The Higgs Discovery Potential of ATLAS

Chris Collins-Tooth

University of Glasgow for the ATLAS Collaboration

UNIVERSITY of GLASGOW

Outline

- LHC running conditions, event rates
- SM Higgs production & decay at the LHC
- The ATLAS detector
- Latest from Tevatron
- ATLAS SM Higgs sensitivity, and a selection of channels
- Basic MSSM scenarios
 - Only CP conserving considered here
- Conclusions

Running Conditions & Event Rates

- First pp collisions expected from Summer 2008, √s=14 TeV.
- Luminosity scenarios:
 - For 2008: (initial running)
 - L < 10³³ cm⁻² s⁻¹, ∫Ldt ~ 1 fb⁻¹
 - For 2009: (low-luminosity phase)
 - L = 1-2 10^{33} cm⁻² s⁻¹, \int Ldt < 10 fb⁻¹,
 - 30 fb⁻¹ between 2008 and 2010/2011
 - Beyond: (high-luminosity phase)
 - L~10³⁴ cm⁻²s⁻¹,
 - ~300 fb⁻¹ by 2014/2015
- Pile-up:
 - ATLAS expects ~2 (low-lumi) or 20 (high-lumi) p-p minimum bias interactions per bunch crossing (25 ns)

LHC SM Higgs Production

Production processes, K-factors and cross-section uncertainties: •

K~2.0, σ uncert ~10-20% NNLO K~1.2, σ uncert ~5% NLO

LHC SM Higgs Production and Decay

• Production processes, K-factors and cross-section uncertainties:

ΖZ

C. Collins-Tooth - HS07

LHC SM Higgs Production and Decay

• Production processes, K-factors and cross-section uncertainties:

LHC SM Higgs Production and Decay

• Production processes, K-factors and cross-section uncertainties:

The ATLAS Detector

Primary features:
High hermeticity (e.g. for missing Et:v...)
Excellent ECAL energy resolution
Powerful inner tracking
Efficient muon ID and momentum meas.
Energy scale: e/γ~0.1%,µ~0.1%,Jets~1%

<u>Inner Detector</u>: pixels, silicon strips, transition radiation tracker surrounded by SC solenoid B=2T (e.g. $H \rightarrow bb$)

<u>EM Calorimeters</u>: Pb/LAr $\sigma/E \sim 10\%/\sqrt{E}$. e[±], γ identification, angular resolution γ /jet & $\gamma/\pi 0$ separation (e.g. H $\rightarrow\gamma\gamma$, H \rightarrow ZZ \rightarrow 4e) <u>Hadronic Calorimeters</u>: Fe scint. Cu-LAr). $\sigma/E \sim 50\%/\sqrt{E} + 0.03$ Jet, ETmiss measurements (e.g. H $\rightarrow\tau\tau$, H \rightarrow bb)

<u>Muon Spectrometers</u>: precision tracking drift chambers and trigger chambers =0.6T, $\sigma/pT \sim 7$ -10% at 1 TeV (e.g. H,A \rightarrow µµ, H \rightarrow 4µ)

Latest from Tevatron

M_н [GeV]

9

ATLAS SM Higgs Sensitivity

 $H \rightarrow ZZ^* \rightarrow 4\ell^{\pm}$

- Features:
 - − Clean signature (but low stats: $\sigma xBR(H \rightarrow 4I) \sim 3-11$ fb for M_H=130-200 GeV).
 - Benchmark channel for detector performance: ATLAS must have good EM energy resolution, combined with good momentum resolution.
 - Mass peak can be produced, 4e, 4µ, 2e2µ differ by resolution; typically ~1.5 2 GeV.
- Backgrounds:
 - irreducible: ZZ*/γ*→4I continuum
 (qq→ZZ*/γ* known @ NLO.
 20% added to account for gg →ZZ*/γ*)
 - reducible: tt→4l+X, Zbb→4l+X (non-isolated leptons, high impact parameter)
 - ZZ background is dominant after selection.
 - Get background shapes & normalisation from data to minimise PDF/Luminosity uncertainties.

