
UNIVERSITÀ DEGLI STUDI DI MILANO � BICOCCA
Facoltà di Scienze Matematiche, Fisiche e Naturali

Dipartimento di Informatica Sistemistica e Comunicazione
Corso di Laurea Magistrale in Informatica

Authentication/authorization issues and fulltext document

migration for the CERN Document Server

Relatore: Prof. Gianpiero CATTANEO

Correlatore: Dr. Fabio FARINA

Controrelatore: Dr. Tibor �IMKO

Tesi di Laurea di: Samuele KAPLUN
Matricola: 047947

Anno Accademico 2006�2007

iii

Summary

This is a report on the work carried out at the Department of Information Technology
of the European Organization for Nuclear Research (CERN) under the CERN Technical
Studentship Programme.

The project started on 16th January 2007. During this period I worked in the CERN
Document Server (CDS) team of the User and Document Services (UDS) group as a
fulltime developer on the software CDS Invenio.

The present report describes the subject, designed ideas and solutions, developed code
and principal results.

Chapter 1 is an introductory chapter describing the CDS Invenio software and its use at
CERN.

Chapter 2 presents the state of the art of the authentication system of CDS Invenio. It
was the �rst project of the present work to enhance it by developing a new plugin infras-
tructure to support multiple external login authentication systems, importing external
user details and group membership information.

Chapter 3 describes the role-based access authorization system of CDS Invenio and the
design and implementation of FireRole, a new language to exploit user details and group
membership in order to enhance the access system allowing complex user- and group-
based authorization con�gurations.

Chapter 4 presents the second project of the present work, where a new tool for the
fulltext storage subsystem of CDS Invenio was developed. The tool is responsible for
migration of about 500,000 fulltext scienti�c papers managed by the CERN Document
Server from a legacy system to the new architecture, recreating necessary data structures,
collecting missing information about obsolete revisions through heuristics and importing
�le download statistics.

Finally the conclusion brie�y summarizes the main results of this work.

v

Contents

Summary iii

I Introduction to CDS Invenio 1

1 Introduction 3

1.1 CERN . 3

1.2 CDS Invenio . 4

1.2.1 Key Features . 5

1.2.2 User Classes . 9

1.2.3 Modules Overview . 9

II Authentication and Authorization issues 13

2 Authentication and eGroups 15

2.1 Introduction . 15

2.2 Initial situation . 16

2.2.1 Identifying users . 17

2.3 Authentication at CERN . 18

2.4 The improvements . 19

2.4.1 How to handle external user details 19

2.4.2 How to handle external user group memberships 20

2.4.3 The new authentication plugin infrastructure 21

2.4.4 Results . 22

vi Chapter CONTENTS

2.4.5 Importing external groups . 23

2.5 Testing . 24

2.5.1 Issues . 24

2.6 Improvements to local password management 27

2.7 Local passwords encryption . 28

2.7.1 Password resetting . 29

2.7.2 Mail cookies . 29

2.7.3 Administrative tasks . 30

2.8 SSO . 30

2.8.1 A brief overview on how Shibboleth works 31

3 Firewall-like role de�nition for the access control module 35

3.1 Introduction . 35

3.2 The idea . 36

3.3 The access control RBAC core work�ow . 36

3.4 Proposed extension . 37

3.5 Users' details . 38

3.6 The FireRole language . 39

3.6.1 Syntax . 40

3.6.2 Semantic . 40

3.7 Data �ows . 41

3.8 Tricks to improve performances . 42

3.8.1 Caching tools . 43

3.9 Tests . 44

3.10 Code Testing . 45

3.11 Temporary Roles . 45

III Fulltext document migration 47

4 Migration of fulltext documents with s2d 49

4.1 Introduction . 49

CONTENTS vii

4.2 The legacy fulltext architecture at the CERN Document Server 51

4.2.1 Metadata . 51

4.3 The current CDS Invenio fulltext data structure 52

4.3.1 Current database table structure to store Fulltext Document Information 52

4.3.2 Current �lesystem structure to store Fulltext Document Information . 53

4.4 The S2D tool . 54

4.5 Detailed preliminary analysis . 54

4.5.1 What should be migrated . 55

4.5.2 The SetLink URL . 55

4.5.3 Remote fulltext �le revisions . 56

4.5.4 Database data to be recreated . 56

4.5.5 Metadata handling . 57

4.5.6 Importing statistics . 57

4.5.7 Guidelines followed in writing the tool 57

4.6 The S2D algorithm . 57

4.6.1 The input . 58

4.6.2 The output . 58

4.6.3 Undo possibility . 59

4.6.4 Migrating statistics . 60

4.7 Test and results . 60

4.8 Indexing issues . 60

4.8.1 IntBitSet . 62

4.8.2 IntBitSet benchmarks . 63

4.8.3 IntBitSet testsuite . 63

A Mail cookies 67

A.1 The implementation . 67

A.2 Developer interface . 68

A.3 Cookie content issues . 68

viii Chapter CONTENTS

B Minor activities 69

B.1 BibSched log viewer . 69

B.2 BibSched job pruner . 69

B.3 Refactoring of BibTasks . 70

B.4 BibSched and Invenio Garbage Collector 70

Conclusions 73

Acknowledgements 81

ix

List of Figures

1.1 The CERN Document Server homepage. 4

1.2 CDS Navigable document taxonomy. 5

1.3 CDS powerful search engine. 6

1.4 Excerpt from an example record's MARC21 representation 7

1.5 Excerpt from an example record's MARCXML representation 7

1.6 CDS Multiple output formats. 8

1.7 CDS Personalization and Collaborative Features. 8

1.8 CDS modules relationship and user interaction. 12

2.1 CDS Invenio authentication system prior of the project start. 17

2.2 Imported External Settings screenshot. 23

2.3 The author's current con�gure CDS Invenio settings. 23

2.4 The External Groups panel . 24

2.5 External groups to share baskets. 25

2.6 External groups as receivers of web messages. 26

2.7 A snapshot of the current dual login at CERN. 27

2.8 The new password reset panel. 28

2.9 The sequence diagram of resetting a lost local password 30

2.10 The possible SSO data �ow (�rst part). 32

2.11 The possible SSO data �ow (second part). 33

3.1 Flow of data within acc_authorize_action() 37

3.2 A FireRole de�nition example. 40

3.3 A draft for the FireRole grammar . 40

x Chapter LIST OF FIGURES

3.4 FireRole administrator interface. 42

3.5 run_sql() usage to query for the name of a user given his email. 44

3.6 run_sql_cached() usage to query for the name of a user given his email. 44

4.1 A legacy page for downloading the fulltext �le of a document. 50

4.4 How locally-hosted fulltext document could be represented in MARC . . 52

4.5 ER diagram of records � fulltext documents �les. 53

4.2 The current Data Flow at CERN . 64

4.3 The Data Flow of a clean installation . 65

4.6 An example of running the IntBitSet testsuite. 66

B.1 The BibSched log viewer. 70

1

Part I

Introduction to CDS Invenio

3

Chapter 1

Introduction

1.1 CERN

The European Organization for Nuclear Research (CERN) is the world largest particle
physics centre (see [CER04]). Physicists at CERN explore what matter is made of and
what forces hold it together. This organization provides them the necessary tools for
their research. These are mainly particle accelerators able to bring particles to almost
the speed of light, and detectors to make the particles visible.

Founded in 1954 by 12 countries, CERN has grown to the present 20 member states.
Some 6500 visiting scientists, half of the world particle physicists, come to CERN for
their research. They represent 500 universities and over 80 nationalities ([Com07]).

Since its creation, CERN has made many important discoveries for which scientists have
received prestigious awards, including Nobel prizes.

While a �uctuating, international labour force is may create some collaborative friction,
it is also believed to stimulate thought exchange thanks to many di�erent cultural back-
grounds.

In March 1989, then CERN-employee Tim Berners-Lee, recognized in [BLCGP92] the or-
ganization's need for more e�cient knowledge-transferring, mainly caused by the migrat-
ing and wide-spread users community, and proposed the World Wide Web (see [Ben95])as
a measure to prevent the problem of �losing information at CERN�.

Today's surplus of information has put search engines, and search companies like WWW-
speci�c Google, into premium business segments. Though providing relevant documents
at impressive speeds is an interesting computer science feat and indeed an essential artifact
of the modern world, institutions like CERN need more speci�c technologies when dealing
with huge sets of scienti�c material. It is not enough to be able to locate information
quickly. The need is to have the infrastructure to maintain and foster a community where
information not only is readily available, but wherein knowledge is updated, scrutinized,
shared, passed on, and always kept securely stored for future community generations.

4 Chapter 1. Introduction

Moreover, scienti�c material in the form of articles and papers can be managed in the
form structured information, which allow to build a real digital library, where information
can be retrieved in a deterministic way,

1.2 CDS Invenio

Figure 1.1: The CERN Document Server homepage as can be seen by visiting

http://cdsweb.cern.ch.

CERN Document Server Invenio (CDS Invenio) is a complete solution for running and
managing integrated digital libraries. It is made up by a suite of interconnected modules,
providing the framework for running an electronic preprint server, an e�cient search
engine, and an OAI-compliant1 document repository [PBG+05].

Being developed at CERN, the main incentives to produce and maintain CDS Invenio, as
honored by the CDS Consortium2, can be described as a re�nement of the very incentives
that pursued Berners-Lee to create the embryo of the WWW in the �rst place, namely the
open dissemination of CERN's need for producing, storing, and sharing scienti�c results.

CDS Invenio is freely available, and licensed under the GNU General Public License.
It is, as of September 2007, currently deployed at 20 major institutions around the

1Open Access Information (see [VBLMS02]), an open standard for harvesting and exchanging data
between storage systems, http://www.openarchives.org

2http://cdsware.cern.ch

1.2. CDS Invenio 5

world [cds07a]. Technology-wise, CDS Invenio runs on GNU/Unix platforms, backed
by a MySQL database server and an Apache/Python web application server. Python is
the main programming language, though some ad hoc modules are written in Common
Lisp [PBG+05] and as we will explain later in C.

CERN's live installation, called �CERN Document Server�3 (whose homepage can be seen
in Figure 1.1 on the facing page), currently hosts around 1 million records and 500,000
fulltext documents, serving 20,000 monthly users issuing around 8,000 queries per day.

1.2.1 Key Features

Navigable Document Taxonomy Indexed documents are organized into a basic col-
lection tree (see Figure 1.2), in which each node can implement di�erent user privileges,
be managed by di�erent curators (see section 1.2.2 on page 9), and display custom infor-
mative presentations.

Figure 1.2: Navigable document taxonomy provided by the CERN Document Server.

Powerful Search Engine Provides �Google-like� speed for searches in document repos-
itories of up to 1.5 million records [cds07b], with results optionally clustered according
to the taxonomy (see Figure 1.3 on the next page).

CDS Invenio implements the Standard Boolean Model of Information Retrieval (see
[BYRN99]). A suite of ranking algorithms exists that can be applied on top the re-
trieved results thus allowing for improvement in relevance. One of the plugin implements

3Publicly available at http://cdsweb.cern.ch

6 Chapter 1. Introduction

Figure 1.3: The powerful search engine provided by the CERN Document Server.

Results are clustered according to the taxonomy.

the Standard Vector Model of Information Retrieval (see [SWY75])4. Stemming (see
[Fra92]) is optionally applied, by means of the Porter's suite of algorithms (see [Por])5.

Flexible Data Acquisition and Output Formats During the process of inserting in-
formation about a document into the repository, all its structured information, which
include the title, author, abstract, year and so on (in what follows we will call this set
�the document metadata�) is stored in the format MARC21, a standard for bibliographic
data [MAR]. A MARC-�avor was chosen because it constitutes a mature de facto stan-
dard in the library world, and is considered �exible enough to cope with all kinds of
bibliographic information [CDS07c]. Thus, CDS Invenio aligns well with traditional li-
brarian tasks, while securing long-term usefulness without relying on future changes of
internal structures.

As obvious from Figure 1.4 on the facing page the markup is neither straight-forward
to parse, nor very readable to humans. Hence, whenever bibliographic metadata is to
be worked with externally, CDS Invenio uses MARCXML6, exempli�ed in Figure 1.5,

4At the CERN installation of CDS Invenio, this kind of ranking is not enabled by default since
physicist prepare to know what are the latest scienti�c paper.

5As a side project the author have added support for the latest Porter algorithms in the form of the
Snowball project (see [Por06])

6MARCXML is an XML-schema based on the MARC21 bibliographic standard [MAR]. It was pro-
posed and developed by the US Library of Congress [?] in order to ease interaction with MARC data,

1.2. CDS Invenio 7

000999421 088__ $$aCERN-BROCHURE-2006-003-ENG

000999421 246__ $$afaq$$bfrequently asked questions

000999421 260__ $$aGeneva$$bCERN$$c2006

000999421 300__ $$a36 p

000999421 65017 $$2SzGeCERN$$aInformation Transfer

000999421 690C_ $$aREPORT

000999421 710__ $$gCERN Communication Group

Figure 1.4: Excerpt from an example record's MARC21 representation

<datafield tag="100" ind1=" " ind2=" ">

<subfield code="a">Ellis, Nicolas</subfield>

<subfield code="u">CERN</subfield>

</datafield>

<datafield tag="260" ind1=" " ind2=" ">

<subfield code="c">2006</subfield>

</datafield>

<datafield tag="690" ind1="C" ind2=" ">

<subfield code="a">ARTICLE</subfield>

</datafield>

Figure 1.5: Excerpt from an example record's MARCXML representation

instead.

As visible in these examples, MARC standards make use of an extensive number of
data�elds, identi�ed by a number ranging from 010 to 999 (number ranging from 000
to 009 are reserved as control �eld), accompanied by any number of sub�elds indicating
a bibliographic value of predetermined type. An exhaustive listing of MARC keys, and
their types of values, is available in [Bet00].

If metadata about a document being inserted into the repository happens to be accom-
panied by the fulltext �le representing the document, this additional �le is run through
an automatic citations extractor. The results are then added to the metadata and made
searchable.

On request mode, bibliographic records can then �exibly formatted in a wide range of
ways (see Figure 1.6 on the next page), including HTML, BIBTEX7, MARCXML, and
Dublin Core8, the format used by OAI-PMH (see below).

Personalization and Collaborative Features Users can manage personal collections,
referred to as �baskets�, of interesting documents, marking them as either private, public

a format that was essentially developed during 1960s to work with punch-cards, in order to cope with
modern computing technologies such as XML.

