
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 6, DECEMBER 2005 2823

The LCG PI Project: Using Interfaces for Physics
Data Analysis

A. Pfeiffer, L. Moneta, V. Innocente, H. C. Lee, and W. L. Ueng

Abstract—In the context of the LHC computing grid (LCG)
project, the applications area develops and maintains that part
of the physics applications software and associated infrastruc-
ture that is shared among the LHC experiments. The “physicist
interface” (PI) project of the LCG application area encompasses
the interfaces and tools by which physicists will directly use the
software, providing implementations based on agreed standards
like the analysis systems subsystem (AIDA) interfaces for data
analysis. In collaboration with users from the experiments, work
has started with implementing the AIDA interfaces for (binned
and unbinned) histogramming, fitting and minimization as well
as manipulation of tuples. These implementations have been
developed by re-using existing packages either directly or by using
a (thin) layer of wrappers. In addition, bindings of these interfaces
to the Python interpreted language have been done using the
dictionary subsystem of the LCG applications area/SEAL project.
The actual status and the future planning of the project will be
presented.

I. INTRODUCTION

WITHIN the application area of the LHC computing grid
(LCG) [1] the “architectural blueprint” document [2] es-

tablishes the basic architecture of the common software to be de-
veloped. Any piece of common software developed in the LCG
must conform to this coherent overall architectural vision; make
consistent use of an identified set of core tools, libraries and ser-
vices; integrate and inter-operate well with other LCG software
and experiment software; and function in the distributed envi-
ronment of the LCG.

In particular, the “blueprint” report proposes the adoption of
the analysis systems subsystem (AIDA) [3] interfaces to data
analysis components. With that, it is expected to facilitate the
integration of existing implementations or adaptations and to
provide continuity in their current use in the experiment frame-
works. As a direct outcome of this, the PI project [4] was cre-
ated in early 2003 to implement these aspects of data analysis
for the physicists as described in the report, mandated to provide
a consistent set of interfaces and tools by which physicists will
directly use the LCG software. All subsystems designs follow
an OO component model, as required by the “blueprint” docu-
ment for projects in the LCG applications area (LCG AA). The
PI project is also expected to deliver new implementations of the
AIDA interfaces, or some subset of them; other projects in the
LCG AA cover core utilities and basic services (SEAL project
[5]) and the persistency services (POOL project [6]).

Manuscript received November 15, 2004; revised June 14, 2005.
A. Pfeiffer L. Moneta, and V. Innocente are with the CERN, CH-1211 Geneva

23, Switzerland (e-mail: Andreas.Pfeiffer@cern.ch).
H. C. Lee and W. L. Ueng are with the Academica Sinica, Nankang Taipei

11,5 Taiwan, R.O.C.
Digital Object Identifier 10.1109/TNS.2005.860150

A. The Analysis Services Subsystem

The initial priorities for the work plan of the PI project
concentratedon theAnalysisServices subsystem.Thesubsystem
provides an (interactive) analysis environment (in collaboration
with the SEAL project) based on the Python interactive language
[7]. Work is starting to collaborate with the persistency project
POOL on implementing the AIDA Tuple interfaces based on
the “Collection” interfaces of POOL.

As part of the work, a review of the AIDA interfaces was done
[8], and an implementation of the AIDA interfaces based on the
corresponding ROOT (a C++ analysis tool) classes [9], has been
developed using wrappers.

The activities of the PI project aim at providing a set of anal-
ysis tools which is compliant to the “architectural blueprint,” as
well as integrating externally contributed tools—like visualiza-
tion tools and statistical analysis tools—which may or may not
be based on the AIDA interfaces.

Emphasis is put on the aspect of (future) maintenance, the
intent is to re-use existing software (mainly from sources ex-
ternal to the project), not to re-invent it. This way of not “in-
corporating” the software (i.e., copy as source into the project’s
software repository and maintaining it in parallel there) profits
from the maintenance work done by the providers of the soft-
ware, and therefore reduces the amount of resources needed for
the much simpler task of providing the integration layer.

1) The AIDA Interfaces: TheAIDAproject started inautumn
1999, when an open collaboration of teams providing analysis
software decided to create a common set of Interfaces for this do-
main. Presently there are three independent teams working in the
collaboration: the JAS [10] group (SLAC), the PI project (CERN)
and the OpenScientist [11] group (LAL/Orsay).

The AIDA group has released version 3.0 of the interfaces in
October 2002, and has recently (October 2003) published a set
of small changes leading to release 3.2.

