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Introduction

Apparently, the universe that we observe is just composed by ordinary matter.
This fact may sound trivial, but indeed it hides one of the most intriguing
questions that still deserve a convincing answer from the scienti�c community.
In fact, it is believed that, before the Big Bang, not space nor time existed. The
Big Bang then acted as a singularity from which time, space and all the matter
were originated. Since in every High Energy Physics process equal amounts of
matter and anti-matter are created, it is likely that during the �rst instants
after the Big Bang, matter and anti-matter were equally populating the early
universe. Then, matter and anti-matter started to annihilate each-other through
the ordinary processes that we study every day in particle physics, and thus the
question: why matter is still there surviving nowadays, but anti-matter seems
to have disappeared completely? The most plausible answer is that matter and
anti-matter have not a symmetric behaviour: they should somehow be di�erent!

The �rst experiments pointing out the di�erent behaviour of matter and
anti-matter date back to the 1960's, when for the �rst time a break of the CP
symmetry � i.e. the symmetry which transforms a particle into its anti-particle
in the framework of particle �eld theory � was observed in the decays of the
neutral kaons. Since then, many experiments with improving precision were
carried out, con�rming such spectacular phenomena and culminating with the
measurement of the violation of the CP symmetry in the decays of the neutral
B-mesons, by the BaBar and Belle collaborations at the beginning of the new
century.

It is worth to mention that the �rst measurement of the CP violation in
the B-meson sector by BaBar and Belle has been one of the most important
discoveries of the modern particle physics. Until this discovery, which is con-
�rming so far the spectacular consistency of the Standard Model, CP violation
remained, during almost 40 years, con�ned in the kaon sector. It was then of
paramount importance to verify whether the description of the CP violation
in the Standard Model, which was able to explain the measurements for the
kaons, was also able to correctly predict the existence of the CP violation in the
B-meson sector, i.e. con�rming that the �avour sector of the Standard Model
was a general theory for these phenomena.

The fact that such measurements needed almost 40 years to be performed
can be explained by considering that it was required to overcome a technological
challenge. In fact, as it will be discussed throughout this thesis, the measure-
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ment of the CP violation in the B-meson sector requires the determination of
the proper decay time of the B-mesons themselves. In order to do that, very
accurate silicon detectors were required, capable of a spazial resolution on the
decay vertices of the order of 100 µm. At the same time, due to the small
branching ratios of the interesting decays involved, very high luminosities were
required in order to produce a su�cient number of B-mesons, from e.g. e+e−

collisions at the Υ(4S) energy, at the level of 1032 s−1cm−2. These two chal-
lenges were solved for the �rst time together at the asymmetric B-factories,
were the BaBar and Belle detectors are still operating.

It is known that the Standard Model is not the ultimate description of el-
ementary particle dynamics, but an e�ective �eld theory valid to the energy
scale explored so far. There are indeed already available experimental evidence
of phenomena that cannot be described within the Standard Model, like for
instance neutrino oscillations. Finding and identifying hints of New Physics in
the quark �avour dynamics still represents a great challenge at the colliders. In
order to distinguish among several scenarios of New Physics depicted by di�er-
ent theoretical models, it is very important to study CP violation phenomena
and rare decays with high precision. In general a more precise knowledge of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix, responsible in the Standard
Model for the quark �avour mixing, may reveal new sources of CP violation,
e.g. due to the presence of New Physics particles in higher order processes.

The LHCb (Large Hadron Collider beauty) experiment is one of the four
experiments at the LHC, and is speci�cally dedicated to explore the B -meson
dynamics. To this end, LHCb will exploit the large beauty production cross
section, expected to be about 500µb at 14TeV p-p collisions. Di�erently from
the B -factory case, the hadronization of the b-quarks at LHC will generate all
the possible B -hadrons, remarkably the Bs and Bc mesons, where the present
experimental knowledge is still rather poor. The number of bb̄ pairs produced
at the LHCb interaction point will be of the order of 1012 per year, allowing
for the search of extremely rare decays, with branching fractions at the level of
10−9. In order to reduce the acquisition rate to a sustainable level (order of 2
kHz ), maintaining at the same time a high e�ciency on the signals of interest,
LHCb is provided with an e�cient and �exible trigger system. LHCb, by means
of its vertex detector, will be able to reconstruct the proper time of decays with
a great accuracy (∼ 40 fs) and therefore it is well suitable to study minutely CP
violation for the very fast oscillating Bs mesons. Moreover the features of the
LHCb detector are also suitable to study the charm and τ decays, which also
o�er another great opportunity to �nd out New Physics.

For my Ph.D thesis, I developed a new procedure (called the FITPull method)
to monitor and check the measurement of the B decay proper time and its error.
The procedure is based on the use of the kinematical constraints between the
track parameters of the particles involved in the B decays, without relying on
Monte Carlo information. The method can be calibrated on the decay mode
J/Ψ → µµ, which will be exploited by LHCb as a general monitor channel
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for the charged tracks calibration, with the aim of identifying and eventually
recovering imperfect measurements of the track parameters. I applied the FIT-
Pull method to two di�erent reference channels: B → h+h− and Bs → Dsπ,
evaluating its performance in correcting track measurement errors. I have also
contributed to the implementation of a software tool, the GlobalFitter , that
is used to compute the FITPull distributions of the input track parameters, and
I released the package that will be used in the o�cial LHCb analysis framework.

The thesis is organized in 4 chapters. In Chapter 1 the LHCb experiment,
its sub-detectors and trigger system are described. Chapter 2 introduces the
theoretical framework of the B-meson mixing and CP violation in the Standard
Model, with some details of the relevant measurements that LHCb will perform.
In Chapter 3 the FITPull method is described, and �nally Chapter 4 gathers
the results of some studies on Monte Carlo simulated data, by investigating the
impact of the calibration method on the physical quantities which are mostly
a�ected by the precision of the B proper time measurement.
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Chapter 1

The LHCb experiment

In the introduction it has been pointed out that the aim of the LHCb experiment
is the exploration with high precision of the CP violation in B sector. In order
to identify B decays LHCb must ful�ll a series of requirements:

1. Accurate reconstruction of the primary and secondary vertexes and precise
proper time measurements.

2. Good particle tracking, even with high occupancy.

3. Accurate particle identi�cation in a wide momentum range (1-150 GeV/c).

4. Trigger system with high e�ciency and high background rejection power.

The LHCb spectrometer (�g.1.1) was designed to reach all the forementioned
requirements.

In the next sections, I will give you a short description of the LHC charac-
teristics and then I will describe the LHCb detector with its components.

1.1 The LHC environment

The LHC supplies two interacting beams of protons with an energy in the center
mass of

√
s = 14 TeV at the bunch crossing rate of 40 MHz with a luminosity L of

2 · 1032cm−2s−1. In the LHC accelerator the particles are gathered in bunches,
each one containing about 1011 particles. Hence 40 MHz is the fundamental
frequency for the LHC and its associated electronics. The number and the
structure of bunches in each beam is:

3564 = 12× 297 =

= 11× [3× (81b+ 8e) + 30e] + [2× (81b+ 8e) + 119e]

where b means a full bunch whereas e stands for an empty one. There are 3564
space bunches, 2835 are occupied and 729 are empty. The interaction frequency
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of the 2 beams is not the same in all the interaction points of the LHC due the
presence of the empty bunches. Indeed the collisions happen only when the 2
beams are in phase, i.e. when two full bunches cross each others.

Figure 1.1: The LHCb detector is composed by several subdetectors.

The position of the interaction point of LHCb ensures 2622 crossing bunches
that represents only the 73.6% of the total full bunches in the rings, therefore
the e�ective interaction frequency of LHCb will be νeff = 29.5 MHz.

The Monte Carlo simulations, based on the current knowledge, have shown
that the bbmesons are produced predominantly at low polar angles. For this rea-
son a single-arm detector covering the high rapidity space can detect e�ciently
both b and b decay products. LHCb was designed according this criteria.

Its acceptance extends out to 300 mrad in the horizontal (bending) plane
and 250 mrad in the vertical plane (with a lower cut due to the beampipe of 20
mrad). We expect, in one year data taken (107s), we will collect about 1012 bb̄
events, since the expected quark b production cross section is about 500µb. In
fact the rate production of the bb̄ events is:

Rbb̄ = σbb̄L (1.1)

The inelastic cross section has been estimated close to 80 mb. So, unfortunately,
the ratio between the rate of bb̄ and inelastic events will be ∼ 0.6%. Due to

14



Figure 1.2: LHCb was designed to maximize the B acceptance within cost and
space constraints. The forward spectrometer relies on much softer pT triggers,
e�cient also for purely hadronic B decays.

Cross Section[mb]

σTot 100
σinel 80

σnon−radiative inelastic 55
σvisible cross section LHCb 68

σbb 0.500
σcc 1.5

Table 1.1: Cross sections for LHCb experiment.
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Figure 1.3: The beam pipe in a lateral view.

the LHCb design the best environment is reached with few primary interactions
per bunch crossing. The distribution of p-p interactions occurred per bunch
crossing can be described by a Poisson distribution:

P (µ, n) =
µn

n!
e−µ (1.2)

where the average is given by:

µ =
L ˙σtot

νeff
(1.3)

1.2 The LHCb detector

1.2.1 The Beam Pipe

The proton beams circulate in the accelerator inside ultra vacuum pipes, in
order to minimize the collisions with the residual gas in the pipe. The pipe has
to be su�ciently strong to stand the di�erence in pressure between the vacuum
inside it and the air outside in the cavern. Close to the IP, the pipe has to be
su�ciently transparent to all the primary particles to reduce multiple scattering
e�ects. The best material, that has the mechanical requirements to stand the
pression and to ensure the high radiation transparency, is beryllium. Beryllium
is used pure in several parts of the beam pipe, as well disguised as aluminium
alloy.

