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Abstract—The pool of persistent objects for LHC (POOL)
project, part of the large Hadron collider (LHC) computing grid
(LCG), is now entering its third year of active development. POOL
provides the baseline persistency framework for three LHC ex-
periments. It is based on a strict component model, insulating
experiment software from a variety of storage technologies. This
paper gives a brief overview of the POOL architecture, its main
design principles and the experience gained with integration into
LHC experiment frameworks. It also presents recent develop-
ments in the POOL works areas of relational database abstraction
and object storage into relational database management systems
(RDBMS) systems.

Index Terms—Data persistency, object streaming, plug-in
architecture, relational database.

I. INTRODUCTION

DATA processing at the large Hadron collider (LHC) im-
poses strict requirements on the computing models of all

the LHC experiments.
The data rate and volumes foreseen are much larger than for

previous experiments, and require a review of traditional ap-
proaches, which were typically based on explicit file handling
by the end user. Furthermore, the long LHC project lifetime
necessitates an increased focus on maintainability and change
management for the core software, especially in the area of data
handling. It has to be expected that during LHC project life-
time several major technology changes will take place and ex-
periment data handling systems will have to adapt quickly to
changes in the environment or physics research focus.

The POOL project [1] has been created in the context of the
LCG Application Area to provide the LHC experiments with
a common software framework for persisting data. The POOL
data storage mechanism is intended to cope with the exper-
iments’ requirements by applying a flexible multitechnology
data persistency mechanism.
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Fig. 1. Decomposition of the POOL API in three domains.

The task of the POOL framework is to store various types of
data, such as event, detector, bookkeeping, and condition data.
Thedatavolumesassociatedwith these typesvarybymanyorders
ofmagnitude,and thedataare typicallyaccessed inquitedifferent
ways according to their nature and role in processing activities.

The need to access widely varying data volumes with varying
access patterns implies a need for a number of specific technolo-
gies to handle data persistency. For this reason, the POOL soft-
ware architecture has been designed such that the best-adapted
technology can be used transparently for each category of data.
The POOL API has been defined to fulfill the common require-
ments of experiment data persistency, without exposing details
of the specific backend technologies adopted. This feature means
that the experiment software using POOL can be easily adapted
to changing data handling technology over the LHC lifetime.

II. POOL ARCHITECTURE

The POOL architecture has, therefore, been designed to pro-
vide a generic access to multiple persistency technology.

The POOL framework [2] has been developed in C++, the
main programming language adopted by LHC experiments for
the offline software. Part of the API is also available in python
language through dedicated wrappers.

The API has been defined as three groups of public interfaces,
representing the major domains supported: the Storage Man-
ager, the File Catalogue, and object Collections (see Fig. 1).

The Storage Manager [3] domain is responsible for providing
I/O for the data coming from several data sources: detectors,
for example, or simulation and reconstruction programs. These
categories of data are characterized by their large size and by the
fact that they are written once, very often read back, and very
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seldom updated. This access pattern is considered best served
by C++ object streaming: therefore, the file-based ROOT I/O
[4] was identified as a suitable choice for the first production
implementation of the storage back end.

The File Catalogue [5] domain is responsible for maintaining
consistent lists of data sets (files or databases) by mapping unique
and immutable identifiers to strings which describe the physical
locations (paths on file systems, connection strings for database
replicas).Theseunique, immutable identifiers formpartof thead-
dress of an object in the persistent storage. POOL provides three
different implementationsof theFileCatalogue interfaces:XML,
MySQL and EDG-RLS, serving the three main use cases of data
handling on a network-disconnected computer, on a small pro-
cessing unit and on a grid-connected system.

The Collections [5] domain supports the definition, creation,
population, use, and management of ensembles of objects stored
by means of POOL persistence services. These collections of
objects have associated attributes which can be used for fast se-
lection of the data during analysis procedures. Current imple-
mentations are based on MySQL tables and ROOT object struc-
tures. In addition, the same interfaces are exposed to the users
for implicit Collections, defined as association by physical con-
tainment of objects in one or more specific databases.

