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Abstract 

Organisms must control gene expression in response to developmental, nutritional, or 
other environmental cues. This process is known as transcriptional regulation and occurs 
through complex networks of proteins interacting with specific regulatory sites in the 
genome. Recently, high throughput variations of experimental techniques like 
transcriptional profiling and chromatin immunoprecipitation have emerged and taken on 
increasing importance in the study of regulatory processes. Mining these experiments for 
useful biological information requires methods that can handle large quantities of noisy 
data and integrate information from disparate experimental sources in a principled 
manner. Not coincidentally, computational and statistical methods for analyzing these 
data have increasingly become a focal point of research efforts.  

In this thesis we address three key challenges in the analysis of genomic 
sequence, protein localization, and expression data: (1) learning representations of the 
specific binding interactions that determine connectivity in regulatory networks, (2) 
developing physically grounded models describing these interactions, and (3) relating 
binding to its ultimate effect on the expression of regulated genes. To this end, we present 
several different algorithms and modeling techniques and apply them to real biological 
data in yeast, mouse, and human.  

Our results demonstrate the utility of leveraging multiple sources of information 
for improving motif analyses of chromatin immunoprecipitation data. Phylogenetic 
conservation information and knowledge of an immunoprecipitated protein’s DNA 
binding domain are both shown to have great value in this context. We next present a 
biophysically motivated framework for modeling protein-DNA interactions and show 
how it leads to very natural algorithms for analyzing the binding specificity of an 
immunoprecipitated protein, and jointly analyzing protein localization data for multiple 
regulators or multiple conditions. Finally, we present an analysis of transcriptional 
coregulator binding in a variety of mouse tissues and a method for predicting which 
proteins form complexes with the coregulator based purely on the sequence of the regions 
it binds. We detail a simple but powerful model relating regulator binding to gene 
expression, and show how the position of regulatory regions is of crucial importance for 
predicting the expression level of nearby genes.  
 

Thesis supervisor: Ernest Fraenkel  
Title: Assistant professor of Biological Engineering



 4 

Acknowledgements 

Above all I am indebted to my parents Gordon and Anne MacIsaac for their love, 
support, and encouragement. They instilled in me the value of education and a love of 
reading. Perhaps more importantly, they demonstrated by example the importance of hard 
work and dogged determination. I would also like to thank my dear sisters Tara and 
Alexis for their support throughout my graduate studies.  

My thesis supervisor Professor Ernest Fraenkel has been a wonderful mentor to 
me over the course of graduate school. He has been supremely patient, allowing me the 
freedom to pursue ideas (even when those ideas were a bit on the shaky side). At the 
same time he has provided direction and guidance whenever it was needed or requested. 
His sound judgment and creativity have made working in the Fraenkel lab a rewarding 
experience.  

I was fortunate to have had two great mentors during my time at MIT. Professor 
David Gifford was my first research advisor and introduced me to the field of 
computational genomics. With his insight into computation, statistical learning, and 
biology, as well as his impressive ability to foster collaboration, I hold him up as a model 
of what researchers in our highly inter-disciplinary field should aspire to. Both Professors 
Gifford and Fraenkel share a commitment to innovation, strong scientific ethics, and 
kindness in their dealings with students and collaborators that I hope to emulate as I leave 
MIT and embark on my own scientific career. 

I also wish to acknowledge the great group of people I’ve been able to work and 
collaborate with during my studies. A partial list includes Ben Gordon, Tim Danford, 
Alex Rolfe, Georg Gerber, Robin Dowell, Duncan Odom, Alan Qi, Lena Nekludova, 
Rick Young, Alex Marson, Garrett Frampton, Ting Wang, Gary Stormo, Alice Lo, 
William Gordon, Shmulik Motola, Tali Mazor, Carol Huang, Laura Riva, Esti Yeger-
Lotem, Jim Zhang, Katherine Romer, Aparna Kumar, Deepika Dinesh, Tatjana 
Degenhardt, and Chris Ng. It’s difficult to convey just how much talent is represented in 
the preceding list of names, so I’ll just say ‘a lot’.  

Finally, I’d like to acknowledge and thank the friends I’ve made here in the 
Boston and Cambridge area who’ve made life in Massachusetts such a pleasure: Sonia 
Timberlake, Des Adler, Annie Kim Adler, Sebastian Stirling, Leia Stirling, Andrew 
Takahashi, Frank Wei, James Barnthouse, Tina Hinojosa, Elliot Haimes, Justin Buck, 
Leslie Mebane, Sean Clarke, Dan Buckland, Sarah Miller, Karen Sachs, Jay Gill, Jay 
Jones, Jon Tyson, Scott Litzelman, Wendy Freedman, Michel-Alexandre Cardin, and 
Marc Barron among others have all been great friends to me. 



 5 

Table of Contents 

Chapter 1: Introduction....................................................................................................7 
1.1 An exceedingly brief overview of molecular biology .............................................7 
1.2 Transcription........................................................................................................10 
1.3 Transcriptional Regulation ...................................................................................11 
1.4 Experimental Tools for Studying Transcriptional Regulation ...............................15 
1.5 Computational Tools for Studying Transcriptional Regulation .............................18 

1.5.1 Analysis of chromatin immunoprecipitation data ...........................................18 
1.5.2 Motif Discovery ............................................................................................19 
1.5.3 Computational methods for probing regulatory mechanism............................22 

1.6 Thesis roadmap ....................................................................................................26 
Chapter 2: Converge......................................................................................................27 

2. 1 Evolution, Phylogeny, and Motif Discovery........................................................27 
2.2 The Converge algorithm.......................................................................................29 

2.2.1 Overview.......................................................................................................29 
2.2.2 Probabilistic Model........................................................................................30 
2.2.3 Optimization by Expectation Maximization ...................................................35 

2.3 Algorithm performance ........................................................................................36 
2.3.1 Seed Selection and Motif Discovery ..............................................................37 
2.3.2 Known binding specificities recovered by Converge......................................39 
2.3.3 Comparison with PhyloCon and merging of motif results ..............................41 

2.4 An updated yeast regulatory map .........................................................................43 
2.5 Conclusion...........................................................................................................49 

Chapter 3: THEME .......................................................................................................50 
3.1 Hypothesis testing for motif analysis of ChIP data ...............................................50 
3.2 The THEME algorithm ........................................................................................51 

3.2.1 Hypothesis Generation...................................................................................53 
3.2.2 Hypothesis testing by cross-validation ...........................................................54 
3.2.3 Determining statistical significance................................................................57 

3.3 Performance of the THEME algorithm.................................................................58 
3.3.1 The importance of hypothesis testing .............................................................60 
3.3.2 Deriving hypotheses with limited prior data...................................................60 

3.4 Conclusions .........................................................................................................63 
Chapter 4: A biophysically motivated framework for motif analysis ..............................65 

4.1 From frequency matrices to affinity matrices........................................................65 
4.2 A biophysical model of DNA-protein interaction .................................................68 
4.3 The THEME+ algorithm ......................................................................................70 

4.3.1 THEME+ Probability Model .........................................................................70 
4.3.2 Expectation Maximization procedure.............................................................71 
4.3.3 Performance and results.................................................................................73 

4.4 Incorporating ChIP-seq count data .......................................................................75 
4.4.1 Unified Probability Model .............................................................................78 
4.4.2 Modified Stochastic Simulation algorithm .....................................................80 
4.4.3 Results...........................................................................................................85 

4.5 Joint analysis of ChIP-seq data from two conditions.............................................90 



 6 

4.6 Modeling competition for binding sites ................................................................93 
4.7 Conclusions and Future Work ..............................................................................95 

Chapter 5: A model of transcriptional enhancer function ...............................................99 
5.1 Introduction .........................................................................................................99 
5.2 Experimental identification of enhancer regions.................................................100 
5.3 Sequence analysis of enhancer regions ...............................................................103 

5.3.1 Identification of overrepresented motifs.......................................................103 
5.3.2 Predictive models of coregulator binding .....................................................104 
5.3.3 Model performance......................................................................................105 

5.4 Enhancers bind clusters of regulators .................................................................110 
5.5 Enhancer proximity is correlated with transcript levels.......................................113 

5.5.1 Predictive model of expression from enhancer location................................119 
5.5.2 Modeling relative expression levels .............................................................121 
5.5.3 Modeling the effect of regulators bound at the enhancer ..............................121 

5.6 Predicting absolute expression from enhancer location.......................................122 
5.7 Enhancer position predicts tissue-specific expression level.................................124 
5.8 Non-conserved binding is functional ..................................................................127 
5.9 Revealing the role of specific regulators.............................................................130 
5.10 Conclusions .....................................................................................................132 

Chapter 6: Conclusions and Thesis Contributions ........................................................137 
Bibliography ...............................................................................................................141 
 



 7 

Chapter 1: Introduction 

This thesis is about the development and use of computational models and tools to study 

the biological process known as transcription. Before proceeding any further, it is 

important to explain what transcription is, why it is an important and interesting subject 

of study, and why it is helpful to develop computational techniques to study it. To that 

end, this document will begin with an extremely brief introduction to molecular biology. 

For a more in depth treatment of this subject matter we refer the reader to a number of 

excellent text books that cover the field in great depth [1, 2]. 

1.1 An exceedingly brief overview of molecular biology 

Living things, from the simplest microorganisms to the most complex animals, are 

composed of cells. A cell is, in a sense, just a small bag of organic molecules walled off 

from its environment by a lipid membrane. Inside the cell there is complex molecular 

machinery that carries out the chemical and mechanical tasks required to sustain life. 

These tasks include the catalysis of chemical reactions, physical transport of material, and 

the orchestration of interactions with the cell’s external environment. The machinery that 

accomplishes this dizzying array of function is composed of diverse interacting organic 

molecules: carbohydrate, lipid, nucleic acid, and protein. Although all of these molecules 

play a crucial role in cellular function, it is proteins that have the most diverse range of 

activities and it is primarily proteins that function as the agents of chemical and physical 

action in the cell. 

Underpinning the biological processes of growth and reproduction is the ability of 

cells to divide to form two daughter cells. Each daughter cell contains all the information 

required to continue carrying out the functions necessary for life. This information is 
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encoded in long polymeric strands of nucleotide monomers called deoxyribonucleic acid 

(DNA). The DNA strand consists of alternating pentose sugar (2-deoxyribose) and 

phosphate groups linked by ester bonds. Each pentose sugar is covalently linked to one of 

four bases: adenosine (A), thymine (T), guanine (G), and cytosine (C). Phosphodiester 

bonds occur between the 5th and 3rd carbons on adjacent sugar molecules, giving the 

strand an inherent directionality. The terminal with an unesterified phosphate at the 5th 

carbon is called the 5’ end, whereas the end with an unbound hydroxyl group on the 3rd 

carbon is known as the 3’ end. DNA is normally present in the cell as a double-stranded 

helix, with the two complementary strands wrapped around each other in an anti-parallel 

fashion. The anti-parallel strands associate through non-covalent base-pairing 

interactions. Individual bases form specific hydrogen bonding interactions with a 

complementary base, whereas interactions with non-complementary bases are much less 

favorable (and generally not present) due to the absence of these hydrogen bonds and 

other steric constraints. Adenosine and thymine form one complementary pair, while 

guanine and cytosine form the other.  

In higher organisms like mammals, DNA double helices are wrapped around 

structural proteins, called histones, and packed into a more dense structure termed 

chromatin. The entire assembly of two anti-parallel DNA strands wrapped and packed 

around scaffold proteins is termed a chromosome. Chromosomes are located in a 

membrane-enclosed compartment inside the cell called the nucleus. Different species 

have variable numbers of chromosomes: humans have 23, mice have 20, and the fruit fly 

has 4. Ploidy refers to the number of copies of each chromosome an organism has. Nearly 

all mammals are diploid, meaning they have two copies of each chromosome. One copy 
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is inherited from each parent. Mice, for example, have 2 copies each of 20 distinct 

chromosomes for a total of 40. All the genetic material making up the various 

chromosomes in an organism’s nucleus is commonly referred to as the genome. 

DNA, as has been alluded to previously, is used by the cell for information 

storage. The central dogma of molecular biology describes how DNA encodes 

instructions for the cell’s machinery: specific regions of DNA act as templates from 

which a ribonucleic acid (RNA) message is synthesized. This message is then translated 

by the cell into a protein. RNA is very similar to DNA in that it consists of monomeric 

nucleotides connected in a linear polymeric strand. The key differences between DNA 

and RNA are that the pentose sugar making up the sugar-phosphate backbone of RNA is 

ribose instead of 2-deoxyribose, and the base thymine is replaced with uracil. RNA has 

diverse roles in the cell: it functions as a crucial component of the cellular machinery 

required to synthesize protein, it can have catalytic activity, and it has important 

regulatory roles. However, the particular function of RNA that this thesis is most 

concerned with is that of an intermediary transcript from which protein is synthesized: 

messenger RNA (mRNA). The specific regions of DNA that are transcribed to mRNA 

and which, after processing, are then translated to protein are called genes. Genes consist 

of protein coding regions called exons, and non-coding regions called introns which are 

excised by the cell after transcription and prior to translation. The cell interprets the 

sequence of exonic regions using a genetic code. The genetic code translates three 

nucleotide chunks of sequence, or codons, into one of twenty amino acid monomers that 

make up proteins. This process occurs during translation when a molecular machine 
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known as the ribosome reads an RNA transcript one codon at a time and adds amino 

acids onto the growing polypeptide chain. 

1.2 Transcription  

Transcription of genes to mRNA, also known as gene expression, is carried out by the 

enzyme RNA Polymerase. In eukaryotes there are several different RNA Polymerase 

enzymes; however transcription of most genes and regulatory RNAs is carried out by 

RNA Polymerase II (Pol II). The process of transcription can conceptually be broken up 

into five phases: pre-initiation, initiation, promoter clearance, elongation, and 

termination. Pre-initiation involves the assembly of general transcription factors (GTFs) 

at the proximal promoter region (approximately 10 to 35bp upstream of the transcription 

start site (TSS)) to form the pre-initiation complex. The GTFs include TFIIA, TFIIB, 

TFIID, TFIIE, TFIIF, TFIIH, and Mediator. Some of these general transcription factors, 

such as the TFIID component TATA binding protein (TBP), recognize and bind specific 

nucleotide sequences at the promoter, although they may also bind non-specifically in 

certain contexts. Initiation refers to recruitment of RNA polymerase to the promoter to 

form a productive complex with these GTFs. The resulting initiation complex may 

repeatedly synthesize short, abortive transcripts that are released before they reach 

approximately 23 nucleotides in length. The transition between initiation and elongation 

involves Pol II escape from the interactions tying it to the promoter, a process that is 

closely tied to phosphorylation of the C-terminal repeat domain of the largest Pol II 

subunit. Elongation of the transcript proceeds as the Pol II enzyme translocates down the 

coding strand in the 5’ to 3’ direction, reading the template strand and adding the 

appropriate nucleotide to the growing mRNA molecule. Finally, transcription is 
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terminated by cleavage of the transcript and the addition of multiple adenosines to the 

transcript’s 3’ end. 

1.3 Transcriptional Regulation 

In order for various cell types to perform their specialized functions and respond to 

environmental cues they must have the capacity to control when and how genes are 

expressed. By way of example, in mammals liver hepatocytes have a very different role 

than do the adipocytes that make up white fat tissue. Although many proteins are required 

by both cell types, others must be synthesized in drastically different quantities, and each 

tissue must respond differently to external signals. During prolonged periods of 

starvation, hepatocytes enact a gene expression program leading to higher levels of the 

glucose production machinery in order to fulfill the energetic requirements of the brain. 

Meanwhile, since adipose tissue is a major energy source during starvation, it must 

down-regulate proteins responsible for fat storage and synthesis and upregulate those 

responsible for lipolysis to produce glycerol and fatty acids [3]. The genome not only 

encodes instructions for assembling the proteins making up the cell’s molecular 

machinery, but also contains a regulatory code that is interpreted by the cell and 

determines when, where, and how these instructions will be used.  

Control of gene expression programs across diverse tissues and developmental 

stages is achieved through complex networks of proteins interacting with specific 

regulatory sites in the genome.  These regulatory proteins have several different 

mechanisms of action: they may interact directly with components of the basal 

transcriptional machinery, recruit other important regulators, or affect chromatin 

structure. The specificity in targeting regulators to particular genomic locations is 
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achieved in a number of ways. Many transcription factors contain a structural domain that 

recognizes and binds DNA in a sequence-specific manner [4]. A second source of 

specificity arises from indirect targeting of regulators to regulatory sites via protein-

protein interactions with DNA-bound transcription factors [5]. In this way, regulatory 

complexes of several proteins can assemble on DNA. A third mechanism involves 

wholesale changes to the chromatin structure of large swaths of the genome. Chromatin 

modifying complexes, which are themselves likely recruited by DNA-bound proteins, can 

covalently modify histones affecting nucleosome structure and resulting in the 

recruitment of other regulators that recognize specific histone modifications [6]. 

Many important regulatory sites occur in the proximal promoter, where the 

general transcriptional machinery is recruited to the transcription start site. However 

equally as important to transcriptional regulation are enhancer regions, which may be 

located distal to the TSS, sometimes hundreds of kilobases away. Enhancers have been 

classically defined as regulatory elements that modulate transcription independent of their 

position or orientation [7]. Enhancers bind transcription factors, which in turn recruit 

transcriptional coregulators. Coregulators are proteins that do not, themselves, bind DNA 

but rather are recruited to their targets through protein-protein interactions with DNA 

bound factors. Once recruited to an enhancer region, these coregulators can have a 

multitude of different effects on transcription rates. Many are capable of acting as 

scaffold proteins by interacting with the basal transcriptional machinery or other 

regulators. In addition, many coregulators have enzymatic activity and can covalently 

modify histones or transcription factors, affecting chromatin state or regulator activity 

[5]. 
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The mechanism of enhancer action is an active area of research and several 

different models have been put forward to explain various aspects of their function. Their 

ability to affect transcription at long distances is thought to involve some form of 

communication between enhancer and promoter either through a DNA looping event, 

translocation of the regulatory complex along the DNA strand from enhancer to 

promoter, or via effects on chromatin structure that propagate from enhancer to TSS [8]. 

At least one experimentally characterized enhancer is thought to function through a 

combination of such mechanisms [9].  

Although originally identified as elements that activate transcription, enhancers 

can also have repressive activity; their precise function is determined by the combinations 

of regulatory proteins that they bind. The ability of combinations of limited numbers of 

transcriptional regulators to come together and enact a huge variety of transcriptional 

programs is thought to be crucial to transcriptional regulation and is referred to as 

combinatorial control.  

The nature of combinatorial control at enhancers has been described by two 

competing models: the enhanceosome and the billboard [10]. The enhanceosome model 

assumes that enhancer activity relies on the precise and highly cooperative assembly of 

regulatory proteins on the enhancer. Enhancer function will therefore be disrupted by 

small changes in binding site position or orientation which may affect any one of the 

interactions in the complex. The billboard model assumes that enhancer function is an 

integration over several independent, and possibly opposing, transcriptional signals. The 

transcriptional effect depends on which signal is ‘observed’ and by whom, hence the 

name billboard. This model predicts that enhancer function should be much less sensitive 
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to binding site positions and orientations since many of the factors bound at the 

regulatory region act independently. It may be the case that for many enhancers the truth 

lies somewhere between these two models with some cooperative interactions having 

important regulatory roles, but with enhancer function having significant redundancy and 

being supported by a diversity of regulator binding configurations. 

 

 

Figure 1.1: Combinatorial control in transcriptional regulation. A variety of regulatory programs in 
diverse tissues are enacted by a limited number of transcription factors interacting with the genome to 
achieve transcriptional outcomes. The particular program enacted is determined by the set of active 
regulators in the tissue, and the set of physical interactions that can occur between the regulators 
themselves and between regulators and DNA. 

At this point, it is likely becoming clear that transcriptional regulation in 

eukaryotic organisms is very complex and only partially understood. Yet it has important 

implications in evolution, development, and disease. The genetic mutations that 

accumulate over evolutionary time and result in the divergence of different species often 
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have a basis in transcriptional regulatory mechanisms, either through changes in cis 

regulatory sequences or sometimes the transcription factors themselves [11]. Promising 

stem cell based therapies rely on an understanding of how progenitor cells differentiate 

into the multitude of cell types making up the human body, and importantly, how this 

process is controlled. Fundamentally this occurs at the level of transcriptional regulation. 

In fact, it has been famously demonstrated that by activating a simple transcriptional 

switch consisting of only four transcription factors, fully differentiated mammalian cells 

can revert to pluripotency [12-14]. Importantly, many diseases have a basis in 

transcriptional disregulation. These include cancer [15-17], diabetes [18], Rubenstein-

Taybi syndrome [19], and many others [20-23].  

1.4 Experimental Tools for Studying Transcriptional Regulation 

The earliest experimental studies in transcription focused on the important and 

painstaking work of identifying the components of the transcriptional machinery and 

characterizing their function [7, 24-27]. From these contributions, general theories and 

principles of regulation emerged including the notion of repression, activation, 

modularity, and cooperativity [28]. With the advent of high-throughput microarray and 

sequencing data, the study of transcriptional regulation has been revolutionized. DNA 

microarray technology allows us to profile the expression of thousands of genes in a 

single experiment [29]. Huge experimental efforts have provided us draft sequences of 

the human genome [30, 31], as well as the genomes of important model organisms like 

mouse and rat [32, 33], and have afforded us the opportunity to decode the regulatory 

information present in the sequences of promoters and enhancers on a genome-wide 

scale. High-throughput chromatin immunoprecipitation experiments paired with 
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microarrays or massively parallel sequencing allow us to map the localization of 

important regulatory proteins on a genome-wide basis [34, 35]. These rich and varied 

datasets open up new worlds of scientific opportunity and have led to a greater 

understanding of transcriptional regulation, while at the same time presenting us with 

significant analysis challenges that are still being addressed. 

DNA microarrays are grids of short DNA oligonucleotide probes, either pre-

synthesized and spotted onto a grid square or printed directly onto the array, that have 

been designed to be complementary to specific mRNA transcripts. The basic idea behind 

microarray analysis is that mRNAs present in a sample can be reverse-transcribed to 

cDNA and then detected when they hybridize to a complementary probe on the array 

[36]. Expression profiling using DNA microarrays takes two forms: single color 

experiments and two-color experiments. In a single color experiment mRNA is collected 

and isolated from cells in a particular growth condition. The mRNA is chemically labeled 

with a fluorescent dye and hybridized to the array. After washing away non-specifically 

hybridized mRNA, the total quantity of each mRNA can be estimated using the 

fluorescent intensity measured for each probe on the array [37]. In a two-color 

experiment, mRNA from cells grown in two different conditions is labeled using two 

different fluorescent dyes [38]. The samples are then hybridized to the array where they 

compete for their complementary probe. After normalization, the relative amount of 

fluorescence observed for each probe measures the relative quantity of the corresponding 

mRNA in the two profiled samples. 

