
Aircraft Collision Avoidance

Using Monte Carlo Real-Time Belief Space Search

by

Travis Benjamin Wolf

B.S., Aerospace Engineering (2007)
United States Naval Academy

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2009

c© Massachusetts Institute of Technology 2009. All rights reserved.

Author .
Department of Aeronautics and Astronautics

May 22, 2009

Certified by. .
James K. Kuchar

Associate Group Leader, Lincoln Laboratory
Thesis Supervisor

Certified by. .
John E. Keesee
Senior Lecturer

Thesis Supervisor

Accepted by .
David L. Darmofal

Professor of Aeronautics and Astronautics
Associate Department Head

Chair, Committee on Graduate Students

2

Aircraft Collision Avoidance

Using Monte Carlo Real-Time Belief Space Search

by

Travis Benjamin Wolf

Submitted to the Department of Aeronautics and Astronautics
on May 22, 2009, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

This thesis presents the Monte Carlo Real-Time Belief Space Search (MC-RTBSS)
algorithm, a novel, online planning algorithm for partially observable Markov decision
processes (POMDPs). MC-RTBSS combines a sample-based belief state representa-
tion with a branch and bound pruning method to search through the belief space
for the optimal policy. The algorithm is applied to the problem of aircraft collision
avoidance and its performance is compared to the Traffic Alert and Collision Avoid-
ance System (TCAS) in simulated encounter scenarios. The simulations are generated
using an encounter model formulated as a dynamic Bayesian network that is based
on radar feeds covering U.S. airspace. MC-RTBSS leverages statistical information
from the airspace model to predict future intruder behavior and inform its maneuvers.
Use of the POMDP formulation permits the inclusion of different sensor suites and
aircraft dynamic models.

The behavior of MC-RTBSS is demonstrated using encounters generated from an
airspace model and comparing the results to TCAS simulation results. In the sim-
ulations, both MC-RTBSS and TCAS measure intruder range, bearing, and relative
altitude with the same noise parameters. Increasing the penalty of a Near Mid-Air
Collision (NMAC) in the MC-RTBSS reward function reduces the number of NMACs,
although the algorithm is limited by the number of particles used for belief state pro-
jections. Increasing the number of particles and observations used during belief state
projection increases performance. Increasing these parameter values also increases
computation time, which needs to be mitigated using a more efficient implementa-
tion of MC-RTBSS to permit real-time use.

Thesis Supervisor: James K. Kuchar
Title: Associate Group Leader, Lincoln Laboratory

Thesis Supervisor: John E. Keesee
Title: Senior Lecturer

3

4

Acknowledgments

This work was supported under Air Force contract number FA8721-05-C-0002. In-

terpretations, opinions, and conclusions are those of the authors and do not reflect

the official position of the United States Government. This thesis leverages airspace

encounter models that were jointly sponsored by the U.S. Federal Aviation Adminis-

tration, the U.S. Air Force, and the U.S. Department of Homeland Security.

I would like to thank MIT Lincoln Laboratory Division 4, led by Dr. Bob Shin, for

supporting my research assistantship, and in particular Group 42, led by Jim Flavin,

for providing a productive and supportive work environment.

Words cannot express my gratitude for Dr. Jim Kuchar, Assistant Group Leader

of Group 43 and my Lincoln Laboratory thesis supervisor, for providing me the op-

portunity to pursue graduate studies and for his time, effort, and support in this

project. Despite his schedule, Dr. Kuchar provided timely feedback and guidance

that ensured my success in this endeavor.

I extend my sincerest thanks to Mykel Kochenderfer of Group 42 for his time and

tireless efforts on this project. He provided extensive support and guidance during

all phases of this work and never hesitated to rush to assist whenever requested.

I would like to thank Dan Griffith, Leo Espindle, Matt Edwards, Wes Olsen, and

James Chryssanthacopoulos of Group 42 for their technical and moral support during

my time at Lincoln. My appreciation also goes to Vito Cavallo, Mike Carpenter, and

Loren Wood of Group 42 for their invaluable support and expertise.

I would also like to acknowledge COL John Keesee, USAF (Ret.), my academic

advisor, for his help in ensuring my smooth progression through MIT.

I would like to thank my parents, Jess, Nicky, and Jorge for their support and

encouragement. Thanks also to my friends and partners at Houghton Management

for ensuring that my MIT education was complete, quite literally “mens et manus.”

A special thanks goes to Philip “Flip” Johnson, without whose early assistance this

would not have been possible. Last, I would like to thank Leland Schulz, Vincent

Bove, and my other shipmates for their service in harm’s way.

5

6

Contents

1 Introduction 15

1.1 Aircraft Collision Avoidance Systems 16

1.1.1 Traffic Alert and Collision Avoidance System 16

1.1.2 Autonomous Collision Avoidance 17

1.2 Challenges . 18

1.3 POMDP Approach . 19

1.3.1 POMDP Solution Methods . 21

1.3.2 Online Solution Methods . 22

1.4 Proposed Solution . 23

1.5 Thesis Outline . 24

2 Partially-Observable Markov Decision Processes 27

2.1 POMDP Framework . 28

2.2 Representing Uncertainty . 28

2.3 The Optimal Policy . 29

2.4 Offline Algorithms: Discrete POMDP Solvers 31

2.5 Online Algorithms: Real-Value POMDP Solvers 32

2.5.1 Real-Time Belief Space Search 32

2.5.2 Monte Carlo POMDPs . 33

3 Monte Carlo Real-Time Belief Space Search 35

3.1 Belief State Valuation . 35

3.2 Implementation . 37

7

3.2.1 Belief State Projection . 38

3.2.2 Particle Filtering . 39

3.2.3 MC-RTBSS Recursion . 39

3.2.4 Pseudocode . 40

3.2.5 Complexity . 42

3.3 Collision Avoidance Application Domain 43

3.3.1 Encounter Models . 43

3.3.2 Simulation Environment . 47

3.3.3 MC-RTBSS Parameters . 54

4 Simulation Results 57

4.1 Simple Encounter Cases . 57

4.2 Single Encounter Simulation Results 60

4.2.1 TCAS . 61

4.2.2 Varying Number of Particles, Np 61

4.2.3 Varying Number of Observations, No 63

4.2.4 Varying NMAC Penalty, λ . 65

4.2.5 Varying Maximum Search Depth, D 67

4.2.6 Varying Number of Particles in the Action Sort Function, Nsort 67

4.2.7 Discussion . 71

4.3 Large Scale Simulation Results . 72

4.3.1 Cost of NMAC, λ . 73

4.3.2 Number of Particles, Np . 77

4.3.3 Number of Observations, No 81

4.3.4 Discussion . 85

5 Conclusion 87

5.1 Summary . 87

5.2 Contributions . 88

5.3 Further Work . 89

8

List of Figures

2-1 POMDP model. 28

2-2 Example of a POMDP search tree. 33

3-1 Belief state projection example. 38

3-2 Expand example. 41

3-3 Dynamic Bayesian network framework for the uncorrelated encounter

model. 46

4-1 Single encounters, no CAS. 59

4-2 Example intruder trajectories from the encounter model, 20 second

duration, offset scenario, no CAS. 59

4-3 Single encounter, TCAS. 61

4-4 Varying Np, single encounter. 62

4-5 Varying No, single encounter. 64

4-6 Varying λ, single encounter. 66

4-7 Varying D, single encounter. 68

4-8 Varying Nsort, single encounter. 69

4-9 Examples of generated encounters. 74

4-10 Total number of NMACs, varying λ. 75

4-11 Mean miss distance, varying λ. 76

4-12 Average deviation, varying λ. 77

4-13 Miss distance comparison, varying λ. 78

4-14 Average deviation comparison, varying λ. 78

4-15 Total number of NMACs, varying Np. 79

9

4-16 Mean miss distance, varying Np. 80

4-17 Average deviation, varying Np. 81

4-18 Miss distance comparison, varying Np. 82

4-19 Average deviation comparison, varying Np. 82

4-20 Total number of NMACs, varying No. 83

4-21 Mean miss distance, varying No. 84

4-22 Average deviation, varying No. 85

4-23 Miss distance comparison, varying No. 86

4-24 Average deviation comparison, varying No. 86

10

List of Tables

2.1 POMDP framework . 29

3.1 State variables . 48

3.2 Observation variables . 48

3.3 Action climb rates . 49

3.4 Observation noise model . 51

3.5 Tunable parameters . 54

4.1 Single encounter initial conditions . 58

4.2 Single encounter MC-RTBSS parameter settings 60

4.3 Nodes expanded . 70

4.4 Pruning results . 71

4.5 λ sweep values . 73

4.6 Np sweep values . 77

4.7 No sweep values . 81

11

Nomenclature

General

A Set of actions

a Action

ai ith action

b Belief state

b0 Initial belief state

bt Belief state at time t

ba,o Belief state given action a and observation o

b′a,o Future belief state given action a and observation o

D Maximum search depth

d Current search depth

L Lower bound of V ∗

LT Global lower bound within MC-RTBSS instantiation

No Number of observations

Np Number of belief state projection particles

NPF Number of particle filter particles

Nsort Number of sorting function particles

O Observation model

o Observation

oi ith observation

SE State estimator

S Set of states

S ′a Future set of states given action a

S ′a,o,a′ Future set of states given action a, observation o, and action a′

s State

si ith state

s′ Future state

12

T Transition function

t Time

tmax Maximum time in simulation

U Utility function

V Value function

Vπ Value function for policy π

V ∗ Optimal value function

W Set of belief state particle weights

γ Discount factor

π Action policy

π∗ Optimal policy

Domain Specific

E1 Own ship East displacement

E2 Intruder East displacement

Ė1 Own ship East velocity component

Ė2 Intruder East velocity component

h1 Own ship altitude

h2 Intruder altitude

ḣ1 Own ship vertical rate

ḣ2 Intruder vertical rate

N1 Own ship North displacement

N2 Intruder North displacement

Ṅ1 Own ship North velocity component

Ṅ2 Intruder North velocity component

r Intruder range

v1 Own ship airspeed

v2 Intruder airspeed

v̇1 Own ship acceleration

v̇2 Intruder acceleration

13

vhorizontal Horizontal velocity component

wi ith particle weight

β Intruder bearing

θ1 Own ship pitch angle

θ2 Intruder pitch angle

λ Penalty for NMAC

φ1 Own ship bank angle

φ2 Intruder bank angle

ψ1 Own ship heading

ψ2 Intruder heading

ψ̇1 Own ship turn rate

ψ̇2 Intruder turn rate

14

Chapter 1

Introduction

The Federal Aviation Administration (FAA) Federal Aviation Regulations (FAR)

Section 91.113b states:

[R]egardless of whether an operation is conducted under instrument flight

rules or visual flight rules, vigilance shall be maintained by each person

operating an aircraft so as to see and avoid other aircraft.

This “see and avoid” requirement is of particular concern in the case of unmanned

aircraft. While the use of existing collision avoidance systems (CAS) in manned

aircraft have been proven to increase the level of safety of flight operations, the use of

these systems requires a pilot who can independently verify the correctness of alerts

and visually acquire aircraft that the CAS may miss. The lack of an actual pilot

in the cockpit to see and avoid presents unique challenges to the unmanned aircraft

collision avoidance problem.

Collision avoidance systems rely on noisy, incomplete observations to estimate

intruder aircraft state and use models of the system dynamics to predict the future

trajectories of intruders. However, current collision avoidance systems rely on rel-

atively naive predictions of intruder behavior, typically extrapolating the position

of aircraft along a straight line. Most methods also use heuristically chosen safety

buffers to ensure that the system will act conservatively in close situations. These

assumptions can lead to poor performance including excessive false alarms and flight

15

path deviation.

More sophisticated models of aircraft behavior exist. For example, an airspace en-

counter model is a statistical representation of how aircraft encounter each other, de-

scribing the geometry and aircraft states during close encounters. Airspace encounter

models provide useful information for tracking and future trajectory prediction that

has not been incorporated into current collision avoidance systems.

This thesis presents an algorithm called Monte Carlo Real-Time Belief Space

Search (MC-RTBSS) that can be applied to the problem of aircraft collision avoid-

ance. The algorithm uses a partially-observable Markov decision process (POMDP)

formulation with a sample-based belief state representation and may be feasible for

online implementation. The general POMDP formulation permits the integration of

different aircraft dynamic and sensor models, the utilization of airspace encounter

models in a probabilistic transition function, and the tailoring of reward functions to

meet competing objectives. This work demonstrates the effect of various parameters

on algorithm behavior and performance in simulation.

1.1 Aircraft Collision Avoidance Systems

The Traffic Alert and Collision Avoidance System (TCAS) is the only collision avoid-

ance system currently in widespread use. TCAS was mandated for large commercial

cargo and passenger aircraft (over 5700 kg maximum takeoff weight or 19 passenger

seats) worldwide in 2005 (Kuchar and Drumm, 2007). While TCAS is designed to be

an aid to pilots, some preliminary work has commenced on developing automatic col-

lision avoidance systems for manned aircraft and collision avoidance systems designed

specifically for autonomous unmanned aircraft.

1.1.1 Traffic Alert and Collision Avoidance System

TCAS is an advisory system used to help pilots detect and avoid nearby aircraft. The

system uses aircraft radar beacon surveillance to estimate the range, bearing, relative-

altitude, range rate, and relative-altitude rate of nearby aircraft (RTCA, 1997). The

16

system’s threat-detection algorithms project the relative position of intruders into the

future using linear extrapolation, using the estimates of the intruder range-rate and

relative-altitude rate. The system also uses a safety buffer to protect against intruder

deviations from the nominal projected path. The algorithm declares the intruder as

a threat if the intruder is projected to come within certain vertical and horizontal

separation limits. If the intruder is deemed to be a threat and the estimated time

until the projected closest point of approach (CPA) is between 20 and 48 seconds

(depending on the altitude), then TCAS issues a traffic advisory (TA) in the cockpit

to aid the pilot in visually acquiring the intruder aircraft. If the intruder is deemed to

be a more immediate threat (CPA between 15 and 35 seconds, depending on altitude),

then TCAS issues a resolution advisory (RA) to the cockpit, which includes a vertical

rate command intended to avoid collision with the intruder aircraft. TCAS commands

include specific actions, such as to climb or descend at specific rates, as well as vertical

rate limits, which may command not to climb or descend above or below specified

rates.

