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Figure 1: Schematic phase transition behaviouMNaf= 2+ 1 flavor QCD for different choices of quark
massegmy 4, ms) at 4 = 0 [1] (left), and numerical determination of the chiral critical lid (right).

1. Introduction

The experimental determination of the QCD phase diagramdsmvay via extensive heavy-
ion collision programs. At the same time, much effort is edlevoted to its theoretical determi-
nation via numerical lattice simulations. In the latteresa@ne can ask the more general theoretical
question: what is the phase diagram of 2-flavor QCD in the(my g, ms, tud, s, T) parameter
space?

For uyg = s =0, theoretical expectations are summarized in Fig. 1 (lefthhe chiral (g =
ms = 0) and the quenchean( 4 = ms = ) corners, order parameters probing the breaking of the
chiral and the center symmetries exist, and the symmetakbrg or restoring transitions are first-
order. For intermediate quark masses, simulations showssaver. This leads to the existence of
two lines of critical points, both in thed3sing universality class, delimiting the first-order reggo
In the quenched corner, the critical line has been studig?l 8]. In the chiral corner, Fig. 1 (right)
shows the result of [4]. Good agreement with expectatiorss faand, including consistency with
a tricritical point (ny g = 0,ms = m{f) with a rather heavy masg® ~ 2.8T.. The physical point,
marked by an X, lies in the crossover region. These resulis wlgtained with standard staggered
fermions on am\; =4 (a~ 0.3 fm) lattice. One task is now to quantify cutoff effects antr&polate
to the continuum limit. This extrapolation has been perfedrfor the physical point [5], confirming
that it remains in the crossover region. Our preliminarylisson anN; = 6 lattice, consistent with
those of [6] and with earlier indications from improved aas onN; =4 [7], are presented Sec. 3.5.
Cutoff effects are large, and the transition becomes mudakereon a finer lattice.

The next issue is to determine the effect of a baryonic chanpiotential. For physical quark
masses, itis expected that the transition becomes straripet, so that it turns from a crossover at
u = 0 into a first-order transition, thus defining the QCD critjaint (g, Te) where the transition
is second-order. The fermion determinant becomes compeny £ 0, and the ensuing “sign
problem” forbids standard Monte Carlo sampling. Neveghg| a determination of this critical
point has been performed, using the same staggered actibN; an 4 lattice spacing as us [8].
While the cutoff error is likely to be comparable to thatiat= 0, the numerical method used,
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Figure 2: For physical(m,4,ms) quark masses, the finite-temperature “transitionluat O is really a
crossover. Aqu is turned on, this crossover becomes a genuine phase imargitthe QCD chiral critical
point (eft), provided the region of first-order transitions at smatudunassesxpandsvith p. If not (right),
there is no QCD chiral critical point. The curvature of thitical surfacedm,/du? at u = 0 distinguishes
between these two possibilities for small Note that, for heavy quarks, the first-order regabminkswhen
U is turned on [9].

namely reweighting, introduces new possible systematiar&rContrary to the well-known multi-
histogram reweighting where orieterpolatesbetween Monte Carlo results obtained at several
values of the coupling, here oeatrapolategesults obtained at a single value of the coupling:

0, to u # 0. While this procedure is in principle exact for infinitetstcs, the practical question
is whether the finite Monte Carlo sample contains the releud#ormation at the extrapolated
coupling. This difficulty is known as the overlap problem.uEha crosscheck of the results of [8]
using a different approach seems worthwhile.

To avoid all difficulties caused by a potential lack of ovprlave set a more modest goal, and
study the effect of an infinitesimal chemical potential. Klq@recisely, we consider the critical
surface, swept by the chiral critical line of Fig. 1 (righ§ a function ofu, in terms of a Taylor
expansion inu/T)? aboutu = 0, (for theNs = 3 case to keep the notation simple)

me(H) %
o) =L k;ck (ﬁ> : (1.1)
The sign of the first Taylor coefficient is of crucial relevance to the QCD critical point. Since
for u = 0 the physical point is in the crossover region, the firseonsgion must expand with

