noise due to the VCO phase noise, we revisit the

transfer function of the multiphase PWM generator.

ireplica =
Gs{1 + s(R ‖ Rin)C}

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
iripple

−
2GKV Niunit{1 + s(R ‖ Rin)C}

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
vREF

+
2GKV Niunit(R ‖ Rin)

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
·
vDC + vin

Rin

As explained in Section 4.4.2, the input-referred phase noise has the same transfer

111



function as does vREF , and the output-referred current noise from the DAC has the

same transfer function as does iripple. Since we want to quantify the phase noise com-

ponent by comparing it to the input signal vin, the above equation can be rewritten

as follows:

ireplica =
2GKV Niunit(R ‖ Rin)

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
·

vin

Rin

−
2GKV Niunit{1 + s(R ‖ Rin)C}

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
(vn+ − vn−) (4.9)

where vn+ and vn− are the input-referred phase noise from the two ring VCOs of the

multiphase PWM generator, as is shown in Figure 4-27. Note that since vn+ and vn−

are uncorrelated random noises, they are added together even with the minus symbol

between them. The SNR is calculated via the ratio between the signal power and the

noise power. The vin term is the signal, and the (vn+−vn−) term is the noise in (4.9).

Then, the SNR is

SNR =
(R ‖ Rin)2 v2

in,rms
∫

in−band
R2

in {1 + jω(R ‖ Rin)C}2 (v2
n+ + v2

n−) dω

=
(R ‖ Rin)2 v2

in,rms
∫

in−band
2 R2

in {1 + s(R ‖ Rin)C}2 v2
n dω

(4.10)

Equation (4.10) assumes that the two ring VCOs have the same noise power. R

is 2.8 kΩ, Rin is 550 Ω, C is 2.5 pF, KV is 185 MHz, N is 16, and iunit is 125 µA.

With these parameters, the 3-dB bandwidth of the denominator in (4.10) is about

70 MHz. Because the target signal bandwidth in this work is at most a few tens of

MHz, the filtering effect of the two-pole, one-zero filter of (vn+ − vn−) term in (4.9)

can be neglected.

SNR ≈
(R ‖ Rin)2 v2

in,rms

2 R2
in v2

n

(4.11)

The input-referred noise spectral density of a VCO phase noise is calculated with

the following equation when the phase noise is caused by white noise such as device
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Figure 4-45: Input-referred noise spectral density for a VCO phase noise when flicker
noise dominates and white noise dominates. The noise density number is from the
post-layout simulations for the designed ring VCO in 45 nm CMOS technology.

thermal noise.

v2
n(f) =

f 2
offset

K2
V

· 10
phase noise

10 (for all the frequency) (4.12)

where foffset is the offset frequency at which the phase noise is measured, KV is the

VCO gain, and phase noise is in dBc/Hz. The calculated input-referred noise spectral

density is about 2.33× 10−15 V2/Hz for the designed ring VCO, whose phase noise is

– 127 dBc at 20 MHz offset and KV is 185 MHz. However, the input-referred voltage

noise should be flicker noise rather than white noise, according to the simulation

results. Therefore, the noise spectral density should go up at a rate of 10 dB/decade

as the frequency decreases, as the solid line shows in Figure 4-45. The spectral density

of the flicker noise is simply modeled as follows:

v2
n(f) =

2.33 × 10−15 (V 2/Hz) × 20 × 106 (Hz)

f
(4.13)

By integrating the noise spectral density in (4.13) over the in-band frequency range,

we can calculate the total noise power of the ring VCO. Note that the flicker noise
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diverges to infinity at DC. Since the output signal of the multiphase PWM generator

will be directly up-converted to the carrier frequency by the RFDACs, we can expect

the SNR of the OFDM signal at the frequency bins near the carrier frequency will be

worse than those at other frequency bins. For the noise power estimation, the total

noise power is calculated by integrating the spectral density in (4.13) from 100 Hz to

20 MHz, as was done in Section 4.5.1. This approximation underestimates the noise

power around DC, but should still be a reasonable estimation. The total noise power

from 100 Hz to 20 MHz is

v2
n =

∫ 20×106

100

2.33 × 10−15 (V 2/Hz) × 20 × 106 (Hz)

f
df

= 2.33 × 10−15 × 20 × 106 ·

[

ln(f)