The TCAS threat resolution algorithm uses certain assumptions about the execu-

tion of RA commands. The algorithm assumes a 5 second delay between the issuance

of the RA and the execution of the command, and that the pilot will apply a 0.25 g

vertical acceleration to reach the commanded vertical rate. The algorithm also as-

sumes that the intruder aircraft will continue along its projected linear path. However,

as the encounter progresses, TCAS may alter the RA to accommodate the changing

situation, even reversing the RA (from climb to descend, for example) if necessary. If

the intruder aircraft is also equipped with TCAS, then the RA is coordinated with

the other aircraft using the Mode S data link. A coordinated RA ensures that the

aircraft are not advised to command the same sense (climb or descend) (Kuchar and

Drumm, 2007).

1.1.2 Autonomous Collision Avoidance

Some high-performance military aircraft are equipped with the Autonomous Airborne

Collision Avoidance System (Auto-ACAS), which causes an Auto-ACAS-equipped

17

aircraft to automatically execute coordinated avoidance maneuvers just prior to (i.e.

the last few seconds before) midair collision (Sundqvist, 2005). Autonomous collision

avoidance is an active area of research. One method explored in the literature uses

predefined maneuvers, or maneuver automata, to reduce the complexity of having

to synthesize avoidance maneuvers online (Frazzoli et al., 2004). The autonomous

agent chooses the best automaton using rapidly-expanding random trees (RRTs).

Maneuver automata have been used in mixed-integer linear programming (MILP)

formulations of the problem, in which the best automaton is that which minimizes

some objective function. A MILP formulation has also been used for receding horizon

control (Schouwenaars et al., 2004). This method solves for an optimal policy in

a given state, assuming some predicted future sequence of states, and chooses the

current optimal action. As the agent moves to the next state, the process is repeated,

in case some unexpected event occurs in the future. While all of these methods use

some sort of dynamic model of the world, the models do not incorporate encounter

model data, typically assuming a worst case scenario or simply holding the intruder

velocity, vertical rate, and turn rate constant (Kuchar and Yang, 2000). MC-RTBSS

incorporates some of the concepts used by many of these methods, such as the use of

predefined maneuvers and a finite planning horizon.

1.2 Challenges

While the widespread use of TCAS has increased the safety of air travel (Kuchar and

Drumm, 2007), it has some limitations. First, TCAS is ineffective if an intruder is not

equipped with a functioning transponder, because it relies upon beacon surveillance.

Second, TCAS was designed for use in the cockpit of a manned vehicle, in which there

is a pilot who can utilize TCAS alerts to also “see-and-avoid” intruder aircraft; an

unmanned aircraft with an automated version of TCAS would rely solely on limited

TCAS surveillance for collision avoidance commands. This reliance has several prob-

lems, in addition to the possibility of encountering an intruder without a transponder.

The information available to TCAS includes coarse altitude discretizations and par-

18

ticularly noisy bearing observations. In addition, the underlying assumptions of the

TCAS algorithms (e.g. linear extrapolated future trajectories) do not necessarily re-

flect the reality of the airspace. A better CAS would be able to utilize all information

available to verify that the Mode C reported altitude is correct and to provide a bet-

ter estimate of the current and future intruder states. Such a CAS would allow for

the easy integration of different sensors, such as Electro-Optical/Infra-Red (EO/IR)

sensors, Global Positioning System (GPS), or radar, in order to provide the best

estimate of the intruder state as possible. In addition, the CAS would utilize the

information available in an airspace encounter model to achieve better predictions of

the future state of the intruder. Modeling the aircraft collision avoidance problem as

a POMDP addresses many of these issues.

1.3 POMDP Approach

A POMDP is a decision-theoretic planning framework that assumes the state is only

partially observable and hence, must account for the uncertainty inherent in noisy

observations and stochastic state transitions (Kaelbling et al., 1998). A POMDP is

primarily composed of four parts: an observation or sensor model, a transition model,

a reward function, and a set of possible actions. An agent working under a POMDP

framework tries to act in such a way as to maximize the accumulation of future

rewards according to the reward function. Beginning with some initial belief state

(a probability distribution over the underlying state space), an agent acts and then

receives observations. Using models of the underlying dynamics and of its sensors,

the agent updates its belief state at each time step and chooses the best action. The

solution to a POMDP is the optimal policy, which is a mapping from belief states to

actions that maximize the expected future return.

POMDPs have been applied to a wide range of problems, from dynamic pricing of

grid computer computation time (Vengerov, 2008) to spoken dialog systems (Williams

and Young, 2007). In general, POMDPs are used for planning under uncertainty,

which is particularly important in robotics. For example, a POMDP formulation was

19

used in the flight control system of rotorcraft-based unmanned aerial vehicles (RU-

AVs) (Kim and Shim, 2003). A POMDP formulation has also been used for aircraft

collision avoidance, resulting in a lower probability of unnecessary alerts (when the

CAS issues avoidance maneuvers when no NMAC would occur otherwise) compared

to other CAS logic methods (Winder, 2004).

For a POMDP formulation of the aircraft collision avoidance problem, the state

space consists of the variables describing the own aircraft position, orientation, rates,

and accelerations as well as those of the intruder. The aircraft may receive observa-

tions from various sensors related to these variables, such as its own location via a

GPS and, in the case of TCAS, the intruder range, bearing, and altitude from the

Mode S interrogation responses. The system also has knowledge of the uncertainty

associated with these observations; this knowledge is represented in an observation

model. The aircraft has an associated set of possible maneuvers, and aircraft dynamic

models specify the effect of each maneuver on the aircraft state variables. Use of an

airspace encounter model provides the distribution of intruder maneuvers. Both of

these pieces constitute the transition model. The reward function is used to score

performance, which may involve competing objectives such as avoiding collision and

minimizing deviation from the planned path.

In addition to providing an alternative approach to the aircraft collision avoidance

problem, the POMDP framework offers advantages compared to previous approaches.

First, the use of a reward function facilitates the explicit specification of objectives.

The algorithm optimizes performance relative to these objectives. Undesirable events

can be penalized in the reward function, while the potentially complex or unknown

conditions that lead to the event do not have to be explicitly addressed or even un-

derstood; the optimal policy will tend to avoid the events regardless. In addition,

the POMDP framework leverages all available information. The use of an explicit

transition model allows for the application of airspace encounter models to the under-

lying CAS logic. Last, the POMDP framework is very general; a POMDP-based CAS

is not tailor-made for a particular sensor system or aircraft platform. Such a CAS

could be used on a variety of aircraft with different sensor systems. New sensor suites

20

can be integrated into or removed from the observation model, which is particularly

attractive when an aircraft is equipped with multiple sensors, such as EO/IR sensors,

radar, and GPS or undergoes frequent upgrades.

1.3.1 POMDP Solution Methods

POMDP solution methods may be divided into two groups, involving offline and

online POMDP solvers. While exact solution methods exist (Cassandra et al., 1994),

many methods only approximate the optimal policy.

Offline solvers require large computation time up front to compute the optimal pol-

icy for the full belief space. The agent then consults this policy online to choose actions

while progressing through the state space. Offline solvers typically require discrete

POMDP formulations. These discrete algorithms take advantage of the structure of

the value function (the metric to be maximized) in order to efficiently approximate

the value function within some error bound. This type of solution method has sev-

eral drawbacks. First of all, the method is insensitive to changes in the environment

because the policy is determined ahead of time. Second, the state space of many

problems is too rich to adequately represent as a finite set of enumerable states (Ross

et al., 2008).

Examples of offline solvers include Point-Based Value Iteration (PBVI), which was

applied to Tag, a scalable problem in which the agents must find and tag a moving

opponent (Pineau et al., 2003), in addition to other well-known scalable problems

from the POMDP literature. PBVI and another offline solver, Heuristic Search Value

Iteration (HSVI), were applied to RockSample, which is a scalable problem in which a

rover tries to sample rocks for scientific exploration, in addition to other well-known

scalable problems found in the POMDP literature, such as Tiger-Grid and Hallway

(Smith and Simmons, 2004). HSVI was found to be significantly faster than PBVI

in large problems. Successive Approximation of the Reachable Space under Optimal

Policies (SARSOP) was applied to robotic tasks, such as underwater navigation and

robotic arm grasping (Kurniawati et al., 2008). SARSOP performed significantly

faster than the other value iteration algorithms. Offline POMDP solution methods

21

have recently been applied to the aircraft collision avoidance problem (Kochenderfer,

2009). In particular, this work applied the HSVI and SARSOP discrete POMDP

algorithms to the problem. These discrete methods require a reduction in the dimen-

sionality of the state space, which inherently results in a loss of information that is

useful for the prediction of future states of intruder aircraft.

Online algorithms address the shortcomings of offline methods by only planning

for the current belief state. As opposed to planning for all possible situations (as is

the case with offline solvers), online algorithms only consider the current situation and

a small number of possible plans. Online algorithms are able to account for changes

in the environment because they are executed once at each decision point, allowing

for updates between these points. In addition, because online algorithms are not

solving the complete problem, they do not require a finite state space (as do discrete

solvers). Consequently, these algorithms are able to use real-value representations of

the state space and are referred to as real-value POMDP solvers. This capability is

significant for the aircraft collision avoidance problem because of the large size of the

belief space. The use of real values for state variables permits the integration of a

wide range of transition functions and sensor models and allows the algorithm to plan

for any possible scenario. Attempts to use small enough discretizations to permit the

use of such models would cause the problem to be intractable for discrete solution

methods.

Paquet’s Real-Time Belief Space Search (RTBSS) is an online algorithm that has

been compared to HSVI and PBVI on the Tag and RockSample problems (Paquet

et al., 2005b). RTBSS is shown to outperform (achieve greater reward than) HSVI

and PBVI in Tag and to perform orders of magnitude faster than these offline al-

gorithms. In RockSample, RTBSS performs comparably to HSVI for small problems

and outperforms HSVI in large problems.

1.3.2 Online Solution Methods

Two online POMDP solution methods are of particular relevance to this thesis and

are mentioned here. First, Real-Time Belief Space Search (RTBSS) (Paquet et al.,

22

2005b) is an online algorithm that yields an approximately optimal action in a given

belief state. Paquet uses a discrete POMDP formulation: a finite set of state variables,

each with a finite number of possible values, and a finite set of possible observations

and actions. The algorithm essentially generates a search tree, which is formed by

propagating the belief state a predetermined depth, D, according to each possible

action in each possible reachable belief state. It searches this tree depth-first using a

branch and bound method to prune suboptimal subtrees.

Real-time POMDP approaches have been applied to aircraft collision avoidance

in the past. Winder (2004) applied the POMDP framework to the aircraft colli-

sion avoidance problem, where he assumed Gaussian intruder process noise and used

intruder behavioral modes for belief state compression. These modes described the

overall behavior of the intruder, such as climbing, level, or descending, to differentiate

significant trends in intruder action from noise. Winder showed that a POMDP-based

CAS can have an acceptable probability of unnecessary alerts compared to other CAS

logic methods.

Thrun (2000) applies a Monte-Carlo approach to POMDP planning that relies

upon a sample-based belief state representation. This method permits continuous

state and action space representations and non-linear, non-Gaussian transition mod-

els.

Monte-Carlo sampling has been used to generate intruder trajectories for aircraft

collision avoidance (Yang, 2000). Poisson processes were used to describe the evolu-

tion of heading and altitude changes and the resulting probabilistic model of intruder

trajectories was used to compute the probability of a future conflict. A CAS could

then use this probability to decide whether or not to issue an alert. This process

could be executed real-time.

1.4 Proposed Solution

This thesis introduces the Monte Carlo Real-Time Belief Space Search (MC-RTBSS)

algorithm. This is a novel, online, continuous-state POMDP approximation algo-

23

rithm, that may be applied to aircraft collision avoidance. The algorithm combines

Paquet’s RTBSS with Thrun’s belief state projection method for sample-based be-

lief state representations. The result is a depth-first, branch-and-bound search for

the sequence of actions that yields the highest discounted future expected rewards,

according to some predefined reward function.

To reduce the computation time, the algorithm attempts to prune sub-trees by

using the reward function and a heuristic function to maintain a lower bound for use

with a branch and bound method. In addition, the algorithm prunes larger subtrees

by using a sorting function to attempt to arrange the actions in order of decreasing

expected value. The algorithm uses the resulting ordered set of actions to explore the

more promising actions (from a value maximizing perspective) first.

The most significant difference between the new MC-RTBSS presented here and

the prior RTBSS is the method of belief state representation. RTBSS assumes a finite

number of possible state variable values, observations values, and actions. The algo-

rithm then begins to conduct a search of all possible state trajectory-observation pairs.

MC-RTBSS, on the other hand, does not assume a finite number of state variable

values or observations (though all possible actions are also assumed to be predefined).

MC-RTBSS uses a sample-based state representation to represent the belief state as a

collection of weighted samples, or particles, where each particle represents a full state

consisting of numerous real-valued state values. Each particle is weighted accord-

ing to an observation noise model. Instead of iterating through each possible future

state-observation combination for each state-action pairing, MC-RTBSS generates a

specified number of noisy observations, according to an observation model, which is

then used to assign weights to the belief state particles. The actual belief state is

updated using a particle filter.

1.5 Thesis Outline

This thesis presents MC-RTBSS as a potential real-time algorithm for use in un-

manned aircraft collision avoidance systems. This chapter introduced recent methods

24

of addressing aircraft collision avoidance and discussed methods of CAS analysis.

The POMDP framework was suggested as a viable solution to the aircraft avoid-

ance problem for unmanned aircraft. This chapter also provided motivation for using

MC-RTBSS instead of other POMDP solution methods.

Chapter 2 presents a formal overview of the POMDP framework and a more

detailed description of POMDP solution methods. The chapter also discusses Monte-

Carlo POMDPs and RTBSS.

Chapter 3 explains the MC-RTBSS algorithm and discusses its implementation

in the aircraft collision avoidance application domain. The chapter describes the

notation and equations used in the MC-RTBSS transition and observation models as

well as the metrics used in the reward function.

Chapter 4 presents results of single encounter scenario simulations with varying

parameter settings in addition to the results of parameter sweeps on a collections of

encounter simulations.

Chapter 5 presents a summary of this work, conclusions, and suggested further

work.