The beam pipe, within the LHCb detector, is composed by three di�erent
parts. The �rst one, placed around the interaction point, is cylindrical with a
radius of approximately of 120 cm and 1.8 m long. This cylinder is followed by
two conical sections. The �rst one has aperture of 25 mrad and it is 1.4 m long.
The latter section has an aperture angle of 10 mrad and it is 17.3 m long.
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Figure 1.4: In this picture is depicted the Velo structure.

1.2.2 The VELO

The presence of displaced secondary vertices respect to the primary vertex at
the IP is a remarkable and distinctive feature of the b-hadron decays. For this
reason the VErtex LOcator has to provide precise measurements of the track
coordinates close the interaction region. The VELO was optimized for the
best impact parameter resolution, the low cost of fabrication, a high thermal
conductivity and the less material budget1.

To minimize the impact parameter error, the extrapolation to primary vertex
has to be as short as possible. Thus it requires detector stations as close as
possible to the beam pipe.

This detector is composed by 21 silicon stations placed along the beam di-
rection, each one composed by two strip sensors, with 220µm thickness, for the
r and φ measurements.

Also in order to minimize the material in the interaction region, the VELO
is enclosed in a thin aluminium box with a pressure of less than 10−4 mbar.
The detector vacuum box is equipped with corrugated foils to limit the amount
of material seen by detected particles. In these conditions the typical resolution
for the primary vertex will be, along the z axis, about 40µm, whereas along the
x and the y axes will be 10 µm. For the secondary vertices the spatial resolution
depends on the number of the tracks involved in the reconstruction process and
can �uctuate from 100 to 300 µm depending on the decay under study.

1.2.3 The RICH

In LHCb, the hadron identi�cation, over a wide momentum range (1-150GeV/c),
will be performed by two Ring Imaging Cherenkov detectors (RICH) equipped
with 3 di�erent radiators (Aerogel, CF4, C4F10). These detectors exploit the

1The resolution is dominated by multiple scattering thus a minimisation of material budget
is an important design parameter to reach a better performance.
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Figure 1.5: A picture with the projection of the Velo and the beam pipe, ob-
tained observing the secondary interactions in a Monte Carlo simulation.
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Cherenkov e�ect to identify the particles. The RICH1 is placed before the TT
station, after the VELO (�g. 1.6).

Figure 1.6: The Velo sealed to RICH1 detector.

It contains two radiators: silica aerogel and �uorocarbon gas C4F10. It is
fundamental to the particle identi�cation of the low momentum range and it
plays an important role for the b �avour tagging through the b→ c→ s quark
decay chain.

The high momentum particles, up to 150GeV/c are measured by the RICH2
placed between the T3 station and the M1 chamber. �lled with CF4 gas.

Cherenkov radiation is emitted when a charged particle traverses a medium
with a velocity greater than the velocity of light in that medium. If the mo-
mentum of a certain particle exceeds a threshold, depending on its mass, a cone
of light is emitted in the forward direction. The focusing of the light is ac-
complished using spherical mirrors. They are tilted to bring the image out of
the detector acceptance (�g.1.9 and �g.1.7). In this manner the cones of light
appear as circles on the focal plane where a matrix of a pixeled photodetectors
HPD (Hybrid Photomultiplier Detector) is placed: 168 for the RICH1 and 262
for the RICH2. Each HPD tube has 1024 pixels of size 0.5 × 0.5 mm2. Using
the momentum of the reconstructed tracks, the mass and thus the particle type
can be determined. The basic equation that relates the angle θc and the particle
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Figure 1.7: The particle, if its momentum goes over the threshold, emits a
Cherenkov light cone which is projected by the mirrors on the HPD plane. In
such way each track is associated to a circle on the plane. The radius determines,
with the knowledge of the momentum, the mass of the particle.
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RICH2 RICH1

CF4 C4F10 aerogel
n 1.0005 1.0014 1.03

θMAX [mrad] 32 53 242
pthreshold(π) [GeV/c] 4.4 2.6 0.6
pthreshold(K) [GeV/c] 15.6 9.3 2.0

σemission
θ [mrad] 0.31 0.71 0.66

σchromatic
θ [mrad] 0.42 0.81 1.61
σpixel

θ [mrad] 0.18 0.83 0.78
σtrack

θ [mrad] 0.20 0.42 0.26
σtotal

θ [mrad] 0.58 1.45 2.00
Npe 19.1 35.3 6.9

Table 1.2: The table contains the main characteristics of the three radiators and
the principal errors introduced in the Cherenkov angle measurement.

RICH2 RICH1

CF4 C4F10 aerogel
π 0.03157 0.05286 0.24194
K 0.03101 0.05252 0.24187
p 0.02936 0.05157 0.24167
e 0.03162 0.05288 0.24195
µ 0.03159 0.05287 0.24194

Table 1.3: Cherenkov angles for the three radiators for a particle momentum of
80GeV/c, with di�erent mass hypotheses.

momentum is:

cos θc =
1
nβ

(1.4)

with n being the refraction index of the radiator medium. Particles start to
radiate Cherenkov light above a threshold βth = 1/n. A large refractive index
allows to identify particles in the low-momentum range, while a small index is
useful in the high-momentum range.
Therefore as a function of the mass m

p = cmβγ ⇒ β =
p√

m2c2 + p2
⇒ (1.5)

cos θc =
1
n
·
√
m2c2 + p2

p
=

1
n
·

√
m2c2

p2
+ 1 (1.6)

The Cherenkov-angle resolution is limited by the �nite pixel size of the HPD,
the variations in gas pressure, the knowledge of the trajectory of the incident
particle, the photon emission point, the e�ects of chromatic aberration and the
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Figure 1.8: Example of a RICH event. The �rst image is a zoom of a region of
the detection plane. Assuming that the truly hits are coming out from the track
1, it can be noticed the uniform distribution of the azimuthal angle φc against
the polar angle θc.

photoelectrons statistics.
The expected number of detected photoelectrons from a track coming through

a Cherenkov radiator of length L is given by

Npe =
( α

~c

)
LεAη

∫
QRT sin2 θcdEγ (1.7)

where Q is the HDP quantum e�ciency, R the mirror re�ectivity and T is the

quartz cap window transmittance (typical values are reported in table 1.2).
An event in the RICH is a set of ring images, which may overlap where there

is a high track density. The Cherenkov rings are not perfect circles but they are
elliptical in shape due to the direction of the track in the acceptance. Instead of
attempting to �t these circles, a great simpli�cation is achieved by reconstruct-
ing the Cherenkov angles at emission for each hit under the assumption that it
is originated from a given track.

A pattern recognition algorithm is performed in order to individuate the
exact particle mass. It has been conceived structured in two di�erent steps.
The �rst step is to decide from which track has originated each detected photon.
Then the second step is to �t those hits with a ring originated by that track.
The ring radius allows to calculate θc.

The pattern of hit pixels observed in the RICH photodetector is compared
to the pattern that would be expected under a given set of mass hypotheses for
the reconstructed tracks passing through the detectors, using the knowledge of
the RICH optics. A likelihood is determined from this comparison and then the
track mass-hypotheses are varied to maximize the likelihood. The RICH systems
give as output a set of probabilities for each single particle type hypothesis.
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Figure 1.10: B-Field in the detector.

Figure 1.9: RICH1. The Cherenkov radiation is emitted and led by the spherical
mirrors to the photomultipliers array.

The expected performances of the RICH system has been evaluated using
the simulated data. The performances are quanti�ed in terms of e�ciency ε
(the fraction of true particles of a given type that are identi�ed correctly) and
the purity P (the fraction of tracks that have been correctly identi�ed). The
e�ciencies are higher than 80% and the purities are also high but for muons we
have some contamination from pions [16].

1.2.4 The Magnet

LHCb exploits the forward region of the pp collisions and requires a dipole
�eld with a free aperture of ±300 mrad horizontally and ±250 mrad vertically.
Tracking detectors in and near the magnetic �eld have to provide momentum
measurement for charged particles with a precision of about 0.6% for momenta
up to 140 GeV/c. This demands an integrated �eld of 4 Tm for tracks originating
near the primary interaction point.
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Figure 1.11: The installation of the magnet in the LHCb cavern.

The LHCb magnet is a warm magnet due to the signi�cantly lower costs,
the faster construction and the lower risks. It also provides the possibility of a
rapid ramping up of the �eld, synchronous to ramping up of LHC magnets, as
well as regular �eld inversion.

The central �eld is 1.1 T and it provides a bending power along the beam
axis of 4Tm.

As shown in �g.1.10, theB �eld is not con�ned within the magnet region. A
non negligible contribution is recorded in the TT station. This feature allows to
estimate, with a rough precision, the momenta of the tracks in a very short time,
at trigger level. A more complete and precise estimation needs the information
from the T stations, but it would take too much time for the trigger system.

In the VELO region the B �eld contribution is very small and limited to the
last detector planes.

1.2.5 Silicon tracker and straw tubes: the TT chamber
and the T1-T3 tracker chambers

The LHCb Silicon Tracker is a large-surface silicon microstrip detector which
constitutes an important part of the LHCb tracking system. It uses single-sided
silicon strip detectors with a strip pitch of approximately 200 µm, produced from
6 inches wafers and arranged into up to 38 cm long readout strips. The tracking
stations are optimized for momentum measurement so they have a good spatial
resolution in the bending plane and su�cient pattern-recognition capabilities in
the non-bending plane of the magnet.
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Figure 1.12: The TT chamber layout.

The Silicon Tracker collects two parts: the "Trigger Tracker" (TT) station,
placed between RICH1 and the LHCb dipole magnet, and the "Inner Tracker"
(IT) that covers the innermost region of the tracking stations T1-T3, between
the LHCb dipole magnet and RICH2. (�g.1.13). Outside the T1-T3 stations,
the OT (Outer tracker) is placed and it covers a great part of the tracking vol-
ume. The OT system is constituted by straw tubes.