u (Fig. 2 left). If instead the first-order region shrinks (F&yright), then the crossover persists
and there is no QCD critical point unless another criticafame, topologically unrelated to the
chiral critical surface we consider, is present in the phldiagram. The simplest corresponding
(4, T) phase diagram in the two cases is depicted in Fig. 3, for akquass below and above
mc(0). In the “exotic” scenario (right), the first-order line peas for small quark mass turns into
a crossover as the mass increases, startinglange 1. If m> m¢(0) as in the physical situation,

the “transition” is simply a crossover, for gli's, until different physics take over. Distinguishing
between these two scenarios requires full knowledge ofrihieat surface. However, by measuring
the first Taylor coefficient, we can determine the behaviduhe critical surface fou /T <1, i.e.

in the regionug < 500 MeV where experimental searches are considered.
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Figure3: Simplest phase diagramin tlig, T) plane, for the two cases of Fig. 2ftandright), as a function
of the quark massifiddle. Red and blue lines indicate first-order transition anégsover, respectively.

In our first study [4], we performed simulations at imaginarand determinedn.(u =iy ),
then fitted our results by a truncated Taylor expansion wihih be trivially continued to real
K. While this method appears to work very well for the pseudteal line To(u) [10, 11], we
faced two related difficulties when computing(u): the signal is very noisy, and this makes the
determination of the systematic error due to truncatiomefTaylor series difficult. For the case of
three degenerate flavorss = my 4, s = Hud, We performed quadratic and quartic fitsifiT. The
guartic term was statistically insignificant, so we set itéoo and obtained for the leading term

:1-0.7(4)(%)2+...

me(H)

) (1.2)

which favors the “exotic” scenario Fig. 2 (right), but noeevat the 2 level. Note that including
the quartic term in the fit (Table 2, line 2 of Ref. [4]) changles leading coefficient to -2.6(1.2).
The lack of compelling numerical evidence motivated us tprioee our statistics and our numerical
methods.

Here, we compare three methods to obtain the deriv%ﬁ%ﬁ,zoz
A. Analytic continuation from imaginary
B. Direct measurement of the derivativerat= 0
C. Noisy reweighting to small imaginangy
In all three methods, the same criterion is used to deteritiagoseudo-critical couplings in a
finite volume: the Binder cumular®; = %, with dX = X — (X) and X = (¢, takes the
value 1.604 characteristic of the Bsing universality class at the critical point. In a finitewme,
B, is an analytic function ofm, T, u), andT is fixed to the pseudo-critical temperatukgm, 1)

by requiring, for instance, that the susceptibilitydX)?) be maximum. We use the equivalent
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prescription((6X)3) = 0. The two constraint§B, = 1.604, ((5¢)3) = 0} define a line in the
(T,m,u) space. We want to extract the curvat%)ﬁé of this line atu = 0.

Method A is the one used in [4]. The results of different siatigins at various imaginary
values ofu are fitted with a truncated Taylor expansion abgut 0. One difficulty comes from
the systematic error associated with the order of the ttiorta Another comes from the final
statistical error, which in [4] amounted to about half thgnsil.

Method B is reminiscent of the Bielefeld-Swansea approddj, [where the derivatives of
the free energy with respect {o/T are expressed as expectation values of non-local operators
which involve traces of inverse powers of the Dirac operatarour case, the derivatives &
and ((5@)3) with respect tan, T and u can be expressed as expectation values of complicated
operators, which can be measured in a single simulatipn=a0.

Method C, to our knowledge, is a new application of reweigitiwhere the reweighting
factors are not evaluated exactly but estimated by a stochmsthod. This noise does not prevent
reweighting provided it is unbiased. We can apply this sggato the results gft = 0 simulations
and reweight them to imaginarny, monitoring the change iB4 and ((d@)3). Keeping this
imaginaryu very small has two advantage@) the reweighting factor remains close to 1 and the
overlap of they = 0 Monte Carlo ensemble with the target# 0 ensemble is guarantee(i)
fluctuations in the two ensembles are strongly correlated cancel in the observables.