The concrete implementations of the three domains’ APIs
follow a component-based modular structure. The components
are assigned well-specified tasks, and interact via protocols
defined using C++ abstract interfaces. This strategy allows the
definition of common, low-level components for the handling to
specifictechnologies,whichcanbeusedacrossthethreedomains.

III. INTEGRATION AND PRODUCTION EXPERIENCE

The first two years of life of the POOL project have been
spent in providing a functionally complete API, providing a
ROOT-based implementation of the Storage Manager, and in
developing the first implementations of File Catalogue and Col-
lection interfaces.

Over the same period, great efforts have been made by each
of the experiments to integrate the POOL software into their
frameworks. Most of the POOL API has been integrated into
the ATLAS, CMS and LHCb offline software and is regularly
used in production activities, testing the scalability of real data
taking processes in so-called data challenges.

The approach adopted by the three experiments in integrating
POOL has been driven by the need to minimize the impact on al-
ready existing offline code, taking care in some cases to preserve
the ability to read data already written with pre-POOL technolo-
gies. For this reason, for the object storage, the three experiments
have integrated variations on the relevant POOL components, de-
pending on their varying requirements for object navigation and
object lifetime [6]. A more uniform approach has been adopted
for the integration of the File Catalogue and Collections APIs.

The usage of POOL in three experiment data challenges, in-
volving a total volume of 400 TB of data, has been a first val-
idation test for the whole architecture. In particular, the overall
API has been proven to satisfy stability and reliability require-
ments. At the same time, some feedback has been collected in

order to improve performance and extend the functionality and
support of new technologies.

IV. INCREMENTAL DEVELOPMENTS

The support of the data challenges during 2004 has required
a change of focus from pure development to user support, de-
ployment and maintenance. However, the stability demonstrated
by the POOL software in large scale activities has allowed the
POOL development program to continue relatively unhindered.

A. Migration to ROOT Version 4

The dependence of the POOL main object streaming tech-
nology on the ROOT framework requires constant adaptation
of the POOL backend to the changes introduced in new ROOT
releases. ROOT version 4, which has been recently published,
has major changes affecting POOL, in particular I/O man-
agement. Among other advantages, ROOT 4 offers automatic
schema evolution and a simplified streaming of standard C++
library containers. In order to profit from the new features
of ROOT 4 and mark the changeover, POOL has started a
version 2.0 development line.

The main challenge in this effort is to ensure backward com-
patibility for the data stored with the previous POOL version,
which was based on the ROOT 3 series. This requires the auto-
matic detection of the file format for C++ template-based con-
tainers, which is being resolved in a close collaboration between
the ROOT and POOL teams.

The development process of the integration of ROOT 4 in the
POOL 2 pre-releases is closely followed by the experiments,
which verify compatibility with their previously written data.

B. File Catalogue Deployment

This year’s data challenge productions have relied on XML
and grid catalogue implementations. For the latter several weak-
nesses have been revealed over which POOL has little control.
At the same time several new or enhanced catalogues are being
developed. Moreover, changes in the computing models of the
experiments are changing File Catalogue usage patterns, and
need to be taken into account.

To meet these changing requirements POOL is trying to gen-
eralize from specific implementations to provide an open inter-
face to accommodate upcoming components. To this end the
File Catalogue interfaces are being redesigned to achieve a clear
split between user- and developer-level interfaces, between cat-
alogue management and functionality and between meta-data
handling and file name registration and lookup.

The new interface design is also intended to enable the
synchronization of POOL File Catalogue interfaces with the
API of the underlying grid services. A testing suite based
purely on the POOL File Catalogue interfaces will be used by
developers of new implementations to validate and benchmark
their components.

C. Collection Catalogues

There are currently several implementations of components
exposing POOL Collections interfaces. These are: Implicit Col-
lections, implemented directly at the Storage Manager level and
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Explicit Collections, implemented using ROOT trees or MySQL
tables.

