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For a QCD chiral critical point to exist, the parameter region of small quark masses for which the

finite temperature transition is first-order must expand when the chemical potential is turned on.

This can be tested by a Taylor expansion of the critical surface(mu,d,ms)c(µ). We present a new

method to perform this Taylor expansion numerically, whichwe first test on an effective model of

QCD with static, dense quarks. We then present the results for QCD with 3 degenerate flavors. For

a lattice withNt = 4 time-slices, the first-order region shrinks as the chemical potential is turned

on. This implies that, for physical quark masses, the analytic crossover which occurs atµ = 0

between the hadronic and the plasma regimes remains crossover in theµ-region where a Taylor

expansion is reliable, i.e.µ . T. We present preliminary results from finer lattices indicating that

this situation persists, as does the discrepancy between the curvature ofTc(mc(µ = 0),µ) and the

experimentally observed freeze-out curve.
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Figure 1: Schematic phase transition behaviour ofNf = 2+ 1 flavor QCD for different choices of quark
masses(mu,d,ms) at µ = 0 [1] (left), and numerical determination of the chiral critical line [4] (right).

1. Introduction

The experimental determination of the QCD phase diagram is underway via extensive heavy-
ion collision programs. At the same time, much effort is being devoted to its theoretical determi-
nation via numerical lattice simulations. In the latter case, one can ask the more general theoretical
question: what is the phase diagram of 2+ 1-flavor QCD in the(mu,d,ms,µu,d,µs,T) parameter
space?

Forµu,d = µs = 0, theoretical expectations are summarized in Fig. 1 (left). In the chiral (mu,d =

ms = 0) and the quenched (mu,d = ms = ∞) corners, order parameters probing the breaking of the
chiral and the center symmetries exist, and the symmetry breaking or restoring transitions are first-
order. For intermediate quark masses, simulations show a crossover. This leads to the existence of
two lines of critical points, both in the 3d Ising universality class, delimiting the first-order regions.
In the quenched corner, the critical line has been studied in[2, 3]. In the chiral corner, Fig. 1 (right)
shows the result of [4]. Good agreement with expectations was found, including consistency with
a tricritical point (mu,d = 0,ms = mtric

s ) with a rather heavy massmtric
s ∼ 2.8Tc. The physical point,

marked by an X, lies in the crossover region. These results were obtained with standard staggered
fermions on anNt = 4 (a∼ 0.3 fm) lattice. One task is now to quantify cutoff effects and extrapolate
to the continuum limit. This extrapolation has been performed for the physical point [5], confirming
that it remains in the crossover region. Our preliminary results on anNt = 6 lattice, consistent with
those of [6] and with earlier indications from improved actions onNt = 4 [7], are presented Sec. 3.5.
Cutoff effects are large, and the transition becomes much weaker on a finer lattice.

The next issue is to determine the effect of a baryonic chemical potential. For physical quark
masses, it is expected that the transition becomes strongerwith µ , so that it turns from a crossover at
µ = 0 into a first-order transition, thus defining the QCD critical point (µE,TE) where the transition
is second-order. The fermion determinant becomes complex whenµ 6= 0, and the ensuing “sign
problem” forbids standard Monte Carlo sampling. Nevertheless, a determination of this critical
point has been performed, using the same staggered action and Nt = 4 lattice spacing as us [8].
While the cutoff error is likely to be comparable to that atµ = 0, the numerical method used,
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Figure 2: For physical(mu,d,ms) quark masses, the finite-temperature “transition” atµ = 0 is really a
crossover. Asµ is turned on, this crossover becomes a genuine phase transition at the QCD chiral critical
point (left), provided the region of first-order transitions at small quark massesexpandswith µ . If not (right),
there is no QCD chiral critical point. The curvature of the critical surfacedmc/dµ2 at µ = 0 distinguishes
between these two possibilities for smallµ . Note that, for heavy quarks, the first-order regionshrinkswhen
µ is turned on [9].

namely reweighting, introduces new possible systematic errors. Contrary to the well-known multi-
histogram reweighting where oneinterpolatesbetween Monte Carlo results obtained at several
values of the coupling, here oneextrapolatesresults obtained at a single value of the coupling,µ =

0, to µ 6= 0. While this procedure is in principle exact for infinite statistics, the practical question
is whether the finite Monte Carlo sample contains the relevant information at the extrapolated
coupling. This difficulty is known as the overlap problem. Thus, a crosscheck of the results of [8]
using a different approach seems worthwhile.