In Section 2, we first test methods B and C on a Potts modelseptative of the heavy-quark
limit of QCD, for which we have previously determined theical line for both imaginary and real
U [9]. All methods agree, with a clear advantage to method Gt$osimplicity. Then in Section
3, we compare methods A and C fdf = 3 QCD, on a coarse®8« 4 lattice. Again, methods A
and C agree, leaving no doubt that for this system the fidgraregionshrinkswhen the chemical
potential is turned on. Finally, in Section 4 we present spneéiminary results on a finer $& 6
lattice, and discuss the implications and limitations af findings.

2. Potts modd

2.1 An effective description of dense static quarks

When the quark masms becomes infinite, quarks become static and a quark source is a
Polyakov loop. The canonical partition function of QCD wiilstatic quarks and Static anti-
quarks is [12]

1 1 ~ . m
Zn.ﬁ:/QAECD[A]”HGJ*[A]”exp(—(n+n)?)exp(—Sg[A]) , (2.1)
where @[A] is the Polyakov loop integrated over space &dhe gauge action. The grand-
canonical partition function is then simply

Z(u):Ze(”‘m#Zn,ﬁ:/.@Aexp(—Sg[A]+e‘y¢[A]+e_y<D*[A]) L @2

Simplifying the gauge action to a Potts interaction betweeighbouring Polyakov loops, one
obtains the partition function of ad3q= 3 Potts model in an external field:

Z(k,m )= % exp—K Y Som o)+ y (MOX)+ hHo*(x))] (2.3)
(SR} (3 z
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Figure 4. Phase diagram of the Potts model, as a functiomgf and (u/T)2. For heavy masses, the
transition is first order. It turns into a crossover for lighasses. The critical line can be determined for
imaginary (red points), showing the expectggltransition afu /T =i Z, or directly for realu, because the
sign problem is mild. The line is analytic at= 0, but shows some curvature. Methods B and C measure its
slope atu = 0.

where®(X) is the Potts (actuallys) spin exgik(X)Z), h = hme ™ i = hpe H hy=e ™ =&
andm= 2. Contrary to [12] who consider the limit, i — c, (m— ) finite, and drop the last term
corresponding to antiquarks, we keep the complete expregsiorder to study thém, 1) phase
diagram. Becausk # h* whenpu # 0, the action becomes complex and a sign problem appears.
However, it is very mild, so that simulating with the real fpafrthe action and reweighting with the
imaginary part works efficiently and reliably. Two phases @resent: confined/disordered at small
K, deconfined/ordered at large The phase transition is first-order for the ordinary Pottsled,

i.e., in the absence of any external fible- Y = 0. This case correspondsno— .

Decreasingnturns on the magnetic field. This weakens the phase trams#imthat it becomes
a crossover for sufficiently lard®y, i.e., sufficiently smalm= m/T. The critical value omcorre-
sponding to the end of the first-order region depends on tmidal potentiaju. The critical line
me(u) has been determined in [9], for both real and imaginary cbhehgotentials. Fig. 4 sum-
marizes the results of [9]. It represents the qualitatieaseur of QCD with heavy quarks near
the critical line in the upper right corner of Fig. 1 (leftiedause the symmetries and the infrared
degrees of freedom are the same. GiVgry 270 MeV, the value ofn;(0) even lies in the 1-2 GeV
range estimated from full QCD simulations [2, 3]. Fig. 4 skaWat, as the chemical potential is
turned on, the first order region shrinks as indicated in tlrenghed corner of Fig. 2 (right).

As a function ofti?, the critical line is analytic gfi = 0, so that the reglr dependence can be
reconstructed by analytic continuation of imaginargimulation results. However, some curvature
is visible, particularly as the imaginagy approaches th#; transition pointu =iZ. A global fit of
all our data requires a fourth-order polynomialiif:

rT—n — 8273+ 0.585($>2 - o.174<$)4+0.160($>6— o.on(#)8 , (2.4)

where the first coefficient is.B853) including its fitting error. This is essentially the resuft o
method A (although we have actually augmented the imagipadata with realp data). One
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may be concerned that a similar curvature occurs in QCD dswiekch would make it difficult to
analytically continue data from a few discrete values ofgmary . Therefore, the object of this
study of the Potts model is to see how well the first coefficadrthe polynomial, 0.585(3), can be
reproduced by methods B and C which involve simulationg at0 only.