7Manages citations in LATEX typesetting.
8Standard for on-line resource descriptions [Dia05].

8 Chapter 1. Introduction

Figure 1.6: Multiple output formats link to export a record are displayed in the

upper-left corner.

or shared with a user's group. Users can also set automated email noti�cation called
alerts about new results found by con�gurable queries, using the full search capabilities
as described earlier in this secion. Finally, users can review and rate documents as well
as discuss them with other users, through a commenting system. (see Figure 1.7)

Figure 1.7: The summary of a CDS user account listing all the personalization and

collaborative features.

Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) A proto-
col de�ned by the Open Archives Initiative (OAI), OAI-PMH is used to facilitate meta-
data exchange among various data providers.

OAI-PMH is based on a client-server architecture, in which "harvesters" request informa-
tion on updated records from "repositories". Requests for data can be based on timestamp

1.2. CDS Invenio 9

ranges, and can be restricted to named sets as de�ned by the provider.

CDS Invenio supports both exporting and importing metadata using OAI-PMH, hence
acting both as a harvester and a repository.

Though a converter modules CDS Invenio is also able to exchange metadata with non
OAI-PMH compliant digital libraries and data repositories.

1.2.2 User Classes

CDS Invenio supports several kinds of user classes, the following being mandatory, but
not necessarily made up by separate individuals. Along with each user class is a brief
description of their most common digital library use-case scenarios.

Regular Users Regular users are visitors to the digital library with no particular re-
sponsibilities. They search for documents, browse the taxonomy, write reviews, submit
comments, and extract bibliographic data.

Authors Authors create and submit documents stored in the digital library. Common
actions are submitting and updating documents, but also monitoring of document statis-
tics etc.

Curators A curator is a content gate-keeper for a collection in the taxonomy. The
curator is assumed to have speci�c and recognized knowledge in the collection's domain,
and has been assigned to oversee quality and factual correctness by approving or rejecting
document submissions.

Librarians A librarian is responsible to assess the quality of metadata, and to insert
metadata for books and documents provided at a library.

System Administrators Responsible for administration of the servers on which CDS
Invenio runs. Administrators are interested in keeping a functional system, by properly
con�guring the numerous provided features, monitoring the health of service, updating
the installation, managing authorities and other users issues.

1.2.3 Modules Overview

As explained above, CDS Invenio is a modularized software. What follows is a list of its
modules, each accompanied by a brief explanation, while in Figure 1.8 on page 12 can be
seen the relationship between all the modules and the various kind of users.

10 Chapter 1. Introduction

BibClassify Used to automatically classify documents according to keyword taxonomies
and thesauri.

BibConvert Used to con�gure OAI metadata harvester for eventual periodical batch
upload of data. For example, you can de�ne from where to harvest, with what
periodicity, how to transform data before uploading them into CDS Invenio, etc.
Also, used to de�ne your OAI sets in case you want to export your own data.

BibEdit Used to directly manipulate bibliographic data, edit a single record, do global
replacements, and other cataloguing tasks.

BibFormat Used to specify how the bibliographic data is presented to the end user in
the search interface. You can decide that titles should be presented in bold font,
that for each author an automatic link to author's home page should be created
according to some receipt, etc.

BibHarvest Used to con�gure OAI metadata harvester for eventual periodical batch
upload of data. For example, you can de�ne from where to harvest, with what
periodicity, how to transform data before uploading them into CDS Invenio, etc.
Also, used to de�ne your OAI sets in case you want to export your own data.

BibIndex Used to con�gure "word �les", i.e. to de�ne which bibliographic �elds are
indexed into which word indexes. The word indexes are then used by the search
interface. For example, you can de�ne that the logical author index is constructed
from physical 100 $a and 700 $a bibliographic tags, you can force reindexing of the
fulltext index, etc.

BibMatch Tools for matching XML MARC �les against the repository content. Useful
when importing third-party metadata �les.

BibRank Used to con�gure various ranking methods to be used by the search engine.
You can rebalance existing ranking sets, create new ranking methods, etc.

BibSched Used to inspect bibliographic task queue, to postpone or reschedule jobs, to
make priorities, to run periodical tasks, etc.

BibUpload Used to con�gure eventual local special operations to be done on the data
being uploaded.

ElmSubmit Used to con�gure the submission of documents by electronic mail.

MiscUtil Miscellaneous core libraries useful across di�erent modules .

WebAccess Used to de�ne who has got access or admin rights on various CDS Invenio
modules. For example, you can de�ne that John is the bibliographic data manager,
that Jim can modify the search interface pages, that Jill is the submission approval
editor, etc.

1.2. CDS Invenio 11

WebAlert Used to inspect and manipulate user alerts set up on the system, to run the
alert engine, etc.

WebBasket Used to inspect and manipulate user baskets set up on the system, to make
them public/private, etc.

WebComment Used to manipulate readers comments and reviews, see which ones were
reported as abuse/spam, delete them, etc.

WebHelp Used to handle admin guides and documentations.

WebMessage Used to con�gure the messaging system.

WebSearch Used to con�gure the search interface for various metadata collections. You
can de�ne new collections and organize them in the tree, you can de�ne various
portalboxes that would appear on the screen, you can de�ne search options and
search �elds to present, etc.

WebSession Used to inspect the status of guest sessions and to expire them; the status
and details on registered users, etc.

WebStat Used to con�gure the usage statistics reporting system.

WebStyle Used to customize default CDS Invenio page style and the CSS style sheet.

Webubmit Used to con�gure the submit interface and logic for various document types.
For example, you can de�ne which metadata �elds should be submitted for various
doctypes, what to do with the inputted values before uploading, possible peer review
and approval strategy, etc.

12 Chapter 1. Introduction

Figure 1.8: CDS modules relationship and user interaction.

13

Part II

Authentication and Authorization

issues

15

Chapter 2

Authentication and eGroups

2.1 Introduction

Almost every software built to interact with an arbitrary number of users needs to au-
thenticate them. Authentication is the action through which a user of the software prove
to the system her1 identity.

The classical way to get authenticated is to provide a username associated with a secret
password, known only to the particular user.

An authenticated user, depending on the software, may have more privileges and pos-
sibilities in the system than a guest one. In CDS Invenio, an authenticated user gains
persistant baskets in which she can save a document of interest, can receive email noti�-
cation about new interesting documents, can submit publications and material and can
review others' material. She can send messages to other users, can post comments and
reviews about documents she is interested in and can administrate the system, supposing
she has granted the proper rights,.

An authenticated user may be, in the future, pro�led in order to improve her search
experience, with more suited and personalized results. CDS Invenio may, on the contrary,
improve the relations among documents given the information provided by the user either
passively (through gathering search statistics) or actively (through comments...).

Moreover, a user, both in social real life and in the virtual world provided by community
driven software, can belong to a set of di�erent groups together with other users, based
on some characteristics. Group support is a recent addition to CDS Invenio and is a
feature that is exploited more and more. A group connects users with the same interests
and for this purpose is used, in CDS Invenio, to have common shared baskets, to send
messages to all the people in a group etc.

1For typographical reasons we have decided to use the pronouns she and her when referring to a
generic user.

16 Chapter 2. Authentication and eGroups

It was the subject of the present work to enhance the CDS Invenio authentication frame-
work, especially by better supporting external authentication systems, lightening the job
of writing new code to interface CDS Invenio to them, exploiting potential externally-
provided user details and group memberships.

In this chapter will be presented the initial status of the art and the improvement designed
and implemented by the author about the CDS Invenio authorization system.

In the next chapter will be then demonstrated how this new readily available information
will be used to enhance the CDS Invenio authorization system.

2.2 Initial situation

CDS Invenio has, since longtime, a basic way to support user authentication, called local
account.

A local account is a basic way to associate a user to a nickname, an email and a password
in order to have the user recognized when this is a need.

A user is able to register herself providing something similar to an email, a nickname
and an optional password. The registration process can be tuned in order to give to the
administrator the ability to decide whether users can e�ectively register or whether the
user registration requires explicit approval by the administrator.

In the original implementation, though, the email was not checked for real existence, and
the password was stored in clear text in the database. That means that if the user lost
the password she was able to recover it, by providing her email into a form. The password
was then sent back in a clear text by email.

CDS Invenio provided natively the possibility to authenticate users through an exter-
nal authentication system. The only di�erence from a local account was that the
email/password correspondence was checked by an external entity, relieving CDS Invenio
from locally storing the password.

At CERN, when this project started, the Central Nice Authentication System was pro-
viding password checking by means of a SOAP webservice.

The diagram 2.1 on the facing page explain the initial situation of the CDS Invenio login
system at CERN.

To login into CDS Invenio the user has only to provide her CERN email or nickname and
the so-called NICE password (associated with the CERN email and Windows Systems).
CDS Invenio, then, calls the proper SOAP WebService query providing this information
and obtaining the details of the user when the provided data are correct. Prior to this
project CDS Invenio considered the authentication result as a boolean value, disregarding
all the returned user details. If user details were returned, the user nickname/email was
trusted. After this event nothing was di�erent between a user authenticated through the

2.2. Initial situation 17

NICE/CRA
authentication

Authenticated
user

LOCAL
authentication

Anonymous
user

Local
Groups

Figure 2.1: CDS Invenio authentication system prior of the project start. CERN

Users were able to login either via local account or using their CERN Nice credentials

but no added value was there in either choice.

local system and the user authenticated at CERN. The only advantage to use an external
authentication system was that, since the user was already registered externally, there
was no need to setup �yet another local account� for account service. Moreover the �rst
time a user had used the external login system, her email was automatically imported
and associated with a user identi�cation number.

CDS Invenio could be con�gured to have multiple external authentication systems at the
same time, along side the local one and could also be con�gured to rely only on one
external authentication.

2.2.1 Identifying users

Every user who interact with either the web interface of CDS Invenio or its command
line tools, is identi�ed, at the database level, by a unique incremental integer number,
called user id.

Prior to login, users are considered guest, thus receiving a user id which is assigned to
them as long as their browser session lasts.

After logging in, if locally registered, users have also associated a nickname (which
must be set at registration time and can not be changed anymore), an unique email2,
a �eld to hold the password for the local account if any, and a generic container for
di�erent information called settings. As we will see this will be exploited to improve the
integration between an account in CDS Invenio and the surrounding institution in which
it is installed.

2the email is not checked for existence, right now, but is the author will to add this check in the near
future.

18 Chapter 2. Authentication and eGroups

Special mention is needed instead for users who are automatically registered on the �rst
time they use their external authentication credentials. Their email is infact imported,
while the nickname remains set to a NULL value until they �rst manually set it. After
this operation, there is no di�erence between an externally authenticated user and a local
one.

The user id is linked with many user-centric features, such as groups, comments, reviews,
submission, rights and restrictions, etc.

2.3 Authentication at CERN

As a �rst step to work on the authentication issue the author has studied what was
e�ectively provided by the CERN SOAP authentication webservice (also called NICE
authentication). This webservice is made up by a set of simple functions that o�er
an interface to the central set of information stored at the CERN Human Resources
Department. The functions are:

• CCIDisNice(ccid): Veri�es that the ccid (CERN user identi�cation number) is
associated to a NICE account.

• GetGroupsForUser(UserName): Returns a list containing all the group names the
speci�ed user is member of. UserName is the NICE login nickname or NICE email.

• UserIsMemberOfList(UserName, ListName): Checks if user UserName is member
of the speci�ed mailing-list. Mailing-list are a form of centrally managed group
structure.

• UserIsMemberOfGroup(UserName, GroupName): Checks if user UserName is mem-
ber of the speci�ed NICE Group.

• GetUserInfo(UserName, Password): Authenticates user UserName from login and
password. Login can be NICE email address or NICE login. Return users detail
when user credentials are correct.

• SearchGroups(pattern): Searches for a group, based on given pattern.

• GetUserInfoEx(UserName, Password, GroupName): Authenticates user UserName
from login and password. Login can be NICE email address or NICE login. Return
users detail when user credentials are correct and user is member of GroupName

• ListUsers(DisplayName): Searches users with given DisplayName. This can con-
sist of �rstname plus lastname, or email, and can contain wildcards.

2.4. The improvements 19

To access these functions the system needs to establish a connection with a protected
SOAP webservice provided by the NICE authentication system at CERN3. Since the
service is implemented via the SOAP protocol, queries to the plugin are done through to
http get requests, while answers are provided in XML format.

The �rst draft of the plug-in for exploiting the external authentication provided by CERN
was using just the GetUserInfo() function in a boolean fashion not taking advantage of
all the added value of the returned information and all the knowledge about what CERN
groups (and mailing-lists) the user was member of.

2.4 The improvements

As a second step after the CERN NICE Authentication System as been studied, we have
proceeded to the conception and development of a new Python class wrapping all the
WebService-provided functions to make further usage of all the extensive information
provided by CERN NICE Authentication System.

Two directions have been undertaken in order to let CDS Invenio better cooperate with
the external authentication system. The �rst has been to analyze CDS Invenio in order
to �nd a place to plug the new gathered information in the handiest possible way. On the
other side it emerged the need to rewrite and enhance the CDS Invenio authentication
plugin infrastructure in order to abstract from the CERN NICE authentication system
and gather similar information from other external authentication system.

2.4.1 How to handle external user details

Since the CERN SOAP webservice provides a function (GetUserInfo()) that, not only
authenticates the user, but also gathers administrative data about a user (her telephone,
home institution, building, department...), it would have been nice to import these in-
formation into CDS Invenio for future usage, and to allow other plugins developed for
other institutions and technologies to import similar data. In CDS Invenio a very handy
�eld in the users table represents all the settings of an authenticated user in the form
of a serialized Python dictionary. The idea had been to add all the user info's provided
by CERN NICE Authentication System to this dictionary as a set of readonly external
settings.

New functions have been added by the author to the WebSession module of CDS Invenio
to add, delete, merge and modify external user details.

Moreover, the author added to the plug-in interface (which is described in Section 2.4.3 on
page 21 the method fetch_user_preferences(). If a plug-in implement this (optional)

3The NICE service is one of the authentication provider. As we will see in a section 2.8 on page 30, the
ultimate dream at CERN about authentication is to have only a single source for all the authentication
based on the Single Sign-On technology.

20 Chapter 2. Authentication and eGroups

method, the list of details provided is merged at login time with local information and
settings about the user. An algorithm was written in order to handle those external
details in the form of a dictionary4. Those data are stored in the central database of CDS
Invenio for whatever usage5.