Cataloguing of Explicit Collections has been recently pro-
vided in response to experiment requests. Collection Catalogues
are, in general, similar to File Catalogues; however, in Collec-
tion Catalogues the entries are named Collections instead of
files. For the first implementation of the Collection Catalogues,
we have reused the existing File Catalogue implementations and
command-line tools.

Further development of Collections needs concrete input
from the analysis models of the experiments. We are expecting
that the experience gained from the analysis parts of this year’s
data challenges will provide us with the desired feedback.

V. A RELATIONAL BACKEND FOR POOL

A. Motivations and Goals

The first discussions of a relational back-end for POOL
started in late 2003, triggered by interactions between the
POOL team and the LHC experiments. It became apparent that
there were two main physics use cases that had to be addressed,
related to the LHC ConditionDB project [7] and the storage of
configuration and detector data.

It had already become evident that the data payload for the
conditions objects should be handled by POOL, which already
provides a general object storage mechanism, while keeping the
intervals of validity in a relational database. In order to avoid
having to manage two types of storage media when storing con-
ditions objects, POOL had to provide a Storage Manager im-
plementation based on the same relational database technology
that is used for storing the intervals of validity.

The second use case arises from the fact that configura-
tion and detector control data are written by online processes
directly to relational databases using native APIs or vendor-spe-
cific tools. Off-line reconstruction and analysis frameworks
often require such data to be read in as software objects, which
can be referenced by other reconstruction or analysis objects.
An example would be a reconstructed event header pointing
to objects holding information such as the beam luminosity or
the detector layout corresponding to the time that the actual
physics event took place. A relational back-end for the POOL
Storage Manager would have to handle existing relational data
which have to be presented as user-defined software objects.

B. Domain Decomposition

During the first months of 2004, the use cases for the rela-
tional back-end have been formalized in a requirements docu-
ment authored by members of the POOL team and representa-
tives of the LHC experiments.

The analysis of the requirements leads to the domain decom-
position which is shown in Fig. 2.

The POOL relational back-end comprises three main
domains.

• The Relational Abstraction Layer (RAL), which de-
fines a technologically neutral API for accessing and
manipulating data and schemas in relational databases.

Fig. 2. The components comprising the POOL relational back-end and their
relation to the rest of the software system.

• The Object-Relational Access mapping mechanism,
which is responsible for transforming C++ object
definitions to relational structures and vice-versa.

• The Relational Storage Service, which is an adapter
implementing the POOL Storage Service interfaces in
terms of the RAL and using the Object-Relational Ac-
cess mapping mechanism.

C. The Relational Abstraction Layer

The RAL has been identified as the base domain for the whole
relational back-end for several reasons: it is required in order to
achieve vendor independence; its utility in developing the rela-
tional components of POOL (File Catalogue, and Collections)
and the ConditionsDB; and potentially its utility in enabling user
application access to relational data. Moreover, its introduction
may address the problem of distributing data in RDBMS’ of dif-
ferent flavors.

The RAL abstract interfaces are defined in the RelationalAc-
cess package. Their technology-specific realizations are imple-
mented following the SEAL component model [8] as plug-in
libraries. This architecture reduces the code maintenance effort
for the relational components and allows efficient bug tracing. In
providing access to specific RDBMS technologies via plug-ins,
the risk of binding to a particular RDBMS vendor is minimized.
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Furthermore it allows the usage of multiple technologies in par-
allel. Applications which access relational databases through the
RAL automatically become testing grounds for plug-ins of new
RDBMS flavors.

The RAL interfaces allow a user to:

• describe or manipulate an existing schema, i.e. create
and describe tables and indices, define and retrieve pri-
mary keys, unique, null and foreign key constraints;

• perform data manipulation, i.e. insert, delete and up-
date rows in a table;

• perform queries involving one or more tables, sup-
porting nested queries, limiting and ordering of the re-
sult set, client cache control and scrollable database
cursors.

