
Searching the QCD critical endpoint with lattice simulations

Szabolcs Borsanyi1, Zoltan Fodor1,2,3,4, Matteo Giordano2, Jana N. Guenther1,5,�, Kornél Kapás2,
Sandor K. Katz2, Kalman K. Szabó1,3, Attila Pasztor2, Israel Portillo6, and Claudia Ratti6

1University of Wuppertal, Department of Physics, Wuppertal D-42097, Germany
2Eötvös University, Budapest 1117, Hungary
3Jülich Supercomputing Centre, Jülich D-52425, Germany
4Physics Department, UCSD, San Diego, CA 92093, USA
5University of Regensburg, Department of Physics, Regensburg D-93053, Germany
6Department of Physics, University of Houston, Houston, TX 77204, USA

Abstract. We discuss the usefulness of various lattice observables especially fluctuations
to locate the QCD critical endpoint. We apply different models to interpret our results for
the baryon fluctuations up to µ8 from simulations at imaginary chemical potentials.

1 Introduction
When investigating Quantum Chromodynamics (QCD) an important but challenging goal is the study
of the phase diagram. At zero chemical potential lattice QCD predicts a smooth crossover between
hadrons and the quark gluon plasma [1–5], taking place in the temperature range T � 145−165 MeV.
Due to the sign problem lattice QCD is unable to study the region with finite chemical potential.

With the advent of the second Beam Energy Scan (BESII) at the Relativistic Heavy Ion Collider
(RHIC), scheduled for 2019-2020, there is a renewed interest in the heavy ion community towards
the phases of QCD at moderate-to-large densities. A rich theoretical effort is being developed in
support of the experimental program; several observables are being calculated, in order to constrain
the existence and location of the QCD critical point and to observe it experimentally.

Fluctuations of conserved charges (electric charge Q, baryon number B and strangeness S ) are
important observables for the finite-density investigations. One possible way to extend lattice results
to finite density is to perform Taylor expansions of the thermodynamic observables around chemical
potential µB = 0 [6–10]: fluctuations of conserved charges are directly related to the Taylor expansion
coefficients of such observables. They allow for a comparison between theoretical and experimental
results to extract the chemical freeze-out temperature T f and chemical potential µB f as functions of
the collision energy [11–14]. The higher order fluctuations are also an important signature for the
critical endpoint, as they give access to the correlation length [8, 15, 16].

In this work we apply the method of analytical continuation from imaginary chemical potential
[17–21]. It agrees well with the results of the Taylor expansion as shown for the transition temperature
[22]. We present results for χB

2 to χB
6 in the temperature range 140 MeV ≤ T ≤ 220 MeV. Several

diagonal and non-diagonal fluctuations of conserved charges up to sixth-order are available in our
recent paper [23].
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2 Fluctuations

We present results of an high-precision analysis on a 483 × 12 lattice. A more detailed description
as well as precise information on the lattice set-up can be found in refs. [23, 24]. We use analytical
continuation from imaginary chemical potential to determine the χB fluctuations at µB = 0. We
analyze data for eight different values of µB = i jπ

8 with j ∈ {0, 1, 2, 3, 4, 5, 6, 7}. In our analysis we use
the following ansatz for the pressure:

χB
0 (µ̂B) =

p
T 4 = c0 + c2µ̂

2
B + c4µ̂

4
B + c6µ̂

6
B +

4!
8!

c4ε1µ̂
8
B +

4!
10!

c4ε2µ̂
10
B , (1)

where ε1 and ε2 are drawn randomly from a normal distribution with µ = −1.25 and σ = 2.75. The
values were chosen in a way to allow for χB

8 to take the value predicted by the hadron resonance gas,
as well as the result from the toy model introduced in section 4. From the ansatz we can calculate the
derivatives that can be measured on the lattice:

χB
1 (µ̂B) = 2c2µ̂B + 4c4µ̂

3
B + 6c6µ̂

5
B +

4!
7!

c4ε1µ̂
7
B +

4!
9!

c4ε2µ̂
9
B, (2)

χB
2 (µ̂B) = 2c2 + 12c4µ̂

2
B + 30c6µ̂

4
B +

4!
6!

c4ε1µ̂
6
B +

4!
8!

c4ε2µ̂
8
B, (3)

χB
3 (µ̂B) = 24c4µ̂B + 120c6µ̂

3
B +

4!
5!

c4ε1µ̂
5
B +

4!
7!

c4ε2µ̂
7
B, (4)

χB
4 (µ̂B) = 24c4 + 360c6µ̂
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We perform a correlated fit for χB
1 (µ̂B), χB

2 (µ̂B), χB
3 (µ̂B) and χB

4 (µ̂B) for the different values of µB to
determine the fitting parameters c2, c4 and c6. From the parameters we can determine χB

2 (0) = 2c2,
χB

4 (0) = 24c4, χB
6 (0) = 720c6 and χB

8 (0) = 24c4ε1. The results are shown in figure 1. These equations
show the relation between χB

4 and χB
8 that are just related by the factor of ε1 (in the same way χB

4
and χB

10 are related by a factor of ε2). In this way we take into account the influence of higher order
corrections to our fit function. We choose 1000 different values for ε1 and ε2 and in addition we include
either seven or eight different values of µB in our data. All resulting fits are combined in a histogram
and weighted with the Akaike information criteria [25], thus allowing to estimate the systematic error.
The statistical error is determined by the Jackknife method and both errors are added quadratically to
get the combined error shown in the plots.

