

Standard Model at LHC

Eric COGNERAS, LPC Clermont-Ferrand On behalf of the ATLAS and CMS collaborations

HEP-MAD 07, Antananarivo, Madagascar 2007, september 14

Motivation

- SM successfully tested at current energy
- LHC \Rightarrow prospect physics at higher energy :
 - Able to search directly beyond SM
 - But also precise measurements of SM parameters
- Goal for SM physics:
 - Deeper understand the SM with :
 - Precision EW measurements (M_W , $sin^2\theta_W$,...)
 - Top physics (mass,cross section,... measurement)
 - Indirect estimate the Higgs mass
 - Using M_w , m_{Top} , $sin^2\theta_w$ precise measurement
 - Search for deviation from SM

Experimental Framework

EW precision

measurement

The LHC

- CERN (Geneva)
- pp collision @ $\sqrt{s} = 14$ TeV (10 × Tevatron)
- Luminosity :
 - Low luminosity phase L~10³³ cm⁻²s⁻¹ (2008-2009?) [10 fb⁻¹/year : 10× TV]
 - High luminosity phase L~10³⁴ cm⁻²s⁻¹ (2010?-X) [100 fb⁻¹/year : 100×TV]

Experiments

ATLAS and CMS \Rightarrow general purpose physics

LHCb \Rightarrow b physics ALICE \Rightarrow heavy ion physics

- Tracking (|η|<2.5, B=2T) :
 - Si pixels and strips
 - Transition Radiation Detector (e/ π separation)
- Calorimetry ($|\eta|$ <5) :
 - EM : Pb/LAr with Accordeon shape
 - HAD : Fe/scintillator (central), Cu-W/Lar (forward)
- MuonSpectrometer ($|\eta|$ <2.7) :
 - air-core toroids with muon chambers

- Tracking (|η|<2.5, B=4T) :
 - Si pixel and strips
- Calorimetry ($|\eta|$ <5) :
 - EM : PbWO₄ crystals
 - HAD : brass/scintillator (central,end-cap),Fe/Quartz (forward)
- MuonSpectrometer ($|\eta|$ <2.5) :
 - return yoke of solenoid instrumented with muon chambers

p-p collisions

Cross section and Event rate

Process	σ (nb)	Evt/y (Low L:10 fb ⁻¹)
Minimum Bias	10 ⁸	$\sim 10^{15}$
Inclusive jets (p _T >200 GeV)	100	~ 10 ⁹
W→lv (l=e,µ)	30	$\sim 10^{8}$
Z→e⁺e⁻	1.5	~ 107
tt	0.83	$\sim 10^{6}$
bb	5.10 ⁵	$\sim 10^{12}$

1 or 2 orders of magnitude larger than Tevatron

LHC is a W, Z, top factory :

- small statistical errors in precision measurements
- large samples for studies of systematic
- effects (calibration and syst. controls)

SM physics @ LHC

- W/ Z physics (precision EW measurement)
 - Parameters related to indirect M_H measurement :
 - W mass and width
 - $sin^2\Theta_W$
 - Constraints on the PDF
 - W/Z inclusive cross section as well as W/Z+jets
 - W rapidity
 - Measurement of gauge boson pair production
 - Triple Gauge Boson Coupling
- Top physics
 - Parameters related to indirect M_H measurement :
 - Top mass/cross section
 - Deeper understanding of Top quark :
 - Top spin correlation, probe of the Wtb vertex, single Top cross section, Top charge
- QCD (\rightarrow see Albert talk on tuesday)
- Higgs boson direct search
- B physics

• ...

M_w measurement

• LHC expects : $\delta M_w < 15 \text{ MeV}$

Event selection:

- 1 isolated lepton (e, μ) p_T> 25 GeV in $|\eta| < 2.4$
- missing $E_T > 25 \text{ GeV}$
- •No jet with p_T> 30 GeV
- •Recoil |u|< 20 GeV

But LHC statistics is higher (60M recons. $W \rightarrow Iv @$ low Lumi [10× TV])

• Several methods available: • $R=M^{T}_{W} / M^{T}_{Z}$ spectrum \Rightarrow Small syst, sample /10 • p_{T}^{I} spectrum \Rightarrow pile-up , theo. know. of P^{T}_{W} • $M^{T}_{W} \Rightarrow$ high stat, pile-up