]20×106

100

≈ 568.8 × 10−9 V 2

The signal power of the proposed multiphase PWM generator is determined via the

input signal swing, which is limited by the locking range of the XOR phase detector,

as is discussed in Section 4.4.3. The maximum input signal swing with N = 16 and

iunit = 125µA is ±550mV , according to (4.8). If the input signal is a sinusoidal wave

with ± 500 mV peak amplitude for conservative estimation, then

v2
in,rms =

(

500 mV
)2

2
= 125 × 10−3 V 2

With these numbers plugged in (4.11), the estimated SNR with the phase noise is

SNR ≈
(R ‖ Rin)2 v2

in,rms

2 R2
in v2

n

=
(2.8 kΩ ‖ 550 Ω)2 × 125 × 10−3V 2

2 × 550 Ω2 × 568.8 × 10−9 V 2
≈ 49 dB ≈ 7.8-bit

A comparison of this SNR with the SNR due to the current noise of the RFDAC

(introduced in Section 4.5.1) reveals that the VCO phase noise dominates the in-band

noise floor.
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Figure 4-46: The unit DAC cell used for the proposed multiphase PWM generator.

4.5.3 DAC for the VCO-Based OP Amp

The proposed multiphase PWM generator requires a DAC, as was introduced in

Figure 4-21. Since the RFDACs and the ring VCOs are differential, this DAC is

also implemented differentially. The DAC is composed of 16 unit DAC cells, as

were the RFDACs. Figure 4-46 shows the unit DAC cell circuit. If there were only

one switching device in Figure 4-46, the voltage at the node X would drop to zero

when the DAC is turned off. This leads to slow turn-on time and a large glitch

at the output current when the DAC is turned on again, and can cause large Inter

Symbol Interference (ISI). Since the DAC in Figure 4-46 has two differential switching

devices, the voltage at the node X will remain relatively constant, even with one of

the switching devices turned off in a differential DAC. Thus, a differential DAC has

not only better common-mode noise rejection but also lower ISI at the cost of power.

Although the in-band DAC current noise is filtered by the zero located at DC

in the transfer function of the proposed multiphase PMW generator (as explained in

section 4.4.2), the filtered DAC noise could still be large if the flicker noise component

of the DAC is large. The degeneration resistor in Figure 4-46 helps to reduce the noise

of the DAC by suppressing the noise contribution, including the flicker noise, of the

tail current transistor. The Spectre simulation results show that the DAC current

noise is still dominated by a flicker noise. The total current noise of the 16-stage DAC

is 2.58 × 10−13 A2 from 100 Hz to 20 MHz with 1.87 mA of a nominal current, and

the resulting SNR over 20 MHz is 71 dB. With the filtering effect of the multiphase
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Figure 4-47: A single-to-differential clock converter.

PWM generator, the current noise of the DAC will be lower than this estimation.

4.5.4 Quadrature LO Generation

SCL, which is also called Current-Mode Logic (CML), is the fastest topology for high-

speed digital circuit design, and it is frequently chosen for many high-speed digital

applications. However, an SCL circuit requires static current and, therefore, larger

power consumption. On the other hand, full-swing logic consumes less power but is

slower in speed. Therefore, full-swing logic is the preferred implementation vehicle

so long as the operation is sufficiently slow to support it. In this work, IQ LO clock

signals are generated by full-swing logic circuits since 45 nm CMOS is fast enough

to deal with 2.5 GHz IQ clock generation by employing full-swing logic. Figure 4-47

illustrates how to generate a pseudo-differential full-swing clock signal from an off-chip

signal generator. The feedback resistor in the first stage inverter defines the input

bias voltage such that a maximum output swing voltage is achieved. The absolute

value of the resistance is unimportant, so a poly resistor with large process variation

can be employed without a problem. There could be a timing skew between clk+

and clk− due to the mismatch of each clock signal path. However, the buffers with

cross-coupled inverters are used after the single-to-differential converter stage, and

these buffers reduce the timing skew.
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Figure 4-48: An IQ clock generator.
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Figure 4-49: A pseudo-differential D flipflop.

The outputs from the single-to-differential clock converter drive an IQ clock gen-

erator, which is depicted in Figure 4-48. The IQ clock generator employs pseudo-

differential D flipflops to create a 2.5 GHz IQ clock from a 5 GHz clock signal. Fig-

ure 4-48 shows the circuits for a pseudo-differential D flipflop. Because of the clock-to-

Q delay of D flipflops, the phase difference between LOI and LOQ cannot be exactly

90 ◦, which will result in an imperfect image rejection. The image rejection will be

improved by digital compensation when the baseband signal is generated. The digital

compensation for the IQ mismatch will be discussed in Section 4.6.
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Figure 4-50: Off-chip RC filters for a multiphase PWM generator.