To avoid all difficulties caused by a potential lack of overlap, we set a more modest goal, and
study the effect of an infinitesimal chemical potential. More precisely, we consider the critical
surface, swept by the chiral critical line of Fig. 1 (right) as a function ofµ , in terms of a Taylor
expansion in(µ/T)2 aboutµ = 0, (for theNf = 3 case to keep the notation simple)

mc(µ)

mc(0)
= 1+ ∑

k=1

ck

( µ
πT

)2k
. (1.1)

The sign of the first Taylor coefficientc1 is of crucial relevance to the QCD critical point. Since
for µ = 0 the physical point is in the crossover region, the first-order region must expand with
µ (Fig. 2 left). If instead the first-order region shrinks (Fig. 2 right), then the crossover persists
and there is no QCD critical point unless another critical surface, topologically unrelated to the
chiral critical surface we consider, is present in the phasediagram. The simplest corresponding
(µ ,T) phase diagram in the two cases is depicted in Fig. 3, for a quark mass below and above
mc(0). In the “exotic” scenario (right), the first-order line present for small quark mass turns into
a crossover as the mass increases, starting withlarge µ . If m> mc(0) as in the physical situation,
the “transition” is simply a crossover, for allµ ’s, until different physics take over. Distinguishing
between these two scenarios requires full knowledge of the critical surface. However, by measuring
the first Taylor coefficient, we can determine the behaviour of the critical surface forµ/T . 1, i.e.
in the regionµB . 500 MeV where experimental searches are considered.
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Figure 3: Simplest phase diagram in the(µ ,T) plane, for the two cases of Fig. 2 (leftandright), as a function
of the quark mass (middle). Red and blue lines indicate first-order transition and crossover, respectively.

In our first study [4], we performed simulations at imaginaryµ and determinedmc(µ = iµI ),
then fitted our results by a truncated Taylor expansion whichcan be trivially continued to real
µ . While this method appears to work very well for the pseudo-critical line Tc(µ) [10, 11], we
faced two related difficulties when computingmc(µ): the signal is very noisy, and this makes the
determination of the systematic error due to truncation of the Taylor series difficult. For the case of
three degenerate flavors,ms = mu,d,µs = µu,d, we performed quadratic and quartic fits inµ/T. The
quartic term was statistically insignificant, so we set it tozero and obtained for the leading term

mc(µ)

mc(0)
= 1−0.7(4)

( µ
πT

)2
+ · · · (1.2)

which favors the “exotic” scenario Fig. 2 (right), but not even at the 2σ level. Note that including
the quartic term in the fit (Table 2, line 2 of Ref. [4]) changesthe leading coefficient to -2.6(1.2).
The lack of compelling numerical evidence motivated us to improve our statistics and our numerical
methods.

Here, we compare three methods to obtain the derivativedmc
dµ2 |µ=0:

A. Analytic continuation from imaginaryµ
B. Direct measurement of the derivative atµ = 0
C. Noisy reweighting to small imaginaryµ
In all three methods, the same criterion is used to determinethe pseudo-critical couplings in a
finite volume: the Binder cumulantB4 ≡ 〈(δX)4〉

〈(δX)2〉2 , with δX = X − 〈X〉 and X = ψ̄ψ , takes the
value 1.604 characteristic of the 3d Ising universality class at the critical point. In a finite volume,
B4 is an analytic function of(m,T,µ), andT is fixed to the pseudo-critical temperatureTc(m,µ)

by requiring, for instance, that the susceptibility〈(δX)2〉 be maximum. We use the equivalent
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prescription〈(δX)3〉 = 0. The two constraints{B4 = 1.604,〈(δψ̄ψ)3〉 = 0} define a line in the
(T,m,µ) space. We want to extract the curvaturedmc

dµ2 of this line atµ = 0.
Method A is the one used in [4]. The results of different simulations at various imaginary

values ofµ are fitted with a truncated Taylor expansion aboutµ = 0. One difficulty comes from
the systematic error associated with the order of the truncation. Another comes from the final
statistical error, which in [4] amounted to about half the signal.