2.4.2 How to handle external user group memberships

CERN NICE Authentication System provides the concept of groups. Every CERN user,
once registered at the CERN Human Resources database, belong to a set of groups,
based on her age, nationality, language, experiments, computing authorizations, job level,
building o�ce, etc. The a�liation to these groups is centrally managed with care, and
would have been a great enhancement to exploit this knowledge within CDS Invenio.

In CDS Invenio the support for local groups was already there. Users were able to create
new groups based on some interests, and to decide the policy for new memberships to
already existing groups.

The author introduced, then, into CDS Invenio the concept of external group. A new
policy was added to distinguish external groups from local ones. An external group can
not be created, or deleted, and users can not subscribe or get unsubscribed through CDS
Invenio. Instead, groups are automatically and gradually imported into the system, as
soon as a user, logging in with an external account, is member of them. Thus external
groups are mirrored into CDS Invenio in a lazy fashion.

If the external account plug-in exports the fetch_user_groups_membership() method
(see Section 2.4.3 on the facing page), a very fast algorithm performs the following actions:

• For every group that is not already added to the system, it is added alongside its
description;

• The system retrieves from the database the list of group members;

• The system also adds any new external members to local copy;

• The system removes any members no more reported by the plug-in.

In this way, CDS Invenio builds, as soon as users log in, a precise idea of the groups the
users are members, or those that not, and which groups exist. The only shortcome of this
procedure is that if the user changes its external group membership at some point in time,
the system does not realize the change until she next logs in. This should not be a very
important issue for the group membership practices and the security level requirements
of CDS Invenio.

4A Pythonic structure made by unique keys and corresponding values.
5We will see particular usage scenarios in detail in the chapter 3 on page 35

2.4. The improvements 21

If, anyway, administrators decide that they need an instantly accurate representation
of what is happening outside Invenio with respect to group membership, then, if their
external authentication system permits such a query, as will be listed in Section 2.4.3, they
should implement into the plug-in the method fetch_all_users_groups_membership().
Such method should return all the existent groups, with all the emails of the user members
of these groups. If such a method is implemented, a corresponding algorithm in CDS
Invenio makes use of it. Given the returned map, it applies new memberships to all
existent users, and remove obsoleted membership. At the moment of this writing, this
algorithm is not yet callable by administrators of Invenio, but it can be easily added if
need be.

The algorithm

The algorithm iterates over all the external plugins and for each plugin looks for an
implementation of the method fetch_all_users_groups_membership() (described in
Section 2.4.3). If such a method exists, it is called, obtaining a mapping between all
existing external groups and all the emails of external users belonging to each group.
The algorithm retrieves the set of all the emails registered in CDS Invenio. This set is
compared to the set of emails linked with each group. If the intersection between the
two sets is empty, the linked group is removed from the list of groups to be synchronized.
Having stripped the list of empty groups and non existing users from the whole list of
groups, this set is checked against the set of groups already existing in the system. All
the new groups are directly added with their membership information, all the no-more
existing groups are directly removed with all their membership information. All the
remaining groups are then checked for changes: for each group, all new users are added,
all disappeared users are removed. At the end, a check for group description change is
performed.

2.4.3 The new authentication plugin infrastructure

In order to integrate external user details and group, it has been the subject of the present
work to rewrite the authentication plugin infrastructure of CDS Invenio.

Starting from a draft plugin to fully support the CERN NICE Authentication System,
the plugin has been generalized and abstracted to make an abstract class which expose
the following API:

• __init__(self): a constructor

• auth_user(self, username, password, req=None): a method to authenticate
users, which return a boolean value, with true meaning user has been successfully
authenticated.

22 Chapter 2. Authentication and eGroups

• user_exists(self, email, req=None): a method to check if a given email exists
in the external system. This is an optional method. When the method exists CDS
Invenio allows users who are registered with some authentication system to switch
to this particular system.

• fetch_user_groups_membership(self, username, password, req=None): should
return a dictionary of groups and their descriptions, to which the user is externally
subscribed. When such a method exists in the plug-in, CDS Invenio will be auto-
matically able to import external group membership. Otherwise, no e�ort will be
made in this respect.

• fetch_user_nickname(self, username, password, req=None): to retrieve the
nickname linked with a user (supposing the email was used for authenticating the
user and supposing that the external authentication system holds the nickname
information, too).

• fetch_user_preferences(self, username, password=None, req=None): should
returns a dictionary of keys, and their value, with freeform information about the
user. This, as we will see, will be useful for giving rights and restriction on user,
with a �ne-grain con�guration.

• fetch_all_users_groups_membership(self, req=None): if building such an al-
gorithm is possible with the given external authentication system, then this method
will be used in order to batch-resynchronize the groups memberships, in a fast-paced
way.

The implemented interface is as much backwards-compatible as possible to allow for
other CDS Invenio client installations to happily upgrade their code adding new features
smoothly.

2.4.4 Results

Importing user details and user settings

The most visible characteristic of the new Import User Details feature is a new panel in
the CDS Invenio account page of a user authenticated by an external plug-in, as can be
seen from Figure 2.2 on the next page.

Administrative details are visible only to the account owner.

As a proof of concept of the usage pattern of the user settings attribute, three new local
settings were added by the author to test the storage of personal local settings alongside
the external ones as can be seen in the screenshot in Figure 2.3 on the facing page.

These settings were the �rst personal settings stored into CDS Invenio to let the user
customize the system. More are to come in the near feature, that will take part in a

2.4. The improvements 23

Figure 2.2: A screenshot of the author's (CERN) External Settings imported into

CDS Invenio.

Figure 2.3: The author's current con�gure CDS Invenio settings.

complete user setting pro�le. Some already proposed settings are the interface language,
the default ranking algorithm, the default search interface (either simple or advanced),
and so on.

2.4.5 Importing external groups

As a result of the work on external group importing, external groups can now be used in
every context where local groups were already used before:

• They can be enumerated and checked in the group page of CDS Invenio (see Fig-
ure 2.4 on the next page);

• They can be used to share CDS Invenio baskets6 (see Figure 2.5 on page 25);

• They can be the receiver of CDS Invenio web messages (see Figure 2.6 on page 26)

6A metaphor representing a set of records documents that can be shared within multiple groups.

24 Chapter 2. Authentication and eGroups

Figure 2.4: CERN groups the author is member of can be seen in the External

Groups panel of CDS Invenio.

2.5 Testing

CDS Invenio comes with a huge testsuite that tests the whole set of its modules. A
unit test for testing the CERN SOAP WebService has been implemented that helped in
spotting many hidden bugs and is currently included in the CDS Invenio testsuite.

2.5.1 Issues

How to identify a user. Because of technical decisions and historical reasons, a user
is univocally identi�ed either by an integer, a nickname or an email. All the three data
are used within CDS Invenio. Nickname exists in order to protect the privacy of a user
whenever she wants to send a message, to sign a review or a comment or to be member
of a group. Email should, in theory, allow for the veri�cation of real existence of the user,
i.e. to check if the user exists (and is not faked by a robot) by sending some cookie to
her email address requiring to provide it back in order to activate the account, as is used
by majority of mailing list servers. This feature does not exist yet in CDS Invenio but
will be implemented in the near future. Additionally, emails are used to contact the user,
either directly or by the automated feature of the system. Integers, as we can imagine,
are internal identi�cation very useful within database queries and algorithms.

Having three ways to identify a user can be problematic, especially when it comes with
having more than one authentication system enabled.

A dual login system. Let's imagine a dual login system (internal and external). A user
can be added to the database in two completely di�erent ways. Either by registering a

2.5. Testing 25

Figure 2.5: This screenshot shows how CERN/External groups can be used directly

to share baskets.

local account7 or by using the external account system (Like in picture 2.7 on page 27).

Local login. If the user decide for a local account, she will be asked for her bare data,
an email and a nickname. An integer ID will be automatically assigned (in fact the user
will never see this integer ID). Because of identity preservation reasons (e.g. signed users
comments and reviews) the nickname is not changeable after con�rming the registration.
In fact the nicknames are used for all the signature and it would be a great issue for past
comments, reviews and webmessage if the signature changes. As stated before, the email
is not yet checked for real existence.

External login. The user can, otherwise, login using her external account data, provid-
ing credentials that are recognized by the external account as a username (either a real
nickname or an email) and a password. If the external account system authenticates the
user (that means it is able to return an email related to the user) the user is entered into
the database, receiving automatically an integer, which will be the same for every future
login. What happens for the nickname? If the external authentication system assigns to
the user a value that can be considered a nickname and this value is retrieved by CDS

7Based on the system policy, the administrator could decide to have to explicitly approve the user
registration request or to manually register each user. For the purpose of this use-case we can just
consider the �rst policy of free registration.

26 Chapter 2. Authentication and eGroups

Figure 2.6: This screenshot shows how CERN/External groups can be the receiver

of web messages.

Invenio, then, according to a plug-in-level �ag the external nickname can be imported
directly as all the other registration data. Otherwise it will be assigned a null value and
after the �rst login the user will manually choose a nickname that will remain for the
future. A random local password is assigned at registration time for the login method
switch possibility discussed in Paragraph 2.5.1 on the next page.

From external to local. At login time the user can choose from a drop down menu
what login system she wants to use. This choice could be di�erent from the authentication
system used at the registration time. If she has registered externally we have decided, as
a matter of security, to not let the user login locally unless she have previously voluntarily
switched manually her login method after being logged in externally.

From local to external. On the contrary, since we trust the external authentication
system and since it is usually richer in the information it can provide about the user,
we let the user who was registered locally to choose the external login method at login
time, provided she has used an email recognized by the external method when she have
registered and that she �lls the internal password in place of the external one. Note that
if the user is recognized externally by a di�erent email address than the used locally, then
when she will use that email it will create a new independent account.

2.6. Improvements to local password management 27

Figure 2.7: A snapshot of the current dual login at CERN. The selection provides

�CERN� and �Local� login methods.

Stealing emails. At the moment, a malicious user can register locally using a valid
external email which is owned by somebody else who is not yet registered. The proper
owner will not be able then to register locally since her email is already used. Any-
way, since she knows the external password she can login externally without problems,
then switch to local account, and reset the password. Anyway the problem of stealing
emails will be soon addressed implementing the cookie for certifying emails during local
registration process.

Switching login methods. The author had to address the issue of switching from local
to external method and back after the login, too. Imagine a user who has registered
locally with some general email address who want to switch to external. This was always
possible with the initial implementation. But what if the user have used an email which
is not recognized by the external system? If the user leaved her settings in this situation,
she would never be able to login since she is not allowed to choose local method at login
time, once she set external method in the con�guration. It is therefore reasonable to
limit the login method switch. This action would be allowed only if the external authen-
tication plug-in provides a method that answers if the email is a valid and externally
registered one. Only in this very case the user is allowed to make the switch by means of
a drop down menu in his account preferences panel). If the user provides correct external
authentication credentials, she should never be locked out the system.

2.6 Improvements to local password management

The original implementation of the con�guration panel for setting the local password was,
according to the author, was in need of restyling. In fact it had the following issues:

28 Chapter 2. Authentication and eGroups

• local password was changeable even when the current login method was set to
external;

• there was no easy means to avoid a random malicious guy passing by an abandoned
logged in terminal to change the user password;

The �rst issues were easily addressable since they were simple bugs rather than archi-
tecture design �aw. To solve the third issue the author decided to stick with the usual
tradition of requiring the old password to be entered in ordered to change it to a new
one. In Figure 2.9 on page 30 you can see how the reset password dialog appears now.

Figure 2.8: The new password reset panel.

2.7 Local passwords encryption

The initial implementation of local accounting stored users' passwords in clear text inside
a �eld in the user database table. That was a security issue because administrator or
whoever have access to the database would have been able to steal all of them. The
system warned the user to not use valuable passwords8, but people are lazy and tend to
use the same valuable passwords everywere.

The author decided to encrypt local passwords via theAES encryption (see [DR02]) of the
user's email address via the user's password. In this way, there is no advantage in being
able to decrypt the password �eld in the database (the content would be obvious), and
if two users, by chance, have chosen the same password, then they would be obfuscated
by the fact they had been applied to two surely di�erent (by de�nition) emails address
(something similar to what happens in salted encryption in Unix systems, see [FK89]).

8Passwords are not even required to register a local account on CDS Invenio because historically the
personal accounts were used only for non-sensitive exchange of information. However this has become a
real problem with a recent growth of community features as reviewing and comments.

2.7. Local passwords encryption 29

2.7.1 Password resetting

Applying encryption an decryption of passwords to every place inside CDS Invenio code
was not the only change required to correctly implement password encryption. The fact
that originally local passwords were stored in cleared form was taken as an assumption
in di�erent use-case of CDS Invenio.

Since users may forget passwords, there must be a way to not render them unable to use
the system. Either the system must give the user a way to retrieve the lost password or
to reset it. Since the system originally stored passwords in clear format, there were no
practical issues in providing the password back to the user, for example via email (the
user is required to enter a valid email address of which she is the owner). Since now
passwords are one-way encrypted and the system can only check whether a given string
is the requested password without being able to explicitly decrypt it back, then a new
solution had to be found. The solution was to send a cookie to the email address of the
user which corresponds to a web URL to the system. If the user follow that URL she can
reset her password by providing a new one. The cookie mechanism is described in detail
in the next section.

2.7.2 Mail cookies

For the purpose of sending a cookie via email the author added a new generic library to
CDS Invenio which is accounted for in Appendix A on page 67. He also refactored at
the same time the email sending code within the system. As time passed, in fact, two
implementations of code to send automated emails were developed within the system.
They all addressed the same goal to send email providing a simple API.

Given the new tool of mail cookies and the new cleaned code for sending automated
emails the author adapted an already existing web interface to retrieve lost password and
used it to instead reset it. The new procedure, as depicted in Figure 2.9 on the following
page consist of the following steps:

1. the user clicks on the reset password link and provides her email;

2. a request for resetting the local password for account linked with the given email
address is created in the system;

3. a cookie URL is sent via email to the provided email address;

4. the user follows before a given expiration time the received cookie;

5. if the cookie is considered valid by the system, a form to set a new password is
provided;

6. the user sets the new password.

30 Chapter 2. Authentication and eGroups:User :System1:Followslostpasswordurl2:Providesinsertemailform
6:Validatescookieanddisplayspasswordresetform7:Newpassword
3:Providesemail4:Sendsbackcookie5:FollowsURLcookie

Figure 2.9: The sequence diagram of resetting a lost local password

The cookie is given a certain expiration-time so that a fund is avoided. Moreover, the
cookie values are encrypted using database only information in order to prevent cookie
stealing.