Fig. 1 shows the various interfaces defined in AIDA. Clearly
the basic functionality of providing the service classes for data
analysis is visible. Additional functionality is defined for object
management (ITree) as well as for object creation (“factories”).
A set of “helper classes” deals with issues like fitting/minimiza-
tion and annotating AIDA objects. Finally a DTD for AIDA
has been agreed on to describe the format (or “protocol”) of all
AIDA objects in XML, allowing for easy interchange of AIDA
objects between various implementations.

The PI project conducted a review of the AIDA interfaces
involving users and developers from the LHCb, ATLAS, and
CMS experiments. The large flexibility of changing the un-
derlying implementations without changes in the user’s code
(due to the OO component architecture) was pointed out to be

0018-9499/$20.00 © 2005 IEEE

2824 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 6, DECEMBER 2005

Fig. 1. Set of AIDA interfaces.

a major advantage of using the AIDA interfaces. Other advan-
tages mentioned were the ease of integration in the experiment’s
frameworks and the clear separation of the functionalities into
the corresponding components. This has lead to the adoption of
the use of the AIDA interfaces (together with implementations
provided by the PI project) into the software of all three experi-
ments. For example, users in the ATLAS and LHCb experiments
operate with AIDA histograms as delivered by the Histogram-
Service of the Gaudi framework, tuple and function/fitting is
used in the interactive environments (based on the Python in-
terpreter) used in the experiment. In CMS the use of AIDA
histograms and tuples is mainly at the level of the end-user
software, there is no equivalent to the HistogramService in the
core framework component.

2) The PI AIDA_Proxy Classes: Within the PI project, we
have (based on one of the outcomes of the review of the AIDA
interfaces) created a “simplified” layer of classes (PI_AIDA)
on top of the AIDA interfaces, providing value-semantics but
preserving the full functionality of the AIDA interfaces. This
has been achieved by employing the Proxy pattern as described
for example in [12]. For the implementation of the AIDA inter-
faces, previous work could be re-used for a direct implementa-
tion and for a wrapper to the HBook package of CERNLIB (for
some classes). As stated above, a new wrapper to (some) ROOT
classes was created in a rather straightforward way.

The Proxy classes exhibit full compatibility with the AIDA
interface standard (i.e. they can be used wherever a method ex-
pects an AIDA Interface of the corresponding type) and at the
same time are completely independent of the actual implemen-
tation of the AIDA interfaces used. This way the full flexibility
of independence on the actual implementation from the user’s
perspective is preserved in a fully transparent way for the user.

The main advantage for the user is the ability to change the
underlying implementation without having to change any part
of the user’s code. As an example, the same code will run in
an on-line monitoring environment with an implementation
of the AIDA interfaces optimized for memory usage and as
well (even without recompilation!) in an offline environment
where the implementation of the AIDA interfaces is optimized
for high-precision statistics information. It is also possible to
“mix” the various implementations allowing the user to select,
for example, the implementation of the fitting component from
a different “provider” than the histograms. This possibility of

Fig. 2. Components of the PI_AIDA. The user typically accesses the analysis
objects through the experimental framework, an analysis tool, or an analysis
object manipulator (e.g., tuple or cloud projector). In all cases, the usage is
through the AIDA interfaces (or their PI proxy counterpart), so there is no
dependency on the specific implementation at compile or link time. The arrows
denote run-time dependencies between the components (dotted lines: optional
dependencies).

easily mixing various implementations is achieved through the
use of the plugin-manager provided by the SEAL project. It
is used in a singleton-like object (“Proxy_Manager”), which
checks if the (user-) selected specific implementation is avail-
able (in the form of a plug-in module) and loads (and manages)
the various implementations.

Fig. 2 shows the various building blocks of the proxy-
layer provided by PI. The user interacts with it only through
the use of AIDA interfaces, either directly or through their
experiment’s framework or an analysis framework or analysis
object manipulators. The respective framework can then use
either the AIDA interfaces directly or through the AIDA_Proxy
layer provided by PI the framework or tool then selects (loads)
one (or several) of the available implementations of AIDA
for the execution of the user’s code. The arrows indicate the
run-time dependencies of the components. Each component
builds completely independent, so there is no dependency at
source level at all.

3) Unit Testing: An extensive test suite has been created
based on the CppUnit testing framework [13] provided by the
SPI project [14] of the LCG application area. Various test cases
have been implemented checking not only the functionalities of
the AIDA Proxy classes, but also the consistencies between the
different histogram implementations. The framework has been
designed such that new test cases can easily be added.