Method B is reminiscent of the Bielefeld-Swansea approach [11], where the derivatives of
the free energy with respect toµ/T are expressed as expectation values of non-local operators,
which involve traces of inverse powers of the Dirac operator. In our case, the derivatives ofB4

and〈(δψ̄ψ)3〉 with respect tom,T andµ can be expressed as expectation values of complicated
operators, which can be measured in a single simulation atµ = 0.

Method C, to our knowledge, is a new application of reweighting, where the reweighting
factors are not evaluated exactly but estimated by a stochastic method. This noise does not prevent
reweighting provided it is unbiased. We can apply this strategy to the results ofµ = 0 simulations
and reweight them to imaginaryµ , monitoring the change inB4 and 〈(δψ̄ψ)3〉. Keeping this
imaginaryµ very small has two advantages:(i) the reweighting factor remains close to 1 and the
overlap of theµ = 0 Monte Carlo ensemble with the targetµ 6= 0 ensemble is guaranteed;(ii)
fluctuations in the two ensembles are strongly correlated, and cancel in the observables.

In Section 2, we first test methods B and C on a Potts model representative of the heavy-quark
limit of QCD, for which we have previously determined the critical line for both imaginary and real
µ [9]. All methods agree, with a clear advantage to method C forits simplicity. Then in Section
3, we compare methods A and C forNf = 3 QCD, on a coarse 83×4 lattice. Again, methods A
and C agree, leaving no doubt that for this system the first-order regionshrinkswhen the chemical
potential is turned on. Finally, in Section 4 we present somepreliminary results on a finer 183×6
lattice, and discuss the implications and limitations of our findings.

2. Potts model

2.1 An effective description of dense static quarks

When the quark massm becomes infinite, quarks become static and a quark source is a
Polyakov loop. The canonical partition function of QCD withn static quarks and ˜n static anti-
quarks is [12]

Zn,ñ =

∫

DA
1
n!

Φ[A]n
1
ñ!

Φ∗[A]ñ exp(−(n+ ñ)
m
T

)exp(−Sg[A]) , (2.1)

where Φ[A] is the Polyakov loop integrated over space andSg the gauge action. The grand-
canonical partition function is then simply

Z(µ) = ∑
n,ñ

e(n−ñ) µ
T Zn,ñ =

∫

DAexp(−Sg[A]+e−
m−µ

T Φ[A]+e−
m+µ

T Φ∗[A]) . (2.2)

Simplifying the gauge action to a Potts interaction betweenneighbouring Polyakov loops, one
obtains the partition function of a 3d q= 3 Potts model in an external field:

Z(κ ,m̄, µ̄) = ∑
{Φ(~x)}

exp[−κ ∑
i,~x

δΦ(~x),Φ(~x+i) +∑
~x

(hΦ(~x)+h′Φ∗(~x))] , (2.3)

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
1
7
8

QCD critical point Philippe de Forcrand, Owe Philipsen

-3 -2 -1 0 1 2 3 4 5

(µ/Τ)^2

0

2

4

6

8

10

12

m
/T

from µ_Ι
from µ
m_infinity limit

first order transition

cross-over

Figure 4: Phase diagram of the Potts model, as a function ofm/T and (µ/T)2. For heavy masses, the
transition is first order. It turns into a crossover for lightmasses. The critical line can be determined for
imaginaryµ (red points), showing the expectedZ3 transition atµ/T = i π

3 , or directly for realµ , because the
sign problem is mild. The line is analytic atµ = 0, but shows some curvature. Methods B and C measure its
slope atµ = 0.

whereΦ(~x) is the Potts (actuallyZ3) spin exp(ik(~x)2π
3 ), h = hme+µ̄ ,h′ = hme−µ̄ ,hm = e−m̄, µ̄ = µ

T

andm̄= m
T . Contrary to [12] who consider the limit ¯m, µ̄ → ∞,(m̄− µ̄) finite, and drop the last term

corresponding to antiquarks, we keep the complete expression in order to study the(m̄, µ̄) phase
diagram. Becauseh′ 6= h∗ whenµ 6= 0, the action becomes complex and a sign problem appears.
However, it is very mild, so that simulating with the real part of the action and reweighting with the
imaginary part works efficiently and reliably. Two phases are present: confined/disordered at small
κ , deconfined/ordered at largeκ . The phase transition is first-order for the ordinary Potts model,
i.e., in the absence of any external fieldh = h′ = 0. This case corresponds to ¯m→ ∞.