The handling and description of the relational data is enabled
using a simple key-value pair interface of the already existing
POOL AttributeList package. The RAL API is a clean C++ in-
terface with no SQL types involved. The only SQL fragments a
user would ever have to provide is the WHERE and SET clauses
in the data manipulation operations and queries. A type con-
verter implicitly manages C++ to SQL type conversion- and vice
versa. Each technology implementation provides a default type
mapping which is user customizable so that the user can take
advantage of vendor-specific SQL type extensions.

The encapsulation of SQL types and syntax behind a C++ in-
terface solves the problems which arise from the noncompliance
of various vendors to a common standard for some SQL opera-
tions, such as table creation. It therefore shields the clients from
the technology specific software, not only by eliminating com-
pile-time dependencies, but also semantically.

The choice of the specific plug-in to be loaded at run time is
deduced from the technology field of a connection string pro-
vided by the user. This string should have the following format
in order to be recognizable by the system:

No authentication parameters such as user name or password
appear in such a string. The reason for this is that the connec-
tion string should be used to describe only the physical location
of the data. Such strings are expected to be shared among dif-
ferent users or even stored as “physical file names” in the POOL
File Catalogue. The inclusion of the authentication parameters
is therefore not appropriate.

A user authenticates oneself with the database either explic-
itly providing a user name and a password through the RAL
API, or implicitly using an Authentication Service. Such a ser-
vice provides the system with the necessary authentication pa-
rameters for a given a connection string. POOL has provided
two implementations of the IAuthenticationService interface.
One which reads the parameter values from two environment
variables and another one which reads them from an XML file,
where multiple connection strings and their corresponding au-
thentication parameters are specified.

The RAL was first released with the POOL software in ver-
sion 1.7. In this version two technology-specific plug-ins were
provided as well: one for accessing Oracle databases and one
for accessing SQLite files.

TheOracleplug-inhasbeenimplementedusingtheOracleCall
Interface (OCI) client software. This choice was made for two
reasons: the performance advantages that this solution offers; and
the high probability of fewer configuration problems whenever
POOL is released to compile with a new C++ compiler.

Since the first pre-releases of POOL 1.8 the Oracle plug-in
has been built against the Oracle Instant Client. It has been tested
against 9i and 10g database servers. The software automatically
detects the version of the database and, on encountering a 10g
server, makes use of the recently introduced BINARY_FLOAT
and BINARY_DOUBLE types, which are stored as standard
IEEE floating point numbers in the database.

SQLite is a small C library that implements a self-contained,
embeddable, zero-configuration SQL database engine. It is file-
based and therefore the consistency of concurrent accesses is
guaranteed by the underlying file system.

A plug-in which handles accesses to MySQL databases was
also made available in the pre-releases of POOL 1.8. This library
has been implemented using the ODBC API, meaning that the
MyODBC driver is loaded during run time. The choice to use
the ODBC API instead of the C native one was done for three
reasons. The first reason was to ensure smooth transition from
the MySQL version 4.0 to version 4.1 and later to 5.0, where the
native C API as well as the underlying semantics changes con-
siderably. The second reason was that the MyODBC driver ex-
poses a more complete functionality, which allowed almost full
implementation of the RAL interfaces. Finally, the third reason
was that this plug-in could be used to serve other RDBMS tech-
nologies for which a free ODBC driver exists.

The RAL has already been used within POOL to implement
a relational File Catalogue. Some experiments have already in-
tegrated it in their frameworks and there are already experi-
ment-specific applications accessing Oracle databases through
the POOL RAL.

D. Object Storage Using the RDBMS Back-End

The second domain in the POOL relational back-end ad-
dresses the issues which emerge when a C++ class is to be
mapped to a relational structure, and vice-versa.

In the relational world tables are broadly equivalent to classes
in the object world: they define how data are laid out in memory.
Rows in a table can be thought of as the equivalent of objects of
a class because they hold data of a well defined layout.

The first fundamental difference between objects and rows is
that the former exhibit identity by construction while the latter
by default not. Identity is necessary to uniquely and unambigu-
ously address an object in a program in order to access its data. It
is also the basis of every association between objects. To solve
the problem of missing identity it is required that rows which
are to be represented as objects should be in tables which define
a primary key or a unique index.

