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Abstract

A signal quality assessment scheme for the photoplethysmogram waveform recorded
by a pulse oximeter has been created. The signal quality algorithm uses statistical
methods on time-series and spectral analysis to locate high-frequency segments of
the photoplethysmogram waveform. A photoplethysmogram pulse onset detector has
been implemented for heart rate estimation. Application of the signal quality met-
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which suppresses false electrocardiogram critical arrhythmia alarms issued by bedside
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Chapter 1

Introduction

1.1 Motivation and Background

Falsely issued alarms in intensive care units (ICUs) disrupt patients’ rest, drain hospi-

tal resources, and desensitize the hospital staff to potential emergency situations [2].

It has been estimated that 43% of life-threatening electrocardiogram (ECG) alarms

issued by bedside monitors are false, with some categories of alarm being as high

as 90% [1]. These false arrhythmia alarms are often triggered by noise and other

artifacts in the monitored ECG waveform, and can be suppressed in the presence of

other data which indicate that there are no critical abnormalities in cardiac function.

Such information can come from signals which are related to cardiac function but are

measured in a location remote to the heart and are therefore unlikely to exhibit the

same types of noise and artifacts as the ECG. Signals with pulsatile waveforms offer

the additional benefit of having features indicative of the cardiac cycle, which can be

later compared to timing and morphology of features in the ECG waveform.

Aboukhalil et al. have created an algorithmic framework which consults the arte-

rial blood pressure (ABP) waveform to corroborate critical ECG arrhythmia alarms

[1, 3]. If an ECG alarm is triggered, the algorithm checks the signal quality of the

simultaneously recorded ABP waveform. If this waveform is of poor quality, the ECG

alarm is accepted as true. If the ABP signal is of high quality, the algorithm checks

that the features extracted from the blood pressure waveform corroborate the condi-
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tion which triggered the ECG alarm. The alarm is suppressed if the blood pressure

waveform does not exhibit features consistent with a cardiac arrhythmia.

The blood pressure signal quality assessment scheme in this framework, designed

by Sun et al. [26], uses a binary signal abnormality index, jSQI, to indicate if each

blood pressure beat is unsuitably noisy. The jSQI algorithm detects the onset of

each pulse in the blood pressure signal, and flags the beat as abnormal if its features,

which include beat duration, systolic, diastolic, mean, and pulse pressures, do not

fall within physiologically possible ranges. Zong et al. [33] had previously created

a blood pressure signal quality metric, wSQI, which uses fuzzy logic to asses the

extent to which the features of each ABP pulse fall within physiologically normal

ranges, yielding a continuous signal quality index value between 0 (abnormal) and 1

(normal). Li et al. [15] used the two ABP signal quality measures for robust heart

rate estimation from simultaneously recorded ECG and ABP waveforms by weighing

each beat’s jSQI value by wSQI.

Zong et al. [33] note that while jSQI and wSQI are successful at assessing signal

quality, they are limited by artifacts of the ABP measurement, such as those due to

catheter flush. The availability of the arterial blood pressure waveform poses further

limitations. We estimate that only 60% of adult ICU patients have ABP simultane-

ously recorded with ECG, due to the invasive nature of the measurement and simply

because not all patients require arterial blood pressure monitoring. Zong et al. [33]

suggest that the false critical ECG alarm suppression rate can be improved if the

ECG is compared to multiple cardiac function indicators, so that if one signal is of

poor quality, an alternate signal can be consulted. One source for such information

is the photoplethysmogram (PPG) waveform, which is pulsatile and non-invasively

obtained from a pulse oximeter affixed to the patient’s finger (in the case of trans-

mission pulse oximetry) or adhered to the skin (in reflective pulse oximetry). The

PPG waveform has different noise characteristics from the arterial blood pressure

waveform due to the difference in measurement technique and sensor location. For

example, the PPG waveform measures blood flow further down the arterial tree from

the site of the ABP measurement; as a result, the waveform resembles a delayed and
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low-pass filtered version of the ABP waveform. A situation where the PPG waveform

might provide more information than the ABP waveform to the alarm suppression

framework is illustrated in Fig. 1-1. Here, the electrocardiogram waveform exhibits a

premature ventricular beat pattern which triggered an alarm. The arterial blood pres-

sure waveform is too noisy to consult for information to verify the ECG alarm. The

photoplethysmogram waveform, however, shows low-amplitude beats in accordance

with the premature beats which are inefficient at pumping blood.

Just as use of the information in the ABP waveform required blood pressure signal

quality measures, incorporation of information extracted from the PPG waveform into

the ECG false alarm suppression framework of Clifford et al. [3] requires assessment

of PPG signal quality to avoid drawing misleading information from an artifactual

waveform. The algorithms introduced in this thesis form a signal quality assessment

scheme for the PPG waveform recorded by a pulse oximeter. These algorithms, which

perform artifact detection, pulse onset identification, and pulse feature extraction, can

be used to determine high-quality segments of the PPG waveform, which can be used

to imporove false ECG alarm suppression and reduce true alarm suppression.

1.2 The Photoplethysmogram Waveform

1.2.1 Pulse Oximetry

Since its invention in the 1970s and commercial development in the 1980s, pulse

oximetry has provided a non-invasive method of estimating functional oxygen satura-

tion of the blood in clinical settings. Oximetry is based on the fact that hemoglobin

absorbs light in limited frequency ranges.

Oxygen reversibly binds to hemoglobin in the blood in order to nourish tissues

in the peripheral regions of the body. The oxygen is released from the blood and

into the tissue at the capillary level of the cardiovascular system. When oxygen

reversibly binds to hemoglobin, the resulting shift in the distribution of electrons

in the hemoglobin molecule causes its optical properties to change [6]. In particu-
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Figure 1-1: Using the photoplethysmogram to corroborate ECG alarms. In this
segment of simultaneously recorded electrocardiogram, arterial blood pressure, and
photoplethysmogram waveforms, an ECG monitor would issue an arrhythmia alarm
due to premature ventricular beats. In this case, we would not be able to corroborate
the alarm by consulting the arterial blood pressure waveform because of noise in
the channel. However, the photoplethysmogram waveform does not exhibit noise
and the morphology of its beats can be related to the shapes and timing of the
electrocardiogram QRS complexes.

lar, oxygenated hemoglobin (O2Hb) absorbs visible light in the blue region, making

blood appear red. Reduced or deoxygenated hemoglobin (RHb) absorbs light at

most frequencies in the visible spectrum, making blood appear dark (or blue when

viewed through the layers of the skin). Permanent binding of carbon monoxide to

hemoglobin, forming carboxyhemoglobin (COHb), and the binding of ferric ions to

hemoglobin, forming methemoglobin (MetHb), also cause the hemoglobin absorption

spectrum to shift for various frequencies of light. As illustrated in Fig. 1-2, the light

absorption of O2Hb and RHb differ most significantly in the red and near-infrared

regions [27]. Pulse oximetry devices typically study the absorption of at least two

18



wavelengths of light, at approximately 660nm and 940nm, by measuring the amount

of light transmitted through or reflected from perfused tissue such as that found in

the finger, earlobe, or on the forehead.

Figure 1-2: Absorption spectrum of hemoglobin species. Transmitted light absorp-
tion of oxyhemoglobin and deoxyhemoglobin (reduced hemoglobin) differs most sig-
nificantly in the red and near-infrared frequencies. Note the extinction coefficients
are plotted on a logarithmic scale. Adapted from Figure 2 in [27].

Transmission pulse oximetry is based on an estimation of the Beer-Lambert Law,

which states that the intensity of light trasmitted through a material is proportional

to the intensity of incident light and exponentially related to the amount of light

absorbed. The amount of light absorbed by a sample, A, is a dimensionless quantity

defined in terms of the light intensity in the presence of the sample, I (in W/m2),

and in the absence of the sample, I0, as

A = − log(
I

I0

), (1.1)
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and is linearly proportional to the extinction coefficient and path length, expressed

as

A = εcl, (1.2)

where ε is the molar absorptivity (in m2/mol) of the sample, c is the concentration (in

mol/m3) of the hemoglobin species, skin, muscle, and bone, and l is the path length

in meters of the transmitted light [6].

In transmission pulse oximeters, one light-emmitting diode of each wavelength,

660 nm and 940 nm, shines incident at roughly 90◦ to the outer tissue (typically

through the nail on the back of a finger tip for adults), and the intensity of the

transmitted light is detected on the opposite side (typically the finger pad). For each

frequency of incident light, the absorption can be expressed as a sum of absorption

due to O2Hb, RHb, COHb, and MetHb, as well as absorbtion by other non-blood

sources, such as surrounding tissues. Finger probe pulse oximeters operate under the

assumption that the path length l maintains a steady “direct current” (DC) value due

to venous and arterial blood, as well as an alternating “current” (AC) component due

to the expansion of the capillaries as each wave of blood is pumped from the heart

and flows through the vasculature. The resulting absorption waveform is illustrated

in Fig. 1-3. It has been noted that the AC component of these absorption waveforms

account for less than 1% of the total light absorbed by the perfused tissue. Absorption

measurements are highly susceptable to any change in the material surrounding the

pulsating arterial vasculature, including the disturbance of muscle, skin, and venous

blood in response to motion [22].

The pulsatile PPG waveform displayed on ICU monitors is a dimentionless quan-

tity computed from a ratio comparing the AC amplitude to DC light absorption of

the red and infrared wavelengths as follows [6, 27]:
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Figure 1-3: Light absorption waveform in inhomogenious tissue. In pulse oximetry,
the AC component is due to the varying path length when the arterial vasculature
expands during a pulse. Note this AC component only accounts for approximately
1% of the total absorption. Adapted from Figure 3 in [27].

R =
dA660nm/dt

dA940nm/dt
=

AC660nm/DC660nm

AC940nm/DC940nm

. (1.3)

R is a pulsatile waveform taking values between 0 and 1, similar in appearance to the

ABP.

From this ratio, an estimate of functional oxygen saturation in arterial blood can

be made [6]. Substituting equations 1.1 and 1.2 into equation 1.3, and recalling that

the pulsatile component of the signal is due to movement of oxyhemoglobin, R can

also be expressed as follows:

R =
εo,660nmco + εr,660nmcr

εo,940nmco + εr,940nmcr

(1.4)

where εo and co are the molar absorptivity and concentration of oxyhemoglobin,

and εr and cr are the molar absorptivity and concentration of reduced hemoglobin,

respectively. Functional oxygen concentration is defined by %SaO2 = co/(co + cr).

This allows us to express the theoretical relationship between %SaO2 as follows [6]:
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%SaO2 =
εr,660nm − εr,940nmR

(εr,660nm − εo,660nm)− (εr,940nm − εo,940nm)R
(1.5)

Due to limitations to the Beer-Lambert law caused by light scattering in tissue and

pulse oximeter device characteristics, the true relationship between pulsatile estimate

of functional oxygen saturation, %SpO2 and R is empirically determined by fitting

data from human volunteers to an equation of the form S = (a − bR)/(c − dR) [6].

This relationship is illustrated in Figure 1-4. In addition to the waveform, R, the

%SpO2, is reported as a percentage every second by the pulse oximeter. Normal

oxygen saturation levels range between 90 and 95%.

Figure 1-4: Typical pulse oximeter calibration curve, illustrating the relationship
between the measured ratio of fractional changes in light intensity at two wavelenths,
R, and estimated oxygen saturation %SpO2. Adapted from Figure 4 in [27].
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1.2.2 Waveform Morphology

The photoplethysmogram waveform is similar in shape to the arterial blood pressure

waveform, but has several morphological differences which prevent simple use of the

wSQI and jSQI algorithms on PPG. As noted earlier, the PPG and ABP waveforms

have different scales, and the amplitude of PPG waveform typically ranges from 0 to

1 rather than from 30 to 300 mmHg. There is no direct meaning for low or large

pulse amplitudes in the PPG waveform. The PPG amplitude can be modulated

by respiratory activity, as with the ABP. In processed waveforms, the amplitude is

somewhat arbitrary due to automatic gain controls by the electronic monitor. The

variability in pulse-to-pulse time follows the activity of the heart. When the signal

is of good quality, the PPG pulse ampliutude varies closely with the stroke volume

of the heart on a beat-by-beat basis, and with respiration (through respiratory sinus

arrhythmia) [17]. The onset of each PPG pulse follows the onset of the QRS complex

in the electrocardiogram and the onset of the corresponding pulse in radially-measured

ABP. This can be quantified by the pulse transit time (PTT), which is computed as

PTT = tPPO − tecgQRS, (1.6)

where tPPO is the PPG pulse onset time and tecgQRS is the onset time of the cor-

responding QRS complex in the electrocardiogram, which should occur between the

current and last PPG pulse [5].

1.2.3 Artifacts

There are several limitations to the accuracy of pulse oximetry, including attenuation

due to poor perfusion, skin pigmentation, and nail polish [24]. Inaccurate oxygen

saturation values in certain types of anemic patients are due to modified hemoglobin

which cannot be characterized by the normal hemoglobin light absorption spectrum.

Artifacts due to ambient gas or fluorescent lighting have also been of concern, espe-

cially for those oscillating frequencies which are near the harmonic frequencies of the

pulse oximeter’s LED pulsations [24]. The waveform is subject to arbitrary baseline
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shifts and to sudden amplitude changes due to the monitor’s automatic gain control.

Noise in the signal may cause the amplitude of the PPG waveform to saturate at a

maximum or minimum value, or to rest at some random fixed value. However, the

artifacts of largest concern are caused by motion of the sensor relative to the skin

(generally due to patient movement) [12, 25, 22].