Decreasing ¯m turns on the magnetic field. This weakens the phase transition, so that it becomes
a crossover for sufficiently largehm, i.e., sufficiently small ¯m= m/T. The critical value of ¯mcorre-
sponding to the end of the first-order region depends on the chemical potential̄µ . The critical line
m̄c(µ̄) has been determined in [9], for both real and imaginary chemical potentials. Fig. 4 sum-
marizes the results of [9]. It represents the qualitative behaviour of QCD with heavy quarks near
the critical line in the upper right corner of Fig. 1 (left), because the symmetries and the infrared
degrees of freedom are the same. GivenTc ≈ 270 MeV, the value ofmc(0) even lies in the 1-2 GeV
range estimated from full QCD simulations [2, 3]. Fig. 4 shows that, as the chemical potential is
turned on, the first order region shrinks as indicated in the quenched corner of Fig. 2 (right).

As a function ofµ̄2, the critical line is analytic at̄µ = 0, so that the real-̄µ dependence can be
reconstructed by analytic continuation of imaginary-µ̄ simulation results. However, some curvature
is visible, particularly as the imaginarȳµ approaches theZ3 transition pointµ̄ = i π

3 . A global fit of
all our data requires a fourth-order polynomial inµ̄2:

m
T

= 8.273+0.585
( µ

T

)2
−0.174

(µ
T

)4
+0.160

(µ
T

)6
−0.071

(µ
T

)8
, (2.4)

where the first coefficient is 0.585(3) including its fitting error. This is essentially the result of
method A (although we have actually augmented the imaginary-µ data with real-µ data). One
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may be concerned that a similar curvature occurs in QCD as well, which would make it difficult to
analytically continue data from a few discrete values of imaginary µ . Therefore, the object of this
study of the Potts model is to see how well the first coefficientof the polynomial, 0.585(3), can be
reproduced by methods B and C which involve simulations atµ = 0 only.

2.2 Method B

The order parameter probing theZ3 symmetry is the magnetizationM ≡ ∑~x Φ(x). Therefore,
we determine the critical line by requiring

B4 ≡
〈(δM)4〉

〈(δM)2〉2 = 1.604, 〈(δM)3〉 = 0 , (2.5)

with δM ≡ M−〈M〉. Both expressions are functions of(κ ,m̄, µ̄), so that the two equations deter-
mine the critical linem̄c(µ̄) in this 3-parameter space. The two equations can be Taylor expanded
about the point(κc(µ̄ = 0),mc(µ̄ = 0),0) of this line, yielding at lowest order

dB4 = Adm̄+Bdµ̄2 +Cdκ , d〈(δM)3〉 = A′dm̄+B′dµ̄2 +C′dκ . (2.6)

Staying on the critical line implies that the changes inB4 and in〈(δM)3〉 are both zero. From the
resulting two linear equations, one can eliminatedκ , and obtain

dm̄

dµ̄2 = −
BC′−B′C
AC′−A′C

, (2.7)

which is the desired slope of the critical line atµ = 0. The coefficientsA,B,C,A′,B′,C′ are the
following expectation values

A =
∂B4

∂m̄
|µ̄=0 = −2hm〈δM2〉−2〈δM5〉

B =
1
2

∂ 2B4

∂ µ̄2 |µ̄=0 =
1
2
〈δM2〉−2[2hm〈δM5〉+h2

m〈(δM4−〈δM4〉)(Φ−Φ∗)2〉]