25

26

Chapter 2

Partially-Observable Markov

Decision Processes

A partially-observable Markov decision process (POMDP) models an autonomous

agent interacting with the world. The agent receives observations from the world and

uses these observations to choose an action, which in turn affects the world. The

world is only “partially observable,” meaning that the agent does not receive explicit

knowledge of the state; it must use noisy and incomplete measurements of the state

and knowledge of its own actions to infer the state of the world. In order to accomplish

this task, the agent consists of two parts, as shown in Figure 2-1: a state estimator

(SE) and a policy (π). The state estimator takes as input the most recent estimate

of the state of the world, called the belief state, b; the most recent observation; and

the most recent action and updates the belief state. The belief state is a probability

distribution over the state space that expresses the agent’s uncertainty as to the true

state of the world. The agent then chooses an action according to the policy, which

maps belief states to actions. After each time step, the agent receives a reward,

determined by the state of the world and the agent’s action. The agent’s ultimate

goal is to maximize the sum of expected discounted future rewards (Kaelbling et al.,

1998). The state progression of the world is assumed to be Markovian. That is, the

probability of transitioning to some next state depends only on the current state (and

action); the distribution is independent of all previous states, as shown in Equation

27

Figure 2-1: POMDP model (Kaelbling et al., 1998).

2.1.

P (st+1 | at, st, at−1, st−1, ..., a1, s1) = P (st+1 | at, st) (2.1)

2.1 POMDP Framework

A POMDP is defined by the tuple 〈S,A, T,R,Ω, O〉, where S is the set of states of

the world, A is the set of possible agent actions, T is the state-transition function, R

is the reward function, Ω is the set of possible observations the agent can receive, and

O is the observation function (Kaelbling et al., 1998). The state-transition function,

T (s, a, s′), yields a probability distribution over states representing the probability

that the agent will end in state s′, given that it starts in state s and takes action

a. The reward function, R(s, a), yields the expected immediate reward the agent

receives for taking action a from state s. The observation function, O(s′, a, o), yields

a probability distribution over observations representing the probability that the agent

receives observation o after taking action a and ending up in state s′. The framework

is summarized in Table 2.1.

2.2 Representing Uncertainty

The agent’s belief state, b, represents the agent’s uncertainty about the state of the

world. The belief state is a distribution over the states that yields the probability

that the agent is in state s. At time t, the belief that the system state st is in state

28

Table 2.1: POMDP framework

Notation Meaning

S set of states
A set of actions

T (s, a, s′) state-transition function, S × A→ Π(S)
R(s, a) reward function, S × A→ <

Ω set of possible observations
O(s′, a, o) observation function, S × A→ Π(Ω)

s is given by

bt(s) = P (st = s) (2.2)

The belief state is updated each time the agent takes an action and each time the

agent receives an observation, yielding the new belief state, b′, calculated as:

b′(s′) = P (s′ | o, a, b) (2.3)

=
P (o | s′, a, b)P (s′ | a, b)

P (o | a, b)
(2.4)

=
P (o | s′, a)

∑
s∈S P (s′ | a, b, s)P (s | a, b)
P (o | a, b)

(2.5)

=
O(s′, a, o)

∑
s∈S T (s, a, s′)b(s)

P (o | a, b)
(2.6)

The denominator, P (o | a, b), serves as a normalizing factor, ensuring that b′ sums to

unity. Consequently, the belief state accounts for all of the agent’s past history and

its initial belief state (Kaelbling et al., 1998).

2.3 The Optimal Policy

As stated earlier, the agent’s ultimate goal is to maximize the expected sum of dis-

counted future rewards. The agent accomplishes this by choosing the action that

maximizes the value of its current state. The value of a state is defined as the sum

of the immediate reward of being in that state and taking a particular action and

the discounted expected value of following some policy, π, thereafter, as shown in

29

Equation 2.7, in which the information inherent in the observation and observation

model is utilized:

Vπ(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)
∑
o∈Ω

O(s′, π(s), o)Vπ(s′) (2.7)

where π is a policy, and π(s) represents the specified action while in state s (i.e.

π(s) is a mapping of the current state to an action choice). The optimal policy, π∗

maximizes Vπ(s) at every step, yielding V ∗(s):

π∗(s) = arg max
a∈A

[R(s, a) + γ
∑
s′∈S

T (s, π∗(s), s′)
∑
o∈Ω

O(s′, π∗(s), o)V ∗(s′)] (2.8)

V ∗(s) = max
a∈A

[R(s, a) + γ
∑
s′∈S

T (s, π∗(s), s′)
∑
o∈Ω

O(s′, π∗(s), o)V ∗(s′)] (2.9)

However, in most problems the value function is unknown (if it were known, then the

problem would be solved). In the case of a POMDP, the agent never knows exactly

which state it is in; the agent only has knowledge of its belief state, and hence, the

reward function and value function must be evaluated over a belief state, not simply

at a single state. The reward associated with a particular belief state is the expected

value of the reward function, weighted by the belief state, as shown in Equation 2.10.

R(b, a) =
∑
s∈S

b(s)R(s, a) (2.10)

The value of a belief state is then computed:

Vπ(b) = R(b, π(b)) + γ
∑
o∈Ω

P (o | b, π(b))Vπ(b′o) (2.11)

where b′o is the future belief state weighted according to observation o. A POMDP

policy, π(b), specifies an action to take while in a particular belief state b. The solution

to a POMDP is the optimal policy, π∗, which chooses the action that maximizes the

30

value function in each belief state, shown in Equation 2.13.

V ∗(b) = max
a∈A

[R(b, a) + γ
∑
o∈Ω

P (o | b, a)V ∗(b′o)] (2.12)

π∗(b) = arg max
a∈A

[R(b, a) + γ
∑
o∈Ω

P (o | b, a)V ∗(b′o)] (2.13)

This solution could be reached in finite problems by iterating through every possi-

ble combination of actions, future belief states, and observations until some stop point,

and then by determining the optimal policy after all of the rewards and probabilities

have been determined. However, this process would be unfeasible in even moderately

sized POMDPs. Consequently, other solution methods have been devised.

2.4 Offline Algorithms: Discrete POMDP Solvers

Discrete POMDP solution methods, such as Heuristic Search Value Iteration (HSVI)

(Smith and Simmons, 2004), Point-based Value Iteration (PBVI) (Pineau et al., 2003),

and Successive Approximation of the Reachable Space under Optimal Policies (SAR-

SOP) (Kurniawati et al., 2008) require finite state and action spaces. These methods

enumerate each unique state (i.e. each possible combination of state variable values)

and each unique observation. This discretization allows the transition, observation,

and reward functions to be represented as matrices. For example, the transition ma-

trix for a given action maps a pair of states to a probability (e.g., the i, jth entry

represents the probability of transitioning from the ith state to the jth state). The

observation probabilities and reward values can be expressed similarly. These meth-

ods approximate the value function as a convex, piecewise-linear function of the belief

state. The algorithm iteratively tightens upper and lower bounds on the function until

the approximation converges to within some predefined bounds of the optimal value

function. Once a value function approximation is obtained, the optimal policy may

then be followed by choosing the action that maximizes the function in the current

belief state.

31

2.5 Online Algorithms: Real-Value POMDP Solvers

One significant limitation of a discrete POMDP representation is that the state space

increases exponentially with the number of state variables, which gives rise to two

significant issues for the aircraft collision avoidance problem: the compact represen-

tation of the belief state in a large state space and the real-time approximation of

a POMDP solution. Paquet’s Real-Time Belief Space Search (RTBSS) is an online

lookahead algorithm designed to compute a POMDP solution. However, the problem

of adequate belief state representation still remains. Because of the nature of the

Bayesian encounter model and its utilization, the belief state may not necessarily

be represented merely by a mean and variance, which would allow for the use of a

Kalman filter for belief state update. Thrun’s sample-based belief state representa-

tion allows for the adequate representation of the full richness of the belief state in the

aircraft collision avoidance problem, while his particle projection algorithm provides

a method to predict future sample-based belief states.

2.5.1 Real-Time Belief Space Search

Paquet’s RTBSS is an online algorithm that yields an approximately optimal action

in a given belief state. Paquet assumes a discrete POMDP formulation: a finite set

of state variables, each with a finite number of possible values, and a finite set of

possible observations and actions. In order to reduce the computation time of tradi-

tional POMDP approximation methods (e.g. discrete solvers), Paquet uses a factored

representation of the belief state. He assumes that the all of the state variables are

independent, which allows him to represent the belief state by assigning a probabil-

ity to each possible value of each variable, where the the probabilities of the possible

values for any variable sum to unity. This factorization provides for the ready identifi-

cation of subspaces which cannot exist (i.e. they exist with probability zero). RTBSS

uses this formulation to more efficiently search the belief space by not exploring those

states which cannot possibly exist from the start of the search. The belief space can be

represented as a tree, as in Figure 2-2, by starting at the current belief state, b0, and

32

Figure 2-2: Example of a POMDP search tree (Paquet et al., 2005a).

considering each action choice, ai, and the possible observations, oj, which may be

perceived afterward. Each action-observation combination will result in a new belief

state at the next depth level of the tree. The process is then repeated at each node,

resulting in a tree that spans the entire belief space up to some maximum depth level,

D. The algorithm searches the tree to determine the optimal policy in the current

belief state. At each depth level, RTBSS explores each possible belief state, which

depends on (and is calculated according to) the possible perceived observations at

that level. The algorithm uses the transition and observation models to determine

the belief state variable value probabilities. The goal of the search is to determine

which action (taken from the current belief state) yields the highest value. RTBSS

uses a branch and bound method to prune subtrees and reduce computation time.

2.5.2 Monte Carlo POMDPs

Thrun’s work with Monte Carlo POMDPs addresses the problem of POMDPs with a

continuous state space and continuous action space. A sample-based representation

of the belief state is particularly amenable to non-linear, non-Gaussian transition

models. Thrun uses such a representation for model-based reinforcement learning in

belief space. While MC-RTBSS is not a reinforcement learning algorithm because

the observation, transition, and reward models are assumed to be known, Thrun’s

33

particle projection algorithm is of particular interest. Particle projection is a method

of generating a posterior distribution, or the future belief state, for a particular belief

state-action pair. The original particle projection algorithm is modified slightly in

MC-RTBSS to reduce computation time. Thrun’s original procedure projects a new

set of future states for each generated observation. The modified version is shown

as Algorithm 1, used to propagate a current belief state forward to the next belief

state, given some action. The algorithm projects Np states, sampled from the current

belief state, generates No random observations, and then weights the set of future

states according to each observation, yielding No new belief states. The weights are

normalized according to

wn =
p(s′n)

Np∑
n=1

p(s′n)

(2.14)

where the probabilities p(s′n) are calculated in line 12 of the particle projection algo-

rithm.

Function {b′a,o1 , ..., b
′
a,oNo
} = ParticleProject(b, a)1

Input: b: The belief state to project forward.
a: The action.2

for n = 1 : Np do3

sample s from b4

sample s′n according to T (s, a, ·)5

end6

for i = 1 : No do7

sample x from b8

sample x′ according to T (x, a, ·)9

sample oi according to O(x′, a, ·)10

for n = 1 : Np do11

set particle weight: wn = O(s′n, a, oi)12

add 〈s′n, w′n〉 to b′a,oi
13

end14

normalize weights in b′a,oi
15

end16

return {b′a,o1 , ..., b
′
a,oNo
}17

Algorithm 1: ParticleProject

34

Chapter 3

Monte Carlo Real-Time Belief

Space Search

This chapter discusses the Monte Carlo Real-Time Belief Space Search (MC-RTBSS)

algorithm. The algorithm computes the approximately optimal action from the cur-

rent belief state. MC-RTBSS is designed for continuous state and observation spaces

and a finite action space. The algorithm takes a sample-based belief state represen-

tation and chooses the action that maximizes the expected future discounted return.

MC-RTBSS uses a branch and bound method, combined with an action sorting pro-

cedure, to prune sub-optimal subtrees and permit a real-time implementation.

Section 3.1 presents the belief state representation used by MC-RTBSS. Section

3.2 presents the MC-RTBSS pseudocode and subroutines. Section 3.3 describes the

implementation of MC-RTBSS in the aircraft collision avoidance application domain.

3.1 Belief State Valuation

The belief state is a probability distribution over the current state of the system.

In order to handle continuous state spaces, the MC-RTBSS algorithm represents the

belief state using weighted particles. The belief state, b = 〈W,S〉 is a set of state

samples, S = {s1, ..., sNp}, and a set of associated weights, W = {w1, ..., wNp}, where

Np is the number of particles maintained in the belief state. The weights sum to

35

unity. At each time step, the agent must choose an action a from a set of possible

actions, A = {a1, ..., a|A|}. The transition function, T (s, a, s′) = P (s′ | s, a), specifies

the probability of transitioning from the current state, s, to some state, s′, when

taking action a. At each time step, the agent receives an observation, o, based on

the current state. The MC-RTBSS particle filter uses a known observation model,

O(s′, a, o) = P (o | s, a), to assign weights to the particles in the belief state. In

general, a reward function, R(s, a), specifies the immediate reward the agent receives

for being in a particular state s and taking an action a. MC-RTBSS uses its particle

representation to approximate the immediate reward associated with a particular

belief state:

R(b, a) =

Np∑
i=1

wiR(si, a) (3.1)

The value of taking some action ai in a belief state b, V (b, ai), is the expected dis-

counted sum of immediate rewards when following the optimal policy from the belief

state. If there are a finite number of possible observations, No, V (b, ai) may be

expressed as:

V (b, a) = R(b, a) + γmax
a′∈A

∑
o∈Ω

P (o | b, a)V (b′o, a
′) (3.2)

where No is the number of generated observations, b′o is the next belief state associated

with the observation o, a′ is the action taken at the next decision point, and γ is a

discount factor (generally less than 1). MC-RTBSS is designed to be used with

continuous observation spaces that cannot be explicitly enumerated, and so relies

upon sampling and a small collection of observations from the distribution P (o | b, a).

Equation 3.2 is then approximated by:

V (b, a) = R(b, a) + γ
1

No

max
a′∈A

∑
o∈Ω

V (b′o, a
′) (3.3)

Finally, a heuristic utility function, U(b, a), provides an upper bound on the value

of being in a particular belief state b and taking a particular action a. As discussed

later, MC-RTBSS uses U(b, a) for pruning in its branch and bound method.

36

3.2 Implementation

MC-RTBSS is implemented in Algorithm 2. The algorithm uses Expand to approxi-

mate the optimal action (line 5), which the agent executes before perceiving the next

observation and updating the belief state. The initial belief state is represented by

b0.