The TT chamber is devoted to two di�erent purposes. Firstly, it will be
used in the trigger to assign transverse-momentum information of large impact
parameter tracks. Secondly, it will be used in the o�ine tracking. Moreover it
is fundamental to reconstruct the long living neutral particles (Ks) that decay
outside of the pertinent region of the VELO and tracking the low momentum
particles that are bent out of the acceptance before reaching the tracking sta-
tions T1-T3.
The TT chamber is constituted by four planes, gathered in groups of two, called
TTa and TTb, of wide pitch silicon microstrip sensors and covers an area of
about 7 m2. The orientation of the strips for the �rst plane is vertical, the 2nd
plane has strips rotated by −50 around the beam axis, the 3rd plane by +50,
and for the last plane the strips are again vertical. The layout of this detector
is shown in �g.1.12.

The particle �uxes are very high near the LHCb beam pipe, but fall o�
rapidly with increasing distance, therefore the tracking system behind the mag-
net, composed by the T1-T3 stations, is divided in two parts: in the highest
particle �ux region there is a small silicon detector at high rapidity and high
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Figure 1.13: Inner Tracker: the cross shape of the detector

granularity (the inner tracker). The second part is a drift chamber detector
using straw-tube technology, the outer tracker OT, that covers the most of the
LHCb acceptance surrounding the inner tracker. Every tube has a radius of
5mm and it is �lled with a mixture of gases like Ar/CF4/CO2. This con�g-
uration achieves a drift time about 25ns. Each outer tracker station consists
of multiple layers of wires with both vertical orientation and ±5 degree stereo
angles.

1.2.6 The calorimeter system: ECAL and the HCAL

The calorimeter system is very important for the experiment since it can select at
trigger level 0 high transverse energy hadron, electron, photon candidates. Also
the calorimeter system provides the electron identi�cation that is fundamental
for �avour tagging with the semileptonic electron decays. Another qualifying
feature is the precision requested to reconstruct all the B-decays that contains
prompt γ or π0.

As seen in �g.1.1, the calorimeter system is composed by the electromagnetic
(ECAL) and the hadronic (HCAL) calorimeters. To improve the e/γ discrim-
ination the ECAL is preceded by the SPD (scintillator pad detector) and the
PS (preshower) devices.

To get optimal energy resolution for high energy photon showers, the ECAL
must be thick enough. In the [15] was proposed a 25 X0. Whereas the trigger
requirements on the HCAL resolution allow 5.6 interaction lengths.

• ECAL: The ECAL will be built with the shashlik technology. That allows
to reach a resolution for the electromagnetic shower of :

σ(E)/E = 10%/
√
E ⊕ 1.5% (1.8)

which, with the preshower information, provides a good electron/hadron
separation at trigger and at reconstruction stage. This device has to pro-
vide a wide range of digital measurements from a few 10 MeV up to 200
GeV to cover the broad momentum range of the B products.

• HCAL: It is composed by iron/scintillating tiles readout by WLS2 �bers.

2Wave Length Shifter

26



Figure 1.14: Lateral segmentation of HCAL.

Its task is measuring the energy of the hadronic showers. The granularity
of this calorimeter is lower then the ECAL and also the energy resolution
obtained is:

σ(E)/E = 80%/
√
E ⊕ 10%

Figure 1.15: SPD/PS and ECAL transverse granularity

• SPD/PS: Before the ECAL there is a 12 mm lead wall. Just before and
just after there are two detecting plastic scintillator plane the SPD and
the PS. The SPD detector provides the discrimination between neutral
and charged particles, whereas the PS contributes to the pion/electrons
discrimination.
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1.2.7 The muon chambers

The purpose of the LHCb Muon System is to provide fast (L0) triggering and
o�ine muon identi�cation. The system is made of �ve Stations (M1-M5) of
rectangular shape, covering an acceptance of ±300 mrad (horizontally) and
±200 mrad (vertically). M1 is placed in front of the SPD/PS. M2-M5 are
located downstream the Hadron Calorimeter (HCAL) and are separated by iron
�lters. The stations cover an area of 435 m2. The total absorber (including the
calorimeters) is approximately 20 interaction lengths.

The acceptance of the Muon System is about 20 % for muons from inclusive
b decays.

Each station is divided into four regions, R1 to R4, with increasing distance
from the beam axis. All the regions have approximately the same acceptance,
and their granularity is tuned in order to keep occupancy roughly constant over
the detector. The granularity of the readout is higher in the bending plane, in
order to give a rough measurement of the track momentum and pT at trigger
level.

The information must be gathered within 20 ns, so the detectors are opti-
mized for speed. Therefore the choice went to Multi Wire Proportional Cham-
bers (MWPC) with 2 mm wire spacing and a small gas gap (5 mm). Triple-GEM
detectors are used in the innermost region (R1) of Station M1. This choice was
dictated by the better aging properties of this kind of detector. There are 1380
chambers in the Muon System, of 20 di�erent sizes.

The detector readout is made on cathod pads giving a binary (yes/no) in-
formation.

The Muon Trigger is based on a �ve-fold coincidence of the stations. There-
fore its e�ciency scales as ε5, where ε is the e�ciency of each station. In order
to ensure the necessary high e�ciency and adequate redundancy, four layers of
detectors are used in M2-M5. Two layers are used in M1 (this is a compro-
mise between performances and material budget before the ECAL/PS/SPD).
In practice, since we work at �xed Minimum Bias rate, the dependence on ε is
less steep (approximately like ε3.5). In normal operating conditions ε = 46 %
for b→ µX events inside the acceptance.

1.2.8 The LHCb trigger

The trigger system is one of the most challenging points of the whole experiment.
It is projected in order to discriminate the B meson events from the minimum-
bias events. This selection is implemented by looking for particles having a large
transverse momentum (pT ) and by the presence of secondary vertices.

The trigger of LHCb is constituted by two di�erent and sequentially lev-
els. The �rst one (L0) is a hardware selector, whereas the second one (HLT)
implements a decision software algorithm.
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1.2.8.1 The �rst level L0

The trigger L0 has an input rate of 40 MHz and an output rate of 1 MHz. It is
based on the identi�cation of leptons, hadrons and photons with high-transverse
momentum (pT ) in calorimeters (scintillanting pad detector, preshower, elec-
tromagnetic and hadronic calorimeters) and muon chambers, combined with a
pile-up veto. The pile-up velo unit identi�es bunch crossings with more than
one pp interaction using a dedicated part of the vertex detector system and the
calorimeters. The pT thresholds for the hadrons and muons can be adjusted
according to physics needs.

In case of a positive answer, the L0 decision, the L0 decision unit passes the
information on the high pT particle to the following trigger.

1.2.8.2 The second level of trigger, HLT

After the hardware trigger L0, there is an another trigger device which is a
software trigger devoted to a further event discrimination in order to draw the
pure B events out.

In the Trigger TDR [14]the original schema of the trigger system placed after
the L0 level is described. It was composed by two di�erent data streams:

• Level 1 with a latency of about 58 ms at maximum L0-accept rate of 1.1
MHz. The event size was dominated by VELO and TT for a total rate of
5 GByte/s.

• HLT with no latency limitation. It runs on the L1-accept rate of 40 kHz
with a LHCb event size of approximately 5 GByte/s.

The two streams shared the same readout network and the Event Farm Filter
(EFF) .

The new project adopted recently foresees a single data stream at the L0-
accept rate of nearly 56 GByte/s. This change provides these advantages:

1. Only one data-�ow through the system.

2. Elimination of the subfarm controllers which were charged of the event
building and data distribution over the EFF nodes.

3. Cut out of the L1 Trigger Receiver Module and the decision sorter with
the relative software.

4. No latency limitations for event processing.

5. Combination of the L1 and HLT trigger processes running over each EFF
node into a single program doing away the context switching between
them.
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Rate[Hz]
Generic Stream DiMuon 600 Dimuons with a mass above 2.5

GeV and no IP cuts. These
events are used to measure the
uncertainty on lifetime
measurements.

Generic Stream Inclusive B 900 Events with one high PT and
high-IP muon, used for
systematic studies of the trigger
e�ciency and for data mining.
Because of the muon, this
sample is highly
tagging-enriched.

Exclusive Exclusive B 200 The core physics stream with
exclusively reconstructed decays
including sidebands and control
channels.

Inclusive Inclusive D∗ 300 PID-blind D∗ events with
D0 → hh and no D0 mass cut.
These events allow to measure
the PID e�ciency and mis-ID
rate. Can also be used for CP
measurements in D decays.

Inclusive Optional streams Other optional inclusive
selections are available. For
instance the inclusive Phi or
high-IP dilepton selections.

Table 1.4: HLT data stream partition
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There are four streams in the HLT, for a total of 2 kHz output rate. Some
select speci�cB decay streams for physics studies, other trigger for calibration
and e�ciency studies.

Figure 1.16: Simpli�ed data �ow in the HLT.

The main steps of the HLT are described in �g.1.16:

1. Velo Tracking The velo R and 3D tracking are performed and the PV
is built.

2. Generic HLT and full tracking First the veloTT algorithm is run and
the muon pattern recognition is made. The forward tracking is done for
selected tracks and muons candidates. The errors from the tracking are
not used, but recomputed from a parameterization. 3 Events with good
muon candidates and heavy dimuons lead to a HLT accept for the inclusive
B and dimuon streams. For the others, the generic HLT decision is made
looking for separated 2-track vertices of high-PT tracks.

3. PID and particle making The TrgParticleMaker is executed to make
pion and kaon candidates. By default every track is a kaon candidate, but
one can use the RICH to re�ne the selection.

4. Resonances building After they pass some loose preselection cuts, these
kaons and pions are combined to make K*, D0, Phi and D* intermediate
states.

5. Exclusive selections Finally the resonances are combined to makeBcandidates
for all the 10 core physics channels (see documentation). This step can

3

(a) TrgInsertTrackErrParam.opts
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lead to a HLT accept for the exclusive B or D∗ streams. The HLT will
run at 40 kHz in 10 ms (average) on a 2007 CPU.