• W channel : same as the Tevatron

 \Rightarrow using W \rightarrow Iv decay

M_w measurement ✓ Use the knowledge on the Z boson to constrain the W mass ✓ Use Transverse mass to cope with unmeasured p₁ ^v $P_T^{l,Z} = \frac{M_Z}{M_W} P_T^{l,W}$ $M_{W}^{T} = \sqrt{2p_{T}^{l}p_{T}^{v}(1-\cos\Delta\phi^{l,v})}, \ l = e, \mu$ p_T spectrum shape is sensitive to M_{W} $\checkmark p_{T}^{\nu}$ from p_{T}^{\dagger} & recoil $\checkmark p_{T^{\nu}}$ not necessary W mass : fit exp. shape to MC sample with different Values of M_w Events/1 Dev 00051 00051 00051 XP9000 NP 8000 34.382 χ_{min} 70F M_wbest fit 80.452 ΛM 0.043119 65F porticle level 7000F 60 F 25000 6000F 55 5000 20000 50 4000 15000 45 3000 detector amenting 20000 2000 1000 5000 0 1 80.6 80.7 M_W (GeV) 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 X = 2E_V/M_V 80.2 80.3 80.4 80.5 60 80 190 1,20 40. W transverse mass (GeV).

M_w measurement : systematics

> LHC goals : $W \rightarrow I_V$: one lepton species, low L , per experiment, after 1 year

<u>source</u>	CDF Runll, combined channel	<u>LHC</u>	<u>stat. e</u>	rror :	neglig	ible
	200 pb ⁻¹	60Mevts, 10fb ⁻¹				
Statistics	0 MeV	<2 MeV	<u>syst. error :</u>			
Lepton scale	17 MeV	15 MeV	•MC modelling of phys.			
Energy resolution	3 MeV	5 MeV	•detector responses			
Recoil model	12 MeV	5 MeV		phys	ics	
Lepton id.		5 MeV	P ^T _W spe	ctrum	Z→ll	
₽ [™] w	3 MeV	5 MeV	PDF W width W rad. decays		LHC data Z→II.R.Tevatron	
PDF	11 MeV	10 MeV			Theo. ca	alculation
W width		7 MeV	Backgrou	nd	MC	
Radiative decays	11 MeV	<10 MEV		det	ector	
Background	0 MeV	5 MeV	lepton E	&p scale	Z→ll,	E/p for e [±]
TOTAL	26 MeV	<25 MeV	Lepton r	esolution	$ Z \rightarrow ,$	E/p for e [±]
			Kecoll		L→II	

> Combining channels and ATLAS/CMS exp., should reach $\Delta M_W \approx 15 \text{ MeV}$

Determination of $sin^2\Theta_W$

Use A_{FB} in p-p \rightarrow Z/ $\gamma^* \rightarrow$ I⁺I⁻

Parity violation in neutral current \Rightarrow Asymmetry in the angular distribution of leptons from Z decay

(θ -dependence of cross-section) $1 \quad d\sigma \qquad 3$

$$\frac{1}{\sigma}\frac{a\sigma}{d\cos\theta} = \frac{3}{8}N_c\left[1 + \frac{4}{3}A_{FB}\cos\theta + \cos^2\theta\right]$$

At the Z pole, A_{FB} comes from the interference of vector and axial component of the coupling

$$A_{FB} = b(a - \sin^2 \theta_W)$$

Where a, b calculated to NLO QED and QCD Assumption for p-p colliders : the quark direction is the same as the boost of the Z

- Correct for large di-lepton rapidities
- Only EM calorimeters provide the required large η -coverage (Z \rightarrow e⁺e⁻)

Test of the

- Current error on world average 1.6x10⁻⁴
- need small systematic error :
 - PDF uncertainty,
 - precise knowledge of lepton acceptance and efficiency
 - effects of higher order QCD