$H \rightarrow \gamma \gamma$

- Features: •
 - Narrow mass peak over smooth background, region of interest M_{H} <140 GeV.
 - Benchmark channel for detector performance: ATLAS EM Cal resolution and primary vertex determination. Powerful particle ID required to reject jets in backgrounds (rej. >10³ for ε_{γ} =80%) CDF Run II preliminary

(pb/GeV/c)

- Backgrounds:
 - Irreducible $\gamma\gamma$ continuum :
 - Born(qq $\rightarrow\gamma\gamma$), Box(gg $\rightarrow\gamma\gamma$), q Brehms. (qg \rightarrow q $\gamma\rightarrow$ q $\gamma\gamma$)
 - Born(qq $\rightarrow\gamma\gamma$), Box(gg $\rightarrow\gamma\gamma$), q Brehms. (qg $\rightarrow q\gamma \rightarrow q\gamma\gamma$) $\gamma\gamma$ background computed at NLO (agrees with Tevatron).
 - Reducible:
 - ji or γ where jet is misidentified as γ
- Event selection: •
 - Isolated photons (calorimeter and tracking cuts)
 - Higgs z-vertex reconstruction: $\sigma z = 40 \mu m (L = 2.10^{33} cm^{-2} s^{-1}); \sigma z = 1.6 cm (L = 10^{34} cm^{-2} s^{-1})$
 - Fine calo segmentation for π^0 rejection
- Recovery of conversions •
 - ~30-40% of photons convert in the inner detector.
- Significance (30 fb⁻¹): •
 - new(NLO):6.3
 - Improvement expected from likelihood analysis.

DIPHOX CTEQ5M $\mu_F = \mu_p = m_s/2$ DIPHOX : with gg@NLO

ResBos CTEQ5Mu. = u. = m

Vector Boson Fusion

Features:

- 2nd most important production process (σ~10-20% of gg fusion)
- H decay products between two forward tag-jets.
- No central jets (no q-q colour exchange).
- Leptonic final state: leptons are spin correlated
 → for lvlv final state, I+,I- in same direction.

- Look for:
 - $H {\rightarrow} \tau \tau, WW$
- Event selection:
 - $-\eta_{j1}, \eta_{j2} < 0$
 - $|\Delta \eta_{jj}| > 3.5 4$
 - − M_{ii}[×] 500–700 GeV
- Pile-up may give fake central jets, also harder to identify tag-jets.
- VBF may not be viable at high luminosity.

C. Collins-Tooth - HS07

$\mathsf{VBF}\ \mathsf{H}{\rightarrow}\mathsf{WW}$

WW jj (EW)

- Main backgrounds: WWjj, tt
- H→WW→lvjj
 - Sig 4.6 at M_H =160 GeV for ∫Ldt=30 fb⁻¹
- $H \rightarrow WW \rightarrow |v|v$
 - No mass peak as two missing momenta.
 - Transverse mass $m_T = \sqrt{2 P_T^{\ell \ell} \not\!\!\! E_T (1 \cos \Delta \varphi)}$
 - Sig > 5.0 for $M_H \approx 125-190$ GeV for ∫Ldt=30 fb⁻¹

Background uncertainty 7-10%

- Features:
 - − Attractive due to large BR(H \rightarrow bb) at M_H<130 GeV.
- Combinatoric background:
 - There are many ways to combine objects in the event
 - \rightarrow Mass peak resolution quite low.
- Physics backgrounds:
 - Backgrounds must be determined from data, $\sigma(ttjj)$ dependent on scale choice.
 - Shape (highly dep on mistagging): use random tagging to estimate shape error.
 - Normalisation: from the sidebands.
 - ttjj: b-tagging optimised to reject light jets.
 - ttbb (EW/QCD): 2 extra b-jets are not from a Higgs (typically QCD gluon radiation).
 - \rightarrow Kinematic info can then be used to reject bg.
 - $S/\sqrt{B} = 2.8$