1.3 LHCb performances

In this section I summarize the main performances of the detector related to the
recostructing capabilities taking in account the various subdetector information.

1.3.1 The tracking performances

The main task of the tracking system is to provide e�cient reconstruction of
charged-particle tracks with a precise estimates of the track parameters and
their corresponding covariances4. In the event reconstruction these estimates
are used to match the various information coming from all subdetectors: RICH
rings, calorimeter clusters and muon candidates.
The running environment of LHCb will be hadronic, so there will be a great
number of tracks per event. The fraction of B mesons produced that decays
within the LHCb acceptance is foreseen about the 35%, due to the impossibility
of detection up to 10 mrad given rise to the presence of the beam pipe. Also the
geometrical acceptance varies according to the kind of decay. In these delicate
conditions the track reconstruction will be very challenging.

Every reconstructed track state is a 5-component vector (x, y, dx
dz ,

dy
dz ,

Q
p ),

de�ned by a position and a tangent direction at given z. In last months
this conven-
tion has been
changed, but in
the thesis we
will ignore it

Depending on which parts of detector are traversed by the particle �ight, each
track is classi�ed as (�g.1.17):

• Long track: traverse the full tracking setup from the VELO to the T
stations. They are the most important set of tracks for Bdecay recon-
struction.

• Upstream track: traverse only the VELO and TT stations. They are in
general lower momentum tracks that do not traverse the magnet. However.
they pass through the RICH1 detector and may generate Cherenkov pho-
tons. They are therefore used to understand backgrounds in the particle-
identi�cation algorithm of the RICH. They may also be used for B decay
reconstruction or tagging, although their momentum resolution is rather
poor (20%).

• Downstream track: traverse only the TT and T stations. The most
relevant cases are the decay products of K0

s and Λ that decay outside the
VELO acceptance.

4A track is de�ned ghost when less of 70% of its hits are associated to a Monte Carlo
particle
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• T track: are only measured in the T stations. They are typically produced
in secondary interactions due the conversion of the neutral particles, but
useful for the global pattern recognition in RICH2.

• Velo track: are measured in the VELO only and are typically large angle
or backward tracks, useful for the primary vertex reconstruction. They
don't own any measurement for the momentum.

Figure 1.17: Classi�cation of the tracks.

1.3.1.1 The reconstruction method

A track is modeled by a set of straight line segment, tangent to the trajectory
of the particle. In LHCb these lines are called track states. As seen before, the
state vector chosen is:

~x =


x
y
tx
ty
q/p

 tx =
∂x

∂z
ty =

∂y

∂z
(1.9)

and also there is associated a 5 × 5 covariance matrix. The location of the
track states can be chosen anywhere along the trajectory. Usually the states
are determined at the measurement planes.

The track reconstruction starts with a search for track �seeds� that are the
initial track candidates. The combination of the measurement and the track
state is referred to as a node. A measurement can be transport from a node to
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another one. This procedure, called transport, exploits

~xk = fk(~xk−1) + ~wk (1.10)

where k represents the index of a node, fk is the track propagation function and
~wk is the process noise as the multiple scattering e�ects.

Figure 1.18: Tracking and reconstruction

The VELO and T seeds that have not been used as part of either a long,
upstream, or downstream track, are de�ned to be of type VELO or T track.

The hits used by the forward algorithm are neglected in the hit search of any
subsequent algorithm. Moreover the VELO and T seeds that are used by either
the forward or track matching algorithm are not considered by the upstream
or downstream tracking algorithms. This cooperative strategy, referred to as
the �ltered mode, avoids as much as possible the creation of clone tracks, i.e.,
tracks which share a large fraction of their hits. The �ltered mode is the default
tracking strategy.

While, the concurrent mode refers to the case in which each algorithm con-
siders all possible hits and seeds. This means, for instance, that the T seeding
will also �nd segments of long tracks that are already found by the forward
tracking algorithm.
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Thereafter, the track matching algorithm will consider all these VELO and
T seeds to �nd mostly the same tracks as the forward tracking.

In details, starting with a VELO seed, an algorithm runs to form a track
with each of the hits in the following T stations (TT, T1, T2, T3). This is the
forward tracking algorithm that has an e�ciency of reconstruction of about 90%.
With an enough number of hit along the trajectory, the track is reconstructed.

The leftover hits are treated in the same way but in opposite direction,
starting from T stations to the VELO region. The backward tracking has an
e�ciency of 5%.

Then the algorithm switches to the search of upstream tracks (VELO and
TT). The remainder VELO seeds and the T seeds are matched to the TT station
hits.

Remaining VELO and T seeds are stored as VELO and T tracks. After that,
all found trajectories are re�tted by a Kalman �lter, in order to determine more
precisely the track parameters. The quality of a reconstructed track resides in
the χ2and in the residuals pull distribution of the tracks' parameters.[?]

The track matching algorithm makes combinations of T seeds and VELO
seeds in order to �t long tracks. Firstly the momentum of the T seed is esti-
mated. Then the momentum is used to extrapolate the T seed to the matching
plane. The VELO tracks are extrapolated with a straight line to the same place.
A χ2criterion is used to select the correct match between the VELO and the T
seeds. For every successful match, TT hits are searched for and assigned to the
track.

The momentum of a T seed can be estimated assuming that the particle orig-
inated from the interaction point. This method, also known as p-kick method,
involves a basic simpli�cation. It assumes, at �rst approximation, that all the
e�ects of the B �eld are concentrated in a single point on z = zmagnet in the
center of the magnet, where the kick is exerted. The total integrated magnetic
�eld along the z axis is 4.2 Tm and the zmagnet is placed where the integrated
�eld is half.

By means of the Lorentz force, the actual momentum kick assumes the form

∆~p = q

∫
d~l × ~B (1.11)

and in terms of track parameters, for the main component ∆px, we obtain
[11, 10]:

∆px = px,f − px,i = p

 tx,f√
1 + t2x,f + t2y,f

− tx,i√
1 + t2x,i + t2y,i

 = q

∫ ∣∣∣d~l × ~B
∣∣∣
x

(1.12)
where tx,f and ty,f are the slopes measured in the T region and tx,i and ty,i

are the unknown slopes before the magnet. The trajectory of the particle can
be approximated by two intersecting straight lines as illustrated in �g. 1.19.
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Figure 1.19: The e�ect of the magnet is approximate by an instant kick at
zmagnet. Along this trajectory the integrated �eld is estimated and a new value
for the centre of the magnetic �eld zc is obtained.

The path starts from the T seed and it is extrapolated to the zmagnet. Here the
path makes a kink towards the nominal interaction point giving a �rst estimate
of the slope before the magnet. Then along this path, the integrated �eld is
calculated and a second focal plane at z = zc is determined. The new values
for the slopes before the magnet and the magnetic �eld value are substituted in
the eq.1.12 obtaining an estimation for the momentum p.

From this value of the momentum, the T seeds are extrapolated to a plane
placed behind the last VELO station where they are matched to the VELO
seeds. In order to select only the combinations that match correctly the T and
VELO seeds, a χ2 cut is applied. At last the TT hits have to be added to each
matched track.

The T-tracking algorithm is implemented in C++ code running within the
Gaudi software framework[12].

1.3.1.2 Performances of the tracking system and the particle iden-
ti�cation

The tracking system is devoted to provide the necessary information for the
reconstruction of the charged particles trajectories and their momenta. Tracking
performances can be represented by several quantities

• e�ciency: that is the probability to correctly reconstruct a particle in the
detector acceptance

• ghost rate: that is

• momentum resolution:
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Decays vs. Mass Resolution [MeV/c2] ATLAS CMS LHCb

Bs → µµ 80 46 18
Bs → Dsπ 43 14

Bs → J/Ψφ (without J/Ψ mass constraint) 36 32 16
Bs → J/Ψφ (with J/Ψ mass constraint) 16 13 8

Table 1.5: Mass resolutions in ATLAS, CMS and LHCb experiments.

• IP resolution

Geometrical acceptance represents a limit for the tracking system since only
35% of the B decay products are contained within the detector. As we have
already seen one of the greater dangers is the ghost track, i.e. the . For the
long tracks we can see the expected ghost rate and e�ciency in the �gure1.20.
However we can state that for B decay the predicted e�ciency is greater than
the 95%.

Figure 1.20: Long track performances and ghost rates expressed as the ratios
Efficiency = #Correct

#True and Ghost = #Ghosts
#Ghosts+$Correct .

The �gure 1.21 points out the shape of the momentum resolution and the
impact track parameter as a function of the momentum. The resolution of
the impact parameter can be expressed as a linear function of the transverse
momentum pT :

σIP = 14 +
35GeV
pT

µm (1.13)

The performances of the tracking system also can be summed up observing
some other features. The �rst result is, with any doubt, the excellent mass res-
olution as shown in tab.1.5. Another critical point is the proper time resolution
that is indispensable for all the time dependent Bs measurements (table 1.6).

The particle identi�cation process exploits the information coming from the
tracking system. The great discrimination power of pions/kaons is one of the
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Figure 1.21: Momentum Resolution and its impact parameter as a function of
the track momentum.

σtime[fs]
ATLAS ∼ 95
CMS ∼ 100
LHCb ∼ 40

Table 1.6: Proper time resolution in the Bs → Dsπ at LHC.
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Figure 1.22: Kaon e�ciency.

prestigious features of the LHCb detector given by the RICH. In the �gure
1.22 is depicted the reconstruction e�ciency of kaons in the quark decay chain
b → c → s fundamental in the tagging procedure(par.1.3.2). For kaons, with
momentum from 2 to 100 GeV/c, we have an e�ciency of 90%.