Researchers have investigated several methods for PPG artifact reduction, which

can be categorized into three types of approach: stationary filtering based on fre-

quency content [12], adaptive filtering based on energy changes in the waveform [4, 30],

and adaptive filtering based upon data from an external sensor [25, 7, 28, 29]. Hayes

et al. used spectral analysis to determine the motion artifact frequency range to be

greater than three times the PPG fundamental frequency (heart rate); signal quality

was then quantified by taking the proportion of artifact signal power to total signal

power [12]. Coetzee et al. used recursive-least-squares adaptive filtering of patient

waveforms with a synthetic reference signal to reduce noise and reconstruct waveforms

[4]. Once artifacts have been identified, Kalman filters can be used to extract autore-

gressive coefficients for interpolation and smoothing of noisy pulse wave segments

[30]. The performance of this method depends on the order of the autoregressive

model. Sokwoo et al. have characterized motion artifacts by designing a snug-fitting

ring sensor equipped with an accelerometer for fingerbase PPG measurements [25].

Adaptive filtering based on Laguerre models has been used to characterize the re-

lationship between the PPG waveform and acceleration of the hand and finger, and

to remove PPG motion artifacts [7, 28, 29]. Identification of PPG segments with

poor signal quality attributed to motion artifact has been achieved by comparing

the pulse rate obtained from the PPG waveform to the ECG-derived heart rate [22].

Gil et al. used Hjorth parameters to estimate the dominant frequency and spectral

bandwidth of PPG waveforms measured from pediatric patients while in sleep, and

applied thresholds to mark regions of gross artifact [8, 9]. However, few others have

used these artifact reduction techniques to identify artifact types and create signal

quality measures. None have studied PPG signal quality in the context of adult ICU

patients, or under conditions of arrhythmias. We believe the stationary and adaptive
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filtering approaches can be combined for more robust artifact detection.

1.3 Overview of Thesis

The goal of this thesis is to improve performance of ICU bedside monitors by suppres-

sion of false critical ECG arrhythmia alarms through the use of information derrived

from simultaneously acquired PPG and ABP waveforms. Augmentation of the false

alarm suppression framework presented by Clifford et al. [1, 3] to employ the PPG

waveform requires both feature extraction and signal quality assessment. Two algo-

rithms have been created for this purpose. Chapter 2 introduces the pSQI algorithm,

which employs spectral analysis to detect large artifacts for PPG signal quality assess-

ment. Chapter 3 introduces the aPPG algorithm, which employs time-series analysis

to detect PPG pulse onsets. The results of these two algorithms are incorporated into

a new false alarm suppression framework, which is described in Chapter 4. Evaluation

of these methods and a discussion of improvements can be found in Chapter 5, as

well as a discussion of future research efforts.
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Chapter 2

Signal Quality Assessment

The use of the photoplethysmogram waveform for electrocardiogram alarm corrobo-

ration requires a guarantee of the absence of artifact in the PPG waveform. Signal

quality assessment is therefore a necessary component of the false alarm suppression

framework.

2.1 Previous Work

Our PPG signal quality assessment is based on the identification of artifact periods

using spectral power characteristics, as performed by Gil et al. [8, 9]. Sörnmo et al.

estimated the dominant frequency and half-bandwidth of the spectral distribution of

the waveform using Hjorth parameters [13, 14]. Gil et al. thresholded these parameter

values to identiify periods of major artifact.

The Hjorth parameters characterize a time signal in terms of its amplitude, time

scale, and complexity. The parameters of a discrete signal, x[n], where n is the sample

number, are derived from the moments of the power spectrum Sx(e
jω), where ω is

the frequency in radians [13, 14]. The ith-order spectral moment is defined as

ω̄i =
∫ π

−π
ωiSx(e

jω)dω. (2.1)

Since the power spectrum is symmetric about the ω = 0 frequency axis, the odd
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moments are all zero. However, the even moments can be used to estimate the shape

of the power spectrum of the signal.

We assume that the signal x[n] is a sampled version of a continuous time signal

xc(t) with sampling period Ts, such that x[n] = xc(nTs) for n = 0, 1, . . . , N − 1. The

spectral moments can be computed from the mean power of xc(t) and its derivatives,

ω̄0 =
∫ π

−π
Sx(e

jω)dω = 2πE[xc
2(t)], (2.2)

ω̄2 =
∫ π

−π
ω2Sx(e

jω)dω = 2πTs
2E

(dxc(t)

dt

)2
 , (2.3)

ω̄4 =
∫ π

−π
ω4Sx(e

jω)dω = 2πTs
4E

(d2xc(t)

dt2

)2
 , (2.4)

where E[y] indicates the calculation of the expectation of the argument, y. Note that

the zeroth moment corresponds to the variance, σ2
a, of the amplitude of the zero-mean

signal x[n]. Similarly, the second moment corresponds to the variance, σ2
d, of the slope

values of the signal, and the fourth moment corresponds to the variance, σ2
dd, of the

rate of change of slope in the signal.

The first Hjorth parameter (termed activity),

H0 = ω̄0, (2.5)

gives a measure of mean signal power. The second Hjorth parameter (termed mobility)

is defined as

H1 =

√
ω̄2

ω̄0

. (2.6)

From a time-domain perspective, H1 gives a measure of the standard deviation of

the slope of x[n] relative to the standard deviation of the amplitude. As a power

ratio, this parameter becomes a measure of frequency variance of the power spectral

density. The third Hjorth parameter (termed complexity) is expressed as
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H2 =

√
ω̄4

ω̄2

− ω̄2

ω̄0

. (2.7)

The first term in the difference can be interpreted as the mobility or frequency variance

of the power spectral density of the first derivative of x[n], where the signal power

has been redistributed to the higher frequencies. The complexity parameter therefore

represents the difference between the frequency variance of the first derivative and

the frequency variance of the original signal. In the time domain, this parameter can

be interpreted as the variance of the curvature values during one period with respect

to the variance of the slope values during that period. A rapidly varying signal with

complex morphology, such as high-frequency noise, will exhibit more variance in the

curvature of the signal than a smoothly-varying signal such as a sinusoid.

Hjorth parameters can be efficiently computed in the time domain because the

spectral moments can be computed from the first and second derivatives of the time

series [13]. For discrete signals, these derivates are approximated by the first and

second difference equations, such that

x(1)[n] = x[n]− x[n− 1], (2.8)

x(2)[n] = x[n + 1]− 2x[n] + x[n− 1], (2.9)

where

dixc(t)

dti
≈ x(i)[n]

Ts
i . (2.10)

The interpretation and use of the Hjorth parameters for spectral estimation can

be clarified through an example. Suppose the input signal is a pure sinusoid with

fundamental frequency 1 Hz. The power spectrum of this signal consists of two

impulses centered at the positive and negative fundamental frequency of the sinusoid.

The slopes of the input signal are taken from the first derivative of the signal, which

is the cosine function. The variance of the slope values generated over one period

29



with respect to the amplitude of the signal during that period is expressed by the

mobility parameter, which should equal 1 for this signal because the variance of

the sine and cosine values is the same. From a frequency perspective, the mobility

parameter describes the frequency of the signal. (The mobility will be greater than 1

for sinusoids of higher frequencies, and less than 1 for sinusoids of lower frequencies,

due to scaling of the signal amplitude when a derivative is taken.) If the the signal

is a pure sinusoid, the complexity parameter should equal zero, because the second

derivative of the signal carries the same fundamental frequency as the first derivative

and the signal itself. The mobility of the first derivative is also 1, and because

the complexity parameter describes the difference between the frequency variance of

the first derivative and the frequency variance of the original signal, the complexity

parameter equals zero.

Because the Hjorth parameters are based on the concept of variance, they also

exhibit the additive properties of variance [13]. For example, in the case where the

signal x[n] represents a superposition of sinusoids, the mobility parameter will provide

some weighted measurement of all the present fundamental frequencies. If the signal

is periodic but not purely sinusoidal, the power spectrum will exhibit a peak asso-

ciated with the main frequency of the signal but will also have non-zero bandwidth.

The mobility parameter, as the frequency variance of the power spectrum, will not

represent this main frequency, and the complexity parameter will have a non-zero

value, reflecting the extent to which the morphology of the signal deviates from that

of a sinusoid.

In the analysis of physiologic signals such as the PPG waveform, the input sig-

nal is periodic but near-sinusoidal. This means the power spectrum has a resonant

frequency related to the heart rate, and has some non-zero bandwidth. Gil et al.

[8, 9] used the mobility parameter, H1, to estimate the dominant frequency of the

signal, and used the complexity parameter, H2, to estimate the half-bandwidth of

the PPG power spectrum. The H1 value does not provide an accurate estimate of

dominant frequency or heart rate, as is illustrated in Figure 2-1. However, waveforms

with physiologically normal morphology and heart rate should exhibit power spectral
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densities with most of their mass within a certain range.

Gil, Vergara, and Laguna [9] describe a PPG artifact detector which employs

mobility and complexity of the PPG waveforms. At each sample, H1 and H2 were

determined from estimates of the moments of a P -sample window of PPG data:

ˆ̄ωi[n] ≈ 2π

P

n∑
k=n−(P−1)

(x(i/2)[k])2, i = 0, 2, 4 (2.11)

where x(i/2)[k] is the i/2 derivative of x[k].

Figure 2-1: Hjorth parameter calculations for PPG segments at various heart rates.
Printed with each power spectrum is the mean of the H1 and H2 Hjorth parameters,
which were calculated using non-overlapping 2s and 4s windows from the zeroth,
second, and fourth moments of the power spectrum of the PPG waveform according
to Equation 2.11.

In their study of PPG data from 26 children, Gil et al. [8, 9] found that the PPG

signal is of high quality when mobility (H1) lies within a range whose upper threshold
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is specified by η1
u and whose lower threshold is given by η1

l. The signal is considered

to be of good quality when complexity (H2) lies below a threshold, η2. Conversely,

artifactual regions are portions of the signal where the dominant frequency differs too

much from the heart rate, H1 < η1
l or H1 > η1

u, or where the power spectrum is too

wide, H2 > η2.

The thresholds used to detect artifact, η1
l, η1

u, and η2 are set at a static value

relative to H̃1 and H̃2, the medians of the H1 and H2 values, which are computed

over the entire length of the provided data:

η1
l = α1 + H̃1, (2.12)

η1
u = α2 + H̃1, (2.13)

η2 = α3 + H̃2. (2.14)

In the work of Gil et al., α1 = −1, α2 = 1.4, and α3 = 3.

A single recording of data provided to the algorithm could be minutes long, or

it could be hours long. This method for setting thresholds thus assumes that the

majority of the recording contains signal with no artifact, and the heart rate and

rhythm are normal and stable. If the heart rate varies significantly over the interval,

portions of the segment may get marked as artifact even if the signal is of high quality.

Furthermore, the thresholds have been chosen based on data from pediatric patients

while in sleep, where motion artifacts are less likely to appear. The threshold settings

for artifact determination therefore may not hold for adult ICU patients, which are

the focus of this study.

2.2 Modifications for Prototype Artifact Detector

We have implemented the artifact detection algorithm of Gil et al. [8, 9], which we will

refer to as pSQI, on PPG data from the MIMIC I [20] and MIMIC II [23] databases.

32



This prototype system was used to provide a rough estimate of the total amount

of good quality PPG data available for use, as well as to screen for good quality

PPG segments while testing the aPPG pulse onset detection algorithm, described in

Chapter 3.

We have created a binary signal quality index, SQI, that takes value 0 for arti-

factual segments, and takes value 1 for good-quality segments. An illustration of the

performance of the artifact detector is shown in Figure 2-2 on page 34. Note that for

the temporal window over which H1 and H2 are calculated, Gil et al use a window size

of 5 seconds, and we use non-overlapping windows of length 2 seconds. The choice of

2 seconds is to provide the shortest temporal window possible which would capture at

least one pulse at 30 beats per minute or faster. When the SQI value drops from 1 to

0, indicating artifact, it does so at the back (earliest) edge of the P -sample window.

The SQI steps from 0 to 1 at the leading (latest) edge of the window. In other words,

the output of the SQI detector takes a safe harbor approach and labels any section

that may contain some artifact as artifactual, even though there may be some good

quality data near the start and/or end of the window. Furthermore, if two artifactual

segments are not separated by more than 5 seconds of clean data, they are fused into

one longer artifactual period. Therefore regions with SQI equal to 1 are unlikely to

have artifactual data in them, even at the region’s edges.

The prototype system has three main limitations. First, the thresholding mecha-

nism is not adaptive, and assumes that the majority of a record contains clean data,

since the thresholds are set relative to the mean Hjorth parameter values across all the

segments in a record. Secondly, the thresholds were determined from data recorded

in a pediatric sleep study and should not be applied to adult ICU patient data with-

out further investigation. The age, activity, condition, and treatment of adult ICU

patients differs systematically from sleeping pediatric patients. Third and most im-

portantly, while regions of normal sinus rhythm and normal pulse morphology are

marked as having high PPG quality, periods of high PPG signal quality (i.e. clearly

discernable beats despite low amplitude or atypical morphology) recorded when the

patient was suffering from a cardiac arrhythmia are often marked as artifact. Specif-
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Figure 2-2: PPG artifact detection based on Hjorth parameters, as described in [9] on
MIMIC II patient record a44545. Non-overlapping window size = 2 s. (a) Mobility,
H1[n] (see Eqn. 2.6), with thresholds η1

l and η1
u, outside of which the signal is

considered artifactual. (b) Complexity, H2[n] (see Eqn. 2.7), with spectral width
threshold η2, above which the signal is considered artifactual. (c) PPG waveform
(solid line) and signal quality (dashed line). The PPG waveform exhibits good quality
when η1

l < H1 < η1
u and H2 < η2.

34



ically, the prototypical pSQI algorithm marks periods of PPG with low heart rates

as artifact, thereby ignoring high quality signals measured during periods of brady-

cardia. We address these limitations by examining the H1 and H2 parameter values

in adult ICU patient data in the case of normal sinus rhythm and under various

arrhythmia conditions.

2.3 Adaptive Assessment of Signal quality

Our goal is to suppress false arrhythmia alarms in the ECG signals of ICU beside

monitors by consulting information in simultaneously recorded PPG signals. To do

this, we require a trust metric for the PPG waveform. By employing the Hjorth

parameters to analyze the PPG waveform recorded before an alarm, we can determine

if the PPG is of high enough quality to provide a reliable estimate of heart rate.