DNA microarrays can also be used to measure the binding of protein to specific 

genomic regions profiled in a chromatin immunoprecipitation (ChIP) experiment [34]. 
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This technique, known as ChIP-chip, involves first cross-linking chromatin and protein 

using a chemical agent (e.g. formaldehyde). This forms covalent links between amine 

groups on nucleotides, which are involved in base-pairing interactions in the minor 

groove of the DNA helix, and amine groups on proteins bound at those sites. Cross-

linking will also covalently link amine groups on nearby proteins, making ChIP suitable 

for profiling the genomic localization of regulators that may be indirectly targeted to 

DNA through protein-protein interactions with DNA bound factors. After cross-linking, 

the DNA is fragmented and isolated. Fragments that are cross-linked to the protein of 

interest are then immunoprecipitated using an antibody specific to the protein. After-

reversing the cross-links and purification, the DNA is amplified using the polymerase 

chain reaction and fluorescently labeled. This material is then hybridized to a microarray 

along with differentially labeled, unenriched, whole genome DNA. The microarray 

intensity measurements allow genomic regions enriched in protein binding to be 

identified.  

Very recently, massively parallel sequencing technologies have emerged that 

allow for large scale sequencing of individual DNA molecules that are cross-linked to 

protein immunoprecipitated in a ChIP experiment [35, 39]. These sequence reads may 

then be aligned to a reference genome to determine binding location. The number and 

distribution of reads aligning to a specific genomic region serves as a measure of binding 

enrichment. For chromatin immunoprecipitation experiments, this technique is known 

colloquially as ChIP-seq.  
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1.5 Computational Tools for Studying Transcriptional Regulation 

The huge size of the datasets produced by microarray and sequencing-based experimental 

methods, and the significant experimental noise they contain, make them particularly 

suitable to computational analyses that can model both measurement uncertainty and also 

deal with large quantities of data. There has been a tremendous amount of work in this 

area on several fronts. Here I will attempt to summarize prior work in the fields most 

related to this thesis. 

1.5.1 Analysis of chromatin immunoprecipitation data 

Computational analysis of ChIP data starts with the basic goal of identifying bound 

genomic regions. For ChIP-chip data several approaches have been employed. The 

simplest method is to identify all probes with a raw enrichment ratio greater than some 

threshold, and to label those probes as bound. More principled approaches employ a 

statistical model of observed enrichment ratio data to identify bound regions [40, 41]. 

Current state-of-the-art techniques model the expected peak shape arising from the DNA 

shear distribution obtained during the sonication or fragmentation step in the ChIP 

protocol [42, 43]. For ChIP-seq data, the most basic technique for identifying peaks looks 

at the number of sequence tags that cluster in a particular region and compares this to a 

background model that assumes a uniform distribution of tags [39]. Bound regions are 

then identified using some reasonable p-value or FDR cutoff. Recent analyses, however, 

have demonstrated that the assumption of uniform background tag position is a poor one 

and may result in a high false positive rate [44]. A better approach is to collect control 

reads from unenriched whole-genome DNA, and identify binding by assessing 

enrichment relative to this control [35]. This can help adjust for biases owing to 
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variations in copy number, sequencing efficiency, and cell-type specific chromatin 

structure [45]. The current state-of-the-art peak-calling methods use control data to 

estimate local tag distribution backgrounds, thereby achieving significantly improved 

performance [46]. Once identification of bound region has been accomplished, it is often 

of interest to identify statistically overrepresented sequence motifs associated with 

binding. This may provide additional confidence that experimentally identified binding 

sites are not false positives, and may yield insight into which other proteins cooperate 

with the immunoprecipitated factor to regulate its identified targets.  

1.5.2 Motif Discovery 

Many functionally important regions of the genome can be recognized by searching for 

sequence patterns, or “motifs.” There are many biologically meaningful sequence 

patterns in the genome including CpG islands [47], RNA splice sites [48], and 

nucleosome positioning motifs [49]. The motifs this thesis is concerned with, however, 

correspond to the specific sites bound by regulatory proteins. The search for these sites is 

challenging because a single regulatory protein will often recognize a variety of similar 

sequences. Computational techniques employed to learn representations of regulatory 

motifs are termed motif discovery algorithms. The motif discovery problem can be 

formulated as follows: we have a set of genes that are believed, a priori, to be co-

regulated and thus likely to be bound by one or more common regulatory proteins. We 

wish to learn motif representations that explain this binding. 

There are many ways of representing the sequence specificity of a protein, and the 

choice of a particular representation is often determined by considerations such as 

simplicity, interpretability, representational power, or computational convenience. 
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Perhaps the simplest way of representing a motif is by using a consensus sequence of 

preferred nucleotides (adenine [A], cytosine [C], guanine [G], or thymine [T]). 

Degeneracy in the binding specificity of a protein can be incorporated using ambiguity 

codes (purine [R], pyrimidine [Y], strong [S], weak [W], keto [K], amino [M], and any 

nucleotide [N]) [50]. A number of methods for generating consensus sequences from data 

are possible, and several methods have been previously compared [51]. A second widely 

used motif model is the position weight matrix (PWM). In this formulation, the motif is 

represented as a matrix of nucleotide scores indexed by letter and position [52]. A closely 

related approach models a motif as a matrix of probabilities, where each position is 

represented using a multinomial distribution over observed nucleotides. Under certain 

assumptions, the nucleotide frequencies observed at different positions in a set of binding 

sites are related to the theoretical contribution of a particular nucleotide to the free energy 

of protein binding [53-55]. Motifs represented as frequency matrices can be visualized 

conveniently using sequence logos. A sequence logo consists of an ordered stack of 

letters, where a letter's height indicates the information it contains at that position [56]. 

Consensus sequences and simple matrix models ignore some of the complexity of 

protein–DNA interaction. Dependencies between nucleotides at different positions in 

protein binding sites have been observed [57, 58], and several motif models have been 

proposed that take into account the possibility of positional correlations. Zhou and Liu 

modeled a motif using a generalized weight matrix that could incorporate pair-wise 

dependencies [59]. Several other representationally powerful models have been proposed 

including boosted classifiers [60] and a hidden Markov Dirichlet multinomial model [61]. 

Of course increasing the model complexity requires more data to estimate the model's 
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parameters. If data are limited, complex models may overfit and yield a poor 

representation of the factor's true specificity. An important study by Benos, Bulyk, and 

Stormo suggested that while the consensus sequence and PWM may not fully capture all 

the subtleties of a protein's binding specificity, these simple and easily interpretable 

models usually provide a very good approximation to reality [62]. 

Motif discovery algorithms may be broadly grouped into two categories: 

enumerative methods and alignment-based methods. Enumerative methods typically 

involve exhaustive enumeration of words up to some maximum size in a dataset. Once 

the words are cataloged, they can be scored using an appropriate measure of statistical 

significance. The computational time complexity of enumerative methods is 

approximately O(NmAeLe), where N is the number of sequences, m is their length, A is the 

alphabet size, L is the motif length, and e is the number of errors allowed in a match to a 

catalog entry [63]. Many enumerative methods use trade-offs on the alphabet size and the 

number of allowable errors to make these searches computationally feasible [63-65].  

Alignment methods take on a wide variety of forms, but often involve 

development of a probabilistic model of the observed sequence data. The MEME 

program, for example, treats a particular sequence as arising from a mixture model in 

which the small window of sequence containing the motif is generated from a motif 

model—represented by a probability matrix—and the rest of the sequence is treated as 

arising from a Markovian background [66]. The generative model describes a family of 

parameterized probability distributions, and the motif is described by parameters of this 

distribution. Any number of optimization techniques may be used to search for the 

parameter setting that maximizes the likelihood of the observed sequence data. Two 
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frequently used techniques to perform this search are the expectation-maximization (EM) 

algorithm [67] and Gibbs sampling [68]. 

1.5.3 Computational methods for probing regulatory mechanism 

Although sequence analysis on its own may reveal important information about 

transcriptional regulation, approaches that integrate sequence and/or binding data with 

expression data have even greater promise for revealing regulatory mechanism. This has 

thus far been borne out in simpler model organisms like yeast and bacteria where data in 

a broad set of growth conditions are plentiful, genome sizes are relatively small, and there 

are fewer regulators. However, computational forays have also been made with some 

success into higher eukaryotes as more and more genome-wide sequence and ChIP data 

becomes available.  

One frequently employed approach relates sequence motifs to expression data 

using regression techniques. This can be particularly valuable when searching for 

regulatory motifs associated with expression changes in an experimental condition of 

interest. Bussemaker et al. presented the REDUCE method that enumerates the short 

DNA sequences present upstream of a set of genes, and then uses multivariate linear 

regression to associate gene expression level with the presence of these motifs [69]. 

Similar approaches have been presented by other investigators [70, 71]. These methods 

can account for combinatorial interactions by including multiple motif features as 

predictors of expression. Keles et al. modeled cooperativity by including products of 

motif feature terms in their regression models [71]. Das and coworkers have argued that 

linear regression-based models cannot accurately represent the significant nonlinearities 

observed in transcriptional regulation. They presented a different regression technique 
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based on linear splines that captures switch-like behavior in transcriptional regulatory 

networks [72].  

An alternative to the regression-based techniques discussed above is to group 

genes into co-expressed clusters. The basic notion is simply that groups of functionally 

related genes will tend to be co-expressed across a wide variety of conditions and 

therefore their expression is likely to be regulated by a common set of regulators. These 

regulator combinations may be identified through analysis of the motifs present in the 

promoter regions of the clustered genes. Beer and Tavazoie used such an approach in 

yeast and worm, expanding the set of features considered to include specific positional, 

orientation, and ordering constraints on motifs [73]. They used these features to predict 

membership in one of 49 pre-defined expression patterns obtained by clustering 

expression data across a set of 255 conditions and found that promoter sequence alone 

did a surprisingly good job of predicting a gene’s expression program. However, a follow 

up study by a different group suggested that, in addition to a methodological error that 

probably resulted in overestimation of their predictive performance on held-out test data, 

it turns out that a naïve Bayes classifier that ignores position, orientation, and 

cooperativity performs better on the same data, casting some doubt on the utility of 

modeling these higher order effects [74].  

Another important class of algorithms simultaneously clusters genes into co-

regulated groups and attempts to identify regulators responsible for coordinating their 

expression. The module networks approach of Segal et al. uses gene expression data as 

evidence of transcription factor activity in order to assign regulators to sets of co-

regulated genes and identify functionally coherent modules in yeast [75]. Bar-Joseph and 
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colleagues demonstrated how ChIP binding data could be used to learn regulatory 

modules with direct physical evidence of regulatory interactions between transcription 

factors and member genes [76]. More recently, Zhou et al. extended these approaches by 

introducing 2nd-order expression analysis, where in addition to co-expression analysis, 

correlations of correlations between groups of co-expressed genes are used to identify 

functionally-related modules [77]. Several related methods have been presented that 

incorporate sequence features allowing regulatory modules to be linked to particular 

motifs and motif combinations [78, 79]. Most module-discovery approaches have been 

designed and tested using yeast data, where expression and protein localization is 

plentiful. However, some investigators have developed methods and demonstrated their 

applicability to mammalian data. Gerber et al. used a model based on a hierarchical 

Dirichlet process to discover regulatory programs across human tissues [80]. Tissues are 

automatically clustered into related groups that share similar expression programs. 

Expression programs can be shared across tissues, and genes can belong to more than one 

program. This model naturally accounts for heterogeneity in expression between tissues, 

cell types within a tissue, and between samples, and does not enforce a pre-determined 

number of expression programs to be specified but rather infers this from the available 

data. Very recently, the techniques of Bar-Joseph et al. have been applied to the analysis 

of expression data in human cancer cell lines [81].  

A different, but extremely interesting class of algorithms probes regulatory 

mechanism by focusing directly on the activities of particular regulators or regulator 

combinations. Segal and colleagues presented a thermodynamic framework that does not 

rely on ChIP data to identify transcription factor regulatory targets, but rather uses the 
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expression level of those regulators along with a description of their DNA binding 

specificity to predict when and where they will bind. Each factor is assumed to contribute 

to expression level independently, and the net expression level of a gene is an integration 

over the contribution of all factors. They trained their model using spatial expression 

patterns for eight transcription factors and 44 experimentally characterized gene modules 

in the developing Drosophila embryo and showed how this framework allowed them to 

accurately predict segmentation patterns for held out gene modules. Yeang and Jaakkola 

presented a different probabilistic method that links expression outcomes to the activity 

of combinations of transcriptional repressors and activators. These regulators are 

characterized by their effect on target expression in response to changes in their own 

expression. Their method not only identifies genes sharing a regulatory program, but also 

learns a description of that program in terms of cooperating regulators which may then 

plausibly be linked to specific physical mechanisms of regulation [82].  

One of the chief remaining computational challenges is developing new 

techniques, or strategies for applying some of the techniques discussed above, to study 

mammalian data. Mammalian models are obviously of great interest since what we learn 

from these models is often directly applicable to human biology and disease processes. 

However, the development of computational tools that can be applied to mammalian data 

is complicated by several issues, some of which have been touched on already: huge 

genome sizes, larger numbers of regulatory proteins, and a great diversity in the number 

of tissues and cell types that are encountered.  
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1.6 Thesis roadmap 

In this thesis I present a number of novel computational approaches for analyzing 

sequence, protein localization, and expression data to study transcriptional regulation. 

Chapter 2 presents a motif discovery algorithm, Converge, which uses phylogenetic 

conservation information to aid in motif discovery. I then demonstrate how it was used, 

in combination with a second conservation-based motif discovery algorithm, to expand a 

previously described map of regulatory sites in yeast. Chapter 3 describes a 

discriminative motif discovery approach, called THEME, which allows prior knowledge 

about a protein’s DNA binding specificity to be incorporated into the motif search. In 

Chapter 4 I present a biophysically motivated framework describing protein-DNA 

interaction and show how this framework forms the basis of a motif discovery method 

that can be incorporated into joint analysis of ChIP and sequence data and very naturally 

extended in a number of interesting directions. Chapter 5 describes a unique and 

surprisingly accurate probabilistic model that uses ChIP data to predict gene expression 

level and gain insight into transcriptional enhancer function in mammalian systems. 

Finally, in Chapter 6 I summarize the work presented here and outline the main 

contributions of this thesis. 
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Chapter 2: Converge 

In this chapter I will present the Converge algorithm: a motif discovery method that uses 

phylogenetic conservation information to guide the motif search. I will then discuss how 

this tool was used in combination with a second motif discovery algorithm, called 

PhyloCon, to map the set of conserved transcription factor binding events in 

Saccharomyces cerevisiae. This work was a collaboration with Ting Wang, who 

developed PhyloCon and applied it to the yeast binding data. Benjamin Gordon’s 

contributions, both in developing software tools for mapping binding events to the yeast 

genome and for evaluating the statistical significance of sequence motifs, were also 

instrumental in the success of this study. Discussions with Benjamin, Timothy Danford, 

David Gifford, and Ernest Fraenkel were very helpful during the development of 

Converge. 

2. 1 Evolution, Phylogeny, and Motif Discovery 

Over the course of evolutionary time, species arising from a common ancestor diverge as 

genetic point mutations, duplications, insertions, deletions, and rearrangements 

accumulate in their genomes. This process is random, but is also constrained since 

mutations that disrupt functionally important regions like genes can often have an adverse 

effect on an organism’s fitness. Similarly, since transcription factor binding sites are 

important for ensuring proper control of gene expression, they tend to be under selective 

pressure over evolutionary time. A significant fraction of evolutionarily conserved 

noncoding DNA has been shown to correspond to regions important for regulation [83-

86]. One study found that 98% of known binding sites of skeletal muscle–specific 

transcription factors are confined to the 19% of human sequences most conserved in 
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orthologous rodent sequences [87]. This tendency of transcription factor binding sites to 

be conserved across species has been exploited in the context of motif discovery by 

several different research groups. 

One approach to leveraging conservation information is to identify blocks of 

sequence that are conserved across multiple species using phylogenetic footprinting [88, 

89]. Phylogenetic footprinting is a general technique for identifying conserved regions 

based on the evolutionary relationship among species. These conserved blocks can then 

be used as inputs to standard motif discovery tools and otherwise analyzed [90, 91]. By 

culling only the conserved sequence from the input data, uninformative background DNA 

is eliminated, and an effective increase in signal to noise is achieved that facilitates the 

search for motifs [92]. 

Other motif discovery tools integrate conservation information directly into the 

motif search. One approach generates a catalog of motifs with potential regulatory 

importance by determining, on a genome-wide scale, which consensus sequences are 

highly conserved across species. Highly conserved motifs are validated by determining 

their overrepresentation among groups of co-regulated genes [83, 93]. Several algorithms 

employ a generative probability model of DNA sequence to find conserved motifs using 

various inference techniques. EMnEM [94] and PhyME [95, 96] both incorporate 

probabilistic evolutionary models into EM-based motif searches. CompareProspector is a 

Gibbs sampling algorithm that uses a pre-computed score to measure the conservation 

level across windows in sequence alignments, and then biases the motif search to regions 

that are highly conserved [97]. PhyloGibbs is another Gibbs sampling algorithm that 

leverages conservation by assuming the motif must be present in all species in a 
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conserved region [98]. All these algorithms have been demonstrated, in certain contexts, 

to outperform similar methods that don't take advantage of conservation information. 

2.2 The Converge algorithm 

Converge discovers DNA sequence motifs in regions putatively bound by a common 

regulator in the genome of one species (i.e. a primary genome) by using conservation 

information in the form of pair-wise sequence alignments from related species.  The 

Converge algorithm makes use of the fact that transcription factor binding sites will tend 

to be conserved in orthologous regions of related species.  Below we describe the 

algorithm in detail. 

2.2.1 Overview 

A schematic diagram of the Converge workflow is shown below: 

Seed Selection

Expectation Maximization

Significance Testing

Sequence AlignmentsSequence Alignments

EM starting points

Motif candidates

Significant MotifsSignificant Motifs
 

Figure 2.1: Converge Workflow Diagram 

Optimization by Expectation Maximization is preceded by a seed selection step where 

initial starting points are chosen.  The sequences in the primary genome are scanned for 

statistically over-represented k-mers and the top twenty are used to initialize the 

frequency matrix. Expectation Maximization is then run to convergence for each seed, 
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and the resulting motif candidates are scored using an enrichment statistic to allow their 

statistical significance to be tested in a principled manner.  The enrichment score is fit to 

a normal distribution estimated using enrichment scores from randomized data runs for a 

similar number of sequence alignments. 

2.2.2 Probabilistic Model 

The observed data, X, consists of a series of N primary genome sequences aligned (pair-

wise) to orthologous sequence from supporting genomes.  Each set of pair-wise 

alignments is indexed over M possible k-mers and P genomes, and is assumed to contain 

either one or zero motifs in the primary genome as in the zero-or-one-occurrence-per-

sequence (ZOOPS) model of Bailey and Elkan [66]. 

Regions of sequence are treated as arising from either a background distribution 

or a motif distribution.  The motif distribution is modeled using a frequency matrix:   

  w ...1  (1) 

Where each i is a multinomial distribution representing the expected frequency of each 

base at position i in the motif.  The motif has a fixed width, w.  For sequences flanking 

the motif region, the distribution is modeled as arising from a 4th order Markov 

background, which in practice takes the from of a probability table with an entry for each 

possible 5-mer of sequence, which we denote by k, where k indexes the genome the 

background was calculated from.  Converge assumes that the motif and background 

probabilities are independent.   

Converge attempts to model three important characteristics of the data: regions in 

the pair-wise alignments that contain gaps should be treated differently than those 

without gaps, a given alignment may or may not contain the motif we are attempting to 
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learn, and even when the motif is present in the primary genome it may not be present in 

the aligned supporting genomes.  This treatment is made possible by the definition of two 

additional variables, one observed and the other hidden.  The observed gap indicator 

variables gi,j,k take the value of 1 if for alignment i, position j, genome k, a gap is present 

in the motif window beginning at position j.  The hidden variables zi,j,k indicate whether a 

functional motif is present in alignment i, at position j, in genome k.  

We assume that a functional motif is only present in an aligned supporting 

genome if it also present at the corresponding position in the primary genome.  If the 

primary genome is indexed by k = 1, this is equivalent to saying that, for all k = 2…P, zi,j,k 

is equal to zero with probability 1 if zi,j,1 is equal to zero.  We also assume that given the 

value of zi,j,k, the probability of the sequence for genome k is independent of the other 

aligned sequences and the primary sequence.  A graphical model representation of the 

model is shown below: 

Z

X

Z

X Supporting
genomes

G

 

Figure 2.2: Converge probability model. The sequence in the primary genome depends only on the value 
of the motif indicator variable Z. Sequence in supporting genomes depends on both the motif and gap 
indicator variables.  
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Now, the log probability of the data can be factored as follows: 
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Here 1kZ   denotes the zi,j,1 for all i and j, 1kZ  denotes the zi,j,k for k1, and  denotes the 

parameters associated with the motif and background probability mass functions.  We 

define each term in equation 2 as follows: 
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Here Xw is the sequence in the motif window, while Xf is the flanking sequence. If there 

is no functional motif present in the primary sequence, the first term of equation 3 will be 

equal to zero and the conditional probability of the sequence will simply be the 

probability it was emitted by the background model.  If there is a functional motif present 

in the primary sequence, one of the Zi,j,1’s will be equal to one and the log probability of 

the observed sequence is given by the sum of the window sequence log probability and 

the log probability of the flanking sequence.  When a motif occurs in alignment i, 

position j, and genome k, the expressions for the probability of the motif sequence and 

the flanking sequence are as follows: 
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In equation 5 one of two probability models is selected depending on the value of the gap 

indicator variable.  The zi,j,k selects either a motif model or a background model.  When 

zi,j,k is one, the probability of the sequence in the window is calculated using the 

appropriate frequency matrix indexed by window position c, and base xi,j+c,k ( 1
m for 

gi,j,k=1 or 0
m  for gi,j,k=0), when its value is zero the probability is calculated using a 1st 

order background table, indexed by base xi,j+c,k, for the appropriate genome k ( 1
,bg k for 

gi,j,k=1 or 0
,bg k  for gi,j,k=0).  Equation 6 shows that the probability of the sequence 

flanking the motif window is calculated using the 4th order Markov background, indexed 

by , ,i c kx , the 5-tuple of sequence in the alignment beginning at position c, and genome k.  