The electrons are recognized with the ECAL device. The e�ciency of the
electron identi�cation is about 95% and the mis-identi�cation π/e is nearly 0.7%
for the decay J/Ψ→ e+e− coming from the B decay Bd → J/ΨKs .

Finally the muons e�ciency is approximately 94% in a Monte Carlo sample
of Bd → J/ΨKs with a mis-identi�cation µ/π nearly 3%.

In practice the particle identi�cation is implemented combining all the in-
formation coming from the subdetectors. Every detector provides a particle
probability for a certain track. With these hypothesis and probability, a log-
likelihood function is computed. For example the probability for an electron is
calculated as
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Figure 1.23: The invariant mass in Bd → ππ hypothesis with or without the
RICH.
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Hypot. ∆ lnL E�ciency

muon ∆ lnL(µ− π) < −8 90%
electron ∆ lnL(e− µ) > 0 95%
kaon ∆ lnL(K − π) > 2, ∆ lnL(K − p) > −2 88%

Table 1.7: ∆ lnL for some particle hypothesis

L(e) = LRICH(e)× LECAL(e)× LMUON (non− µ) (1.14)

while for a muon

L(µ) = LRICH(µ)× LECAL(non− e)× LMUON (µ) (1.15)

Thus the identi�cation is performed evaluating

∆ lnL(e− µ) = ln[L(e)/L(µ)] (1.16)

1.3.2 The B �avour tagging

The B mesons can oscillate and can decay with a di�erent value of �avour. The
locution �avour tagging means the identi�cation of the initial �avour of the
B-mesons reconstructed. This capability is very important in order to study
decays involving CP asymmetries and �avour oscillations. The �avour tagging
performances is expressed by the formula:

εeff = εtagD
2 = εtag (1− 2w)2 (1.17)

where the w is the wrong tag fraction whereas the εtag is the probability that
the tagging method retrieves a result:

εtag =
R+W

R+W + U
w =

W

R+W

where W represent the wrong tagged fraction, R the right one and U the un-
tagged fraction.

The tagging algorithm exploits the B decay characteristics. Two main meth-
ods are implemented: the opposite-side tagging and the same-side tagging.

The opposite side tagging determine the characteristics of the b/hadron
which accompanies the B/signal under study. by looking at the charge of the
decaying lepton in semileptonic decays, or the kaon in b/c/s transitions. In case
the opposite B is charged the reconstructed vertex charge tags the event.

The same side tagging algorithms determine directly the �avour of the signal
B meson exploiting the correlation in the fragmentation decay chain. The pro-
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cedure of �avour tagging is implemented by several algorithms, all using long
tracks and particle identi�cation for leptons and kaons based on optimized cuts
on the combined ∆lnL quantities.
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Chapter 2

CP violation in B mesons

2.1 Prologue

The CP violation is one of the most astonishing phenomena in particles' physics.
In 1957 it was demonstrated that the electroweak interactions are C (charge
conjugation) and P (parity) not conserving. For example in the process

π+ → e+νeL
C←→ π− → e−νeL

P←→ π− → e−νeR (2.1)

a νeL left-handed, never seen in nature, appears after the C transformation.
Then, applying the parity, a truly process is obtained therefore the combination
of the two operators, CP1, is conserved this electroweak process.

However in 1964 it was observed in the neutral K kaons decay a plain CP
violation. In particular, Christenson, studied the decay KL → π+π− and he
found out that the mass eigenstates Ks and KL are not eigenstates for the
electroweak Hamiltonian for the K0 − K0

. Up to 2001 the CP violation was
observed only in the kaon system, but, in the last years it was observed also in
the B sector with unambiguous evidences.

2.2 A short introduction: CKM matrix

In the standard model, the electromagnetic and weak interactions are uni�ed
into a single electroweak theory accomplished under an SU(2) ⊗ U(1) gauge
group. This theory is based on spontaneous break (the SBB scheme):

SU(2)⊗ U(1)Y → SBB → U(1)Q

1The CP operation transform a particle in antiparticle trading o� their helicity and their
momenta. The weak interactions break separately the C and the P symmetry, but they
preserve the CP with a good approximation.
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The corresponding gauge bosons are the photon of the electromagnetic interac-
tion and the W and Z bosons of the weak force. In the SM, the weak gauge
bosons get their mass from the spontaneous symmetry breaking of the elec-
troweak symmetry from SU(2)× U(1)Y to U(1)Q, caused by the Higgs mecha-
nism, i.e. they obtain their masses in Yukawa couplings to the Higgs �eld

LY = −Y d
ijQ

I
Liφd

I
Rj − Y u

ijQ
I
Liεφ

∗uI
Rj + h.c. (2.2)

where Y u,dare 3 × 3 complex matrices, φ is the Higgs �eld, i,j are generation
labels and ε is the 2×2 antisymmetric tensor. QI

L are left-handed quark doublets,
and dI

R and uI
R are right-handed down and up type quark singlets, respectively,

in the weak-eigenstate basis. When the �eld φ acquires a vacuum expectation
value, < φ >= (0, v/

√
2), the lagrangian in eq.2.2 yields mass terms for the

quarks. Diagonalizing Y u,d by four unitary matrices, V u,d
L,R as

Mf
diag = V f

L Y
fV f†

R (v/
√

(2)) f = u, d (2.3)

the physical states are obtained. As an important result the charged currents
W± interactions couple to physical uLj and dLk quarks with coupling given by

VCKM = V u
L V

d†
L =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


The couplings of the quarks to the Higgs �eld are not diagonal, for every

weak basis. To diagonalize the Yukawa couplings, the CKM matrix has been
introduced [8]. The CKM matrix connects the electroweak eigenstates (d

′
, s
′
, b
′
)

of the down type quarks with their mass eigenstates (d, s, b) through the follow-
ing unitary transformation: d

′

s
′

b
′

 =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

  d
s
b


In fact for the quarks, the weak �avour eigenstates are di�erent from the mass

eigenstates and can be expressed as a superposition of them. By convention,
the phases are de�ned so that the isospin +1/2 quarks u, c, t are identical to
the mass eigenstates. Therefore the three doublets(weak eigenstates) are:(

u
d′

)
L

(
c
s′

)
L

(
t
b′

)
L

where the d′ s′ b′ are linear superpositions of the mass eigenstates d s b. In
the new basis the charged current (CC) interactions mediated by W± bosons
are purely left-handed and they are responsible for parity violation. Also, the
lack of �avour changing neutral current at the tree level is due to the unitary of
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the CKM matrix, since the Zµ interaction terms are now �avour diagonal. The
lagrangian that gives a description the interactions between the quarks and the
W bosons can be written as

Lcc
q = − g√

2

(
Jcc†

µ Wµ + Jcc
µ W

†
µ

)
(2.4)

where the charged current is

Jcc
µ = (ū c̄ t̄)L γµVCKM

 d
s
b


L

(2.5)

and Wµ describes the vector boson.

Applying the CP operator, the lagrangian

CPLcc
q (CP )−1

has the same density if the VCKM = V ∗CKM , i.e. the CP is conserved only if
the elements are real.

However the CPT invariance, which is a more general condition, requires the
VCKM unitarity (VCKM · V †CKM = I), thus, with three quark families, complex
elements and CP violation are allowed.

The CKM matrix is a n×n complex matrix, where n = 3, so it contains 2n2

real numbers. The constraint of unitarity requires∑
k

VikV
∗
jk = δij

i.e. for the diagonal terms there are N constraints, and for the o� diagonal
terms there are n(n− 1) constraints. In this matrix there are four independent
parameters2. One of the most popular parametrization for the CKM matrix is
the Wolfenstein one:

VCKM =

 1− λ2

2 −
λ4

8 λ Aλ3(ρ− iη)
−λ+ A2λ5

2 (1− 2ρ)− iA2λ5η 1− λ2

2 − λ
4( 1

8 + A2

2 ) Aλ2

Aλ3
[
1− (1− λ2

2 )(ρ+ iη)
]
−Aλ2(1− λ2

2 )
[
1 + λ2(ρ+ iη)

]
1− A2λ4

2

+O(λ6)

(2.6)
where the four independent parameters are: A, η, λ, ρ.

The condition of unitarity VCKMV †CKM = V †CKMVCKM = I originates 9 vec-

2In a generic n×n matrix, there are 2n2 independent real values. The CKM matrix is also
unitary then the number of independent parameters is reduced to n2. Moreover we have to
take account the number 2n of the quarks' �elds. We can rede�ne the �elds choosing 2n− 1
arbitrary relative phases. In this case we obtain at last n2 − (2n− 1) = (n− 1)2.
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Figure 2.1: Graphical representation, in the complex plane ρ-η, of the equations
2.7 and 2.8.

torial equations which are functions of the four independent parameters. Fatally
only two equations are, from an experimentalist point of view, signi�cantly.

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = O(λ3) +O(λ3) +O(λ3) = 0 (2.7)

V ∗udVtd + V ∗usVts + V ∗ubVtb = O(λ3) +O(λ3) +O(λ3) = 0 (2.8)

For the sake of the simplicity we analyse only the eq.2.7 (see the left picture in

�g. 2.1). In the complex plane this equation can be represented as a triangle
with the three sides:

VudV
∗
ub = Aλ3(ρ̄+ iη̄)

VcdV
∗
cb = −Aλ3

VtdV
∗
tb = Aλ3(1− ρ̄− iη̄)

where the ρ̄ = ρ(1− λ2/2) and η̄ = η(1− λ2/2). Dividing the three equations

by the complex quantity VcdV
∗
cb we transform the triangle in the plane and the

new vertexes are C(0, 0) B(0, 1) A(ρ̄, η̄). The sides CA and AB have length of:

CA = Rb =
|VudV

∗
ub|

|VcdV ∗cb|
=

√
ρ̄2 + η̄2 = (1− λ2/2)

1
λ

|Vub|
|Vcb|

(2.9)

AB = Rt =
|VtdV

∗
tb|

|VcdV ∗cb|
=

√
(1− ρ̄)2 + η̄2 =

1
λ

|Vtd|
|Vcb|

(2.10)
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The unitarity condition can be at last summarized asNotaFitPull

Rbe
−iγ +Rte

−iβ = 1

with

β = arg
(
VtdV

∗
tb

VcdV ∗cb

)
= arctan

(
η̄

1− ρ̄

)

γ = arg
(
VudV

∗
ub

VcdV ∗cb

)
= arctan

(
η̄

ρ̄

)
Within the SM, all the physical measurements, depending on the VCKM ma-

trix elements (decay rates, CP asymmetries...), have to be consistent with this
complex triangle.

