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The ATLAS High-Level Trigger
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300 MB/sOutput rate up to 200 Hz

(*) 8CPU (four-core dual-socket farm nodes at ~2GHz



Selection method EMROILevel1 Region of Interest 
is found and position in EM 

l i i d
L2 calorim.

cluster?

calorimeter is passed to 
Level 2Event rejection possible at each step

Electromagnetic

L2 trackingLevel 2 seeded by Level 1
Fast reconstruction

Electromagnetic
clusters

match?

track?
Fast reconstruction 
algorithms 
Reconstruction within RoI

E.F.calorim.

E F t kiE.F.tracking

track?
Ev.Filter seeded by Level 2
Offline reconstruction 
l ithalgorithms 

Refined alignment and 
calibration

e/γ reconst.
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e/γ OK?



Steering EMROI

Algorithm execution managed by Steering 
Based on static trigger configuration

L2 calorim.

cluster?

L2 calorim.

cluster?
And dynamic event data (RoIs, thresholds)

Step-wise processing and early rejection
L2 tracking

p p g y j
Chains stopped as soon as a step fails
Reconstruction step done only if earlier step 
successful match?

track?

Event passes if at least one chain is 
successful E.F.calorim.

E F t ki

E.F.calorim.

Prescale (1 in N successful events allowed 
to pass) applied at end of each level

E.F.tracking

track?

Specialized algorithm classes for all 
situations

Topological: e g 2 μ with m ~ m

e/γ reconst.e/γ reconst.
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Topological: e.g. 2 μ with mμμ ~ mZ

Multi-objects: e.g. 4-jet trigger, etc……
e± OK?γ OK?



Trigger Strategy for Initial Running



Trigger algorithms

High-Level Trigger algorithms organised in groups (“slices”):
Minimum bias, e/γ, τ, μ, jets, B physics, B tagging, ET

miss, cosmics, plus combined-
slice algorithmsslice algorithms

For commissioning
Cosmics slice used to exercise trigger – already started!

For initial running:
Crucial to have minimum bias, e/γ, τ, μ, jets
B physics will take advantage of initial low-lumi conditions (not bandwidth-critical)B physics will take advantage of initial low-lumi conditions (not bandwidth-critical)

Lower event rate allow low transverse momentum thresholds needed for B 
physics

ET
miss and B-jet tagging will require significant understanding of the detector

Will need to understand trigger efficiencies and rates using real data
Zero bias triggers (passthrough)
Minimum bias: 1 Select good offline Z→μμ/eeMinimum bias:

Coincidence in scintillators placed in front of calo.
Counting inner-detector hits

Prescaled loose triggers
“T d b ” th d t

1. Select good offline Z→μμ/ee 
2. Randomly select “tag” lepton; 

if triggered, use second 
lepton as “probe”
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“Tag-and-probe” method, etc 3. ε = #(triggered probes)/#(all)



Trigger strategy for initial running

Major effort ongoing to design a complete trigger list (“menu”) for initial running
Commissioning of detector and trigger; early physicsCommissioning of detector and trigger; early physics
Start with L=1031 cm-2s-1 benchmark and scale accordingly

Many sources of uncertainty:
Background rate (dijet cross section uncertainty up to factor ~2)
Beam-related backgrounds
New detector: alignment, calibration, noise, Level 1 performance (calo isolation?), etc
Event occupancyEvent occupancy

Must be conservative and be prepared to face much higher rates than expected

Need many “handles” to understand the trigger:
Many low-threshold, prescaled triggers, several High Level triggers will run in “pass-
through” mode (take the event even if trigger rejects it)
Monitoring framework (embedded in algorithms, flexible and with small overheads)Monitoring framework (embedded in algorithms, flexible and with small overheads)
Redundant triggers

e.g. minimum bias selection with inner detector and with min.bias scintillators

E t th t l idl i ll it f l d t
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Expect the menu to evolve rapidly, especially once it faces real data



Status

Trigger information routinely available in simulated data
Trigger decision and reconstructed objects easily accessible in simulated data
G t d h k d f db k f h iGenerated much work and feedback from physics groups

Trigger decision can be re-played with different thresholds on already 
reconstructed data: important for optimisation of selectionreconstructed data: important for optimisation of selection

Tools being developed for trigger optimisation
Estimate efficiency, rate and overlapsy p
Need to be able to react quickly to changing luminosity conditions

A draft menu exists with some 90 triggers
M h k i d i i i d i i h d di iMuch work is under way to optimise it and test it against the expected conditions

Rates, efficiencies and overlap between selections being studied for the menu
Including misaligned detector in simulationIncluding misaligned detector in simulation
Including overlapped events per bunch crossing
Including natural cavern radiation (for muons)
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High-Level Trigger Commissioning



Technical runs

A subset of the final High-Level Trigger CPU farm and DAQ system 
were exercised in “technical runs”