In a similar fashion, the final term in equation 3 is defined as follows: 
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The second term of equation 2 models the probability of observing a gap in the 

motif window, given the value of the z’s, and will in general be different for each aligned 

genome: 
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The value of gi,j,k can be generated from two different binomial distributions. The 

particular distribution that generates gi,j,k is selected by the value of zi,j,1.  When zi,j,1 is 

equal to one, the value of gi,j,k is generated from the binomial distribution with 

parameter ,1k , otherwise it is generated from a binomial distribution with parameter ,0k .  

This models our belief that the likelihood of observing a gap in an aligned sequence 
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should be different depending on whether a functional motif is present in the primary 

sequence.  While in general it may be useful to model cases where a motif can be present 

in an aligned genome even though there are gaps in the alignment (e.g. if the binding 

specificity of a protein has evolved to have a different sized spacer region in one species), 

we assume that a gap in the alignment means that no motif is present, therefore we fix 

,1k  to be zero and the frequency matrix 1Πm  from equation 5 is never used. 

The third term in equation 2 describes the probability of the zi,j,k’s for k≠1 given 

the value of the zi,j,1’s.   
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Since we constrain the zi,j,k’s to be zero unless zi,j,1 is one, equation 9 models the 

probability of the zi,j,k’s as arising from a binomial distribution with parameter θk 

representing the probability of observing a functional motif in the aligned genome k, 

given the presence of a functional motif in the primary genome. 

The final term in the joint log probability distribution models the a priori 

probability of a functional motif being present at a particular alignment position in the 

primary genome: 
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In equation 10, the parameter , is defined as the a priori probability of a motif being 

present in a given alignment, and the parameter   is defined as / M , or the a priori 

probability of a functional motif being present at any given position in the alignment. 
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2.2.3 Optimization by Expectation Maximization 

Converge learns motifs present in the data set using the EM algorithm; an iterative 

coordinate ascent on the joint probability function of equation 2, that first calculates the 

expected value of the hidden variables Z, and then uses that expectation to re-estimate the 

values of the parameters Π, ζ, θ, and γ. This procedure is repeated iteratively until 

convergence of the likelihood function. 

In the E-step of iteration t, Converge calculates the expected log likelihood of the 

data over the distribution of the hidden variables Z, which takes the form: 
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Taking the partial derivative of equation 11 with respect to the parameters Π, ζ, θ, 

and λ, and setting the result equal to zero, we derive the M-step update equations: 
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Where in equation 16, the indicator variable I (i, j+c, k, ) is equal to 1 if xi,j+c,k 

corresponds to the base indexed by  .   

The θ parameter for each genome is initialized to the average number of 

differences per base position between the aligned genome and the primary genome.  The 

ζ parameters for each genome are simply initialized to 0.5.  This simple initialization 

scheme for the gap indicator prior seems reasonable, since its final value at convergence 

is very insensitive to the initial guess of its value.   

2.3 Algorithm performance 

A previously published study reported an initial regulatory map for Saccharomyces 

cerevisiae by analyzing genome-wide chromatin immunoprecipitation (ChIP) data for 

203 proteins [99]. Of these 203 proteins, 172 were profiled in a growth condition in 
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which at least four microarray probes were bound with a p-value cutoff of 0.001. 

Alignments of these probe sequences with three additional yeast species, S. paradoxus, S. 

mikatae, and S. bayanus, were provided as input to Converge. We then used Converge to 

re-analyze these data, evaluating its performance by comparing results to experimentally 

characterized binding specificities for 87 different transcription factors. 

2.3.1 Seed Selection and Motif Discovery 

We generated initialization points for EM in all data sets at motif widths of 6, 8, 10, 15, 

and 20 base pairs. For motif widths less than or equal to 10, we selected seeds by first 

identifying the top 400 k-mers in the data set. We calculated a conservation score for 

each k-mer by counting the total number of bases where the sequence was conserved 

across all intergenic regions in at least 50% of the aligned yeast species. We associated a 

p-value with these scores by fitting the result to a binomial distribution, or when the 

number of occurrences was sufficiently large, to a normal approximation to the binomial 

distribution. We discarded all k-mers with a conservation p-value greater than 0.1 from 

consideration as seeds. The remaining k-mers were scored using the hypergeometric 

distribution to give an enrichment p-value associated with observing an equal or greater 

number of occurrences in an equally sized random sample of probe sequences in S. 

cerevisiae. We selected the top 20 enriched surviving k-mers as initialization points. 

For motif widths greater than 10, we used gapped k-mers consisting of flanking 

regions of defined sequence, with an unconstrained center region. This approach was 

intended to compensate for the paucity of large k-mers with multiple occurrences. 

Furthermore, many transcription factors are known to bind paired sequences separated by 

non-specific regions of DNA and it was hoped that this seeding approach would help in 
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the discovery of such motifs. Each flanking region was set to a size equal to one third of 

the motif width, rounded down. The top 400 gapped k-mers were identified and subjected 

to the same conservation criterion described above. We scored these gapped k-mers for 

enrichment and the top 20 were selected as initialization points, with the gapped region 

initialized to background base frequencies. 

For each initialization seed, we ran the Converge algorithm until the mean 

squared difference between motifs in subsequent iterations was less than 10-3 for each 

position in the matrix, and the value of each θ parameter changed by less than 10-3. We 

confirmed empirically that this convergence criterion coincided with convergence of the 

data likelihood, which was computationally expensive to compute. In the M-step, we add 

0.01 pseudo counts at each position in the frequency matrix. We used an estimate of the 

prior probability of motif occurrence in a given probe of 0.2 and set its learning rate to 

0.5. The θ parameter was initialized to a simple measure of phylogenetic distance 

between the aligned species and Saccharomyces cerevisiae: the mean number of matches 

per position relative to S. cerevisiae in all probe alignments. This gave θ initialization 

values of 1.00, 0.80, 0.63, and 0.58 for S. cerevisiae, S. paradoxus, S. mikatae and S. 

bayanus, respectively. We estimated background sequence probabilities using a 4th order 

Markov model calculated separately for each species from its set of intergenic regions.  

We used a previously described approach to empirically estimate the significance 

level of the motif generated by Converge [99]. The number of promoters bound by a 

regulator in each experiment ranges from 4 to 176, with an average of 55. From all 

promoters in the yeast genome where an orthologous sequence group could be formed 

based on sequences of multiple genomes, we randomly created datasets from 4 to 160 
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orthologous groups in size. For each sample size, 50 to 100 datasets were generated. We 

applied Converge to these randomized datasets and estimated normal distributions for the 

hypergeometric enrichment at each sample size. After motif discovery on real datasets, 

motif scores were compared to the normal distribution of the most closely matching 

random sequence sample size. P-values were determined using z-scores calculated from 

the mean and standard deviation of this distribution. The top-ranked motif was accepted 

as the predicted specificity for the corresponding protein if it had a p-value < 0.001. 

2.3.2 Known binding specificities recovered by Converge 

We first evaluated how many of the 87 previously described transcription factor binding 

specificities Converge could recover from the sequence alignment data. When a matrix 

was available describing the known specificity, a match was defined as an average 

Euclidean distance between the frequency matrix columns of < 0.18. For the remaining 

motifs, a match was determined empirically by assessing whether the motif was 

consistent with reported binding sites. Converge’s performance is compared to the six 

programs used by Harbison et al. in Figure 2.3 below: 

 

Figure 2.3: Number of known transcription factor binding specificities recovered by Converge and 
six previously reported motif discovery programs. Converge recovers more motifs than any of the suite 
of 6 programs employed in Harbison et al.  
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In total Converge recovered 51 sequence motifs matching the previously described 

specificity. This was more than any single program used by Harbison et al. and, in fact, 

was more than the combination of all six programs employed in that study, three of which 

made use of conservation information to aid in the motif search. In some cases, 

Converge’s motifs differ substantially from the motifs reported in Harbison et al. For 

example the specificity discovered previously for Pho2 was SGTGCGsygyG. Converge 

predicts a specificity of AYTAAr. The new motif is more consistent with the results of 

gel shift and DNAse footprint analysis and with the fact that that Pho2 encodes a 

homeodomain protein [100], a class of transcription factors that tend to bind to AT-rich 

sequences. The factor Dal82 is now predicted by Converge to have a specificity of 

AAaNwTgyG, consistent with previously reported experimental evidence [101]. The 

motif reported in Harbison et al. (GATAAG) is likely to represent the binding 

specificities of Gln3, Gat1, and Dal80, which are known to co-regulate 

allophanate/oxalurate-dependent genes along with Dal82 [102]. 

One of the programs employed by Harbison et al. was a previous version of 

Converge that assumed a motif was always present in the aligned species when it was 

present in the primary genome. The improved ability of the newer version of Converge to 

recover correct motifs in these data (51 recovered vs. 29 for the older version) 

underscores the value of learning phylogenetic relationships through the θ parameters and 

making use of information in alignment gaps. A particularly striking example of this 

emerges from the analysis of Rds1 binding data. Converge determines that there is a very 

low probability that a match to the Rds1 motif will occur in S. bayanus in positions that 

contain the motif in S. cerevisiae. The θ parameter, which measures the genome-wide 
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probability of observing a motif in bayanus when it is present in the primary genome, 

falls to 0.058. As a result, the S. bayanus sequences have almost no influence on the 

discovered motif. Interestingly, the Rds1 protein from S. bayanus is only 32% identical to 

its S. cerevisiae ortholog, compared to approximately 72% for other transcription factors 

in these two species. These data suggest that in S. bayanus Rds1 does not regulate the 

orthologs of the genes that are bound by Rds1 in S. cerevisiae, and that both the protein 

and its former binding sites have evolved. 

We also compared Converge’s performance on these data to results reported for a 

conservation-based approach that directly estimates mutation rates using a set of 

substitution matrices for motif and background in each species [103]. Li and Wong tested 

their algorithm on 53 data sets from Harbison, finding the correct motif in 39 of those 

cases, whereas Converge found the correct motif in 43 of these data sets demonstrating 

that our simple approach is, at worst, competitive with that of Li and Wong. 

2.3.3 Comparison with PhyloCon and merging of motif results 

We next wished to compile an expanded motif catalog by merging the results of 

Converge with a complementary conservation-based motif discovery algorithm, 

PhyloCon [104]. This complementarity arises from differences in the evolutionary 

assumptions made by each algorithm. PhyloCon dynamically realigns orthologous 

sequences, making no assumptions regarding the relative location of binding sites. 

However, it assumes that the sequences from each species should contribute equally to 

motif discovery. Converge, by contrast, assumes that the position of binding sites will be 

aligned in the orthologous sequences, but it makes no assumptions about the importance 

of the sequences from each species. We assessed the performance of each program, and 
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the combination of programs, using empirical estimates of false positive, true positive, 

false negative, and true negative rates. True positives were defined as top-ranked 

statistically significant motifs that matched the known specificity. A false positive 

occurred when the top-ranked motif did not match the known specificity. A false negative 

was defined as the case when the program produced no statistically significant motif, but 

the correct specificity was discovered by another program (PhyloCon, Converge, or one 

of the six programs from Harbison). A true negative was defined as the case when the 

program produced no significant motif, and no other program was able to discover the 

known specificity.  

 

Figure 2.4 Performance of PhyloCon, Converge, and the combined motif set on data for factors of 
known specificity. Combining the results of PhyloCon and Converge increases the number of true 
positives recovered, and eliminates false negatives, without an adverse effect on the false positive rate.  
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Converge and PhyloCon have very similar performance with Converge showing 

somewhat greater sensitivity but less specificity than PhyloCon. Both Converge and 

Phylocon show significantly better performance than the combined results from the six 

programs used in Harbison. In Harbison et al., the predicted specificities derived from a 

combination of six programs matched the known specificities for 44 of the 87 proteins 

(51%). In contrast, Converge found 51 true positives (59%) and 14 false positives (16%). 

Converge was unable to find statistically significant motifs for 22 (25%) of these factors.  

Combining the Converge and PhyloCon results allowed us to increase the number 

of transcription factors for which we could predict binding specificities with high-

confidence. Our strategy for combining motifs was as follows: We first identified all 

motifs with a p-value < 0.001 for each program. We then identified the subset of motifs 

common to both programs and reported the motif with the best p-value (using the 

minimum p-value over both programs). If there were no significant motifs common to 

both programs, the most statistically significant motif from either program (p < 0.001) 

was reported. We discovered significant motifs for 98 of 172 factors. This is 33 more 

than were found by Harbison and co-workers, who used the same strict selection criteria. 

Of the 98 motifs, 43 were discovered by both programs, 22 were found only by 

PhyloCon, and 33 were discovered only by Converge. The discovered motifs were 

augmented with 26 factor specificities from the literature, to produce a final catalogue of 

124 motifs.  

2.4 An updated yeast regulatory map 

Using the new catalogue of yeast specificities we built a more complete and 

comprehensive regulatory map for Saccharomyces cerevisiae. We scanned the S. 
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cerevisiae genome for putative regulatory interactions using the updated motif catalogue 

and the same criteria used by Harbison et al. As in that study, we restricted our analysis 

to the highest confidence sites, defined as those containing conserved motif matches that 

were bound by the corresponding factor at a p-value < 0.001. The new map contains a 

total of 4,229 conserved and bound motif sites across 2,022 genes, compared to the 3,353 

sites across 1,883 genes in Harbison et al. The new and the old sets of motifs have similar 

information content (mean information content of 11.77 bits and information content per 

base of 1.24 bits in the new code, compared to 11.10 bits and 1.25 bits in the old code), 

suggesting that this increase is not due to an overall loosening of the specificity estimates.  

 

Figure 2.5: Changes in the number of putative regulatory interactions in the new yeast regulatory 
map. For each modified motif, the number of regulatory interactions added and lost relative to the 
previously reported map is shown. Our analysis produced modified factor binding specificities for 85 
factors, resulting in a net gain of 398 putatively regulated genes. 

 

Figure 2.5 and Figure 2.6 show the change in the number of bound genes by 

factor between the new and old maps. The net gain in the number of putative regulatory 



 45 

interactions between transcription factors and proteins is 636, with 133 of these 

accounted for by new binding specificity estimates for 18 factors that had no previously 

reported motif. 

 

 

Figure 2.6: Regulatory interactions added through the addition of new factor specificity estimates. A 
total of 200 genes were identified as being putatively regulated by factors with newly reported motifs. 

 

The new map reveals regulatory interactions for a number of transcription factors that are 

consistent with their known functions. For example, the refined motif for Msn2 detects 

regulatory sites in 39 genes that were not detected in the previous study. Msn2 is known 

to function in the transcriptional response to stress [105]. Of the newly identified targets, 

there is a significant (p < 0.01) over-representation of genes with the GO annotation 

"stress-response". Similarly, the refined Xbp1 motif results in a gain of 18 regulatory 

interactions. The new targets are enriched at a p-value < 0.02 for genes with the GO 
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annotation "morphogenesis", consistent with a previously reported regulatory role for this 

transcription factor [106]. 

The revised map also provides new insights into the regulatory roles of several 

transcription factors. For example, the revised motif for Hap1 reveals that this 

transcription factor has an extensive role in regulating synthesis of ergosterol, a fungal-

specific pathway that is a target for anti-fungal drugs. The previous map revealed 

regulatory interactions of Hap1 with genes for the ergosterol biosynthetic enzymes Erg5, 

Erg9 and Erg11. In the new map, we find interactions with genes for six additional 

enzymes in this pathway: Erg2, Erg8, Erg10, Erg25, Faa1, and Hmg1. In addition, the 

new map details an expanded role for Hap1 in regulating expression of components of the 

electron transport chain. Regulatory interactions with genes for two components of the 

cytochrome c oxidase complex, Cox7 and Cox8, were added to the three already present 

(Cox4, Cox6, and Cox13). A regulatory interaction with the gene for Qcr6, a component 

of ubiquinol cytochrome c reductase, was added to the previously reported interaction 

with the gene for Cor2, also a member of this complex. Finally, a Hap1 regulatory 

interaction with cytochrome c isoform 2, Cyc7, was added to previously discovered 

interactions with three other cytochromes, Cyc1, Cyb2, and Cyt1. 

We examined the network of regulatory interactions between transcription factors 

in order to understand the system-level implications of the improved map. The previously 

reported regulatory code and the revised code were used to generate interaction networks 

for all the yeast transcription factors. This network is shown in Figure 2.7. Thirty-nine 

new interactions are reported, with six interactions lost. We searched the network for 

occurrences of six regulatory network motifs: autoregulation, feed-forward regulation, 
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multi-component loops, single-input, multi-input, and regulatory chains [107]. The new 

network reveals several cases of feedback regulation that were not present in the previous 

version. The regulators Arg81, Rox1, Sut1, and Zap1 are all found to have an 

autoregulatory interaction in the new map. Of these, Rox1 [108] and Zap1 [109] have 

been previously shown to regulate their own expression. 

The map also contains evidence of enhanced roles for a number of factors in the 

yeast transcriptional regulatory network. Yap6 acts as a regulatory hub, displaying five 

new interactions with transcription factors, three of which (Phd1, Sok2, and Hms2) are 

involved in pseudohyphal differentiation [110-112]. The stress-induced factor Xbp1, 

previously implicated in cell-cycle function [113], now has interactions with the 

pseudohyphal determinant Phd1, and Smp1, a factor required for cell viability in the 

stationary phase [114]. Table 2.1 details the regulatory motifs present in the new and old 

networks.  

Table 2.1: Transcription factor network motifs in the old and new regulatory codes 

Regulatory motif type This study Harbison et al. 
Autoregulation 16 12 

Multi-component loop 15 5 
Feed-forward loop 71 55 
Single-input motif 91 72 
Multi-input motif 481 392 
Regulatory chain 1452 168 

 

There is an increase in the number of all six regulatory motif types, with a particularly 

striking increase in the number of regulatory chain motifs, owing to the motif's 

combinatorial dependence on the total number of interactions in the network. The overall 

picture that emerges from this analysis is of a more complex interplay of transcription 

factor influences in yeast regulatory networks than could be deduced from the previously 

reported regulatory code.  
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Figure 2.7: Yeast transcriptional regulatory network. Nodes correspond to transcription factors and an 
edge from one node to another indicates a putative regulatory interaction. Red nodes correspond to factors 
without a previously reported specificity. Edges are colored red for interactions unique to the new map, 
grey for interactions common to the old and new maps, and green for interactions unique to the old map. 
There are 39 new interactions and 6 interactions lost relative to the previously reported map. 
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2.5 Conclusion 

In this chapter I have presented a framework for performing motif discovery using 

phylogenetic conservation information. This method is distinguished from similar 

approaches on several fronts. First, unlike many methods, the Converge algorithm 

incorporates conservation information directly into its probability model rather than as a 

pre-processing or post-processing step. Second, Converge is unique in explicitly make 

use of gaps in the pre-computed sequence alignments by weighting these regions 

differently during motif discovery, and third we learn a simple but meaningful measure of 

evolutionary distance between species that allows conservation information to be 

weighted differently across those species. 

I have also demonstrated the application of the algorithm to real ChIP-chip data 

and shown how Converge’s use of conservation information leads to an improvement in 

motif discovery performance, as measured by recovery of correct motifs for proteins with 

an experimentally characterized binding specificity. The results from analyzing RDS1 

also demonstrate that the simple measure of phylogenetic distance we employ has real 

biological meaning and can provide insight into the evolution of regulatory networks 

across related species. Finally I have shown that merging the analyses of Converge and 

the PhyloCon program allows us to significantly expand the yeast regulatory map. This 

provided a different view of the regulatory role of several transcription factors, and 

showed that the regulatory network of transcription factors in yeast is more highly 

connected than previously thought. 
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Chapter 3: THEME 

In this chapter I will present the THEME algorithm: a discriminative motif discovery 

method that tests specific, biologically informed hypotheses regarding the binding 

specificity of a protein and selects the best hypothesis using a principled cross-validation 

procedure. I will demonstrate that this technique performs exceptionally well on ChIP 

data from mammals and present several applications. Benjamin Gordon performed the 

groundwork necessary for the development of THEME by showing that informative, 

biological priors could dramatically improve the performance of a motif discovery tool. 

Benjamin and Lena Nekludova derived motif priors from binding site data for various 

binding domain families. Duncan Odom and Joerg Schreiber provided ChIP-chip 

experiments used to test the algorithm.  

3.1 Hypothesis testing for motif analysis of ChIP data 

Identification of functionally relevant motifs in genomes of higher eukaryotes is more 

challenging than in yeast. Regulatory regions are substantially larger and more complex, 

and sequence features common in mammalian genomes, such as CpG islands, further 

confound motif discovery methods. An evaluation of 13 motif discovery tools 

demonstrated the limitations of these techniques for analyzing mammalian promoter 

sequences [115]. At the same time, there is a need for robust motif analysis methods as an 

explosion in the quantity of mammalian ChIP-chip and ChIP-seq data is imminent, if not 

already upon us. 

THEME is a hypothesis-driven method that is effective in identifying biologically 

meaningful sequence motifs from ChIP-chip data in human and mouse tissues. THEME 

uses principled statistical methods to test hypotheses about the binding specificity of an 
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immunoprecipitated protein. It evaluates hypotheses based on their ability to accurately 

predict which sequences from a held-out test set were bound by the protein and which 

were not. The most predictive hypothesis is either accepted or rejected by comparing its 

predictive value to those of motifs derived by applying the same algorithm to randomly 

selected input sequences.  

The hypothesis driven approach is particularly appealing since it allows us to 

merge information from the sequence of bound regions with prior biological knowledge 

when searching for motifs. By deriving initial hypotheses from the binding sites of 

related proteins in the TRANSFAC database [116] we can determine whether or not there 

is a motif that both explains the binding data and is consistent with the domain structure 

of the transcriptional regulator. Most DNA-binding domains show a limited repertoire of 

sequence specificity, and family members usually recognize variants of the same core 

sequences. For example, many bZIP proteins bind to variations of the AP-1 site 

(TGANTCA), the ATF-CREB (TGANNTCA) or the C/EBP site (ATTKC). Similarly, 

HLH proteins often bind to E-boxes (CANNTG), and differ largely in their specificity for 

the two middle base pairs and the flanking regions. THEME provides a method for 

determining if the specificity of the immunoprecipitated protein is similar but not 

necessarily identical to the prototypes for its family.  

