

The ATLAS Trigger: High-Level Trigger Commissioning and Operation During Early Data Taking

Ricardo Gonçalo, Royal Holloway University of London

On behalf of the ATLAS TDAQ High-Level Trigger group

EPS HEP2007 – Manchester, 18-25 July 2007

The ATLAS High-Level Trigger

- □ Overall system design
- □ Selection algorithms and steering

Trigger strategy for initial running

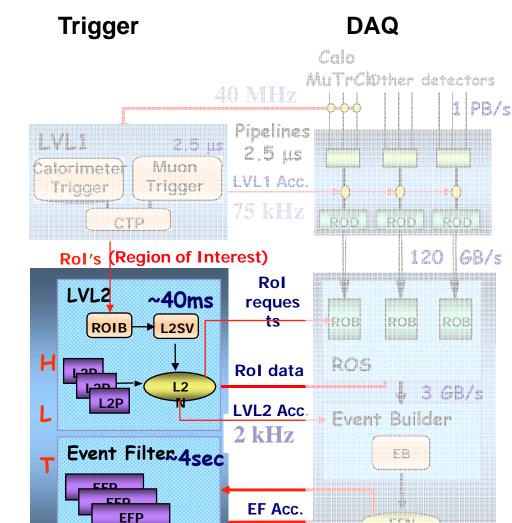
- □ Trigger algorithm organisation
- □ Trigger strategy for initial running
- □ Status

High-Level Trigger Commissioning

- Technical runs
- Cosmic-ray runs

Summary and outlook

The ATLAS High-Level Trigger


ATLAS HLT Operation in Early Running

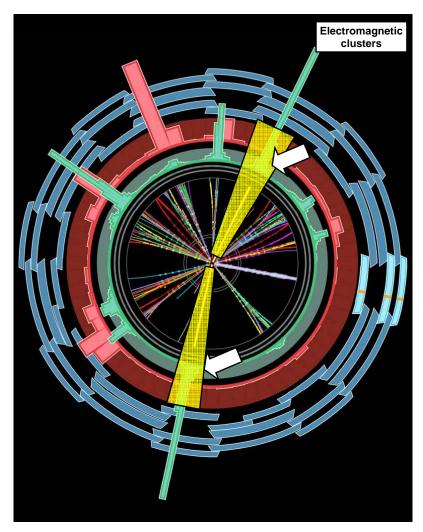
3

Ricardo Goncalo, Royal Holloway University of London

- level 1:
 - Hardware based
 - Calorimeter and muons only
 - Latency 2.5 µs
 - Output rate ~75 kHz
- Level 2: ~500 farm nodes(*)
 - Only detector "Regions of Interest" (Rol) processed -Seeded by level 1
 - Fast reconstruction
 - Average execution time $\sim 40 \text{ ms}(^*)$
 - Output rate up to ~2 kHz
- Event Builder: ~100 farm nodes(*)
- Event Filter (EF):~1600 farm nodes(*)
 - Seeded by level 2
 - Potential full event access
 - Offline algorithms
 - Average execution time $\sim 4 \text{ s}(*)$
 - Output rate up to ~200 Hz

(*) 8CPU (four-core dual-socket farm nodes at ~2GHz

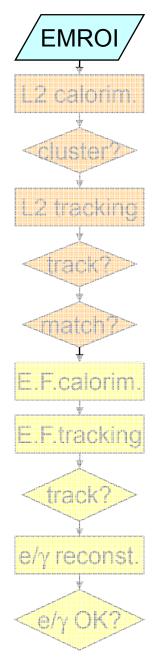
200 Hz


Event Size ~1.5 MB

EFN

300 MB/s

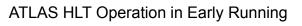
Selection method

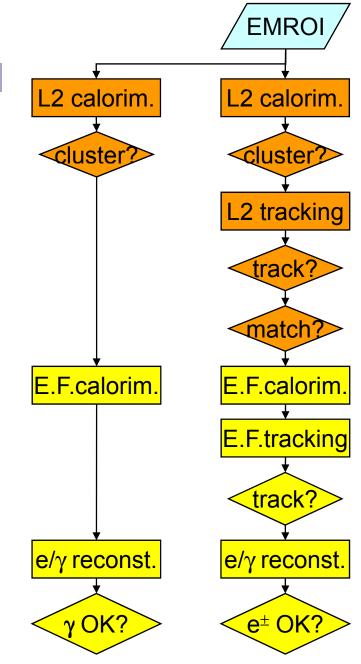

Event rejection possible at each step

Level1 **Region of Interest** is found and position in EM calorimeter is passed to Level 2