Due to the limitations discussed in the previous section, it is important to assess

PPG signal quality in the context of the specific arrhythmia alarm type which has

been generated by the monitor. Thus we examine the H1 and H2 Hjorth parameter

values computed from the PPG waveform segments recorded just before true and

false arrhythmia alarms are issued. Hjorth parameter thresholds must be determined

for each arrhythmia alarm type, since spectral content differs based on heart rate.

2.3.1 Structure and Availability of Waveform Data

For this research, the ICU photoplethysmogram waveforms are taken from the MIMIC

II database [23]. Through this database we have access to approximately synchronous

waveforms with combinations of respiration, electrocardiogram, arterial blood pres-

sure, and photoplethysmogram waveforms, sampled at 125 Hz, recorded by Phillips

CMS bedside patient monitors (Phillips Medical Systems, Andover, MA). The data

is organized by patient records, which also contain annotations of all ECG-, ABP-,

and PPG-issued alarms.

Each patient record (which contains data from an individual ICU visit) may be

broken into several record segments of variable length. A new segment begins when-
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ever the number or type of channels of data changes, the gain of any channel of data

changes, the waveform file becomes corrupt, the time stamps become non-contiguous

(due to network errors), or the data collection unit is stopped for a few minutes to

allow changing of disks. The types of waveforms in one segment of the record may

not necessarily be present in a different segment of the same record. A total of 20, 931

segments of varying lengths from 2, 997 patient records are accessible. Only 618 of

these records contain electrocardiograms which triggered critical (life-threatening)

ECG arrhythmia alarms, with 6, 977 critical alarms total.

We have categorized each waveform segment based upon its signal content, and

created groups for segments containing ECG, ABP, PPG, and waveforms labeled

“unknown.” Inspection of these waveforms shows they are mostly mislabeled PPG

waveforms, so in estimating the amount of available photoplethysmogram data, we

take the union of the set of segments containing labeled PPG waveforms with the

set of segments containing a waveform labeled “unknown.” The number of hours

of available waveforms from these records for training and testing the signal quality

algorithm and ECG false alarm suppression algorithm is summarized in Table 2.1 and

illustrated in Figure 2-3. There are at least 47, 581 hours of simultaneous PPG and

ECG data available for training and testing the signal quality algorithm and ECG

false alarm suppression algorithm. If 50, 520 represents the total hours of all the

patient stays, then pulse oximeter data is available 94% of the time. (Note that there

are only 17, 833 hours of simultaneous ECG and ABP waveforms, representing ABP

availability during only 35% of the patient record hours. This is much less than that

available from the PPG). However, when we add the criterion that life-threatening

arrhythmia alarms must be present at some point in the record, we reduce the number

of cases by 18% and available hours of waveform data by 35%. Approximately 11, 231

hours of simultaneous ECG, ABP, PPG from 272 cases are available for training

and testing the PPG pulse onset detector and to evaluate performance of a PPG-

enhanced false alarm suppression framework. After requiring that the record is longer

than 5 minutes, contains critical arrhythmia (asystole, extreme bradycardia, extreme

tachycardia, ventricular tachycardia, or ventricular fibrillation/tachycardia) alarms,
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Table 2.1: Estimated hours of available waveform data

Waveforms
All Available Records Records with Alarms

No. Cases No. Hours (%) No. Cases No. Hours (%)
ECG 756 50,520 (100%) 618 32,897 (65%)
ECG & PPG 728 47,581 (94%) 596 31,325 (62%)
ECG & ABP 315 17,833 (35%) 283 11,885 (24%)
ECG & ABP & PPG 303 16,654 (33%) 272 11,231 (22%)

and is not the record of a patient with an intra-aortic balloon pump, the final number

of cases considered is 181.

Figure 2-3: Waveform data available with critical electrocardiogram alarms. Of the
618 cases with critical ECG alarms, 272 cases have simultaneously recorded ECG,
ABP, and PPG waveforms.

2.3.2 Preparation of Alarm Data

From the MIMIC II database, ICU patients have been selected whose records in-

clude simultaneously recorded ECG, ABP, and PPG waveforms and some number of

life-threatening cardiac arrhythmia alarms, namely asystole, extreme bradycardia, ex-

treme tachycardia, ventricular tachycardia, and ventricular fibrillation. Each of these

alarms were annotated independently as True, False, or Indeterminable by one signal
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processing expert with over a decade of experience in analyzing such data and one

graduate student with graduate level training in cardiac electrophysiology [18, 11].

One physician with several decades of electrocardiographic interpretation experience

adjudicated the annotations. The annotations and adjudications were made by re-

viewing all ECG, ABP, and PPG waveforms surrounding each alarm onset over any

length of window size desired (but generally 30 seconds) using open-source waveform

viewing software (‘WAVE’, available at PhysioNet.org [19]). Patients with intra-aortic

balloon pumps were excluded from this study. The final “gold standard” annotated

alarm set included a total of 4, 012 alarms from 181 ICU patients.

The alarm category of ventricular fibrillation/tachycardia yielded no true ven-

tricular fibrillation annotations, where the ECG waveform accompanying the alarm

exhibited uncoordinated ventricular contraction and the ABP and/or PPG showed

no pulsatile activity until the patient received a defibrillating shock. The alarm was

always triggered under circumstances of rapid ventricular tachycardia, which usually

degenerates into ventricular fibrillation. These ventricular fibrillation/tachycardia

alarms were therefore annotated in the same manner as ventricular tachycardia alarms

and were combined with alarms from the ventricular tachycardia category. That is, if

ventricular fibrillation was not present, but ventricular tachycardia was, the alarm was

marked as true. Similarly, if the associated waveforms demonstrated neither ventric-

ular fibrillation nor ventricular tachycardia, the ventricular fibrillation/tachycardia

alarm was annotated as false.

A separate signal quality study was conducted for each of the alarm types. Patients

exhibiting the alarm in question were ranked by the number of alarms in the record

and sorted into training and test sets. Each set had an equal number of patients

and roughly equal number of alarms. The number of patient records and the relative

frequency of true and false alarms of each type in the training and testing sets are

detailed in Tables 2.2, 2.3, and 2.4. Compared to the data set in the study performed

by Aboukhalil et al. [1], our data set has a higher percentage of ventricular tachycardia

alarms, and fewer extreme bradycardia and extreme tachycardia alarms. The false

alarm rates in our data set are similar, except for extreme tachycardia alarms, which
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Table 2.2: Annotated critical ECG arrhythmia alarms in gold standard database. For
example, there are 29 true asystole alarms, indicating that 1.2% of all alarms in the
database are true asystole alarms, and that 7.8% of all asystole alarms in the data
set are true.

Alarm Type No. Patients
No. Alarms

All True False
(% All) (% All) (% Type) (% All) (% Type)

Asystole 95
639 50 589

(15.9) (1.2) (7.8) (14.7) (92.2)
Extreme

49
282 174 108

Bradycardia (7.0) (4.3) (61.7) (2.7) (38.3)
Extreme

66
832 762 70

Tachycardia (20.7) (19.0) (91.6) (1.7) (8.4)
Ventricular

146
2259 1194 1068

Tachycardia (56.3) (29.7) (52.7) (26.6) (47.3)
Total

181
4012 2177 1835

(Averages) (13.6) (53.5) (11.4) (46.6)

appear less frequently in our alarm collection.

2.3.3 Preparation of Normal Sinus Rhythm Data

To provide an understanding of the spectral distributions of PPG signals during sinus

rhythm, and to provide a set of data for training a pulse onset detection algorithm,

we identified a large amount of clean PPG data recorded during sinus rhythm.

From the MIMIC II database, 748 half-minute segments of non-artifactual PPG

signals exhibiting normal sinus rhythm were screened for high signal quality using the

prototype pSQI algorithm and examined by eye to ensure the lack of gross artifact,

signal dropout, and indications of arrhythmia. Beat onsets were detected (using a

pulse onset detection algorithm described in Chapter 3), and a vector of beat-by-beat

instantaneous heart rates was formed for each PPG segment. Those segments which

exhibited mean instantaneous heart rates between 60 and 85 beats per minute, with

a standard deviation less than 5 beats per minute, were retained to yield 264 half-

minute epochs from 43 patients. The H1 and H2 parameters for each non-overlapping

2 s window of these epochs were recorded.
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Table 2.3: Annotated critical ECG arrhythmia alarms in Training Set. For example,
in the training set there are 29 true asystole alarms, indicating that 1.3% of all alarms
in the training set are true asystole alarms, and that 8.3% of all asystole alarms in
the training set are true.

Alarm Type No. Patients
No. Alarms

All True False
(% All) (% All) (% Type) (% All) (% Type)

Asystole 48
349 29 320

(15.3) (1.3) (8.3) (14.0) (91.7)
Extreme

25
205 131 74

Bradycardia (9.0) (5.7) (63.9) (3.2) (36.1)
Extreme

33
519 498 21

Tachycardia (22.7) (21.8) (95.9) (0.9) (4.1)
Ventricular

73
1213 711 502

Tachycardia (53.1) (31.1) (58.6) (22.0) (41.4)
Total

127
2286 1369 917

(Averages) (15.0) (56.7) (10.0) (43.3)

Table 2.4: Annotated critical ECG arrhythmia alarms in Test Set. For example, in
the test set there are 21 true asystole alarms, indicating that 1.2% of all alarms in
the test set are true asystole alarms, and that 7.2% of all asystole alarms in the test
set are true.

Alarm Type No. Patients
No. Alarms

All True False
(% All) (% All) (% Type) (% All) (% Type)

Asystole 47
290 21 269

(16.8) (1.2) (7.2) (15.6) (92.8)
Extreme

24
77 43 34

Bradycardia (4.5) (2.5) (55.8) (2.0) (44.2)
Extreme

33
313 264 49

Tachycardia (18.1) (15.3) (84.3) (2.8) (15.7)
Ventricular

73
1046 480 566

Tachycardia (60.6) (27.8) (45.9) (32.8) (54.1)
Total

126
1726 808 918

(Averages) (11.7) (48.3) (13.3) (51.7)
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2.3.4 Hjorth Parameter Assessment By Alarm Type

For each alarm in the training set, thirty seconds of PPG data prior to the alarm

were extracted and analyzed to compute the H1 and H2 parameters over 2 s non-

overlapping windows. The Hjorth parameters were then sorted by associated alarm

type and condition (the veracity of the alarm, true or false). Distributions of these

H1 and H2 values are illustrated using box and whisker plots in Figures 2-4 and 2-5.

The mobility parameter (H1) estimates the dominant frequency of the PPG sig-

nal, which is noticeably lower in the case of true bradycardia alarms compared to

waveforms at normal sinus rhythm or faster heart rates. False bradycardia alarms

are accompanied by waveforms with the dominant frequency in the same range as

those exhibiting normal or fast heart rates. True asystole alarms are accompanied

by a wide range of dominant frequencies, indicating the high prevalence of noise and

gross artifact, or missing signal on the PPG channel, while PPG waveforms measured

during false asystole alarms exhibit a dominant frequency in the range of normal and

fast heart rates.

The complexity parameter (H2) shows more promise for distinguishing between

high signal quality PPG waveforms in true and false conditions of extreme tachycardia

or ventricular tachycardia alarms. For the ventricular tachycardia category, PPG

waveforms accompanying true alarms exhibit more “band-limited” power spectra than

those alongside false alarms. Once again, the wide range of complexity parameters

for true asystole alarms indicates wider bandwidth, which is associated with a flat,

DC-like signal.

A two-sample Kolmogorov-Smirnov test was performed between the true and false

distributions for each alarm condition and both Hjorth parameters. The results are

presented in Table 2.5. The H1 distributions for extreme tachycardia alarms were

not significantly different. In every other case, the distributions were found to be

significantly different (p < 0.0001).
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Figure 2-4: Box and whisker plot of mobility parameter (H1) distributions by alarm
type and condition (veracity). ASYS = asystole; BRAD = extreme bradycardia;
TACH = extreme tachycardia; VTAC = ventricular tachycardia.

2.3.5 Threshold Setting

As a first pass, we assume that most of the “mass” in the distributions of the H1 and

H2 parameters under true alarm conditions is calculated from clean PPG waveforms.

These segments most likely contributed to the annotation of the alarm as true. We

therefore use values of H1 and H2 which are at the edges of the distributions to

indicate poor signal quality.

In the remainder of this study, we examined 512 combinations of the Hjorth pa-

rameter thresholds, η1
l, η1

u, and η2. For each threshold we chose eight values spanning

the upper and lower interquartile ranges in the true alarm distributions. For η1
l, we

chose eight uniformly spaced values between one and a half interquartile ranges below

the lower quartile and the median value of each true alarm H1 distribution. For η1
u,
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Figure 2-5: Box and whisker plot of complexity parameter (H2) distributions by alarm
type and condition (veracity). ASYS = asystole; BRAD = extreme bradycardia;
TACH = extreme tachycardia; VTAC = ventricular tachycardia.

we chose eight uniformly spaced values between the median value and one and a half

interquartile ranges above the upper quartile of each true alarm H1 distribution. For

η2, we chose eight uniformly spaced values between the median value and one and

a half interquartile ranges above the upper quartile of each true alarm H2 distribu-

tion. The threshold ranges tested are summarized in Table 2.6, where each range is

distributed from the lower value to the upper value in eight equal increments. Each

of these 512 Hjorth parameter thresholds was used in the false alarm suppression

framework described in Chapter 4, and the thresholds which yielded the best false

alarm suppression rate on the training set was chosen for use in the algorithm.
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Table 2.5: Results of Kolmogorov-Smirnov tests for H1 and H2 during true and false
alarms to be sampled from different distributions

Alarm Type H1 significance H2 significance
Asystole p < 0.0001 p < 0.0001
Extreme Bradycardia p < 0.0001 p < 0.0001
Extreme Tachycardia p = 0.01 p < 0.0001
Ventricular Tachycardia p < 0.0001 p < 0.0001

Table 2.6: Ranges of Hjorth parameter threshold settings tested for each alarm type

Alarm Type
Threshold Range

η1
l range η1

u range η2 range
Increment Increment Increment

Asystole
[0 . . . 1.68] [1.68 . . . 4.96] [13.1 . . . 20.6]

0.24 0.47 1.1

Extreme Bradycardia
[0.493 . . . 1.35] [1.35 . . . 2.17] [2.39 . . . 5.79]

0.12 0.12 0.49

Extreme Tachycardia
[0.443 . . . 1.87] [1.87 . . . 3.29] [3.83 . . . 8.99]

0.20 0.20 0.74

Ventricular Tachycardia
[0.555 . . . 1.81] [1.81 . . . 3.08] [3.98 . . . 7.70]

0.18 0.18 0.53

2.4 Use of pSQI

The pSQI algorithm is used in a false alarm suppression framework to assess the

signal quality in the PPG waveform just preceding an ECG arrhythmia alarm. If

the signal quality is high, the PPG waveform exhibits spectral characteristics of the

cardiac arrhythmia in question, and we trust the heart rate estimated from that

segment. Additional logic can then be used to accept or suppress the issued alarm,

as in the works of Aboukhalil, Clifford, et al. [1, 3].
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Chapter 3

PPG Pulse Onset Detection

In order to perform heart rate estimation and beat-by-beat extraction of PPG wave-

form features, the duration of each pulse must be determined. This can be achieved

by pulse onset detection, assuming the pulse lasts from one onset to the next, and no

beats are missed or erroneously detected.