Triple gauge boson coupling

Probe the non abelian structure of SM

- s-channe
 - LO Feynman diagram : V1, V2, V3 = Z, W, $\gamma \rightarrow$ WW, ZW, W γ
 - Diboson final states have predictable $\sigma_{\text{production}}$ and manifest the gauge boson coupling
 - In SM, only charged coupling WW γ and WWZ are allowed
- 14 possible WW γ and WWZ coupling
- Use 5 independent, CP conserving, EM gauge invariance preserving couplings : g_1^{Z} , κ_{γ} , κ_{Z} , λ_{γ} , λ_{Z}
 - At SM tree level, $g_1^{Z} = \kappa_{\gamma} = \kappa_{Z} = 1$ and $\lambda_{\gamma} = \lambda_{Z} = 0$
 - $-\lambda_{\gamma}$ and λ_{z} grow with s \Rightarrow big advantage for LHC
 - $\Delta \kappa_{\gamma} = \kappa_{\gamma} 1$, $\Delta g_1^{Z} = g_1^{Z} 1$, $\Delta \kappa_{Z} = \kappa_{Z} 1$ grow with \sqrt{s}

TGC manifest in :

- Cross section enhancement
- High pT(V=W, Z, γ)
- Production angle

Triple gauge boson coupling Exemple of WZ production

- Use only leptonic final state
- Event selection:
 - Exactly 3 leptons with pT>25 GeV
 - At least one pair of leptons with same flavour and opposite charge and |mll-MZ|<10 GeV

Coupling	Present Value	LHC Sensitivity (95% CL, 30 fb-1, 1 exp)
Δg_1^Z	$-0.016^{+0.022}_{-0.019}$	0.005-0.011
$\Delta\kappa_{\gamma}$	$-0.027^{+0.044}_{-0.045}$	0.03-0.076
$\Delta \kappa_{\sf Z}$	$-0.076^{+0.061}_{-0.064}$	0.06-0.12
λ_{γ}	$-0.028^{+0.020}_{-0.021}$	0.0023-0.0035
λΖ	$-0.088^{+0.063}_{-0.061}$	0.0055-0.0073

QCD-oriented Measurement

Measurement of W/Z cross sections

 $\frac{N_{Candidates}(1 - f_{Background})}{1 - f_{Background}}$

 $\mathcal{E}_{\text{total}} \mid Ldt$

Event selection:

 $\sigma(pp \to Z/W + X \to \mu\mu) =$

Z : 2 isolated μ , p_T^{μ} > 20 GeV, $|\eta|$ < 2, 84 < M_{µµ} < 99 GeV,... **W** : 1 isolated μ , p_T^{μ} > 25 GeV, $|\eta|$ < 2, 40 < M_T(μ , E_T^{Miss}) < 200GeV,...

Estimation of the cross section

• **Results** (\mathcal{L} =1 fb-1 [~600k Z $\rightarrow\mu\mu$, ~6M W $\rightarrow\mu\nu$]) $\sigma(Z \rightarrow \mu\mu + X) = 1160 \pm 1.5 \text{ (stat)} \pm 27 \text{ (syst)} \pm 116 \text{ (lumi) pb}$ $\sigma(W \rightarrow \mu\nu + X) = 14700 \pm 6 \text{ (stat)} \pm 485 \text{ (syst)} \pm 1470 \text{ (lumi) pb}$

Already dominated by systematics

Systematics come mainly from theory

(acceptance+PDF uncertainty).

At a later stage these processes can be used as luminosity monitor (Error on luminosity: ~5%)

QCD-oriented Measurement

Constraints on PDF using W rapidity distributions

- At LHC, experimental uncertainty is dominated by systematics (large event production)
- The theoritical uncertainties are dominated by PDFs

Exp. uncertainty sufficiently small to distinguish between different PDF sets

 \checkmark PDF error sensitive to W \rightarrow ev rapidity distribution

- e[±] rapidity spectrum shape sensitive to gluon shape parameter (valence quark density)
- **Probe low-x gluon PDF at** $Q^2 = M_W^2$

☑ PDF uncertainties only slightly degraded after detector simulation and selection cuts

Top Quark Physics

Top quark mass measurement (Invariant mass spectrum of reconstructed Had. Top : most straightforward technique)

• Fully Hadronic channel: L=1fb⁻¹

 $\Delta \sigma_{tt} / \sigma_{tt} = 20\%(syst) \pm 3\%(stat) \pm 5\%(lum)$ $\varepsilon_{reco} = 2\%, S/B < 1/9 (QCD)$

14/09/2007

Top polarization Test the t→bW decay vertex

Measure W polarization (F_0 , F_L , F_R) through lepton angular distribution in W cm system:

Conclusion

- Precision measurements are possible with hadron collider, as demonstrated by the Tevatron
- LHC will prospect higher energy physics
 ☑ Detector to be understood with early data
 ☑ Higher luminosity
 ☑ Better S/B ratio
- LHC goals are ambitious
 - $\delta M_w < 15 \text{ MeV}$
 - $\delta m_{top} < 1 \, GeV$
 - $-\delta \sin^2\theta_W \simeq 10^{-4}$

But reachable ...

as soon as the detectors performances and the systematics will be understood

Back-up Slides

M_w measurement

 \checkmark Simple and powerful in principle : consider p_{T} spectrum correlation between Z and W decay

✓ stat. error negligible (~2 MeV)✓ BUT need to predict the spectrum precisely !

tt Physics

Kinematical Fit (use leptonic side)

– Minimization of a χ^2 function with constraints on W and Top masses

$$\chi^{2} = \sum_{i=jets} \left(\left(\frac{\eta_{i}^{meas} - \eta_{i}^{fit}}{\sigma_{\eta}^{i}} \right)^{2} + \left(\frac{\varphi_{i}^{meas} - \varphi_{i}^{fit}}{\sigma_{\varphi}^{i}} \right)^{2} \right) + \sum_{i=jets, lepton} \left(\frac{E_{i}^{meas} - E_{i}^{fit}}{\sigma_{E}^{i}} \right)^{2} + \sum_{i=x,y,z} \left(\frac{P_{iyz}^{meas} - P_{iy}^{fit}}{\sigma_{iyz}} \right)^{2} + \left(\frac{M_{jj} - M_{W}^{PDG}}{\sigma_{W}} \right)^{2} + \left(\frac{M_{jyb} - M_{Top}^{fit}}{\sigma_{i}} \right)^{2} + \left(\frac{M_{jjb_{l}} - M_{Top}^{fit}}{\sigma_$$

- ☑ Reduces FSR systematics
- \blacksquare Cleaner event sample (using a cut on χ^2)

uncertainty	∆m(top) [GeV] Hadronic Top	∆m(top) [GeV] Kinematical Fit
light-jet nergy scale (1%)	0.2	0.2
b-jet nergy scale (1%)	0.7	0.7
FSR	1	0.5
TOTAL	1.3	0.9

Top spin correlation

Testing the $t\overline{t}$ Production cross-section

Although t and \overline{t} are produced unpolarized their spins are correlated

Other angular distributions:

Top spin correlation

A) Spin correlations and angular distributions: L=10fb⁻¹

	SM M ₁₁ <550 GeV	Error (±stat ±syst)
A	0.42	±0.014 ±0.023
A _D	-0.29	±0.008 ±0.010

(Eur.Phys.J.C4452 2005 13-33) • Semileptonic + Dileptonic

• Syst
$$(\dot{E}_{b-jet}, m_{top}, FSR)$$

• ~4% precision

(CERN/LHCC 2006-021, CMS TDR 8.2)

B) Spin Asymmetries can also be used (X-check)

$$A_{X\bar{X}'} \equiv \frac{N(\cos\theta_X\cos\theta_{\bar{X}'} > 0) - N(\cos\theta_X\cos\theta_{\bar{X}'} < 0)}{N(\cos\theta_X\cos\theta_{\bar{X}'} > 0) + N(\cos\theta_X\cos\theta_{\bar{X}'} < 0)} = \frac{1}{4} \mathcal{A} \alpha_X \alpha_{\bar{X}'}$$
$$\tilde{\mathcal{A}}_{xx'} \equiv \frac{N(\cos\phi > 0) - N(\cos\phi < 0)}{N(\cos\phi > 0) + N(\cos\phi < 0)} = -\frac{1}{2} \mathcal{A}_D \alpha_X \alpha_{x'}$$

(for L=10fb⁻¹ precision A, A_D below 10%) (hep-ex/0605190, subm. to Eur.Phys.J.C)

 $f_1^R \equiv V_R$

 $\begin{aligned} f_2^L &\equiv -g_L \\ f_2^R &\equiv -g_R \end{aligned}$

Probe the Wtb vertex B) Anomalous Couplings in the $t \rightarrow bW$ decay

 $(PRD67 (2003) 014009, m_b \neq 0)$

Angular

Probe the Wtb vertex B) Anomalous Couplings in the t→bW decay

