

Martin Flechl (Uppsala Universitet) for the ATLAS and CMS Collaborations

Search for Charged Higgs Bosons at the LHC

SUSY 2007, Karlsruhe, July 28, 2007

The ATLAS and CMS Detectors

ATLAS, July 2007

CMS, Jan 2007

M. Flechl: Search for Charged Higgs Bosons at the LHC

SUSY 2007

CMS-PARA-001-11/07/97 JLB.PF

1

Outline

- The Charged Higgs Boson (H⁺)
- H⁺ channels investigated for CMS and/or ATLAS (in detail: publications from 2006/07)
 - H⁺ from top quark decays
 - H⁺ from gg- and gb-fusion
 - "exotic" channels
- Discovery reach

The Charged Higgs Boson

- Two Higgs Doublet Model (THDM): 5 Higgs Bosons A⁰, h⁰, H⁰, H[±].
 - Simple Extension to SM
 - required Higgs Sector of MSSM
 - possible in other SUSY models (fermiophobic models, ...)

or: H⁺ from triplets; several doublets/triplets; Little Higgs; ...

- Charged Higgs searches currently focus on generic THDM (producing cross section limits) and MSSM scenarios
 (unless stated otherwise, the following plots/numbers refer to the m_h-max MSSM scenario)
 - MSSM Higgs sector: at tree-level 2 free parameters, e.g.:

 \mathbf{m}_{H+} and $\tan \beta$ (Ratio of the Higgs doublet vacuum expectation values)

• The Charged Higgs Boson (\mathbf{H}^+) is a heavy¹) charged colorless scalar \rightarrow Production Modes (LHC): $t \rightarrow H^+b$ $gg \rightarrow tbH^+$ $gb \rightarrow tH^+$ \rightarrow Decay Modes: $H^+ \rightarrow tb$ $H^+ \rightarrow \tau \nu$ $H^+ \rightarrow cs$

¹⁾e.g. m_h -max MSSM, all tan β : m_{H_+} > 80 GeV [1]

	 	-	
CI			
$\mathbf{v}\mathbf{v}$	4 U	U	

$BR(H^+ \rightarrow \tau$	\mathbf{v}) \approx 1
\rightarrow Main	channels of interest:
TT+ D	

H ⁺ Decay	W Decay
τν, τ→had	qq
τν, τ→had	lv
τν, τ→lep	qq

•	Production: top quark decays, via
	ttbar→bW ⁻ bH ⁺

- BR(t \rightarrow bH⁺) depends on $m_{\rm H}^{+}$ and tan β
- < m_{top} **Overview:** m_{H+}

$tt \rightarrow H^+bWb, H^+ \rightarrow \tau_{had} \nu, W \rightarrow l\nu (1)$

CMS NOTE 2006/056, Baarmand/Hashemi/Nikitenko

Exploited difference signal/ttbar:

- $m_{H^+} > m_W : p_T^{\tau}, E_T^{miss}$ larger
- Spin: $H^+ \rightarrow 0$, $W \rightarrow 1$

Event Selection:

- a triggered lepton
- ≥ 3 jets with $E_T > 40$ GeV
- = 1 of them b-tagged
- $Q(l)+Q(\tau)=0$
- a τ -jet with $E_T > 40 \text{ GeV}$

and $p^{\text{track}}/E^{\tau} > 0.8$

- Missing $E_T > 70 \text{ GeV}$

CMS NOTE 2006/056, Baarmand/Hashemi/Nikitenko

After all selection cuts (tan $\beta = 20$):

	σxBR [fb]	Efficiency	Events/10fb ⁻¹
$m_{H^+} = 140 \text{ GeV}$	10700	4.8x10 ⁻³	510
$m_{H^+} = 150 \text{ GeV}$	5060	5.0x10 ⁻³	254
$m_{H^+} = 160 \text{ GeV}$	1830	5.0x10 ⁻³	92
tt→ <i>l</i> vtv bb	2.6x10 ⁴	2.0x10 ⁻³	516
tt→ <i>l</i> v <i>l</i> vbb	4.0×10^4	7.4x10 ⁻⁴	293
tt→ <i>l</i> vqqbb	2.5x10 ⁵	1.5x10 ⁻⁴	366
W+3 jets, W $\rightarrow lv$	8.4x10 ⁵	1.3x10 ⁻⁵	107