3.1 Previous Work

For the simple purpose of heart rate estimation from the photoplethysmogram wave-

form, peak detection is a simple and effective method for pulse identification. Pulse

peak detection can be made robust to noise and movement artifacts if adequate filter-

ing and thresholding is applied, as demonstrated by Yu et. al [31]. However, studies

of irregular pulse morphology or rhythms require feature analysis on the whole pulse.

Detection of pulse onsets allows for pulse extraction and study of irregular pulse

morphology, as well as analysis of pulse transit time.

Zong et al. [32] have previously created the wABP algorithm to detect the onset

of arterial blood pressure pulses. Their algorithm passes the input blood pressure

waveform,xn, through a low-pass filter, then computes a slope sum function (SSF),

which enhances the upslope of each pulse in the waveform. The low-pass filter is a

second-order recursive filter with transfer function, frequency response, and difference

equation given by Equations 3.1, 3.2 and 3.3.
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H(z) =
(1− z−5)2

(1− z−1)2
(3.1)

|H(ωT )| = sin2(3ωT )

sin2(ωT/2)
(3.2)

yn = 2yn−1 − yn−2 + xn − 2xn−5 + xn−10 (3.3)

For each time point, i, the SSF, zi of the preceding w-sample window of the filtered

signal, yn , is computed as follows:

zi =
i∑

k=i−n

∆uk, ∆uk =

 ∆yk, if ∆yk > 0

0, if ∆yk ≤ 0
(3.4)

where 1 + w ≤ i ≤ N , N is the total number of samples in the ABP waveform, and

∆yk = yk − yk−1. The SSF is then passed through a decision rule to determine the

occurrence of each pulse onset in the blood pressure waveform.

In the wABP algorithm, the decision rule has two components, which we will

refer to as the pulse initiation and pulse confirmation phases. In the pulse initiation

phase, the algorithm determines that a pulse is initiated if the SSF value is greater

than a threshold. The threshold is initialized by the average SSF value over the first 8

s of waveform data. To confirm that an ABP pulse with a strong upstroke is present,

the difference between the maximum and minimum values of the SSF in a 150 ms

window must exceed a static confirmation threshold. If both of these conditions are

met, the pulse onset time is noted, and further detections are prohibited during the

following 0.25 s refractory period. Adaptation of the threshold is achieved by lowering

the initiation threshold by a constant value if 2.5 s have passed without any initiated

detections, and by updating the initiation threshold according to the maximum SSF

value of each detected pulse. The performance of the wABP algorithm is illustrated

in Fig. 3-1.

In Zong’s original work [32], the wABP algorithm was not evalutated in the

presence of artifact or noise, and its performance was not evaluated during periods of

arrhythmia, where the morphology of the blood pressure pulses deviates significantly
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Figure 3-1: Use of the Slope Sum Function to detect pulse onsets in the arterial blood
pressure waveform. Adapted from Figure 4 in [32].

from the morphology at normal sinus rhythm, and the algorithm is therefore expected

to present unusual behavior. The wABP algorithm contains no adaptations for heart

rate variability. Furthermore, the limited adaptivity of the SSF pulse initialization

threshold and the use of a static threshold on the range of the slope sum function

indicates that the algorithm expects pulses of a certain amplitude and assumes there

will be only small deviations in pulse pressure.

3.2 aPPG: Photoplethysmogram Pulse Onset De-

tection

The similarities between ABP and PPG pulse morphology prompted us to adapt the

wABP pulse onset detector for use on the photoplethysmogram waveform, which we

will refer to as aPPG. As in the original wABP algorithm, we have maintained a

window size of 128 ms (n = 16 samples for a signal sampled at 125 Hz) for computing

the SSF, which corresponds to the typical upslope duration of a PPG pulse under

normal sinus rhythm heart rates. We have scaled and offset the PPG waveform input

to resemble physiologic range for blood pressure measurements (in mmHg) in order

to take advantage of the existing low-pass filter in wABP .
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The amplitude of the PPG waveform can change for several reasons, including

vasoconstriction, variation in pulse volume due to arrhythmia conditions, or as ar-

tifacts of automatic gain changes in the bedside monitors. Further modifications

have therefore been made to allow aPPG to perform robustly in the presence rapid

amplitude changes.

The refractory period is set to 0.25 s by default, but is modified if provided with

an estimate of the prior heart rate estimate, by assuming the length of the refractory

period is 40% of the total pulse duration. For simplicity, we define pulse duration to be

the pulse-to-pulse interval. This modification anticipates longer inter-pulse intervals

during periods of true bradycardia or shorter inter-pulse intervals during periods of

extreme tachycardia, by lengthening or reducing the refractory period (respectively)

in the presence of a prior heart rate estimate.

To make the pulse detection algorithm robust to sudden gain changes in the PPG

waveform, both the SSF pulse initiation and the SSF pulse confirmation phases of the

decision rule have been made adaptive. As in wABP , the pulse initiation threshold

is intialized to three times the average SSF value over the first 8 s of data. At each

confirmed pulse onset detection, the threshold is adapted according to a fraction, Tc

of the difference between the local maximum and minimum values of the SSF.

An appropriate change in slope in each PPG waveform pulse is determined using

the magnitude of the corresponding SSF pulse. This SSF pulse confirmation threshold

was set to a static value in wABP . However, a sudden decrease of the PPG signal

gain proportionally decreases the slope of the PPG pulse onsets. The corresponding

slope sum function peaks will also be diminished in magnitude. The static threshold

developed for periods of higher PPG signal gain will miss these pulses of diminished

amplitude. Therefore we adapt the pulse confirmation threshold. Adapting by the full

amplitude of the SSF waveform results in missed detections when there is a sudden

decrease in gain, so for a more robust system we adapt by Tc = 70% of the most

recentltly detected SSF peak.

Two timer algorithms have been introduced, to adapt the respective thresholds in-

dependently. The first timer, also used in wABP , lowers the pulse initiation threshold
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by a constant amount if no pulse has been initiated for more than 2.5 s. The second

timer, new to aPPG, continuously decreases the pulse confirmation threshold by a

fraction, dc = 0.1% per time step (or 12.5% per second at 125 Hz), of the PPG wave-

form amplitude over the previous 5 s if no new pulse has been detected for more than

four refractory periods. To avoid false pulse detections due to low-amplitude artifacts,

a noise floor is set at half of the smallest expected true pulse amplitude. If the full

possible range for the PPG waveform is 0 to 1, we expect the lowest pulse amplitude

to be no smaller than 0.025, so we set the noise floor at 0.0125. The confirmation

threshold is reset based on half of the PPG amplitude over the previous 5 s if the

noise floor is reached.

The performance of the aPPG algorithm is illustrated in Figures 3-2 and 3-3.

3.3 aPPG Performance

To evaluate the performance of the prototype algorithm, we compared pulse onsets

detected in the PPG waveform using aPPG to a set of “chrome standard” beat

annotations from the ECG and arterial blood pressure waveforms. That is, we chose

locations where the ECG and ABP pulse detections agreed, and assumed a PPG

pulse should also be present within a set period of time.

3.3.1 Data Acquisition, Pre-processing, and Evaluation Setup

Thirty one patient records of variable length containing simultaneously recorded ECG,

ABP, and PPG signals are available the MIMIC I database [20]. Waveforms were

extracted from all patient records, yielding 1, 099.85 hours of data total. The PPG

waveforms were pre-processed to note the start and end points of any instance of

flat-line artifact or signal dropout. The PPG waveforms were also screened for severe

motion artifacts using a prototype pSQI signal quality assessment scheme, described

in Chapter 2 of this thesis. Any beats or blood pressure pulse onsets detected in

segments of the record where the PPG had dropped out, was flat, or contained severe

artifact (such as maximum or minimum saturations or high-frequency noise), were
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Figure 3-2: PPG pulse onset detection by aPPG under conditions of normal sinus
rhythm, asystole, and bradycardia. Under normal sinus rhythm, the amplitude of the
PPG waveform stays constant, the pulse confirmation threshold rests at 70% of the
pulse amplitude, and the aPPG algorithm detects all the pulses. In the examples of
asystole and bradycardia, the pulse confirmation threshold is decreased in expectation
of low-amplitude pulses. After 4 refractory periods (1 s) following the last pulse
detection, the pulse confirmation threshold decreases at a rate of dc · Fs = 12.5% per
second until the next pulse is detected and the confirmation threshold is adjusted to
the recent amplitude of the waveform. A noise floor is set at 0.0125 to avoid false
pulse detections.
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Figure 3-3: PPG pulse onset detection by aPPG under conditions of tachycardia and
ventricular tachycardia. At the onset of sustained extreme tachycardia or ventricular
tachycardia (illustrated in the top and bottom traces, respectively), a sudden decrease
in pulse amplitude is observed. In the case of unsustained ventricular tachycardia
(illustrated in the center trace), intermittent rapid beats yield low-amplitude pulses
in the PPG. All three cases cause missed detections by the pulse onset detector. After
4 refractory periods (1 s) following the last pulse detection, the pulse confirmation
threshold decreases at a rate of dc · Fs = 12.5% per second until the next pulse is
detected and the confirmation threshold is adjusted to the recent amplitude of the
waveform.
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excluded from this study. The remaining segments were presumed to contain clean,

good quality PPG data, and the corresponding pulse onsets were included in the

study.

Annotations for QRS detections in the ECG and pulse onsets in the ABP wave-

forms are both available for records in the MIMIC I database. A standard open-source

beat comparison algorithm, bxb [10], with an 800 ms match window to account for

pulse transit time was applied to these annotations to find beats appearing in either

the ECG or ABP waveforms. With matching beats counted only once, 6, 058, 072

beats were found in the two waveform types. ECG and ABP beats appearing while

the PPG waveform exhibited signal dropout, flat-line or other gross artifact (such as

maximum or minimum saturations or high-frequency noise) were excluded from the

analysis. The remaining 4, 227, 904 beats (detected from 1, 033.4 hours of waveform

data) were used as a surrogate for a gold-standard reference set for evaluating the

performance of aPPG.

The aPPG algorithm was applied to the PPG waveforms, and detected 3, 859, 567

beats in the good-quality waveform segments. These beats were compared to the

surrogate reference set using bxb with an 800 ms match window.

3.3.2 Results

Of the beats detected in the ECG and ABP waveforms, 87.53% were also detected

in the PPG waveform by the algorithm. Of the beats detected by aPPG, 95.88%

were also annotated pulses in the ECG or ABP waveforms. The sensitivity and

positive predictive value of the aPPG algorithm performance over all 31 patients are

summarized in Table 3.1.

3.3.3 Discussion of Limitations

Of the pulses detected by the aPPG algorithm, 4.12% did not appear in the ABP

or ECG waveforms. However, 12.47% of the pulses which travel from the heart to

the periphery are not detected in the PPG. One explanation is that these pulses do
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Table 3.1: Performance of aPPG on MIMIC I database. TP = true positive (PPG
detection also appeared in ECG or ABP); ; FP = false positive (PPG detection did
not appear in ECG or ABP); FN = false negative (Pulse detection in ECG or ABP
did not appear in PPG.

Record Length of
TP FP FN

Sensitivity PPV
Number Record (h) (%) (%)
466 68.7 249654 6678 26610 90.37 97.39
427 58.5 98134 2234 13323 88.05 97.77
444 54.0 290548 1023 6456 97.83 99.65
430 52.0 190945 815 15805 92.36 99.57
213 51.7 76198 463 7756 90.76 99.40
408 48.3 235952 2738 6931 97.15 98.85
224 46.9 237039 1288 4579 98.10 99.46
439 46.4 235428 2507 9350 96.18 98.95
411 45.6 115489 1238 19111 85.80 98.94
409 43.3 242864 3716 33991 87.72 98.49
454 42.8 120114 7137 41001 74.55 94.39
231 42.7 8537 30427 2836 75.06 21.91
449 42.5 157280 1207 10933 93.50 99.24
254 42.5 146822 1225 15282 90.57 99.17
484 42.0 183598 5444 28372 86.62 97.12
474 38.5 140112 18088 11089 92.67 88.57
442 35.1 97630 1864 46042 67.95 98.13
452 33.7 156110 4397 16679 90.35 97.26
451 31.2 75754 425 27078 73.67 99.44
477 30.0 76136 2911 48336 61.17 96.32
446 27.9 30607 35613 17739 63.31 46.22
216 27.2 106099 20146 13541 88.68 84.04
218 26.0 69079 1371 18099 79.24 98.05
414 25.1 48516 2029 30420 61.46 95.99
410 23.5 92253 1750 7868 92.14 98.14
211 21.6 51243 640 10191 83.41 98.77
230 19.0 47660 331 2370 95.26 99.31
041 14.3 59673 220 1721 97.20 99.63
417 12.2 17033 432 21189 44.56 97.53
472 8.7 40762 673 11561 77.90 98.38
220 1.2 3262 6 1114 74.54 99.82
Sum 1,033.4 3,700,531 159,036 527,373
Gross 87.53 95.88
Average 83.49 93.42
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not reach the periphery with significant volume to be detected. The topology of

the cardiovascular system is such that if the heart beats with low cardiac output,

pulse volume and velocity is not sufficient to appear at the end of the arterial tree

where the PPG is measured. This cannot be concluded definitively by the analysis

presented here because the two reference beat sources are recorded using independent

sources and are subject to their own artifacts, and the signal quality metric assessment

system is not optimal. However, an estimate of ABP pulse pressure prior to each pulse

detection could be used to indicate if there is sufficient pulse volume.