4.5.5 RC Filter

The proposed multiphase PWM generator requires RC filters as loop filters. The RC

filter determines the transfer function and can also affect the stability of the negative

feedback loop. On-chip lateral flux capacitors, which are also called interdigitated

finger capacitors, are employed for the RC filters. The capacitance of a lateral flux

capacitor is determined by the oxide’s dielectric constant and the metal dimensions

[49]. These are reasonably controlled, even in deep sub-micron CMOS; hence, the

process variation of a lateral flux capacitor is tolerable. On-chip poly resistors are

employed for the RC filters, but off-chip resistors are also employed for a flexible

chip testing. The off-chip resistor is equivalent to Rin in Figure 4-25. Figure 4-

50 illustrates the combination of on-chip and off-chip resistors. In Figure 4-50, the

on-chip capacitance and resistance are 1 pF and 2.8 kΩ, respectively. The off-chip

resistance is 550 Ω in Figure 4-50, as an example, but will be adjusted to find out the

optimum filter characteristics during the measurement.

4.5.6 Overall Structure

Figure 4-51 depicts the overall architecture of the proposed VCO-based RF modu-

lator. The IQ baseband signal is generated by an off-chip IQ signal generator. The

118



VCO0vctrl

outa+ outa-

outb+ outb-

VCO1vctrl

outa+ outa-

outb+ outb-

VCO2vctrl

outa+ outa-

outb+ outb-

out+

out-

16 16

16 16

out+

out-

16 16

16 16

DAC
16-stage

16

16
iIout+

iIout-

Balun

2.5 V

RFDAC
16-staged+

d-

LO+ LO-

out+ out-

1.8 V 1.8 V

RFDAC
16-staged+

d-

LO+ LO-

out+ out-

DAC
16-stage

16

16
iQout-

iQout+

VDD

2

16 16 16 16

multiphase PWM
I-channel

multiphase PWM
Q-channel

IQ LO clock
generator

clkI+

clkI-

clkQ+

clkQ-

clkinclock

on-chip

RL

baseband
I-channel

baseband
Q-channel

Cpar

Cpar

Cpar

Cpar

VDD/2

VDD/2

Figure 4-51: Overall architecture of the proposed VCO-based RF modulator.

off-chip resistors are utilized to set an appropriate filter characteristic of the on-chip

multiphase PWM generator. A 5 GHz clock signal is applied to the IQ LO clock

generator through an off-chip DC block capacitor. The current outputs from the RF-
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Figure 4-52: IQ mismatch due to clock-to-Q delay of flipflops.

DACs are connected to an off-chip balun for differential-to-single-ended conversion.

Note that the bias generators for the DACs used in the VCO-based OP amps and the

RFDACs are also included on the prototype IC, but are not shown in Figure 4-51 for

simplicity.

4.6 IQ Mismatch Compensation

As presented in Section 4.5.4, the quadrature LO clock signals are created by pseudo-

differential flipflops. IQ LO generation based on digital circuits achieves very high

quadrature accuracy at a relatively low frequency [50]. However, there can be a

phase imbalance when the input duty cycle is not exactly 50 % [51]. The delay of the

flipflops may also cause IQ mismatch [52]. Figure 4-52 illustrates how the clock-to-Q

delay of flipflops produces IQ inaccuracy in LO clock signals. Note that the IQ LO

clock generator is implemented with pseudo-differential logic circuits, although all

the signals are shown to be single-ended, for simplicity, in Figure 4-52. The inverter

delay should be ignored because inverting a signal is implemented without a delay
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by simple swapping of the pseudo-differential signal lines. As shown in Figure 4-52,

the phase difference between LOI and LOQ is not exactly 90 ◦ when the mismatch

of clock-to-Q delays exists. The delay mismatch is primarily dependent on device

mismatch, which is unavoidable especially in deep sub-micron CMOS processes. The

input duty cycle is also difficult to precisely control if a large device mismatch exists

because the rise and fall time mismatch for clock buffers affects the duty cycle of the

input clock. Therefore, IQ mismatch compensation is essential to compensating for

the various phase mismatch sources.