2.7.3 Administrative tasks

One of CDS Invenio goals is to be administered remotely through a web interface. Among
the di�erent administrator's activities is to �x troubles within users owned objects, such
as web-messages and web-baskets. The current implementation relayed on having clear
text local password. If the administrator has to �x somebody's object, once she has chosen
an account the system presented the administrator an already �lled login dialog with the
user's nickname and password, so that by clicking on the login button the administrator
can login as the desired user.

This behaviour is no more possible once passwords are one-way encrypted. A solution is
being worked on.

2.8 SSO

While the author was working on implementing the above-mentioned plug-in structure
for authentication, a new direction has been taken at CERN about authentication. Since
CERN is a huge institution with many di�erent services o�ered via web, as years passed
every service has implemented its own kind of authentication. Some services are based on
the central authentication source of information. Others have implemented proprietary
authentication system with new account and passwords.

2.8. SSO 31

Many passwords to remember and di�erent security policies have become an issue that
can distract scientists in their relationships with web based services. The solution have
emerged in a recent technology called �Single Sign On� (SSO).

The SSO framework consists of a set of software and protocols that centralize the handling
of accounts among di�erent webservices (and, in general, computer based services).

There exists di�erent implementations and �avours. At CERN has been chosen an im-
plementation that works across di�erent operating systems, since both GNU/Linux and
Microsoft Windows system are used, was chosen.

The Unix client part is implemented by the Shibboleth software, while Microsoft
ADFS has been chosen for Windows architecture. Shibboleth is a daemon that must
run on the system. There exists an Apache module that wraps it.

To integrate CDS Invenio with the new SSO technology, the author had to work on
the system level con�guration, by setting up the daemon, and a proper con�guration of
Apache, and then made Invenio application aware of Shibboleth.

2.8.1 A brief overview on how Shibboleth works

An Apache server, in general, answers every URL request by building a web page. An
URL may not always correspond to a concrete �le in the server �lesystem. Shibboleth is
hooked to a given particular URL. If a user of the server is induced to follow this URL (by
means of a login link), the server behaviour is ruled by Shibboleth (see [EC02]). If this
is the �rst time that the user logs into the SSO architecture, her browser is redirected to
the central authentication server, which authenticate her provided correct authentication
credentials (either in the form of a nickname/email and password or a browser encrypted
certi�cate). The user is then redirected to a page inside the client application. The
system now knows that the user has been authenticated, and who the user is, by a set of
environment variables that are set, for our special case, inside the Apache system.

At CERN the variables set by SSO contain roughly the same set of information as that
provided by the SOAP webservice discussed in the section 2.3 on page 18.

From the point of view of CDS Invenio authentication, user credentials can not be queried
actively by some Python code. Data are instead found passively inside pre�lled environ-
ment variable9. This is a very di�erent approach from that expected by the plug-in
infrastructure developed so far. Anyway, data provided by the SSO system at CERN
were almost the same as those coming from the SOAP webservice. The author decided
to integrate SSO into CDS Invenio via a fake plug-in which exported the same API return-
ing the correct data, that are retrieved in an ad-hoc fashion, from the above environment
variables. Since logging in and logging out of CDS Invenio have di�erent meanings and

9Every rendered web page stems from a new Python process, which imply the possibility to gather
new environment variable from the containing system.

32 Chapter 2. Authentication and eGroups

Figure 2.10: This graph show a possible SSO data �ow. There a three web services

(AIS, CRA and CDS are examples of existing CERN web services) which export

authentication by means of the Shibboleth architecture. The authentication is cen-

tralized. If a user, who has never login through SSO in the current session, wants

to login to CDS (1), her request is forwarded to the central Authentication Service

(2), which in turn asks the user her credentials (3); once they are provided (4) they

are forwarded to the initial web server (5), which �nally authenticate the user (6).

behaviours when using SSO, the author had to add a special �ag to switch the system
from/into an SSO aware behaviour.

The SSO-based authentication plugin was fully developed and successfully tested and is
ready for deployment.

2.8. SSO 33

Figure 2.11: This graph show a possible new SSO data �ow. Given the authenticated

user of Figure 2.11 wants now to authenticate to another web service, say CRA (1),

will have her request forwarded to the central Authentication Service (2); since now

the user is known to own valid credentials which are stored in the current user

session, the service directly authenticate the user, forwarding again her credential

to the web server (3), which in the end authenticate the user (4).

35

Chapter 3

Firewall-like role de�nition for the

access control module

3.1 Introduction

As a natural consequence of working on authentication the author then concentrated
his e�orts on authorization issues. Having integrated external groups into the user's
information of which the system is now aware, it emerged a possibility to extend existing
authorization system to exploit groups and later external user settings such as email, IP
address, o�ce building and so on.

CDS Invenio employs a common RBAC1 system (see [FKC03]). This means that users
can execute actions in the system based on their membership to proper roles which are
explicitly linked by means of authorizations to actions at administration level. Actions
in CDS Invenio have a �ne-grained control by having parameters. These parameters are
�lled at authorization time by values taken from real-time situations, in authorization
requests.

An example is submitting a paper for a given category, e.g. Computer Science Preprints.
An action could be set as �submit�, with a parameter called �category� to which at
authorization check time is given the value �Computer Science Preprints�, and this action
could be linked to role �Submitters of Computer Science Preprints�. When a user is a
member of such a role, she can reach the proper submitting place, following the right
links, to submit a paper for this exact category.

Although this architecture may seem very adaptable, it has anyway some scalability issue.
In particular to give authorization to users they must be explicitly linked to proper roles
one by one.

The author worked on solving this issue by extending the RBAC architecture of CDS
Invenio by a notion of grouped-users in a �rewall-like setup.

1Role Based Access Control.

36 Chapter 3. Firewall-like role de�nition for the access control module

3.2 The idea

Even though the majority of scienti�c documents is public, the CERN Document Server
hosts various restricted documents as drafts that has to be approved or rejected, docu-
ments private to some department, etc.

It was therefore necessary to conditionally restrict records and fulltext document for
certain categories of users.

Before the project started the only provided way to restrict records viewing, was by means
of Apache passwords checks and Apache groups memberships. In order to restrict collec-
tions of records, they were connected to an Apache groups by the administrator, then the
administrator had to manually each user to proper group. Although this method ful�lled
the exact need to restrict records, it was completely orthogonal to broad architecture
of authentication and to the RBAC system. This method which could not exploit the
features given by having groups (both local and external) nor the already existing RBAC
framework.

Therefore, as a side issue of the work about fulltext migration about which the author
will account in chapter 4, a natural consequence on the work done on integrating external
groups knowledge, he started another work on a way to integrate this knowledge in order
to restrict records and documents viewing based on users' memberships to local and
external groups.

The �rst idea has been to create a small language de�ning which users are allowed to
see which collections and to plug this language in place of Apache users password and
group checks. It appeared that this was the exact meaning of a role within the RBAC
framework, with an action representing an act of viewing a collection, and a parameter
representing the given collection being viewed.

3.3 The access control RBAC core work�ow

As described in chapter 2, section 2.2.1 on page 17, every user is identi�ed within the
system by a unique integer, user id. This happens for guest users, too. Whenever
the user in her activities reaches a part of the system which is RBAC enabled, a call
to the function acc_authorize_action() within the access_control_engine module
of WebAccess is called, with the given user id and the proper action and parameters
related to what the user is currently asking to do. This function is the core of the run-
time implementation of the RBAC system. Roughly speaking, it checks which roles the
user belongs to, and then checks if the action requested (with the given parameters) is
allowed to be executed by at least one of these roles, as depicted in Figure 3.1 on the
next page.

3.4. Proposed extension 37

acc_authorize_action()

User Current
Action

Current
Arguments

Roles

Actions

Arguments

Authorizations

AuthorizedNot Authorized

Runtime information

Stored information

Authorization result

Users

Figure 3.1: Flow of data within acc_authorize_action()

3.4 Proposed extension

From Figure 3.1 it can be seen that users are directly connected to roles. This means that
an administrator has to manually add them one by one to corresponding roles, using the
web administrative interface. But roles often represents sets of people with something
in common, especially in the example given previously, of viewing a particular collection
of documents. If it is possible to extract what the users who belong to a particular role
have in common, given an enhanced description of those users (i.e. something more than
an integer), then the administrator should be able to exploit this information implicitly
to say who can belong to which role.

The extension of the current RBAC system in CDS Invenio, on which the author worked
on, has been to add, alongside an explicit linkage between users and roles, and implicit
one by means of a new simple language that has been developed and plugged into roles de-
scriptions. This language allows the administrator to write an equivalent in mathematics
of a membership function for a role.

A new language called FireRole (from the contraction of Firewall-Like Role De�nition)
has been designed which implements boolean functions with parameters ranging over
various information on the users.

Given the FireRole language, roles are extended with optional de�nitions which state
implicitly what users are linked to the de�ned role. The traditional way of explicitly
linking users to roles via user ids takes precedence over the FireRole de�nition.

User information consists of any information which the system is able to gather about
the user, e.g. her name, nickname, real name, email address, department, IP address,

38 Chapter 3. Firewall-like role de�nition for the access control module

browser con�guration, internal/external group memberships, etc.

As an example, at CERN, physicists belong to various experiment to which related ex-
ternal groups are assigned. Given an experiment, there could be a collection of private
documents and internal notes related to this experiment, which only entitled members
are allowed to browse. Given the FireRole language, the administrator can now write
down a simple expression to encompass the experiment community in one go. Connecting
the de�ned role with a �view collection� action, everything is done, and no explicit user
linking is required.

3.5 Users' details

The FireRole language deals with users details. A user details is a piece of information
connected to the user. The set of details makes up a Python dictionary of information
that is an abstract data structure constituted by keys which identify values.

The list of user details in a generic installation of CDS Invenio, depends on various factors
that can be run-time or con�guration related. Some of the possible existing details are:

uid is the integer representing univocally a user. This value exists for the whole browsing
session if the user is not logged in (i.e. is a guest), or for the whole life of the user's
account, if she is registered.

nickname is the nickname the user have chosen to univocally identify him/herself. It
does not exist if the user is guest.

email is the email the user have provided.

guest evaluates to 1 if the user has not logged in, 0 otherwise;

group is a Pythonic list of strings; each string represent a group name to which the user
belongs. Note that external imported groups are also listed here, if an external
authentication plug-in is used and if it supports external groups.

remote_host is the URL (or IP address if a URL does not exist) of the user's computer
from which she is browsing. If the user is using command line tools of CDS Invenio
this detail does not exist.

remote_ip is the IP address of the user's computer from which she is browsing. If the
user is using command line tools of CDS Invenio this detail does not exist.

referer is the URL of the web page from where the user came to the page that is being
created. This detail exists only when using the web interface of CDS Invenio.

uri is the URL of the page that is being created. This detail exists only when using the
web interface of CDS Invenio.

3.6. The FireRole language 39

agent is the user agent string of the browser used by the user. This detail exists only
when using the web interface of CDS Invenio and depends on the user's browser
con�guration.

apache_user is supported for backward-compatibility reasons. The previous authenti-
cation method used solely for viewing restricted collections and based on Apache
authentication has, infact, been ported into the FireRole structure, allowing for a
soft migration to the new authentication techniques, while at the same time giving
more power to the Apache authentication since it can be used everywhere RBAC
is applied.

apache_group is a Pythonic list of string representing Apache groups the user belong
to, with the same meaning of group.

External user setting. If an external authentication plug-in that let import external
user's information is used, then, if the user log into the system using such a plug-in, all
his information are imported too and can be used within FireRole. At CERN, currently
does information are:

• full name

• last name

• �rst name

• department

• company

• o�ce building

• telephone number

• login name

• CERN Computer Center identi�cation number

These key are imported alongside the previously listed set of user details.

3.6 The FireRole language

Since the language to plug a membership functions into roles is a kind of �lter with a two
exit partitioning output, we decided to take inspiration from languages used in network
�rewalls and Apache con�guration rights.

In �gure 3.2 on the next page can be seen an example of FireRole de�nition.

40 Chapter 3. Firewall-like role de�nition for the access control module

ALLOW group "lhcb-members@cern","Users PH-DT2"

ALLOW remote_ip "128.141.0.0/16"

Figure 3.2: An example of FireRole de�nition, for de�ning a possible LHCb experi-

ment only role. The �rst row matches all the users that are members at least of the

lhcb-members mailing list or of the Users PH-DT2 group. The second row matches

users who are browsing within the CERN network.

3.6.1 Syntax

The syntax is very simple, as you can see from the draft in Figure 3.3. An expression
is a list of rows. Every row starts with either the reserved word ALLOW or DENY followed
by either the word ANY or ALL, or the name of a user detail, optionally preceded by the
reserved word NOT, followed by a comma-separated list of patterns. Each pattern could
be, in turn, a single or double-quoted free form string or a slash-quoted Python-recognized
regular expression (see [Fri02]).

expression ::= row(\n row)*

row ::= ("deny"|"allow")

("any"|"all"|["not"] feature patterns)

feature ::= (letter|_)(letter|digit|_)*

patterns ::= pattern(,pattern)*

pattern ::= freestring | regexp

letter ::= lowercase|uppercase

freestring :== ".*" | '.*'

regexp :== /.*/

lowercase ::= a...z

uppercase ::= A...Z

digit ::= 0...9

Figure 3.3: A draft for the FireRole grammar

Note that all the reserved words and symbols are case-insensitive and that anything that
follow a hash mark sign (�#�) and is outside of a quoted string is considered a comment.

3.6.2 Semantic

Given a user with her details, each expression has the following meaning: the whole
expression evaluates as the �rst row which match the user. This in turn evaluates true
if the row starts with ALLOW and false if the row starts with DENY. A row match a user
if one of the following is true:

3.7. Data �ows 41

• after ALLOW/DENY there is the reserved name ANY or ALL (both have the same mean-
ing and exist to comply to English language, e.g. usually you would say �DENY ALL�
and �ALLOW ANY�, but the system understands �DENY ANY� or �ALLOW ALL� in the
same way);

• the reserved word NOT has not been used and at least one pattern matches the
corresponding user feature;

• the reserved word NOT has been used and no patterns match the corresponding user
feature.

If the required user detail is not known by the system the row is skipped. At the end of
the list of rows there is an implicit row with value �DENY ALL�, which means that a user
must be matched positively at least once to be assigned to a role.