The performance analysis could be made more accurate by improving the reference

database against which we compare the detected PPG pulse onsets. A large database

of expert annotated PPG pulse onsets over a wide range of physiological conditions

would be ideal, but creation of such a database is time consuming. A better surrogate

for a gold standard reference would be to choose beats appearing in both the ECG

and ABP waveforms, rather than the union of the two pulse detection sets used in

this study. The reference beat set could be further improved by ensuring the signal

quality of the ECG or ABP waveforms by using algorithms such as wSQI [33].

The PPG pulse onset detection algorithm performs moderately “well” compared

to wABP under conditions of normal and slow steady heart rates, as illustrated in

Figure 3-2. The common incidence of false pulse onset detections during periods of

Asystole can be avoided by turning off the pulse detecting feature if the range of the

PPG signal is not above a certain threshold, thereby ignoring both truly flat and

nearly flat PPG waveform segments.

In the current implementation, the adaptive threshold mechanism does not adapt

quickly enough to detect low-volume pulses which result from premature ventricular

contractions. Similarly, the algorithm takes too much time to adapt to low pulse

volume during sustained tachycardia or ventricular tachycardia. These limitations

are illustrated in Figure 3-3. If tachycardia is not sustained, the pulses are likely

to remain undetected. One improvement could be to use the electrocardiogram’s

QRS detections to adapt the pulse threshold. The algorithm also does not adapt

quickly enough to a common PPG artifact in which signal saturation to minimum
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or maximum for less than one second triggers the monitor to reduce the gain of the

waveform by half or more for the next three to five beats.

The performance of aPPG therefore is promising for heart rate estimation. How-

ever the limitations posed by sudden gain changes and pulse volume variability could

be improved by further tuning or reference to the ECG. Next, we propose a method

for tuning the algorithm.

3.3.4 Future Work: Parameter Optimization and Testing

The PPG waveform pulse onset detector has two thresholds, the pulse initiation

threshold and pulse confirmation thresholds, which are adapted at separate rates

in order to obtain robust performance in the presence of arrhythmias. The pulse

confirmation threshold is updated by Tc, the fraction of the difference between the

local maximum and minimum values of the SSF. The pulse confirmation threshold

is continuously decreased by a fraction, dc = 0.1%, of the PPG waveform amplitude

over the previous 5 s if no new pulse has been detected for more than four refractory

periods. To determine the best adaptivity rate settings, Tc and dc, we should evaluate

the performance of the algorithm under various threshold combinations. The PPG

pulse morphology varies little when the heart rate and rhythm are constant but

deviates during periods of arrhythmia as the stroke volume changes. The aPPG

algorithm performs differently at different extremes of heart rate, so we should study

the threshold combinations during periods of steady heart rate, variable heart rate,and

a combination of steady and varying heart rate (to simulate real-life conditions).

To avoid over-training our data, data from patients with simultaneously recorded

ABP and PPG should be split into training and testing sets. A limited number

of epochs should be extracted from each patient record to ensure diversity of the

training and testing set. The epochs should be selected based on three criteria: (1)

that simultaneously recorded PPG and ABP waveforms are available, (2) that at least

90% of the blood pressure waveforms are marked as high signal quality by wSQI [33],

and (3) that the PPG segments contain no gross artifacts, signal dropout, or missing

data, as determined by the pSQI algorithm presented in Chapter 2.
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The PPG segments should be sorted into two groups, one containing data at

normal sinus rhythm, and one containing data recorded while the patient has a cardiac

arrhythmia. Any PPG segment with a regular heart rate and clear pulses should be

sorted into the first category. Any segment with ectopic beats or high variation in

heart rate should be sorted into the second category.

The aPPG algorithm should be run over waveforms in both the steady heart

rate and arrhythmia categories with varying combinations of Tc and dc, and the

pulse onsets should be recorded. To create a reference set of annotations, wSQI [33]

should be run over the simultaneously recorded blood pressure waveform segments.

As before, a beat-by-beat comparison should be made between the recorded PPG

pulse onsets and the recorded blood pressure pulse onsets. Performance of aPPG

should be evaluated under each combination of parameters, and the Tc and dc values

which yield the best performance in each category should be applied to the algorithm

and run on the test sets. The performance observed will be the best possible scenario

of pulse onset detection, since the waveforms should not contain major artifacts.

Ideally, the steady and variable heart rate data should be mixed in a realistic

manner, and the aPPG algorithm should be tested on this third data set. Note that

this procedure requires an accurate assessment of the proportion of time which ICU

patients have steady versus variable heart rates.

An alternative evaluation procedure might take a stress-test approach, to study

the ability of aPPG to reliably detect pulses under varying levels of artifact. In this

procedure, one might take clean PPG and ABP data at various steady heart rates,

and inject controlled amounts of artifact to the waveforms. The artificial PPG arti-

facts could be generated in a manner similar to the artificial blood pressure artifacts

developed by Li et al. [16].

3.4 Use of aPPG

Once pulse onset times are established, the waveform can be broken down into indi-

vidual pulses and the morphology of each pulse can be considered. In this study, we
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use pulse onset detections to estimate heart rates in PPG segments recorded while

an alarm is triggered in the electrocardiogram monitor.
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Chapter 4

A New False ECG Alarm

Suppression Framework Using the

PPG Waveform

Using the aPPG pulse onset detector and pSQI signal quality algorithms, we form

a new framework to suppress false critical ECG alarms by estimating heart rate and

studying pulse morphology in the PPG waveform.

4.1 Algorithm Architecture

In Section 1.1 and Appendix A, we reviewed the work of Aboukhalil et al., who

created a false ECG alarm suppression framework which utilises the arterial blood

pressure waveform to estimate heart rate and suppress heart-rate related alarms. This

algorithm first checks the signal quality of all detected beats in the ABP segment,

accepting the alarm if the signal quality is poor. Then the algorithm employs a system

of logic which considers the quality and morphology of each detected pulse, and the

instantaneous heart rate estimated from those pulses, to determine if the ECG alarm

should be accepted or suppressed. The details of the logic employed by this framework

are included in Appendix A, as well as the performance of the algorithm on the alarm

data described in Section 2.3.2.
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We take a similar approach to assessing the validity of critical ECG arrhythmia

alarms using the PPG waveform. We utilise the windowing parameters which were

found to yield optimal alarm suppression performance in the study by Aboukhalil

et al. At the onset of each alarm, we extract a 17-second segment of PPG data,

extending from 13 seconds before the alarm to 4 seconds after the alarm. Next, we

apply the pSQI signal quality metric. In our framework we consider each type of

alarm separately, applying Hjorth parameter thresholds to determine signal quality

depending on the alarm type. If at least 80% of the windowed PPG signal is marked as

high quality according to the applied thresholds, then the heart rate is estimated from

the beat onsets detected by the aPPG algorithm. The ECG alarm is then flagged as

true or false depending on whether the heart rate is within the error tolerances found

to be optimal by Aboukhalil et al [1].

Because our PPG signal quality metric does not function on a beat-by-beat basis,

we do not study the number of beats with abnormal pulse morphologies. However, we

can use certain aspects of PPG phenomenology to support the logic based on heart

rate estimation. Specifically, we use the observation that during episodes of extreme

tachycardia and ventricular tachycardia, the pulse volume may decrease due to low

stroke volume. The sudden decrease in pulse amplitude causes several missed pulse

detections when the aPPG algorithm is used to mark the onset of each PPG pulse

(see Section 3.3.3), yielding long intervals between detected beats. Therefore, in place

of pulse morphology analysis, we construct a framework based on PPG-based heart

rate estimation and pulse duration.

At the onset of each critical ECG arrhythmia alarm, a 17-second PPG waveform

segment is extracted from 13 seconds prior the alarm to 4 seconds after. Alarms

where the PPG waveform is not available for this 17-second window were excluded

from the study. Next, the pSQI algorithm is used to assess the signal quality of the

extracted PPG segment. If less than 80% of the duration of the PPG waveform is

marked as high signal quality, the PPG signal quality of the 17-second segment is

judged to be poor and the ECG alarm is accepted as true. Otherwise, the aPPG

algorithm is applied to detect PPG pulse onsets. To reduce false pulse detections
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by the aPPG algorithm, the noise floor on the slope sum function is increased from

Tn = 0.0125 to Tn = 0.02. The new value of Tn was chosen to eliminate true asystole

alarm suppressions in the training set without decreasing false alarm suppression.

Finally, the following logic is employed to assess the validity of the alarm depending

on the alarm type. Figure 4-1 illustrates the algorithm architecture where the PPG

signal quality is sufficiently high. The windowing and thresholding parameters used

in the PPG-based false alarm suppression algorithm are summarized in Table 4.1.

Figure 4-1: False ECG Alarm Suppression Using the PPG Waveform. If at least 80%
of the 17-second PPG segment is high signal quality, this logic is used to determine
if the alarm should be accepted or suppressed. IPI = inter-pulse interval.

4.1.1 Asystole Processing

From the detected pulse onsets, the largest pulse-to-pulse interval (for the case where

the asystole resolves itself within the window) and the interval between the last de-

tected pulse and the end of the window (for the case where asystole lasted beyond

the analysis period) are calculated. If either of these intervals exceeds TA = 3 s, the

absence of beats is noted and the asystole alarm is accepted; otherwise it is suppressed.
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4.1.2 Extreme Bradycardia Processing

Bradycardia alarms in the ECG waveforms are marked relative to a heart rate thresh-

old set on the monitor. The NB = 3 longest pulse-to-pulse intervals are calculated.

If the mean heart rate calculated from these intervals is within EB = 7 beats per

minute of the monitor’s heart rate, then the bradycardia alarm is accepted; otherwise

it is suppressed.

4.1.3 Extreme Tachycardia Processing

Tachycardia alarms in the ECG waveforms are marked relative to a heart rate thresh-

old set on the monitor. The (NT = 1) shortest pulse-to-pulse interval is calculated. If

the heart rate calculated from this interval is less than ET = 20 beats per minute over

the threshold set on the monitor, and the longest pulse-to-pulse interval is less than

TNoPulse = 1.8 s long (indicating no missed detections due to loss in pulse volume),

then the tachycardia alarm is suppressed.

4.1.4 Ventricular Tachycardia Processing

A ventricular tachycardia alarm is accepted if either the longest pulse-to-pulse interval

is greater than TNoPulse = 1.8 s (indicating missed detections due to loss in pulse

volume) or the heart rate calculated from the (NV T = 1) shortest pulse-to-pulse

interval exceeds RV T = 80 beats per minute. Otherwise, the alarm is suppressed.

4.1.5 Ventricular Fibrillation Processing

Ventricular fibrillation alarms are suppressed if the longest pulse-to-pulse interval is

less than TNoPulse = 1.8 s (indicating no missed detections due to loss in pulse volume)

and the heart rate calculated from the (NV F = 1) shortest pulse-to-pulse interval is

less than RV F = 150 beats per minute. Otherwise, the alarm is accepted.
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Table 4.1: Windowing and thresholding parameters in merged PPG-based false alarm
suppression algorithm. “PPI” signifies pulse-to-pulse interval. “N/A” signifies that
the parameter is not applicable.

Parameter ⇒ Max. PPI HR error Intervals HR
length (s) margin for HR Threshold

Alarm Type ⇓ (bpm) calc. (bpm)

Asystole TA = 3 N/A N/A N/A

Extreme
N/A EB = 7 NB = 3 N/A

Bradycardia
Extreme

TNoPulse = 1.8 ET = 20 NT = 1 N/A
Tachycardia
Ventricular

TNoPulse = 1.8 N/A NV T = 1 RV T = 80
Tachycardia
Ventricular

TNoPulse = 1.8 N/A NV F = 1 RV F = 150
Fibrillation

4.2 Optimization of Signal Quality Thresholds

To determine the optimal settings to use in the pSQI algorithm for each arrhythmia

type, the number of true and false alarms in the training set suppressed by this

PPG-based framework were recorded using 512 combinations of Hjorth parameter

thresholds, ηl
1,η

l
1, and η2, chosen from the distributions computed in Section 2.3.5 (see

Figures 2-4 and 2-5). Table 2.6 lists the thresholds settings which were examined.

The false and true alarm suppression rates are illustrated in Figures 4-2 through 4-5.

We chose parameter thresholds which maximized false alarm suppression while

minimizing true alarm suppression. This is possible for asystole, bradycardia, and

extreme tachycardia alarms, even if the set of thresholds where these two critera are

met is small (as is the case for extreme bradycardia and extreme tachycardia alarms).

However, for ventricular tachycardia alarms there was no combination of η1
l, η1

u, and

η2 which maximized false alarm suppression while minimizing true alarm suppression.

This meant we could not suppress any number of false alarms without also suppressing

some true alarms in this category. For asystole, bradycardia, and extreme tachycardia

alarms, we choose to set the Hjorth parameter thresholds in the centroid of the volume

defined by those which yielded the highest false alarm suppression rate and the lowest

true alarm suppression rate. These volumes are marked using solid pink dots and
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Figure 4-2: Effect of ηl
1,η

u
1 , and η2 on true and false alarm suppression rates during

asystole. In the top plot, solid pink dots mark the highest false alarm suppression
rate. In the bottom plot, solid blue dots mark the lowest false alarm suppression rate.
The set of thresholds which maximize false alarm suppression while minimizing true
alarm suppression are outlined.

solid blue dots, respectively, in Figures 4-2 through 4-5. For ventricular tachycardia

alarms, we choose to set the Hjorth parameter thresholds in the centroid of the volume

defined by those which yielded the highest false alarm suppression rate. The selected

threshold settings are summarized in Table 4.2.
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Figure 4-3: Effect of ηl
1,η

u
1 , and η2 on true and false alarm suppression rates during

extreme bradycardia. In the top plot, solid pink dots mark the highest false alarm
suppression rate. In the bottom plot, solid blue dots mark the lowest false alarm
suppression rate. The set of thresholds which maximize false alarm suppression while
minimizing true alarm suppression are outlined.