2.2 Method B

The order parameter probing tdg symmetry is the magnetizatidl = S ®(x). Therefore,

we determine the critical line by requiring
(M) 3
Bs= 55 =1604 OM)*) =0 2.5
4 <(5M)2>2 h <( ) > ) ( )

with dM = M — (M). Both expressions are functions (@f,m, 1), so that the two equations deter-
mine the critical linemc() in this 3-parameter space. The two equations can be Taytemebed
about the poinfk.(u = 0),m¢(u1 = 0),0) of this line, yielding at lowest order

dBs = Adm+Bdu?+Cdk,  d((dM)3) = Adm+B'du?+Cdk . (2.6)
Staying on the critical line implies that the change®inand in((6M)3) are both zero. From the
resulting two linear equations, one can elimindke and obtain

dm  BC -BC

dgi? AC-AC ° @D

which is the desired slope of the critical line jat= 0. The coefficient®A, B,C,A’,B',C’ are the
following expectation values

A= %\ i—0 = —2hm(dM?)~2(5M°)

2
B— ;‘;—Eﬂ o= ;<5Mz>f2[zhm<5m5> +h2((8M* — (BM*) (@ — ©")?)]

—h(OM?) 3(8M*) ((BM? — (8M?)) (@ — @%)?)

C= %\ﬁ—o = (5M?)~%(8M*SE) — 2(5M?) ~*(8M*) (8MSE)
AN = agi?lﬁ—o = —2hy(6M%)
B — %‘9%}'\2"%,;_0 = %[th<(5m3—3<5m2>5m)m> +h2 (M3 — 3(8M?)3M) (D — D*)?)]
c = ‘N%ﬁ‘ i—0 = (SM38E) — 3(3M?)(SMSE) (2.8)

wheredE = E — (E). Thus, all 6 coefficients can be measured during a Monte Garlalation at
the u = O critical point, i.e., wher& andmhave been tuned to satisfy eq.(2.5). We have performed
such measurements on a®7attice, of the same size used to obtain Fig. 4. Substituiting
eq.(2.7), and performing a jackknife bin analysis, we obtin/du? = 0.593(8), which agrees
very well with the earlier result from method A. Note agaimattimethod B is insensitive to the
curvature of the critical line, unlike method A.
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Figure 5: Effect of a small change in the magnitudef{) and the orientationright) of the magnetic field
h = hmexp(iy ) on the Binder cumular®4(RgM)) in the Potts system.

2.3 Method C

The previous method enforced algebraically that the BirndenulantB, stay constant under
an infinitesimal changdm, du?. Instead, one can measure the changBsm\B,4, under a small
variationAm or Ap?, thus estimating the finite differencA8,/Am andAB,4/Ap?. For sufficiently
small variations, these discrete differences will appnote derivatives)B4/dm and dB,/d 2.
Finally, once the gradient @&, is known, the direction which kee constant is given by

_Am 0B, 0B
| . 4 2.9
S0~ op2! om (2:9)

The second equation in (2.5) is not needed here. The measar@iB, at the shifted couplings
(Mg +Am, i = 0) or (mg,Ap) is performed by the usual analysis, which automaticallyesunto
satisfy ((6M)3) = 0.

To measurd, at the shifted couplings, one could perform new Monte Canfmktions. But
this is not necessary. Because the shift in the couplingeng small, it is adequate and safe to
use the original Monte Carlo ensemble and simply reweightrésults in the standard way [13].
Moreover, to avoid complex weights one reweights to imaging which simply introduces a sign
flip in eq.(2.9). The reweighting factors remain real pesitiand close to 1.

With reweighting, the fluctuations in the original and thevegghted ensembles are strongly
correlated. This can be turned into a virtue, as these etectfluctuations drop out of our observ-
able, which is the&hangein By, rather tharB, itself.
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This procedure is illustrated Fig. 5. The top row shows thange inB; under a change
in hy = exp(—m) (left), and under a change in imaginguy(right). One observes the expected
dependence, respectively linear and quadratic. Notehkatitanges iB, are small(1072), and
measured very accurately — much more accurately Badtself. The bottom row of Fig. 5 shows
the change if4, divided by the change im, (left) or by ()2 (right). If the Taylor expansion could
be truncated to leading order, the data would be constastedd, one sees the small influence of
the next Taylor order. A fit to (constant + linear) gives theidsl partial derivatives, marked by a
black circle, which can be substituted in eq.(2.9). Theltesuslope is 0.589(7), again consistent
with the other two methods.