- Features:
 - − Attractive due to large BR(H \rightarrow bb) at M_H<130 GeV.
- Combinatoric background:
 - There are many ways to combine objects in the event
 - \rightarrow Mass peak resolution quite low.
- Physics backgrounds:
 - Backgrounds must be determined from data, $\sigma(ttjj)$ dependent on scale choice.
 - Shape (highly dep on mistagging): use random tagging to estimate shape error.
 - Normalisation: from the sidebands.
 - ttjj: b-tagging optimised to reject light jets.
 - ttbb (EW/QCD): 2 extra b-jets are not from a Higgs (typically QCD gluon radiation).
 - \rightarrow Kinematic info can then be used to reject bg.
 - $S/\sqrt{B} = 2.8$

- Features:
 - − Attractive due to large BR(H \rightarrow bb) at M_H<130 GeV.
- Combinatoric background:
 - There are many ways to combine objects in the event
 - \rightarrow Mass peak resolution quite low.
- Physics backgrounds:
 - Backgrounds must be determined from data, $\sigma(ttjj)$ dependent on scale choice.
 - Shape (highly dep on mistagging): use random tagging to estimate shape error.
 - Normalisation: from the sidebands.
 - ttjj: b-tagging optimised to reject light jets.
 - ttbb (EW/QCD): 2 extra b-jets are not from a Higgs (typically QCD gluon radiation).
 - \rightarrow Kinematic info can then be used to reject bg.
 - $S/\sqrt{B} = 2.8$

Semi-leptonic: trigger on high Pt isolated e,μ

- Features:
 - − Attractive due to large BR(H \rightarrow bb) at M_H<130 GeV.
- Combinatoric background:
 - There are many ways to combine objects in the event
 - \rightarrow Mass peak resolution quite low.
- Physics backgrounds:
 - Backgrounds must be determined from data, $\sigma(ttjj)$ dependent on scale choice.
 - Shape (highly dep on mistagging): use random tagging to estimate shape error.
 - Normalisation: from the sidebands.
 - ttjj: b-tagging optimised to reject light jets.
 - ttbb (EW/QCD): 2 extra b-jets are not from a Higgs (typically QCD gluon radiation).
 - \rightarrow Kinematic info can then be used to reject bg.
 - $S/\sqrt{B} = 2.8$

- Features:
 - − Attractive due to large BR(H \rightarrow bb) at M_H<130 GeV.
- Combinatoric background:
 - There are many ways to combine objects in the event
 - \rightarrow Mass peak resolution quite low.
- Physics backgrounds:
 - Backgrounds must be determined from data, $\sigma(ttjj)$ dependent on scale choice.
 - Shape (highly dep on mistagging): use random tagging to estimate shape error.
 - Normalisation: from the sidebands.
 - ttjj: b-tagging optimised to reject light jets.
 - ttbb (EW/QCD): 2 extra b-jets are not from a Higgs (typically QCD gluon radiation).
 - \rightarrow Kinematic info can then be used to reject bg.
 - $S/\sqrt{B} = 2.8$

- Features:
 - − Attractive due to large BR(H \rightarrow bb) at M_H<130 GeV.
- Combinatoric background:
 - There are many ways to combine objects in the event
 - \rightarrow Mass peak resolution quite low.
- Physics backgrounds:
 - Backgrounds must be determined from data, $\sigma(ttjj)$ dependent on scale choice.
 - Shape (highly dep on mistagging): use random tagging to estimate shape error.
 - Normalisation: from the sidebands.
 - ttjj: b-tagging optimised to reject light jets.
 - ttbb (EW/QCD): 2 extra b-jets are not from a Higgs (typically QCD gluon radiation).
 - \rightarrow Kinematic info can then be used to reject bg.
 - $S/\sqrt{B} = 2.8$