Table 4.2: Optimal assignment of Hjorth parameter thresholds by alarm type using
training data

Alarm Type
Threshold Setting

ηl
1 ηu

1 η2

Asystole 0.24 4.49 17.38
Extreme Bradycardia 0.92 2.17 5.06
Extreme Tachycardia 1.66 2.68 7.15
Ventricular Tachycardia 0.82 2.45 3.98
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Figure 4-4: Effect of ηl
1,η

u
1 , and η2 on true and false alarm suppression rates during

extreme tachycardia. In the top plot, solid pink dots mark the highest false alarm
suppression rate. In the bottom plot, solid blue dots mark the lowest false alarm
suppression rate. The set of thresholds which maximize false alarm suppression while
minimizing true alarm suppression are outlined.
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Figure 4-5: Effect of ηl
1,η

u
1 , and η2 on true and false alarm suppression rates during

ventricular tachycardia. In the top plot, solid pink dots mark the highest false alarm
suppression rate. In the bottom plot, solid blue dots mark the lowest false alarm
suppression rate. The set of thresholds which maximize false alarm suppression while
minimizing true alarm suppression are outlined.
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Table 4.3: Performance of PPG-based false alarm suppression algorithm on new
MIMIC II data. Note that ventricular fibrillation/tachycardia alarms are combined
with and annotated as ventricular tachycardia alarms. “FA” signifies false alarm.
“TA” signifies true alarm. “FA Rate Before” and “FA Rate After” refer to the false
alarm rate before and after the modified suppression algorithm was used, respectively.

Alarm Type Data Set
TA FA FA Rate FA Rate

Suppression Suppression Before After

Asystole
Training 0% 68.3% 91.7% 29.0%
Testing 9.5% 68.0% 92.8% 29.7%

Combined 4.0% 68.2% 92.2% 29.3%

Ext. Brad.
Training 0% 14.9% 36.1% 30.7%
Testing 0% 35.7% 18.0% 11.5%

Combined 0% 20.6% 28.3% 22.4%

Ext. Tach.
Training 0% 14.3% 4.1% 3.5%
Testing 2.3% 2.0% 15.7% 15.3%

Combined 0.8% 5.7% 8.4% 8.0%

Vent. Tach.
Training 0.3% 1.4% 41.8% 41.2%
Testing 0% 1.7% 55.2% 54.2%

Combined 0.2% 1.6% 48.0% 47.2%

All
Training 0.2% 26.0% 40.3% 29.9%
Testing 0.9% 22.1% 51.1% 39.8%

Combined 0.5% 24.0% 45.1% 34.3%

4.3 Performance of PPG-Based False Alarm Sup-

pression

The performance of the PPG-based false alarm suppression algorithm applied to the

training and test sets is summarized in Table 4.3. Across the entire collection of

alarms in both the training and test sets, the PPG-based algorithm suppressed 0.5%

of the true alarms and 24.0% of the false alarms.

On the training set, the algorithm suppressed true alarms only in the ventricular

tachycardia category. However in the test set, the PPG-based system suppressed true

alarms in two categories: asystole and extreme tachycarida. The highest rate of true

alarm suppression was in the asystole category. In the test set, 9.5% (or 2 of 21) of true

asystole alarms were suppressed. In both of these cases the PPG waveform exhibited

mid-frequency wave-like artifacts (most likely due to motion) but were not marked as

poor signal quality using the pSQI algorithm and asystole thresholds chosen in Table
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4.2. The aPPG algorithm falsely detected pulses in these segments. This behavior

may be addressed by raising the noise floor in the aPPG algorithm.

The false alarm suppression performance of the PPG-based system varies widely

from one alarm category to another. Across both training and test sets, the algorithm

suppressed 68.2% of false asystole alarms, but only 1.7% of false ventricular tachy-

cardia alarms. The algorithm also suppressed only 1.6% of false extreme tachycardia

alarms in the test set. The low false alarm suppression rate in this category is often

due to poor signal qualtiy or heart rate estimates which exceeded the threshold of the

false alarm suppression algorithm. Raising the ventricular tachycardia rate threshold,

RV T , to 100 bpm raised the combined false alarm suppression rate to 5.7% but also

increased the true alarm suppression rate to 3.1%.

4.4 Limitations and Possible Improvements

The method of splitting our data into training and test sets was designed to keep the

number of patients equal for each alarm type. The poorer performance on the test set

indicates an asymmetry in the quality of signals and number of alarms investigated

in the training and test sets, with some circumstances arising in the test set which

did not appear in the training data. While the relative frequency of alarm types in

this study were similar in the training and test sets (see Tables 2.2 through 2.4), the

total alarm counts were unequal, illustrating that patient records do not contribute

equally to each alarm category and greatly in the number of alarms triggered. If

similar studies are to be performed in the future, we recommend that five fold cross-

validation is used to compensate for this imbalance.

Using the methods of PPG signal quality assessment and pulse onset detection

described in Chapters 2 and 3 of this thesis, the false ECG alarm suppression frame-

work using the PPG waveform does not perform as well as a similar framework which

utilizes the ABP waveform. The algorithm suppressed fewer false alarms than the

ABP-based system of Aboukhalil et al in all alarm categories and only had a large

impact for asystole alarms. Moreover, non-zero true alarm suppression rates are
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probably clincally unacceptable for the asystole category. Fewer than 30% of false

alarms were suppressed in the case of extreme bradycardia, though no true alarms

were suppressed. The extreme tachycardia and ventricular tachycardia categories had

false alarm suppression rates as low as 5.7% and 1.6%, respectively, making the algo-

rithm of marginal use for these alarm types. Therefore it is hard to recommend the

approach described here for any alarm cateogories other than asystole and extreme

bradycardia. Even in the case of asystole, parameters may need further refinement

to reduce the true alarm suppression rate from 4% down to almost 0%.

The correlation between noise in the ECG channels and noise in the PPG waveform

has not been investigated. Artifacts in both channels may be due to the same source,

such as patient movement. This is a fundamental limitation to the PPG-based false

alarm suppression approach, especially because the PPG signal is highly sensitive to

movement. Correlations between ECG noise and PPG noise, as well as corellations

between detected ECG and PPG beats should be examined.

The false alarm suppression algorithm could not be evaluated in the case of ven-

tricular fibrillation because there were no instances of true ventricular fibrillation

alarms in the training or test data, and the ventricular fibrillation/tachycardia and

ventricular tachycardia alarms were combined into one category.

The components of the PPG-based false alarm suppression framework could be

improved and tuned in several ways. The windowing parameters and heart rate

thresholds used by the ABP-based false alarm suppression system of Aboukhalil et

al. [1] should be varied to find the optimal settings for this data set. In particu-

lar, the heart rate thresholds for tachycardia and ventricular tachycardia should be

investigated.

Extreme bradycardia and extreme tachycardia alarms are issued with the heart

rate threshold used by the monitor. The false alarm suppression rates for extreme

bradycardia and extreme tachycardia could be improved by using this heart rate

threshold as an input parameter to the aPPG algorithm. This would adjust the

refractory period of the pulse onset detector, and may improve heart rate esitmation

in these two alarm categories. However the method assumes the alarm is true, and
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may not work if the heart rate greatly differs from the threshold on the monitor.

Like the ABP-based algorithm, the PPG-based false alarm suppression framework

has particular difficulty with examining periods of unsustained ventricular tachycar-

dia. This arrhythmia occurs if there is a ventricular rhythm (that is, one consisting

of beats which originate in the ventricles rather than from the sinoatrial node) with

a rate over 100 beats per minute, and is diagnosed using the electrocardiogram wave-

form. At low heart rates, the ABP and PPG waveforms cannot be used to infer these

details of the morphology of the ECG QRS complexes, and can only show the presence

of a beat. If the rate of the tachycardia is low enough (for example, 100− 130 bpm),

the morphologies of the ABP or PPG pulses corresponding to these ventricular beats

appear to be normal. If in the future a similar logical structure is to be used for false

ventricular tachycardia alarm suppression, we recommend that the RV T heart rate

threshold be adjusted to increase the number of false alarms suppressed. However,

this may result in a larger number of true alarm suppressions.
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Chapter 5

Conclusions

5.1 Summary

5.1.1 Contributions

In this thesis we examined an algorithm which analyzes the PPG waveform for infor-

mation to use in the suppression of false critical ECG arrhythmia alarms issued by

ICU bedside monitors. To meet this goal, a signal quality metric, pSQI, and a pulse

onset detection algorithm, aPPG, were created to evaluate the fidelity of the PPG

signal and to assist in heart rate estimation.

A database of 4, 326 annotated critical life-threatening ECG alarms was created to

tune the pSQI algorithm thresholds and evaluate the PPG-based false alarm suppres-

sion system. For benchmarking the performance of this new false alarm suppression

framework, the ABP-based algorithm of Aboukhalil et al. [1] was corrected to check

for low-volume pulses in the presence of extreme tachycardia, ventricular tachycardia,

or ventricular fibrillation alarms.

5.1.2 Evaluation and Limitations

Annotations of the alarms were made by individuals who were not involved in the cre-

ation of the ECG arrhythmia detection algorithms used in the ICU bedside monitors.

ECG alarms were therefore annotated using clinical criteria, and our alarm definitions
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may not be completely consistent with the logic used by the monitoring algorithms

in some cases. The annotations for the “ventricular fibrillation/tachycardia” alarm

category in particular may not be consistent. The monitor algorithm fired an alarm

upon the detection of rapid ventricular tachycardia. The clinical annotator lableled

rapid ventricular tachycardia as “ventricular tachycardia” and the ventricular fibril-

lation annotation was reserved for asynchronous ventricular electrical activity. The

database did not show any true ventricular fibrillation events.

This annotation methodology affects the performance of the PPG signal quality

algorithm, pSQI. We quantified the spectral characteristics of the PPG waveform

using Hjorth parameters. PPG waveform segments corresponding to true alarms

in each category exhibit different heart rates and morphologies, and therefore have

different spectral characteristics. The Hjorth parameter thresholds for determining

the quality of the PPG signal are therefore set depending on the alarm type. The

Hjorth parameter thresholds chosen for ventricular tachycardia alarms in this study

will not provide the best assessment of signal quality under the condition of true

ventricular fibrillation.

The aPPG algorithm is limited in its ability to detect low-volume pulses. Recall

that the algorithm has an adaptive pulse confirmation threshold, which updates to

Tc% of the recent pulse amplitude when a pulse is detected, and decreases at a rate of

dc% per sample point (or Fs·dc% per second, where Fs is the sampling frequency) when

a pulse is not detected within 4 refractory periods. To avoid false pulse detections

due to low-amplitude artifacts, a noise floor is set at half of the smallest expected

true pulse amplitude. If the threshold is decreased below the noise floor, it is reset

to a value based on the recent amplitude of the PPG waveform. The rate at which

the pulse confirmation threshold adapts (dc) after a pulse has not been detected for

some time, and the value relative to the recent waveform amplitude (Tc) to which

that threshold adapts when a pulse is detected, have not been rigorously evaluated

during different arrhythmias. A trade-off in the noise floor setting exists when we

wish to detect pulses at different heart rates. In particular, if we wish to detect

low-amplitude pulses in the PPG waveform which appear during periods of extreme
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tachycardia or ventricular tachycardia, the noise floor should be set at a low value to

increase sensitivity of the pulse detection algorithm. However, in the case of asystole

alarms we wish to decrease the sensitivity of the algorithm to artifactual oscillations

in the waveform to prevent false pulse detections.

The PPG-based false alarm suppression system does not perform as well as the

ABP-based suppression system with similar logic when both algorithms were applied

to the same set of annotated ECG alarms. The PPG-based algorithm performed

best in the asystole category, suppressing 68.2% of false asystole alarms and 4.0% of

true asystole alarms over both the training and test sets. False asystole alarms, false

extreme tachycardia alarms, and false ventricular tachycardia alarms comprise the

bulk of the false alarms in our data set. However, non-zero true alarm suppression

exists for the asystole, extreme tachycardia, and ventricular tachycardia categories, as

well as low false alarm suppression rates in the extreme tachycardia and ventricular

tachycardia categories. This indicates that if the asystole true alarm suppression

rate can be reduced 4.0% to 0% this algorithm will be of use in false asystole alarm

suppression.

5.2 Future Work

The application of the aPPG and pSQI algorithms in the false alarm suppression

framework highlighted several improvements which could be made to the pulse onset

and artifact detectors.

5.2.1 pSQI Improvement

The artifact detector uses a short window length in which to assess the quality of the

PPG waveform. In this study we have used 2 s non-overlapping windows in order

to make the artifact detector sensitive to the sudden onset of a disruptive artifact.

Overlapping the windows may decrease the sensitivity of the artifact detector to

these sudden artifacts. The effect of the choice of window size on the accuracy of the

Hjorth parameter estimates and the ability to detect artifacts should be evaluated.
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The generation of artificial PPG artifacts, in a manner similar to Li et al. [16] may

be useful in conducting a controlled study of PPG artifact detection.

In this study, the Hjorth parameters were estimated from 30 s of PPG data pre-

ceding the onset of each ECG arrhythmia alarm. When this method for training the

Hjorth parameter thresholds was used, the false alarm suppression algorithm often

failed where the ECG exhibited an intermittent, non-sustained arrhythmia. For a

more accurate description of the range of Hjorth parameter values under each alarm

condition, the Hjorth parameters should be calculated from data where the arrhyth-

mia is present for the entire duration of the segment, such as 10 seconds surrounding

the alarm.

