Discovery potential of LHC for extended gauge symmetries

SUSY 07 Karlsruhe 27.7.2007

Gernot Krobath Ludwig-Maximilians-Universität München E-Mail: gernot.krobath@physik.uni-muenchen.de

Overview

- LHC & ATLAS & CMS
- extended gauge theories
- experimental searches for:
 - W'
 - Z'
 - heavy majorana neutrinos, W_R
 - 2nd generation Leptoquarks
- conclusions

LHC schedule/luminosities

- 1st run at 14 TeV:
- $\int L dt$ in 1st month (August 2008):
- $\int L dt$ until end of 2008:

July 2008 a few pb⁻¹ up to 1fb⁻¹

The Detectors

Extended Gauge Symmetries

- Many extensions of the Standard Model rely on larger symmetry groups
 → Extended Gauge Symmetries:
 - Left-right-symmetric models (LRSM) \rightarrow Z', W_R, heavy majorana neutrinos etc.
 - Sequential standard model \rightarrow Z', W' etc.
 - Superstring inspired $E_6^{-models}$ \rightarrow Z', Leptoquarks etc.
 - Grand-Unifying-Theories (GUTs) \rightarrow Leptoquarks etc.
 - Little Higgs Model \rightarrow Z' etc.

- W' in the sequential Standard Model:
 - W' is an additional heavy gauge boson
 - W' has same couplings with left-handed fermions like W; no interaction with other heavy gauge bosons (W, Z, Z')
 - lower bound on W' mass (direct searches): ~ 1 TeV
- studied channel at ATLAS: $W' \rightarrow \mu + \nu_{\mu}$
- Standard model backgrounds considered:
 - $W \rightarrow \mu v_{\mu} + X$

•
$$Z \rightarrow \mu \mu + X$$

QCD (dijet processes)

Expected luminosity needed for a 5o discovery (likelihood ratio method)

W' (CMS)

• same channel studied as in ATLAS:

W' \rightarrow μ + ν_{μ}

→ same background channels and same W' signature as in ATLAS

 number of events for signal and background after selection cuts

<mark>Z'</mark>

 Z' is an additional heavy gauge boson, predicted in many extended gauge theories, excluded mass: ~ 1 TeV (direct searches)

CMS PTDR 2006

Model	Γ/M	$Z' \rightarrow \mu^+ \mu^-$	$\sigma^{\text{LO}} \cdot \text{Br}$, full interference, fb		
	%	BR in %	(PYTHIA)		
			1 TeV/c ²	3 TeV/c ²	5 TeV/c ²
Z _{SSM}	3.1	3.0	610	2.8	0.050
Z_{ψ}	0.6	4.0	340	1.7	0.032
Z_{η}	0.7	3.4	370	1.8	0.035
Z_{χ}	1.3	5.7	500	2.2	0.038
Z _{LRM}	2.2	2.3	500	2.3	0.040
Z _{ALRM}	1.6	8.6	740	3.7	0.077

 expected properties of studied models

> $Z_{_{SSM}}$ within the sequential standard model $Z_{_{\eta}}, Z_{_{\psi}}, Z_{_{\chi}}$ arising in E₆ (and SO(10)) GUT groups $Z_{_{LRM}}$ and $Z_{_{ALRM}}$ arising in the framework of the so-called "left-right" and "alternative left-right"models (g_{_R} = g_{_L} chosen) k-factor used: 1.35 (mass-independent)

• Decay channels (assumption: no exotics channels opened):

7

- $Z' \rightarrow \mu^{+} \mu^{-}$
- $Z' \rightarrow e^+e^-$
- $Z' \rightarrow \tau^+ \tau^-$
- $Z' \rightarrow hadrons$

- promising promising instrumental background from QCD instrumental background from QCD
- **Z' signal**: high invariant mass peak above Drell-Yan line shape
- studied channel (ATLAS):

$$Z' \rightarrow e^+ e^-$$

• dominant and irreducible background: $pp \rightarrow \gamma/Z^0 \rightarrow e^+e^-$

studied channel: $Z' \rightarrow \mu^+ \mu^-$ (CMS)(assumption: no exotic channels opened)

• overall efficiency (incl. acceptance, trigger, reconstruction) for $Z' \rightarrow \mu^+ \mu^-$ events at CMS: 75%-85%

Z' (CMS)

- dominant and irreducible background: $pp \rightarrow \gamma/Z^0 \rightarrow \mu^+\mu^-$
- other backgrounds negligible (after signal-selection criteria)

luminosity needed to discover Z' in Z' $\rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$ channel with 5\sigma significance

 $Z_{_{SSM}}(2.6 \text{ TeV}), Z_{_{\eta}}(2 \text{ TeV}), Z_{_{\psi}}(1.95 \text{ TeV}), Z_{_{\chi}}(2.5 \text{ TeV}), Z_{_{LRM}}(2.5 \text{ TeV}) \text{ and } Z_{_{ALRM}}(2.7 \text{ TeV})$

Heavy Majorana neutrinos, W_R (CMS)

- LRSM model ($SU_c(3) \otimes SU_l(2) \otimes SU_R(2) \otimes U(1)$) incorporates three additional heavy gauge bosons W_R , Z' and the heavy right-handed Majorana neutrino states N.
- The Ns can be partner of light neutrino states and can provide their non-zero masses through the see-saw mechanism.
- assumption: $g_R = g_L$
- studied channel: $pp \rightarrow W_{R} \rightarrow eN_{e}$

(cross-section for this channel is 10 times higher than for pp $\rightarrow Z' \rightarrow N_{e}N_{e}$)

Scalar Leptoquarks (ATLAS)

- Leptoquarks (LQ) are particles which carry both lepton- and baryon-numbers. LQ interactions conserve the lepton- and baryon-numbers separately.
- 1st Assumption: LQ couple only to one generation of quarks and to one generation of leptons of the standard model \rightarrow 3 generations of LQ
- 2nd assumption: LQ interactions are chiral
- With these assumptions there are 14 kinds (mBRW model) of LQ

 only pair production of scalar LQ considered here → single production depends on the unknown Yukawa (q-l-LQ) coupling

Scalar Leptoquarks

• 2nd generation LQ

- assumed: 100% of 2nd generation LQ decays: $LQ \rightarrow q + \mu$
- excluded mass for 2nd generation LQ (so far): ~ 250 GeV
- signal: 2 high energetic jets, 2 high energetic muons

ATLAS Pr	e <i>liminary</i> Expected Luminosity for
Leptoquark mass	exclusion with 95% C.L.
300 GeV	2.8 pb⁻¹
400 GeV	6.6 pb⁻¹
600 GeV	40 pb⁻¹
800 GeV	220 pb⁻¹

Conclusions

- presented a selection of analyses on particles predicted by extended gauge theories
- LHC with ATLAS and CMS provides a powerful tool to discover or exclude many particles predicted by extended gauge theories
- many particles can be discovered or excluded already in the early phase of the LHC
- exciting years ahead