3.2 The THEME algorithm  

An overview of the THEME workflow is shown in Figure 3.1. The initial hypothesis to 

be tested consists of a position weight matrix (PWM) model of the binding specificity, 

describing the probability distribution for bases at each position of a binding site. 
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Figure 3.1: Overview of THEME. (A) THEME requires that one or more binding hypotheses be specified 
in the form of a frequency matrix. (B) The data are partitioned for cross-validation. Using only the training 
data, the hypotheses are refined using the EM algorithm. (C) The refined hypotheses are used to train a 
classifier and the classification error on the held-out test data is evaluated. (D) The hypothesis that yields 
the best mean cross-validation error is identified. (E) The statistical significance of the observed cross-
validation error is estimated by comparing it with a distribution obtained by applying the hypothesis to 
randomly chosen promoter sequences. 

 

Hypotheses can be derived from a variety of sources. Input consists of a set of sequences 

bound by the protein of interest (the positive data), as well as sequences that are not 

bound (the negative data). Using cross-validation, hypotheses are refined with training 
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data and evaluated on held-out test data to identify the most predictive motif. The 

statistical significance of the best motif is then determined.  

3.2.1 Hypothesis Generation 

While hypotheses from any source can be tested, a particularly effective approach is to 

derive hypotheses using known binding sites of proteins that belong to the same DNA-

binding domain family as the immunoprecipitated protein. Individual members of protein 

families generally bind related DNA sequences due to structural constraints. These 

preferences can be represented as PWMs and have been designated Family Binding 

Profiles [117]. Family Binding Profiles capture sequence features common to the binding 

sites of many members of the family, but are consequently poor representations of the 

specificity of individual family members. 

We used profiles derived from unaligned binding sites in the TRANSFAC v7.2 

database [116]. Pfam hidden-Markov models (Bateman et al., 2004) identify 37 families 

of DNA-binding domains in TRANSFAC with at least 4 proteins and 30 sites. Sites for a 

family were pooled and family binding profiles were generated using two motif discovery 

programs: AlignACE (Roth et al., 1998) and DimerFinder [118]. On average, a family is 

represented by three profiles. To demonstrate the utility of this approach even when there 

are no close homologs of a protein of interest, we used profiles derived using only the 

binding site data for proteins with <70% sequence identity to the DNA-binding domain 

of the protein of interest. For example, the Family Binding Profiles that we use to 

discover the specificity of HNF4α exclude binding data for all HNF4α, HNF4β and 

HNF4 proteins from any species. RXRβ2 is the most similar protein to HNF4α that is 

included in the profiles. 
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Figure 3.2: Similarity of the nuclear hormone receptor DNA-binding domains to HNF4α. The graph 
shows the percent identity between the DNA-binding domain of HNF4α and each nuclear hormone 
receptor protein in TRANSFAC. Proteins with >70% sequence identity were excluded when the Family 
Binding Profiles were derived.  

 

3.2.2 Hypothesis testing by cross-validation 

The Family Binding Profiles for each protein are refined and tested using cross-validation 

to find the hypothesis that best explains the binding data. We define the set of bound 

probe sequences in a ChIP experiment as the positive set. We produce a negative set by 

randomly undersampling the set of unbound probes until it is 10 times larger than the 

positive set. We partition the sequences into test and training sets and perform THEME 

hypothesis testing using the following five-step procedure: 

   1. Refine the hypothesis on the positive training set 

   2. Score each sequence in the training and test data using the refined model 
   3. Oversample the positive training and test data 

   4. Train a classifier on the training examples 
   5. Classify the test examples and report the classification error. 



 55 

 
Figure 3.3: Hypothesis refinement and cross-validation by THEME. Positive sequences were bound in 
the ChIP experiment. The remaining sequences on the array are the negative set. Data is divided into 
training and test sets. The positive training data are used to refine the hypothesis. All training and test 
examples are then mapped to a one-dimensional feature space by evaluating the LLR score of their best 
match to the refined hypothesis. A classifier is trained using both the positive and negative training 
examples and used to evaluate the classification error on the positive and negative test sets. 

 

Each hypothesis is refined on the positive data using a standard motif discovery 

algorithm to ensure it represents the motif signal present in the data as much as possible. 

We used the ZOOPS probability model and optimize the motifs using the EM algorithm 

[66]. Each hypothesis acts as the initialization point for EM. The E and M steps are 

alternated until the Euclidean distance between the motif models in subsequent M steps 

was less than 10–3. In the M step, motif is updated using the expected counts in each 

position of the matrix. The change in the motif during the M step is restrained using 

pseudo counts added to the matrix in proportions determined by the original hypothesis 

and the value of the  parameter.  is defined as the fraction of the total counts added to 

the matrix during the M step that are pseudo counts used to restrain the model. A  of 0.0 
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indicates that EM refinement proceeds without restraint. When  = 1.0, no refinement is 

carried out. Refinements occur in parallel with  values of 0.05, 0.1, 0.33, 0.5, 0.67 and 

1.0. The Markov background model used in EM was estimated from the set of all 

sequences represented on the microarray for a given experiment.  

In order to train a classifier and perform cross-validation, the refined hypotheses 

must be used to define one or more features used to score the sequences. THEME uses 

the log-likelihood ratio (LLR) score of the best match to the refined hypothesis. This 

score is an intuitive feature that measures our belief that the best match is an instance of 

the motif, described by the PWM model, after taking into account the single-nucleotide 

base distribution of the background sequences. Typically, an arbitrary threshold is used to 

determine when the LLR is high enough to constitute a match to a motif [99]. THEME 

uses a more principled approach, by training a very simple linear-kernel support vector 

machine (SVM) to determine the threshold that best separates the bound and unbound 

sequences in the training data. The scores of the training data are scaled so that they fall 

between –1.0 and 1.0, and used to train the SVM at a particular setting of the parameter, 

C, which is used in the regularization term. The test data are then scaled in an identical 

manner and classified using the SVM. The classification error of the SVM on the test 

data is evaluated using the optimal value of C determined from the training data. 

When building classifiers from datasets with a significant imbalance in the 

proportion of positive and negative examples, it is important to ensure that the classifier 

has sufficient sensitivity to the minority class. One solution is to resample the dataset to 

achieve greater balance between the two classes. We combine undersampling of the 

negative dataset with SMOTE oversampling of the positive training and test sets so that 
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the number of positive and negative examples is equal. This technique has been shown to 

improve classification performance on datasets with large disparities in the sizes of the 

minority and majority classes [119]. 

For each hypothesis we perform a grid search over the two parameters  and C. 

We repeat the five-step procedure at each parameter setting to find the setting yielding 

the lowest 3-fold cross-validation error. Due to the non-deterministic nature of the 

sampling procedure, cross-validation results could, in principle, vary among trials with 

the same input and parameters. To test this, we compared hypotheses using three separate 

THEME trials with different randomly selected negative datasets. The refined motifs did 

not vary significantly across these trials. Here we report the average cross-validation 

errors. The best refined motif model is the one that has the lowest mean error on the test 

sets after 3-fold cross-validation. 

3.2.3 Determining statistical significance 

For the best candidate family binding profile we determine the empirical distribution of 

mean cross-validation errors, under the null hypothesis that the input sequences are 

unrelated to the profile, by running THEME multiple times using sets of randomly 

selected sequences. These sets are equal in size to the original dataset, and the 

calculations are conducted using the same parameter settings. We assume the observed 

cross-validation errors are normally distributed and perform randomization runs until the 

standard error on our estimate of the standard deviation is ~10%. We then compare the 

observed cross-validation errors to the computed distribution and perform a Z-test to 

assess the statistical significance of the refined hypothesis. 
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3.3 Performance of the THEME algorithm 

We tested THEME by applying it to published ChIP-chip experiments for 14 human 

transcriptional regulators, which are members of 9 different DNA-binding domain 

families. These data are quite diverse and thus constitute a good set of experiments with 

which to evaluate THEME. Initial hypotheses were generated using Family Binding 

Profiles derived from the TRANSFAC binding sites, excluding data for close homologs 

as described.  

 Each profile was refined using the positive training data for the most strongly 

bound genes (binding P-value < 0.001). The mean test errors for these hypotheses after 3-

fold cross-validation are shown in Table 3.1 below. In each case, the refined hypothesis 

with the best cross-validation error is statistically significant and agrees with previously 

reported motifs or binding sites for the protein. 

NeuroD1 illustrates the power of THEME when there is little prior knowledge 

about the DNA-binding specificity of a protein or that of its close homologs. The most 

similar protein that has known binding sites in TRANSFAC (v7.2) is the T-cell acute 

lymphocytic leukemia-1 protein, SCL/TAL1, which is only 48% identical to NeuroD1 in 

its DNA-binding domain. Nevertheless, we find a motif, sCAgcTGs, which is statistically 

significant, present in 97% of the bound probes on the mouse array and consistent with 

known sites for NeuroD1 in the promoter of Pax6 [120]. 
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Table 3.1. Family Binding Profiles and Associated Refined Motifs 

 Protein Profile Refined Motif Mean Cross-Validation Error 
c-Rel gGGr.tTyC gGGr.tTyC 0.35 
c-Rel krGAAAa.y .gGrAAwcc 0.42 
c-Rel GGaawttCC GGaawttCC 0.34 
c-Rel GGawwtCC GgrwwycC 0.38 
c-Rel GGGgAwTcCCC gGGrawtyCCc 0.35 
E2F4 GCGssaaa GCGssaaa 0.35 
HNF3b arTAAACA .GYaAACA 0.39 
HNF3b kTTGTT gkyGTt 0.46 
HNF3b TGTTTrTT TGTTtrY. 0.44 
HNF4α ..RGGTCA marGGyCA 0.40 
HNF4α rGwaCA...tGTwC rg.rCw..rkGkmC 0.48 
HNF4α aGaACA...TGTtCt aGaACa...tGTtCt 0.46 
HNF4α AGGTCAc.gTGACCT .gG.cwc.gwg.Cc. 0.42 
HNF4α AGGTCATGACCT rGkyC..GrmCy 0.42 
HNF4α tcAAGkTCAag tcaaGgtCaag 0.44 
HNF4α TGACCT...kTGACCT tkaCCyymw.tkmyCy 0.43 
HNF4α TGACCTTTGACCyy tGgmCytTGmCcy. 0.30 
HNF6 ATCGAT.s ATCGAT.s 0.321 
HNF6 CAcm.Ata..TaTkG CAcm.Ata..TaTkG 0.47 
HNF6 CgATcG cgATcg 0.43 
HNF6 cgATCGAT cgATCGAT 0.321 
Nanog TAATTrsy tAAtkrsy 0.42 
Nanog AAgyrcTT AAgyrcTT 0.43 
Nanog AaT.AtT Aak.mtT 0.44 
Nanog TAATt.aATTA taat...atta 0.44 
Nanog TAATTAat tAAtkr.t 0.44 
NeuroD1 cCACGTGg cCamktGg 0.42 
NeuroD1 CgCaCGC CgCaCGC 0.46 
NeuroD1 rCAgcTGy rCAgcTGy 0.35 
NeuroD1 tCACGTGa tCACGTGa 0.44 
Oct4 ATGCAAAT ATGCAAAt 0.40 
Oct4 TAAwTTA kaAwTtm 0.44 
p50 GraAw.cCCm GGraAwyCCC 0.30 
p52 GGrAw.yCCc GGrAw.yCCc 0.28 
p52 GGaawttCC GGaawttCC 0.30 
p52 GGawwtCC GGawwtCC 0.33 
p52 GGGgAwTcCCC GGGrawtyCCC 0.21 
p65 GGrAw.mCCc ssRrAwycCc 0.401 
p65 GGGGAwTCCCC sggrawtyccs 0.401 
P-CREB rTGACgyr rTGaCGy. 0.44 
P-CREB ttrtGYAA tkrcGtMA 0.44 
P-CREB caCGTGGc caCGTGGc 0.47 
P-CREB mCACGTGk w.aCGt.w 0.45 
P-CREB aTGACGTCAt aTgACGTcAt 0.40 
P-CREB aTGAsTCAt .w.msk.w. 0.49 
P-CREB aTTg..cAAt .wwscgsww. 0.46 
P-CREB gcCACGTGgc .ysaCGtsr. 0.41 
P-CREB GtG.CaC skkwmms 0.50 
P-CREB gTGacGTG rTGaCGt. 0.43 
P-CREB TtACGTaA TkaCGtmA 0.41 
P-CREB tTGCAa tyGCra 0.48 
RelB GGrAw.yCCc GGrAw.yCCc 0.30 
RelB GGaawttCC GGrawtyCC 0.32 
RelB GGawwtCC GGawwtCC 0.39 
RelB GGGGAwTCCCC gGGrawtyCCc 0.33 
Sox2 AACAAWRr AACAAwrr 0.39 

1For two factors, HNF6 and p65, the two best profiles tested gave very similar mean cross-validation 
errors.  We note that in both cases the refined motifs are also quite similar. 
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3.3.1 The importance of hypothesis testing 

Leveraging prior biological knowledge is crucial for successfully identifying the correct 

motif in mammalian datasets. To demonstrate this, we ran the THEME algorithm using 

an uninformative hypothesis, equal in length to the correct motif, but consisting of 

background nucleotide frequencies. The uninformative hypotheses produced the correct 

motif in only one case (HNF6). The cross-validation error for motifs derived from 

uninformative priors was always higher than when Family Binding Profiles were used. 

Of the motif discovery programs that we tested on these data, AlignACE performed the 

best, discovering motifs consistent with the known specificities in six cases (Table 3.2). 

The cross-validation errors for AlignACE motifs were always higher than those 

discovered by THEME. To obtain the AlignACE results, we needed to run the program 

multiple times using different random number seeds. A typical AlignACE calculation 

required 21 h to complete, compared with 18 min for THEME. 

3.3.2 Deriving hypotheses with limited prior data 

In the absence of Family Binding Profiles THEME can take advantage of other available 

data, such as known binding sites. To demonstrate this, we derived hypotheses from each 

of the three known and distinct NeuroD1 binding sites [120] by assigning 99% of the 

probability mass to the nucleotide represented in the sequence and distributing the 

remaining mass among the other 3 nt at each position and tested them with THEME. The 

refined motifs, shown below in Table 3.3, match the NeuroD1 motif reported in Table 3.1 

and display similar cross-validation errors. 
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Table 3.2: Importance of hypothesis testing 

THEME: Uninformative Hypothesis AlignACE THEME 
Factor 

Motif Mean 3-fold CV 
error Rank1 Mean test 

error2 
Mean 3-fold 
CV error3 

c-Rel Not Found 0.46 Not Found 0.40 0.34 
E2F4 Not Found 0.36 Not Found 0.39 0.34 

HNF3b Not Found 0.47 Not Found 0.47 0.39 
HNF4 Not Found 0.40 Not Found 0.48 0.30 
HNF6 Found 0.34 Not Found 0.50 0.32 
Nanog Not Found 0.45 Not Found 0.47 0.42 

NeuroD1 Not Found 0.49 1 0.44 0.35 
Oct4 Not Found 0.43 1 0.45 0.41 
p50 Not Found 0.40 1 0.32 0.30 
p52 Not Found 0.42 1 0.26 0.21 
p65 Not Found 0.45 Not Found 0.46 0.40 

P-CREB Not Found 0.43 Not Found 0.47 0.40 
RelB Not Found 0.46 1 0.33 0.30 
Sox2 Not Found 0.44 3 0.44 0.39 

1Rank of motif matching known specificity 
2AlignACE motifs were ranked by hypergeometric enrichment score.  THEME was used without 
refinement to evaluate the classification error of the top-ranked AlignACE motif.  In the case of Sox2, the 
motif that matched the known specificity was used in place of the top-ranked motif.   
3Cross-validation error for best THEME results shown in Table 3.1.  

Table 3.3: NeuroD1 results obtained using hypotheses derived from single binding sites 

Binding 
Site 

Initial 
Hypothesis 

Refined 
Hypothesis 

Optimal 
 

Mean 3-fold CV 
Error 

CAAATG 
  

0.05 0.34 

CAGTTG 
  

0.05 0.32 

CAGGTG 
  

0.05 0.36 

 

In many cases, THEME is able to identify the correct motif, even if the DNA-binding 

domain or binding sites of the factor are not specified. To demonstrate this, we ran 

THEME for each factor in Table 3.1, using every profile across all families as initial 

hypotheses. We ranked the resulting refined motifs by their cross-validation errors. In 10 

out of 14 cases, we observe that the correct motif, derived from a hypothesis 

corresponding to the factor's DNA-binding domain family, has the lowest cross-
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validation error (Table 3.4). Furthermore, in 13 out of 14 cases, the correct motif and the 

correct family were ranked in the top 5 families (the correct family for Nanog was ranked 

8th out of 36 families). 

Table 3.4: Top-ranked Family Determined by THEME after Testing with Profiles from All Families1 

Factor PFAM 
Family 

Hypothesis Refined Motif Mean 3-
fold CV 

error 

Rank 

c-Rel PF00554  
(RHD) 

GGrAw.yCCc GGrAw.yCCc 0.34 1 

E2F4 PF02319 
(Winged helix) 

GCGSsAAa GCGssAAa 0.30 1 

HNF3b PF00250  
(Forkhead) 

rYAAACAa ryAAACA. 0.41 1 

HNF4 PF00105 (NHR 
) 

TGACCTTTGACCyy tGgmCytTGsCcy. 0.28 1 

HNF6 PF02376  
(CUT) 

cgATCGAT srATCgAT 0.31 1 

PF00172 (Zn 
clus) 

CGGm.ga. CgG..... 0.41 1 

Nanog 
PF00046 
(Homeobox)  

TAATTrsy yAAtkrsy 0.43 8 

PF00170  
(bZIP) 

gcCACGTGgc rsCAgcTGsy. 0.38 1 

NeuroD1 PF00010 
(HLH) 

cCACGTGg  sCAgcTGs 0.41 4 

PF02257 (RFX)  GTTGCya.G..am .ttgw.atg..aa 0.40 1 Oct4 
PF00157 (POU) ATGCAAAT ATGcaaAt 0.41 4 

p50 PF00554  
(RHD) 

GGGGAwTCCCC GGGrawtyCCC 0.22 1 

p52 PF00554  
(RHD) 

GGGGAwTCCCC GGGGAwTCCCC 0.23 1 

p65 PF00554  
(RHD) 

GGGGAwTCCCC sggrawtyccs 0.35 1 

P-CREB PF00170  
(bZIP) 

aTGACGTCAt .TgACGTcA. 0.40 1 

RelB PF00554  
(RHD) 

GGrAw.yCCc GGrAw.yCCc 0.29 1 

PF02376  
(CUT) 

cgATCGAT racAAw.g 0.37 1 

Sox2 
PF00505  
(HMG) 

AACAAWRr AACAAwrr 0.41 5 

1The top-ranked motif is always shown.  In those cases where this motif is derived from a family other than 
that of the immunoprecipitated protein, the results for the expected family are also shown.  Similarities 
between these motifs and the top-ranked motif are indicated by the underlined letters.    
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THEME does not require highly accurate initial hypotheses. To demonstrate this 

we used THEME to refine noisy versions of the hypotheses that yielded the lowest cross-

validation error for each factor. We obtained these hypotheses by combining, in various 

ratios, 1000 sequences derived from the uncorrupted PWM and from the background 

base frequencies. Noise levels of up to 40% have little effect on the cross-validation 

errors and in 13 of the 14 datasets the motifs obtained with 40% noise are consistent with 

the known specificities. 

 

Figure 3.4: Effect of noise on cross-validation error. The Family Binding Profiles yielding the lowest 
cross-validation error for each dataset were corrupted with varying amounts of noise to produce matrices of 
gradually decreasing quality. These were used as hypotheses in THEME. The mean cross-validation error 
for the refined motif from each hypothesis is compared with the best hypothesis for the same dataset. 

3.4 Conclusions 

In this chapter I have presented THEME: a hypothesis-driven approach to analyzing 

ChIP-chip data that differs from standard motif discovery programs in that it begin by 

specifying biologically-informed hypotheses, and then establishes whether these 
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hypotheses are supported by the data. THEME is able to determine whether to accept or 

reject a hypothesis because it seeks to solve a classification problem. A good motif 

distinguishes between bound and unbound sequences in the test set. An incorrect 

hypothesis may produce a motif that appears significant on the training data, but it will be 

poorly represented in the test data. THEME was the first discriminative motif analysis 

method to employ cross-validation to rank candidate motifs and to protect against 

overfitting. 

THEME’s unique hypothesis-testing framework is particularly valuable because it 

addresses the issue of interpreting motifs. THEME not only assesses whether there is a 

motif that can distinguish bound and unbound sequences, but also whether that motif is 

consistent with prior biological knowledge. When prior biological knowledge is 

available, either in the form of a known DNA-binding domain or known binding sites (as 

for NeuroD1), the accuracy of THEME is dramatic. THEME identifies a statistically 

significant motif consistent with the expected specificity for all 14 datasets we analyzed. 

In contrast, using the cross-validated approach without an informative prior fails to 

identify the correct motif in all but one of these mammalian datasets. In the absence of 

information about the DNA-binding domain of the protein, THEME is often able to 

identify the correct motif by exhaustively testing all available Family Binding Profiles. 

These results suggest that THEME may be a valuable tool in the analysis of diverse data.  
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Chapter 4: A biophysically motivated framework for motif analysis 

In this chapter I will present an extension of some of the ideas introduced in Chapter 3, 

reformulated into a probabilistic framework based on biophysical principles. I will 

demonstrate how this approach leads to a particularly straightforward and interpretable 

motif discovery algorithm and then present results of its application to ChIP data in a 

variety of mouse and human tissues. I also present extensions to the model for comparing 

binding specificity and concentration across growth conditions for the same protein and 

for analyzing binding data for proteins that compete for the same binding site. Previously 

unpublished ChIP-chip and ChIP-seq data presented in this chapter were collected by 

William Gordon, Alice Lo, and Shmulik Motola. 