Function OnlinePOMDPAlgorithm()1

Static: b: The current belief state.
D: The maximum search depth.
action: The best action.2

b← b03

while simulation is running do4

Expand(b,D)5

a← action6

Execute a7

Perceive new observation o8

b← ParticleFilter(b, a, o)9

end10

Algorithm 2: OnlinePOMDPAlgorithm

MC-RTBSS is implemented as a recursive function that searches for the optimal

action at each depth level of the search. The temporal significance (with respect

to the environment) of each depth level is determined by the temporal length of an

action, because searching one level deeper in the tree corresponds to looking ahead

to the next decision point, which occurs when the action is scheduled to be complete.

Consequently, the temporal planning horizon of the search is limited to:

tmax = t0 +D × actionLength (3.4)

where t0 is the time at the initial decision point and D is the maximum depth of the

search, which is usually limited by computational constraints.

The belief state at the current decision point is the root node of the aforementioned

search tree. MC-RTBSS keeps track of its depth in the search with a counter, d, which

is initialized to D and decremented as the depth increases. Thus, at the top of the

37

Figure 3-1: Belief state projection example.

search tree d = D and at each leaf node d = 0.

3.2.1 Belief State Projection

In order to expand a node, MC-RTBSS executes a modified version of Thrun’s belief

state projection procedure. The MC-RTBSS belief state projection pseudocode is

shown in Algorithm 1, in Section 2.5.2. When generating a future state for particle

projection, the next state, s′ is unknown and must be sampled from T (s, a, ·), where

s is sampled from the belief state b. Similarly, when generating an observation in

some state s, the observation must be sampled from O(s, a, ·).

This process is illustrated in Figure 3-1. In this example, the search begins at

the current belief state b, with MC-RTBSS expanding this node with trial action a1.

The algorithm generates a set of future states by sampling from b and then using the

sampled states and a1 to sample a set of future states, S ′a1
, from T . It also generates

three observations (o1, o2, and o3), which it uses to weight the samples in S ′a1
, yielding

the three belief states b′a1,o1
, b′a1,o2

, and b′a1,o3
. These belief states are the children of

the node b.

38

3.2.2 Particle Filtering

Belief state update is accomplished using a particle filter. The particle filter algorithm

used in this work, ParticleFilter is shown in Algorithm 3. The algorithm takes a

belief state, an action, and an observation as its argument and returns a new belief

state for the next time step. The particle filter is similar to the ParticleProject,

except that it weights the particles according to the perceived observation. NPF is

the number of particles used in the particle filter.

Function b′ = ParticleFilter(b, a, o)1

Input: b: The current belief state.
a: The action.
o: The observation.2

for n = 1 : NPF do3

sample s from b4

sample s′n according to T (s, a, ·)5

set particle weight: wn = O(s′n, a, o)6

add 〈s′n, w′n〉 to b′a,o7

end8

normalize weights in b′a,o9

return b′10

Algorithm 3: ParticleFilter

3.2.3 MC-RTBSS Recursion

As mentioned earlier, MC-RTBSS is implemented as a recursive function, called Ex-

pand, that terminates at some specified depth. The function takes a belief state and

a value for its depth, d, as arguments. The function returns both a lower bound on the

value of an action choice and an action. After the initial function call, the algorithm

is only concerned with the returned value for a given belief state at some depth value

(d − 1), which it uses to compute the value of the belief state at the previous depth

level (d), according to:

V (b, a) = R(b, a) + γ
1

No

No∑
i=1

Expand(b′a,oi
, d− 1) (3.5)

39

3.2.4 Pseudocode

The full pseudocode of the MC-RTBSS algorithm is introduced in Algorithm 4.

Function LT (b) = Expand(b, d)1

Input: b: The current belief state.
d: The current depth.2

Static: action: The best action.
L: A lower bound on V ∗.
U : An upper bound on V ∗.

action← null3

if d = 0 then4

LT (b)← L(b)5

else6

Sort actions {a1, a2, . . . , a|A|} such that U(b, ai) ≥ U(b, aj) if i ≤ j7

i← 18

LT ← −∞9

while i ≤ |A| and U(b, ai) > LT (b) do10

{b′ai,o1
, ..., b′ai,oNo

} =ParticleProject(b, ai)11

LT (b, ai)← R(b, ai) + γ 1
No

∑No

i=1Expand(b′ai,oi
, d− 1)12

if LT (b, ai) > LT (b) then13

action← ai14

LT (b)← LT (b, ai)15

end16

i← i+ 117

end18

end19

return LT (b)20

Algorithm 4: Expand

In the first D iterations, MC-RTBSS recurs down the first branch of the search

tree in a similar manner to a depth-first search. However, when it reaches the first leaf

node (when d = 0, node c in Figure 3-2), the algorithm cannot expand any further.

As seen in line 5 of Expand, at this point MC-RTBSS calculates a lower bound of

the belief state at the leaf node (R(C) in Figure 3-2) and sets it as the lower bound

of the search, LT . The algorithm then returns this value to its instantiation at the

previous depth level (d = 1).

The algorithm repeats this process for all of the leaf nodes that are children of the

node at depth d = 1 (node b′a1,o1
in Figure 3-2), keeping track of all of these values,

40

Figure 3-2: Expand example.

41

before it reaches line 12, at which point it is able to compute the value associated

with taking action a1 in b′a1,o1
.

Now that the global lower bound, LT has been updated to something greater than

−∞, the reason for using an upper bound of the actual value of a belief state for the

utility function becomes apparent. The result of this evaluation the next time around

(U(b, a2), in the case of the example) is compared against the global lower bound

for pruning. Wasting time exploring a suboptimal policy is preferable to pruning

the optimal policy, thus it is safer (from an optimality standpoint) to overestimate

the value of a leaf node than to underestimate it. The search then iterates through

the remaining candidate actions, repeating a similar process unless U(b, ai) ≯ LT , in

which case the node is not expanded for the ith action, effectively pruning the subtree

associated with that action. If an action is not pruned and the lower bound obtained

from choosing that action is greater than the global bound, then the new action is

recorded as the best action, and the global lower bound is updated (line 13).

Until now, the assumption has been that the utility has been computed and that

the candidate actions are iterated through in some arbitrary order. However, a sorting

procedure is used to compute the utilities of choosing each a while in a given b, and

then to order the list of candidate actions in order of decreasing utility. The idea

here is that if U(b, ai) > U(b, aj), then ai is more likely to yield a larger value than aj

(i.e. ai is more likely to be part of the optimal policy). If this is indeed the case and

V (bai
) > U(b, aj), then the subtree associated with aj and all other ak’s (where k > j)

will be pruned because U yields an upper bound on V (ba) and U(b, aj) ≥ U(b, ak)

(by definition of the sorting function), potentially saving computation time.

After completing the search, the initial instantiation of the search (at d = D)

returns both the value approximation of the initial belief state b and the optimal

action a.

3.2.5 Complexity

There are (No|A|)d nodes at depth level d in the worst case, where |A| is the number

of possible actions. At each node, Np samples are projected forward, weighted, and

42

evaluated by the reward function. In addition, a sorting function is used to order the

set of actions by decreasing associated upper bounds (of the value function). This

procedure propagates Nsort particles for each of |A| actions at each node. Accounting

for the belief state projection and the sort function at each node, the worst case

complexity for MC-RTBSS is bounded by O((Np +Nsort|A|)(No|A|)D).

3.3 Collision Avoidance Application Domain

This section explains how MC-RTBSS was applied to the problem of collision avoid-

ance for unmanned aircraft.

3.3.1 Encounter Models

One of the strengths of the approach to aircraft collision avoidance pursued in this

thesis is the leveraging of airspace encounter models, constructed from a large collec-

tion of radar data, to predict the future state of intruder aircraft. These encounter

models are also used in this thesis to evaluate the performance of the algorithms.

This section provides some background on encounter models and their construction.

Encounter Modeling Background

Historically, encounter models have been used by organizations such as the FAA and

International Civil Aviation Organization (ICAO) to test CAS effectiveness across a

wide range of encounter situations. The encounters generated by the models repre-

sent the behavior of aircraft during the final minute or so before a potential collision.

The models assume that prior airspace safety layers, such as air traffic control advi-

sories, have failed. The encounters are defined by a set of initial conditions for each

aircraft and a scripted sequence of maneuvers to occur during simulation. The ini-

tial conditions consist of the initial positions, velocities, and attitudes of the aircraft,

and the maneuvers (known as controls or events) specify accelerations and turn rates

that are scheduled to occur at specific times during the simulation. The distributions

from which these initial conditions and controls are drawn are based on radar data

43

(Kochenderfer et al., 2008c). A simulation then applies sensor and CAS algorithm

models to the aircraft trajectories, allowing the CAS to issue avoidance maneuvers if

appropriate, and propagates the aircraft states accordingly. Large numbers of encoun-

ters are generated and run in simulation to evaluate performance metrics such as the

probability of a Near Mid-Air Collision (NMAC) or the risk ratio, which compares the

probability of NMAC of different systems. In the collision avoidance community, an

NMAC is an incident in which two aircraft have less than 500 ft horizontal separation

and less than 100 ft vertical separation (Kuchar and Drumm, 2007).

Prior Encounter Models

MITRE initially developed an encounter model of the U.S. airspace in the early

1980’s for the development and certification of TCAS in support of the U.S. mandate

to equip large transport aircraft with the system (The MITRE Corporation, 1983).

This two-dimensional model was used to simulate aircraft vertical motion. The ICAO

and Eurocontrol then completed a three-dimensional aircraft model in 2001, which

allowed for a single period of acceleration during each encounter. This model was

used in support of the worldwide TCAS mandates (Aveneau and Bonnemaison, 2001).

Beginning in 2006, new U.S. encounter models were developed for use in the evaluation

of TCAS and future CAS for both manned and unmanned aircraft. These models

involved collecting and processing data from 130 radars in the U.S. (Kochenderfer

et al., 2008a,b,c; Edwards et al., 2009).

Correlated and Uncorrelated Encounters

The availability and presence of air traffic control (ATC) services, such as flight-

following services, have an impact on aircraft behavior during encounters. For ex-

ample, when both aircraft in an encounter each have a transponder and at least

one aircraft is in contact with ATC, then ATC is likely tracking both aircraft and

at least one of the aircraft will probably receive notification about nearby traffic.

This aircraft may then begin to act accordingly in order to avoid the traffic conflict

before any CAS becomes involved. The ATC intervention in the encounter likely re-

44

sults in some correlation between the two aircraft trajectories. An airspace encounter

model that captures such statistically related behavior is called a correlated encounter

model. Conversely, a different, uncorrelated encounter model captures the behavior

of aircraft in encounters in which there is no prior ATC intervention. This type of

encounter includes situations where two aircraft are flying under visual flight rules

(VFR) without ATC flight-following or where one of the aircraft is not equipped with

a transponder. In these encounters, pilots must visually acquire the other aircraft

at close range or use some other CAS in order to avoid collision, generally resulting

in uncorrelated trajectories. The uncorrelated encounter model captures this type

of behavior by randomly propagating the aircraft trajectories based solely on the

statistical characteristics of the individual aircraft (Kochenderfer et al., 2008c).

Encounter Model Construction and Implementation

Encounter models are used to specify the values of certain state variables during sim-

ulation. Both the correlated and uncorrelated encounter models describe the true

airspeeds, airspeed accelerations, vertical rates, and turn rates of each aircraft in-

volved in an encounter. The models also include environmental variables for aircraft

altitude layer and airspace class. The correlated model includes the approach an-

gle, horizontal miss distance, and vertical distance at the time of closest approach

(Kochenderfer et al., 2008a).

The encounter models use Markov processes to describe how the state variables

change over time. A Markov process assumes that the probability of a specific future

state only depends on the current state. In short, the process assumes the future is

independent of the past. Dynamic Bayesian networks are then used to express the

statistical interdependencies between variables (Neapolitan, 2004). As an example,

the structure of the dynamic Bayesian network used for the uncorrelated encounter

model is shown in Figure 3-3.

The arrows between the variables represent direct statistical dependencies between

the variables. The vertical rate, ḣ, turn rate, ψ̇, and linear acceleration, v̇, vary

with time. The airspace class, A, and altitude layer, L, are characteristic of each

45

Figure 3-3: Dynamic Bayesian network framework for the uncorrelated encounter
model (Kochenderfer et al., 2008b).

encounter and do not vary with time. The first set of variables (on the left of Figure

3-3) represents the variable values at the current time (time t). The second set of

variables (on the right of Figure 3-3) represents the variable values at the next time

step (time t + 1). Each of the variables in the second set (the variable values at the

next time step) have an associated conditional probability table. The values of these

tables are determined by statistics derived from collected radar data. The dynamic

Bayesian network is then used to generate encounter trajectories by sampling from

the network according to the conditional probability tables (in accordance with the

previous variable values) and projecting the aircraft states forward accordingly. The

particular structure used for the encounter models was not chosen haphazardly. The

structure was chosen and optimized according to a quantitative metric, the Bayesian

scoring criterion, which is related to the likelihood that the set of radar data would

be generated from the network (Kochenderfer et al., 2008b; Neapolitan, 2004).

46

3.3.2 Simulation Environment

MC-RTBSS was integrated into existing fast-time simulation infrastructure, MIT Lin-

coln Laboratory’s Collision Avoidance System Safety Assessment Tool (CASSATT).

CASSATT is implemented in the Simulink environment, permitting the easy appli-

cation of specific aircraft dynamics models and limits as well as the incorporation

of different sensor models and CAS algorithms. Up to millions of encounters are

generated using an encounter model and simulated in CASSATT using a parallel

computing cluster to test the performance of various collision avoidance algorithms

(Kochenderfer et al., 2008c). The dynamic simulation operates at 10 Hz, while MC-

RTBSS operates at 1 Hz, beginning at t = 4 s. The first 3 seconds are used to generate

an initial belief state, described later, which is fed into the particle filter to be updated

using the latest observation. The resulting belief state is then fed into the MC-RTBSS

algorithm. The uncorrelated airspace encounter model represents encounters in which

aircraft must rely solely on the ability to “see-and-avoid” intruders. These situations

present one of the greatest challenges to integrating unmanned aircraft into the U.S.

airspace.

States

The MC-RTBSS state is comprised of a vector of 21 state variables: 10 variables for

each of the aircraft (the own aircraft and the intruder aircraft) and one variable for

the simulation time. This vector is shown below

s = 〈v1, N1, E1, h1, ψ1, θ1, φ1, v̇1, ḣ1, ψ̇1, v2, N2, E2, h2, ψ2, θ2, φ2, v̇2, ḣ2, ψ̇2, t〉 (3.6)

where the subscripts 1 and 2 correspond to the own aircraft and the intruder aircraft,

respectively. The definition and units for each variable are shown in Table 3.1.