Level 2 seeded by Level 1 Fast reconstruction algorithms Reconstruction within Rol

Ev.Filter seeded by Level 2 Offline reconstruction algorithms Refined alignment and calibration




ATLAS HLT Operation in Early Running

Steering

- Algorithm execution managed by Steering
 - Based on static trigger configuration
 - □ And dynamic event data (Rols, thresholds)
- Step-wise processing and early rejection
 - □ Chains stopped as soon as a step fails
 - Reconstruction step done only if earlier step successful
 - Event passes if at least one chain is successful
- Prescale (1 in N successful events allowed to pass) applied at end of each level
- Specialized algorithm classes for all situations
 - $\hfill\square$ Topological: e.g. 2 μ with $m_{\mu\mu} \sim m_Z$
 - \Box Multi-objects: e.g. 4-jet trigger, etc...

6

Ricardo Goncalo, Royal Holloway University of London

Trigger Strategy for Initial Running

Trigger algorithms

- High-Level Trigger algorithms organised in groups ("slices"):
 - D Minimum bias, e/γ, τ, μ, jets, B physics, B tagging, E_T^{miss} , cosmics, plus combined-slice algorithms
- For commissioning
 - Cosmics slice used to exercise trigger already started!
- For initial running:
 - $\hfill\square$ Crucial to have minimum bias, e/ $\gamma,\,\tau,\,\mu,\,jets$
 - B physics will take advantage of initial low-lumi conditions (not bandwidth-critical)
 - Lower event rate allow low transverse momentum thresholds needed for B physics
 - $\hfill\square$ E_T^{miss} and B-jet tagging will require significant understanding of the detector
- Will need to understand trigger efficiencies and rates <u>using real data</u>
 - □ Zero bias triggers (passthrough)
 - □ Minimum bias:
 - Coincidence in scintillators placed in front of calo.
 - Counting inner-detector hits
 - □ Prescaled loose triggers
 - □ "Tag-and-probe" method, etc

- 1. Select good offline $Z \rightarrow \mu \mu / ee$
- Randomly select "tag" lepton; if triggered, use second lepton as "probe"
- 3. $\varepsilon = #(triggered probes)/#(all)$

Trigger strategy for initial running

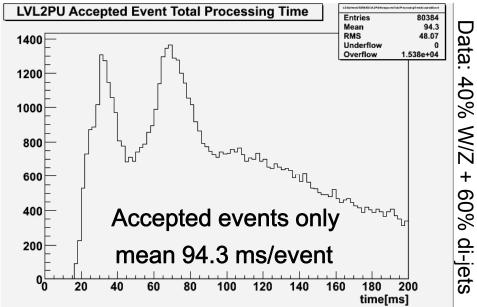
- Major effort ongoing to design a complete trigger list ("menu") for initial running
 - □ Commissioning of detector and trigger; early physics
 - Start with $\mathcal{L}=10^{31}$ cm⁻²s⁻¹ benchmark and scale accordingly
- Many sources of uncertainty:
 - \square Background rate (dijet cross section uncertainty up to factor ~2)
 - □ Beam-related backgrounds
 - □ New detector: alignment, calibration, noise, Level 1 performance (calo isolation?), etc
 - Event occupancy
- Must be conservative and be prepared to face much higher rates than expected

• Need many "handles" to understand the trigger:

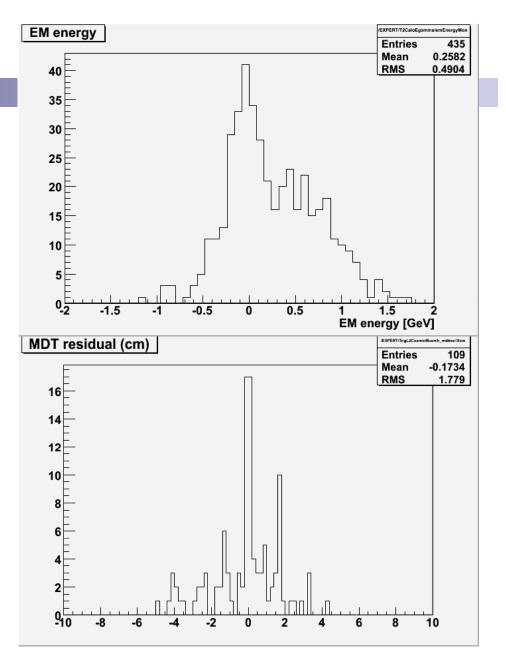
- Many low-threshold, prescaled triggers, several High Level triggers will run in "passthrough" mode (take the event even if trigger rejects it)
- □ Monitoring framework (embedded in algorithms, flexible and with small overheads)
- □ Redundant triggers
 - e.g. minimum bias selection with inner detector and with min.bias scintillators
- Expect the menu to evolve rapidly, especially once it faces real data