3 Cumulants

For a comparison with heavy ion collision experiments the cumulants of the net baryon distribution
are a useful tool. The first four cumulants are the mean MB, the variance σ2

B, the skewness S B and
the kurtosis κB. By forming appropriate ratios, we can cancel out explicit volume factors. However
the measured distributions themselves may still depend on the volume, which one should take into
account, when comparing to experiments.

Heavy ion collisions with lead or gold take place at µB > 0, 〈nS 〉 = 0 and 〈nQ〉 = 0.4〈nB〉. Since
our simulations are done at µS = µQ = 0 and µB � 0 we have to do some calculations to arrive at
the same observables that are measured in experiments (see for example [27]). We investigate three
different ratios of cumulants and write each as a Taylor expansion:

MB

σ2
B

=
χB

1 (T, µ̂B)

χB
2 (T, µ̂B)

= µ̂BrB,1
12 + µ̂

3
BrB,3

12 + . . . (6)
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Figure 1: Results for χB
2 , χB

4 , χB
6 and an estimate for χB

8 on a Nt = 12 lattice as functions of the
temperature, obtained from the single-temperature analysis (see text). We plot χB

8 in green to point
out that its determination is guided by a prior, which is linked to χB

4 . The black curve in each panel
corresponds to the toy model introduced in [23, 26].
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The µB dependence of the χB
i (T, µ̂B) can be again written in terms of the Taylor expansion:
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with q j =
1
j!

d jµ̂Q

(dµ̂B) j (0) and s j =
1
j!

d jµ̂S
(dµ̂B) j (0).

We can now use the constraints 〈nS 〉 = 0 and 〈nQ〉 = 0.4〈nB〉which can be rewritten as χQ
1 = 0.4χB

1
and χS

1 = 0 to determine the rB,k
i j coefficients form the equations 6, 7 and 8. However we now need

to know not only the behavior of the χB
i but also of derivatives with respect to µS and µQ. For now

our simulations are restricted to ensembles with finite µB. Therefore the µS and µQ derivatives have
to be calculated directly and without the support from the fit that we used in the µB direction. We
calculate various χB,Q,S

i, j,k with the appropriate values of j and k and all possible values for i so that
i + j + k ≤ 4. For each group of fluctuations with the same j and k we perform a fit analogous to the
procedure described in section 2. This is sufficient to determine the first two rB,k

i j coefficients for all
three observables. The results are shown in figure 2.
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a) rB,1
12 (left panel) and rB,3

12 (right panel). b) rB,0
31 (left panel) and rB,2

31 (right panel).

c) rB,0
42 (left panel) rB,2

42 (middle panel), rB,4
42 (right panel). The latter is not obtained independently, but by means

of the prior ansatz (see text): for this reason, we plot it in green.

Figure 2: Taylor expansion coefficients as functions of the temperature.

4 Looking for the critical point

To look for the critical endpoint in the QCD phase diagram one can try to calculate the radius of
convergence of an expansion in µB. Two obvious expansions for this are either the pressure p(µ) = p0+

p2µ̂
2+p4µ̂

4+p6µ̂
6+. . . or the fluctuations that are directly related: χB

2 (µ) = 2p2+12p4µ̂
2+30p6µ̂

4+. . . .
We define

rp
2n =

√
p2n

p2n+2
and rχ2n =

√
2n(2n − 1)

(2n + 1)(2n + 2)
rp

2n. (10)

In the limit of n → ∞ if either rp
2n or rχ2n converge, they converge to the same value, the radius of

convergence, which guarantees that there is no criticality within this radius.1 However, since we only
know the fluctuations up to χB

8 as discussed in the previous section, we will first test this procedure
for a toy model in which the critical endpoint is known. We use unimproved staggered fermions on
an Nt = 4 lattice. For this set up the critical endpoint has been already determined [20, 21, 29]. The
results for rp

2n and rχ2n are shown in the left panel of figure 3. For a temperature where the critical
endpoint is close by (right site of the left panel of figure 3), the ratios seem to converge to the correct
value. However, as discussed in more detail in ref. [29], due to the structure of χB

6 there is always a
temperature for which the ratios seem to converge, independent of the real value for the critical point.
For the Nt = 12 data the rχ2n and the ratios from the hadron resonance gas are shown in the right panel
of figure 3. Here the errors are still large.

Instead of investigating a toy model with a known critical endpoint, we can also try to describe the
data with a toy model without any critical behavior. If one fits the data for χB

1 /µ̂B at µB = 0 with an

1As was shown in [28], the ratio estimator is never convergent in a finite volume, and it is problematic even when using the
pn extrapolated to infinite volume. It will work if one uses infinite-volume Taylor coefficients and the singularity determining
the radius of convergence corresponds to a real phase transition in the infinite-volume limit.
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Figure 3: On the left panel: The ratios rp
2n and rχ2n (eqn. 10) on an Nt = 4 lattice. On the very left the

temperature is close to the crossover temperature. Next to it the temperature is close to the temperature
for the critical endpoint. The black arrow marks the value for the critical endpoint from [21]. On the
right panel: The rχ2n (eqn. 10) ratios for different temperatures [29].

analytic function of T and assumes that any change with respect to the chemical potential is a linear
shift of this function, one can determine all fluctuations analytically (more detail on this toy model
can be found in ref. [26]). The results of this toy model are shown with black curves in figure 1. They
agree well with the data.
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