4.1 From frequency matrices to affinity matrices 

Standard frequency matrix or consensus sequence motif models ignore the role of protein 

concentration in DNA-protein interaction. While on the surface this may appear to be a 

minor drawback, it has important implications. Once a motif has been identified, it is 

often of interest to identify potential regulatory regions by scanning genomic regions for 

matches to the binding specificity. However, the probability that a particular binding site 

will be occupied by a regulator strongly depends on the nuclear concentration of that 

regulator, especially for weaker binding sites. It is also unclear how to handle biological 

phenomena like competition between regulators for a common binding site using 

standard models. An alternative approach treating protein-DNA interactions 

thermodynamically would allow these concerns to be addressed in a natural way. 

 The feasibility of modeling protein-DNA interactions thermodynamically has 

been demonstrated in several different contexts.  Very detailed structure-based methods 
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that predict energetic interactions between protein and binding sites allow prediction of a 

protein’s sequence-specific binding affinity without the need for a training set of binding 

site sequences [121, 122]. Notably, these studies continue to indicate that common 

simplifying assumptions regarding the dependence of binding energy on DNA sequence 

(e.g. positional independence) are reasonable for most DNA-binding proteins. In fact, 

starting from this assumption it can be shown that under conditions of binding site 

saturation the information theoretic log-odds position weight matrix is a matrix of scaled 

binding free energy contributions [123, 124]. Adapting a biophysically-based approach to 

motif discovery would thus appear to be, if not a straightforward extension of previous 

approaches, at least a natural one.  Indeed, Tsang and coworkers presented an algorithm 

that moved toward this goal by estimating a matrix of binding energy contributions 

(position-specific affinity matrix, or PSAM) from a set of bound sequences in a ChIP-

chip experiment [54].   However in Tsang et al.’s method energy contributions are not 

directly interpretable as thermodynamic parameters.  Furthermore they ignore protein 

concentrations and assume only one binding event is possible per sequence when 

calculating binding probabilities.  Nevertheless, they were able to show that their 

approach was superior to the frequency matrix based MEME algorithm and the 

alignment-based AlignACE algorithm for discovering motifs with very weak sequence 

signals.   

Djordjevic and colleagues introduced the QPMEME algorithm which estimates a 

PSAM and a chemical potential for a transcription factor based on a set of pre-defined 

bound examples [53].   They showed that their binding model was superior to the 

information matrix approach in the context of binding site identification in E. coli. Their 
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method considers the effect of concentration in the form of a chemical potential which is 

closely related to the best threshold for classifying bound and unbound sites.  However, 

they assume that known regulatory sites are bound with probability very near 1 under 

physiological conditions.  Furthermore, they do not make explicit use of unbound 

examples but rather assume that random DNA sequences have a Gaussian distribution of 

binding energies. They then perform a constrained optimization, minimizing the 

probability that random sites are bound subject to the constraint that observed sites are 

bound. Their all or none approach is not appropriate for analyzing binding of regulators 

for which modulation of the binding probability (e.g. by altering the concentration) plays 

a physiological role.   

The MatrixREDUCE algorithm is used to analyze protein binding data and 

estimate a PSAM that is directly interpretable as binding free energy contributions [125].  

MatrixREDUCE assumes that ChIP ratios are linearly proportional to the occupancy of a 

sequence and estimates binding energies by performing a least-squares fit to the intensity 

ratios.  Foat et al. showed that these estimates are in good agreement with in vitro 

experimental binding affinity measurements and the predictions of structure-based 

models.  However, the MatrixREDUCE algorithm does not directly model the effect of 

protein concentration on binding and assumes that this concentration is very small 

relative to the dissociation constant of the protein-DNA complex.  This may not always 

be a valid assumption for low affinity sites. 

Biophysically-based models have also been used in the context of expression 

pattern prediction in the developing fruit fly [126]. Segal and coworkers used 

transcription factor concentration data and estimates of their binding specificities in a 
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model that predicted both transcription factor binding occupancy in promoter regions, as 

well as downstream expression effects. They validated their model’s performance by 

testing its ability to recapitulate observed spatial gene expression patterns for held-out 

test modules. In a similar vein, Gertz et al. used biophysical modeling to explain the 

ability of a library of synthetic yeast promoters to drive expression in yeast [127]. They 

found that such models could explain a large fraction of the variance in observed 

expression levels and revealed the importance of weak and/or cooperative binding events. 

These results suggest that biophysical approaches have significant promise in capturing 

the behavior of transcriptional regulatory systems; however neither the work of Segal et 

al. nor that of Gertz and coworkers uses direct evidence of protein binding to train their 

models. Methods for directly learning and testing biophysical models of protein-DNA 

interaction from high-throughput ChIP data would thus represent a useful contribution to 

the field.  

4.2 A biophysical model of DNA-protein interaction 

In this section we present a very simple model of protein binding to DNA that makes no 

unwarranted assumptions about protein concentration level in the nucleus. In later 

sections we will show how this framework may be adapted for use in motif discovery and 

the analysis of ChIP data. We assume that protein, A, binding to a site, B, to form a 

complex, C, can be modeled as a bimolecular reaction at equilibrium. We further assume 

that the nucleus acts as a constant pressure and volume “reaction vessel”. The equilibrium 

constant of the reaction is: 

 

 
  a

C
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A B


 (4.1) 
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This leads to a simple expression for the probability, p, that protein and DNA form a 

complex:  
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In equation 4.4, ΔG is the free energy of the binding reaction relative to the unbound 

state. We now make the simplifying assumption that the free energy (scaled by the 

temperature and gas constant) can be expressed as the sum of contributions of individual 

nucleotides, xi. Replacing the protein concentration term with β0 yields the logistic 

function: 
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 (4.6) 

The logistic form of equation 4.6 immediately suggests a straightforward method for 

estimating the position-specific binding energy contributions of each nucleotide as well 

as the nuclear protein concentration. If we were provided with a representative 

distribution of bound and unbound genomic sites, we could find maximum likelihood 

estimates of the  parameters by simply training a logistic regression classifier to 

distinguish them.  
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4.3 The THEME+ algorithm 

THEME+ is an extension of THEME that adapts the biophysical framework presented 

above to perform motif analysis of ChIP data. In THEME+, the separate steps of motif 

optimization and classifier training are replaced with a joint motif optimization and 

classification procedure. THEME+ is similar to the QPMEME algorithm in that it learns 

a motif and concentration that discriminates between bound sites and unbound 

background. However unlike QPMEME, THEME+ makes explicit use of unbound 

regions and does not require that the precise binding site of the factor be known. It is thus 

suitable for analyzing ChIP data, where there is uncertainty about the exact location(s) of 

protein binding within an immunoprecipitated region.   

4.3.1 THEME+ Probability Model 

We have a set of sequences with associated labels, y, taking on the value of 1 if a 

sequence was bound in the ChIP experiment and 0 otherwise. For a motif with width w, 

each sequence of length L contains 2(L-w+1) potential binding sites (on both the forward 

and reverse complement strands). We ignore any steric constraints that may exclude 

overlapping binding sites. The probability that such a sequence will not be bound 

anywhere is given by the product of the probabilities that each individual site, with 

nucleotide content Xi, is not bound: 
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    (4.7) 

The log probability of the label data given the motif model is thus: 

        log 1 log 1 log 1 1i j i j
i j j

P y g X y g X
  

       
   

    (4.8) 
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Maximization of this expression in terms of the motif parameters is complicated by the 

log of ‘1 minus the product of probabilities’ term. We circumvent this difficulty by 

augmenting the likelihood function 4.8 with the hidden variables, Z, which indicate 

which positions in each sequence are bound by the protein of interest: 
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 (4.10) 

The first term in equation (4.10) expresses constraints on the label for a given binding 

configuration (i.e. the probability of observing y = 1 is 0 unless the sequence is bound in 

at least one position, and the probability of observing y = 0 is 1 if the sequence is 

unbound, and 0 otherwise). The second term is simply the probability of the binding 

configuration given the energy and concentration parameters. Our strategy is to use 

Expectation Maximization to obtain estimates of the parameters that maximize the 

probability of the observed data labels. 

4.3.2 Expectation Maximization procedure 

E step 

In the E-step we need to calculate the expected likelihood function given the label data 

and the current motif parameters. For sequences with y = 0, this is simple since all hidden 

variables are 0 with probability 1. For sequences with y = 1, we must calculate: 
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(4.11) 

For a particular binding site, the expected value of z is: 
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M step 

In the M-step we maximize the expected likelihood (4.11) in terms of the motif model 

parameters. The convenient logistic form of g(X) means that this is equivalent to training 

a logistic regression classifier to distinguish bound sites from unbound sites using the 

nucleotides at each position as the predictive features. The difference being that, instead 

of hard labels, the classifier uses the soft binding labels calculated in the E-step.  

 As in the THEME algorithm, we restrain the model parameters during 

optimization. This is accomplished by placing a Gaussian prior on each regression 

parameter and estimating their values using Bayesian logistic regression. For the energy 

terms, the prior mean is set to the log-odds of each nucleotide in the original motif PWM 

hypothesis. The concentration is initialized to the value that yields optimal separation of 

bound and unbound examples given the initial motif. The variance of the prior is treated 

as a regularization parameter that is selected using an internal round of cross-validation 

during the M-step. We use the previously reported algorithm of Genkin et al. to perform 

Bayesian logistic regression [128]. 
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4.3.3 Performance and results 

We examined the performance of the THEME+ algorithm on several ChIP-chip and 

ChIP-seq datasets from a variety of tissues in both human and mouse. For each data set 

we first identified all bound regions from the ChIP-chip or ChIP-seq experiment. For 

previously published ChIP-chip data we used the regions reported as bound from each 

respective study. For unpublished ChIP-seq data we used the MACS algorithm with a p-

value cutoff of 1e-6 to identify bound regions. Unbound negative examples were 

obtained by randomly selecting unbound genomic regions, taking care to match the 

sequence length distribution as well as the distribution of distances from nearby 

transcription start sites.  The negative and positive datasets were of equal size. For each 

protein, we ran the THEME+ algorithm, testing family binding profiles from the 

appropriate DNA-binding domain family of the protein. Each motif hypothesis was 

optimized with 5 iterations of EM and evaluated by its mean 3-fold cross-validation error. 

In order to evaluate the performance of the algorithm when the DNA-binding domain of 

the protein is not known a priori, we evaluated the entire library of 105 family binding 

profiles on each dataset and determined the rank of the motif matching each protein’s true 

DNA binding specificity. The results are summarized and compared to the original 

THEME algorithm in Table 4.1. The THEME+ algorithm performs well on these data, 

identifying a motif consistent with the known binding specificity of the protein in all 

cases when we restrict the set of starting hypotheses to family binding profiles derived 

from the protein’s binding domain. When we test all profiles, THEME+ still performs 

well, with the correct motif ranking first for 17 of 22 datasets. Its performance is 

comparable, and perhaps slightly better, than the standard THEME algorithm.  
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Table 4.1 Performance of THEME+ 

Protein Tissue Top THEME+ motif Mean 
cv error 

Rank Top THEME 
motif 

Mean 
cv error 

Rank 

C/EBPα mouse 
liver 

TkrCGymA 27% 1 aTTg..cAAt 29% 1 

E2F4 mouse 
liver 

GCGssAAa 22% 1 GCGssAAa 24% 3 

FOXA2 mouse 
liver 

ryAAACAa 39% 1 ryAAACA. 41% 1 

FOXP3 mouse 
CD4+ T-
cells 

rtAAACAn 35% 2  rYAAACAa 37% 2 

HNF4α mouse 
liver 

nnrGgtca 38% 10 tgacCTytGacCy. 40% 6 

pCREB mouse 
liver 

grTGACGy 27% 1 .tgaCGtca. 27% 1 

PPAR mouse 
3T3-L1 

TGACCTTTGACCyy 31% 1 tgaCCTtTgaCCy. 27% 1 

RXR mouse 
3T3-L1 

anrGGtCA 36% 4 tgaCCTyTgaCCy. 32% 1 

c-Rel human 
U937 

GgAwwTCC 36% 1 GGrAw.yCCc 34% 1 

E2F4 human 
HepG2 

GCGcsAAA 35% 2 GCGssAAa 35% 1 

FOXA2 human 
liver 

ryAAACAa 37% 1 ryAAACA. 39% 1 

HNF4α human 
liver 

TGACCTTTGACCyy 32% 1 tGgmCytTGsCcy. 30% 1 

HNF6 human 
liver 

saATCGAT 30% 1 srATCgAT 32% 1 

p50 human 
U937 

GGGgAwTcCCC 28% 1 GGGrawtyCCC 30% 1 

p52 human 
U937 

GGGgAwTcCCC 25% 1 GGGGAwTCCCC 21% 1 

Nanog human ES 
cells 

tAATTrat 42% 2  yAAtkrsy 42% 8 

NeuroD1 mouse 
MIN6 

CAgcTG 29% 1  sCAgcTGs 38% 4 

p65 human 
U937 

GGGGAwTcCCC 39% 1 sggrawtyccs 40% 1 

RelB human 
U937 

GGAawtTCC 34% 1 GGrAw.yCCc 30% 1 

Sox2 human ES 
cells 

aaCAAwgn 35% 1 AACAAwrr 39% 5 

Oct4 human ES 
cells 

AtGCaaak 40% 1 ATGcaaAt 40% 4 

pCREB human 
islets 

snTGaCkt 37% 1 .TgACGTcA. 40% 1 

 

For eleven transcription factors THEME+ finds a motif with better cross-validation error 

than THEME, whereas the reverse is true for six datasets. When the entire set of 105 
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family binding profiles are tested, THEME+ ranks the correct motif higher than THEME 

for 5 datasets, whereas THEME gives a better rank to the correct motif for 3 datasets. 

These results suggest that the biophysical model of protein-DNA binding is well-suited 

for motif analysis of ChIP data. The slight differences in performance between THEME+ 

and THEME may be attributable to the differences in the assumptions made by the two 

approaches. In THEME, the possibility of false positives in the bound data is built into 

the generative model of sequence used to learn the motif model. In contrast, THEME+ 

does not account for this possibility and assumes that every sequence in the positive set is 

bound by the protein. The original THEME algorithm might therefore be expected to 

perform better on noisier datasets. A second difference is that THEME assumes a single 

binding site for the protein in each bound sequence. Classification is based on the single 

best match to the motif in each sequence. THEME+ makes no such assumption and 

includes the contributions of every potential binding site in the sequence. Thus for 

proteins with multiple weak binding events in immunoprecipitated regions THEME+ 

might be expected to demonstrate improved performance.  

4.4 Incorporating ChIP-seq count data 

A key limitation of the THEME+ algorithm is that it uses hard labels corresponding to 

bound or unbound regions and ignores the fact that, due to the dynamic nature of protein-

DNA association, binding level is actually a continuum of fractional values. When we 

perform a ChIP experiment we are measuring a signal arising from this fraction of bound 

sites. It is reasonable to assume that there is information about transcription factor 

concentration and binding site strength in the ChIP signal. In fact, several groups have 

observed that ChIP-chip ratio signals and ChIP-seq count data appear to be related to in 
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vivo binding occupancy [129, 130]. In this section we extend the probabilistic framework 

presented in section 4.3 to better take advantage of the information present in raw ChIP-

seq count data. We begin by reviewing, in Figure 4.1, the basic experimental workflow of 

a ChIP-seq experiment: 

 

Chromosomal Position

A B C D E F  

Figure 4.1: ChIP-sequencing workflow. In a ChIP-seq experiment cells from a tissue of interest are 
isolated (A) and a chemical cross-linking agent is used to covalently link amino groups resulting in 
persistent association of protein to genomic DNA or other protein with which it associates in vivo (B). 
Genomic DNA is isolated, fragmented, and enriched for bound sites by immunoprecipitation using an 
antibody specific to the protein of interest (C). Unenriched whole-genome DNA, or DNA obtained by 
mock-IP, is reserved as a control. The cross-linking procedure is reversed, the DNA is purified and is then 
sequenced (D). The resulting sequence reads are aligned to a reference genome (E). Finally, genomic 
regions enriched for reads in the IP channel relative to the control are identified and reported. 

 

To extend our model to use raw ChIP-seq counts we treat the genome as having 

been divided up into a set of sequence regions. Rather than a set of binding labels, in this 

setting the observed data is a set of counts: the number of individual sequence tags that 

align to a given genomic region. As shown in Fig 4.1, in order for an individual binding 

event to be detected as a count in a ChIP-seq experiment the protein must be bound to the 

site in the cell, cross-linked to the DNA, immunoprecipitated by an antibody, sequenced, 

and aligned to the reference genome. At each step in this process, there is a certain loss. 

Starting from a total population of identical binding sites in N cells, only a small fraction 
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will be detected as a tag count in the ChIP-seq experiment. In addition, some counts will 

arise from unbound or non-specifically bound background DNA. The probability that a 

particular genomic location in the population will be detected as a tag is given by: 
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In equation (4.13) the probability the site is bound in vivo is given by p. The probability a 

sequence tag is detected given that the site is bound is denoted by θ, and  is the 

probability of detecting a tag given that there is no binding.  

 The probability of detecting a sequence tag that aligns to a genomic region given 

that there is no binding could, in theory, be estimated on a region-by-region basis from 

the control experiment where DNA obtained from a mock-IP, or unenriched whole 

genome DNA, is sequenced. This estimation is difficult since it depends on knowing the 

total number of cells in the starting sample. Although this could be measured 

experimentally, in general this information is not available to us. We therefore use an 

alternative strategy to account for background binding. We take the control experiment 

and linearly scale the number of reads so it is the same as in the IP, and then subtract 

these scaled control reads from the IP reads to obtain an estimate of the reads arising 

from immunoprecipitated DNA. We now introduce a modified version of equation (4.13) 

that gives the probability of observing an aligned sequence tag in the vicinity of a binding 

site, after background subtraction: 
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In equation 4.14 we make the assumption that the probability of observing a tag count 

(after background subtraction) given the site is bound is much greater than the probability 

of observing a count given that the site is not bound. The  parameter now accounts for 

the presence of any residual background sequence tags that are not eliminated by 

background subtraction. For a particular region in the genome, we now express the 

probability of observing k aligned sequence tags from N total cells using the binomial 

distribution: 
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 (4.15) 

Employing the Poisson approximation to the binomial distribution allows us to express 

this probability as: 
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The observed tag count can thus be viewed as the sum of two independent Poisson 

random variables: the first with firing rate p arising from bound instances in the 

population of cells, and the second with a firing rate of a that arises from unbound 

background.  

4.4.1 Unified Probability Model 

The probability of observing a given tag count number in a sequence region depends on 

the fractional in vivo occupancy of the protein of interest in that region (p in equation 

4.16). This fractional occupancy is assumed to be a function of the motif and protein 

concentration. Specifically we assume that the probability a sequence is not bound 
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anywhere is given by (4.7), that the probability it is bound is 1 minus this value, and 

further that in equilibrium the binding probability is equivalent to the fractional 

occupancy of that region across the entire population of cells. Rather than directly 

estimating the parameters of our model from the data, we again employ an expectation 

maximization approach to decouple the parameter estimation step. This approach will 

allow us to easily extend the model to analyze binding data for multiple proteins as 

discussed below. We again introduce hidden variables indicating where the protein of 

interest binds in each region. Here we wish to estimate fractional occupancy, so unlike in 

section 4.3 where a single set of hidden variables was used, we introduce M virtual copies 

of each sequence region; each copy has its own set of indicator variables that specify its 

binding configuration: 
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 (4.17) 

As before, parameters are learned using an iterative EM-like procedure. Given the 

expected value of the hidden variables, estimation of the motif and concentration 

parameters in the M step proceeds as before, by training a logistic regression classifier to 

distinguish bound sites from unbound sites. Estimation of the parameters  and a can be 

accomplished by numerically solving the equations:  
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In the E step we employ a sampling strategy to obtain estimates of the hidden variables 

given the observed ChIP tag count data. In the section that follows we describe this 

strategy in detail. 

4.4.2 Modified Stochastic Simulation algorithm 

To obtain expected binding occupancies given the tag count data in each genomic region 

we employ a sampling method, inspired by the Gillespie stochastic simulation algorithm 

[131], which can be derived by viewing each genomic region as a chemical system at 

equilibrium. Imagine we have a well-mixed reaction vessel where i=1…N different 

reactions can occur.  Gillespie showed that the time of the next reaction of type i is 

distributed exponentially: 
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Where hi is the number of distinct combinations of reactants that can combine according 

to reaction i, and ci is the rate constant.  Assuming constant chemical potentials, each 

reaction is an independent Poisson arrival process and therefore the time of the next 

reaction of any type is also a Poisson process with inter-arrival times distributed 

exponentially: 
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We can therefore view the unfolding of a reaction time course as a Poisson splitting 

process with inter-arrival times distributed according to (4.20).  Each arrival is sent to an 

individual reaction channel, i, with probability: 
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The execution of a reaction changes the chemical potential for other reactions so this 

Poisson process is non-homogeneous.  However, by sequentially drawing samples from 

these two distributions and updating the ai’s we arrive at the well-known Gillespie 

stochastic simulation algorithm (SSA) for exactly sampling the trajectory of a reacting 

system.  

Here we modify the SSA to obtain samples from an approximation to the 

posterior equilibrium distribution of binding events.  The reactions that must be modeled 

are simply protein association and dissociation from DNA, however in general this 

scheme could be expanded to include other reactions like association of proteins to form 

a bound complex.  The original Gillespie algorithm assumes that all relevant rate 

parameters are known and then proceeds by iteratively selecting the next reaction based 

on these rate constants and the current number of reactant molecules (i.e. the chemical 

potential).  To obtain the rate constant for binding and dissociation reaction we make two 

observations: the relative rates of the forward and reverse reactions at equilibrium are 

given by the equilibrium constant which we can calculate for any binding site using the 

motif and concentration parameters of equation (4.6), and secondly, since we are 

concerned only with the equilibrium behavior of the system rather than its time-course 
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kinetics, these relative rates are all that is required in our simulation as long as sampling 

is run for a time course long enough to achieve equilibrium. 

We incorporate posterior binding evidence by calculating an effective chemical 

potential for the reaction. Consider the case where we have evidence, X, regarding the 

equilibrium state of the system.  We wish to bias the reaction time course so that 

reactions more consistent with the evidence are favored.  We accomplish this by altering 

the Poisson splitting process.  Rather than splitting the arrivals according to (4.21), we 

split according to the posterior probability of a reaction given the evidence: 
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Near the posterior equilibrium point the probability of the evidence given that the next 

reaction is ri will be approximately equal for each reaction, (4.22) will be approximately 

equivalent to (4.21), and we will approach the standard SSA. Intuitively, this strategy 

achieves a balance between the likelihood of the observed count data and prior 

information in the form of the current binding free energy and concentration parameters. 