Status

- Trigger information routinely available in simulated data
 - Trigger decision and reconstructed objects easily accessible in simulated data
 - □ Generated much work and feedback from physics groups
- Trigger decision can be re-played with different thresholds on already reconstructed data: important for optimisation of selection
- Tools being developed for trigger optimisation
 - □ Estimate efficiency, rate and overlaps
 - □ Need to be able to react quickly to changing luminosity conditions
- A draft menu exists with some 90 triggers
 - □ Much work is under way to optimise it and test it against the expected conditions
- Rates, efficiencies and overlap between selections being studied for the menu
 - □ Including misaligned detector in simulation
 - □ Including overlapped events per bunch crossing
 - □ Including natural cavern radiation (for muons)



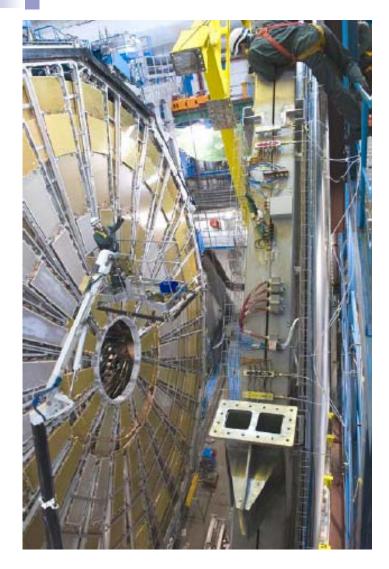
High-Level Trigger Commissioning


Technical runs

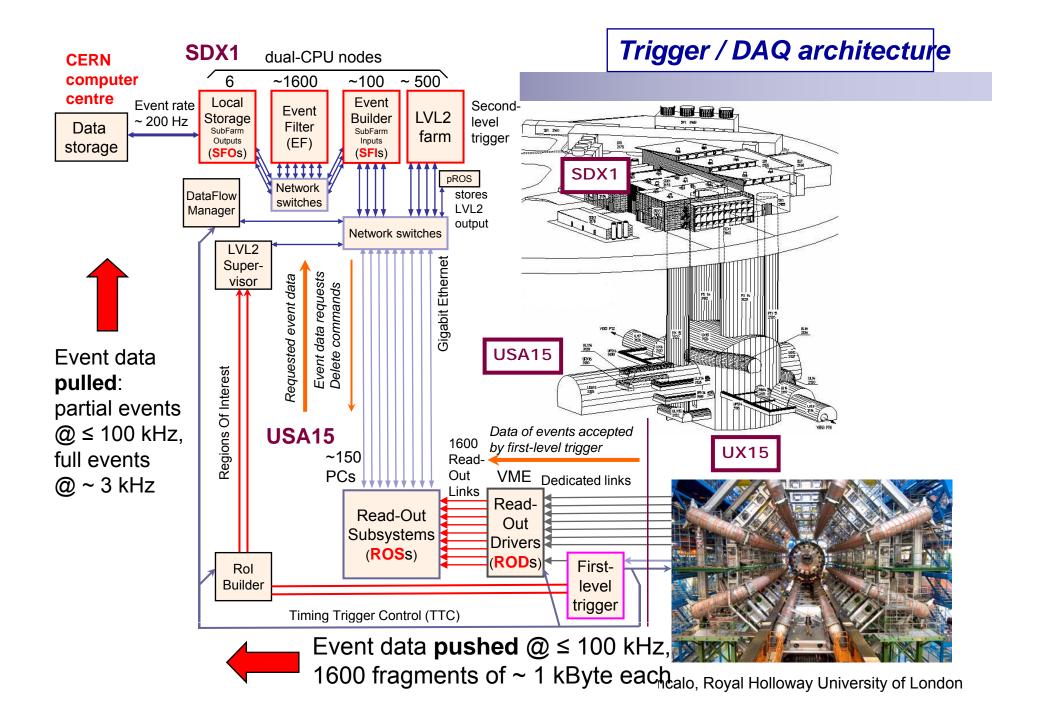
- A subset of the final High-Level Trigger CPU farm and DAQ system were exercised in "technical runs"
- Simulated (Level 1 triggered) Monte Carlo events in raw data format preloaded into DAQ readout buffers and distributed to farm nodes
- Realistic trigger list used (e/γ, jets, τ, B physics, E_T^{miss}, cosmics)
 HLT algorithms, steering, monitoring infrastructure, configuration database
- Measure/exercise:
 - Event latencies
 - Algorithm execution time
 - Monitoring framework
 - Configuration database
 - □ Network configuration
 - Run-control

Cosmics runs

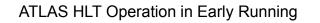
- A section of the detector was used in cosmics runs (see previous talk) including:
 - Muon spectrometer
 - Tile (hadronic) calorimeter
 - LAr (electromagnetic) calorimeter
 - Inner detector
- The High-level was exercised successfully on real data in test cosmic runs.