The gain mismatch between the IQ baseband signal paths is another reason for

the quadrature inaccuracy of an up-converted RF signal. The input baseband signal

is converted to multiphase PWM signals by the VCO-based OP amp in the proposed

RF modulator. According to (4.4), the transfer function from the input baseband

signal to the output multiphase PWM signal is

ireplica =
2GKV Niunit(R ‖ Rin)

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
·

vin

Rin

where G =
iunit2

iunit

Many parameters determine the gain of the baseband signal path. Moreover, the gain

is frequency dependent. However, the multiphase PWM generator will be designed

such that the gain over the bandwidth of our interest is flat. Thus, it is safe to assume

that the in-band gain is the same as the DC gain. The gain of the multiphase PWM

generator at DC is

ireplica

vin

∣

∣

∣

∣

at DC

=
2GKV Niunit(R ‖ Rin)

s2(R ‖ Rin)C + s + 2KV Niunit(R ‖ Rin)
·

1

Rin

∣

∣

∣

∣

s=0, at DC

=
G

Rin

=
iunit2

iunit · Rin

(4.14)

Therefore, the DC gain of the baseband signal path is determined by iunit2, iunit,

and Rin, which are the RFDAC’s unit current, the VCO-based OP amp DAC’s unit

current, and the off-chip input resistor, respectively. The mismatch among those pa-

rameters for in-phase and quadrature baseband signal paths should be compensated,

as should the phase mismatch of the IQ LO clock signals.
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Figure 4-54: Examples of FIR filter coefficients for non-integer delay.

The gain and phase imbalance between IQ channel signal paths produces a self-

image problem and can lower the SNR [53]. This is a serious problem especially for an

OFDM signal because there exist many sub-channels in an OFDM signal and because

the SNR of each sub-frequency bin is directly affected by the self-image signal. As a

result, IQ mismatch compensation is essential for an OFDM baseband signal.

Many IQ mismatch detection and calibration techniques have been introduced

[53], but they are beyond the scope of this thesis. In this work, we simply apply

a pre-distortion digital filter to the baseband signal and manually adjust the filter

coefficient until we get the proper results.

Figure 4-53 depicts how the IQ mismatch compensation is accomplished. All com-
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pensation is done with Matlab, and the pre-distorted baseband signals are loaded into

a vector signal generator via a GPIB cable. The gain compensation is implemented

by simply adjusting the gain of the IQ signal. The phase compensation is achieved

through linear phase Finite-duration Impulse Response (FIR) filters. The phase mis-

match of IQ LO clock signals require linear phase compensation; this means that a

constant group delay or a simple time delay is required for phase compensation.

One constraint of the digital compensation of phase mismatch is that a simple

delay based digital filter cannot create an arbitrary phase or time delay because the

minimum delay of a simple digital filter is one clock delay. For the testing of the

prototype chip, we used an input OFDM signal at a rate of 40 MHz; hence, the

minimum delay that can be generated by a simple digital filter is 25 ns. However,

non-integer delay, such as 4.83 clock delay, can be created via a non-causal infinite-

length digital filter [54]. Instead of using the infinite-length filter, we can choose only

finite number of filter coefficients, thereby achieving a delay that is approximately

close to the desired delay. Figure 4-54 illustrates how to choose FIR filter coefficients

in order to get non-integer delay [54]. The impulse response of the filter is a sampled

sinc function as shown in Figure 4-54. For practical implementation, we choose finite

number of coefficients only. The accuracy of a delay achieved through the FIR filter

improves if we use a greater number of coefficients. In this work, we use 3039-tap

FIR filters for phase compensation.

4.7 Measured Results

The proposed VCO-based RF modulator is implemented in 45 nm CMOS process.

Figure 4-55 shows the die photograph. The RF modulator occupies 0.126 mm2. Fig-

ure 4-56 illustrates the test setup used for measuring the prototype chip. The IQ

baseband signals are generated via an arbitrary function generator. The LO clock is

generated via an AC coupled signal generator. The signal generator provides twice

the LO frequency to the chip. The on-chip divide-by-2 frequency divider creates the

quadrature LO clock signals. The output signal from the chip is amplified by two
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15 dB amplifiers before the signal is measured by a spectrum analyzer.

4.7.1 Measured Spectrum with Sinusoidal Wave Inputs

Figure 4-57 shows the measured IQ performance with a 1.5 MHz sine wave. The

figure depicts the spectrum over a 10 MHz frequency span, and the LO frequency is

2.45 GHz. The large LO leakage shown in Figure 4-57 is caused by the RFDACs. The

power of the up-converted 1.5 MHz sine wave is about – 22 dBm, and the harmonic

tones do not show in this case.

Figure 4-58 depicts harmonic tones when the power of the up-converted sine wave

grows to – 10 dBm. Figure 4-59 shows the harmonic tones over a 50 MHz frequency

span. As is predicted in Section 4.4.1, many harmonic tones are shown when the input

signal increases because the non-linearity of the VCOs is not suppressed enough with

the large amplitude of the input signal.