Presently a total of 1164 individual tests are implemented,
only 104 of these tests show differences in the various imple-
mentations of the interfaces and are therefore (not quite cor-
rectly) reported as “failed.” These differenced come from the
fact that some implementations of the interfaces treat their in-
ternal data structures differently (caching versus noncaching)
and therefore create slightly different results for some of the
methods. The full test suite is run for every new release in order
to ensure there was no regression introduced.

II. INTEGRATION WITH OTHER TOOLS

Another aspect of the work done in the PI project dealt with
integration of AIDA based analysis objects with other tools,
which are not “AIDA-aware.”

PFEIFFER et al.: LCG PI PROJECT: USING INTERFACES FOR PHYSICS DATA ANALYSIS 2825

Fig. 3. Example of visualization of AIDA objects (binned and unbinned histograms and dataset) in HippoDraw.

A. Visualization of AIDA Objects With HippoDraw and ROOT

Two prototypes were created at the Python layer to validate
the ease of integration of other data analysis tools with AIDA.
Using the (Py)LCGDictionary from the SEAL project, bindings
of the AIDA_Proxy classes (and the AIDA interfaces) to Python
were performed, allowing the creation and manipulation of any
of these objects in the Python language.

In a second step, simple Python classes were created to
copy the AIDA objects into objects of the two chosen external
analysis tools: HippoDraw [15] and ROOT. While HippoDraw
already provides a binding to Python which is exploited here,
the binding to ROOT was done using both the PyROOT package
from SEAL (and now in ROOT) and the PyLCGDictionary
binding to ROOT classes.

As HippoDraw can deal with unbinned histograms as well
and since the corresponding classes are already available
through the (Py)LCGDictionary, the extension to also visualize
objects of these classes with HippoDraw was trivial. Fig. 3
shows examples of this.

The total effort needed to develop these integration prototypes
was remarkably low: about a day for one developer in total. This
is certainly due to the component-based architecture of AIDA
and the ease of use of Python as an interpreted OO language.

B. Cross Language (C++/Java) Interoperability

Using the JAIDA/AIDAJNI [16] packages from the SLAC
AIDA team it is also possible to use Java implementations of the

AIDA interfaces from C++ programs. Again, the use of abstract
interfaces allows this without any change in the user code by
selecting the appropriate environment at run-time. An example
of this is shown in Fig. 4.

C. The Statistical Analysis Toolkit

As an external contribution to the PI project, a toolkit to per-
form statistical comparison of binned and unbinned AIDA his-
tograms is distributed with the PI software.

This package [17] provides tools for easy comparison of
binned and unbinned histograms using a large set of algorithms,
covering the well-known Chi-square test for binned histograms
and Kolmogorov–Smirnov test for unbinned histograms as
well as a number of other algorithms (Anderson–Darling,
Cramer–von Mises, Lilliefors, Kuipers, and others), from
which the user can choose in an easy and intuitive way. The
package has a user-layer which is build on top of the layer im-
plementing the actual algorithms, this way possible changes in
the implementations can be done in a way which is completely
transparent to the user.

Also a package for modeling parametric fit problems using a
Monte Carlo approach is part of the contributed package.

III. SUMMARY

The PI project provides Interfaces (and their implementa-
tions) for physicists in the form of a consistent set of tools, which

2826 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 6, DECEMBER 2005

Fig. 4. AIDA objects plotted from a C++ program using the Java implementation of the IPlotter interfaces through the JAIDA/AIDAJNI package.

is compliant to the “architectural blueprint” of the LCG appli-
cation area.

The Analysis Services subsystem has been developed based
on the AIDA interfaces and following a component model, re-
sulting in a flexible, plug-in controlled set of implementations.
A large number of unit-tests reveal the differences in the under-
lying implementations.

A review of the AIDA interfaces has been conducted in
conjunction with users from the LHC experiments; feedback is
given to the AIDA collaboration.

Integration with external tools has been shown to be easily
feasible; prototypes in Python have been developed showing
that visualization of AIDA objects is possible from the same
application inside ROOT, HippoDraw or JAIDA.

The project has developed its deliverables within the planned
scheduling and released a first release in May 2003, followed
by a first production version (1.0.0) in early October 2003, well
on schedule with respect to the milestone planning. The latest
release in late summer 2004 includes the change to the latest
AIDA version (3.2) and the prototypes for the integration with
external frameworks and tools.