The distributions of H1 and H2 parameters illustrated in 2-4 and 2-5 are assumed

to take most of their “mass” from clean PPG waveforms. However, this assumption

was never tested. The alarm annotations were based on the morphology of the ECG

waveform. In future work, PPG segments with Hjorth parameters which lie within the

interquartile range should be examined to ensure that the PPG waveform morphology

is characteristic of the issued alarm.

Several settings of Hjorth parameter thresholds were investigated for each alarm

type to determine the proper signal quality thresholds for each arrhythmia. Fig-

ures 4-2 through 4-5 illustrate the effect of the Hjorth parameter threshold settings

on the performance of the PPG-based false alarm suppression algorithm. In some

alarm categories, the set of thresholds which yielded maximum false alarm suppres-

sion while minimizing true alarm suppression is very small. The range of the η1
u and

η2 thresholds tested should be extended until the false alarm suppression rate levels

off, especially in the extreme bradycardia alarm category.

As an alternative to a frequency-based signal quality metric, the use of dynamic

time warping of a matched filter or adaptive template could be evaluated, using cross-

correlation to quantify the extent to which each detected pulse deviates from normal

pulse morphology. Rapid non-physiological oscillations in oxygen saturation could

also serve as an estimate of signal quality in the PPG waveform; if oscillations in the

corresponding oxygen saturation estimates occur which are too rapid, the underlying
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PPG waveform is likely to have been corrupted by artifact. However, the oxygen

saturation time series available to us may be too heavily filtered for this purpose.

Analysis using the raw waveform data from the pulse oximeter should be conducted

if possible, rather than using the signal which has been post-processed by the bedside

monitor or pulse oximeter module.

5.2.2 aPPG Improvement

A rigorous evaluation of the parameters of the pulse onset detector should be con-

ducted. For this evaluation, a database of annotated PPG pulse onsets should be

created, rather than using beat onsets from other waveforms, as was conducted in

this study.

Various settings of the threshold adaptivity rate, dc, and the threshold saturation

rate, Tc, should be performed on clean PPG waveforms exhibiting a range of heart

rates. A study of the sensitivity of the pulse onset detector to the noise floor setting

should be conducted.

Within the application of the aPPG algorithm to false ECG alarm suppression,

we should consider using the heart rate or alarm type reported by the monitor as an

input parameter to the aPPG algorithm. The refractory period in the aPPG algo-

rithm can be made longer or shorter based on the monitor’s heart rate threshold for

extreme bradycardia and extreme tachycardia alarms, which may improve pulse onset

detection performance. It may be the case that if the pulse threshold adapts more

quickly and the noise floor is lowered under tachycardia conditions, low-amplitude

pulses may be detectable. Similarly, if the noise floor is raised under asystole condi-

tions, false PPG pulse detections may prevent a true alarm from being suppressed.

However, this method risks decreasing the performance of the aPPG algorithm if the

alarm is false and the heart rate estimates from the ECG monitor and PPG waveform

are very different.

Future uses of the aPPG algorithm include a statistical analysis of the PPG pulse

amplitude and pulse duration, pulse transit time, and comparisons to the morphology

of the ECG and ABP activity immediately before any particular PPG pulse. That
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is, if all are abnormal in a consistent manner, this may indicate the existence of an

arrhythmia.

5.2.3 False Alarm Suppression Improvement

The logic used to suppress false asystole and ventricular fibrillation alarms should be

improved. In both of these cases, the PPG waveform should not exhibit pulses, since

the heart is not pumping. Therefore, the same logic could be employed to suppress

false alarms in these categories.

The power spectrum of a non-pulsatile waveform does not exhibit any domi-

nant frequencies, and is instead characterized by the frequency components of noise.

Thresholding the power spectrum of PPG waveform segments which accompany true

asystole alarms does not differentiate between noise and a non-pulsatile PPG sig-

nal. The alarms should instead be suppressed if a pulsatile waveform is detected.

When assessing signal quality, rather than setting wide thresholds on the Hjorth pa-

rameters to check for a non-pulsatile waveform, the power spectrum should have a

dominant frequency estimate (H1) which lies between the Hjorth parameter ranges of

true bradycardia to true tachycardia. If the power spectrum exhibits characteristics

of a pulsatile signal, and pulses are detected in the PPG waveform, then the asystole

or ventricular tachycardia alarm should be suppressed.

False alarm suppression could be improved by combining the PPG-based frame-

work with the blood pressure framework where both signals are available. The combi-

nation of these two systems could be as simple as taking the output of the ABP-based

false alarm suppression system where it is available. Alternatively, the outputs could

be combined depending on the alarm type. For example, if either the ABP or PPG

waveforms contain detectable pulses in the presence of an asystole alarm, the alarm

may be marked as false.

The PPG signal quality framework could also be integrated into the robust es-

timation framework described by Li et al. and Nemati et al. [15, 16, 21]. This

framework uses signal quality metrics and Kalman flter-based innovation metrics to

quantify the relationships between simultaneously recorded ECG, ABP, respiration,
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and PPG waveforms for continuous, robust heart rate, blood pressure, and respiration

estimation. Li et al. [16] have shown that fusing heart rate estimates from ECG and

ABP can improve the false alarm suppression rates for bradycardia and tachycardia.

It would be a simple extension to add the heart rate derrived from the PPG waveform

into this framework.

5.2.4 Other applications

A combination of PPG signal quality analysis and pulse onset detection could aid in

a study on detection of dampening in the ABP waveform. These algorithms could

also be applied to a study of the detection of vasoconstriction, by examining the PPG

pulse amplitude and the pulse transit time between each ABP pulse onset detection

and the corresponding PPG pulse onset detection.

5.3 Extensibility

The false alarm suppression algorithm presented in this thesis applies as an extension

of multi-state system tracking methods being researched at the Charles Stark Draper

Laboratory. As part of a space technology program, Draper has been working on the

Multi-State Excursion Assessment (MSEA) algorithm, a generic system monitoring

and state enunciation algorithm. Originally developed for monitoring the “health” of

a vehicle trajectory, the MSEA algorithm monitors multiple vehicle parameters and

states, such as position, altitude, and velocity to determine if the landing objective is

attainable or unattainable. Nominal values and tolerable error margins are provided

for each monitored state and regularly updated. Note that the MSEA algorithm does

not identify corrections to undesired states.

The MSEA algorithm could also be applied to physiologic monitoring. In this

setting, states might include fiducial markers in physiologic waveforms (such as QRS

complexes or pulse onsets) and derived parameters may include heart rate or blood

oxygen saturation estimates. Such an envelope system for physiologic monitoring

may behave similarly to monitoring technology found in implantable medical devices
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or bedside monitors found in hospital ICUs.

The MSEA algorithm relies on the assumption that state information received

from sensor inputs is valid and not corrupted. In the presence of corrupt inputs, the

MSEA algorithm might return a false or invalid assessment of whether the landing

objective is attainable. The MSEA algorithm could therefore benefit from an enve-

lope system which assesses the validity of the received state estimates and determines

if the MSEA algorithm output is true. The physiologic monitoring MSEA algorithm

extension may behave similarly to the PPG signal quality assessment components of

the alarm suppression algorithm presented in this thesis. The envelope system for

trajectory assessment might instead perform this verification using mutual informa-

tion between related states, for example to estimate velocity from previously recorded

positions.
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Appendix A

False ECG Alarm Suppression

Using the ABP Waveform

Clifford et al. and Aboukhalil et al. have created a logical framework to suppress false

heart-rate related alarms issued by ECG bedside monitors in ICU settings [3, 1]. The

logic and reported performance of this false alarm suppression framework is briefly

reviewed in this appendix. For benchmarking of the PPG false alarm suppression

framework described in Chapter 4, the ABP framework was also applied to the data

set described in Sections 2.3.1 and 2.3.2. The performance on this new data set are

also included in this appendix.

A.1 Original Algorithm Architecture

At the onset of each critical ECG arrhythmia alarm, a 17-second ABP waveform

segment is extracted from 13 seconds prior the alarm to 4 seconds after. Alarms

where the blood pressure waveform was not available for this 17-second window were

excluded from the study. Next, the wABP algorithm [32] is applied to determine

the onset time of each pulse in the ABP waveform, and the signal quality index of

each detected beat is calculated using the negated output of the jSQI algorithm [26].

At the end of this processing step, each detected beat has been marked as either

good (high signal quality) or abnormal (low signal quality). If fewer than 80% of the
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detected ABP beats are marked as high signal quality, the ABP signal quality for

the 17 s segment is judged to be poor and the ECG alarm is accepted as true. If the

signal quality for the segment is high, the logic employed to assess the validity of the

alarm depends on the alarm type. Figure A-1 illustrates the algorithm architecture

where the ABP signal quality is sufficiently high. The heart rate parameters found

to be optimal by Aboukhalil et al. are summarized in Table A.3.

Figure A-1: False ECG Alarm Suppression Using the ABP Waveform. If at least 80%
of the beats detected in a 17-second window are of high signal quality, logic is used to
determine if the alarm should be accepted or suppressed. “IPI” stands for inter-pulse
interval. “SAI” stands for signal abnormality index. Figure adapted from [1].

A.1.1 Asystole Processing

From the detected beat onsets, the largest beat-to-beat interval (for the case where the

asystole resolves itself within the window) and the interval between the last detected

pulse and the end of the window (for the case where asystole lasted beyond the analysis

period) are calculated. If either of these intervals exceeds TA = 3 s, the absence of

beats is noted and the asystole alarm is accepted; otherwise it is suppressed.
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A.1.2 Extreme Bradycardia Processing

Bradycardia alarms in the ECG waveforms are marked relative to a heart rate thresh-

old set on the monitor. The NB = 3 longest pulse-to-pulse intervals are calculated.

If the mean heart rate calculated from these beats is within EB = 7 beats per minute

of the monitor’s heart rate, then the bradycardia alarm is accepted; otherwise it is

suppressed.

A.1.3 Extreme Tachycardia Processing

Tachycardia alarms in the ECG waveforms are marked relative to a heart rate thresh-

old set on the monitor. The NT = 1 shortest pulse-to-pulse interval is used to calculate

the heart rate. If the heart rate estimate is less than ET = 20 beats per minute over

the threshold set on the monitor, and there are fewer than MT = 5 abnormal beats

lasting less than TT = 4 s (indicating no period of abnormal beat morphology), then

the tachycardia alarm is suppressed.

A.1.4 Ventricular Tachycardia Processing

A ventricular tachycardia alarm is accepted if the total duration of abnormal detected

beats is more than TV T = 2 s (indicating abnormal beat morphology) and the heart

rate calculated from the NV T = 1 shortest pulse-to-pulse interval exceeds RV T = 80

beats per minute. Otherwise, the alarm is suppressed.

A.1.5 Ventricular Fibrillation Processing

Ventricular fibrillation alarms are suppressed if the total duration of abnormal de-

tected beats is less than TV F = 2.5 s (indicating no period of abnormal beat morphol-

ogy) and the heart rate calculated from the NV F = 1 shortest pulse-to-pulse interval

is less than RV F = 150 beats per minute. Otherwise, the alarm is accepted.

83



Table A.1: Performance of ABP-based false alarm suppression algorithm reported by
Aboukhalil et al. The training set contained 267 alarms, and the test set contained
180 alarms. “FA” signifies false alarm. “TA” signifies true alarm. “FA Rate Before”
and “FA Rate After” refer to the false alarm rate before and after the suppression
algorithm was used, respectively. “-” indicates a value which was not reported.

Alarm Type Data Set
TA FA FA Rate FA Rate

Suppression Suppression Before After

Asystole
Training 0% 92.5% - -
Testing 0% 95.0% - -

Combined 0% 93.5% 90.7% 5.5%

Ext. Brad.
Training 0% 79.7% - -
Testing 0% 83.6% - -

Combined 0% 81.0% 29.3% 5.5%

Ext. Tach.
Training 0% 59.4% - -
Testing 0% 70.1% - -

Combined 0% 63.7% 23.1% 8.4%

Vent. Tach.
Training 14.5% 28.3% - -
Testing 4.0% 38.7% - -

Combined 9.4% 33.0% 46.6% 30.8%

Vent. Fib.
Training 0% 57.7% - -
Testing 0% 58.9% - -

Combined 0% 58.2% 79.6% 33.1%

All
Training 4.7% 57.0% - -
Testing 1.4% 63.2% - -

Combined 2.4% 59.7% 42.7% 17.2%

A.1.6 Performance on Unseen Data

The performance of the false ECG alarm suppression system described above, as

reported by Aboukhalil et al., is summarized in Table A.1. This ABP-based system

was also applied to the data described in Sections 2.3.1 and 2.3.2. The performance

of the algorithm on the new MIMIC II data is summarized in Table A.2.

The ABP-based algorithm performed similarly on new data from the MIMIC II

database as reported in the study of Aboukhalil et al.. The false alarm rate after ap-

plying the original ABP framework was higher on our data set for asystole alarms, as

fewer false alarms were suppressed in this category than reported in the Aboukhalil’s

study. The false alarm suppression rate was also lower for extreme tachycardia and

ventricular tachycardia alarms in our data set, and true alarm suppression rates were
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Table A.2: Performance of ABP-based false alarm suppression algorithm on new
MIMIC II data (described in Sections 2.3.1 and 2.3.2). Note that ventricular fibrilla-
tion/tachycardia alarms are combined with and annotated as ventricular tachycardia
alarms. “FA” signifies false alarm. “TA” signifies true alarm. “FA Rate Before”
and “FA Rate After” refer to the false alarm rate before and after the suppression
algorithm was used, respectively.