Note that the statistical errors on the various points Figresextremely correlated with each
other, so that a jackknife bin analysis is required to obteli@ble errors on the final slope. Note
also that there is a broad optimum for the shift in the coglintoo small a shift produces too
small a change iB,4, and the estimates of the derivatives approgh @o large a shift introduces
a systematic error from higher-order Taylor terms and arpiatieoverlap problem.

The errors from methods B and C are similar. This is normatesthese two methods make
use of the same Monte Carlo data and extract the same infiorm&o the preference for method
C in this case comes from its simplicity: there is no need t@asunee the relatively complicated
observables egs.(2.8). This will become a more serious issthe case of QCD.

3. Nf =3QCD

In [4], for Ny = 3 QCD, with standard staggered fermions oriNag- 4 lattice, we determined
the critical quark mass at = 0: anf = 0.02633), and proceeded to Taylor expand the pseudo-
critical coupling3; and the Binder cumulant afy:

Be(ap,am) = Z ca (ap)? (am—ang)' (3.1)
kf=o

Bs(amap) = 1.604+ byo [am— an§ — ¢j(ap)?] + byo(am— ar)?
—bio[(¢; — c1C)(ap)* +C(am—anf) (ap)?] +--- (3.2)

from which one can extract the variation of the pseudoeaitiemperature and of the critical quark
mass with the chemical potential.

3.1 Recall: method A

In [4], we performed independent simulations at differemities of the quark mass and imag-
inary chemical potentigh = iy, which we then fitted with the Taylor expansions above.

For the pseudo-critical temperature, a leading order fit sasfactory, yielding for the:?
dependence;p = 0.781(7). At subleading order, there was no evidence for a cross-tarm-
anf)(au)?, and the(au)* term was barely statistically significant. Including it imetfit yielded
c10 = 0.75922) (see Table 1 of [4]). Both fits are shown in Fig. 6 (left), by tierow blue and
broader green error band, respectively.

For the curvature of the critical surface, the coefficigneq.(3.2) encodes the relevant infor-
mation: to keeB, constant, one must satis@taa%))z = ¢}. Again, no cross-ternC was visible,
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and fits includingu? only, or u? and u* terms were performed, resulting in the narrow blue and
broader green error bands Fig. 6 (right), correspondingtber2, lines 2 and 3 of [4]. They suggest
a negative value for}, but do hardly more than that.

3.2 Method B

The Taylor coefficients in egs.(3.1,3.2) can be expressedectation values to be measured
at u = 0. We wrote down these expressions, analogous to egs.@w)we did not implement
a program to measure these operators, for several reasoas.the programming effort is non-
trivial. For instance, the trace of th&'Snverse power of the Dirac operator must be evaluated to
obtain the derivative of@)* with respect to the quark mass. Moreover, important caabets
will take place among the various contributions, leadinfutther difficulties with optimizing the
number of noise vectors to be used as stochastic estimatdhe warious traces. Finally, we
realized, from the Potts test case, that method C makes ube shme information contained in
the u = 0 Monte Carlo ensemble, and gives the same output as methatth Bas effort.

3.3 Method C

As in the Potts case, one can shift very slightly the quarksnzessl the chemical potential,
and reweight the: = 0 Monte Carlo ensembles to these shifted couplings. Thetedfea shift in
the quark mass was already measured in [4] with sufficieniracy, so we were interested in the
effect of a small chemical potential, taken as imaginaryraserve positivity of the weights. The
difference with the Potts case is that the reweighting facto

det' 4B (U, o)

U, L, = 3.3
P(U, ke, k) e 7D (U 1) (3.3)
for each configuratioqU } were not computed exactly, but only estimated as