Simulated (Level 1 triggered) Monte Carlo events in raw data format 
preloaded into DAQ readout buffers and distributed to farm nodes

Realistic trigger list used (e/γ, jets, τ, B physics, ET
miss, cosmics)

HLT algorithms, steering, monitoring infrastructure, configuration  
d t bdatabase

Measure/exercise:

D
ata: 4

•Mean 31.5 ms/event
•98% rejection @ L2
•Average 40ms/ev available

Event latencies
Algorithm execution time
Monitoring framework
C fi ti d t b

40%
 W

/Z +

Configuration database
Network configuration
Run-control

+ 60%
 di-jmean 94.3 ms/event

Accepted events only
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ets



Cosmics runs

A section of the detector 
was used in cosmics runs 
(see previous talk) 
including:including:

Muon spectrometer 
Tile (hadronic) calorimeter
LAr (electromagnetic) 
calorimeter
Inner detector

The High-level was 
exercised successfully on 
real data in test cosmic 
runs
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runs.



Conclusions and outlook



Conclusions and outlook

The ATLAS High-Level Trigger is 
getting ready to face LHC datag g y

The final High-Level Trigger system 
was successfully exercised in technicalwas successfully exercised in technical 
runs on simulated data and was shown 
to be stable

High-Level Trigger algorithms and 
machines took part in cosmics test runs

Trigger information now routinely 
available in simulated data

U d f t i ti i tiUsed for trigger optimisation

Looking forward to triggering on LHC 
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g gg g
data next year!
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Event data pushed @ ≤ 100 kHz, 
1600 fragments of ~ 1 kByte each



Configuration

Trigger configuration:
Active triggers
Th i tTheir parameters
Prescale factors
Passthrough fractions
Consistent over three trigger levelsgg

Needed for: 
Online running 
Event simulationEvent simulation
Offline analysis

Relational Database (TriggerDB) for 
online runningonline running

User interface (TriggerTool) 
Browse trigger list (menu) through key
Read and write menu into XML format
Menu consistency checks

After run, configuration becomes 
conditions data (Conditions Database)
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conditions data (Conditions Database)
For use in simulation & analysis



Single-e Tr. Eff. (from Z→e+e-)
f ti f φ d Eas a function of η, φ and ET

Mi li d G tMisaligned Geometry

Wrt. offline:
Loose electron
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Tight electron



Trigger efficiency from data

Electron trigger efficiency from 
real Z→e+e- data:

MZ (GeV)

real  Z→e e data:
1. Tag Z events with single 

electron trigger (e.g. e25i) 
2. Count events with a second 

electron (2e25i) and 
mee ≅ mZ

N d d f dNo dependence found on 
background level (5%, 20%, 
50% tried)

~3% statistical uncertainty after 
30 mins at initial luminosity

Small estimated systematic 
uncertainty Method Z→e+e- counting

Level 2 efficiency 87 0 % 87 0 %
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Level 2 efficiency 87.0 % 87.0 %



Trigger pT threshold(*) Obs

Σ ET (jets) ? ?

Trigger pT threshold(*) Obs

Electron 5,10,15, Prescale

ET
miss 12, 20, 24, 32, 

36, 44
Prescale

ET
miss 52, 72 No presc

J/Ψ→ee Topological B-phys

Electron 20,25,100 No presc

Di-electron 5,10 Prescale

Di-electron 15 No presc
J/Ψ→ee Topological B phys

μ μ 4 B-phys

J/Ψ→ μ μ Topological B-phys

BsDsPhiPi Topological B-phys

Photon 10,15,20 Prescale

Photon 20 No presc

Di-photon 10 Prescale

Di photon 20 No presc p g p y

BγX B-phys

e + ET
miss 18+12 Prescale

μ + ET
miss 15+12 No presc

Di-photon 20 No presc

Jets 5,10,18,23,35,42,70 Prescale

Jets 100 No presc

3 Jets 10 18 B-tag
Jet + ET

miss 20+30 No presc

2 Jets + ET
miss 42+30 No presc

Jet+ ET
miss +e 42+32+15 No presc

3 Jets 10,18 B-tag

4 Jets 10, 18 B-tag

4 Jets 23 Express

τ 10, 15, 20, 35
Jet+ ET

miss + μ 42+32+15 No presc

4 Jet + e 23+15 No presc

4 Jet + μ 23+15 No presc

τ 10, 15, 20, 35

Di- τ 10+15,10+20,10+25

Muon 4, 6, 10, 11, 15, 20, 40 Muon 
spectr

τ + ET
miss 15+32,25+32, 

35+20,35+32

τ + e 10+10 Express

τ + μ 10+6 Express

spectr.

Muon 4, 6, 10, 11, 15, 20, 40 ID+Muon

Di-muon 4, 6, 10, 15, 20 Passtthr.

ΣET 100 200 304 prescale
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τ + μ 10+6 Express

2 τ + e 10+10 Express

ΣET 100, 200, 304 prescale

ΣET 380 No presc
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