MSSM Higgs Discovery Potential

- MSSM theory predicts 5 physical Higgs bosons: h⁰, H⁰, A⁰, H⁺, H⁻ from two Higgs doublets.
- Higgs masses (to first order) are defined by two parameters:
 - $tan\beta$ ratio of 'vev' of 2 Higgs doublets
 - m_A mass of cp-odd Higgs A^0 .
- Four points chosen in parameter space

Mhmax sc mixing larg No mixing Gluophobit suppresse h→ZZ→4l Small a sc suppresse tth,h→bb	enario: ge scenari c scena d desigi d desigi d desigi	maxima <i>io:</i> stop <i>nrio:</i> cou ned for coupling ned for	IM _h whe mixing s pling of gg→h, h g of h to VBF, h-	en Higgs set to O h to glu ι→γγ, o b(τ) →ττ and	ions
Name	M _{susy}	μ	Μ,	X	M _{gluino}
	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)
m _h -max	1000	200	200	2000	800
no mixing	2000	200	200	0	800
gluophobic	350	300	300	-750	500
small α	800	2000	500	-1100	500

MSSM Higgs Discovery Potential

- MSSM theory predicts 5 physical Higgs bosons: h⁰, H⁰, A⁰, H⁺, H⁻ from two Higgs doublets.
- Higgs masses (to first order) are defined by two parameters:
 - $tan\beta$ ratio of 'vev' of 2 Higgs doublets
 - m_A mass of cp-odd Higgs A^0 .
- Four points chosen in parameter space
- If parameters are in fact in this region, only single SM-like Higgs will be observed.
- At least one Higgs should be found in all 4 CP conserving scenarios.
- Promising channels:
 - $A/H \Rightarrow \mu\mu, \tau\tau$; $H\pm \Rightarrow \tau\nu$

Mhmax scenario: maximal M_h when Higgs-stop mixing large No mixing scenario: stop mixing set to 0 Gluophobic scenario: coupling of h to gluons suppressed designed for $qq \rightarrow h, h \rightarrow \gamma \gamma$, h→77→4l *Small a scenario*: coupling of h to $b(\tau)$ suppressed designed for VBF, $h \rightarrow \tau \tau$ and tth.h→bb M_{ausy} Name Mauno Μ, u (GeV) (GeV) (GeV) (GeV) (GeV) 1000 200 200 2000 800 m⊾-max 2000 200 200 800 0 no mixing

300

2000

300

500

-750

-1100

500

500

qluophobic

small α

350

800

Conclusions

- SM searches: ATLAS provides discovery potential over the entire mass range of a SM Higgs boson with 30fb⁻¹ of integrated luminosity.
 - Detector performance studies will be crucial.
 - Background shapes must be ascertained.
- MSSM searches: The whole MSSM parameter space is covered by at least one Higgs boson for 300fb⁻¹ of integrated luminosity:
 - Most difficult region: moderate tan β , large M_A.
 - If only one Higgs boson is observed, work is needed to distinguish between the SM and MSSM scenarios (e.g. looking at rates like:
 - $R = \frac{BR(h \rightarrow WW)}{BR(h \rightarrow \tau\tau)}$ which may deviate from SM predictions at low M_A).....

"This could be the discovery of the century. Depending, of course, on how far down it goes."

Finally...

- ATLAS is approaching completion.
- 7 TeV proton beams expected in Summer 2008.