Among all the user details listed above there are some special case that worth mentioning
when dealing with the FireRole language:

• From the point of view of FireRole, apache_group and group behave in the
same way. Since usually a user is part of more than one group, the administrator
which creates a FireRole de�nition using (apache) groups can name the feature in
plural form. This syntax is recognized and does not change any semantic. Since
we required that, if the row is not using the �not� keyword, then the row matches
whenever at least one of the listed patterns matches the feature. For groups, this
must be extended to require that at least one pattern match at least one group.
Similarly, if the row is using the �not� keyword, then it matches the user only if
none of the patterns match none of the groups.

• The feature �remote_ip� has a third implicit way in which it could be matched.
Alongside literal string and regular expression, there is the possibility to network
mask expression (see [MR91]). A rule can be speci�ed as in e.g.:

ALLOW remote_ip "192.168.0.0/16"

3.7 Data �ows

Firewall-like role de�nitions, from the point of view of the administrator, are linked to
a role. This de�nition can be entered through the administrative web interface of CDS
Invenio as in Figure 3.4 on the next page.

Once the administrator has decided the correct de�nition, it is compiled into a performance-
oriented format2.

2I.e. a compressed serialized Python structure.

42 Chapter 3. Firewall-like role de�nition for the access control module

Figure 3.4: Administrator interface to modify a role's name, description and its

de�nition

From the run-time point of view, the previously described RBAC core function acc_authorize_action()
has been extended in order to handle a set of user detail in addition to a traditional user in-
teger identi�er. In every place of CDS Invenio where a traditional call to acc_authorize_action()
was used (i.e. where the code is RBAC aware), the developer must provide the result of
the call to a new function: collect_user_info(). This is a function that do its best to
gather as much information as possible about the user, with the limitations enumerated
in section 3.5, and that produces a dictionary of user details.

The improved acc_authorize_action(), given the user's features, the required action
and its parameters, �rst calls the traditional algorithm relaying on the user's integer
identi�er. If this authorizes the user then the whole call authorizes the user, otherwise the
algorithm iterates over all the roles linked with the action and its parameters, retrieving
the FireRole de�nitions of each role, if it exists, and passing the user dictionary alongside
the de�nition to a new core function called acc_firerole_check_user(), which in turn
states if the user is matched by the de�nition. If at least one role, among those which have
authorization to execute the requested action with the given parameters, has a de�nition
which matches the user's features, then the user is authorized to perform the action.

3.8 Tricks to improve performances

A set of di�erent tricks has been employed by the author to achieve good performance of
the FireRole system:

1. The FireRole de�nition is compiled in an optimized format. Once a FireRole de�ni-
tion has been compiled there is no more need to modify it, so tuples, which are the

3.8. Tricks to improve performances 43

fastest data-structure usable in Python to store sequence of data, and are read-only,
can be used without problems to represent FireRole symbols.

2. All the keywords are stored as booleans in the proper position of tuples.

3. Every feature string is stripped and lowercased at compile time.

4. All regular expressions are precompiled and the corresponding Python objects are
serialized.

5. The same happens for all the IP masks.

6. A boolean is stored at the beginning of the structure to indicate whether the de�-
nition contains Apache passwords/groups. This is needed because to gather infor-
mation about Apache passwords the server must actively send a request to the user
browser, just before the web page building, and this must be done only for users
who are going to actually use Apache passwords.

7. Usually, most of the SQL queries that make up the algorithm for checking authoriza-
tion have static results that change only when the administrator changes FireRole
de�nitions. That means that those queries can be cached independently of the user
being authorized. This will explained in more details in the next section.

3.8.1 Caching tools

In general, the CDS Invenio codebase tries to cache as much data as possible for the most
part of data categories in order to deliver good performance.

The author worked on a small library for CDS Invenio to replace currently existing caching
methods by a generic one. A technique of memoization was used.

Memoization and run_sql_cached()

Memoization is a technique to improve performance of repetitively used function by stor-
ing (with some criteria) function parameters alongside computed corresponding result.
On the second call to the memoized-function with the same parameters, the stored pre-
computed result is returned without having to repeat the expensive calculations. The
author took inspiration from the Python recipe found in [MA02].

CDS Invenio has at its core a relational database for storing all the information. Inter-
acting with it is often at the core of Invenio algorithms. To simplify writing code, one
function has been developed � run_sql() � which accepts an SQL query and correctly
applies its parameters as in the example in Figure 3.5 on the following page.

If the queries rarely returns di�erent results over time, the memoization technique could
be applied successfully. The author wrote a wrapper function called run_sql_cached(),

44 Chapter 3. Firewall-like role de�nition for the access control module

>>> run_sql('SELECT name FROM user WHERE email=%s',

... ('Samuele.Kaplun@cern.ch',))

(('kaplun',),)

Figure 3.5: run_sql() usage to query for the name of a user given his email.

that checks, given a cached query result, whether tables referenced by the query have
not changed since the result have been cached (by saving last modi�cation time of tables
alongside queries and results) and directly returns the cached data. The new function
call is similar to Figure 3.6.

>>> run_sql_cached('SELECT name FROM user

... WHERE email=%s',

... ('Samuele.Kaplun@cern.ch',),

... affected_tables=('user',))

(('kaplun',),)

Figure 3.6: run_sql_cached() usage to query for the name of a user given his email.

To �gure out whether to return a cached result or to compute a new one, the last result
computation time is saved alongside the result, and it is compared with the last updated
time of the involved SQL tables. If the table update times more recent, a new value is
computed, otherwise the cached result is returned.

A maximum value of cached queries is con�gurable. Once this value is reached, the whole
cache is erased. This appeared to be faster than to selectively remove expired results or
to look for oldest queries.

3.9 Tests

Real-life tests of the conceived system have been performed. CDS Invenio is used, among
other installations, at the Ecole Polytechnique Fédérale de Lausanne (EPFL). There are
about 200 laboratories and for each one there is a collection of restricted documents
administered only by the corresponding laboratory. EPFL has developed an external
authentication plug-in that exploit the institutional central LDAP authentication service.
This plug-in imports external groups, too. Every member of a laboratory is part of the
corresponding laboratory group. Through scripting3, 200 roles have been created with a

3A new administrative feature has been developed by a colleague of the author, to import and export
in a batch fashion, all the RBAC con�guration, including FireRole de�nitions, in the form of XML
con�guration �les.

3.10. Code Testing 45

FireRole de�nition similar to:

ALLOW group "Laboratory xxx"

The system reacts to authorization request in practically no human-noticeable time.
Moreover the FireRole language simpli�ed very considerably the maintenance of autho-
rizations at EPFL.

The system might not scale well if lots of roles are authorized with the same association
of action and parameters, and if the roles have very complex de�nition. But this is a very
rare situation.

3.10 Code Testing

As mentioned, FireRole has been tested in a real environment at the EPFL CDS Invenio
installation. Moreover the CDS Invenio testsuite as being integrated with FireRole unit-
tests with the following current results:

firerole - compiling allow any role definitions ... ok

firerole - compiling complex role definitions ... ok

firerole - compiling deny any role definitions ... ok

firerole - compiling empty role definitions ... ok

firerole - compiling group field role definitions ... ok

firerole - compiling literal field role definitions ... ok

firerole - compiling literal list role definitions ... ok

firerole - compiling more rows role definitions ... ok

firerole - compiling not role definitions ... ok

firerole - compiling regexp field role definitions ... ok

firerole - compiling wrong role definitions ... ok

firerole - deserializing ... ok

firerole - firerole core testing empty matching ... ok

firerole - firerole core testing ip mask matching ... ok

firerole - firerole core testing literal email matching ... ok

firerole - firerole core testing literal group matching ... ok

firerole - firerole core testing non existant group matching ... ok

firerole - firerole core testing regexp email matching ... ok

--

Ran 18 tests in 0.006s

OK

The language has been tested in its features and the emerged bugs had been �xed.

3.11 Temporary Roles

A second extension to the CDS Invenio RBAC architecture as been developed by the
author.

46 Chapter 3. Firewall-like role de�nition for the access control module

The extensions exploit the new mail cookies technique (see appendix A on page 67 which
has been developed to aid the user resetting the passwords, alongside the new encryption
of local password (see chapter 2, section 2.7 on page 28). The new mail cookie system
allows to send unique invitation to user, given their email address. These invitations let
the receiver user to unlock special information on the basis of encrypted cookie contained
in the mail. The library is generic enough to allow for any kind of information to be
unlocked.

One information that could be stored is a temporary invitation to become temporary
member of a particular role. Mail cookies have by de�nition an expiration time after which
the provided URL is no more recognized as valid. Storing a rolename and membership
expiration time as cookie-unlockable information is everything needed to accomplish this4.

A possible use of this new feature could be in a future peer-reviewing work�ow. CDS
Invenio has a peer-reviewing capability. After a new publication was submitted and is
waiting for approval, the peer-reviewer are alerted by email to review the paper and either
approve it for publication or reject it. With the mail cookie feature, the reviewer could
receive an email featuring mail cookie request, with an URL that once followed give them
a temporary role with rights to approve or reject the document.

Currently all the backend code for the temporary role via mail cookie technique is ready
while the web-interface to call the proper algorithms and functions will be implemented
in the near future.

4Only the database role table structure has to be enhanced with the expiration time �eld with as a
default time in�nite in the future.

47

Part III

Fulltext document migration

49

Chapter 4

Migration of fulltext documents with

s2d

4.1 Introduction

The main unit of information within CDS Invenio is the bibliographic record. Every
record is an aggregate of metadata details abound a document, the fulltext of which
can exist on paper or electronically in the form of a PDF �le or of an image.

The details of a record contain a reference to the original document in the form of a URL.

PHP era. The predecessor of CDS Invenio submission module, called CDS Submit, was
written in PHP. This module stored submitted document on a separate fulltext storage
server. The record metadata then contained links to the document of the typical form:

http://{preprints|documents}.cern.ch/ cgi-bin/SetLink?base=base &categ=categ &id=id

SetLink is a script that interprets the given parameter (base, category, document report
number) in order to produce a page similar to Figure 4.1 on the following page.

The page produced by SetLink contains then URL to actually download real fulltext
documents, undisclosing real �lesystem paths.

SetLink born within the CDS Invenio e�ort as an abstraction from URL in order to
hide backend storage method and provide consistent URL for documents which did not
change during time (see [LMM00]). This technology is similar in idea as the Digital Object
Identi�er (DOI) standard (see [(ID06]).

Python era. CDS Submit has then been integrated to CDS Invenio Suite developed in
Python. The transition have required many di�erent tools to be implemented to aid to
migrate already stored data. This has been necessary for improvement and new features

50 Chapter 4. Migration of fulltext documents with s2d

Figure 4.1: A legacy page for downloading the fulltext �le of a document.

that were meanwhile implemented into the CDS Invenio code. Because the migration form
PHP to Python for the CDS Submit module required a lot of changes, the production
machine of CDS at CERN is still running the old PHP CDS Submit code with all its
dependency.

An overview of the actual data �ow can be found in Figure 4.2 on page 64.

The PHP CDS Submit code interacts with the Pythonic BibUpload for when it comes to
metadata (i.e. MARC), but use the legacy code to store fulltext document on its own.
This means that from the Python point of view, fulltext are handled by a black-box,
whose output is only the SetLink URL, which brings an already formatted page where
real URL are presented. The Pythonic BibFormat must merge the legacy formatted page,
retrieved from the SetLink URL with MARC metadata1.

Handling PHP legacy code as a blackbox, brings many shortcomings, where the worst
is to not have any control on who download what, neither statistics nor restrictions via
RBAC (only restrictions via Apache are possible).

On the other side the o�cial (non CERN aware) CDS Invenio code is almost completely
written in Python (some parts are in Lisp, though) and each module is tightly integrated
with eachother. The actual data-�ow of CDS Invenio if it would be installed cleanly
(without legacy PHP code) would be as in Figure 4.3 on page 65.

As can be seen the �ow is much simpler. URL for fulltext documents are directly stored
within the metadata and fulltext document can live alongside the CDS Installation, letting
them to be much more controlled.

The purpose of the s2d project (SetLink to Document) has been update CDS Invenio
installation at CERN from the legacy hybrid PHP-Python code to the current Pythonic-

1At present the formatting has changed and when a record is displayed in details, it appears an icon
for the fulltext set2link URL, instead of merging the legacy page

4.2. The legacy fulltext architecture at the CERN Document Server 51

only way, by

• migrating fulltext documents from a very old SunOS machine to the AFS distributed
�lesystem;

• rebuilding all the data-structures as expected by the Pythonic code;

• gathering as much information as possible in order to correctly �ll database tables;

• feeding statistics from Apache logs on the old machine into statistics database table
to be exploited by ranking algorithms;

4.2 The legacy fulltext architecture at the CERN Doc-

ument Server

In this section will be explained the current CDS Invenio installation at CERN, which
implements a legacy hybrid cooperation between old PHP and new Pythonic code.

4.2.1 Metadata

A document record is stored, within CDS Invenio, in the form of aggregate metadata that
describe a document. The format in which they are expressed is the MARC standard.
The real fulltext document when it is available in electronic format, can then be referenced
in two di�erent ways:

• an external URL; used when the document is hosted by some external web host;

• an internal URL; a URL pointing to the system itself;

When the document is referenced, a URL is stored in the 8564 tag of the MARCmetadata.
The information is structured using a sub�eld $u for indicating the URL itself and an
optional sub�eld $y (or $z according to the con�guration of CDS Invenio), where a
descriptive string of the URL (and hence of the referenced document) is stored.

URL of document hosted by the legacy hybrid CDS Invenio installation at CERN are in
the form of SetLink URL. This means that the pointed document is in fact an indirect
HTML page that display in a fancy way what formats do exist for the real document
(for example .PDF and .PS or .DOC) and whether to create optional new format or to
extract pictures from the document. As explained above, those HTML pages are handled
by the legacy PHP code on a separate machine.

52 Chapter 4. Migration of fulltext documents with s2d

Issues. Having fulltext document �les hosted on a separate legacy machine have ren-
dered the communication between the real CERN Document Server and the �le storage
machine hard, thus preventing a natural interaction between the two machines. There is
infact no direct way to know how many times a fulltext �le has been downloaded, since
the legacy PHP system did not support this feature. The only source of statistics is in the
form of Apache log �les. Moreover indexing the content of the fulltext �les is not feasible
since the document resides on a remote server, and there is no clear way to discover when
a �le has remotely changed and needs to be reindexed.