47

Table 3.1: State variables

Variable Definition Units

v airspeed ft/s
N North displacement ft
E East displacement ft
h altitude ft
ψ heading rad
θ pitch angle rad
φ bank angle rad
v̇ acceleration ft/s2

ḣ vertical rate ft/s

ψ̇ turn rate rad/s

Observations

An observation is comprised of the following four elements:

o = 〈r, β, h1, h2〉 (3.7)

The definition and units for each are shown in Table 3.2.

Table 3.2: Observation variables

Variable Definition Units

r slant range ft
β bearing rad
h1 own altitude ft
h2 intruder altitude ft

Bearing is measured clockwise from the heading of the own aircraft. The range

and bearing can be determined from the state variables using the following operations:

r =
√

(N2 −N1)2 + (E2 − E1)2 + (h2 − h1)2 (3.8)

β = arctan2(E2 − E1, N2 −N1)− ψ1 (3.9)

where arctan2 is the four-quadrant inverse tangent, whose range is the interval [−π,π].

48

Actions

The set of all possible actions, A, contains 6 actions at any given decision point. Each

action, in turn, consists of a sequence of 5 commands, each of which is meant to be

executed each second, beginning at a decision point and finishing 5 seconds later,

should that action be chosen. In the simulations conducted in this project, one of the

6 candidate actions is always the nominal set of commands for that 5 seconds of time

in the simulation (i.e. the 5 entries describing the aircraft’s default behavior, sampled

from the encounter model). Every other candidate action has the same acceleration

and turn rate (v̇ and ψ̇, respectively) as the nominal commands, but the vertical rate

(ḣ) is different. The vertical rates for all of the actions are described in Table 3.3.

Table 3.3: Action climb rates

Action Climb Rate (ft/min)

a1 2000
a2 1500
a3 0
a4 −1500
a5 −2000
a6 scripted

Transition Function

The transition function, T , takes a state and an action as its arguments and deter-

ministically propagates the own ship state variables forward by using simple Euler

integrations, shown below, using the chosen action to determine the rates at each

time step (∆t = 1 s).

vn+1 = vn + v̇n+1∆t (3.10)

hn+1 = hn + ḣn+1∆t (3.11)

ψn+1 = ψn + ψ̇n+1∆t (3.12)

49

The transition function calculates the flight path angle θ at each instant using the

trigonometric relations of other state variables at that instant.

θ = sin−1 ḣ

v
(3.13)

The transition function propagates aircraft location through space by determining

the horizontal component of velocity, vhorizontal, and then breaking this vector into

its North and East components (Ṅ and Ė, respectively). These components are then

used in an Euler integration to propagate the aircraft in the respective directions.

The transition function does not model vertical acceleration (ḧ), bank angle (φ),

angular rates (p,q,r) or accelerations (ṗ, q̇, ṙ) and consequently, the transition function

is unable to model aircraft performance limitations on these variables.

vhorizontal = v cos θ (3.14)

Ṅ = vhorizontal cosψ (3.15)

Ė = vhorizontal sinψ (3.16)

Nn+1 = Nn + Ṅ∆t (3.17)

En+1 = En + Ė∆t (3.18)

The function calls another function, GenerateIntruderAction, which takes the

state at a particular time step as its argument and uses the intruder action and

altitude at some time t to sample the intruder action at time t+1 from the encounter

model. The function repeats this procedure for the duration of the own ship action.

The transition function returns a state trajectory of duration equal to the input action

duration.

Observation Model

MC-RTBSS needs to be able to generate observations from the observation model

and consult the posterior distributions (of the observation components) to determine

weights for the samples that comprise a belief state. In order to achieve these goals,

50

two procedures were used, an observation sampling function and a probability density

evaluation function. The observation sampling function takes a particular state as

input and calculates the actual slant range, bearing, and aircraft altitudes. The

function then applies a random number generator, using these actual values as means

and predefined values for the standard deviations (determined by instrument noise

models), to add noise to the mean values, yielding noisy observations. The mean

values and standard deviations used in this implementation are shown in Table 3.4.

These statistics reflect the TCAS sensor noise model as used in previous TCAS studies

(Kuchar and Drumm, 2007).

Table 3.4: Observation noise model

Variable Mean Value Standard Deviation

r ractual 50 ft
β βactual 0.1745 rad
h1 h1,actual 50 ft
h2 h2,actual 50 ft

The observation probability density function takes a state sample and an obser-

vation as its arguments and outputs a weighting for the sample, which is an approx-

imation of the observation posterior distribution. The function calculates the actual

range, bearing, and altitudes of the state and then uses the probability density func-

tion to determine the likelihood of each individual component of the observation.

The noise model assumes that each of the four components of an observation are

independent. Hence, the joint posterior likelihood is calculated as the product of the

likelihoods of each component of the observation. This calculation is shown in Equa-

tion 3.19, where the subscript o denotes the observation variable value (as opposed

to the actual value, which has no o subscript attached). The result is used to weight

the state sample and is eventually normalized to ensure that the particle weights for

a belief state sum to unity.

p(o | s) = p(ro | r)p(βo | β)p(h1,o | h1)p(h2,o | h2) (3.19)

51

Belief State Update and the Initial Belief State

The own ship location (E1, N1, h1) is assumed to be fully observable from the start

of the simulation; the intruder variables are partially observable. At every time step,

during particle filtering, the own ship location is updated in every particle. Filtering

then becomes a problem of tracking the intruder aircraft.

The initial belief state, b0 is constructed in the first 3 seconds of simulation using

the observations and knowledge of the own ship state. After the agent perceives the

first observation, the agent estimates the intruder location (E2, N2, ḣ2) using knowl-

edge of its own location and the geometry of the observation. At this point, the

observation is assumed to be noiseless. After the agent perceives the second obser-

vation, it again computes the intruder location and computes the intruder velocity,

heading, and vertical rate (v2, ψ2, and h2, respectively) from the change in location

over time. The velocity and vertical rate are also used to determine the flight path

angle, θ2. After the agent perceives the third observation, the change in velocity is

used to determine the intruder acceleration (v̇2).

Once the agent has estimated these variable values, the initial belief state is con-

structed by assigning these values to the belief state particles, which are weighted

equally. The initial belief state is then passed into the particle filter for the first time.

Reward Function

The reward function, R(s, a), penalizes the agent for both deviation from the nominal

flight path and NMACs. The penalty for an NMAC is denoted λ. The reward function

is shown in Equation 3.20

R(s, a) =

 deviation penalty + λ , if NMAC

deviation penalty , otherwise
(3.20)

Although the agent reaches a decision point every 5 seconds during the simulation,

MC-RTBSS maintains a record of the trajectories between decision points at one

second increments, on the second. Due to the high velocity of aircraft, it is certainly

52

possible that the reward function could miss an NMAC in a 5 second window. In

order to decrease the likelihood of the reward function missing such an event, the

reward function evaluates each 5 second trajectory segment up to and including the

state at the decision point in question at every 0.1 seconds of the trajectory.

In order to calculate deviation from the nominal flight path, the nominal flight

path must be calculated prior to each encounter. This is accomplished by using

the encounter model inputs and initial conditions to run a preliminary simulation in

CASSATT with no active CAS on either aircraft. The coordinates of the resulting

own ship trajectory are extracted from the simulation results and stored. This path

is then fed back to the MC-RTBSS algorithm for use in the reward function. The

reward function then calculates deviation for a given state by simply calculating the

slant range between the own aircraft and where the aircraft ought to be at that time

on the nominal flight path at every time step on the 5 second trajectory and then

taking the mean of these deviation values over the 5 second trajectory. The deviation

penalty for a 5 second trajectory is the average of the instantaneous deviations at each

time step. The NMAC penalty is calculated in a similar manner. The horizontal and

vertical separation between the two aircraft is checked to see whether they are less

than the predefined NMAC thresholds at every time step on the 5 second trajectory.

If the separation falls below the thresholds at any point, then a flag is triggered and

the NMAC penalty, λ, is added to the total penalty for the trajectory. The total

penalty is the reward associated with taking the particular action while in the initial

state.

Heuristic Utility Function

The heuristic utility function, U(b, a), provides an upper bound on the value of taking

action a in belief state b. The function is used in the sorting procedure to order

the set of action choices by descending utility value. The utility function samples

Nsort particles from the current belief state and propagates them forward to the next

decision point. The function evaluates the reward function at each of the resulting

states and sets the utility to the mean of these rewards. The output of the utility

53

function will be greater than the computed value of the action choice (and thus serves

as an upper bound) because the true value of an action is the discounted sum of all

future returns and the reward function only penalizes (it never increases the value).

Incorporating the value of future potential belief states will likely only reduce the one

step computed value.

3.3.3 MC-RTBSS Parameters

The parameters of MC-RTBSS include the maximum search depth, D, the number

of particles used in the internal belief-state representations, Np, and the number of

observations generated for each action-choice in the search tree, No. In addition,

in the implementation of MC-RTBSS used for collision avoidance, two additional

parameters include the NMAC cost, λ, and the number of particles used in the action

sorting function, Nsort. The parameters are summarized in Table 3.5. This section

describes the qualitative effects expected when varying these parameters. Because

MC-RTBSS is intended for online use, computation time is of particular importance.

Increasing the value of any parameter is associated with a significant trade off between

performance and computation. As described earlier, computation time is bounded by

O((No|A|)D(Np)).

Table 3.5: Tunable parameters

Parameter Description

Np number of particles in belief states
No number of observations to generate for an action
λ NMAC cost
D maximum search depth
Nsort number of particles used for each action in sort function

Number of Particles, Np

The number of particles used to represent the belief state affects the accuracy of the

belief state approximation. Increasing the number of particles increases the likelihood

that the algorithm will adequately reason about rare events. In the context of collision

54

avoidance, increasing the number of particles increases the likelihood that MC-RTBSS

can account for less likely future events, such as the intruder making an aggressive

maneuver which might result in an NMAC, and act accordingly. The computation

time per node in the search tree increases linearly with Np.

Number of Observations, No

Each generated observation affects the weights of the particles representing the belief

state. Hence, the number of observations generated when a node is expanded (for

each action) determines the number of different future sampled belief states. Increas-

ing the number of observations increases the likelihood that rarer observations will

be generated. Hence, increasing the number of observations increases the diversity

of child belief state distributions (for a given parent belief state-action pair), which

in turn increases the likelihood that MC-RTBSS will account for rarer future events

in its decision-making. Because (assuming no pruning) the computation time grows

exponentially with the product of No and the number of possible actions (depending

exponentially on D), increasing No results in an even greater impact on the compu-

tation time than does increasing Np.

NMAC Penalty, λ

The cost of an NMAC affects both how likely an NMAC must be to initiate an

avoidance maneuver and how much deviation is allowed to avoid collision. MC-RTBSS

compares the expected cost of deviating from the nominal path to the expected cost

due to NMAC. Because MC-RTBSS makes decisions based on maximizing a function

of expected rewards, λ affects how likely a safety event must be in order to significantly

impact decision-making. An increase in λ means that particles leading to an NMAC

have a larger impact on the reasoning than do other particles with higher weights.

The NMAC cost has no direct effect on computation time, although a small λ value

could conceivably raise the lower bounds of the value function at nodes with likely

NMACs enough to reduce some pruning. However, increasing the value of λ too much

could have undesirable effects as well. For a long enough horizon and a large enough

55

NMAC penalty, MC-RTBSS might be too cautious, resulting in excessive deviations

to avoid improbable future NMACs. The value of λ is the only parameter that affects

the reward function in this implementation.

Maximum Search Depth, D

The maximum search depth affects the planning horizon of the algorithm. The algo-

rithm can only account for future states within the horizon. In the collision avoidance

problem, MC-RTBSS will not maneuver to avoid an NMAC that occurs beyond the

horizon. Assuming no pruning, the computation time grows exponentially with D

and results in the greatest increase in computation time of all parameters.

Number of Particles in the Action Sort Function, Nsort

The number of particles used in the sort function increases the accuracy of the upper

bounds associated with taking each action from the current belief state. In addition,

these upper bounds are used to sort the actions to aid in pruning. Increasing Nsort

tightens the upper bounds used for pruning in the algorithm, which could reduce ac-

tual computation time. However, the computation associated with the sort function,

O(Nsort|A|), increases linearly with increasing Nsort as well.

56

Chapter 4

Simulation Results

The performance characteristics of the MC-RTBSS algorithm are evaluated in two

ways. First, simple, level encounters, in which the own ship is equipped with MC-

RTBSS, are simulated with various parameter settings. The goal of these simulations

is to demonstrate the effect of individual parameters on the behavior of the algorithm

in the context of collision avoidance. Second, a set of 76 encounters, randomly gen-

erated from the encounter model, are simulated with no collision avoidance system,

with TCAS, and then with MC-RTBSS with various parameter settings. These larger

scale simulations demonstrate the effect of each parameter on the overall performance

of the algorithm across a wider range of different situations.

Section 4.1 describes the simple scenarios used to demonstrate the effects of vary-

ing different algorithm parameters. Section 4.2 presents the results of the single en-

counter scenario simulations and explains the algorithm behavior. Section 4.3 presents

the results of the parameter sweeps on the set of 76 random encounters.

4.1 Simple Encounter Cases

The first set of simulations involves single, co-altitude, level encounters. Two different

scenarios are used to demonstrate different aspects of MC-RTBSS behavior. The own

ship and intruder trajectories for both cases of this encounter are shown in Figure

4-1, where the circles designate the direction of travel of each aircraft (the circle is at

57

the last position of each aircraft). For both cases, the encounter begins at t = 0 s, the

duration is 30 seconds, and the closest point of approach (CPA) occurs 20 seconds

into the encounter (the time of closest approach (TCA) is at t = 20 s). The plot in

Figure 4-1a shows an offset case, in which the own ship is offset 900 ft west of the

intruder. No NMAC occurs in this case. The plot in Figure 4-1b is a head-on case, in

which the aircraft are set to result in an NMAC. The initial conditions for both cases

are tabulated in Table 4.1. The purpose of the offset case is to evaluate the ability of

the algorithm to identify and respond to future potential (less likely) safety events.