BACKUP MATERIAL

ATLAS Installation schedule version 9.1

M. Kotamäki, M.Ness 20-Apr-2007

																							_																									
		Ja	n '0	7		F	Feb	07			Ma	ır '0	7			Ap	r '07			Ma	y '0	7		Jun	'07		J	ful 'O	7			Aug	07			Sep	07			Oct	07			Nov	v '07	1		Dec
	1	1			، ا	2	6	7	8	9	10		12	13	14	13	16 1	7 12	1 15	20	21	22	23	24	25	26 7	27 1	28 2	اد 9	0		2 33	34	Ľ,	36	37	38	39	4D	41	47	43	44	43 ⁶	16 4	7 48	49	ا مد
																																		0	Cool	dowr	1			Е	СТ	test	F	ill i	nagn	et tes	at	
	+																							PT	1.00													EO										
			вw	A	too	ling	g													~		쏭	-	Л	VI			e									sti	ructu	ire									
Side A									Т	GC	1-A			Ν	IDT		Μ	DT-	А	j.	1	2			_			8		Т	GC2	-A		тG	23-A					EC) wł	neel	,					
Side A	F	ini	h N	fuo	n B	атте	el			wh	el			to	olin	g	v	heel	1	e B				Enc	icap		ġ	ž		١	whee	el 🛛		wheel Small							side	A						
				A																Ĭ	DA			Tore	DIG A		Ì	Ĕ									w.	neel	A									
				-	_	_			_	_	_	_	_	_			-	-		\sim		п			ſ		1			_	-	1	-						_		_	_	-					
	-	╞	+	+	+	+		_	-	-	-	-	J	,	-	+	+	+	-	U1	ļ	, J		-	-	ų	Ļ	-	+	+	+	Į	Ļ			T	Ţ	Ļ	-	ų,	+	+						
			LA	r A	coo	l de	owr	,								C	old to	sts							v						L	imite	ed ac	cess									_					į
		A																																														
	Barrel ID barrel con																			IDA + Pixel connection and testing																												
Barrel										onnection and testing																								Glo	obal	con	nmis	sion	ing	į								
		IDC + Pixel connection and testing																																														
			services installation LAr C cool down Cold tests VI Limited access																																													
													1										1			vA Z				~								14										
										Ŷ	,											Y	Ļ														Ŷ	۶										
											ų	e .	5					ons			1					7					F	inich	Bio															
												ωŴ	Sarr					ecti			whee		2	Ă	i	Pixe		E	ndca	ap		Whe	els	Ϊ.														
Side C		MDT-C wheel									TGC2-C								ပ်		enir					То	roid	ЧC				1	v Oš biz	vhee e C	l	w	imal heel									į		
										TGC2							g		10		Tru	-k						EC)		aru	~~			neer	~												
										tooling 🛱						H	F			1 ruck			JT V		VT	T structu		ure																				
														_	_	_																_			_		_	_	_									
												_						_	-	_	-		L.,	_		_		_	_	_	_	_	_		_													
	1	2	-		د ا	2	6	,	2	9	ID		12	11	14	د ا	16 1	7 12	1 15	> 20	21	22	22	24	23	26 7	27	28 2	ונ פ	0 3	ıı 3	2 22	34	22	36	71	38	95	40	41	42	4]	44	، دە	16 4	7 48	49	20

Inner Triplet review: Jun07

- From FNAL: On Tuesday, March 27, a Fermilab-built quadrupole magnet, one of an "inner triplet" of three focusing magnets, failed a high-pressure test at Point 5 in the tunnel of the LHC accelerator at CERN.
- Weak points located in the anchoring to cold masses. To be reinforced on Q1, Q3 and DFBX.
- Can be done in-situ

ATLAS, CMS compared

SYSTEM	ATLAS	CMS
INNER TRACKER	Silicon pixels+ strips TRT \rightarrow particle ID (e/ π) B=2T $\sigma/p_T \sim 4x10^{-4} p_T \oplus 0.01$	Silicon pixels + strips No particle identification B=4T $s/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ Uniform longitudinal segmentation	PbWO ₄ crystals $\sigma/E \sim 2.5\%\sqrt{E}$ no longitudinal segmentation
HAD CALO	Fe-scint. + Cu-liquid argon $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$	Cu-scint. (> 5.8 l +catcher) $\sigma/E \sim 100\%/\sqrt{E \oplus 0.05}$
MUON SYSTEM	Air-core toroids σ/pT ~ 7 % at 1 TeV standalone	Fe $\rightarrow \sigma / p_T \sim 5\%$ at 1 TeV combining with tracker
MAGNETS	Inner tracker in solenoid (2T) Calorimeters in field-free region Muon system in air-core toroids (4T at peak, 0.5 T mean value)	Solenoid 4T Calorimeters inside the field