Reactions consistent with both the binding specificity of the protein and the posterior 

evidence will be favored.  

 The argument that follows suggests that this scheme allows us to obtain samples 

from a reasonable approximation to the posterior distribution over binding 

configurations: The stochastic simulation algorithm allows for exact simulation of the 

time course of any chemical system. 
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Figure 4.2: Stochastic simulation algorithm schematic. The stochastic simulation algorithm is used to 
obtain samples from an approximation to the posterior distribution of binding configurations. The 
algorithm first selects a reaction time according to equation (4.20) followed by random selection of a 
binding or dissociation reaction according to equation (4.22). After reaction selection, the reactant numbers 
and rate constants are updated and the procedure is repeated until the end time, tend, is reached. 

 

Thus if an equilibrium point exists, running the SSA for a time course long enough to 

achieve equilibrium allows us to obtain samples from the Boltzmann distribution over the 

states of the system, i: 

 
 /i BE k T
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  (4.23) 

In equation (4.23) the total number of states (binding configurations) is N, Ei refers to the 

free energy of state i, kB is the Boltzmann constant, and Z is the normalization constant 

obtained by summing over all configurations. Equation (4.23) is equivalent to the prior 

probability distribution over the hidden binding variables shown in equation (4.17): 
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Now, if we introduce another energy term that corresponds to the “likelihood energy” of 

each configuration, we arrive at an expression equivalent to the joint likelihood of the 

observed count data and hidden binding variables: 
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  (4.25) 

Simulating a chemical system with an equilibrium partition function equal to equation 

(4.25) should therefore allow us to obtain samples from the posterior distribution of 

configurations given the observed count data. Our sampling strategy is, in fact, equivalent 

to simulating such a system. Imagine grouping binding and dissociation reactions into 

sets that all lead to identical values for the data likelihood. We now treat each binding 

and dissociation event as a two-step process where one of these reaction sets is first 

selected, and then a particular reaction from the set is executed: 

B

Select reaction group Execute reaction

e-ΔG/RT

1/e-ΔG/RT

CA
e-logP(data)

1/e-logP(data)

CA
e-logP(data) e-ΔG/RT

1/e-logP(data) e-ΔG/RT

Net reaction

 

Figure 4.3: The reaction selection strategy can be represented as a reaction with two free energy 
components: one related to the contribution of the data likelihood and one related to the a priori 
favorability of the reaction given the binding site sequence. 
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If the “group selection” step has free energy equal to the data log-likelihood for that 

group, then the net free energy for any group selection followed by binding/dissociation 

reaction is given by  log |net rxnG G P Data rxn    , and the relative rates of the 

forward and reverse reactions are given by  log |rxnG P Data rxne   as shown in Figure 4.3 above. 

This leads to selecting reactions according to equation (4.22) during the SSA and 

suggests that, provided simulations are run long enough to achieve equilibrium, our 

method should do a reasonable job of sampling from the posterior distribution of binding 

configurations. 

4.4.3 Results 

We tested the algorithm on ChIP-seq datasets for several different transcriptional 

regulators in two different tissues. For each factor, a set of ChIP-enriched regions was 

first identified by running the MACS algorithm [46] with a low stringency p-value cutoff 

threshold of 1e-5. We then determined the number of counts that aligned to each region. 

We subtracted out kN reads based on the control data, where N is the number of control 

reads aligning to the region of interest and k is the ratio of total IP reads to total control 

reads that passed the sequencer manufacturer’s quality filters. The background subtracted 

count data and each region’s DNA sequence was provided as the input to our algorithm. 

Our strategy for analyzing each dataset is similar to the strategy employed by THEME+. 

We test a set of starting motif hypotheses, optimizing the motif by taking advantage of 

the count data, and evaluating the optimized motif models using their cross-validated 

likelihood scores. The motif yielding the best mean likelihood score after cross-validation 

is reported. The results are summarized below: 
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Table 4.2: Top-ranked motifs obtained from analysis of raw ChIP-seq count data 

Experiment Top-ranked motif Starting hypothesis Previously-reported 
binding specificity 

E2F4 3T3-L1 cells 

   
E2F4 liver 

   
C/EBPα 3T3-L1 
cells 

  
 

C/EBPα liver 

   
FOXA1 liver 

   
FOXA1 liver (high 
fat diet) 

   
FOXA2 liver 

   
FOXA2 liver (high 
fat diet)  

  
 

For all experiments we detect a statistically significant relationship between the predicted 

binding probability (calculated from the optimized motif parameters) and the observed 

count data. Figure 4.4 below shows 100-point moving average plots of the mean number 

of counts for held out test regions, sorted by predicted binding probability. These plots 

validate the basic assumption behind our approach: namely that the quantity of in vivo 

binding is related to the affinity a protein has for a particular genomic region. 
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Figure 4.4: Motifs reported for each experiment are significantly correlated with ChIP-seq count 
data. Held out test regions were scored using the final motif parameters obtained from training. Test 
regions were then sorted by predicted binding probability. We then calculated a 100-point moving average 
of ChIP-seq counts for the sorted regions, which is shown above for each experiment. Also shown is the 
Spearman rank correlation and associate p-value from a two-tailed t-test between binding score and ChIP-
seq tag counts. 

 

After model training, we can perform a final round of sampling on all the 

sequence regions in order to estimate posterior binding occupancies. This leveraging of 

motif information could, in principle, help weed out false positives or assign more 

confidence to weakly bound regions with good motif matches. However, this type of 
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strategy should be approached with caution since, in addition to interacting with the 

genome through their DNA-binding domain, many transcription factors are recruited to 

their genomic targets via protein-protein interactions with other regulators. Another 

difficulty in using posterior binding estimates to improve the identification of bound 

regions in a ChIP experiment is that, in general, we lack of a ‘gold standard’ set of bound 

and unbound regions with which to evaluate the change, if any, in accuracy over standard 

approaches. In principle, binding predictions could be validated by performing chromatin 

immunoprecipitation followed by a set of gene specific PCR experiments. In the absence 

of such data, one can attempt to roughly estimate performance by evaluating the 

predictions accordance with other biological data sources. One imperfect method is to 

identify genes located near the identified binding events and then to evaluate their 

functional coherence using the Gene Ontology [132] or biological pathway information 

[133]. This assumes that each protein will regulate a functionally coherent set of targets 

(which may or may not be true). This method is also sensitive to the quality of the 

annotation data used to assess functional coherence. An alternate strategy is to evaluate 

the expression of target genes under the assumption that regulator binding is associated 

with a consistent effect on expression across all targets. Again, this is a strong assumption 

since many regulators are known to have both activating and repressive effects of varying 

magnitude in different contexts. In the figure below, we show moving average plots of 

absolute expression intensity vs. predicted binding occupancy for C/EBPα and E2F4 in 

3T3-L1 cells, and for C/EBPα, E2F4, FOXA1, and FOXA2 in liver hepatocytes. To 

generate these plots, for each region we identified the nearest transcript with detectable 

expression from Affymetrix Mouse 2.0 arrays. We then removed from the analysis any 
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binding event located further than 10kb from a transcription start site to avoid biasing the 

analysis by including many potentially nonfunctional events. We sorted the remaining 

regions by both total tag counts and mean posterior binding occupancy, and then plotted 

500-point moving averages of absolute expression. 

 

Figure 4.5: Expression vs. predicted occupancy and ChIP-seq tag counts. 500-point moving average 
plots of mean absolute expression are show for genomic regions sorted by predicted binding occupancy and 
by raw ChIP-seq tag count number. Also shown are rank correlations between expression and predicted 
occupancy for factors with significant correlation between expression and binding. 
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Figure 4.5 shows there is a weak, but statistically significant correlation between 

expression and predicted occupancy for several factors. We interpret this as further 

confirmation that the ChIP-seq count data contains biologically meaningful information 

about binding occupancy that our method successfully leverages. Several additional 

points are worth noting here: First, C/EBPα, FOXA1, and FOXA2 are all known to have 

important transcriptional activation function in liver (as well as 3T3-L1 cells in the case 

of C/EBPα) [134-136] and all show a positive correlation between expression and 

binding. Second, consistent with E2F4’s known role as a transcriptional repressor [137], 

its binding seems to be negatively correlated with expression, although this relationship 

only becomes apparent at high levels of occupancy. Third, and unfortunately, we find no 

strong evidence that posterior binding estimates are better correlated with expression 

outcome than is the raw count data. The utility of employing motif information to assess 

the confidence of binding events from a ChIP-seq experiment remains an open question 

which will likely only be resolved through careful experimental validation of binding 

predictions made with and without the use of motif data. 

4.5 Joint analysis of ChIP-seq data from two conditions 

A frequently encountered problem when analyzing ChIP data for a protein in different 

tissues or growth conditions is determining which portion of the observed differences in 

binding arise from biological sources (e.g. changes in the quantity of protein in the 

nucleus, the binding specificity of the protein, chromatin accessibility, or the activity of 

binding partners) and which portion arises from experimental sources (e.g. differences in 

IP efficiency or other experimental noise). In theory, there should be information in the 

relative occupancy of binding sites with different affinities that allows us to address this 
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question. Specifically, the protein concentration determines the relative occupancy of 

sites with different affinities. Consider a strong and a weak binding site exposed to the 

same concentration of a transcription factor. At low concentrations, only the high affinity 

site will be highly occupied, whereas at high concentrations even the weak site will have 

high occupancy: 

 

Figure 4.6: Weak site to strong site occupancy ratio as a function of concentration. Here we plot the 
fractional occupancy ratio of a weak binding site with a 0kcal/mol association free energy and a strong site 
with a -4kcal/mol binding free energy at various concentration levels. 

Joint analysis of binding data for a factor in two conditions should in principle allow us to 

compare the concentration of the factor in these conditions. Assuming that the binding 

specificity of the protein does not change, the relative occupancy of low and high affinity 

sites within each condition is determined by the concentration. In this setting, we share 

statistical strength across conditions to estimate the motif binding energies, while the 

relative occupancy of weak and strong affinity sites within a condition is used to predict 

concentrations. Of course, it is also possible that any occupancy changes between 
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conditions may be rooted in changes in site accessibility (via chromatin structure 

changes), specific protein-protein interactions, competition with other factors, or changes 

in binding affinity rooted, perhaps, in post-translational modifications of the protein. 

Such changes might be poorly modeled allowing only the concentration parameter to 

change across conditions. Therefore, for each experiment pair we also test an alternative 

hypothesis that both the binding specificity and the concentration may change between 

conditions.  The results of this analysis for C/EBPα, E2F4, FOXA1, and FOXA2 profiled 

in two separate tissues/growth conditions are summarized below: 

Table 4.3: Concentration and specificity comparisons across conditions 

Protein Condition 
1 

Condition 
2 

Predicted 
concentration ratio 
(condition 1 vs. 2) 

Fold expression 
change (condition 

1 vs. 2) 

predicted 
specificity 
difference 

E2F4 liver 3T3-L1 1.0 0.95 No 
C/EBPα liver 3T3-L1 2.6 3.0 Yes 
FOXA1 normal diet 

liver 
high fat diet 

liver 1.3 1.09 No 

FOXA2 normal diet 
liver 

high fat diet 
liver 0.6 1.25 No 

 

For three of four factors our results show that the binding data is more consistent with a 

model that does not allow binding specificity to change. It is only for C/EBPα that the 

cross-validated likelihood score was improved by allowing the specificity to change. This 

is consistent with the results of section 4.4.3 which suggested that C/EBPα binding in 

liver and 3T3-L1 was best explained by different bZIP-like motifs. The predicted 

concentrations in each condition are largely consistent with expectations based on 

expression data. E2F4 and FOXA1 are predicted to have very little difference in their 

nuclear concentrations in each condition, and show no significant difference in their 

expression levels in these conditions. In contrast, C/EBPα is upregulated approximately 

3–fold in liver relative to 3T3-L1 cells and our method predicts a 2.6 fold difference in 
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their concentrations. It must be stated, however, that this predicted concentration 

difference should be interpreted with extra caution since the binding specificity was also 

predicted to change in liver and 3T3-L1. The concentration parameters are therefore not 

directly comparable. FOXA2 is a very interesting case. It shows somewhat higher 

expression in normal diet, however our method predicts an almost 2-fold decrease in 

concentration in normal diet relative to high fat diet. This observation may be rooted in 

the biology of FOXA2 regulation. During starvation, FOXA2 is localized to its targets in 

liver; however during feeding it is phosphorylated and sequestered outside of the nucleus 

in response to insulin signaling [138]. In high fat diet induced diabetes, insulin signaling 

by the protein IRS2 is compromised. This leads to activation of forkhead proteins like 

FOXO1, who are no longer phosphorylated. However FOXA2, since it is phosphorylated 

by both IRS1 and IRS2 (whose function is not affected in insulin resistance), was thought 

to remain largely inactive [139]. Our results here offer up the interesting hypothesis that, 

although FOXA2 may remain partially inactive in high fat diet induced insulin resistance 

due to the action of IRS2, there may in fact be a detectable increase in its nuclear 

localization, and hence activity, that has been overlooked in previous studies. 

4.6 Modeling competition for binding sites 

One of the advantages of the biophysical framework presented above is that extending 

the model to incorporate other regulatory interactions can often be accomplished in a 

very natural and straightforward manner. An example is competition between different 

regulatory proteins for the same binding site. When two proteins, A and D, bind similar 

sequence motifs to form complexes C and E respectively, the probability that a particular 
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protein binds a site can no longer be expressed using (4.5). Instead, one must consider the 

fact that the site can now undergo two separate reactions with equilibrium constants: 
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Now the probability of binding by each individual protein is given by: 
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 (4.27) 

Again, binding probability assumes a convenient logistic form. Given a representative set 

of binding sites and their in vivo occupancies, in the 1-protein case the parameter 

estimation problem was analogous to logistic regression. Here motif and concentration 

parameter estimation involves multinomial logistic regression. This extends in a 

straightforward manner to any number of competing proteins; binding by each protein is 

treated as an additional class in the regression. The sampling procedure is also extended 

in a straightforward manner by considering binding reactions for each protein. We tested 

this framework by jointly analyzing FOXA1 and FOXA2 ChIP-seq data in normal diet 

and high fat diet liver. The results of the analysis produce motifs that are largely 

consistent with the motifs reported when the datasets were analyzed individually. We 

compared the likelihood of held out ChIP-seq count data according to the competition 

model, with likelihoods calculated when the same data were analyzed individually 

without considering competition. Curiously, in high fat diet a model that did not consider 
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competition performed better, whereas in normal diet the opposite was true: accounting 

for competition improved the test likelihood score. 

Table 4.4: Binding specificities of FOXA1 and FOXA2 learned from a competitive binding model 

Condition Protein Specificity with 
Competition 

Specificity from Independent 
Analysis 

FOXA1  
 

Normal diet 

FOXA2 
 

 

FOXA1 
 

 
High fat 

diet 

FOXA2 
 

 
 

This result seems plausible since the binding overlap between these factors is 

significantly higher in normal diet than high fat diet: 81.7% of FOXA1 sites overlap a 

FOXA2 site in normal diet, whereas only 43.1% of FOXA1 sites overlap a FOXA2 site 

in high fat diet.  

4.7 Conclusions and Future Work 

In this chapter we have presented a biophysically motivated framework for modeling 

protein-DNA interaction. This framework is different from classical consensus sequence 

or generative sequence models in that it attempts to realistically model the physical 

interaction between protein and DNA. This turns out to be directly analogous to a 

conditional motif model, and in fact the expression we derive for binding probability 
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takes on a convenient logistic form. We have demonstrated how this framework can be 

adapted to the hypothesis-testing motif analysis method presented in Chapter 3 without 

any loss in performance.  We then presented a probabilistic model relating binding 

occupancy to the tag count measurements made in a ChIP-seq experiment that allows us 

to perform a hypothesis testing analysis without imposing strict binding cutoffs.  

 A clear attraction of this approach is how it naturally extends to physically 

realistic and interesting regulatory scenarios. We have demonstrated its application for 

estimating the extent of protein concentration or binding specificity changes across 

different tissues or conditions. We have also demonstrated that the framework can easily 

be extended to model competition between regulators for common binding sites. There 

are several other interesting and straightforward extensions that have occurred to us that 

we outline below: 

Mixture models of binding specificity 

It is possible that a single affinity matrix does a poor job of representing the binding 

specificity of a transcriptional regulator. Indeed, there are examples of proteins with 

binding specificities that would be more naturally represented as a multi-component 

mixture of matrices such as SREBP, which may bind the consensus sequence 

TCACCCyA as well as the E-box CACGTG [140]. There are also proteins that may be 

recruited to DNA both by binding their consensus sequence and by interacting with 

another DNA-bound factor. Such mixture models are easily handled in this framework. 

Consider a two-component mixture model: here our approach is to model binding as 

occurring through two different reactions: 
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This leads to an expression for binding probability that is very similar to the binding 

competition scenario presented above. After sampling, estimation of motif parameters 

may proceed via multinomial logistic regression as before, with the additional constraint 

that the protein concentration parameter is shared across classes: 
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Coregulator recruitment 

Coregulators are recruited to their targets through interactions with DNA-bound proteins. 

Many of these coregulators can interact with multiple proteins, and competition for 

limiting concentrations of coregulator among promoters is thought to be an important 

regulatory mechanism in certain contexts [141, 142]. Our biophysical framework can be 

adapted to jointly analyze the binding of a DNA-binding transcription factor or factors 

and a coregulator that is recruited by that factor. A DNA-binding protein is assumed to 

exist in two forms in the nucleus: free protein and protein complexed with a coregulator. 

Free protein A, can bind a site, B, to form a complex C. In addition, a protein-coregulator 

complex, D, can also bind the site to from a separate complex E. The complex, C, can be 

bound by free coregulator to form E. The entire set of reactions that need to be 

considered is shown below: 
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This leads to the following expression for the probability a binding site will be found 

bound by the DNA-binding protein only (species C), and the probability it will be bound 

by the complex E: 
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  Physically realistic models have a very important advantage over many other 

approaches: interpretability. Interpretability is particularly crucial in the highly 

collaborative settings where computational biology techniques are most valued since 

results must often be communicated to experts from a range of disciplines. This chapter 

has hopefully demonstrated that developing such models does not necessarily require 

sacrificing computational convenience or principled statistical methodology. 
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Chapter 5: A model of transcriptional enhancer function 

In this chapter I present the results of a study examining transcriptional enhancer 

structure and function in three mouse tissues. This chapter applies many of the ideas 

presented in the previous chapters, while at the same time introducing a novel predictive 

model of gene expression. Of all the projects I have been involved in during my thesis 

work, I feel that this project best exemplifies the power that joint computational and 

experimental studies can bring to bear on furthering our understanding of biology. The 

success of this study depended on very significant experimental efforts on the part of 

William Gordon, Alice Lo, Shmulik Motola, and Tali Mazor who performed either ChIP 

or gene expression microarray experiments. 

5.1 Introduction 

Control of gene expression programs across diverse tissues and developmental stages is 

achieved through complex networks of proteins interacting with specific regulatory sites 

in the genome. Chromatin immunoprecipitation (ChIP) coupled with high throughput 

microarray (ChIP-chip) or sequencing (ChIP-seq) technology has allowed the structure of 

some of these networks to be mapped on a genome-wide scale [143-146]. These draft 

networks must be interpreted with caution since there is evidence that only a subset of 

regulator binding sites identified in a ChIP experiment are functional, while many 

binding events play no direct role at all in determining transcription levels [147]. Even if 

all functional regulatory regions in a tissue could be identified, there is currently no 

simple and accurate quantitative framework describing how the resulting regulatory 

architecture relates to transcription levels of regulated genes, or indeed even how to 

associate binding events with the genes they may regulate in a principled manner. 
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Finally, the effect of a regulatory site on expression levels will depend on complex 

combinatorial interactions among the multiple transcriptional activators and repressors 

they bind, and it is currently unknown how large a role such interactions play in 

determining tissue-specific expression levels. 

In this chapter we present a model of transcriptional regulation that successfully 

addresses these key challenges. We identified enhancers and proximal promoter 

regulatory sites by performing high throughput ChIP experiments on CREB-binding 

protein (CBP), the deacetylase SIRT1 and on multiple DNA-binding transcription factors 

in three different tissues.  Sequence analysis of the immunoprecipitated DNA reveals 

important tissue-specific DNA-binding proteins that recruit CBP to distinct regions in 

different cell types. We analyze binding and expression data to reveal the quantitative 

effect that each regulatory complex has on a gene’s expression.  Remarkably, we find that 

the function of a regulatory site is, to a large extent, dependent on its proximity to the 

transcription start site of a gene.  Our approach also reveals the relative contributions of 

each protein to combinatorial control of transcription.   

5.2 Experimental identification of enhancer regions 

A recently described strategy used ChIP to profile the genomic localization of the p300 

enhancer-binding protein [148, 149]. We employed a similar strategy by performing 

ChIP on mouse liver and cerebellum samples using an antibody specific to CBP, a 

transcriptional coregulator closely related to p300. Immunoprecipitated DNA from liver 

was sequenced, the 35bp reads were aligned to the reference mouse genome, and regions 

with significant levels of CBP binding relative to a set of control reads were identified. 

We also performed ChIP-chip experiments in liver and cerebellum using mouse promoter 
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microarrays.  The ChIP-seq analysis identified 18,264 CBP-bound regions in liver, while 

the ChIP-chip experiments revealed 2,608 and 2,452 CBP-bound regions near proximal 

promoters in liver and cerebellum respectively. Most CBP binding occurs outside of the 

proximal promoter: 79% of sites in liver ChIP-seq, 70% in liver ChIP-chip, and 51% in 

cerebellum ChIP-chip occur outside a 500bp window centered on a transcript’s TSS. 

Several of these more distal sites, hereafter referred to as enhancers for simplicity, 

directly overlap previously characterized transcriptional enhancers [150-156].  