4.3 The current CDS Invenio fulltext data structure

It is still in the process to be con�rmed how exactly local fulltext document are to be
referenced by the MARC metadata, but the most probable emerging format is that a
8564 tag will exist for every single fulltext document format �le. Supposing the record
has an integer identi�cation number 12345, there is a �le name called 123doc existing in
PDF and PS format, and the server URL is http://cdsweb.cern.ch, then the MARC
metadata for the record will contains tags as in Figure 4.4.

000012345 8564_ $$uhttp://cdsweb.cern.ch/record/12345/files/123doc.pdf

000012345 8564_ $$uhttp://cdsweb.cern.ch/record/12345/files/123doc.ps

Figure 4.4: How locally-hosted fulltext document could be represented in MARC

Having fulltext document �lenames stored in the MARC metadata allows the system to
export this information to external harvesters which import data about scienti�c material
hosted within CDS Invenio. Moreover fulltext document �lename are also stored in the
local �lesystem in a structured way that allow for easy retrieval and streaming, and are
referenced in special database tables, that will be analysed in the following section.

4.3.1 Current database table structure to store Fulltext Docu-

ment Information

Figure 4.5 on the facing page represent the ER diagram of the database tables used
to store information about records and their relationships with locally-hosted fulltext
document �les.

4.3. The current CDS Invenio fulltext data structure 53

Figure 4.5: ER diagram of the database tables used to store information about

records and their relationships with locally-hosted fulltext document �les.

Each record in CDS Invenio is stored as an ntuple in the bibrec table, and is identi�ed
by a unique record identi�cation number (recid). In the same way each locally-hosted
fulltext document is represented as a ntuple in the bibdoc table, and is identi�ed by a
unique document identi�cation number (docid). The bibdoc ntuple contains the �lename
of the document without extension and some other minor information. A bibdoc row
represents a whole document regardless of the existing di�erent formats and revisions.
This information, as explained in the following section is structured in the �lesystem
hierarchy.

A relational intermediate table called bibrec_bibdoc store the link between which
record is connected to what fulltext document and what kind of relationship link a record
to a document.

4.3.2 Current �lesystem structure to store Fulltext Document In-

formation

Fulltext �les are stored on the �lesystem with the following convention: under the
var/data/files folder, within the CDS Invenio installation, there are progressive folders
named g0, g1, g2 and so on, each containing by default 5000 docid subfolders2. Each
enumerated folder contains all the information referenced by the corresponding docid.
Every folder will contain in turn all the various formats and revisions of the referenced
document. All the �les are named after the speci�ed �lename, followed by di�erent exten-
sions according to the corresponding format, and by �;n� where n is a progressive number
which grows whenever a new revision of a �le is added.

A hidden �le called .recid contains then the recid of the record which is pointing to the
given document.

Bene�ts of the current CDS Invenio fulltext handling. Having �les stored locally
allows the webserver to have direct control of the streaming process of these �les to the
outside world. That means, for example, that is possible to apply WebAccess restriction
to �le download and that every single download can be counted. Moreover, on Unix

2The g0 folder contains folders named from 0 to 4999, the g1 folder contains folders named from 5000
to 9999 and so on.

54 Chapter 4. Migration of fulltext documents with s2d

systems �les which reside remotely can be referenced by means of local path name by
mounting on the local directory tree a networked �lesystem3.

Being able to know whenever a download happen, the CDS Invenio software can support
fancy feature like statistics similar to �people who downloaded this article also downloaded
this...�, and so on.

4.4 The S2D tool

It has been the subject of the present work to design and develop a tool to migrate locally
hosted fulltext document �les from the legacy hybrid structure to the current one. This
tool has been called S2D after �SetLink to DocId� technique that it realizes.

The tool had to be designed with these characteristics in mind:

• being reliable: every single fulltext document is important within CDS Invenio,
and even loosing a single document is not a�ordable;

• being correct: moving a document in the wrong place or creating broken references
to it is like loosing the document;

• being fast: about half of the 1,000,000 records stored at CDS Invenio references
a local fulltext document. Being every �le of an average size of 100.000 bytes, the
amount of stored information is indeed huge, hence the need to not add bottlenecks
on top of the network migration speed;

• being smart: �lesystem paths and metadata and database references to �les have
completely changed between the legacy and the current system; moreover revisions
and formats have to be handled with care.

This tool would have run on a mirror of the CERN Digital Service server, working directly
with the available CDS Invenio source code and database, and migrating �les to an AFS
space mounted on top of the var/data/files folder described in section 4.3.2 on the
previous page

4.5 Detailed preliminary analysis

A detailed analysis as been undertaken in order to understand how the tool would have
been best written to interact with the two system.

3For example CERN has some node shared in the global distributed AFS �lesystem (see [HUC88]
and [HKM+88]), and every server can take use of this space by mounting the AFS �lesystem.

4.5. Detailed preliminary analysis 55

4.5.1 What should be migrated

The author had to de�ne exactly what has to be moved. Indeed, among all the CERN
Document Server hosted records, most of them refer to a fulltext document, but only
half of them is actually referring a locally-hosted fulltext document by explicitly having a
SetLink URL in the proper MARC tag of its metadata. So the author had to take care of
scanning the whole set of records (or a given subset), and to consider only those records
that had at least a SetLink URL among their metadata. Infact metadata of a record can
contain more than one 8564 tag referring either to local and remote fulltext document
link. Both kind of information had to be managed carefully.

4.5.2 The SetLink URL

Given the records with at least one SetLink URL among their metadata, real fulltext
document �les must be retrieved.

The SetLink URL referring a locally-hosted fulltext document �le is infact pointing to
an HTML page similar to what can be found in Figure 4.1 on page 50. The real �le can
then be retrieved by clicking on the correct link appearing in the page. In fact many
URL appear on the page:

• the most part of them are of no use for the tool;

• someothers are indirectly referring the document by means of some script that will
translate on-the-�y the real document to a di�erent format letting then to stream
the freshly created �le;

• some are referring to sub-part of the real document, like images inside a scienti�c
article (also by means of a script),

• some of them referer to real stored formats of the document.

For one document many di�erent formats can be stored and it is important to migrate
each one.

A way to discover what is the de�nition of an URL refererring to a real stored �le had
to be found. Indeed it emerged that every URL of this kind was containing the word
�archive� or �electronic� and not containing �cgi-bin� were exactly all and only the URL
corresponding to stored fulltext �les.

Parsing the provided HTML page referenced by the SetLink URL in a given record to
�nd suitable URL of fulltext �les appeared to be a simple task, thus to deep further into
the fulltext storage legacy machine code and architecture was not needed.

56 Chapter 4. Migration of fulltext documents with s2d

4.5.3 Remote fulltext �le revisions

One question arisen: where all the �le retrievable by parsing HTML page the whole set of
document to migrate? Infact the answer was no. The legacy storage machine was accessed
by many people, and often by logging directly to Operating System without interacting
with the provided web interface. Thus, as time had passed by, some of the remote fulltext
�le had been substituted by new revision, with an informal backup system. That means
that the old revision of the �le was actually saved in a �le name named in similar way to
the original and stored near the original but without a consistent policy. Some backup
had been colled ��le-backup.ext�, someother ��le.ext-old�, some ��le-dateofthebackup.ext�
and so on.

Old �le revisions are of less importance than �nal stored �les, so it appeared important
to �nd an heuristic to try to migrate as much old revision �les as possible, without the
requirement to migrate exactly all the existing old �les.

4.5.4 Database data to be recreated

The database data to be recreated had been studied. It appeared that bibrec table had
to remain untouched while, bibdoc table had to be �lled with just-imported fulltext doc-
ument information. Moreover bibrec_bibdoc table had to be setup properly. Analysing
this relation table, one �eld came up as very important, i.e. the document type. This
�eld holds a freetext string that is �lled by the very con�gurable WebSubmit module, in
order to mean special document meaning. For article and preprints it appeared that this
�eld was actually �lled with only two values �Main� and �Additional�, meaning the the
linked bibdoc was, respectively, the main document or an additional auxiliary �le, say an
image within a chapter or a single chapter within the whole document and so on.

How to recreate the additional/main information given the above described situation had
to be found. The author had worked on an heuristic algorithm based on the whole set of
document referenced by a SetLink URL and their extensions. Basically this had emerged:

• If only one �le exists, then it is a main �le;

• If more than one �le exist, then those �le with extension being PDF, PS or PPT
and not containing a .FIG subextension (as in .�g.ps) are de�nitively considered as
Main documents while the remaining are considered as Additional.

• If no �le happen to be considered as main document, than the all the �le are
considered as Main one (usually this never happens).

Moreover, it has been decided that for semantic correctness a bibrec would have pointed
to at most one Main bibdoc and as many Additional bibdoc as needed.

4.6. The S2D algorithm 57

4.5.5 Metadata handling

MARC metadata of records involved into the migration had to be up updated accordingly.
This means that in place of all the SetLink URL a set of URL pointing to the local machine
and referring �les in the proper way had to be put. This means that all non SetLink
URL had to be preserved, too.

It has been decided to update the MARC metadata by means of exploitation of BibUpload
tool. This take care of metadata by reading MARCXML �les and, according to the chosen
mode, can append or substitute the changed data.

4.5.6 Importing statistics

Current CDS Invenio software features support for download statistics. Every click on
a locally-hosted fulltext �le is stored in a table and analyzed by a background process,
which take cares of producing nice statistics and potential improved ranking. Fulltext �les
migrated from the legacy installation, though, will appear as never being downloaded.
Since this is not the truth a way to migrate statistics had to be found.

4.5.7 Guidelines followed in writing the tool

The author has decided to exploit as much as possible the already existing CDS Invenio
tools and API in writing the S2D tool. The main reason for this decision has been to
not add new sources of possible bugs in the migration process, by for example dealing
directly with the database tables in a wrong way.

Since the process had to be reliable, the tool had to produce on purpose a huge quantity of
debugging information, accounting for any decision it takes and any operations it carries
out.

4.6 The S2D algorithm

Here follows the algorithm implemented by the S2D tool:

INPUT: a QUERY

EXECUTE the query on the machine

PREPARE MARCXML update file

FOREACH retrieved record:

IF record reference a bibdoc:

SKIP to the next record # it has already been migrated

58 Chapter 4. Migration of fulltext documents with s2d

RETRIEVE the MARCXML of the record

RETRIEVE the 8564 tags

FOREACH URL:

IF SetLink:

RETRIEVE pointed page

RETRIEVE good URLs

FOREACH good URLs:

FIND whether it is Main or Additional

FIND Old revision

BUILD lists of Main/Additional/Old/New documents

FOREACH lists:

FILL database tables properly

MOVE the file in the proper local filesystem position

ANNOTATE move

UPDATE MARCXML

ELSE IF record has at least a SetLink URL:

UPDATE MARCXML

ELSE skip record

CONCLUDE MARCXML update file

OUTPUT:

MARCXML update file

MARCXML undo file

statistics-about-the-migration file

debbugging-information file

undo information

ALEPH compatible update file

Apache redirection information file

Python redirection information file

4.6.1 The input

The S2D tool takes as input a query string as it would be typed in the WebSearch interface
of CDS Invenio. This allows to migrate documents one collection per run, which in turn
corresponds to port one submission interface at a time, from the legacy system to the
new. Moreover migration of record created or modi�ed within a particular time interval is
feasible, thus allowing to run the S2D tool only on documents which where not modi�ed.

4.6.2 The output

The S2D tool, alongside the its migrating job, outputs many di�erent �les:

4.6. The S2D algorithm 59

• a correct-mode MARCXML �le, needed to substitute all the SetLink URL with the
proper set of new URLs (it is the input of the BibUpload tool in �Correct-Mode�);

• a append-mode MARCXML �le, used to append new URLs after existing SetLink
URLs (in this way it is demanded to BibFormat tool to choose what URLs to
display);

• a undo-mode MARCXML �le, used to get back to previous status after having run
BibUpload (see section 4.6.3);

• a statistic �le, containing recids, docids, moved size and �le name, in a format
suitable to be the input of plotting tools;

• a debugging log �le, with all the operations carried out in full details;

• an undo �le, where are written in atomic form all the migrated recids (see sec-
tion 4.6.3);

• a correct-mode Aleph �le, needed to update URLs referenced by the external Aleph
service o�ered by the CERN library;

• an Apache redirection �le, to be plugged in the legacy machine as a con�guration
�le, in order to have migrated SetLink URLs redirected to new proper URLs;

• a Python readable redirection �le, containing a serialized dictionary easily load-
able into memory by Python, which is used by the statistics migration tool (see
section 4.6.4 on the next page);

All the output is produced as long as the process is running and all the �les are properly
closed at program termination, interruption or crash, thanks to proper handling functions
installed.

4.6.3 Undo possibility

If something goes wrong, say there is an error in the code, or who is supervising the
migration notice something broken, the migration can be interrupted, and an undo
procedure can be performed.

The S2D tool is in fact accompanied by an undo tool that revert the migration. The undo
tool job is infact simple: all it has to do is to remove all and only the bibdocs referenced
by the bibrecs listed in the undo �le. This is accomplished by exploiting properly the
CDS Invenio API.

If BibUpload has already run, thus MARC metadata have been already modi�ed, a
corresponding MARCXML undo �le can be fed to BibUpload in order to get back to the
previous situation.

60 Chapter 4. Migration of fulltext documents with s2d

4.6.4 Migrating statistics

As introduced in section 4.5.6 on page 57 download statistics of fulltext �le being migrated
are very important data. As a second step on the S2D migration project the author
worked on a tool to migrate statistics. This tool works next to S2D, exploiting its output.

Properly parsing Apache logs let extract very important statistical information:

• What �le has been downloaded;

• What IP-address requested that �le;

• When that �le has been downloaded;

Given all the Apache logs of the legacy server up to a given day, the tool parse all the log
looking for legacy fulltext URL (those URL are listed in the Python redirection �le). For
every encountered migrated URL it translates the URL to the new address, and retrieve
thus the corresponding DocId. What miss is only to �ll the proper ranking table with
these information.

4.7 Test and results

The S2D tool has been run on a mirror of the CERN Document Server, setted up for
this purpose. It has �rst been run on a 40,000-documents thesis collection, migrating
documents to an AFS partition, locally mounted on the mirror machine. This �rst run
on a small set helped in spotting bugs, and missing features. The Undo tool, indeed, has
been designed after �rst trial and errors.