2.2.1 The present knowledge of CKM

The SM validity is addressed to a precise knowledge of the unitary triangle.
The combination of the present experimental results are represented in �g. 2.2
obtained by the UTFit group.

Several physical observables contribute to the de�nition of the CKM picture:

• α Bd → ρπ, as well as B0
d → π+π−, gives access to sin(2α) but the second

decay requires the knowledge of the �penguin pollution�, which can be
extracted from B0

d → K±π∓

• β The B0/B
0
mixing phase φd turns out to be equal to 2β and can be

extracted from B0
d → J/ΨKs and similar channels. B0

d → φKs also
allows the measurement of 2β but it is dominated by penguin loops. Both
measurements giving di�erent results could show signs of New Physics.

• γ This angle can be accessed by the B0
d → D(∗)π channels, which give

γ+φd obtained from the measurement described above. There is also the
B0

s → DsK channel, which is sensitive to γ+!φs.

• χ This angle can be estimated with the Bs mixing phase, φs, which is
equal to −2χ in the SM and can be extracted from asymmetries in B0

s →
J/Ψφ,B0

s → J/Ψη,B0
s → ηcφ or B0

s → J/Ψη
′

• |Rb| This is the length of the CA side of the unitarity triangle (db) which
involves the ratio|Vub|/|Vcb|. Both the numerator and the denominator
can be obtained via semileptonic decays of B-mesons, e.g. b → ulν or
b→ uclν decay processes.
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Figure 2.2: Graphical representation of the CKM unitarity triangle, obtained
exploiting the present experimental results.
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Figure 2.3: Box Diagrams illustrating the Bq/Bq mixing.

• |Rt| This is the length of the AB side of the unitarity triangle (db), |Rt| =
1
λ
|Vtd|
|Vcd| , where the problematic term is Vtd. However it can be determined

with the help of the mass di�erence ∆md,s of the mass eigenstates of the

neutral Bd and Bs meson systems with ∆ms

∆md
= mBs

mBd
ε2 |Vts|2
|Vtd|2 where ε (of

order unity) expresses hadronic structure functions. More speci�cally the
ratio ∆ms/∆mdis independent of mt and short distance QCD corrections.
In principle, this ratio is a�ected by much smaller theoretical uncertainties
than the hadronic matrix elements appearing in ∆ms and ∆mdseparately.
The determination of |Vtd/|Vts| can also be done with rare decays through
b→ transitions.

Up to now the experimental results show an agreement with the SM theoretical
framework. A more precise determination of the sides and the angles of the
unitarity triangle can show up inconsistencies due to NP e�ects.

2.3 The Particle-antiParticle system

The neutral Bq mesons (bound states of b̄q quarks) can oscillate and decay (�g.
2.3). They decay through electroweak processes (∆B = 1) , while they can
oscillate to its antiparticles via �avour violation transitions (∆B = 2).

The time evolution of a particle-antiparticle system P 0 ↔ P̄ 0 is de�ned with
a vector in the Hilbert space:

|Ψ(t)〉 = a(t)
∣∣P 0

〉
+ b(t)

∣∣P̄ 0
〉

+
∑

i

|f〉 (2.11)

according to the Schroedinger equation:

i~
∂

∂t
|Ψ〉 = H |Ψ〉 (2.12)

where H is an in�nite-dimensional Hermitian matrix in the Hilbert space and it
describes the electro-weak and the strong interactions:

H = Hweak +Hstrong +Hem (2.13)

. To treat in some ways this equation, we need to make some assumptions.
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1. The initial state is a linear combination of P 0 and P̄ 0

2. We analize only the coe�cient a(t) and b(t).

3. We use the WeissKopf-Wigner3 approximation[14]

we obtain a new matricial equation:

H = M− i

2
Γ =

(
m11 − i

2Γ11 m12 − i
2Γ12

m21 − i
2Γ21 m22 − i

2Γ22

)
(2.14)

Assuming the CPT invariance, considerable simpli�cations arise from

H = H†. To �nd the solutions we diagonalize H and solve eq.2.12. The
two states are

|P1〉 = p
∣∣P 0

〉
+ q

∣∣P̄ 0
〉

|P2〉 = p
∣∣P 0

〉
− q

∣∣P̄ 0
〉 (2.15)

are the mass eigenstates with eigenvalues:

m1 − i
2Γ1 = m11 − i

2Γ11 + q
p

(
m12 − i

2Γ12

)
m2 − i

2Γ2 = m11 − i
2Γ11 − q

p

(
m12 − i

2Γ12

) (2.16)

with

(
q

p

)2

=
m∗

12 − i
2Γ∗12

m12 − i
2Γ12

(2.17)

The two mass eigenstates have di�erent masses and widths which depend on
the o� diagonal elements of the matrix H (eq.2.14):

∆m = m2 −m1 = −2Re
(
q

p

(
m12 −

i

2
Γ12

))
(2.18)

−∆Γ = Γ2 − Γ1 = 4Im
(
q

p

(
m12 −

i

2
Γ12

))
(2.19)

While we can observe that p and q terms are bound by the normalization

3We can make use of the WeissKopt-Wigner approximation, namely given the times t in
which we are interested are much larger than the typical strong interaction scale, we can
neglect the weak interactions between the �nal states, i.e. we simply set 〈fi|Hweak

∣∣f
i
′
〉

= 0.

50



Bd Bs

mass[MeV/c2] 5279.3± 0.7 5369.6± 2.4
Γ[ps] 1.530± 0.009 1.466± 0.059

∆m[ps−1] 0.507± 0.005 17.77± 0.69
∆Γ/Γ 0.009± 0.037 0.31+0.11

−0.13

Table 2.1: Main di�erences between the Bd and Bs systems.

condition
|p|2 + |q|2 = 1 (2.20)

The assignment of the the labels 1 and 2 is an arbitrary choice, with no physical
meaning. In the case of the Bd mesons the lifetime di�erence is too small to be
observed, so the classi�cation is made observing which one is heavier. Therefore
the mass di�erence is de�ned as

∆m ≡ mH −mL > 0 (2.21)

whereas the lifetime di�erence is

∆Γ = ΓH − ΓL < 0 (2.22)

A comparison of the present knowledge of the Bd and Bs properties are re-
ported in tab.2.1. We can notice that the Bs have a higher oscillation frequency
∆m and a bigger ∆Γ.

The time evolution of the mass eigenstates is ruled by these equations:

∣∣B0
j (t)

〉
= e−imjte−

Γ
2 j

t
∣∣B0

j

〉
, j = H,L (2.23)

so due to the mixing they become ( 2.16) the general time evolution formulas:

∣∣Bq
0(t)

〉
= e−imqe−

Γqt

2

[
cos

(
∆mq

2
t

) ∣∣B0
q

〉
+ i

p

q
sin

(
∆mq

2
t

) ∣∣B̄0
q

〉]
(2.24)

∣∣B̄0
q (t)

〉
= e−imqe−

Γqt

2

[
cos

(
∆mq

2
t

) ∣∣B̄0
q

〉
+ i

p

q
sin

(
∆mq

2
t

) ∣∣B0
q

〉]
(2.25)

2.3.1 Time dependent decay rates

Let us consider a speci�c decay of the neutral Bq/Bq mesons to �nal states f/f .
The transition amplitudes are expressed by the following relations:
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Af ≡
∣∣〈f |T |B0

q

〉∣∣ , Af̄ ≡
∣∣〈f̄ |T |B0

q

〉∣∣
Āf ≡

∣∣〈f |T | B̄0
q

〉∣∣ , Āf̄ ≡
∣∣〈f̄ |T | B̄0

q

〉∣∣
where |f〉 is the generic �nal state. In the next paragraph we will see how
the decay amplitudes can be computed within the SM considering all the pos-
sible hadronic contributions. The relevant fact is that the previous transition
amplitudes depend on the CKM elements.

From the eq.2.25 and the eq.2.24 we can calculate the time dependent decay
rates. For an initial

∣∣B0
q

〉
meson is:

A
[
B0

q (t)→ f
]

=
∣∣〈f |T |B0

q

〉∣∣ = e−imqte−
Γqt

2

[
cos

(
∆mq

2
t

)
Af + i

p

q
sin

(
∆mq

2
t

)
Āf

]
(2.26)

likewise, for a meson that borns as
∣∣B̄0

q

〉
, the decay amplitude is:

A
[
B̄0

q (t)→ f
]

=
∣∣〈f |T | B̄0

q

〉∣∣ = e−imqte−
Γqt

2

[
cos

(
∆mq

2
t

)
Āf + i

p

q
sin

(
∆mq

2
t

)
Af

]
(2.27)

If f 6= f we have four di�erent decay rates:

Γ
(
B0

q (t)→ f
)

=
|Af |2

2
e−Γt [I+(t) + I−(t)] (2.28)

Γ
(
B0

q (t)→ f̄
)

=

∣∣Āf̄

∣∣2
2

∣∣∣∣pq
∣∣∣∣2 e−Γt

[
Ī+(t)− Ī−(t)

]
(2.29)

Γ
(
B̄0

q (t)→ f
)

=
|Af |2

2

∣∣∣∣pq
∣∣∣∣2 e−Γt [I+(t)− I−(t)] (2.30)

Γ
(
B̄0

q (t)→ f̄
)

=

∣∣Āf̄

∣∣2
2

e−Γt
[
Ī+(t)− Ī−(t)

]
(2.31)

with

I+(t) =
(
1 + |λf |2

)
cosh

∆Γ
2
t− 2Re(λf ) sinh

∆Γ
2
t (2.32)

I−(t) =
(
1 + |λf |2

)
cos ∆mt− 2Im(λf ) sin∆mt (2.33)

Ī+(t) =
(
1 +

∣∣λ̄f̄

∣∣2) cosh
∆Γ
2
t− 2Re(λ̄f̄ ) sinh

∆Γ
2
t (2.34)
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Ī−(t) =
(
1 +

∣∣λ̄f̄

∣∣2) cos ∆mt− 2Im(λ̄f̄ ) sin∆mt (2.35)

λf ≡
p

q

Āf

Af
λ̄f̄ ≡

p

q

Af̄

Āf̄

(2.36)

2.3.2 Classi�cation of CP violation (CPV)

Depending on the decay considered, three possible mechanisms can lead to a
CP violation.