Main Systematics Sources:

- ttbar cross section
- luminosity measurement
- τ -tagging (efficiency/rejection)
- b-tagging (efficiency/rejection)
- jet energy scale

$tt \rightarrow H^+bWb, H^+ \rightarrow \tau_{had} \nu, W \rightarrow qq(1)$

ATL-PHYS-2003-038, Biscarat/Dosil

Exploited difference signal/ttbar:

- $m_{H^+} > m_W$: p_T^{τ} , E_T^{miss} larger
- Spin: $H^+ \rightarrow 0$, $W \rightarrow 1$

Event Selection:

- tau+MET or jet+MET trigger
- $= \tau$ -jet, $p_T^{\tau} > 25 \text{ GeV}$
- =2 b-jets, p_T^{b1} >35 GeV, p_T^{b2} >20 GeV
- \geq 2 light jets, $p_T^{j_1} >$ 30 GeV, $p_T^{j_2} >$ 20 GeV
- Missing $E_T > 45 \text{ GeV}$
- W/top Reco (20/40 GeV mass window)
- ttbar pattern (angle/ p_T relations of tops)
- Veto on isolated leptons
- $p_T^{\tau} / p_T^{b} > 0.8 (H^+ side)$
- H⁺ Transverse Mass

0 **BR**($H^+ \rightarrow tb$) $\approx 0.8-1$

 \rightarrow Main channels of interest:

by MC Generator "Matchig")

H ⁺ Decay	W Decay
τν, τ→had	qq
tb	lv & qq (2 Ws)

For each channel, only the most recent CMS or ATLAS study is presented in detail; reference to the study of the other experiment is given in [brackets], differences to the presented publication are briefly discussed and results are given

Production: gg/gb-fusion 0.6 $gg \rightarrow tbH^+, gb \rightarrow tH^+$ $(\rightarrow$ double-counting term, resolved

Overview: $m_{H^+} > m_{top}$

$gg/gb \rightarrow tH^+[b], H^+ \rightarrow tb (1)$ CMS NOTE 2006/109, Lowette/D'Hondt/Vanlaer [SN-ATLAS-2004-042, Assamagan/Gollub]

Exploited difference signal/ttbar+X:

- m_{H^+} invariant mass
- up to 4 b-jets

Event Selection, for 3 (4) b-tag-analysis:

- a muon, $p_T^{\mu} > 20 \text{ GeV}$
- at least 5 (6) jets, p_T^{μ} >25 GeV
- at least 3 (4) b-tags
- kinematic fit imposing mass constraints for both Ws and both top quarks
- LH to suppress combinatorial background
- 3 b-tags: LH to suppress ttbar+X using
 - a) p_T : softest jet from W, b) χ^2 of the fit,
 - c) discriminator: b from H⁺, d) E_T^{j6}/E_T^{j5}

4 b: b-discriminator: b from H⁺, *spectator-b*

SUSY 2007

$gg/gb \rightarrow tH^+[b], H^+ \rightarrow \tau_{had} \nu, W \rightarrow qq(1)$

ATL-PHYS-PUB-2007-006, Mohn/Flechl/Alwall [CMS NOTE 2006/100, Kinnunen, see slide 19]

Exploited difference signal/ttbar:

- m_{H^+} invariant mass
- => hard τ -jet, high missing E_{T}

Event Selection: (mass range: low/medium/high)

- one hard τ -jet ($p_T^{\tau} > 65/80/100 \text{ GeV}$)
- $E_t^{miss} > 120/135/165 \text{ GeV}$
- ≥ 3 more jets (=1 b-tagged)
- Veto on isolated leptons
- W/top-Reco (25 GeV-mass window)
- $p_T^{\tau} / p_T^{add. Jet} > 6.0/5.5/5.0$
- azimuthal angle (p_T^{τ}, p_T^{miss})

More H⁺ channels...