For example, the intruder aircraft could potentially maneuver at any time before

CPA and eventually cause an NMAC. Figure 4-2 shows a an example of 30 intruder

trajectories generated from the encounter model for the first 20 seconds of the offset

encounter. While most of the trajectories tend to head south, one trajectory veers

to the west toward the own ship flight path, resulting in an NMAC (vertical miss

distance (VMD) is 69 ft and horizontal miss distance (HMD) is 4 ft at t = 20 s). This

scenario is designed to test whether MC-RTBSS can identify such possible trajectories

and maneuver to ensure that an NMAC will very likely not occur, regardless of the

intruder’s maneuvers. This scenario is used for the Np, No, and λ trials. The head-on

case is used to determine the effect of varying parameters on the avoidance maneuver

choice and timing when an NMAC is highly likely. This scenario is used for the D

and Nsort trials.

Table 4.1: Single encounter initial conditions

Variable Head-On Case Offset Case

v1 = v2 338 ft/s 338 ft/s
h1 = h2 4500 ft 4500 ft
N1 0 ft 0 ft
N2 13520 ft 13520 ft
E1 0 ft −900 ft
E2 0 ft 0 ft
ψ1 0◦ 0◦

ψ2 180◦ 180◦

Both TCAS-equipped and MC-RTBSS-equipped aircraft with different parame-

58

(a) Offset (b) Head-on

Figure 4-1: Single encounters, no CAS.

Figure 4-2: Example intruder trajectories from the encounter model, 20 second du-
ration, offset scenario, no CAS.

59

ter settings are simulated in the offset encounter for comparison. The MC-RTBSS

parameter settings tested in this scenario are in Table 4.2. The last column lists a nor-

malized worst case estimate on the upper bounds of complexity with each parameter

setting. These numbers are the result of applying the parameter settings to the worst

case complexity discussed in Section 3.2.5, O((Np + Nsort|A|)(No|A|)D), for |A| = 6

and normalizing by the lowest value, which is associated with the the Small No case.

Pruning reduces this complexity. Computation time is approximately proportional

to these bounds. The normalized complexity is used to express the worst-case com-

putation bounds between the simulations as they relate to each other. For example,

the Small D simulation is estimated to require approximately 24 more computation

time than the Small No simulation in the worst case of each.

Table 4.2: Single encounter MC-RTBSS parameter settings

Experiment Np No λ D Nsort Normalized
Complexity

Small Np 10 3 1015 3 10 10
Large Np 3000 3 1015 3 10 458
Small No 100 1 1015 3 10 1
Large No 100 10 1015 3 10 851
Small λ 100 3 103 3 10 24
Large λ 100 3 1015 3 10 24
Small D 100 3 1015 3 10 24
Large D 100 3 1015 3 10 408

Small Nsort 100 3 1015 3 10 24
Large Nsort 100 3 1015 3 1000 912

4.2 Single Encounter Simulation Results

This section presents the single encounter simulation results for a TCAS-equipped

aircraft and an MC-RTBSS-equipped aircraft with varying parameter settings.

60

(a) Vertical Speed (b) Altitude

Figure 4-3: Single encounter, TCAS.

4.2.1 TCAS

The result of the offset encounter simulation with a TCAS-equipped own aircraft is

shown in Figure 4-3.

In this encounter, at t = 11 s TCAS issues a climb RA at 41.7 ft/s and at t = 27 s

TCAS issues clear of conflict and the aircraft begins to level off. The resulting miss

distances are VMD of 294 ft and HMD of 900 ft. TCAS issues the climb RA because

the intruder is projected to violate the TCAS range and relative altitude thresholds

at CPA.

4.2.2 Varying Number of Particles, Np

The results of an MC-RTBSS equipped aircraft with Np = 10 and Np = 3000 are

shown in Figure 4-4.

With Np = 10, MC-RTBSS does not command an avoidance maneuver and VMD

is 0 ft and HMD is 900 ft. With Np = 3000, at t = 14 s MC-RTBSS commands a

climb at 25 ft/s; at t = 19 s it commands a descent at 33.3 ft/s; and at t = 24 s it

commands a level off. The resulting VMD is 123 ft and HMD is 900 ft. The algorithm

is exhibiting three interesting behaviors in this scenario. First, MC-RTBSS identifies

the risk of an NMAC near CPA and commands a climb at t = 14 s. The larger

61

(a) Vertical Speed, Np = 10. (b) Altitude, Np = 10.

(c) Vertical Speed, Np = 3000. (d) Altitude, Np = 3000.

Figure 4-4: Varying Np, single encounter.

62

number of samples used (3000 instead of 10) allows the the algorithm to generate

and consequently account for less likely events, such as the induction of an NMAC.

In other words, a larger number of particles allows the belief state to more effectively

span the actual belief space, including unlikely events. When Np = 10, if none of the

10 samples capture these events, the events are impossible from the perspective of

the algorithm. A large number of particles is needed to accurately approximate the

true distribution. As the aircraft approach CPA at t = 20 s, MC-RTBSS recognizes

that an NMAC is no longer likely. The penalty associated with the risk of NMAC

no longer outweighs the penalty of deviating from the nominal path and MC-RTBSS

shifts its priority to minimizing deviation as quickly as possible. As a result, the

algorithm commands the largest descent rate possible (33.3 ft/s) at t = 19 s, before

leveling off just prior to regaining track at t = 24 s. Because of the low resolution of

the action options available to MC-RTBSS in this implementation (1 action every 5

seconds), the algorithm realizes that choosing to descend further will result in even

greater deviation below track and chooses to level off instead.

4.2.3 Varying Number of Observations, No

The results of an MC-RTBSS equipped aircraft with No = 1 and No = 10 are shown

in Figure 4-5.

With No = 1, MC-RTBSS does not command an avoidance maneuver with these

parameter settings and VMD is 0 ft and HMD is 900 ft. For No = 10 s, at t = 14 s MC-

RTBSS commands a descent at 25 ft/s to avoid a potential NMAC, and at t = 24 s

it commands a climb at 33.3 ft/s to regain track. The resulting VMD is −131 ft and

HMD is 900 ft. The increase in the number of observations increases the likelihood

that MC-RTBSS will sample a less likely observation and more heavily weight a

different portion of the particles than it would with a more likely observation. When

MC-RTBSS expands a node weighted in such a way, more of the heavily weighted

particles will tend to be sampled and propagated. The consequence of sampling more

observations is a search tree of greater breadth, allowing the algorithm to search

subtrees which more completely span the belief space, allowing MC-RTBSS to account

63

(a) Vertical Speed, No = 1 (b) Altitude, No = 1

(c) Vertical Speed, No = 10 (d) Altitude, No = 10

Figure 4-5: Varying No, single encounter.

64

for rare events. With fewer observations, the search tree is narrow and MC-RTBSS

may only account for a small subset of the belief space. Due to the stochastic nature

of the observation generating process, in the case of few observations, this subset may

only include rare events, though it tends to include only the most likely ones.

There is a discrepancy between the avoidance maneuvers commanded in the Np =

3000 case, which results in a climb command, and the No = 10 case, which results in

a descend command. MC-RTBSS commands different avoidance maneuvers despite

the fact that the encounter scenario is the same in each case. This difference in

commanded maneuver highlights the effect of the inherent randomness of a sample-

based algorithm, particularly with small numbers of samples. Unless the intruder is

significantly more likely to maneuver in a particular sense (climb or descent), both a

climb and descent are equally effective avoidance maneuvers in this idealized situation.

If either option will yield the same rewards, then MC-RTBSS will choose whichever

comes first in the sorted list of actions, the order of which is determined by the

expected utility of a single decision point projection of the current belief state. If the

utility of taking either action is arbitrarily close, then the order of the two in the list

will be arbitrary as well.

4.2.4 Varying NMAC Penalty, λ

The results of an MC-RTBSS-equipped aircraft with λ = 1000 and λ = 1015 are shown

in Figure 4-6.

With λ = 1000, MC-RTBSS does not command an avoidance maneuver and

the resulting VMD is 0 ft and HMD is 900 ft. With λ = 1015, at t = 14 s MC-

RTBSS commands a descent of 25 ft/s, and at t = 24 s a climb at 33.3 ft/s to begin

to regain track. The reason for the different command with a larger λ is that in this

scenario, the likelihood that the intruder aircraft will maneuver in such a way as to

induce an NMAC is very small. Consequently, particles containing NMACs are not

likely to be weighted very heavily and hence, do not contribute to the value function

significantly with a small NMAC penalty. However, if the penalty for NMAC is large

enough, then the expected reward associated with samples containing these events

65

(a) Vertical Speed, λ = 1000 (b) Altitude, λ = 1000

(c) Vertical Speed, λ = 1015 (d) Altitude, λ = 1015

Figure 4-6: Varying λ, single encounter.

66

will contribute more to the value function, significantly reducing the value associated

with taking actions that lead to these situations. In this case, MC-RTBSS decides

that an avoidance maneuver maximizes the value function and that staying level does

not. After the threat of NMAC has passed, MC-RTBSS commands a climb to begin

to regain track and minimize the deviation penalty.

4.2.5 Varying Maximum Search Depth, D

For the maximum search depth experiments, the head-on scenario is used to investi-

gate how varying D affects the algorithm behavior temporally in the presence of an

imminent NMAC; the imminence of a collision minimizes the effects of the stochas-

ticity of the algorithm. The results of an MC-RTBSS equipped aircraft with D = 3

and D = 4 are shown in Figure 4-7.

When D = 3, at t = 15 s MC-RTBSS commands a 33.3 ft/s climb, and at t = 20 s

it commands a reduction in climb rate to 25 ft/s. The VMD is 143 ft and HMD is 7 ft.

When D = 4, at t = 15 s the algorithm commands a 25 ft/s descent and the VMD is

−114 ft and HMD is 5 ft. MC-RTBSS commands an avoidance maneuver with both

settings. This result is expected, because in either case, MC-RTBSS is optimizing

the reward function. The optimal path in this situation would just skirt the edge

of the NMAC cylinder around the intruder, minimizing deviation while avoiding an

NMAC. The algorithm would not be expected to command an avoidance maneuver

sooner with the current reward function despite the longer planning horizon.

4.2.6 Varying Number of Particles in the Action Sort Func-

tion, Nsort

The head-on encounter is used for the Nsort experiments as well. The results of an

MC-RTBSS equipped aircraft with Nsort = 10 and Nsort = 1000 are shown in Figure

4-8.

With Nsort = 10, at t = 14 s MC-RTBSS commands a climb at 25 ft/s and at

t = 24 s, it commands a descent at −33.3 ft/s to regain track. The resulting VMD

67

(a) Vertical Speed, D = 3 (b) Altitude, D = 3

(c) Vertical Speed, D = 4 (d) Altitude, D = 4

Figure 4-7: Varying D, single encounter.

68

(a) Vertical Speed, Nsort = 10 (b) Altitude, Nsort = 10

(c) Vertical Speed, Nsort = 1000 (d) Altitude, Nsort = 1000

Figure 4-8: Varying Nsort, single encounter.

69

is 114 ft and HMD is 5 ft. With Nsort = 1000, at t = 14 s MC-RTBSS commands a

climb at 33.3 ft/s; at t = 19 s it commands a level off; and at t = 24 s it commands a

descent at 33.3 ft/s to regain track. MC-RTBSS commands an avoidance maneuver

with both settings. This result is expected because Nsort does not directly affect

the algorithm’s reasoning. This parameter most directly affects the accuracy of the

heuristic function, U , which would most significantly affect pruning of subtrees. A

more accurate heuristic in the sort function should result in more pruning. The

number of search tree nodes that MC-RTBSS expanded at each decision point in

the simulation with each setting is shown in Table 4.3, where the ∆ row shows the

number of additional nodes pruned with Nsort = 1000.

Table 4.3: Nodes expanded

Nsort t = 4 s t = 9 s t = 14 s t = 19 s t = 24 s

10 216 3198 1332 108 54
1000 237 2961 1098 162 27

∆ −21 237 234 −54 27

While pruning and the associated reduction in computation time is desirable,

the stochastic nature of the sort function has undesirable consequences, because the

algorithm is not guaranteed to prune only suboptimal subtrees. The optimal subtree

could be pruned, resulting in a suboptimal action choice. This appears to have

happened in the case with Nsort = 10. In the Nsort = 10 case, the algorithm does

not begin to descend until t = 24 s, resulting in a slight increase in mean deviation

for this encounter (compared to the Nsort = 1000 case). This could be the result of

pruning the optimal action (descending) at t = 19 s in the Nsort = 10 case, because

the algorithm did more pruning with a smaller Nsort. This suboptimal action choice

could also be the result of particularly noisy observations, leading the algorithm to

the belief that the intruder is closer, or a combination of both effects.

The average total number of nodes expanded at each decision point in each sim-

ulation for all single encounter simulations is compared to the theoretical worst case

number of nodes in Figure 4.4.

70

Table 4.4: Pruning results

Experiment Np No λ D Nsort Worst Avg. Nodes Percent
Case Expanded Pruned

Small Np 10 3 1015 3 10 6175 139 98
Large Np 3000 3 1015 3 10 6175 325 95
Small No 100 1 1015 3 10 259 5 98
Large No 100 10 1015 3 10 219661 21568 90
Small λ 100 3 103 3 10 6175 134 98
Large λ 100 3 1015 3 10 6175 342 94
Small D 100 3 1015 3 10 6175 702 89
Large D 100 3 1015 4 10 346201 10404 97

Small Nsort 100 3 1015 3 10 6175 823 87
Large Nsort 100 3 1015 3 1000 6175 752 88

In all cases, the number of nodes expanded is less than the worst case total number

of nodes, which indicates that MC-RTBSS is pruning a significant portion of the

search tree. As expected (and seen in Table 4.3), increasing the Nsort does result

in a decrease in the number of nodes expanded, from 832 with Nsort = 10, to 752

with Nsort = 1000. The last column of Table 4.4 shows the average percentage of

nodes pruned by the branch and bound method. The Small Np case simulates the

offset encounter and prunes 98 % of the nodes whereas the Small Nsort case simulates

the head-on encounter and prunes only 87 %. The significant difference between the

percent pruned in the Small Np case and the Small Nsort case (both of which have

the same parameter settings), highlights the effect of different scenarios on pruning

and consequently computation time.