1. CP Violation in the mixing

2. CP Violation in the decay

3. CP Violation in the interference of mixing and decay

Since the amplitude phase is convention dependent, any CPV can be manifested
if at least two amplitudes with di�erent CP behaviors interfere.

CP violation in mixing This CPV in mixing is originated by

|p/q| 6= 1 (2.37)

that implies that the probability for initial pure Bq to decay as Bq or initial
Bqto decay as Bq, at time t are di�erent.

This CPV can be well isolated in semileptonic decays of neutral B:

Γ(B̄0(t)→ l+νX)− Γ(B0(t)→ l−ν̄X)
Γ(B̄0(t)→ l+νX) + Γ(B0(t)→ l−ν̄X)

=
1− |q/p|4

1 + |q/p|4
= Im

Γ12

M12
(2.38)

even if this asymmetry can be measured, since the M12 and Γ12 are a�ected by

large hadronic uncertainties, no precise extraction of CKM parameters can be
performed from this type of decays.

CP violation in decay(or direct) This kind of CPV borns from when the
two amplitudes which are di�erent. As shown in the following equations, they
depend on the strong δk and the weak phases φk :

Āf− =
〈
f−

∣∣Hweak

∣∣B−〉
=

∑
k=1,2

Ake
i(δk−φk) (2.39)

Af+ =
〈
f+

∣∣Hweak

∣∣B+
〉

=
∑

k=1,2

Ake
i(δk+φk) (2.40)
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This CPV can be best isolated in charged B decays since mixing e�ects do not
enter in this process. The asymmetry is given by

ADir
CP (B± → f±) =

Γ(B+ → f+)− Γ(B− → f−)
Γ(B+ → f+) + Γ(B− → f−)

=
1− |Āf−/Af+ |2

1 + |Āf−/Af+ |2
(2.41)

This asymmetry is non zero if there is weak or a strong phase di�erence, hence

ADir
CP =

−2A1A2 sin(δ1 − δ2) sin(φ1 − φ2)
A2

1 +A2
2 + 2A1A2 cos(δ1 − δ2) cos(φ1 − φ2)

(2.42)

The sign of strong phases δk are the same because CP is conserved by strong

interactions. The weak phases, instead, have opposite signs.

CP violation in the interference and in the decay This type of CPV can
be observed only in neutral B meson decays to CP eigenstates (f ≡ f) when
Im(λf ) 6= 0. This CP violation can be turn out as well in absence of direct
CPV with |p/q| = 1 since

|λf | =
∣∣∣∣p · Āf

q ·Af

∣∣∣∣ = 1 (2.43)

It contains aspects of both direct and indirect CP violation. In fact, in this
case, the CPV is originated from the interference of a decay with mixing a
decay without.
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2.4 Theoretical Framework

The CP asymmetries, shown in the previous paragraph, represent a valid tools
to evaluate the CPV within the SM. Unfortunately the hadronic uncertainties
of the decay transition limit the accuracy of the measurements of the CKM
elements. In some cases they even prevent any estimate. However a theoretical
tool exists and it can be employed with pro�t. The most complicated b-hadron
decays are non-leptonic transitions, that are mediated by b → q1q2d(s) with
q1, q2 ∈ {u, c} and q1, q2 ∈ {d, s}.

The starting point for the study of the weak decays of hadrons is the e�ective
weak Hamiltonian which has the following generic structure [27]:

Heff =
GF√

2

∑
i

V i
CKMCi(µ)Qi (2.44)

where the GF is the Fermi constant and the Qi are the relevant local operators
which control the decays. The Wilson coe�cients Ci and the CKM elements
describe the strength of each local operator Qi. The simplest decay that we can
analize is the beta decay:

Hβ
eff =

GF√
2

cos θc [uγµ(1− γ5)d⊗ eγµνe] (2.45)

where Vud has been expressed in terms of cos θc. In this case the Wilson co-
e�cient is equal to unity and the local operator Qi is the term between the
brackets given by a two V − A currents product. In this context the formula
2.44 can be regarded as a generalization of of the Fermi Theory to include all
quarks and leptons. Thus the e�ective hamiltonian can be thought as a simply
series, known also the operator product expansion (OPE), of e�ective vertexes
multiplied by e�ective coupling constants Ci.

Likewise the transition amplitudes for non-leptonic decays are calculated
using low energy e�ective Hamiltonian which are expressed using OPE which
factorizes QCD and weak e�ects. The OPE technique allows to separate the
short distance contributions Ci from the long distance contributions Qi. The
coe�cient Ci(µ) are the scale dependent couplings of the hadronic matrix el-
ements 〈f |Qi(µ)|i〉 and they are perturbative quantities. The short distance
part contains the information on the integrated heavy �elds which are treated
as dynamical degrees of freedom.
For the B decays there are six classes of hadronic operators, as reported in
�g.2.4:

Current-Current (Tree processes)

Q1 = (c̄αbβ)V−A(s̄βcα)V−A Q2 = (c̄b)V−A(s̄c)V−A (2.46)
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QCD Penguins

Q3 = (s̄b)V−A

∑
q=u,d,s,c,b(q̄q)V−A Q4 = (s̄αbβ)V−A

∑
q=u,d,s,c,b(q̄βqα)V−A

(2.47)
Q5 = (s̄b)V−A

∑
q=u,d,s,c,b(q̄q)V +A Q6 = (s̄αbβ)V−A

∑
q=u,d,s,c,b(q̄βqα)V +A

(2.48)
Electroweak Penguins

Q7 = 3
2 (s̄b)V−A

∑
q=u,d,s,c,b eq(q̄q)V +A Q8 = 3

2 (s̄αbβ)V−A

∑
q=u,d,s,c,b eq(q̄βqα)V +A

(2.49)
Q9 = 3

2 (s̄b)V−A

∑
q=u,d,s,c,b eq(q̄q)V−A Q10 = 3

2 (s̄αbβ)V−A

∑
q=u,d,s,c,b eq(q̄βqα)V−A

(2.50)
Magnetic Penguins

Q7γ = e
8π2mbs̄ασ

µν(1 + γ5)bαFµν Q8G = e
8π2mbs̄ασ

µν(1 + γ5)T a
αβbαG

a
µν

(2.51)
∆S = 2 and ∆B = 2 Operators

Q(∆S = 2) = (s̄d)V−A(s̄d)V−A Q(∆B = 2) = (b̄d)V−A(b̄d)V−A (2.52)

Semileptonic Operators

Q9V = (s̄b)V−A(µ̄µ)V Q10A = (s̄b)V−A(µ̄µ)A (2.53)

Qν̄ν = (s̄b)V−A(ν̄ν)V−A Qµ̄µ = (s̄b)V−A(µ̄µ)V−A (2.54)

The Wilson coe�cients Ci(µ) depend on the energy scale µ. They express the

physics contributions from scales higher than µ and due to the asymptotically
freedom of QCD; they can be calculated in perturbation theory as long as µ
is not too small. Ci include the contributions from heavy particles such as
W, Z bosons, top quark and also from the supersymmetric particles in the
supersymmetric extension of the SM. For this reason the Wilson coe�cients
depend generally on mt and also on the masses of new particles, if extensions of
SM are considered. An amplitude for a decay of a given meson M into a �nal
state F is expressed

A(M → F ) = 〈F |Heff |M〉 =
GF√

2

∑
V i

CKMCi(µ) 〈F |Qi(µ) |M〉 (2.55)

The µ value can be chosen arbitrarily and it achieves the separation of the
physics contributions to a given decay amplitude into short-distance contribu-
tions, at scales higher than µ, and long-distance contributions, corresponding to
scales lower than µ. Usually µ is chosen at the scale mass of the decaying hadron.
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So the most important feature of the OPE is, without any doubts, the pos-
sibility to separate the amplitude in two distinct parts: the short distance (per-
turbative) Ci(µ) and the long-distance (generally non-perturbative) calculation
of the matrix elements〈Qi(µ)〉. These ones involve long distance, no perturba-
tive contributions, so we have to employ some non-perturbative method such
as lattice calculations, QCD sum rules, the 1/N expansion and so on. Any-
way these approximations have some limitations. Without a reliable estimate
of these elements, we cannot determine accurately the CKM matrix in order to
observe some hints of new physics, beyond the SM.

The formula 2.55 can be transformed in a more intuitive master formula for
the weak decays amplitudes in the SM:

A(Decay) =
∑

i

Biη
i
QCDV

i
CKMFi(xt) (2.56)

where xt = m2
t/M

2
W . The Bi are the matrix elements, non perturbative, of

local operators and the ηQCD are the QCD factors from the RG-analysis. The
Fi(xt) are the Inami-Lim functions and they are from the calculation of the
box and penguin diagrams in the SM. The most likely B meson decays are the
semileptonic and hadronic decays.
The above formula can be modi�ed to contain the new physics models:

A(Decay) =
∑

i

Biη
i
QCDV

i
CKM [F i

SM + F i
new] +

∑
k

BNew
k [ηk

QCD]V k
New[Gk

New]

(2.57)
New physics can contribute to the master formula in two ways. It can modify
the role of an operator, present already in SM, summing a new short distance
functions F i

New that depend on on the new parameters in the SM extension (for
example the masses of charginos and squarks).