Note that phase adjustment of the input sinusoidal waves achieves IQ suppression

only at the fundamental frequency. Harmonic tones in Figure 4-58 and Figure 4-59

are double-sided because IQ suppression is attained for only 1.5 MHz.

Figure 4-60 shows the measured IQ performance with an 8 MHz sine wave. The

figure shows the spectrum over a 70 MHz frequency span. When the power of the

up-converted 8 MHz sine wave is about – 22 dBm, the non-linearity of the VCOs

does not appear. Figure 4-61 shows harmonic tones when the power of the up-

converted sine wave grows up to – 10 dBm. Figure 4-62 shows the harmonic tones

over a 200 MHz frequency span. Again, many harmonic tones are shown when the

input signal increases. Note that a comparison of Figure 4-61 with Figure 4-58 reveals

that harmonics tones with an 8 MHz input are larger than those with a 1.5 MHz

input when the amplitudes of the two sine wave signals are the same. This difference

confirms that the non-linearity worsens as an input frequency increases, as predicted

in Figure 4-26.

124



RFDACs

VCOs &
phase detectors

DACs &
RC filters IQ LO clock

generator

bias

Figure 4-55: Die photograph of the implemented VCO-based RF modulator.

2.5 V

Balun

baseband
I-channel

baseband
Q-channel

HP 83732B
Signal Generator

Agilent 8595E
Spectrum Analyzer

chip
under
test

Test Board

Tektronix AFG3102

Generator

Aribitrary Function

GPIB

PC

1 LPF

1 LPF

buffer
amplifier

LO

15dB

15dB

Figure 4-56: Test setup for the prototype chip.
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Figure 4-57: IQ performance with 1.5 MHz sine wave (1).

4.7.2 Measured Spectral Performance of the RF Modulator

The measured spectral performance of the RF modulator is shown in Figure 4-63. The

input signal is a 20 MHz OFDM. The spectrum is compared with an 802.11g spectral

mask as a reference. Figure 4-64 shows the spectrum with a 400 MHz frequency span.

As is mentioned in Section 4.4.5, different Rin values result in different filtering

characteristics for both the baseband input signal and the VCO phase noise. Figure 4-

65 to Figure 4-67 are the measured results, with Rin = 50 Ω, Rin = 550 Ω, and

Rin = 1.1 kΩ, respectively. Comparing these figures with Figure 4-37 to Figure 4-39,

one can find out that the measured results agree well with the CppSim simulation

results in terms of the filtering characteristics. As is predicted in Section 4.4.5, the

measurement results indicate that 550 Ω is the optimum Rin value.

4.7.3 Measured Error Vector Magnitude

Figure 4-68 illustrates the test setup for Error Vector Magnitude (EVM) measure-

ment. A 10 MHz OFDM signal for an 802.11a wireless LAN is generated in a PC,

and linear phase FIR filters are applied to the signal for IQ mismatch compensation,
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Figure 4-58: IQ performance with 1.5 MHz sine wave (2).
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Figure 4-59: IQ performance with 1.5 MHz sine wave (3).
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Figure 4-60: IQ performance with 8 MHz sine wave (1).

as is described in Section 4.6. The pre-distorted baseband signals are loaded into

an Agilent E4483C vector signal generator, which creates baseband IQ signals. A

separated RF signal is generated from the vector signal generator, and this signal is

applied to the chip for LO signal generation. The carrier frequency is 2.45 GHz.

Figure 4-69 shows the measured EVM of the prototype chip with IQ compensation.

The measured EVM is about 3 %rms, as is shown in the fourth quadrant of Figure 4-

69. We believe the SNR of the RF modulator is limited by the VCO phase noise

since the phase noise is the dominant in-band noise source. Thus, the VCO phase

noise should be lowered to improve the EVM. The diagram in the first quadrant of

Figure 4-69 shows the EVM at each frequency bin and reveals that the EVMs around

the carrier frequency are higher than other EVMs. We believe that the up-converted

flicker noise of the VCOs degrades the SNR of the frequency bins around the carrier

frequency.

As a comparison, Figure 4-70 depicts the measured EVM results without IQ com-

pensation. The measured EVM without compensation is 17.2 %rms.

Table 4.1 summarizes the measured power consumption of each building block of

the RF modulator.
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Figure 4-61: IQ performance with 8 MHz sine wave (2).
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Figure 4-62: IQ performance with 8 MHz sine wave (3).
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Figure 4-63: A 20 MHz OFDM signal with a spectral mask.
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Figure 4-64: Spectrum of a 20 MHz OFDM signal with a 400 MHz frequency span.
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Figure 4-65: The measured spectrum with Rin = 50 Ω.
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Figure 4-66: The measured spectrum with Rin = 550 Ω.