−h2
m〈δM2〉−3〈δM4〉〈(δM2−〈δM2〉)(Φ−Φ∗)2〉

C =
∂B4

∂κ
|µ̄=0 = 〈δM2〉−2〈δM4δE〉−2〈δM2〉−3〈δM4〉〈δM2δE〉

A′ =
∂ 〈δM3〉

∂m̄
|µ̄=0 = −2hm〈δM4〉

B′ =
1
2

∂ 2〈δM3〉

∂ µ̄2 |µ̄=0 =
1
2
[2hm〈(δM3−3〈δM2〉δM)M〉+h2

m〈(δM3−3〈δM2〉δM)(Φ−Φ∗)2〉]

C′ =
∂ 〈δM3〉

∂κ
|µ̄=0 = 〈δM3δE〉−3〈δM2〉〈δMδE〉 (2.8)

whereδE = E−〈E〉. Thus, all 6 coefficients can be measured during a Monte Carlosimulation at
theµ = 0 critical point, i.e., whereκ andm̄have been tuned to satisfy eq.(2.5). We have performed
such measurements on a 723 lattice, of the same size used to obtain Fig. 4. Substitutinginto
eq.(2.7), and performing a jackknife bin analysis, we obtain dm̄/dµ̄2 = 0.593(8), which agrees
very well with the earlier result from method A. Note again that method B is insensitive to the
curvature of the critical line, unlike method A.
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Figure 5: Effect of a small change in the magnitude (left) and the orientation (right) of the magnetic field
h = hmexp(iµ̄I ) on the Binder cumulantB4(Re(M)) in the Potts system.

2.3 Method C

The previous method enforced algebraically that the BindercumulantB4 stay constant under
an infinitesimal changedm̄, dµ̄2. Instead, one can measure the change inB4, ∆B4, under a small
variation∆m̄or ∆µ̄2, thus estimating the finite differences∆B4/∆m̄and∆B4/∆µ̄2. For sufficiently
small variations, these discrete differences will approach the derivatives∂B4/∂m̄ and∂B4/∂ µ̄2.
Finally, once the gradient ofB4 is known, the direction which keepsB4 constant is given by

lim
∆µ̄→0

∆m̄

∆µ̄2 = −
∂B4

∂ µ̄2/
∂B4

∂m̄
. (2.9)

The second equation in (2.5) is not needed here. The measurement ofB4 at the shifted couplings
(m̄c + ∆m̄,µ = 0) or (m̄c,∆µ̄) is performed by the usual analysis, which automatically tunesκ to
satisfy〈(δM)3〉 = 0.

To measureB4 at the shifted couplings, one could perform new Monte Carlo simulations. But
this is not necessary. Because the shift in the couplings is very small, it is adequate and safe to
use the original Monte Carlo ensemble and simply reweight the results in the standard way [13].
Moreover, to avoid complex weights one reweights to imaginary µ̄ , which simply introduces a sign
flip in eq.(2.9). The reweighting factors remain real positive, and close to 1.

With reweighting, the fluctuations in the original and the reweighted ensembles are strongly
correlated. This can be turned into a virtue, as these correlated fluctuations drop out of our observ-
able, which is thechangein B4, rather thanB4 itself.
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This procedure is illustrated Fig. 5. The top row shows the change inB4 under a change
in hm = exp(−m̄) (left), and under a change in imaginarȳµ (right). One observes the expected
dependence, respectively linear and quadratic. Note that the changes inB4 are small,O(10−2), and
measured very accurately – much more accurately thanB4 itself. The bottom row of Fig. 5 shows
the change inB4, divided by the change inhm (left) or by(µ̄)2 (right). If the Taylor expansion could
be truncated to leading order, the data would be constant. Instead, one sees the small influence of
the next Taylor order. A fit to (constant + linear) gives the desired partial derivatives, marked by a
black circle, which can be substituted in eq.(2.9). The resulting slope is 0.589(7), again consistent
with the other two methods.

Note that the statistical errors on the various points Fig. 5are extremely correlated with each
other, so that a jackknife bin analysis is required to obtainreliable errors on the final slope. Note
also that there is a broad optimum for the shift in the couplings: too small a shift produces too
small a change inB4, and the estimates of the derivatives approach 0/0; too large a shift introduces
a systematic error from higher-order Taylor terms and a potential overlap problem.