4.2.7 Discussion

The previous results represent how MC-RTBSS tends to behave with various pa-

rameter settings. Each simulation was run several times to ensure that MC-RTBSS

consistently commanded an avoidance maneuver or did not. However, the actual ma-

neuvers the algorithm chooses in each simulation vary slightly, particularly in sense

(climb vs. descent) in this co-altitude, head-on scenario. This varying behavior high-

lights the stochastic nature of a sample-based algorithm with small sample sizes. As

71

Np and No increase, the value function converges to the true value. Similarly, as Nsort

increases, the action list ordering will converge. Increasing all three parameters suffi-

ciently is expected to ensure consistency in MC-RTBSS behavior. Larger parameter

values were not used in these simulations to ensure rapid computation times. The

other two parameters, λ and D, most directly affect the sensitivity of the algorithm to

potential threats and the false alarm rate (i.e. probability of issuing an unnecessary

avoidance maneuver).

4.3 Large Scale Simulation Results

The 76 encounters used for the performance evaluation were generated from the un-

correlated encounter model and are each 72 seconds in duration. The 76 encounters

were first selected from a pool of 1 million randomly generated uncorrelated encoun-

ters based on VMD and HMD at TCA, the value of TCA, and simulation execution

time. First, the 100 encounters with the earliest TCAs and VMD and HMD each

less than 700 ft were selected from the million encounters to ensure that the aircraft

would be close enough at TCA to potentially cause collision avoidance systems to

alert. The latest TCA of the encounters was 72 seconds, which is used as the simu-

lation length to ensure TCA is reached in every encounter during simulation. Next,

several simulations were run with this set of 100 encounters. A large difference in

computation time required to execute the simulations was noticed between many of

the encounters; some encounters required significantly more time than the rest. Con-

sequently, 24 encounters that required more than an hour of computation time with

the nominal case (the parameter settings of the λ = 1015 run in Section 4.2.4) were

removed. Methods for reducing computation time are discussed in Section 5.3. The

resulting 76 encounters are used for the parameter sweep experiments. The algo-

rithm computes different bounds on the value function for each different scenario.

Because the pruning depends on these bounds, the differences in bounds can result

in differences in the amount of pruning and the associated reductions in computation

time.

72

The 76 encounters all have small horizontal and vertical miss distances at TCA

in order to observe algorithm behavior when NMACs are likely. The encounters are

simulated using no collision avoidance system, with TCAS, and with MC-RTBSS

with various parameter settings. In all trials, the intruder aircraft is equipped with

a Mode S transponder. The results are presented in terms of objective measures of

performance (total number of NMACs, mean miss distance for all encounters, mean

maximum deviation, and mean average deviation over the course of each individual

encounter) and by comparing these results for each MC-RTBSS parameter setting to

the TCAS results. Three examples, sampled from the 76 encounters, are shown in

Figure 4-9.

4.3.1 Cost of NMAC, λ

The λ values and other settings used in the parameter sweep are listed in Table 4.5.

Table 4.5: λ sweep values

λ Np No D Nsort

100 100 3 3 10
103 100 3 3 10
107 100 3 3 10
1015 100 3 3 10

The total number of NMACs for each value are plotted in Figure 4-10. The red

line denotes the total number of NMACs when neither aircraft is CAS-equipped. The

blue line denotes the number of NMACs that occur when the own ship is TCAS-

equipped. The no CAS case results in 36 NMACs. Use of TCAS results in 1 NMAC.

MC-RTBSS with λ = 100 results in 35 NMACs; with λ = 103 results in 34 NMACs;

with λ = 107 results in 30 NMACs; and with λ = 1015 results in 29 NMACs. As

expected, as λ increases, the number of NMACs decreases. When λ is small enough,

MC-RTBSS may not command an avoidance maneuver because even if an NMAC is

imminent, the cost of deviating from the nominal trajectory may outweigh the cost

of the NMAC. As λ increases, even unlikely potential NMACs have an effect on the

73

(a) Encounter 1, 3-D view. (b) Encounter 1, plan view. (c) Encounter 1, altitude profile.

(d) Encounter 2, 3-D view. (e) Encounter 2, plan view. (f) Encounter 2, altitude profile.

(g) Encounter 3, 3-D view. (h) Encounter 3, plan view. (i) Encounter 3, altitude profile.

Figure 4-9: Examples of generated encounters.

74

Figure 4-10: Total number of NMACs, varying λ.

expected returns. For large values of λ, the parameter is affecting the tolerance for

risk. Larger values of λ will result in avoidance maneuvers for less likely events. When

λ exceeds 1015, the number of NMACs remains constant at 29 for even significant

increases in λ. This constant number of NMACs with increasing λ implies that MC-

RTBSS is unable to identify and account for these NMACs prior to their occurrence

with these parameter settings. Increases in Np and No would increase the likelihood

that the algorithm would identify these NMACs and plan to avoid them accordingly.

While MC-RTBSS is avoiding some NMACs (all data points are below the no CAS

results), TCAS performs significantly better for these parameter settings.

The mean miss distances are shown in Figure 4-11 for aircraft with no CAS, with

TCAS, and with MC-RTBSS for varying λ values. The miss distance is the minimum

straight line distance between the two aircraft at any point during the encounter. For

no CAS, the mean miss distance is 404 ft and for TCAS it is 581 ft. For MC-RTBSS

with λ = 100, the mean miss distance is 435 ft; with λ = 103 the mean miss distance is

436 ft; with λ = 107 and λ = 1015 it is 440 ft. In general, TCAS results in an increase

of about 140 ft in miss distance compared to MC-RTBSS, which increases the miss

75

Figure 4-11: Mean miss distance, varying λ.

distance an average of about 40 ft compared to when no CAS is used. These results

are consistent with the fact that MC-RTBSS is commanding avoidance maneuvers to

avoid NMACs.

The average deviations are shown in Figure 4-12. The average deviation is the

deviation of the own ship from the nominal trajectory averaged over the entire en-

counter. By definition, the no CAS case has no deviation. With TCAS, the average

deviation is 108 ft. With MC-RTBSS and λ = 100, the average deviation is 47 ft; with

λ = 1000 it is 48 ft; with λ = 107 it is 49 ft; and with λ = 1015 it is 50 ft. While

TCAS results in fewer NMACs than MC-RTBSS under these settings, it does so at

the cost of more deviation overall. Increasing λ also results in MC-RTBSS deviating

more, though still significantly less than TCAS.

Figures 4-13 and 4-14 show a comparison of the results from each individual

encounter between MC-RTBSS for the various λ values and TCAS for two metrics:

miss distance and average deviation. The black line along the diagonal of the plot

represents points where both MC-RTBSS and TCAS have the same metric values.

Points below the line are encounters in which TCAS results in a greater metric value

76

Figure 4-12: Average deviation, varying λ.

and points above the line are encounters in which MC-RTBSS results in a greater

metric value. These plots show that in general, TCAS results in a greater deviation

and a larger miss distance than MC-RTBSS. MC-RTBSS, on the other hand, results

in some of the most significant outliers, which tend to increase the mean values seen in

Figures 4-11 and 4-12. The TCAS results tend to be more tightly clustered, displaying

less variation in behavior.

4.3.2 Number of Particles, Np

The Np values and other settings used in the parameter sweep are listed in Table 4.6.

Table 4.6: Np sweep values

Np No λ D Nsort

10 3 1015 3 10
100 3 1015 3 10
1000 3 1015 3 10

The total number of NMACs for each value are plotted in Figure 4-15. The red

77

Figure 4-13: Miss distance comparison, varying λ.

Figure 4-14: Average deviation comparison, varying λ.

78

Figure 4-15: Total number of NMACs, varying Np.

line denotes the total number of NMACs when neither aircraft is CAS-equipped. The

blue line denotes the number of NMACs that occur when the own ship is TCAS-

equipped. The no CAS case results in 36 NMACs. Use of TCAS results in 1 NMAC.

MC-RTBSS with Np = 10 results in 31 NMACs; with Np = 100 results in 29 NMACs;

and with Np = 1000 it results in 28 NMACs. As expected, as Np increases, the number

of NMACs decreases. As Np increases, the algorithm is more likely to sample from

rare state subspaces, allowing it to account for rare trajectories, which may contain

NMACs. With a small number of particles, MC-RTBSS has a smaller chance of

generating these trajectories and is unlikely to avoid such NMACs.

The mean miss distances are shown in Figure 4-15 for aircraft with no CAS, with

TCAS, and with MC-RTBSS for varying Np values. For no CAS, the mean miss

distance is 404 ft and for TCAS it is 581 ft. For MC-RTBSS with Np = 10, the mean

miss distance is 439 ft; with Np = 100 the mean miss distance is 440 ft; and with

Np = 1000 it is 449 ft. In general, TCAS results in an increase of about 140 ft in miss

distance compared to MC-RTBSS, which increases the miss distance an average of

about 40 ft compared to when no CAS is used. These results are consistent with the

79

Figure 4-16: Mean miss distance, varying Np.

fact that MC-RTBSS is commanding avoidance maneuvers to avoid NMACs. As Np

increases, the miss distance is expected to increase because the algorithm is able to

act more cautiously, identifying and avoiding unlikely potential NMACs, which are

usually the result of unlikely, aggressive intruder maneuvers. MC-RTBSS efforts to

avoid the potential NMACs will tend to result in a larger miss distance as compared

to an implementation that does not account for the possibility of such aggressive

maneuvers (e.g. one that uses a smaller Np).

The average deviations are shown in Figure 4-17. With TCAS, the average de-

viation is 108 ft. With MC-RTBSS and Np = 10, the average deviation is 49 ft;

with Np = 100 it is 50 ft; and with Np = 1000 it is 52 ft. Increasing Np results

in MC-RTBSS deviating more, though still significantly less than TCAS. This in-

creased deviation is expected, as with increasing Np, MC-RTBSS will maneuver more

frequently and more aggressively in order to account for rarer potential NMACs.

Figures 4-18 and 4-19 show a comparison of the results from each individual

encounter between MC-RTBSS for the various Np values and TCAS. These plots

show that in general, TCAS results in a greater deviation and a larger miss distance

80

Figure 4-17: Average deviation, varying Np.

than MC-RTBSS with varying Np. MC-RTBSS, on the other hand, results in some of

the most significant outliers, which tend to increase the mean values seen in Figures

4-16 and 4-17. The TCAS results tend to be more tightly clustered, displaying less

variation in behavior.

4.3.3 Number of Observations, No

The No values and other settings used in the parameter sweep are listed in Table 4.7.

Table 4.7: No sweep values

No Np λ D Nsort

3 100 1015 3 10
6 100 1015 3 10
9 100 1015 3 10

The total number of NMACs for each value are plotted in Figure 4-20. The red line

denotes the total number of NMACs when neither aircraft is CAS-equipped. The blue

line denotes the number of NMACs that occur when the own ship is TCAS-equipped.

81

Figure 4-18: Miss distance comparison, varying Np.

Figure 4-19: Average deviation comparison, varying Np.

82

Figure 4-20: Total number of NMACs, varying No.

The no CAS case results in 36 NMACs. Use of TCAS results in 1 NMAC. MC-RTBSS

with No = 1 results in 34 NMACs; with Np = 3 results in 29 NMACs; and with

Np = 6 it results in 29 NMACs. As expected, as No increases, the number of NMACs

decreases. As No increases, the algorithm is more likely to generate rare observations

and consequently sample from rare state subspaces, allowing it to account for rare

trajectories, which may contain NMACs. With a small number of observations, MC-

RTBSS has a smaller chance of generating these trajectories and is unlikely to avoid

such NMACs.

The mean miss distances are shown in Figure 4-20 for aircraft with no CAS, with

TCAS, and with MC-RTBSS for varying No values. For no CAS, the mean miss

distance is 404 ft and for TCAS it is 581 ft. For MC-RTBSS with No = 1, the mean

miss distance is 437 ft; with No = 3 the mean miss distance is 442 ft; and with No = 6

it is 442 ft. In general, TCAS results in an increase of about 140 ft in miss distance

compared to MC-RTBSS, which increases the miss distance an average of about 40 ft

compared to when no CAS is used. These results are consistent with the fact that

MC-RTBSS is commanding avoidance maneuvers to avoid NMACs. As No increases,

83

Figure 4-21: Mean miss distance, varying No.

the miss distance is expected to increase because the algorithm is able to act more

cautiously, identifying and avoiding unlikely potential NMACs, which are usually

the result of unlikely, aggressive intruder maneuvers. MC-RTBSS efforts to avoid

the potential NMACs will tend to result in a larger miss distance as compared to an

implementation that does not account for the possibility of such aggressive maneuvers

(e.g. one that uses a smaller No).

The average deviations are shown in Figure 4-22. With TCAS, the average de-

viation is 108 ft. With MC-RTBSS and No = 1, the average deviation is 49 ft; with

No = 3 it is 50 ft; and with No = 6 it is 51 ft. Increasing No results in MC-RTBSS

deviating more, though still significantly less than TCAS. This increased deviation

is expected, as with increasing No, MC-RTBSS will maneuver more frequently and

more aggressively in order to account for rarer potential NMACs.

Figures 4-23 and 4-24 show a comparison of the results from each individual

encounter between MC-RTBSS for the various No values and TCAS. These plots

show that in general, TCAS results in a greater deviation and a larger miss distance

than MC-RTBSS with varying No. MC-RTBSS, on the other hand, results in some of

84

Figure 4-22: Average deviation, varying No.

the most significant outliers, which tend to increase the mean values seen in Figures

4-21 and 4-22. The TCAS results tend to be more tightly clustered, displaying less

variation in quantitative behavior.

4.3.4 Discussion

The general trend of the parameter sweep results is that increasing parameter val-

ues results in better MC-RTBSS performance. TCAS avoids more NMACs than

MC-RTBSS but deviates more. The breadth of the parameter values used in the

parameter sweeps was limited by the large computation time associated with simula-

tions involving large Np and No values. In its current Simulink implementation, the

computation time required to achieve performance matching TCAS would make use

of MC-RTBSS in real-time infeasible.

85

Figure 4-23: Miss distance comparison, varying No.

Figure 4-24: Average deviation comparison, varying No.

86

Chapter 5

Conclusion

This chapter summarizes the results of this thesis, outlines the contributions made,

and suggests areas of further research. Many of the suggested further research areas

are focused on reducing computation time to permit real-time use of MC-RTBSS and

to improve performance with the use of increased parameter values.