 

Figure 5.1: CBP binding overlaps previously characterized enhancers. CBP binding occupancy 
predicted by Redwing is shown in green, and smoothed CBP occupancy scores (obtained by convolving the 
Redwing predictions with a 400bp sliding window) are shown in blue. The red dashed line in each figure 
corresponds to a high confidence binding threshold (FDR <= 0.01). This threshold was estimated by 
running Redwing on randomly permuted ratio data. Positions of previously characterized enhancer regions 
are denoted by the green arrows. These include a proximal region between -170bp and the TATA box in 
the Alb1 promoter (Maire et al. 1989), a region at -3kb in the Cpt1 promoter (Louet et al. 2002), regulatory 
regions A and B between -231bp and -158bp in the glucose-6-phosphatase promoter (Onuma et al. 2009), a 
CRE and several other regulatory sites in the region -300bp to -100bp in the Pck1 promoter (Hanson and 
Reshef 1997), three distinct DNaseI hypersensitive regions at approximately -5kb, -3kb, and -300bp in the 
Igfbp1 promoter (Crissey et al. 1999), and characterized cAMP-response and glucocorticoid-response 
elements at -1728bp (Travnickova-Bendova et al. 2002) and -3566bp (Yamamoto et al. 2005) respectively. 
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These regions typically span 400-800bp in length, and are generally located within 100kb 

of annotated transcription start sites (TSS).  

 

Figure 5.2: Distribution of position relative to the nearest transcription start site for CBP-bound 
regions from ChIP-seq in liver (upper plot) and ChIP-chip in liver and cerebellum (lower plot). 

 

Figure 5.3: Distribution of lengths for CBP-bound regions identified in ChIP-seq experiments in liver 
(upper plot) and ChIP-chip experiments in liver and cerebellum (lower plot). 
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5.3 Sequence analysis of enhancer regions 

CBP and p300 are recruited to their genomic targets via protein-protein interactions with 

DNA-bound transcription factors [157, 158]. We wished to identify the transcription 

factors that these coregulators form complexes with, to identify any higher order motif 

combinations or positional constraints associated with enhancer regions, and to determine 

whether these predictive features were different in different tissues. To that end, we 

analyzed the DNA sequence CBP-bound sites in liver and cerebellum, and at regions 

previously identified as bound by p300 in embryonic mouse limb and forebrain [148]. 

5.3.1 Identification of overrepresented motifs 

A compendium of 530 motif position weight matrices (PWMs) was assembled by 

combining motifs from various databases [116, 118, 159] and removing those originating 

from non-mammalian sources. PWMs were clustered to eliminate redundancy using 

Affinity Propagation (AP) [160] yielding a set of 233 distinct motifs. The motif distance 

used for clustering was calculated by assessing the mean KL-divergence between 

columns of the motif frequency matrices for all possible alignments of the motif pair 

(both forward and reverse complement, subject to a minimum overlap of 6bp) and taking 

the minimum value. Motifs were evaluated for statistical enrichment using the THEME 

algorithm. Motifs with a cross-validation error less than 0.50 and with an FDR-corrected 

p-value<=1e-3 were then clustered by AP to produce the set of motifs associated with 

CBP recruitment in each tissue. These motifs were then used to generate motif-based 

feature sets used to predict coregulator recruitment. 
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5.3.2 Predictive models of coregulator binding 

We evaluated four motif-based feature sets for predicting CBP/p300 binding in a series of 

logistic regression classifiers. Two models, called Enhanceosome A and B, assume that 

some motif combinations may be more important than others. The remaining two models, 

called Billboard A and B do not distinguish among various motif combinations. 

Generation of motif features 

In each experiment the N statistically significant PWMs were used to score training set 

sequences as previously described [161]. THEME provides a threshold, t, for each PWM 

that optimally distinguishes bound from unbound sequences. We convert a PWM score, 

s, to a normalized score, m, using the transformation:  

   
1

1 exp
m

t s


 
 (5.1)  

For each sequence, with length L, we calculate a 1 x N vector, X, of maximum scores for 

each PWM. We also define an N x L indicator matrix, Y, encoding the location of any 

motif matches in the sequence. Matches are defined as sites where the normalized score 

is >= 0.5. We slide a 100bp rectangular window along the matrix Y, and identify the 

location with the maximum number of distinct matches to the N PWMs. This maximum, 

z, can range in value from 0 to N. Finally, for each sequence we define a vector, V, of 

indicator variables, vj,k, which encode whether there is a 100bp window in Y with a match 

to both PWMs j and k. 

Description of predictive models 

The coregulator binding model we employ is identical to the model described for 

protein binding in chapter 5. We assume that coregulator binding to an enhancer can be 

modeled as a bimolecular reaction at equilibrium. The free energy of this reaction is a 
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simple sum of contributions, i, from motif features, xi, present at the enhancer leading to 

the now familiar expression for binding probability: 

  

0

1

1 exp i i
i

p
x 


 

   
 


 (5.2) 

The four models tested differ in the sets of features that are used as statistical predictors 

in equation 5.2. The Billboard A feature set consists of only the vector of maximum motif 

scores for each sequence, X. The Billboard B feature set augments the feature vector X 

with the clustering score z. The Enhanceosome A feature set augments X with pair-wise 

products of motif scores xjxk (for j,k = 1…N and j ≠ k) to capture the effect of specific 

combinatorial interactions between TFs. Finally, the Enhanceosome B feature set 

concatenates the feature vectors X and V to capture combinatorial interactions among 

closely spaced motifs. 

5.3.3 Model performance 

Classifiers were trained on the same sequences used to screen motifs with THEME. 

Logistic regression parameters were estimated as previously described [128]. Features 

were sequentially removed from the model by backward elimination, using 3-fold cross-

validated classification error for evaluation and the one standard error rule as a stopping 

criterion. The surviving features were used to train a classifier using the entire training 

set, whose performance was evaluated on the held-out data. This procedure was repeated 

ten times for each model/tissue pair. After feature selection and performance evaluation 

on held out test data we found that in four out of five datasets, a simple feature set that 

used individual motif match scores, ignoring specific motif combinations, performed as 

well or better than more complex models. 
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Figure 5.4: Classification performance of CBP/p300 recruitment models. Mean 3-fold cross-validated 
prediction error is shown for the four feature sets used to distinguish CBP/p300 bound regions identified in 
ChIP experiments from unbound regions. Error bars correspond to the standard error of the mean calculated 
from ten separate trials for each model/tissue pair.  

Interestingly, the most important motifs for predicting CBP/p300 recruitment are 

different in each tissue. Tables 5.1-5.5 show the motifs that survived feature selection in 

at least 5 of 10 trials in each data set.  In tables 5.1-5.5, mean weight is the mean logistic 

weight assigned to the motif when it was included in the final binding model. The 

survival rate refers to the number of training runs in which the motif was included in the 

model. 
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Table 5.1 – Core motifs at liver enhancers (ChIP-chip) 
Logo Factor Mean weight Survival rate 

 
PPAR/HNF4 1.22 100% 

 
C/EBPα 0.57 100% 

 
CREB 0.73 80% 

 
ATF/CREB 0.39 80% 

 
SP 0.50 70% 

 
Bach2 0.23 60% 

 
E2F 0.14 50% 

 
ER/AR 0.00 50% 

 

Table 5.2 – Core motifs at liver enhancers (ChIP-seq) 
Logo Factor Mean weight Survival rate 

 
NHR 0.75 100% 

 
STAT 0.95 90% 

 
CREB 0.18 60% 

 
SP 0.59 50% 

 
PAX 0.15 50% 

 
RXR/PPAR 0.14 50% 
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Table 5.3 – Core motifs at cerebellum enhancers 
Logo Factor Mean weight Survival rate 

 
E2F 2.05 100% 

 
AP-2 1.49 90% 

 
PAX 0.79 60% 

 
NRF-1 0.57 60% 

 
NF-I 0.48 60% 

 
MAZ 0.58 50% 

 
EGR-1 0.43 50% 

 
AP-4 0.10 50% 

 
AP-4 0.00 50% 

 

Table 5.4 – Core motifs at embryonic forebrain enhancers 
Logo Factor Mean weight Survival rate 

 
Homeobox 1.13 100% 

 
Pou2f1 0.69 100% 

 
Rfx1 0.75 80% 

 
AP-4 0.33 80% 

 
E12/E47/MYOD 0.00 80% 

 
NF-Y/CBF 0.55 70% 

 
Tal-1/E47 0.00 60% 
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Table 5.5 – Core motifs at embryonic limb enhancers 
Logo Factor Mean weight Survival rate 

 

RP58 0.53 100% 

 

Tal-1/E47 0.17 70% 

 

MZF-1 0.10 60% 

 

SP 0.01 60% 

 

Areb6 0.00 60% 

 

Hand1 0.04 50% 

 

AP-4 0.00 50% 

 

Sp3 0.00 50% 

 

In all tissues putative enhancers are enriched for the binding sites of a wide 

variety of transcription factors, many of which have previously described regulatory roles 

in the tissues examined. Cerebellum and liver enhancers share enrichment for the motifs 

of many ubiquitously expressed TFs known to interact with CBP/p300 including E2F 

[162], SP [163], and AP-2 [164] factors. Liver enhancers are distinguished by enrichment 

for a nuclear hormone receptor motif consistent with binding sites for liver-enriched 

PPAR [165] and HNF4α [166] transcription factors. Embryonic forebrain enhancers are 

uniquely enriched in an RFX and POU motif, TF families that have been implicated in 

brain development [167, 168], while limb enhancers show unique enrichment for an HLH 

motif consistent with the binding specificity of the Hand TFs, key regulators of limb bud 

development [169]. 
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Figure 5.5: DNA sequence motif enrichment at enhancers. Tissue specific enrichment of DNA sequence 
motifs associated with CBP/p300 recruitment in mouse liver, cerebellum, embryonic forebrain, and 
embryonic limb is indicated by color in the heat map. Sequence motifs were assessed for statistical 
enrichment in held out validation data sets using a hypergeometric test. Motifs with unique enrichment in a 
single tissue are shown in boxes. 

5.4 Enhancers bind clusters of regulators 

Our sequence analysis of liver enhancers identified motifs corresponding to the binding 

specificities of several regulators that drive liver-specific gene expression, including 

C/EBPα, CREB, and HNF4α [166, 170, 171].  To validate the prediction that CBP binds 

the same regions as these transcription factors, we analyzed ChIP-chip experiments in 

liver using antibodies specific to C/EBPα and the phosphorylated form of CREB 
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(pCREB), and re-analyzed previously published ChIP-chip data for HNF4α [172]. We 

assessed the observed binding overlap between these DNA-bound transcription factors 

and CBP relative to a null model of random binding in the genome. Expected overlap and 

z-scores were calculated based on 100 randomized trials where TF binding positions were 

permuted by first randomly selecting a transcription start site, sampling a position relative 

to this TSS from the empirical distribution of CBP binding positions, and adding a 

random integer between -200 and 200. All three factors associate with putative enhancers 

much more than predicted by chance. We performed separate genome-wide ChIP-seq 

experiments in liver on C/EBPα, E2F4, whose motif is also highly enriched at liver 

enhancers, and the known CBP-interacting transcription factor FOXA2 [173], and 

examined the overlap in binding location between these factors and CBP from genome-

wide ChIP-seq. Again, the overlap in binding sites is significant for all factors.  

Table 5.6 – Binding site overlap of DNA-bound factors with CBP 

Factor Observed overlap Expected overlap z-score 
pCREB (ChIP-chip) 915 139 66.6 
C/EBPα (ChIP-chip) 702 111 52.3 
HNFa (ChIP-chip) 578 160 36.7 
E2F4 (ChIP-seq) 4,831 1,194 104.8 

FOXA2 (ChIP-seq) 8,162 3,917 67.5 
C/EBPα (ChIP-seq) 9,509 6,436 38.1 

 

Interestingly, clusters of overlapping transcription factor binding sites are surprisingly 

accurate predictors of putative enhancer location, with over 80% of regions bound by all 

three factors directly overlapping CBP-bound regions from ChIP-chip experiments. This 

observation is not restricted to regions proximal to transcription start sites. For the factors 

profiled with ChIP-seq we also observed that binding by two or more factors was 
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significantly more predictive of CBP-binding than binding by any single factor. Of the 

regions bound by all three factors, 70.2% were also bound by CBP. 

 

Figure 5.6: CBP binding is associated with overlapping binding sites for multiple regulators. The 
probability that a region is bound by CBP is denoted by bar height for different transcription factor binding 
configurations. Colored peaks indicate DNA-binding transcription factors with overlapping binding at a 
site. CBP binding probability at proximal promoter regions from ChIP-chip experiments is shown for 
pCREB, C/EBPα, and HNF4α in the upper graph. CBP binding probability at genome wide locations for 
FOXA2, C/EBPα, and E2F4 sites from ChIP-seq experiments is shown in the lower graph. Error bars 
indicate +/- s.e.m. 

We examined the sites bound by E2F4, C/EBPα, and FOXA2 in ChIP-seq experiments 

for evidence of spatial constraints on binding position and orientation. For each pair of 

factors we identified all sites bound by both proteins and CBP. Then, using sequence 

motifs representing each factor’s known binding specificity, we enumerated all binding 

site spacings and orientations in these short regions and searched for statistical 
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overrepresentation relative to a set of 5,000 equally sized data sets with randomly 

permuted binding site positions. Interestingly, we found no evidence of binding site 

constraints occurring at a statistically significant frequency. Our results suggest that 

enhancer function in liver encompasses the action of a variety of different regulators and 

accommodates a diversity of TF binding site configurations. These data further suggest 

that a viable alternative strategy for identifying enhancers would be to search for regions 

bound by a cluster of factors in a series of ChIP experiments. 

5.5 Enhancer proximity is correlated with transcript levels 

To understand the relationship between regulator binding and transcription we identified 

sites of combinatorial control, in a fashion similar to that described in section 5.2, by 

performing ChIP on samples from mouse liver and 3T3-L1 cells using an antibody 

specific to p300, which has been used similarly in previous studies[148, 149], as well as 

antibodies for several proteins with transcriptional activation function in these tissues 

(Table 5.7) and by analyzing previously published data for PPAR and RXR in 3T3-L1 

cells[174].  

The ChIP-seq analysis identified 22,191 and 7,821 putative regulatory regions in 

liver and 3T3-L1 cells respectively. The vast majority of these sites occur within 100kb 

of known genes but most are located outside of the proximal promoter (Figures 5.7 and 

5.8): 92% of regulatory sites liver and 93% in 3T3-L1 cells occur outside the 500bp 

window centered on each transcript’s transcription start site (TSS). The ChIP-chip 

promoter array experiments revealed 3,326 and 3,187 CBP-bound regions in liver and 

cerebellum; 70% of these sites in liver and 51% in cerebellum occur outside the proximal 

promoter.  
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Table 5.7 – Anti-sera used in ChIP experiments 
Protein Antibody Source Tissues 

CBP sc-369X Santa Cruz liver, cerebellum 
C/EBPα sc-9314X Santa Cruz liver, 3T3-L1 

E2F4 sc-1082X Santa Cruz liver, 3T3-L1 
FOXA1 ab5089 Abcam liver 
FOXA2 sc-6554 Santa Cruz liver 

p300 sc-585 Santa Cruz liver, 3T3-L1 
pCREB sc-7978X Santa Cruz liver 

Sirt1 sc-19857 Santa Cruz cerebellum 
 

 

Figure 5.7: Distribution of proximities to the nearest transcription start site for regulatory regions 
identified in ChIP-seq experiments in liver and 3T3-L1 cells. 

 

Figure 5.8: Distribution of proximities to the nearest transcription start site for regulatory regions 
identified in CBP ChIP-chip experiments in liver and cerebellum. 

 

Understanding the relationship regulator binding and transcription is a complicated task.  

Although binding within 5 kilobases (kb) of a gene’s transcription start site (TSS) is 

associated with higher expression in each tissue (Figure 5.9A), it provides limited 
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information about tissue-specific transcription levels as these genes display a wide range 

of expression values (Figure 5.9B).  

 

Figure 5.9: Characteristics of bound genes and bound regions. (A) Genes with a regulatory region 
within 5kb of their transcription start site have a higher mean expression level than genes with no binding 
event. Error bars indicate +/- s.e.m. (B) Bound genes display large variation in levels of absolute gene 
expression. (C) Putative regulatory regions show great variation in their sequence conservation levels. 
Conservation level was calculated as the maximum 100bp moving average of Phastcons scores from 
alignments of placental mammal genomes. 
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This variation may be explained, in part, by the action of distal regulatory sites located 

further than 5kb from the gene.  However, as we begin to consider binding events further 

from the TSS the situation becomes increasingly complicated as more, potentially non-

functional, binding sites become associated with each gene. It is also difficult to associate 

binding events with the genes they regulate.  For example, approximately 41% of 

regulatory sites identified in liver and 45% in 3T3-L1 cells are located within 50 kb of the 

TSS of two or more genes. 

The problem of identifying functional regulatory regions has been addressed 

using sequence conservation [175, 176]. We found that bound regions vary significantly 

in their degree of sequence conservation (Figure 5.9C) and wished to explore whether 

more highly conserved sites were more likely to be functional. When we examined the 

mean expression level of genes in each tissue as a function of the conservation level of 

their binding events, we found a weak or non-existent relationship (Figure 5.10A). 

Surprisingly, transcription levels are highly correlated with the proximity between a 

gene’s TSS and the closest bound region (Figure 5.10A). This statistical relationship 

persists over tens of kilobases and is highly statistically significant, even at a distance 

resolution of hundreds of nucleotides within the proximal promoter (Figure 5.11).  

Although we are aware of an in vitro study where a linear falloff in transcription rate was 

observed as an enhancer’s location was moved further from the TSS in a series of 

reporter constructs [177], to our knowledge this intriguing effect has not been previously 

reported as a general feature of transcriptional regulation in an in vivo system.  
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Figure 5.10: Binding site position, but not sequence conservation, is strongly associated with gene 
expression level. (A) The mean log expression of bound genes is shown in each tissue as a function of the 
distance between the transcription start site and the nearest regulatory region identified by ChIP, and the 
maximum conservation score of any regulatory region within 5kb of that gene’s TSS. Error bars indicate 
+/- s.e.m. Also shown is the Spearman correlation, and associated p-value from a right-tailed t-test, 
between log expression and the distance and conservation measures. (B) In the upper plot the mean log 
expression of genes in liver and 3T3-L1 cells is shown as a function of the location of the nearest binding 
site over a 200kb window. Error bars indicate +/- s.e.m. In the lower plot we show the influence function, 
which measures a binding event’s predicted effect on expression as a function of position, obtained by 
fitting our predictive model to 1,000 bootstrapped samples of ChIP and expression data in each tissue. 
Shaded regions show the empirical 99% confidence intervals obtained from the bootstrap iterations. 
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Figure 5.11: Expression level is related to regulatory site proximity in the proximal promoter. Mean 
log expression intensity of transcripts from Affymetrix microarrays is plotted vs. the distance between their 
TSS and the nearest putative regulatory site in liver and 3T3-L1 cells. Only genes with binding events in 
their proximal promoter are considered. 

 

To further understand the relationship between expression and regulator binding location 

we developed a simple quantitative model that predicts transcription level as a function of 

transcription factor binding position. We assume that the mean expression level of a gene 

is determined by contributions from all individual regulatory sites in the vicinity of that 

gene, and that each regulatory site may regulate the expression of multiple genes. The 

functional relevance of a region depends on its position relative to the TSS; this 

relationship takes the form of an influence function that is fit to the data during model 

training. This approach allows proximal sites to be treated differently than distal sites, or 

upstream and downstream sites to be treated differently. The details of this model are 

presented in section 5.5.1 
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5.5.1 Predictive model of expression from enhancer location 

Our goal is to predict log absolute expression level, as measured by a microarray 

experiment, using predicted enhancer locations. The rate of expression of a transcript, k1, 

is assumed to be a function of its basal expression rate, k0, and the action of nearby 

enhancers: 

  
1 0

i i
enhancers

k e k
f d



 



   (5.3)  

Each enhancer is assumed to contribute additively to the expression rate modifier, λ. The 

effect that enhancer i has on this modifier is a function of its distance to the TSS, di. It 

may also depend on other considerations, for example the particular regulators bound at 

the enhancer. Such effects are subsumed into the parameter αi, which unless otherwise 

specified, is taken to be 1.  

We assume 0th order kinetics of mRNA production with rate constant k1, and 1st order 

mRNA degradation kinetics with rate constant k2. These processes, measured across the 

population of cells, are assumed to be at equilibrium. The log transcript abundance is then 

given by:  

     0
2 0

2
, log log kk A e k A k

       
 

 (5.4) 

The log intensity levels, y, from the Affymetrix arrays are noisy measurements of these 

transcript abundances. The mean squared error between the N observations and model 

predictions is given by:  
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We now express the enhancer influence function f(d) using a basis set of P 3rd order B-

splines: 

    
1

P

k k
k

f d c B d


  (5.6) 

Assuming that the term incorporating a transcript’s basal expression rate and degradation 

rate, log(k0/k2), can be ignored leads to the following expression for MSE: 

  
2

, /i k k i j
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MSE y c B d N
  

      
    (5.7) 

The innermost sum over values of the B-spline basis functions for each enhancer position 

can be pre-computed. We introduce a penalty on an approximation to the integrated 

square of the 2nd derivative of the fitted function to control complexity. The objective 

function we wish to minimize, F, then becomes: 

 
2

,i k i k
i k

F y c b  
    

 
   (5.8) 

Here bi,k are the pre-computed B-spline value sums over enhancers for basis function k 

and transcript i, σ is a regularization parameter that controls complexity, and  is the 

penalty term. The parameters defining the shape of the influence function, ck, can now be 

estimated by solving the system of equations: 

  T T TB y B B D D c   (5.9) 

where D is a matrix representation of the penalty term [178].  
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5.5.2 Modeling relative expression levels 

To predict relative expression levels between tissues a and b, we assume that basal 

expression rate and degradation rate for each transcript is identical in both tissues. The 

log fold change in expression, y, is then given by: 
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 (5.10) 

and the mean-squared error is given by: 
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 (5.11) 

Here enhancers present in tissue a are indexed by j, while those in tissue b are indexed by 

n. The influence function parameters are then solved as described above. 

5.5.3 Modeling the effect of regulators bound at the enhancer 

When data for the binding of several regulators at enhancer regions is available, we can 

model their individual effects on enhancer function by introducing a parameter θm for 

each regulator that modifies an enhancer’s effect on transcription as follows: 
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 (5.12) 

Here Ii,m is an indicator variable taking the value of 1 if regulator m is present at enhancer 

i, and 0 otherwise. The objective function we wish to minimize is then given by: 
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Taking the derivative with respect to ck yields: 
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Taking the derivative with respect to θm yields: 
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 (5.15) 

We then set these derivatives to zero and solve the resulting system of equations using 

the nonlinear equation solver fsolve in Matlab to obtain parameter estimates for the c’s 

and θ’s. 