The errors from methods B and C are similar. This is normal, since these two methods make
use of the same Monte Carlo data and extract the same information. So the preference for method
C in this case comes from its simplicity: there is no need to measure the relatively complicated
observables eqs.(2.8). This will become a more serious issue in the case of QCD.

3. Nf = 3 QCD

In [4], for Nf = 3 QCD, with standard staggered fermions on anNt = 4 lattice, we determined
the critical quark mass atµ = 0: amc

0 = 0.0263(3), and proceeded to Taylor expand the pseudo-
critical couplingβc and the Binder cumulant of̄ψψ :

βc(aµ ,am) = ∑
k,l=0

ckl (aµ)2k (am−amc
0)

l (3.1)

B4(am,aµ) = 1.604+b10
[

am−amc
0−c′1(aµ)2]+b20(am−amc

0)
2

−b10
[

(c′2−c′1C)(aµ)4 +C(am−amc
0)(aµ)2]+ · · · , (3.2)

from which one can extract the variation of the pseudo-critical temperature and of the critical quark
mass with the chemical potential.

3.1 Recall: method A

In [4], we performed independent simulations at different values of the quark mass and imag-
inary chemical potentialµ = iµI , which we then fitted with the Taylor expansions above.

For the pseudo-critical temperature, a leading order fit wassatisfactory, yielding for theµ2

dependencec10 = 0.781(7). At subleading order, there was no evidence for a cross-term(am−

amc
0)(aµ)2, and the(aµ)4 term was barely statistically significant. Including it in the fit yielded

c10 = 0.759(22) (see Table 1 of [4]). Both fits are shown in Fig. 6 (left), by thenarrow blue and
broader green error band, respectively.

For the curvature of the critical surface, the coefficientc′1 eq.(3.2) encodes the relevant infor-
mation: to keepB4 constant, one must satisfyd(am)

d(aµ)2 = c′1. Again, no cross-termC was visible,
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and fits includingµ2 only, or µ2 andµ4 terms were performed, resulting in the narrow blue and
broader green error bands Fig. 6 (right), corresponding to Table 2, lines 2 and 3 of [4]. They suggest
a negative value forc′1, but do hardly more than that.

3.2 Method B

The Taylor coefficients in eqs.(3.1,3.2) can be expressed asexpectation values to be measured
at µ = 0. We wrote down these expressions, analogous to eqs.(2.8).But we did not implement
a program to measure these operators, for several reasons. First, the programming effort is non-
trivial. For instance, the trace of the 5th inverse power of the Dirac operator must be evaluated to
obtain the derivative of(δψ̄ψ)4 with respect to the quark mass. Moreover, important cancellations
will take place among the various contributions, leading tofurther difficulties with optimizing the
number of noise vectors to be used as stochastic estimators of the various traces. Finally, we
realized, from the Potts test case, that method C makes use ofthe same information contained in
theµ = 0 Monte Carlo ensemble, and gives the same output as method B with less effort.

3.3 Method C

As in the Potts case, one can shift very slightly the quark mass and the chemical potential,
and reweight theµ = 0 Monte Carlo ensembles to these shifted couplings. The effect of a shift in
the quark mass was already measured in [4] with sufficient accuracy, so we were interested in the
effect of a small chemical potential, taken as imaginary to preserve positivity of the weights. The
difference with the Potts case is that the reweighting factors,

ρ(U,µ2,µ1) ≡
detNf /4D/(U,µ2)

detNf /4D/(U,µ1)
, (3.3)

for each configuration{U} were not computed exactly, but only estimated as

ρ(U,µ2,µ1) =
〈

exp
(

−|D/−Nf /8(U,µ2)D/
+Nf /8(U,µ1)η |2 + |η |2

)〉

η
, (3.4)

whereη is a Gaussian random vector. SinceNf = 3 in our case, the fractional powers of the Dirac
operator were approximated to high precision by a ratio of polynomials. To reduce the variance, we
actually formed uncorrelated estimators for

√

ρ(U,µ2,µ1) and multiplied them together. Further,
ρ(U,µ2,0),µ2 > µ1 was constructed asρ(U,µ2,µ1)×ρ(U,µ1,0). In this way, highly correlated
reweighting factors were obtained for 6 values ofµ = iµI , with aµI ranging from 0.01 to 0.1.