PV ko) = (exp(—ID MU, )D VU P 1)) L 34)

wheren is a Gaussian random vector. Side= 3 in our case, the fractional powers of the Dirac
operator were approximated to high precision by a ratio bfrfmomials. To reduce the variance, we
actually formed uncorrelated estimators fgip(U, u2, p11) and multiplied them together. Further,
p(U, 2,0), 2 > 1 was constructed gs(U, Lo, ta) x p(U, 1z, 0). In this way, highly correlated
reweighting factors were obtained for 6 valuesuof iy, with ay, ranging from 001 to Q1.
Crucially, the noise in the reweighting factors does novene the standard application of
reweighting, because these factors eliearly in the numerator and denominator of the reweighted
expectation valugw) = Ziz‘i’iTW'. Difficulties arise only when one has to fortw)¥, because the
same stochastic estimator for configuratias usedk times and the statistical error, when taken
to an even power, introduces a bias. This is a relevant consarce we want to measure thé 4
cumulant of J. However, this bias is of ordef(1/N1) and disappears as the Monte Carlo
sample sizeN grows. To test for such bias, we magnify it by multiplying gvestimated weight
by a random number drawn uniformly j@,2[. The results of the analysis, for the derivativg
of the pseudo-critical coupling eq.(3.1) and for the cogffitc] in the Binder cumulant expansion
eq.(3.2), are presented Fig. 7. They are to be compared \gtt6Fwhere the original weights

10
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hep-lat/0607017 mu® only, ——— hep-lat/0607017 mu® only, ———
08 - 2fi'[ mgl2 1 0.2 1 it my 1
fit (mu®+mu”) fit (mu“+mu”)
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0.76 S of
T
S I + = Jr
0.74 I; T T 1 —Ql&_}W
0.72 J’ B -0.2
07 . . . . . 03 . . . . .
0 0.002 0.004 0.006 0.008 0.01 0 0.002 0.004 0.006 0.008 0.01
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Figure7: Check of possible systematic error. Same as Fig. 6, but theighting factors for each configura-
tion have been multiplied by a random number uniformly distted in]O : 2[. This unbiased noise, similar
to the noise in the reweighting factors themselves, doebiastthe result.

were used. No bias is visible in Fig. 7, leading us to concthdéno bias is present in Fig. 6 either.
Note that our sample size is very large: we analyzed aboutl®m82 x 4 configurations at 21
B-values. This large statistics was made possible by usim@sttid at CERN. The actual running
time was less than two weeks.

3.4 Comparing methodsA and C

The final results from method C (Fig. 6) are

To(G, 1) ( U >2
ci0=0.7461 or ——==1-06371)( — | +--- 3.5
10 &) To(ME,0) D 7% (3:5)
for the pseudo-critical temperature, using the two-I@efunction to convert to physical units, and
;o me(p) . %
¢, = —0.10515) or o = 3.3(5)<7TT) v (3.6)
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Figure 8: Direct measurements of the Binder cumuldeft], updated from Ref. [4]. Subleading depen-
dence orm becomes visible. Comparison with the reweighting appraeach function ofu? (right) shows
remarkable agreement, both in the leading and subleadimgte

for the curvature of the critical surface, where the valub.gfeq.(3.2) was taken from [4p1g =
13.6. A subleading term would be visible as a slope in the fits Bigindeed, a small effect is
visible on the right, corresponding t9 = —2.5+1.2.

These results are consistent with those of method A, prdviddleading terms are included
in fitting the latter (green error bands in Fig. 6), even ifitlee statistically almost unconstrained.
This illustrates the difficulty of estimating the systeratiror of truncating the Taylor expansion
used in fitting. This difficulty is eliminated in our new methowhich in addition is about 100
times more efficient.

However, method A gathers statistics over a broader ranghearhical potentials, and with
updated statistics exceeding 15 million configurationsy atbows us to clearly identify subleading
Taylor terms. They are visible from the curvature of the fitthe Binder cumulant as a function of
the quark mass Fig. 8 (left). The complete ansatz eq.(3.2)used, now yielding; = —0.074(28)
andc, = —1.0(5) with a x? of 23 for 21 d.o.f. Note the consistency of methods A and @ fis
the subleading order whose sign contributes to furthenkimg the region of first-order transitions.