4.8 Conclusions

The VCO-based RF modulator implemented in 45 nm CMOS technology is presented

in this chapter. The proposed RF modulator is driven by multiphase PWM signals

such that up-conversion of a baseband signal is achieved by a simple switching of
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Figure 4-67: The measured spectrum with Rin = 1.1 kΩ.

Table 4.1: Measured power consumption of the proposed VCO-based RF modulator

Building Block Supply Voltage Measured Power

LO clock buffer 1.2 V 19.9 mW

RFDAC 2.5 V 5.5 mW

Bias current source 1.1 V 2.3 mW

3 VCOs 1.1 V 11.8 mW

Digital cirucits 1.1 V 14.8 mW

Total 54.3 mW

devices, thereby allowing integration of the modulator onto a single chip in deep

sub-micron CMOS. The multiphase PWM signals are generated by the proposed

VCO-based OP amp, which is composed of multiphase ring VCOs, phase detectors,

simple DACs, and an RC filter.

The measured results of the prototype chip show that the in-band noise is dom-

inated by the phase noise of the VCOs in the VCO-based OP amps. Because of the

VCO phase noise, the proposed RF modulator may be inadequate for some wire-

less communication applications, such as cellular phones, which require high SNR.

However, the proposed RF modulator could provide an attractive architecture for
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Figure 4-68: Test setup for the EVM measurement.

wideband wireless communications that require relatively low SNR, such as a wire-

less LAN. The measured spectrums show that extra filtering is unnecessary for the

RF modulator with a 20 MHz OFDM input signal, and this is one advantage of the

proposed RF modulator over the systems that employ RFDACs driven by Σ∆ mod-

ulation. However, the measurement results also indicate that the RF modulator be-

comes more non-linear as the input frequency increases; this implies that bandwidths

wider than 20 MHz are inappropriate. Note that both drawbacks of the proposed

RF modulator — phase noise and non-linearity — originate from the VCO-based OP

amps. Therefore, we can verify two fundamental limitations of a ring oscillator as a

time-based circuit in the application of RF signal generation.

Nonetheless, the function of the proposed VCO-based RF modulator mainly relies

on time-based circuits such as ring VCOs and phase detectors, and should provide
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Figure 4-69: The measured EVM with IQ compensation.

Figure 4-70: The measured EVM without IQ compensation.
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an attractive implementation in future CMOS technology. Moreover, high quality

reconstruction filters are not necessary in this architecture because there is no out-of-

band quantization noise to be filtered. Thus, the proposed architecture may be the

solution for the on-chip integration of an RF modulator.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, time-based circuits for communication systems in modern CMOS tech-

nology are introduced. Time-based signal processing relies on the time information

of a signal rather than on voltage or current information. By dealing with an analog

signal with time-based circuits instead of conventional analog circuits, we can avoid

various issues relating to analog circuits in future CMOS technology. In this the-

sis, we have focused on a ring oscillator as an example of a time-based circuit and

demonstrated that A/D converters and an RF modulator based on ring oscillators

can reduce the need for traditional analog circuit content and still achieve moderate

performance. In order to demonstrate the feasibility of the systems based on time-

based circuits in future CMOS technology, we have fabricated the prototype chips in

0.13 µm and 45 nm CMOS processes.

For the VCO-based Σ∆ A/D converter, a ring VCO is employed as a continuous-

time integrator replacing the first stage integrator of a second-order Σ∆ modulator.

By taking advantage of the infinite DC gain of a VCO integrator, we can use a very

simple low DC gain charge pump for the second stage integrator. The proposed

VCO-based A/D converter was fabricated in a 45 nm CMOS process to prove our

concept. We have successfully presented an A/D converter in deep sub-micron CMOS

employing time-based circuits — a ring VCO and a phase detector, in this case. We
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have also shown that the non-linear tuning characteristics and phase noise of the ring

VCO are the fundamental limitations of using a ring oscillator as an analog-to-time

converter.