Crucially, the noise in the reweighting factors does not prevent the standard application of
reweighting, because these factors enterlinearly in the numerator and denominator of the reweighted
expectation value〈W〉 = ∑i ρiWi

∑i ρi
. Difficulties arise only when one has to form〈W〉k, because the

same stochastic estimator for configurationi is usedk times and the statistical error, when taken
to an even power, introduces a bias. This is a relevant concern, since we want to measure the 4th

cumulant ofψ̄ψ . However, this bias is of orderO(1/Nk−1) and disappears as the Monte Carlo
sample sizeN grows. To test for such bias, we magnify it by multiplying every estimated weight
by a random number drawn uniformly in]0,2[. The results of the analysis, for the derivativec10

of the pseudo-critical coupling eq.(3.1) and for the coefficient c′1 in the Binder cumulant expansion
eq.(3.2), are presented Fig. 7. They are to be compared with Fig. 6, where the original weights

10
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Figure 6: Upon introducing a small imaginary chemical potentialµI , the pseudo-critical couplingβc and
the Binder cumulantB4(ψ̄ψ) vary slightly from theirµI = 0 values. The change∆O/∆µ2 is shown as a
function of(aµI )

2, for O = βc (left) and forO = B4 (right). The error bands correspond to the leading-order
(blue) and subleading-order (green) fits from Ref.[4].
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Figure 7: Check of possible systematic error. Same as Fig. 6, but the reweighting factors for each configura-
tion have been multiplied by a random number uniformly distributed in]0 : 2[. This unbiased noise, similar
to the noise in the reweighting factors themselves, does notbias the result.

were used. No bias is visible in Fig. 7, leading us to concludethat no bias is present in Fig. 6 either.
Note that our sample size is very large: we analyzed about 5 million 83 × 4 configurations at 21
β -values. This large statistics was made possible by using the Grid at CERN. The actual running
time was less than two weeks.

3.4 Comparing methods A and C

The final results from method C (Fig. 6) are

c10 = 0.746(1) or
T0(mc

0,µ)

T0(mc
0,0)

= 1−0.637(1)

(

µ
πT0

)2

+ · · · (3.5)

for the pseudo-critical temperature, using the two-loopβ -function to convert to physical units, and

c′1 = −0.105(15) or
mc(µ)

mc(0)
= 1−3.3(5)

( µ
πT

)2
+ · · · (3.6)
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Figure 8: Direct measurements of the Binder cumulant (left), updated from Ref. [4]. Subleading depen-
dence onm becomes visible. Comparison with the reweighting approachas a function ofµ2 (right) shows
remarkable agreement, both in the leading and subleading terms.

for the curvature of the critical surface, where the value ofb10 eq.(3.2) was taken from [4]:b10 ≈

13.6. A subleading term would be visible as a slope in the fits Fig.6. Indeed, a small effect is
visible on the right, corresponding toc′2 = −2.5±1.2.

These results are consistent with those of method A, provided subleading terms are included
in fitting the latter (green error bands in Fig. 6), even if they are statistically almost unconstrained.
This illustrates the difficulty of estimating the systematic error of truncating the Taylor expansion
used in fitting. This difficulty is eliminated in our new method, which in addition is about 100
times more efficient.

However, method A gathers statistics over a broader range ofchemical potentials, and with
updated statistics exceeding 15 million configurations, now allows us to clearly identify subleading
Taylor terms. They are visible from the curvature of the fits of the Binder cumulant as a function of
the quark mass Fig. 8 (left). The complete ansatz eq.(3.2) was used, now yieldingc′1 =−0.074(28)
andc′2 = −1.0(5) with a χ2 of 23 for 21 d.o.f. Note the consistency of methods A and C, also for
the subleading order whose sign contributes to further shrinking the region of first-order transitions.

Fig. 8 (right) shows the same results, after subtraction of the fitted mass dependence, as a
function of (aµI )

2. The fit is shown by the lower parabola. Now, the results of Fig. 6 (right)
(leading and subleading terms) are shown in the same figure asthe upper parabola. The agreement
between the two independent methods is remarkable, given that method C only probes the region
(aµI )

2 ≤ 0.01 where agreement is near-perfect.