5.1 Summary

Chapter 4 presents the results of two sets of simulations: single encounter simulations

and batch runs of 76 randomly generated encounters. Section 4.2 presents the results

of the single encounter simulations, which demonstrate how each algorithm parame-

ter affects the behavior of MC-RTBSS. As was shown in Chapter 4, the number of

particles, Np, affects the ability to identify potential NMACs. Increasing Np increases

the likelihood that MC-RTBSS will be sensitive to unlikely events. Observations af-

fect the relative weighting of such events. Increasing the number of observations, No,

increases the accuracy of the posterior distributions over future states, allowing the

algorithm to make better approximations of the optimal value function. The cost of

NMAC, λ, affects the relative cost of an NMAC versus deviating from the nominal

path. Increasing λ tends to make the algorithm more conservative, commanding ma-

neuvers to avoid less likely potential safety events and willing to deviate more to avoid

them. The maximum search depth, D, controls the planning horizon of the algorithm.

87

Increasing D allows the algorithm to look farther ahead and consider events farther

into the future. MC-RTBSS will not necessarily behave differently with a different

value for D; the algorithm should identify the proper action to take at the proper

time and act accordingly. However, the algorithm can induce an NMAC that occurs

at least a planning horizon after the inducing action is taken. In such a situation, the

algorithm would not be able to consider the full effects of its action choice because

the planning horizon is too short. The number of particles used in the sorting func-

tion, Nsort, affect the accuracy of the heuristic function used in the branch-and-bound

method. Increasing Nsort increases the accuracy of the upper bound on a particu-

lar action choice, which may help to prune more subtrees and to avoid pruning the

optimal subtree.

Section 4.3 presents the results of the batch runs, which investigate how varying

parameter settings affect the overall performance of the algorithm. Increasing λ,

Np, and No all cause the algorithm to avoid more NMACs, but as expected, the

algorithm deviates from the nominal path more. In general, TCAS avoids more

NMACs than MC-RTBSS, but TCAS deviates more from the nominal path. The

most significant limit on performance is likely the large computation time associated

with large parameter settings; with a large enough Np and No, MC-RTBSS should be

able to identify and avoid rare NMACs.

5.2 Contributions

This work presents a novel online POMDP approximation algorithm. Chapter 3

explains the synthesis of the new algorithm, MC-RTBSS, by combining elements from

Paquet’s RTBSS and Thrun’s belief state projection. The result is an online, sample-

based POMDP approximation algorithm for continuous state and observation spaces.

MC-RTBSS is able to integrate dynamic Bayesian network-based airspace encounter

models into the transition model, effectively leveraging all available information for

the decision-making process.

• Integration of encounter model into collision avoidance system logic.

88

The sample-based belief state representation used in MC-RTBSS lends itself

well to the utilization of a dynamic Bayesian network, which must be sampled

to produce posterior distributions which account for the potentially complex

interdependencies between state variables. As Section 3.3.2 explains, the MC-

RTBSS transition function, which propagates individual particles forward, sam-

ples from the encounter model to determine the intruder action at each time

step. While most collision avoidance systems use a naive intruder action model,

with enough particles, MC-RTBSS predicts future intruder behavior that is sta-

tistically consistent with behavior observed over the U.S. airspace, permitting

a more accurate approximation of the optimal policy.

• Synthesis of sample-based online POMDP solver. Thrun uses belief state

projection in an offline reinforcement learning algorithm. Paquet’s RTBSS is

an online algorithm that requires a finite number of discrete states and obser-

vations. MC-RTBSS successfully integrates Thrun’s belief state projection into

Paquet’s RTBSS algorithm, resulting in a sample-based online POMDP solver,

with few restrictions on the state or observations spaces.

• Investigation of computation time reduction. Section 4.2.6 offers insight

into the effect of Nsort on pruning and computation time. This work investi-

gates the use of a sample-based heuristic method to branch-and-bound pruning,

demonstrating a trade off between additional computation required for sorting

and reduction in total computation time.

5.3 Further Work

Computation time was the most limiting factor in this work. Reduction in com-

putation time would open the door to more thorough analysis and investigation of

MC-RTBSS performance, in addition to a real-time implementation.

• Alternate coding methods. Chapter 4 demonstrates how various parame-

ters affect algorithm behavior in the collision avoidance problem. In particular,

89

increasing Np and No enhances algorithm performance. However, this enhanced

performance is associated with a significantly longer computation time. Fur-

ther work would investigate implementing MC-RTBSS in different programming

languages to reduce computation time. The Simulink implementation (with

embedded Matlab functions) required significantly more time than would an

implementation in C, for example. Compilation in Real Time Workshop would

also reduce computation time significantly.

• Parallelization. Portions of MC-RTBSS may be easily parallelized: particle

projection in particular. A significantly larger number of particles could be

used if multiple processors are used during execution of the ParticleProject

subroutine.

• Reward function. Further work is needed to investigate methods of com-

pensating for when the belief state space cannot be spanned sufficiently in ad-

equate time. The reward function relies on the identification of rare events

(NMACs) using Monte-Carlo simulation (through belief state projection) to

compute bounds on the value function. The low probability of an NMAC

occurring necessitates large Np and No values to adequately account for the

possibility, which results in large computation times. One possible solution to

reduce the required Np and No is to increase the size of the definition of an

NMAC within the reward function. A larger NMAC cylinder could compen-

sate for the sparsity of particles by providing a safety buffer. A larger cylinder

would essentially increase the probability of an NMAC in the reward function,

causing MC-RTBSS to be more cautious. The NMAC penalty, λ might need

to be changed as well, to offset the artificially increased probability of NMAC.

Further work would investigate the effect of varying NMAC sizes and λ values

on collision frequency and deviation through Monte-Carlo simulation.

• Application of QMDP method. By assuming full observability of the intruder

state, the aircraft collision avoidance problem may be treated as an MDP. The

POMDP search tree would consist only of future states instead of belief states

90

weighted by generated observations. Estimates of the optimal action from the

current belief state may then be computed efficiently using a variety of methods

(Littman et al., 1995). Because the observation model is not used for planning,

this method ignores the value of future information. This phenomenon could

significantly affect performance when a sensor configuration permits informa-

tion gathering behavior, such as passive ranging for EO/IR sensors (Shakernia

et al., 2005). Future work could investigate how using QMDP approaches affects

computation time and performance.

• Importance sampling. Another strategy for reducing computation time while

enhancing performance is to reduce the number of particles and observations

required to identify potential NMACs. Future work would be needed to use

importance sampling in the particle projection procedure to target trajectories

that lead to NMACs when sampling from belief states and from the encounter

model (Srinivasan, 2002). The resulting trajectories would then be weighted

according to their actual likelihood. While the NMAC trajectories would remain

rare events and would be weighted accordingly, this method would ensure that

the algorithm is searching these significant portions of the belief space without

using prohibitively large numbers of particles and observations.

• Action choices. Changing the actions available to MC-RTBSS would dramat-

ically affect performance. In particular, future work should examine the benefit

of more or varied action choices, such as unscripted turns and accelerations, on

MC-RTBSS performance in simulation.

• Monte-Carlo evaluation of algorithm performance. Significant reduction

in computation time would also make MC-RTBSS more amenable to Monte-

Carlo simulation, which would likely be required of any certification process for

implementation aboard an unmanned aircraft. Much work is required to tune

the algorithm parameters for nominal performance.

• Transition function dynamics. Section 3.3.2 states that the transition func-

91

tion does not model vertical acceleration (ḧ), bank angle (φ), angular rates

(p,q,r) or accelerations (ṗ, q̇, ṙ) and consequently is unable to model aircraft

performance limitations on these variables. Further work is needed to model

these variables in the transition model as well as to incorporate aircraft perfor-

mance limits. Closing the gap between the transition model and the real world

would enhance performance and would ensure predictable algorithm behavior

in all situations the algorithm might encounter.

• Performance metrics. The use of an explicit reward function permits the

fine tuning of performance objectives. However, the stochastic nature of MC-

RTBSS presents challenges to guarantees on this performance. Future research

is needed to investigate the convergence of the value function with varying

parameter settings. In addition, future work may involve developing a metric

describing how often the algorithm prunes optimal subtrees.

92

Bibliography

Aveneau, C. and Bonnemaison, B. (2001). ACAS programme ACASA project work
package 3 — final report on ACAS/RVSM interaction. Study report, Eurocontrol.

Cassandra, A. R., Kaelbling, L. P., and Littman, M. L. (1994). Acting optimally
in partially observable stochastic domains. In Proceedings of the Twelfth National
Conference on Artificial Intelligence. AAAI.

Edwards, M., Kochenderfer, M., Kuchar, J., and Espindle, L. (2009). Encounter
models for unconventional aircraft version 1.0. Project Report ATC-348, Lincoln
Laboratory.

Frazzoli, E., Dahleh, M. A., and Feron, E. (2004). Real-time motion planning for
agile autonomous vehicles. AIAA Journal of Aerospace Computing, Information,
and Communication, 25:116–129.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting
in partially observable stochastic domains. Artificial Intelligence, 101:99–134.

Kim, H. J. and Shim, D. H. (2003). A flight control system for aerial robots: Algo-
rithms and experiments. Control Engineering Practice, 11(12):1389–1400.

Kochenderfer, M., Espindle, L., Kuchar, J., and Griffith, J. (2008a). Correlated
encounter model for cooperative aircraft in the national airspace system version
1.0. Project Report ATC-344, Lincoln Laboratory.

Kochenderfer, M., Kuchar, J., Espindle, L., and Griffith, J. (2008b). Uncorrelated
encounter model of the national airspace system version 1.0. Project Report ATC-
345, Lincoln Laboratory.

Kochenderfer, M. J. (2009). Personal communication.

Kochenderfer, M. J., Espindle, L. P., Kuchar, J. K., and Griffith, J. D. (2008c). A
comprehensive aircraft encounter model of the national airspace system. Lincoln
Laboratory Journal, 17(2):41–53.

Kuchar, J. K. and Drumm, A. C. (2007). The traffic alert and collision avoidance
system. Lincoln Laboratory Journal, 16(2):277–296.

93

Kuchar, J. K. and Yang, L. C. (2000). A review of conflict detection and resolu-
tion modeling methods. IEEE Transactions on Intelligent Transportation Systems,
1(4):179–189.

Kurniawati, H., Hsu, D., and Lee, W. S. (2008). SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces. In Proceed-
ings in Robotics: Science and Systems.

Littman, M., Cassandra, A., and Kaebling, L. (1995). Learning policies for partially
observable environments: Scaling up. In Prieditis, A. and Russell, S., editors,
Proceedings of the Twelfth International Conference on Machine Learning, pages
362–370.

Neapolitan, R. (2004). Learning Bayesian Networks. Pearson Prentice Hall.

Paquet, S., Tobin, L., and Chaib-draa, B. (2005a). Online POMDP algorithm for
complex multiagent environments. In AAMAS, pages 970–977.

Paquet, S., Tobin, L., and Chaib-draa, B. (2005b). Real-time decision making for
large POMDPs. Artificial Intelligence, (LNAI 3501):450–455.

Pineau, J., Gordon, G., and Thrun, S. (2003). Point-based value iteration: An
anytime algorithm for POMDPs. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 1025–1032.

Ross, S., Pineau, J., Paquet, S., and Chaib-draa, B. (2008). Online planning algo-
rithms for POMDPs. Journal of Artificial Intelligence Research, 32:663–704.

RTCA (1997). Minimum operational performance standards for traffic alert and
collision avoidance system II (TCAS II) airborne equipment. Technical report,
RTCA/DO-185A.

Schouwenaars, T., Mettler, B., Feron, E., and How, J. (2004). Hybrid model for trajec-
tory planning of agile autonomous aerial vehicles. Journal of Aerospace Computing,
Information, and Communication, Special Issue on Intelligent Systems, 1.

Shakernia, O., Chen, W.-Z., and Raska, V. M. (2005). Passive ranging for UAV
sense and avoid applications. In Proceedings of Infotech@Aerospace, number AIAA
2005-7179. AIAA.

Smith, T. and Simmons, R. G. (2004). Heuristic search value iteration for POMDPs.
In Proc. Int. Conf. on Uncertainty in Artificial Intelligence (UAI).

Srinivasan, R. (2002). Importance Sampling: Applications in Communications and
Detection. Springer-Verlag.

Sundqvist, B.-G. (2005). Auto-ACAS — Robust nuisance-free collision avoidance. In
Proceedings of the 44th IEEE Conference on Decision and Control and European
Control Conference, pages 3961–3963. IEEE.

94

The MITRE Corporation (1983). System safety study of minimum TCAS II. Tech-
nical Report MTR-83W241.

Thrun, S. (2000). Monte Carlo POMDPs. In Solla, S., Leen, T., and Müller, K.-R.,
editors, Advances in Neural Information Processing Systems 12, pages 1064–1070.
MIT Press.

Vengerov, D. (2008). A gradient-based reinforcement learning approach to dynamic
pricing in partially-observable environments. Future Generation Computer Systems,
24(7):687–693.

Williams, J. D. and Young, S. (2007). Partially observable markov decision processes
for spoken dialog systems. Computer Speech and Language, 21(2):393–422.

Winder, L. F. (2004). Hazard Avoidance Alerting with Markov Decision Processes.
Ph.D. thesis, MIT.

Yang, L. C. (2000). Aircraft Conflict Analysis and Real-Time Conflict Probing using
Probabilistic Trajectory Modeling. Ph.D. thesis, MIT.

95

	Introduction
	Aircraft Collision Avoidance Systems
	Traffic Alert and Collision Avoidance System
	Autonomous Collision Avoidance

	Challenges
	POMDP Approach
	POMDP Solution Methods
	Online Solution Methods

	Proposed Solution
	Thesis Outline

	Partially-Observable Markov Decision Processes
	POMDP Framework
	Representing Uncertainty
	The Optimal Policy
	Offline Algorithms: Discrete POMDP Solvers
	Online Algorithms: Real-Value POMDP Solvers
	Real-Time Belief Space Search
	Monte Carlo POMDPs

	Monte Carlo Real-Time Belief Space Search
	Belief State Valuation
	Implementation
	Belief State Projection
	Particle Filtering
	MC-RTBSS Recursion
	Pseudocode
	Complexity

	Collision Avoidance Application Domain
	Encounter Models
	Simulation Environment
	MC-RTBSS Parameters

	Simulation Results
	Simple Encounter Cases
	Single Encounter Simulation Results
	TCAS
	Varying Number of Particles, Np
	Varying Number of Observations, No
	Varying NMAC Penalty,
	Varying Maximum Search Depth, D
	Varying Number of Particles in the Action Sort Function, Nsort
	Discussion

	Large Scale Simulation Results
	Cost of NMAC,
	Number of Particles, Np
	Number of Observations, No
	Discussion

	Conclusion
	Summary
	Contributions
	Further Work