The single-slope A/D converter using a TDC, on the other hand, has shown that

a hybrid approach combining a few analog circuits and time-based circuits can serve

as a path to improve linearity compared to the VCO-based Σ∆ A/D converter. The

proposed single-slope A/D converter has achieved a highly digital A/D conversion

by performing voltage-to-time and time-to-digital conversion. Time-to-digital con-

version is achieved via a ring-oscillator-based TDC. Linear voltage-to-time conver-

sion is achieved by employing a sampler and a current source, thereby solving the

non-linearity issue of a ring-oscillator-based analog-to-time conversion. Although the

proposed single-slope A/D converter utilizes some analog circuits, the majority of the

A/D converter is composed of digital circuits and time-based circuits that are ring-

oscillator-based TDCs. The measured performance of the A/D converter is mainly

limited by the power and speed of digital circuits and ring oscillators; hence, we ex-

pect that the proposed single-slope A/D converter will improve as device size scales

down.

The VCO-based RF modulator has demonstrated that time-based circuits are also

useful in generating an RF signal in deep sub-micron CMOS processes. The proposed

RF modulator up-converts a baseband signal by a simple switching of transistors.

While an RF modulator using RFDACs also relies on device switching for signal

generation, the RF modulator often suffers from high quantization noise since it

deals with digitized signals. However, multiphase PWM signals are utilized for the

proposed VCO-based RF modulator so that the baseband analog signal is represented

by continuously adjustable multiphase PWM signals. Therefore, the proposed RF

modulator has solved the resolution issue of an RFDAC, and the RF modulator

still requires only switching devices which will be easily implemented even in future

CMOS technology. A VCO-based OP amp is also introduced and analyzed as an

alternative method to design an OP amp in deep sub-micron CMOS. The proposed

VCO-based OP amp is employed to generate multiphase PWM signals, which drive
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the RF modulator. The VCO-based RF modulator is fabricated in 45 nm CMOS,

and the prototype IC has demonstrated up-conversion of a 20 MHz OFDM signal to

a 2.5 GHz carrier frequency. Although the measured results of the proposed VCO-

based RF modulator show the same issues as the VCO-based A/D converter — the

phase noise and the non-linearity of VCOs affecting the SNR and the linearity of

the system, the RF modulator achieves the moderate SNR and linearity, which are

possibly adequate for wireless LAN applications.

5.2 Fundamental Limitations of a Ring Oscillator

for Time-Based Signal Processing

In this work, we have focused on using a ring oscillator for communication systems.

Two main functions of a ring oscillator we have relied on are analog-to-time conversion

and time-to-digital conversion. A ring oscillator is a useful functional block for time-

based signal processing, especially in future CMOS technology, in that it requires only

delay elements which will be available regardless of device channel length and power

supply voltage. However, there are fundamental limitations to a ring oscillator.

The first issue of a ring oscillator is its timing jitter or phase noise. The device’s

thermal and flicker noise create an unwanted timing jitter that generates noise in

time-based signal processing. For analog-to-time conversion, the timing jitter acts as

a noise source, as is shown in Figure 5-1. Accordingly, the timing jitter or the phase
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noise of a ring oscillator limits the resolution of analog-to-time conversion. Even for

time-to-digital conversion, the timing jitter could be a noise source. However, since

the instantaneous timing jitter of one delay stage tends to be of an order of magnitude

smaller than that of the delay of a delay stage with proper design, the dominant noise

source of a TDC based on a ring oscillator will be the quantization noise of a TDC

rather than the jitter. Nevertheless, the flicker noise of a TDC based on a ring

oscillator dominates at low frequency because the slowly varying accumulated jitter

due to a device flicker noise could be larger than the quantization noise [15], and the

flicker noise effect will increase as the device size shrinks.

The timing jitter or the phase noise of a ring oscillator is somewhat analogous to

the voltage or current noise of conventional analog circuits. For example, a transcon-

ductance amplifier has an output current noise that is also modeled as an input

referred voltage noise. The solutions to noise reduction for a ring oscillator are also

similar to those of conventional analog circuits. The timing jitter due to thermal noise

is theoretically lowered by burning more power [55, 56], but the jitter improvement of

a ring oscillator is limited to a certain level in practice. Large device size reduces the

timing jitter caused by flicker noise [56]. However, flicker noise is especially difficult

to contend with, considering that the device size is getting smaller for future CMOS

processes. We can always deal with flicker noise by making the device size larger, but

that would eliminate the benefits of Moore’s Law, such as higher time resolution and

lower power. It is worth mentioning that the symmetric rising and falling transitions

of a single-ended ring oscillator help to lower the flicker noise effect [55]. However,

symmetric transitions would be difficult to achieve because of device mismatch which

is expected to get worse as channel length shrinks. Considering the decreasing size of

transistors in modern CMOS technology, we can easily expect that the phase noise

of a ring oscillator will be dominated by the flicker noise and gets worse as scaling

continues. Therefore, the phase noise or the timing jitter would be one of the fun-

damental limitations of a ring oscillator for time-based signal processing in future

CMOS technology. We have shown that the resolutions of both the VCO-based A/D

converter and the VCO-based RF modulator are limited by the VCO phase noise in
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Chapter 2 and 4.