Work is continuing mainly in the area of user support and
maintenance; some development will be done in the area of in-
teroperability with other AIDA implementations and integration
with other (external) frameworks. Apart from this, the further
evolution of PI will follow the overall planning as required by
the LCG Applications Area.

REFERENCES

[1] http://cern.ch/lcg [Online]
[2] http://lcgapp.cern.ch/project/blueprint/BlueprintReport-final.doc [On-

line]
[3] http://aida.freehep.org [Online]
[4] A. Pfeiffer, V. Innocente, L. Moneta, and H.-C. Lee, “Status of the LCG

Physicist Interface (PI) project,” in Proc. ACAT Workshop. Tsukuba,
Japan: KEK, Dec. 2003, vol. 534, Nuclear Instruments and Methods, p.
106.

[5] R. Chytracek, J. Generowicz, W. Lavrijsen, M. Marino, P. Mato, and
L. Moneta et al., “Status of the SEAL project,” in Proc. ACAT Work-
shop. Tsukuba, Japan: KEK, Dec. 2003, vol. A 534, Nuclear Instru-
ments and Methods, p. 115.

[6] I. Papadopoulos, R. Chytracek, D. Duellmann, M. Frank, M. Girone,
and G. Govi et al., “POOL development and plans,” in Proc. CHEP’04,
Interlaken, Switzerland, Sep. 2004, p. 475.

[7] G. van Rossum and F. L. Drake Jr., Eds., An Introduction to
Python. Bristol, U.K.: Network Theory Ltd., 2003.

[8] http://cern.ch/pi/ireview03/aidareview.pdf [Online]
[9] R. Brun and F. Rademakers, “ROOT—;an object oriented data analysis

framework,” in Proc. AIHEPN-96, Lausanne, Switzerland, Aug. 1996.
[10] http://jas.freehep.org [Online]
[11] http://www.lal.in2p3.fr/OpenScientist/ [Online]
[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-

terns. Reading, MA: Addison-Wesley, 1995.
[13] http://sourceforge.net/projects/cppunit [Online]
[14] http://spi.cern.ch [Online]
[15] http://www.slac.stanford.edu/grp/ek/hippodraw/ [Online]
[16] M. Donszelmann, T. Johnson, V. Serbo, and M. Turri, “AIDA, JAIDA

and AIDAJNI: data analysis using interfaces,” in Proc. CHEP’04, Inter-
laken, Switzerland, Sep. 2004, p. 445.

[17] G. A. P. Cirrone, S. Donadio, S. Guatelli, A. Mantero, B. Mascialino,
and S. Parlati et al., “A goodness-of-fit statistical toolkit,” IEEE Trans.
Nucl. Sci., vol. 51, no. 5, 2004.

	toc
	The LCG PI Project: Using Interfaces for Physics Data Analysis
	A. Pfeiffer, L. Moneta, V. Innocente, H. C. Lee, and W. L. Ueng
	I. I NTRODUCTION
	A. The Analysis Services Subsystem
	1) The AIDA Interfaces: The AIDA project started in autumn 1999,

	Fig.€1. Set of AIDA interfaces.
	2) The PI AIDA_Proxy Classes: Within the PI project, we have (ba

	Fig.€2. Components of the PI_AIDA. The user typically accesses t
	3) Unit Testing: An extensive test suite has been created based
	II. I NTEGRATION W ITH O THER T OOLS

	Fig.€3. Example of visualization of AIDA objects (binned and unb
	A. Visualization of AIDA Objects With HippoDraw and ROOT
	B. Cross Language (C++/Java) Interoperability
	C. The Statistical Analysis Toolkit
	III. S UMMARY
	Fig.€4. AIDA objects plotted from a C++ program using the Java i

	A. Pfeiffer, V. Innocente, L. Moneta, and H.-C. Lee, Status of t
	R. Chytracek, J. Generowicz, W. Lavrijsen, M. Marino, P. Mato, a
	I. Papadopoulos, R. Chytracek, D. Duellmann, M. Frank, M. Girone

	G. van Rossum and F. L. Drake Jr., Eds., An Introduction to Pyth
	R. Brun and F. Rademakers, ROOT;an object oriented data analysis
	E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns
	M. Donszelmann, T. Johnson, V. Serbo, and M. Turri, AIDA, JAIDA
	G. A. P. Cirrone, S. Donadio, S. Guatelli, A. Mantero, B. Mascia