The tool has then been run to migrate the whole set of scienti�c papers and so-called
�preprints�. More than 400,000 documents have been moved, and their statistics too. The
migration lasted about 5 working day. Migration of the whole download statistics from
2003 (4 years, 1300 days) up to the migration day, took about 5 hours.

Since the AFS partition is a network �lesystem, it can be mounted on many server at a
time. Thus �les moved during testing are already ready to be referenced by the o�cial
production machine, once the created database data and the corrected metadata are
integrated into the production machine. This will happen in about a month since the
defend of the present work.

4.8 Indexing issues

As a part of the migration process, other pieces of the whole CERN Document Server had
been updated. The update of the MySQL server, though, brought some very important

4.8. Indexing issues 61

speed issues. It appeared that upgrading database server from its 4.0 release up to the
4.1 changed the way it stored information on the table, particularly when it comes to
store UTF-8 string (for some reference to the UTF-8 format, see [Yer98]). This in turn
made the indexes table to occupy much more space than by using previous MySQL 4.0.
For example the main forward index occupied now 20GBs to hold all the record hits.
To work with such a huge index required much more computational time than with the
previous MySQL release.

A way to shrink index table size had to be found.

The bottleneck was identi�ed as being the data structure used to store the HitLists (i.e.
the index which, given a word, holds the list of record containing that word). The data
structure used was a Numeric Python array (for an introduction to Numeric Python,
please see [San99]). The HitList is stored in the form of a bitvector, where putting bit
number n to True meant saying that record with RecId n hold the given word. In fact
Numeric Python implements an array of bytes to store bits. That means that indexes
were 8 times more big than was needed.

A side work in the migration project, the author worked in designing and implementing
a data structure to plug in place of Numeric Python bitvector array.

Before that Numeric Python had been chosen, a benchmarking tool had been used to
test which data structure would have been the best, among alternatives existing at that
time. Here are presented the results of running the benchmark on the machine used to
type this thesis (an AMD Turion64 X2 CPU):

CDSware data structure testing in Python (n1=350000, n2=350000, nrec=800000)

==

creating lists 350000 + 350000 items created in 3.79 sec.

marshaling lists 532616 + 532571 compressed chars marshaled in 1.22 sec.

demarshaling lists 350000 + 350000 items demarshaled in 0.10 sec.

merging lists 546965 items found in 0.46 sec.

intersecting lists 153035 items found in 0.35 sec.

filling dicts 350000 + 350000 items created in 0.42 sec.

marshaling dicts 576491 + 576450 compressed chars marshaled in 0.78 sec.

demarshaling dicts 350000 + 350000 items demarshaled in 0.39 sec.

merging dicts 546965 items retained in 0.39 sec.

intersecting dicts 153035 items retained in 0.31 sec.

filling sets 350000 + 350000 items created in 0.43 sec.

marshaling sets 532616 + 532571 compressed chars marshaled in 1.35 sec.

demarshaling sets 350000 + 350000 items demarshaled in 1.54 sec.

merging sets 546965 items retained in 2.79 sec.

intersecting sets 153035 items retained in 0.36 sec.

filling builtin sets 350000 + 350000 items created in 0.24 sec.

marshaling builtin sets 532616 + 532571 compressed chars marshaled in 1.25 sec.

demarshaling builtin sets 350000 + 350000 items demarshaled in 0.30 sec.

pickling builtin sets 554960 + 555049 compressed chars pickled in 1.30 sec.

depickling builtin sets 350000 + 350000 items depickled in 0.37 sec.

merging builtin sets 546965 items retained in 0.10 sec.

intersecting builitin sets 153035 items retained in 0.12 sec.

filling array 350000 + 350000 items created in 2.92 sec.

marshaling array 856409 + 856063 compressed chars marshaled in 2.50 sec.

demarshaling array 350000 + 350000 items demarshaled in 0.32 sec.

filling b_from_a 350000 + 350000 items created in 0.05 sec.

filling bitvs 350000 + 350000 items created in 0.23 sec.

sizing bitvs 350000 + 350000 items counted in 0.56 sec.

62 Chapter 4. Migration of fulltext documents with s2d

marshaling bitvs 179865 + 179809 compressed chars marshaled in 1.09 sec.

demarshaling bitvs 350000 + 350000 items demarshaled in 0.10 sec.

merging bitvs 546965 items retained in 0.00 sec.

intersecting bitvs 153035 items retained in 0.00 sec.

Two sets of random number where stored in the tested data-structure, and di�erent set
operations were performed, including serializing the structure to a string for storing into a
database and deserializing it. As can be seen Numeric Python bitvectors (bitvs) happens
to be the most performant structure among the benchmarked one.

4.8.1 IntBitSet

Using bitvectors appeared to be still the proper solution to holds HitLists. Infact, bitvec-
tors could have been implemented in a way that exploited modern CPU features (the new
server would been a 64bits machine, thus allowing for 64 parallel bit operations). Inter-
section, union and di�erence are all much used set operations when computing boolean-
model search queries. Exploiting CPU lowlevel instruction would allow for set operations
of time O(n/64). Moreover since HitSet bitvectors are usually sparse, storing them in
compressed format (e.g. by the pervasive ZIP algorithm, see [Sal04]), would have allowed
for very low space occupation4.

The author studied a way to implement real Bit Vectors to store Integers, while exploiting
modern CPU features and integrated with Python. The found solution consisted in
implementing a Python extension by wrapping an ad-hoc bit vector library implemented
in C (with code exploiting CPU shifts and register boolean operations).

IntBitSet has been implemented. This is a new CDS-Invenio module which usage is
plugged in every previous HitSet (Numeric Python array) code. IntBitSet has been
developed using Pyrex (see [Ewi]). Pyrex is metacompiler which takes code written in a
hybrid language between Python and C (infact it is Python plus C types), and produce
pure C code that compiles into a binary Python extension. Among Pyrex features is the
complete support to wrap already existing C functions within Python functions. The
author thus implemented all the algorithms in pure C and wrapped everything a Python
extension.

The API exposed by the Python extension is a superset of the already existing Python
set abstract data type, thus allowing for direct substitution in much of the existing CDS
Invenio code (Numeric Python arrays expose infact a similar API). Moreover exposing the
set API, would allow for clean code, given the maturity of this standard API. Di�erently
from the Python set data type, IntBitSet can hold only integers, thus allowing for much
improved optimization. Moreover the IntBitSet data type allows for storing In�nite set.
This means that the �mathematical universe concept� can be expressed and many higher

4Indeed, the Numeric Python bitvector array was already zipped, but since it required une�cient
serialization to transform it into a zippable string the used space in bytes was only half of the number
of referenced RecIDs.

4.8. Indexing issues 63

level algorithms can thus be written. IntBitSet can holds a dynamic number of integers,
growing and shrinking as needed, with improved space e�ciency.

4.8.2 IntBitSet benchmarks

As a result of code optimization and design design here follows IntBitSet performance
given the same working condition as above:

filling intbitsets 350000 + 350000 items created in 0.24 sec.

marshaling intbitsets 99536 + 99547 compressed chars marshaled in 0.01 sec.

demarshaling intbitsets 350000 + 350000 items demarshaled in 0.07 sec.

merging intbitsets 546965 items retained in 0.00 sec.

intersecting intbitsets 153035 items retained in 0.00 sec.

As can be seen IntBitSets requires almost no time for set operation, and almost 100 times
less time for marshaling than Numeric Python arrays, by using half space of Numeric
Arrays.

Pluggin IntBitSet to the current BibIndex engine helped in reducing up to ten times
the space used to store indexes, and reduced from twenty times and above (according to
initial index size) the time to create from scratch the indexes.

4.8.3 IntBitSet testsuite

Given the mature API, implementing a self-contained data structure, realising a testsuite
for the IntBitSet Python extension has been a straightforward procedure. We have ini-
tially tested mostly operations used in Invenio, proo�ng the code. Then we have extended
the test suite to those set operations not needed by CDS Invenio such as the symmetric
di�erence. All the API methods have been tested iterating over typical sets (1 element,
many elements up to 64, many elements above 64), testing all the possible combination.

In Figure 4.6 an example of the results obtained by running the unit-tests is presented. As
can be seen the implemented testsuite is broad and working (in this particular example
it has even found an error). The testsuite helped a lot in �nding many small bugs during
developing. Moreover, dealing with a C extension, the code is exposed to hard-to-spot
memory-handling bugs. Thanks to this testsuite and to the powerful Valgrind tool
(see [NS03]), all the found bugs have been �xed, by running the testsuite in the virtual
machine generated by Valgrind.

64 Chapter 4. Migration of fulltext documents with s2d

Legacy Data flow

Su
bm

is
si

on
P

re
se

nt
at

io
n

PythonPHP

Metadata

Fulltext

WebSubmit

BibUploadSetLink

BibFormat

Fulltext
Download

page

Detailed
Record page

Figure 4.2: The current Data Flow at CERN

4.8. Indexing issues 65

New Data flow

Su
bm

is
si

on
P

re
se

nt
at

io
n

Python

BibUpload

BibFormat

Detailed
Record page

WebSubmit

MetadataFulltext

Figure 4.3: The Data Flow of a clean installation

66 Chapter 4. Migration of fulltext documents with s2d

intbitset - ascii bit dump ... ok

intbitset - list dump ... ok

intbitset - marshalling ... ok

intbitset - clearing ... ok

intbitset - set cloning ... ok

intbitset - (non infinite) set comparison ... ok

intbitset - set difference, normal set ... ok

intbitset - set difference, empty set ... ok

intbitset - set difference, empty set in place ... ok

intbitset - set difference, normal set in place ... ok

intbitset - set difference, infinite set ... ok

intbitset - set difference, infinite vs empty ... ok

intbitset - set difference, infinite vs empty in place ... ok

intbitset - set difference, infinite set in place ... ok

intbitset - set intersection, normal set ... ok

intbitset - set intersection, empty set ... ok

intbitset - set intersection, empty set in place ... ok

intbitset - set intersection, normal set in place ... ok

intbitset - set intersection, infinite set ... ok

intbitset - set intersection, infinite vs empty ... ok

intbitset - set intersection, infinite vs empty in place ... ok

intbitset - set intersection, infinite set in place ... ok

intbitset - Pythonic representation ... ok

intbitset - set symmetric difference, normal set ... ok

intbitset - set symmetric difference, empty set ... ok

intbitset - set symmetric difference, empty set in place ... ok

intbitset - set symmetric difference, normal set in place ... ok

intbitset - set symmetric difference, infinite set ... ok

intbitset - set symmetric difference, infinite vs empty ... ok

intbitset - set symmetric difference, infinite vs empty in place ... ok

intbitset - set symmetric difference, infinite set in place ... FAIL

intbitset - set union, normal set ... ok

intbitset - set union, empty set ... ok

intbitset - set union, empty set in place ... ok

intbitset - set union, normal set in placeusage to query for the name ... ok

intbitset - set union, infinite set ... ok

intbitset - set union, infinite vs empty ... ok

intbitset - set union, infinite vs empty in place ... ok

intbitset - set union, infinite set in place ... ok

intbitset - set update with signs ... ok

Figure 4.6: An example of running the IntBitSet testsuite. In this run, a bug has

been found.

67

Appendix A

Mail cookies

�Mail cookies� is a new CDS Invenio feature developed by the author to facilitate and at
the same time enhance some activities that involves users.

At the time of this writing an implementation for three di�erent usage is ready:

• a password resetting facility, to let the user who have forgotten the password to set
a new one (assuming an correct email has been provided to the system)

• an email checking facility, to let the system be sure that a given email is really
owned by the user who has con�gured this email.

• a temporary role membership invitation system.

By now, only the �rst implementation has a corresponding web-interface that take ad-
vantage of it.

A mail cookie is in fact a short piece of information (i.e. a stream of at least 32 hexadec-
imal digits) sent via email in the form of a prebuilt url that, once followed by the user
by opening it in a browser, it pass the cookie to the proper handling function that will
use the given information, once proven valid, to unlock a row in the database that will
correspond to the proper usage.

The hexadecimal digits are infact an encoded structure made up by the password that
will unlock the given row, and the row id, in the cookies table.

A.1 The implementation

The cookies table is a simple table with the following �elds:

data where the encrypted data will be stored;

68 Appendix A. Mail cookies

expiration the expiration time after which the cookie will be considered non-valid. This
is also used by the cookie garbage-collector algorithm to periodically drop expired
cookies;

kind to indicate what kind of handler is required to handle the encrypted data.

onetime a boolean �ag to indicate whether the url provided by the cookie can be followed
only once.

The data are encrypted via the password contained in the cookie. The data contains
in turn a serialized python tuple which is constituted by the same element of the table
(obviously excluding the data �eld itself), to check for correct decryption, plus all the
parameters to be passed to the handling function corresponding to request service.

Since the password is put in the cookie itself, there's no need to store it elsewhere. Only
the receiving user will know it and will be able to use it. That means that administrators
are not able to know what is stored inside a cookie row, so for example, role invitation
could remain completely anonymous !

A.2 Developer interface

A generic function to generate a cookie has been provided. Given the necessary parame-
ters it returns the cookie that corresponds to the just created cookie row.

Symmetrically, a function to check for a cookie and to unlock its content is provided.

Wrapping this pair of function there are three pair of other functions to implement each
of the above enumerated services.

A.3 Cookie content issues

Special care was used to decide on how the cookie had to be shaped. It had to store both
the row where data to be unlocked are, and the password to unlock them. To accomplish
this in an elegant way, we have �nally decided to provide the user a string of anonymous
hexadecimal digits. Looking at them nothing can be guessed about the content. Indeed
they contain exactly everything that is needed. The password is a run-time random
generated number, encoded in hexadecimal using the MD5 famous algorithm, to obtain a
32 bytes string. It is then broken in two and the hexadecimal encode of the row id is put
between the two part, just to hide a bit the meaning of the whole string (if the row-id
would have been put at the end of the string, the following generate cookie would have
had the same last hexadecimal digits plus one).

69

Appendix B

Minor activities

Being a fulltime developer member of a team which not only develop and maintain an
OpenSource project, but also o�ers a community service to the CERN community, there
are several small works that need to be accomplished on a per-request basis. The author
tapped into the TODO list of the CDS Invenio software to look for tasks still to be
implemented.

B.1 BibSched log viewer

Looking at how the CDS Invenio scheduler was implemented the author decided to imple-
ment the BibTasks Log Viewer feature of BibSched, CDS Invenio proprietary scheduler.

This feature was missing, and the administrator had to manually browse the �lesystem
looking through log �les named after the corresponding BibTask number, for information
and debugging about a given task.