Fig. 8 (right) shows the same results, after subtractiorheffitted mass dependence, as a
function of (ay)2. The fit is shown by the lower parabola. Now, the results of Bigright)
(leading and subleading terms) are shown in the same figuheagpper parabola. The agreement
between the two independent methods is remarkable, giemtbthod C only probes the region
(ay;)? < 0.01 where agreement is near-perfect.

3.5 Towardsthe continuum limit

Of course, cutoff errors on o, = 4 (a ~ 0.3fm) lattice can be large, and it is essential to
perform a continuum extrapolation. To this end, we are pogsaur project orl\; = 6 lattices, and
present some preliminary results Fig. 9.

The left figure illustrates cutoff effects on the criticareajuark massyg, corresponding to
a second-order transition agt= 0 in Ny = 3 QCD. One can see that the quark mass, expressed
in units of the temperature, must be reduced by a fastdron N; = 6 lattices. A similarly large
effect is present in the resulting pion mass;, measured at zero temperature for quark mass
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Figure9: Left: determination of the critical quark mass in tie= 3 theory. The bare quark mass decreases
(in units of T¢) as the continuum limit is approached. The correspondiog piass (measured&t= 0) also
decreasegRight: preliminary result for the curvature of the pseudo-criticee for Ny = 6. In physical units,
the curvature ismallerthan forN; = 4.

. The ratiom$,/ T, decreases from.a80(4) (\; = 4) to 0954(12) (\; = 6), so that a naive?
extrapolation would give- 0.4 in the continuum! This very large cutoff effect is consmtavith
earlier indications [7, 14] and with a new study [6], all segting that the transition becomes much
weaker in the continuum limit. Note that the cutoff effecttbe hadron spectrum is comparatively
mild, so that the net effect of a finer lattice is to dramatjcplish the critical surface Fig. 2 toward
the origin, while leaving the physical point untouched. Jtine gap between the critical surface
and the physical point widens, pushing the critical poirfEig. 2 (left) to larger values gfig.

Our second preliminary result, Fig. 9 (right), shows thevature of the pseudo-critical cou-
pling dBC/d(au)2|“:0 for the critical quark massg. The error band corresponds to tNe= 4
study. The trend is fad B /d(au)? to be smaller foN, = 6, while if we use the two-looB-function
to convert to physical units, one should obsetfg/d(au)? O NZ. Instead of increasing big/4)?,
our measured value seems to decrease. NowN{fer 4 already, the estimated curvature of the
pseudo-critical linél¢(m§, 4) was about 3 times less than that of the experimental freezewmve
[15]. These two curves appear to become more clearly sepbash — 0, which also reducesy,.

4. Discussion

Our findings including next-to-leading terms bin= 4 predict the “exotic” scenario of Fig. 2
(right): the region of first-order transitions shrinks as tihemical potential is turned on, so that the
chiral critical surface does not intersect the physica,liand there is no chiral critical point in
QCD. This statement, which goes against conventional wisdgpets qualified by a number of
systematic errors. Like [4-8,10,11,14], we use staggezadibns with the rooting trick, which
is potentially unsafe for very light quark masses. Next,dbevature of the critical surface varies
with the cutoff, and presently the rate of this change is omkm It also changes from thé; = 3
case presented here to tNe = 2+ 1 theory, although we found in [4] that fod = 4 the sign of
the curvature remains unchanged. Finally, opgde~ T higher order terms may become relevant.

Despite these caveats, we believe the qualitative pictube robust. If the continuum critical
quark mass can be Taylor expanded as per eq.(1.1) with deaff@’(1), the critical surface in
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Fig. 2 rises “almost vertically” no matter the sign of its eature, and a critical point at small
|u/T| implies a fine-tuning of the physical quark masses, so as teheclose to the critical line
at u = 0. Such a fine-tuning seenmsinatural and indeed thet = 0 critical line seems to recede
considerably in the continuum limit, now requiring a largevature of the opposite sign to what
we observe in order to accomodate a critical poinpdf | < 1.

Finally, the object of our study is thehiral critical surface. Our findings do not exclude
additional critical structure due to non-chiral physicsigiag the phase transitions Fig. 3, bottom
right.
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