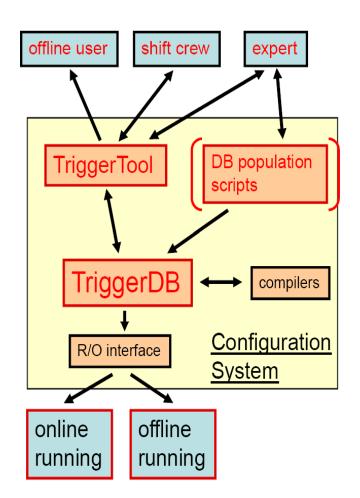


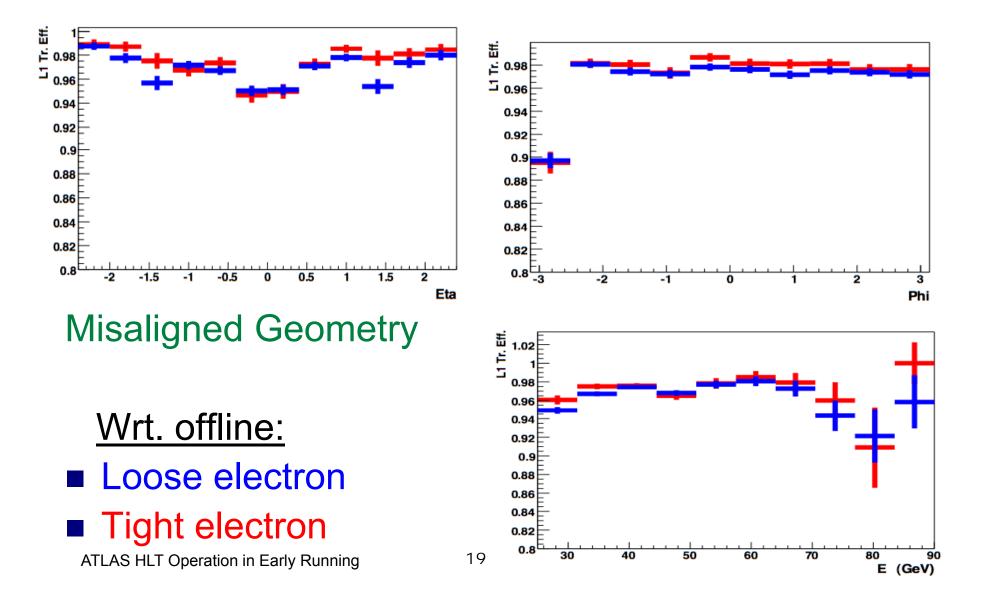
Conclusions and outlook


Conclusions and outlook

- The ATLAS High-Level Trigger is getting ready to face LHC data
- The final High-Level Trigger system was successfully exercised in technical runs on simulated data and was shown to be stable
- High-Level Trigger algorithms and machines took part in cosmics test runs
- Trigger information now routinely available in simulated data
 - Used for trigger optimisation
- Looking forward to triggering on LHC data next year!

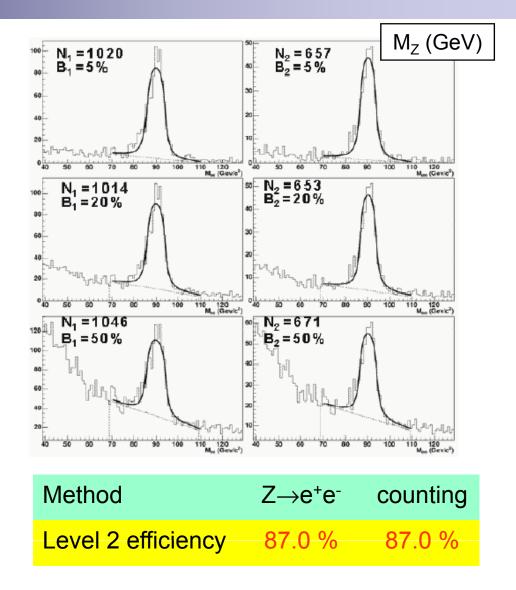



Backup slides


Configuration

- Trigger configuration:
 - Active triggers
 - Their parameters
 - Prescale factors
 - Passthrough fractions
 - □ Consistent over three trigger levels
- Needed for:
 - Online running
 - Event simulation
 - Offline analysis
- Relational Database (TriggerDB) for online running
 - □ User interface (TriggerTool)
 - Browse trigger list (menu) through key
 - Read and write menu into XML format
 - Menu consistency checks
- After run, configuration becomes conditions data (Conditions Database)
 - □ For use in simulation & analysis