3.5 Towards the continuum limit

Of course, cutoff errors on ourNt = 4 (a ∼ 0.3fm) lattice can be large, and it is essential to
perform a continuum extrapolation. To this end, we are pursuing our project onNt = 6 lattices, and
present some preliminary results Fig. 9.

The left figure illustrates cutoff effects on the critical bare quark mass,mc
0, corresponding to

a second-order transition atµ = 0 in Nf = 3 QCD. One can see that the quark mass, expressed
in units of the temperature, must be reduced by a factor∼ 5 onNt = 6 lattices. A similarly large
effect is present in the resulting pion mass,mc

π , measured at zero temperature for quark mass
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Figure 9: Left: determination of the critical quark mass in theNf = 3 theory. The bare quark mass decreases
(in units ofTc) as the continuum limit is approached. The corresponding pion mass (measured atT = 0) also
decreases.Right: preliminary result for the curvature of the pseudo-critical line for Nt = 6. In physical units,
the curvature issmallerthan forNt = 4.

mc
0. The ratiomc

π/Tc decreases from 1.680(4) (Nt = 4) to 0.954(12) (Nt = 6), so that a naivea2

extrapolation would give∼ 0.4 in the continuum! This very large cutoff effect is consistent with
earlier indications [7, 14] and with a new study [6], all suggesting that the transition becomes much
weaker in the continuum limit. Note that the cutoff effect onthe hadron spectrum is comparatively
mild, so that the net effect of a finer lattice is to dramatically push the critical surface Fig. 2 toward
the origin, while leaving the physical point untouched. Thus the gap between the critical surface
and the physical point widens, pushing the critical point inFig. 2 (left) to larger values ofµE.

Our second preliminary result, Fig. 9 (right), shows the curvature of the pseudo-critical cou-
pling dβc/d(aµ)2|µ=0 for the critical quark massmc

0. The error band corresponds to theNt = 4
study. The trend is fordβc/d(aµ)2 to be smaller forNt = 6, while if we use the two-loopβ -function
to convert to physical units, one should observedβc/d(aµ)2 ∝ N2

t . Instead of increasing by(6/4)2,
our measured value seems to decrease. Now, forNt = 4 already, the estimated curvature of the
pseudo-critical lineTc(mc

0,µ) was about 3 times less than that of the experimental freeze-out curve
[15]. These two curves appear to become more clearly separated asa→ 0, which also reducesmc

0.

4. Discussion

Our findings including next-to-leading terms onNt = 4 predict the “exotic” scenario of Fig. 2
(right): the region of first-order transitions shrinks as the chemical potential is turned on, so that the
chiral critical surface does not intersect the physical line, and there is no chiral critical point in
QCD. This statement, which goes against conventional wisdom, gets qualified by a number of
systematic errors. Like [4–8,10,11,14], we use staggered fermions with the rooting trick, which
is potentially unsafe for very light quark masses. Next, thecurvature of the critical surface varies
with the cutoff, and presently the rate of this change is unknown. It also changes from theNf = 3
case presented here to theNf = 2+ 1 theory, although we found in [4] that forNt = 4 the sign of
the curvature remains unchanged. Finally, once|µ | ∼ Tc higher order terms may become relevant.

Despite these caveats, we believe the qualitative picture to be robust. If the continuum critical
quark mass can be Taylor expanded as per eq.(1.1) with coefficientsO(1), the critical surface in
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Fig. 2 rises “almost vertically” no matter the sign of its curvature, and a critical point at small
|µ/T| implies a fine-tuning of the physical quark masses, so as to bevery close to the critical line
at µ = 0. Such a fine-tuning seemsunnatural, and indeed theµ = 0 critical line seems to recede
considerably in the continuum limit, now requiring a large curvature of the opposite sign to what
we observe in order to accomodate a critical point at|µ/T| < 1.

Finally, the object of our study is thechiral critical surface. Our findings do not exclude
additional critical structure due to non-chiral physics causing the phase transitions Fig. 3, bottom
right.
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