- $H^+ \rightarrow \chi_i^+ \chi_j^0$ CMS-NOTE-2003-004, SN-ATLAS-2005-050 sensitive at the uncovered region tan $\beta \approx 4-20^{5/20}$ (of course heavily dependend on the SUSY scenario, and a previous understanding of the SUSY background and parameters)
- H⁺→Wh⁰, H⁺→WH⁰ ATL-PHYS-99-025, ATL-PHYS-PUB-2005-017
 significant cross section only for very small tan β.
 - current studies show that even with known m_{h0} and high luminosity, no discovery reach is given
- H⁺ sensitivity in ttbar and single top cross section measurements

14

SUSY 2007

Discovery Reach

CMS and ATLAS Discovery Contours: MSSM, m_h-max scenario

N.B.: The currently approved discovery contours cannot be compared. ATLAS update expected for end of this year. note: for heavy $H^* \rightarrow \tau \nu$, for consistency, the plot contains results from an ATLFAST study [10] and not the recent fullsim study presented here

The current studies suggest: $m_{H^+} < \approx m_{top}$: will be covered at the LHC (in worst case at high luminosity) $m_{H^+} > m_{top}$: sensitive only for high tan β

M. Flechl: Search for Charged Higgs Bosons at the LHC

SUSY 2007

Conclusions and Outlook

• Implications of current studies:

- H⁺→τv is the prime LHC H⁺ discovery channel in the MSSM space (and *could be* the first BSM-signal and SUSY-glimpse we see)
- $H^+ \rightarrow tb$ does not have any MSSM discovery sensitivity
- light m_{H+}: the LHC experiments are sensitive to an MSSM H⁺ up to m_{H+} values close to m_{top}
- heavy H^+ : high luminosity runs are needed. The medium tan β region is not covered (might be accessible after a SUSY discovery)

• The future:

- refine studies, understand systematics, identify control samples / sidebands, improve tools (b/ τ -tagging, ...)
- first studies on $\mathbf{H}^+ \rightarrow \tau \mathbf{v}$ with $\tau \rightarrow l \mathbf{v} \mathbf{v}$ are arriving
- all presented channels+some more: currently investigated with Full Simulation for ATLAS, too => results end of this year
- data!!!

Backup Slides

M. Flechl: Search for Charged Higgs Bosons at the LHC

Differences between ATLAS and CMS Studies (1)

$gg/gb \rightarrow tH^+[b], H^+ \rightarrow tb$

In SN-ATLAS-2004-042, as compared to CMS NOTE 2006/109:

- based on Fast Simulation
- no pile-up
- mass range $m_{H^+} = 200-800$ GeV investigated
- only investigates gg→tbH⁺
- looks at muon *and electron* decays of one of the Ws
- Likelihood to decrease combinatorial background, but no kinematic fit to the particle four-momenta uses reconstructed angles, momenta and invariant mass
- different variables for background suppression:

 $m_{b0b2} \cos(b_0, b_2) \cos(b_0 + b_2) \cos(b_0, b_2) \cos(t^{H+}, H^+)$

Differences between ATLAS and CMS Studies (2)

$gg/gb \rightarrow tH^+[b], H^+ \rightarrow \tau_{had} \nu, W \rightarrow qq$

In CMS NOTE 2006/100, as compared to ATL-PHYS-PUB-2007-006:

- Full Simulation used for backgrounds
- only $gg \rightarrow tH^+b$ simulated (scaled to $gg/gb \rightarrow tH^+[b]$ cross section)
- Simulation includes pile-up for low luminosity runs
- Poisson significance estimator used
- same optimisation for whole mass range ($m_{H^+} = 170-600 \text{ GeV}$)
- cut on p (leading track) / E (τ -jet) > 0.8 (exploit τ helicity correlations)
- Veto on additional central jets [instead of cut on $p_T(additional jet)/p_T(\tau-jet)$]
- no cut on the pseudorapidity of the τ -jet
- trigger simulation applied
- differences in τ -jet/b-jet/lepton reconstruction and tagging

References

- [1] LHWG-note-2001-05, The LEP EW Working Group
- [2] CMS NOTE 2006/056, Baarmand, Hashemi, Nikitenko
- [3] Prog.Part.Nucl.Phys.50:63-152,2003, M. Carena, H. Haber
- [4] Phys. Rev., D67 (2003) 014018, T. Plehn
- [5] ATL-PHYS-2003-038, Biscarat, Dosil
- [6] CMS NOTE 2006/109, Lowette, D'Hondt, Vanlaer
- [7] SN-ATLAS-2004-042, Assamagan, Gollub
- [8] ATL-PHYS-PUB-2007-006, Mohn, Flechl, Alwall
- [9] CMS NOTE 2006/100, Kinnunen
- [10] Acta Physica Polonica B 33 (2002) 707-720, Assamagan, Coadou