Single-e Tr. Eff. (from $Z \rightarrow e^+e^-$) as a function of η , ϕ and E_T



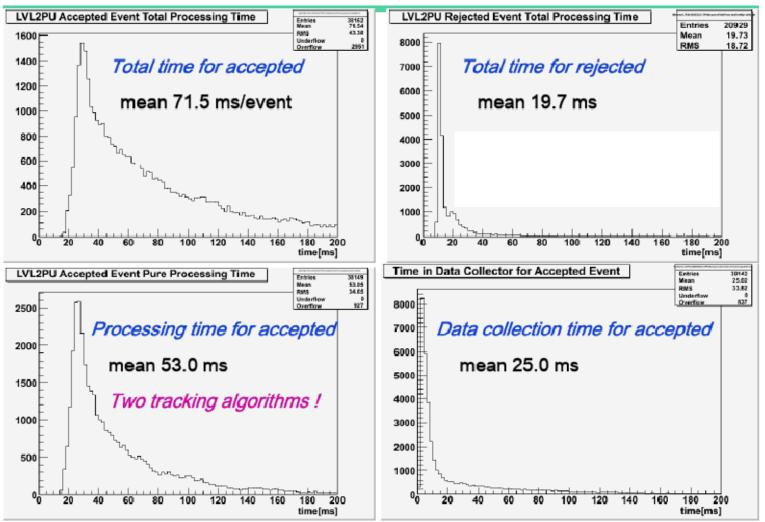
Trigger efficiency from data

- Electron trigger efficiency from real Z→e⁺e⁻ data:
 - 1. Tag Z events with single electron trigger (e.g. e25i)
 - 2. Count events with a second electron (2e25i) and

 $m_{ee}\cong m_Z$

- No dependence found on background level (5%, 20%, 50% tried)
- ~3% statistical uncertainty after 30 mins at initial luminosity
- Small estimated systematic uncertainty

Trigger	p_{T} threshold(*)	Obs
Electron	5,10,15,	Prescale
Electron	20,25,100	No presc
Di-electron	5,10	Prescale
Di-electron	15	No presc
Photon	10,15,20	Prescale
Photon	20	No presc
Di-photon	10	Prescale
Di-photon	20	No presc
Jets	5,10,18,23,35,42,70	Prescale
Jets	100	No presc
3 Jets	10,18	B-tag
4 Jets	10, 18	B-tag
4 Jets	23	Express
τ	10, 15, 20, 35	
Di- τ	10+15,10+20,10+25	
Muon	4, 6, 10, 11, 15, 20, 40	Muon spectr.
Muon	4, 6, 10, 11, 15, 20, 40	ID+Muon
Di-muon	4, 6, 10, 15, 20	Passtthr.
ΣE _T	100, 200, 304	prescale
ΣE _T	380	No presc
		01


Trigger	p_T threshold(*)	Obs
ΣE_{T} (jets)	?	?
E _T ^{miss}	12, 20, 24, 32, 36, 44	Prescale
E _T ^{miss}	52, 72	No presc
J/Ψ→ee	Topological	B-phys
μμ	4	B-phys
$J/\Psi{\rightarrow}\;\mu\;\mu$	Topological	B-phys
BsDsPhiPi	Topological	B-phys
ΒγΧ		B-phys
e + E _T ^{miss}	18+12	Prescale
μ + E_T^{miss}	15+12	No presc
Jet + E _T ^{miss}	20+30	No presc
2 Jets + E _T ^{miss}	42+30	No presc
Jet+ E _T ^{miss} +e	42+32+15	No presc
Jet+ E_T^{miss} + μ	42+32+15	No presc
4 Jet + e	23+15	No presc
4 Jet + μ	23+15	No presc
$\tau + E_T^{miss}$	15+32,25+32, 35+20,35+32	
τ+e	10+10	Express
τ+μ	10+6	Express
2τ+e	10+10	Express

ATLAS HLT Operation in Early Running

21

Ricardo Goncalo, Royal Holloway University of London

ATLAS HLT Operation in Early Running