The second difference between objects and rows derives from
the associations between two or more data sets. In the object
world there are aggregations (associations realized as persistent
references) and compositions. In the relational world the corre-
sponding constructs are foreign key constraints.
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Fig. 3. Relational schema corresponding to a mapped class.

Object associations have a well defined directionality and
multiplicity. On the other hand a table schema alone cannot de-
termine unambiguously the directionality and the multiplicity
implied by a foreign key constraint. It is up to the mapping
process to resolve these ambiguities.

To illustrate how the mapping works let us assume that a user
would like to store objects of a simple C++ class which contains
two simple members, and more complex vector member.

One of the possible mappings to a relational schema for this
class is presented in Fig. 3. The schema contains one table (T_A)
for the top-level class A, and another one (T_A_M_B) to accom-
modate the values of the data member vector m_b. The primary
key (ID) in T_A serves the role of the object identity. In the table
T_A_M_B a foreign key constraint is defined. There is also a
special column to hold the position of the elements inside the
vector.

The ObjectRelationalAccess package of POOL provides the
software for generating mappings for a given a class. It allows
a user to prepare the relational schema by creating or altering
the relevant tables. While there are default rules for generating
mappings, a user can override them. This would be the case if,
for example, one would like to generate object-relational map-
pings for existing data. POOL provides a tool which uses an
XML file to steer mapping generation; the nondefault rules are
specified using an XML schema. The generated mapping is a
hierarchical structure of elements describing the C++ types and
names of the data members as well as the names of the asso-
ciated columns and tables. The mapping hierarchy is versioned
and can be stored in the database in three hidden tables.

Object storage and retrieval is performed using SEAL reflec-
tion information for the C++ class of interest, and the corre-
sponding mapping element for this class. The version of the
mapping ensures that simple schema evolution cases are han-
dled automatically.

A POOL container of objects simply records primary key
values, and the mapping versions corresponding to an object
whose data members are written to the relational tables. The
POOL RelationalStorageService component, which will be re-
leased this year, will ensure that full object I/O can be performed
through the POOL framework in an identical -to the user- way
with the existing object streaming to ROOT files.

VI. SUMMARY

The LCG POOL project provides a software framework for
the persistency of the LHC experiment data.

The main strategy of the project has been to satisfy the re-
quirement to provide access to a variety of persistency technolo-
gies, allowing for possible changes during the LHC lifetime.

The software developed in the first phase of the project, in-
tegrates seamless a streaming technology (eg ROOT I/O) for
complex object storage. During the last year the POOL persis-
tency framework has been adopted by three LHC experiment
(ATLAS, CMS and LHCb), integrated into their offline software
and used in large-scale production activities. The POOL API has
been fully validated and it has been demonstrated to meet most
of the requirements for production.

More recently RDBMS technology has been introduced for
consistent metadata handling with transactional access. In order
to provide support for more relational database systems, the
low-level code handling the hand-shake with the database has
been factorized in a generic API (Relational Abstraction Layer)
with a specific implementation for each DB vendor supported.
In this way, all the database-specific SQL needed to operate on
the different RDBMS is hidden by dedicated plug-ins, and all
the POOL components access different RDBMS technologies
through a single, uniform protocol.

A new relational back-end for the POOL Storage Manager
has been also implemented based on the RAL, with the double
purpose of storing data described as user-defined objects in re-
lational table, or conversely presenting data already stored in
relational table as objects. These functionalities are addressing
two use cases not yet satisfied by the previous POOL compo-
nents, such as the handling and management of Condition data
and Detector online data.

The future POOL developments will be focused on tuning and
improving the performance of data access, reducing the penalty
introduced by the additional layers of the framework—RAL in
particular—and optimizing the internal procedures for the data
presentation as objects. Furthermore, the requests of the LHC
experiments, necessitating changes in the existing code or im-
plementation of new features, will be followed up in the POOL
project plans.
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