The non-linear tuning characteristic of a ring VCO is another serious issue of a

ring oscillator as an analog-to-time converter. Because of the non-linear relationship

between the tuning voltage and the frequency of a ring VCO, voltage-to-phase or

voltage-to-frequency conversion becomes non-linear. The tuning characteristics can

be made more linear by careful design [57]. However, linearization of the tuning

characteristic requires an accurate model of the transistors, which will be difficult

to derive for the deep sub-micron CMOS devices. Therefore, the non-linearity of a

ring VCO will be another fundamental limitation of a ring oscillator. We saw the

performance degradation due to the non-linear tuning characteristics of a ring VCO

in Chapters 2 and 4.

5.3 Conclusions

The three applications of time-based circuits presented have utilized ring oscillators as

core building blocks for either analog-to-time conversion or time-to-digital conversion.

This thesis has shown the fundamental limitations of ring oscillators in dealing with

analog signals, while it has also demonstrated the feasibility of the usage of ring

oscillators. A ring oscillator has its own advantage such as the infinite DC gain

achievable even in the future deep sub-micron CMOS processes. In addition, a ring

oscillator can be used as an efficient time-to-digital converter.

However, the demonstrated systems have shown the issues of the phase noise and

the non-linearity of ring VCOs. The SNR and the linearity of both the VCO-based

A/D converter and the VCO-based RF modulator were limited by the ring VCOs

although the measured results have shown moderate performance. The phase noise

of a VCO will worsen as transistor size shrinks, especially because of the flicker noise.

The phase noise of a ring oscillator can improve either by burning more power or

by using larger devices, as mentioned before. However, both of these solutions are

undesirable because we can no longer get benefits from Moore’s Law. The non-linear

tuning characteristics are also not expected to improve by device scaling. Therefore,
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a ring oscillator is the dominant performance limitation factor of the proposed system

architectures.

We may be able to generalize the fundamental limitations of a ring oscillator to

other time-based signal processing. A time-based signal always suffers from a timing

jitter no matter what circuits deal with the signal. Because of the decreasing size

of transistors, the jitter of a time-based signal is expected to be dominated by the

flicker noise, and even a TDC is affected by the flicker noise [15]. We can also expect

that there will always be the non-linear analog-to-time conversion issue unless analog

circuits assist the conversion process for linearization.

As a result, there is a tradeoff between the conventional analog circuits and the

time-based circuits. Time-based signal processing is better than conventional analog

signal processing in deep sub-micron CMOS technology in terms of area, power, and

the ease of implementation. Especially, a ring VCO achieves an infinite DC gain

which conventional analog circuits cannot perform. However, in terms of the noise

and the linearity, conventional analog circuits using thick-oxide transistors would be

better than time-based circuits.

The above observations indicate that using a combination of time-based circuits

and analog circuits will likely yield the best solution when seeking high performance

with an efficient implementation. For moderate performance, employing more time-

based circuits would be the better choice as we have presented in Chapter 2 and 4. A

hybrid approach combining analog circuits and time-based circuits could solve some

of the limitations of time-based signal processing. For example, the single-slope A/D

converter in Chapter 3 has suggested that employment of a few analog circuits can

avoid the non-linear analog-to-time conversion issue of a ring oscillator. For high

performance, it would be better to utilize more conventional analog circuits. Both

the high resolution and the high linearity have been achieved for the A/D converters

in [9, 10] by keeping many conventional analog circuits but using ring VCOs only as

quantizers.

This thesis has demonstrated that analog signals can efficiently be processed by

leveraging time-based circuits in advanced CMOS technology. By specifying the fun-
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damental limitations of a ring oscillator for time-based signal processing, we have

shown that there is a tradeoff between time-based circuits and conventional analog

circuits when seeking future circuit solutions. Specifically, time-based circuits uti-

lizing ring oscillators provide an implementation path that can directly benefit from

Moore’s Law, but have disadvantages in terms of noise and linearity. Traditional

analog circuits provide advantages in terms of noise and linearity, but suffer from de-

graded characteristics such as reduced intrinsic gain and headroom. Through proper

combination of both time-based and analog circuits, we expect that high performance

can be achieved with an efficient circuit implementation in future CMOS processes.
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