The author wrote a curses-oriented �le viewer that is activated upon a certain key press
from the BibSched editor. (for more information about NCurses, please see [Goo07]).
The feature is con�gurable in order to support the preferred Unix pager (e.g. less, or
more or most...).

In Figure B.1 on the next page can be seen on the left a typical BibSched screen and on
the right the current result of pressing L, thus displaying the log of the highlighted task,
as it has been implemented by the author.

B.2 BibSched job pruner

The author worked in implementing an other wished feature, namely the �P� key to purge
from the list of BibTasks those in the Done status.

70 Appendix B. Minor activities

Figure B.1: A typical BibSched screen (left), and the result of pressing the �L� key

on the highlighted BibTask, thus opening its log (right).

B.3 Refactoring of BibTasks

BibSched. The above small projects helped the author in discovering the scheduler of
CDS Invenio. BibSched is a Python executable that can run as a Unix daemon and
has also an NCurses frontend to monitor running Bibliographic Tasks. The BibSched
scheduler is implemented as a simple serial queue, to serialize the execution of the di�erent
BibTasks that form a CDS Invenio running environment. At any moment a monitored
BibTask can be only in a given states, namely, waiting, running, done, error. Moreover
BibTasks can be scheduled for repetition or run just only once.

Browsing the di�erent CDS Invenio available BibTask code, the author noticed the be-
havior of copying and pasting the source code. Every BibTasks had been developed by
forking from an already existing BibTask. Thus the author took care of merging all
the common BibTasks code (mainly command line parameters handling, interaction with
the BibSched scheduler and Unix signals handling) and to put everything under a new
common class named BibTask. Every BibTask code had then been rewritten in order
to derive from this very class. Moreover all the handling of command-line parameters
had been centralized and standardized. This in turn made writing new BibTasks a very
straightforward job. As a consequence the author worked in converting a plain CDS
Invenio command-line tool into a new BibTask.

B.4 BibSched and Invenio Garbage Collector

SessionGC, the CDS Invenio garbage collector, had been a plain CDS Invenio command-
line tool. Its job is to clean expired user sessions and more in general to clean all expired
or no more referenced rows in CDS Invenio database table. Documentation suggested
the user to run this tool regularly or to run it through the Unix CRON job system. The
author translated the tool, as a prof-of-concept of the newly refactored BibSched/BibTask
system into a BibTask, thus empowering the tool of all the other BibTasks features. The

B.4. BibSched and Invenio Garbage Collector 71

SessionGC tool can now be scheduled to be run within a given time frame, but, more
important, its usage is scheduled by BibSched alongside other BibTasks, thus allowing
for the correct serialization of SessionGC accesses to the database (and the �lesystem).

73

Conclusions

The thesis reports on the work carried out by Samuele Kaplun at the Department of
Information Technology of the European Organization for Nuclear Research (CERN)
under the CERN Technical Studentship Programme.

The author worked as a fulltime developer in the CERN Document Server team on its
CDS Invenio Software package. Two main projects were presented, namely �authentica-
tion and authorization enhancements� and �fulltext document migration from the legacy
CDS Invenio installation at CERN to the new system�.

The �rst project on the CDS authentication system presented the study of the system
before the enhancements which were the subject of the present work, designing and then
implementing a plugin architecture enhancements that support multiple external authen-
tication systems, with feature like importing external user details and external user group
membership information. The project has culminated in (i) a plugin architecture that
fully exploited the CERN central authentication system by wrapping the provided SOAP
webservice, and (ii) in a customization to fully support the Single Sign-On technology
deployed at CERN through interfacing with the Shibboleth software on the Apache web
servers, and (iii) in an externally developed plugin to exploit LDAP authentication.

As a side extension to the �rst project the author brought enhancements from the au-
thentication system to the RBAC authorization architecture. A new (iv) �rewall-like role
de�nition language, called FireRole, has been designed and plugged to the RBAC system,
in order to implicitly connect users to roles by exploiting user information such as their
external details and group, thus helping the administration of CDS Invenio installation
to better integrate the system to the surrounding social and institutional context.

Other minor tasks and developments have been undertaken by the author in order to
solve real-life issue occurreed over time in service like CDS Invenio, in the framework of
authentication and authorization subjects, namely (v) the encryption of local password,
(vi) the integration of command line tools with the external authentication plugin system
and (vii) a realization of a library to support an authorization request and user invitation
by means of small piece of cookie information sent by email.

The second project concerned the legacy fulltext �le server production architecture at
CERN, and the design and development of an automated migration tool, called �s2d� to
move more than 500,000 fulltext documents (mainly scienti�c papers) from the legacy

74 Appendix B. Conclusions

system to the current CDS Invenio architecture. The tool had to retrieve documents from
a legacy machine, parsing HTML pages in order to extract �les, move them carefully,
rebuild the metadata information by discovering multiple formats and revisions of the
same document by means of heuristics. The tool also imported download statistics from
Apache log �les from the legacy system to the new database tables, e.g. to be able to rank
search results by download statistics. The migration tool was written with reliability in
mind, since loosing scienti�c publications during document server migration cannot be
naturally a�orded. The tool has been successfully used to migrate (viii) the whole set of
more than 400,000 Article and Preprints hosted by the CERN Document Server.

Having a huge subset of the fulltext document �les locally referentiable by the CDS In-
venio infrastructure rendered fulltext indexing feasible at CERN. However it emerged
necessary to improve performance of the indexing engine. The author has worked on
implementing (ix) a new fast and slim bit vector data container in the form of a Python
C extension, to optimize speed and memory usage. By putting this extension on produc-
tion, tables have typically shrunk up to ten times, and indexing speed has consequently
improved typically twenty or even more times depending on the original index size.

Finally, a number of smaller tasks and improvements to CDS Invenio have been presented,
namely (x) enhancements to the bibliographic task scheduler system, the (xi) garbage
collector and the (xii) stemming library, carried out in parallel to the main project as a
result of �real-life� necessities of a service-oriented system providing document services to
an important and active scienti�c user community.

75

Bibliography

[Ben95] Ben Segal. A Short History of Internet Protocols at CERN. 1995.

[Bet00] Betty Furrie. Understanding MARC Bibliographic: Machine-Readable Cat-
aloging. Follett Software Company, 6 edition, 2000.

[BLCGP92] Timothy J Berners-Lee, Robert Cailliau, J F Gro�, and B Pollermann.
World-wide webthe information universe. Electron. Netw., 2:52�58, 1992.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern information re-
trieval. ACM Press Books. Addison-Wesley, Reading, MA, 1999.

[cds07a] Cds invenio demo, September 2007.

[cds07b] Cds invenio features, September 2007.

[CDS07c] CDS Software Consortium. Why to MARC at all?, 14 February 2007.

[CER04] To the LHC and beyond, September 2004.

[Com07] Communication Group. All about CERN... in 7 questions!, March 2007.

[Dia05] Diane Hillmann. Using Dublin Core, 7 November 2005.

[DR02] J. Daemen and V. Rijmen. The Design of Rijndael: AES�the Advanced
Encryption Standard. Springer, 2002.

[EC02] Marlena Erdos and Scott Cantor. Shibboleth-architecture draft v05. Tech-
nical report, �Internet2�, 2002.

[Ewi] G. Ewing. Pyrex. A Language for Writing Python Extension Modules. URL
http://www. cosc. canterbury. ac. nz/greg/python/Pyrex.

[FK89] D.C. Feldmeier and P.R. Karn. UNIX Password Security-Ten Years Later.
CRYPTO Proceedings, 1989.

[FKC03] David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-
Based Access Control. Artech House, Norwood, Massachusetts, April 2003.

76 Appendix BIBLIOGRAPHY

[Fra92] WB Frakes. Stemming algorithms. Information retrieval: data structures
and algorithms table of contents, pages 131�160, 1992.

[Fri02] J.E.F. Friedl. Mastering Regular Expressions. O'Reilly, 2002.

[Goo07] D. Gookin. Programmer's Guide to ncurses. John Wiley & Sons, Inc. New
York, NY, USA, 2007.

[HKM+88] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols, M. Satyanarayanan,
R.N. Sidebotham, and M.J. West. Scale and performance in a distributed
�le system. ACM Transactions on Computer Systems (TOCS), 6(1):51�81,
1988.

[HUC88] J.H. Howard, Carnegie-Mellon University, and Information Technology Cen-
ter. An Overview of the Andrew File System. Carnegie Mellon University,
Information Technology Center, 1988.

[(ID06] International DOI Foundation (IDF). The DOI? Handbook, October 2006.
Version 4.4.1.

[LMM00] Jean Yves Le Meur and D McGlashan. Setlink the cern document server link
manager. High Energy Phys. Libr. Webzine, 1(CERN-ETT-2000-001):1. 8
p, Jan 2000.

[MA02] Alex Martelli and David Ascher, editors. Python Cookbook, chapter 17.7.
O'Reilly Cookbook. O'Reilly, July 2002. Recipes from the Python Commu-
nity.

[MAR] MARC Standards.

[MR91] K. McCloghrie and MT Rose. RFC1213: Management Information Base for
Network Management of TCP/IP-based internets: MIB-II. Internet RFCs,
1991.

[NS03] N. Nethercote and J. Seward. Valgrind: A program supervision framework.
Electronic Notes in Theoretical Computer Science, 89(2):1�23, 2003.

[PBG+05] Alberto Pepe, Thomas Baron, Maja Gracco, Jean Yves Le Meur, Nicholas
Robinson, Tibor Simko, and Martin Vesely. Cern document server software:
the integrated digital library. (CERN-OPEN-2005-018):6 p, Apr 2005. re-
vised version submitted on 2006-02-01 17:03:23.

[Por] M. Porter. The Porter Stemming Algorithm. Accessible at http://www.
tartarus. org/martin/PorterStemmer.

[Por06] M. Porter. Snowball: A language for stemming algorithms. URL
http://snowball. tartarus. org/texts/introduction. html. Visited May 4th,
2006.

BIBLIOGRAPHY 77

[Sal04] D. Salomon. Data compression. Springer New York, 2004.

[San99] M.F. Sanner. Python: a programming language for software integration and
development. J. Mol. Graphics Mod, 17:57�61, 1999.

[SWY75] G. Salton, A. Wong, and CS Yang. A vector space model for automatic
indexing. Communications of the ACM, 18(11):613�620, 1975.

[VBLMS02] M Vesely, T Baron, Jean Yves Le Meur, and Tibor Simko. Creating open dig-
ital library using xmlimplementation of oai-pmh protocol at cern. (CERN-
ETT-2002-003):7 p, Jul 2002.

[Yer98] F. Yergeau. RFC2279: UTF-8, a transformation format of ISO 10646. In-
ternet RFCs, 1998.

78

Index

acc_authorize_action, 36
access_control_engine, 36
Account,

Local, 16
Apache

Groups, 36
Passwords, 36

Authentication, 15
Authentication system, 16

External� 16

bibdoc, 53
bibrec, 53
BibSched, 70
BibTask

SessionGC, 70
BibTasks, 70
bit-vector, 62

Caching tools, 43
CDS

Consortium, 4
Invenio, 4

CDS Submit, 50
CERN, 3

NICE authentication, 19
SOAP Webservice, 18

Data
Acquisition, 6
Output, 6

DocId, 53
Document

Taxonomy, 5
Dual log-in, 16

eGroups, 15

Features,
Collaborative, 7
Personalization, 7

FireRole, 35
Data �ows, 41
Grammar, 40
Language, 37
Semantic, 40
Syntax, 40

IntBitSet, 62
Invenio, 4

MARC21, 6
MARCXML, 6
Memoization, 43
Metadata, 51
Modules

Overview, 9
MySQL, 60

NCurses, 69
Nickname, 17

OAI, 8
OAI-PMH, 8

PHP, 49
Pyrex, 62

RBAC, 35
Actions, 35
Authorizations, 35
core work�ow, 36
Roles, 35

RecId, 53
run_sql, 43

INDEX 79

run_sql_cached, 43

s2d, 49
Search

Engine, 5
SessionGC, 70
set data structure, 62
SetLink, 49

Unix pager, 69
User

Classes, 9
Details, 38
Email, 17
External settings, 39
Id, 17
Identi�cation, 17
settings, 17

User,
Authenticated, 15
Author, 9
Curator, 9
Librarian, 9
Regular, 9
System Administrator, 9

UTF-8, 60

WebAccess, 36

ZIP algorithm, 62

81

Acknowledgements

I would like to thank my supervisors in Italy, Prof. Gianpiero Cattaneo, Dr. Davide
Ciucci and Dr. Fabio Farina, that followed me from the other side of the cable and
guided me in writing this thesis.

I would like to thank Jean-Yves Le Meur and Tibor Simko for having welcomed me into
the CDS Invenio gang here at CERN, and having guided me through. I've spent a great
year here, you taught me a lot of stu� that matter! It has been a pleasure to work in
your team! That's why I want also to thank each member I've been o�cemate of: Diane,
Nick, Gabriel, Greg, Jerome, Ian, Marcus, Zibi, it has been great to work with you.

I'll try to thank again Prof. Luca Bernardinello (this time seeking to spell his name
correctly!), for tolerating my computing �spetegüles� each time I came back to Italy and
similarly I would like to thank my �computing 4th-�oor clan�, namely Scarch, Zia Alice,
Trippo e Spiga, for always welcoming back and following me in this CERN adventure.

Thanks to Gabri and DvD for being great friends and perfect �atmates all this long year.
Special mention to �Frappe�, the landlord, for having welcomed me and my �atmates in
the beautiful countryside of Thoiry, the perfect place to live when you need real relax
while preparing exams or writing the thesis every weekend.

Thanks to Franco for the very big CERN binges with great Italian food, and all his rides!

I would like to thank my very family for, well, being so a family, namely, mamma,
papà, Noe, Micka, Pivo, Marco, Monica, Martino, Stefano, Sophie, Rachele, Emanuele,
Ra�aele... Thank you for all the great enthusiasm you gave me! Thanks to the Storaci
family, too, for having me welcomed every Italy return, with great meal and evenings!

Going back to the origin I have to thank Edo, just-daddy, my computing godfather, for
having lent me his computing books and for my �rst great cellar computing sessions.

Especially, I would like to thank my �ancée, Bà, who has been so crazy and strong to
carry this lazy computing guy in her stressed physicists world, always encouraging him
to do his best, thus letting him discover a new broad fascinating world out of the cold
cellar!