Alarm Type Data Set
TA FA FA Rate FA Rate

Suppression Suppression Before After

Asystole
Training 0% 70.9% 91.0% 26.5%
Testing 0% 53.3% 90.0% 42.0%

Combined 0% 62.7% 90.5% 33.8%

Ext. Brad.
Training 0% 90.6% 35.0% 3.3%
Testing 0% 50.0% 16.1% 8.0%

Combined 0% 81.7% 27.8% 5.1%

Ext. Tach.
Training 1.0% 54.6% 2.6% 1.2%
Testing 0% 15.0% 12.9% 11.0%

Combined 0.7% 29.0% 5.3% 3.8%

Vent. Tach.
Training 5.0% 26.7% 40.4% 29.6%
Testing 10.8% 35.8% 54.9% 35.2%

Combined 8.0% 31.9% 47.6% 32.4%

All
Training 3.2% 48.1% 36.9% 19.2%
Testing 6.6% 40.2% 52.0% 31.1%

Combined 4.5% 44.0% 43.5% 24.4%
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non-zero for both extreme tachycardia and ventricular tachycardia (which was not

observed in Aboukhalil’s study).

A.1.7 Limitations

The ABP-based false alarm suppression system described by Aboukhalil et al. [1] had

the poorest false alarm suppression rate (31.9%) on ventricular tachycardia alarms.

Alarms in this category were also the only true alarms suppressed in the original

study. The authors attribute the true ventricular tachycardia alarm suppressions

to the observation that at low heart rates during ventricular tachycardia, the ABP

morphology looks quite normal. Since the algorithm accepts ventricular tachycardia

alarms if the calculated heart rate is over RV T = 80 beats per minute and the total

duration of detected abnormal pulses is more than TV T = 2 s (indicating abnormal

beat morphology), true ECG ventricular tachycardia alarms are suppressed when the

corresponding ABP beats have normal morphology.

On our data set, the ABP-based algorithm also suppressed true extreme tachycar-

dia alarms. In the ABP segments surrounding the suppressed true alarms, the pulses

exhibiting rapid instantaneous heart rate have low pulse pressure and are not de-

tected by wABP . The heart rate estimated from the detected pulses is therefore less

than RT = 80 beats per minute. The last detected pulse preceding the low-amplitude

section is typically marked as having a long duration, but is the only abnormal beat

(therefore the number of abnormal beats is less than MT = 5). The duration of this

one abnormal beat is less than TT = 4 s. Because all three of these conditions are met

from a non-sustained period of extreme tachycardia, the true tachycardia alarms are

suppressed. This could be avoided either by introducing a threshold on the duration

of the longest inter-pulse interval, or by reducing the number of abnormal beats or

total duration of abnormal beats to account for unsustained episodes of tachycardia.
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A.2 Modifications Made for Benchmarking

We used the performance of this ABP-based algorithm as a benchmark for the perfor-

mance of the PPG-based false alarm suppression algorithm developed in this thesis.

In order to reduce true alarm suppression, a modification has been made to the

ABP-based algorithm. For each the three alarms related to fast heart rates (extreme

tachycardia and ventricular tachycardia, and ventricular fibrillation), a new condi-

tion has been introduced regarding the longest inter-pulse interval. If the longest

inter-pulse interval exceeds TNoPulse = 1.8 s then the waveform indicates a tempo-

rary loss of pulse due to low stroke volume, resulting in some number of missed beat

detections. The resulting algorithm architecture is as follows. Extreme tachycardia

alarms are suppressed if the longest inter-pulse interval is less than TNoPulse, the heart

rate calculated from the shortest inter-pulse interval is less than ET = 20 beats per

minute over the monitor’s declared heart rate threshold, and fewer than MT = 5

abnormal beats lasting fewer than TT = 4 s are detected. Ventricular tachycardia

alarms are accepted if either the longest inter-pulse interval is greater than TNoPulse

or both the total duration of abnormal detected beats is more than TV T = 2 s and

the heart rate calculated from the shortest pulse-to-pulse interval exceeds RV T = 80

beats per minute. Ventricular fibrillation alarms are suppressed if the longest inter-

pulse interval is less than TNoPulse, the total duration of abnormal detected beats is

less than TV F = 2.5 s, and the mean heart rate calculated from the NV F = 1 shortest

pulse-to-pulse interval is less than RV F = 150 beats per minute. The windowing and

thresholding parameters are summarized in Table A.3.

A.2.1 Performance on Unseen Data

This modified system was applied to the data described in Sections 2.3.1 and 2.3.2.

The performance of this modified ABP-based algorithm is summarized in Table A.4.

Modifying the ABP-based alarm suppression framework to detect loss in pulse

volume decreased the true alarm suppression rate for extreme tachycardia alarms in

the training set from 1.0% to 0.2% but increased the true alarm suppression rate in
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Table A.3: Windowing and thresholding parameters in merged ABP-based false alarm
suppression algorithm. “PPI” signifies pulse-to-pulse interval. “N/A” signifies that
the parameter is not applicable.

Parameter ⇒ Max. PPI HR error Intervals Duration Abnormal Max. HR
length (s) margin for HR of bad beats (bpm)

Alarm Type ⇓ (bpm) calc. beats (s) allowed

Asystole TA = 3 N/A N/A N/A N/A N/A

Extreme N/A EB = 7 NB = 3 N/A N/A N/ABradycardia
Extreme

TNoPulse = 1.8 ET = 20 NT = 1 TT = 4 MT = 5 N/ATachycardia
Ventricular

TNoPulse = 1.8 N/A NV T = 1 TV T = 2 N/A RV T = 80Tachycardia
Ventricular

TNoPulse = 1.8 N/A NV F = 1 TV F = 2.5 N/A RV F = 150Fibrillation

Table A.4: Performance of modified ABP-based false alarm suppression algorithm
on new MIMIC II data (described in Sections 2.3.1 and 2.3.2). Note that ventric-
ular fibrillation/tachycardia alarms are combined with and annotated as ventricular
tachycardia alarms. “FA” signifies false alarm. “TA” signifies true alarm. “FA Rate
Before” and “FA Rate After” refer to the false alarm rate before and after the modified
suppression algorithm was used, respectively.

Alarm Type Data Set
TA FA FA Rate FA Rate

Suppression Suppression Before After

Asystole
Training 0% 70.9% 91.0% 26.5%
Testing 0% 53.3% 90.0% 42.0%

Combined 0% 62.7% 90.6% 33.8%

Ext. Brad.
Training 0% 90.6% 35.0% 3.3%
Testing 0% 50.0% 16.1% 8.0%

Combined 0% 81.7% 27.8% 5.1%

Ext. Tach.
Training 0.2% 54.6% 2.6% 1.2%
Testing 0% 15.0% 12.9% 11.0%

Combined 0.2% 29.0% 5.3% 3.8%

Vent. Tach.
Training 5.8% 25.2% 40.4% 30.2%
Testing 10.4% 35.8% 54.9% 35.2%

Combined 7.8% 31.3% 47.6% 32.7%

All
Training 2.9% 47.3% 36.9% 19.5%
Testing 6.3% 40.2% 52.0% 31.1%

Combined 4.2% 43.6% 43.5% 24.6%
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the ventricular tachycardia category from 5.0% to 5.8%. The false alarm suppression

rate for ventricular tachycardia alarms in the training set decreased slightly from

26.7% to 25.2%.

89



THIS PAGE INTENTIONALLY LEFT BLANK

90



Bibliography

[1] A Aboukhalil, L Nielsen, M Saeed, R G Mark, and G D Clifford. Reducing false
alarm rates for critical arrhythmias using the arterial blood pressure waveform.
Journal of Biomedical Informatics, 41(3):442–451, 2008.

[2] M Chambrin. Review: Alarms in the intensive care unit: how can the number
of false alarms be reduced? Critical Care, 5(4):184–188, May 2001.

[3] G D Clifford, A Aboukalil, J X Sun, W Zong, B A Janz, G B Moody, and R G
Mark. Using the blood pressure waveform to reduce critical false ECG alarms.
In Computers in Cardiology, volume 33, pages 829–832, 2006.

[4] F M Coetzee and Z Elghazzawi. Noise-resistant pulse oximetry using a synthetic
reference signal. IEEE Transactions on Biomedical Engineering, 47(8):1018–
1026, August 2000.

[5] M Drinnan, J Allen, and A Murray. Relation between heart rate and pulse transit
time during paced respiration. Physiological Measurement, 22(3):425–432, 2001.

[6] R Flewelling. Noninvasive optical monitoring. In JD Bronzino, editor, The
Biomedical Engineering Handbook, pages 1346–1352. CRC Press, 1995.

[7] P T Gibbs, L B Wood, and H H Assada. Active Motion Artifact Cancellation for
Wearable Health Monitoring Sensors using MEMS Accelerometers. SPIE Smart
Structures and Materials, 5765:811–819, May 2005.

[8] E Gil, V Monasterio, P Laguna, and J M Vergara. Pulse photopletismography
amplitude decrease detector for sleep apnea evaluation in children. In 27th An-
nual International Conference of the IEEE Engineering in Medicine and Biology
Society, volume 3, pages 2743–2746, 2005.

[9] E Gil, J M Vergara, and P Laguna. Detection of decreases in the amplitude
fluctuation of pulse photoplethysmography signal as indication of obstructive
sleep apnea syndrome in children. Biomedical Signal Processing and Control,
3(3):267 – 277, February 2008.

[10] A L Goldberger, L A N Amaral, L Glass, J M Hausdorff, P Ch Ivanov, R G Mark,
J E Mietus, G B Moody, C-K Peng, and H E Stanley. PhysioBank, PhysioToolkit,
and PhysioNet: Components of a new research resource for complex physiologic

91



signals. Circulation, 101(23):e215–e220, 2000. Circulation Electronic Pages:
http://circ.ahajournals.org/cgi/content/full/101/23/e215.

[11] J Greenberg, J Fisher, W Wells, and G D Clifford. HST.582J / 6.555J / 16.456J
Biomedical Signal and Image Processing. (Massachusetts Institute of Technol-
ogy: MIT OpenCouseWare), http://ocw.mit.edu (Accessed July 2009). License:
Creative Commons BY-NC-SA, Spring 2007.

[12] M J Hayes and P R Smith. Quantitative evaluation of photoplethysmographic
artefact reduction for pulse oximetry. In EUROPTO Conference on Medical
Sensors and Fiber Optic Sensors IV, volume 3570, pages 138–147, September
1998.

[13] B Hjorth. EEG analysis based on time domain properties. Electroencephalography
and Clinical Neurophysiology, 29:306–310, 1970.

[14] B Hjorth. The physical significance of time domain descriptors in EEG analysis.
Electroencephalography and Clinical Neurophysiology, 34:321–325, 1970.

[15] Q Li, R G Mark, and G D Clifford. Robust heart rate estimation from multi-
ple asynchronous noisy sources using signal quality indices and a kalman filter.
Institute of Physics Physiological Measuremet, 29:15–32, 2008.

[16] Q Li, R G Mark, and G D Clifford. Artificial arterial blood pressure artifact
models and an evaluation of a robust blood pressure and heart rate estimator.
BioMedical Engineering OnLine, 8(1):13, 2009.

[17] S P Linder, S M Wendelken, E Wei, and S P McGrath. Using the morphology
of photoplethysmogram peaks to detect changes in posture. Journal of Clinical
Monitoring and Computing, 20(3):151–158, June 2006.

[18] R G Mark. HST.542J / 2.792J / 20.371J / 6.022J Quantitative Physiology:
Organ Transport Systems. (Massachusetts Institute of Technology: MIT Open-
CouseWare), http://ocw.mit.edu (Accessed July 2009). License: Creative Com-
mons BY-NC-SA, Spring 2004.

[19] G B Moody. WAVE user’s guide. Available online at
http://www.physionet.org/physiotools/wug/ (Accessed June 2009).

[20] G B Moody and R G Mark. A database to support development and evaluation
of intelligent intensive care monitoring. Computers in Cardiology, 23:657–660,
1996.

[21] S. Nemati and Cifford G. D. Data fusion for improved respiration rate estimation.
Technical report, Massachusetts Institute of Technology, January 2009.

[22] C F Poets and V A Stebbens. Detection of movement artifact in recorded pulse
oximeter saturation. European Journal of Pediatrics, 156(10):808–811, 1997.

92



[23] M Saeed, C Lieu, G Raber, and R G Mark. MIMIC II: a massive temporal ICU
patient database to support research in intelligent patient monitoring. Computers
in Cardiology, 29:641–644, 2002.

[24] J W Severinghaus and J F Kelleher. Recent developments in pulse oximetry.
Anesthesiology, 76(6):1018–1038, 1992.

[25] R Sokwoo, B H Yang, and H H Asada. Artifact-resistant power-efficient design of
finger-ring plethysmographic sensors. IEEE Trans Biomed Eng, 48(7):795–805,
2001.

[26] J X Sun, A T Reisner, and R G Mark. A signal abnormality index for arterial
blood pressure waveforms. Computers in Cardiology, 33:13–16, 2006.

[27] K K Tremper and S J Barker. Pulse oximetry. Anesthesiology, 70(1):98–108,
1989.

[28] L B Wood and H H Asada. Active motion artifact reduction for wearable sensors
using Laguerre expansion and signal separation. In 27th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, pages
3571–3574, January 2005.

[29] L B Wood and H H Asada. Low variance adaptive filter for cancelling motion
artifact in wearable photoplethysmogram sensor signals. In 29th Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society,
pages 652–655, August 2007.

[30] M Yarita, N Kobayashi, S Takeda, and T Tamura. Compensation for two specific
types of artifact in pulse wave using a Kalman filter. Information Technology
Applications in Biomedicine, 2007. ITAB 2007. 6th International Special Topic
Conference on, pages 269–272, 8-11 Nov. 2007.

[31] C Yu, Z Liu, T McKenna, A T Reisner, and J Reifman. A method for automatic
identification of reliable heart rates calculated from ECG and PPG waveforms.
Journal of the American Medical Informatics Association, 13(3):309–320, Jun
2006.

[32] W Zong, T Heldt, G B Moody, and R G Mark. An open-source algorithm to
detect onset of arterial blood pressure pulses. Computers in Cardiology, pages
259–262, September 2003.

[33] W Zong, G B Moody, and R G Mark. Reduction of false arterial blood pres-
sure alarms using signal quality assessment and electrocardiogram-arterial blood
pressure relationships. Medical and Biological Engineering and Computing, 42,
2004.

93