5.6 Predicting absolute expression from enhancer location 

We first used our model to predict the absolute expression levels of genes in liver and 

3T3-L1 cells from the location of p300 and clustered transcription factor binding sites. 

We considered all binding events located within 100kb of each gene’s TSS. The 

correlation between predicted and observed transcript abundance in held-out test data is 

highly statistically significant (Table 5.8). Notably, the predicted relationship between 

position and expression influence is nearly identical in both tissues (Figure 5.10B). There 

is an approximately linear fall-off in influence as enhancer position moves further away 

from the TSS. Sites located within approximately 10kb of the TSS are statistically 
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associated with the highest transcription levels, and regulatory regions located upstream 

of the TSS are predicted to have a somewhat greater effect on transcription than 

downstream events. Although proximal sites have the greatest influence, binding sites 

located up to 50kb away from the TSS are predicted to have a significant effect on 

transcription, consistent with previous observations that enhancers may act at very long 

distances to affect expression [179, 180]. 

Table 5.8 – Prediction of absolute expression level from enhancer position 

Experiment MSE (random) MSE Correlation 
CBP liver  

(ChIP-chip) 
1.007+/-.003 0.915+/-.003 0.30 

(p=1.6E-32) 
CBP Cerebellum  

(ChIP-chip) 
1.000+/-.003 0.939+/-.003 0.26 

(p=3.3E-27) 
CBP liver  
(ChIP-seq) 

0.992+/-.002 0.911+/-.002 0.30 
(p=1.0E-239) 

3T3-L1 
(ChIP-seq) 

1.000+/-.002 0.939+/-.002 0.239 
(p=1.2E-127) 

Pearson correlation between absolute expression intensity measurements and model predictions on held out 
test data. The mean squared error and s.e.m. obtained by randomly guessing the training sample mean is 
shown in the first column. The mean squared error and s.e.m. of our model predictions are given in the 2nd 
column, and their correlation with observed intensities (and associated p-value from a 2-tailed t test) is 
given in column 3.  
 

Notably, the shape of the enhancer influence function is nearly identical in both 

tissues. There is a sharp fall-off in influence as enhancer position moves further away 

from the TSS, and putative enhancers within approximately 10kb of the TSS are 

statistically associated with the highest transcript levels. Regulatory regions located 

upstream of the TSS are predicted to have a somewhat greater effect on transcription than 

downstream events. Interestingly, although some enhancers are known to act at very long 

distances, there is little predicted effect on transcript levels for enhancers located greater 

than 50kb away from the TSS. 
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5.7 Enhancer position predicts tissue-specific expression level 

Regulatory sites identified in our ChIP experiments are statistically associated with 

tissue-specific expression of nearby genes (Figure 5.11). We therefore sought to examine 

whether observed expression differences between tissues could be explained by 

differences in binding of regulatory proteins.  

 

Figure 5.11: Bound genes are statistically associated with differential expression. Refseq genes with a 
CBP binding event within 5kb of their transcription start site were evaluated for differential expression in 
liver vs. cerebellum and hypergeometric p-values were calculated for the number of observed genes in each 
category. An identical analysis was performed for sites in liver and 3T3-L1 cells that were bound by p300 
or at least two other transcriptional activators in ChIP-seq experiments. 
 
We used all the liver and 3T3-L1 binding events identified in ChIP-seq experiments to 

predict relative expression of differentially expressed genes in these tissues. In order to 

evaluate the importance of binding site position in predicting the functional relevance, we 

compared our model’s performance to two competing models: one that weighted binding 
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events equally regardless of position, and a second that weighted the contributions of 

bound regions by sequence conservation, allowing highly conserved regulatory regions to 

be weighted differently than regions with low conservation. We fit each model using two-

thirds of the bound, differentially expressed genes, and evaluated their ability to predict 

the magnitude of expression differences for the remaining third of the genes, repeating 

this process 100 times using randomly sampled test and training data.   

The position-based model of transcription produces significantly more accurate 

predictions than the uniform weighting and the conservation-based approaches (Figure 

5.12).  

 

Figure 5.12: Binding site position, but not sequence conservation, is strongly associated with gene 
expression level. (A) The mean log expression of bound genes is shown in each tissue as a function of both 
the distance between the transcription start site and the nearest regulatory region identified by ChIP, and the 
maximum conservation score of any regulatory region within 5kb of that gene’s TSS. Error bars indicate 
+/- s.e.m. Also shown is the Spearman correlation, and associated p-value from a right-tailed t-test, 
between log expression and the distance and conservation measures. (B) In the upper plot the mean log 
expression of genes in liver and 3T3-L1 cells is shown as a function of the location of the nearest binding 
site over a 200kb window. Error bars indicate +/- s.e.m. In the lower plot we show the influence function, 
which measures a binding event’s predicted effect on expression as a function of position, obtained by 
fitting our predictive model to 1,000 bootstrapped samples of ChIP and expression data in each tissue. 
Shaded regions show the empirical 99% confidence intervals obtained from the bootstrap iterations. 
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To evaluate the importance of distal binding events in predicting expression, we 

identified bound genes using several distance cutoffs, ranging from the 1kb proximal 

promoter to a distance of 100kb from the gene’s TSS. The position-based model out-

performs the other models across a wide range of distance windows. At the 100kb cutoff, 

2,205 of the 2,309 differentially expressed genes identified are bound in at least one 

tissue (Figure 5.12). Even when including these very distal sites in the analysis, many of 

which are presumably non-functional, our predictions have an extraordinary median 

correlation of 0.69 with observed expression levels of held-out test genes compared to 

0.58 for the conservation-based model and 0.57 for the model that weights binding events 

uniformly. This value approaches the correlation level observed for relative expression 

measurements made using different experimental platforms [181, 182] and indicates that 

regulatory site position has a substantial effect on transcription levels in these tissues.  

Including binding events up to 50kb away from the TSS improves expression predictions, 

demonstrating the importance of these distal sites. However, weighting the influence of 

each regulatory region appropriately is crucial; the models that do not consider position 

both show a drastic deterioration in prediction accuracy as the distance cutoff increases. 

Interestingly, the simple uniform weighting model performs about as well as the model 

that weights sites by sequence conservation, indicating that conservation is of limited use 

in identifying functional binding events from ChIP data.  

To address whether these data support the hypothesis that individual regulatory 

sites regulate multiple genes, we compared the prediction accuracy of our model to one 

where regulatory sites are assumed to regulate expression of only the closest transcript. 

We first associated binding events in liver and 3T3-L1 cells to transcripts, assuming they 
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regulate only the nearest gene. We then trained our position-based transcriptional model 

and predicted the expression of held-out genes. These predictions were compared to those 

obtained, for the same set of genes, without the constraint that a site regulates a single 

gene. The difference in prediction accuracy is dramatic. The mean-squared prediction 

error over 100 bootstrapped trials was 0.73+/0.03 s.d. when we assume that binding 

events regulate only the closest gene. This improved by approximately 8 standard 

deviations to 0.48+/-0.02 s.d. when binding were allowed to regulate many genes.  

5.8 Non-conserved binding is functional 

To further explore the role of non-conserved regulatory sites we identified bound regions 

in each tissue that showed low sequence conservation levels, using the threshold that best 

distinguished bound regions from randomly selected DNA sequences (Figure 5.13).  

 

Figure 5.13: Conservation thresholds. We used conservation scores to distinguish bound regions in each 
tissue from sequences randomly selected from the mouse genome, evaluating classification error at 100 
different thresholds. A conservation score of less than 35 was used to identify non-conserved sites since it 
yielded the lowest error rate across the four datasets. We identified a second, more stringent, threshold of 
13 which yielded approximately 50% fewer conserved random sequences than the best threshold of 35. 



 128 

At this threshold approximately 59% of sites from ChIP-seq experiments in liver and 

47% in 3T3-L1 cells are non-conserved. Similarly, 44% of CBP sites in liver and 28% of 

sites in cerebellum are non-conserved. Genes located within 5kb of these sites in our 

experiments were associated with high levels of gene expression (Figure 5.14).  

 

Figure 5.14: Expression of genes bound at nonconserved sites. Genes with a nonconserved binding 
event (identified using the most stringent threshold) located within 5kb of their transcription start site have 
a higher mean expression level than genes with no binding events. Error bars indicate +/- s.e.m. 
 

Next we identified 261 differentially expressed genes in liver and 3T3-L1 cells bound 

(within 50kb) at only non-conserved regions. In a similar fashion we identified 884 

differentially expressed genes bound only at non-conserved regions by CBP in liver and 

cerebellum. We performed the training and test procedure described above and 

determined whether the locations of these non-conserved sites predicted gene expression 

(Figure 5.15A). In both liver/3T3-L1 cells and in liver/cerebellum the position of non-

conserved binding is a strong predictor of relative expression level. Our predictions have 

a mean correlation of 0.56 with observed expression values in liver/3T3-L1, significant at 
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p<2.6e-9 by a right-tailed t-test. In liver/cerebellum the mean correlation is 0.57, 

significant at p<5.4e-26.  

 

Figure 5.15: Non-conserved binding events predict expression. (A) Scatter plots of observed and 
predicted expression difference are presented for differentially expressed genes bound only at non-
conserved regions at stringent and moderate conservation thresholds. Training data points are shown in 
blue and test data is shown in red. Each non-conserved binding event’s effect on transcription was 
modulated by its distance to the TSS. In both tissue pairs, and at both conservation thresholds, the model’s 
predictions are strongly correlated with observed expression differences. (B) The expression difference of 
genes bound at both conserved and non-conserved sites was predicted using only conserved sites, and the 
prediction error was compared to that obtained when both conserved and non-conserved binding sites were 
used. Including non-conserved regions significantly improved performance in both tissue pairs. Error bars 
indicate +/- s.e.m. 
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We then repeated the analysis using the stringent conservation threshold and found that 

non-conserved sites were still highly predictive of expression (Figure 5.15B). We also 

examined genes bound at both conserved and non-conserved sites within 100kb of their 

TSS and asked whether the conserved sites alone were adequate to predict expression. 

We first predicted expression using only conserved sites and then repeated the analysis 

using all bound regions. Underlining the importance of non-conserved regulatory regions, 

we find that considering both the conserved and non-conserved sites results in 

significantly more accurate predictions (Figure 5.15B). 

5.9 Revealing the role of specific regulators 

Although binding site position is very important in determining expression influence, the 

function of a regulatory region is also determined by the particular transcription factors 

that bind to it. We therefore extended our transcriptional model so that the relevance of 

any particular regulatory site was determined by both its location and the particular 

regulators bound. Each protein’s effect on transcription was estimated by including a 

protein-specific weight that modulated the expression influence of the site. We tested this 

approach on ChIP-seq and expression data in liver and 3T3-L1 cells, including binding 

data for an additional regulator, E2F4, in each tissue. We estimated the influence of p300, 

C/EBPα, FOXA1/A2, and E2F4 in liver, and p300, C/EBPα, PPAR/RXR, and E2F4 in 

3T3-L1 cells. In total, 2,038 differentially expressed genes were analyzed. Our 

predictions have an extraordinary median correlation of 0.74 with observed expression 

differences on held out test data, ranging between 0.72 and 0.76 in 11 separate trials 

(Figure 5.16). Our simple predictive framework remarkably accounts for over 50% of the 
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variance in observed relative expression levels, and gives better predictions than a model 

that considers only binding site position.  

 

Figure 5.16: Transcriptional regulators have distinct influences on expression. (A) Shown are 
representative scatter plots of predicted vs. observed expression differences for held out test genes in 
liver/cerebellum and liver/3T3-L1 cells. Predictions were made using a transcriptional model that takes into 
account the influence of both the genomic position and the particular proteins bound by a site. The median 
correlation from 11 separate trials was 0.65 and 0.74 for liver/cerebellum and liver/3T3-L1 respectively. 
(B) The prediction error of the full model that includes individual transcription factor influence weights is 
compared to a model that uses only position to predict influence. Modeling the influence of bound 
regulators improves predictive performance. Error bars indicate +/- s.e.m. (C) The expression influence for 
each protein is learned in our transcriptional model. Sites bound by proteins with known repressive activity 
(E2F4 and Sirt1) are predicted to have the smallest influence. 
 
The influence learned for each protein provides evidence of its function in these tissues. 

For example, C/EBPα is associated with the strongest activation in both cell types, in 

agreement with its well-characterized role in these tissues [135]. In contrast E2F4 is 
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associated with the lowest levels of activation in both tissues; its influence weight of 0.52 

in liver indicates that it actually attenuates an enhancer’s effect on expression in this 

tissue, consistent with its previously described transcriptional repressor activity [137]. 

We performed a similar analysis in liver and cerebellum by collecting ChIP-seq data for 

the histone deacetylase Sirt1 in cerebellum, and ChIP-chip data for the transcription 

factor pCREB in liver. Modeling the different transcriptional influences of CBP sites that 

are also bound by pCREB or Sirt1 resulted in more accurate expression predictions. The 

median correlation between observed and predicted expression difference in liver and 

cerebellum was 0.65, ranging between 0.62 and 0.68 over 11 separate trials. Sirt1 has the 

opposite enzymatic activity to CBP/p300, and is known to repress p300 activation of 

transcription in certain contexts [183]. As expected, sites in cerebellum that are bound by 

Sirt1 have only about half as much influence on expression levels as CBP sites that do 

not recruit Sirt1.  

5.10 Conclusions 

In this chapter, we address a central problem in the study of transcriptional regulation by 

developing a model that reveals the function of transcription factor binding sites.  

Experimental approaches combining ChIP with microarray and sequencing technologies 

have led to tremendous progress in mapping transcriptional regulatory sites across the 

genome.  However, progress in determining the function of these sites has been slower. 

In part this is because static maps of regulator binding give an incomplete picture of the 

complexity that arises from dynamic signaling and binding events, but progress has also 

been slowed by the absence of a simple framework that links regulatory network 
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architecture (as defined by the location of regulatory regions in the genome) to 

transcription. 

To understand the functional role of these regulatory sites, we developed a simple 

model that accurately predicts the expression difference between tissues based only on 

binding site positions. The correlation of the predictions with measured values 

approaches the correlation observed between different experimental platforms and can 

remarkably explain over half the variance in the relative transcription levels of 

differentially expressed genes.  

Our findings suggest the need for a re-evaluation of how we understand and 

describe transcriptional controls.  Regulatory sites are typically divided into promoter-

proximal elements, which are within approximately 200 base pairs of the start site, and 

enhancer elements [2].  Surprisingly, we find an almost linear decrease in the effect of a 

regulatory site over a region of many kilobases, encompassing both proximal promoters 

and distal enhancers.  Our results suggest that a more critical distinction may be between 

those binding events within or beyond 50 kilobases.  We suggest that the latter be thought 

of as “remote enhancers,” the function of which remains to be elucidated.   

Overall, our results suggest that regulatory events should not be thought of as 

belonging to enhancer/promoter categories or of being associated with a particular gene, 

but rather in quantitative terms.  The net transcription level of a gene is the result of 

integrating a potentially large number of binding events.  Although binding events that 

are very close to the transcription start site have a disproportionately large effect on 

expression, many genes show large differences in tissue-specific expression that are 

apparently driven by much more remote events. Our transcriptional model can accurately 
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predict expression even when no binding event is detected within 1kb of the TSS (Figure 

5.17).  

 

Figure 5.17: Enhancer position predicts expression for genes with no proximal binding events. 
Representative scatter plots of observed and predicted normalized expression difference for held-out 
validation data are presented for differentially expressed genes in liver and cerebellum (A) and genes in 
liver and 3T3-L1 cells (B) with no binding events within 1kb of the TSS. To demonstrate the importance of 
position even for binding events within 10kb of regulated genes we excluded any binding event located 
more than 10kb from the gene’s TSS. Median correlation between observed and predicted expression 
difference is greater than 0.5 and highly statistically significant for both analyses. The reduction in mean 
test error relative to random guessing is shown for the full predictive model and for a model that ignores 
binding position. In both cases, modeling the effect of position significantly improves performance. 
 

Interestingly, our analysis supports a model of transcription where binding events 

frequently regulate the expression of multiple genes. Based on our observation that 
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binding sites located within 50kb of a gene significantly influence its expression level, we 

estimate that approximately 40-45% of regulatory sites affect the expression of more than 

one transcript.  

In contrast to the strong relationship between the location of binding and 

transcription, there is little relationship between sequence conservation and expression.  

Including binding to non-conserved sequences in our models improves their accuracy 

significantly over models built using only binding to conserved sequences.  Previously, 

we have shown that the sites targeted by individual DNA-binding proteins can vary 

across species even when tissue-specific gene expression is conserved [172].  Taken 

together, these findings suggest that organisms can achieve similar gene expression 

patterns through diverse mechanisms.  Because transcription integrates binding events 

that are distributed over great distances, there is a reasonable probability that the 

evolutionary gain or loss of regulatory regions at one locus can be compensated for by 

mutations at other sites.  More work is needed to whether the quantitative relationship 

between binding and expression is similar across mammals. 

The results presented here represent a significant step towards a quantitative 

framework for understanding gene expression. The statistical relationship between 

enhancer position and transcription level is clear, and this observation should lead to 

more accurate models of transcriptional regulation. However, many other factors have a 

profound effect on enhancer function including which coregulators are recruited, the 

nuclear concentrations of transcription factors, binding of small molecules that modulate 

enzymatic activities and interaction surfaces, and any signaling events leading to post-

translational modification of regulators. Enriching the modeling framework presented 
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here by incorporating data describing such events may lead to a greater understanding of 

regulatory networks and their relationship to developmental and disease processes.  



 137 

Chapter 6: Conclusions and Thesis Contributions 

I will conclude this thesis by summarizing the work presented in previous chapters and 

outlining what I feel are its main contributions. The focus of the research presented here 

has been on understanding an important subset of the interactions that control 

transcriptional regulation: namely the binding interactions that result in recruitment of 

transcriptional regulators to their genomic targets. We have developed tools to probe 

three key aspects of these interactions: descriptions of their specificity, physical models 

of their behavior, and their ultimate effect on transcription. Describing the specificity of 

binding interactions involves either learning representations of a protein’s binding 

specificity from experimental data, or predicting which proteins recruit it to its targets 

when it has no DNA binding activity. Accurate descriptions of binding interactions are 

invaluable in obtaining a reasonable representation of transcriptional regulatory 

architecture. However, understanding the behavior of networks in response to 

perturbations relies on a reasonable physical model of how the components of the system 

interact and behave in different settings. Finally, any useful description of a regulatory 

network must relate how binding events ultimately affect transcription. Each chapter of 

this thesis has focused on one or more of these issues. 

 In chapter 2 we presented a motif discovery method, called Converge, which uses 

phylogenetic conservation information to improve motif discovery performance. Here our 

goal was to develop a tool that could be used to obtain accurate descriptions of a protein’s 

DNA binding specificity from a set of sequences that are likely to be bound by the 

protein in vivo as well as pair-wise alignments of orthologous sequence from related 

species. The chief contributions of this work are: 
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1. a novel generative model of sequence that leverages conservation information 

allowing both a motif and a simple measure of evolutionary relatedness to be 

learned from alignment data.  

2. a re-analysis of ChIP-chip data for 172 yeast transcription factors resulting in new 

and corrected binding specificities for several factors, and a significantly 

expanded set of high-confidence regulatory interactions. 

Chapter 3, like chapter 2, focused on the problem of determining a protein’s binding 

specificity. Here we presented a hypothesis-testing approach, called THEME, which 

formulates motif discovery as a model selection problem. The motif most likely to 

correspond to a protein’s true binding specificity is assumed to be the motif that best 

discriminates bound and unbound sequences in a ChIP experiment. The chief 

contributions of this chapter are: 

1. a novel computational framework for integrating prior information about a 

protein’s DNA binding specificity into the motif search 

2. the first discriminative motif analysis method to employ a cross-validated 

approach for ranking candidate motifs and protecting against overfitting.  

In chapter 4, we presented a biophysically-motivated modeling framework for DNA-

protein interactions. Here we were concerned not only with learning accurate 

representations of binding specificities, but also with developing interpretable and 

physically realistic models of protein recruitment to the genome in vivo. We first 

demonstrated that treating protein binding as a simple bimolecular reaction at equilibrium 

with a reaction free energy that is a simple sum of contributions from each position in the 

binding site allows us to derive a convenient logistic function expression for the binding 
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probability. We then demonstrated how this framework could be adapted for use in 

THEME’s hypothesis-testing approach to motif discovery. Next, we extend the approach 

to use raw ChIP-seq count data and demonstrate how this allows us to test hypotheses 

about binding specificity and concentration changes across conditions, and jointly 

analyze ChIP-seq data for factors that compete for common binding sites. The main 

contributions of this chapter of the thesis are: 

1. an intuitive model of sequence-specific protein binding grounded in biophysical 

principles. 

2. integration of this model into the THEME hypothesis-testing framework for motif 

analysis, with performance validation on a varied group of mammalian datasets. 

3. extension of the biophysical framework to include experimental evidence of 

relative binding levels in the form of ChIP-seq count data. 

4. a general stochastic simulation method for obtaining samples from an 

approximation to the posterior distribution of binding configurations in our 

biophysical modeling setting.  

5. presentation of several natural applications of the proposed modeling framework 

including: joint analysis of binding for a factor in two conditions, analysis of 

competitive binding, mixture models of binding specificity, and coregulator 

recruitment. 

Finally in chapter 5 we present an analysis of ChIP-seq data for several transcriptional 

regulators in a number of mouse tissues. We first performed a sequence analysis of bound 

regions from ChIP-seq experiments for the coregulator CBP/p300 in order to predict 

which transcription factors it associates with in each tissue, and then validated the 
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predictions of this analysis with follow-up ChIP experiments. We then presented a simple 

model relating gene expression to the location and proteins bound at the regulatory 

regions identified by ChIP. The chief contributions of this chapter are: 

1. the key insight that the location of regulatory regions relative to the TSS is 

strongly associated with expression level of the gene. This has important 

implications for understanding regulatory network function and evolution. 

2. a novel and accurate model of expression as a function of regulator binding 

location that explains a large fraction of variance in expression level between 

tissues and can help infer the regulatory roles of transcription factors. 

3. a method for performing sequence analysis of genomic regions bound by 

coregulators. Several predictions were validated experimentally, and further 

analysis suggested that a model of independently contributing proteins is better 

supported by the data than more complex models that include cooperative 

recruitment by pairs of regulators. 

In this thesis I have, hopefully, helped lay the foundation for further work in 

understanding the relationship between genomic binding events and downstream 

transcriptional effects.  
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