Also there is a second way that is described by the second term of eq. 2.57
where the matrix V i

New describes new sources of �avour and CP violation beyond
the CKM matrix.

2.4.1 Classi�cation of elementary processes

Non leptonic B decays can be thought as a combination of the tree and the
penguin diagrams. We can have:

b→ q1q̄2d(s) b→ qq̄d(s)

for the tree and the penguin diagrams. We can divide the transitions in three
classes:

• both tree and penguin diagrams are involved. q1 = q2 = q = u, c

b→ cc̄s b→ cc̄d b→ uūs b→ uūd (2.58)
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Figure 2.4: Typical penguin and box diagrams:(a) Current-Current; (b) QCD
Penguins; (c) Electroweak Penguins; (d) Magnetic Penguins; (e) Box Diagram;
(f) Semileptonic Operators

• only tree diagrams are present. q1 6= q2 ∈ {c, u}

b→ cūs b→ cūd b→ uc̄s b→ uc̄d (2.59)

• only the penguin diagrams contribute. q = d:

b→ ss̄s b→ ss̄d b→ dd̄s b→ dd̄d (2.60)

58



2.5 LHCb Physics program

LHCb can fully exploit the largeB meson yields at LHC from the start up with
an excellent mass and decay time resolution and particle ID. Also it will have a
�exible and robust trigger dedicated to B physics. In next lines I would like to
list the main physics tasks that LHCb is going to face.

2.5.1 ∆ms , ∆Γs and γ extraction from Bs → Dsπ

The frequency of the B mesons oscillations is determined by the ∆m value. The
frequency has di�erent values for the Bs and the Bd systems (tab. 2.1).
One of the �rst target that LHCb will accomplish, it will be the ∆ms extraction
from the Bs → Dsπ. We foresee about 80, 000 events in one year of data taken
(2 fb−1). For details see the par. 4.4.2.3. The study of this channel also it will
provide the CP angle γ+φs and the ∆Γs value. The angle φs is an unmeasured
quantity that will be retrieved by the Bs → J/Ψφ and the Bs → J/Ψη channels,
so in this way the angle γ will be determined. Since the decay originates from
tree diagram processes, the γ measurement is not a�ected from the presence
of new particles. A second way to reach the γ angle is described in the next
paragraph.

2.5.2 B → h+h− for γ extraction

Fleischer, following[29], we apply the U-spin symmetry in order to extract the
γ angle. We analise the behavior of the decay channels Bd(s) → h+h

′− where
h, h

′
= π,K. From these decays the extraction of the CKM phases should

be rather complicated due the hadronic uncertainties coming from the penguin
pollution, but the U-spin symmetry can lead to a plain reduction. The strategy
is only limited by theoretical uncertainties introduced by the U-spin breaking
corrections [?].

Folding in the information coming from the di�erent h+h− cases, we can
state that:

C
(
B0

d → ππ
)

= f1 (d, θ, γ)

S
(
B0

d → ππ
)

= f2 (d, θ, γ, φd)

C
(
B0

s → KK
)

= f3 (d′, θ′, γ)

S
(
B0

s → KK
)

= f4 (d′, θ′, γ, φs)

where

Cf =
1− |λf |2

1 + |λf |2
λf =

q

p

Af

Af
(2.61)

and

Sf = 2
Imλf

1 + |λf |2
(2.62)

and the index f represents the �nal states ππ and KK. So there are 4 equations
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with 7 unknowns. The mixing phases can be extracted from the Bd → J/ΨKs

and Bs → J/Ψφ and, relying on Uspin symmetry we can eliminate two further
unknowns. Four equation for 3 unknowns.

Also the B0 → K+π− and B0
s → π+K− decays di�er only in the spectator

quarks from the B0
s → K+K− and B0 → ππ channels. So we can assume

Adir
KK ' AKπ (2.63)

Adir
ππ ' AπK (2.64)

where AKπ is the charge asymmetry for the B0 → K+π− and AπK is the charge
asymmetry for B0

s → π+K−.
E�ects of new Physics can be revealed by the extraction of γ observing the

large sample of B → h+h− thanks to the great PID and vertexing capabilities
of LHCb detector.

2.5.3 B± → D0
CPK± for γ, the GLW method

The γ measurement in charged B decays exploits the interference between two
amplitudes to B− → D

0
K− and B− → D0K− , that occurs when D0 and D

0

decay to common �nal states. In the GLW method, the interference e�ect is
searched by looking at the D0

CP decays to CP eigenstates (KK, ππ, Ksπ
0, ...).

The decay rate is given by:

Γ(B± → D0
CPK

±) ∝ 1 + r2B + ηCP · 2rB cos(δB ± γ) (2.65)

if we neglect the e�ects due to the D mixing and to the CPV in the D0 decays.
The rB and δB parameters are the ratio magnitude of the amplitudes for the
processes B− → D

0
K− and B− → D0K−, and the strong phase. Since rB can

be small, the interference could be small and di�cult to measure precisely.

2.5.4 B± → D(Kπ)K±for γ, the ADS method

To enhance the interference e�ects, a technique, called ADS method, was pro-
posed in 1996 in [30] by Atwood, Dunietz and Soni. In this case the D0 from the
favoured b → c amplitude is reconstructed in the doubly-Cabibbo suppressed
�nal state K+π−, while the D

0
from the b → u suppressed amplitude is re-

constructed in the favoured �nal state K+π− the particular amplitudes of the
neutral D meson transitions. [31] The experimental observables depend on four
additional parameters: rB the ratio magnitude of the amplitudes for the pro-
cesses B− → D

0
K− and B− → D0K−(Fig. 1), the rD, the ratio magnitude

between theD0 → K+π− andD0 → K−π+ amplitudes and their relative strong
phases δB ,δD .

By measuring the four rates (�g.2.5):

Γ(B− → (K−π+)DK
−) ∝ 1 + (rBrD)2 + 2rBrD cos(δB − δD − γ) (2.66)
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Γ(B+ → (K+π−)DK
+) ∝ 1 + (rBrD)2 + 2rBrD cos(δB − δD + γ) (2.67)

Γ(B− → (K+π−)DK
−) ∝ r2B + (rD)2 + 2rBrD cos(δB + δD − γ) (2.68)

Γ(B+ → (K−π+)DK
+) ∝ r2B + (rD)2 + 2rBrD cos(δB + δD + γ) (2.69)

it is possible to extract the γ angle given the rB and rD, values measured
independently. The Monte Carlo simulations show that LHCb will produce,
every year, about 56000 favoured events, the �rst two decay rates, while only
700 of suppressed events.

Actually the LHCb strategy will be combined the GLW and the ADS meth-
ods in order to exploit the common parameters and to improve the sensitivity
of the γ angle. In tab.2.2 are summarized the expected performances of the
di�erent measurements that LHCb will study.

2.5.5 B± → D0(Ksπ
+π−, ....)K± with Dalitz plot

This method is the same ADS applied to a multibody D decays. In the case of
the three body decay, the Dalitz analysis can directly measure the γ angle from
the interference pattern. Introducing the two invariant mass:

m2
+ = m2(Ksπ

+) m2
− = m2(Ksπ

−) (2.70)

all the �mass combinations� are reported in a 2D plot, like �g.2.6 . The total B
decay amplitude is the sum of the contributions from D0 and D

0
, as reported

in the following lines

A− = f(m2
−,m

2
+) + rBe

i(−γ+δB)f(m2
+m

2
−) (2.71)

A+ = f(m2
−,m

2
+) + rBe

i(γ+δB)f(m2
+m

2
−) (2.72)

where

f(m2
+,m

2
−) =

 N∑
j=1

aje
iαjAj(m2

+,m
2
−)

 + beiβ (2.73)

with N the number of resonances, aj and αj amplitude and phase parameters
from the B factories and Aj model dependent parametrization of the matrix
element.

Γ(m2
−,m

2
+) =

∣∣f(m2
−,m

2
+)

∣∣2 + r2B
∣∣f(m2

+,m
2
−)

∣∣2 +

+2rBRe
[
f(m2

−,m
2
+)f∗(m2

+,m
2
−)ei(−γ+δB)

]
(2.74)

Thus the interference contains the γ dependence. At present the preliminary
studies with Monte Carlo have shown a good precision for the γ measurement,
as reported in the tab. 2.2.

The same idea can be applied in some decays where the D0 decays in four
bodies, like the B± → D0(KKππ)K±.
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Figure 2.5: Favoured and suppressed decays in B± → DK± channel. They give
the same �nal state.
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Figure 2.6: The Dalitz plot of the decay D0 → Ksπ
+π−. The regions with

higher density are the resonance of this decay.

B mode D mode Method σ(γ)
B+ → DK+ Kπ +KK/ππ +Kπππ ADS+GLW 5◦-15◦

B+ → D∗K+ Kπ ADS+GLW under study
B+ → DK+ Ksππ Dalitz 15◦

B+ → DK+ KKππ 4-body �Dalitz� 15◦

B+ → DK+ Kπππ 4-body �Dalitz� under study
B0 → DK∗0 Kπ +KK + ππ ADS+GLW 7◦-10◦

B0 → DK∗0 Ksππ Dalitz under study
BS → DSK KKπ tagged, A(t) 13◦

Table 2.2: Expected γ sensibilities for the LHCb experiment in various B → DK
channels.
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Channels σ(φs)[rad ] Weight ( σ/σi)2 [ % ]

Bs → J/Ψη(π+π−π0) 0.142 2.3
Bs → DsDs 0.133 2.6

Bs → J/Ψη(γγ) 0.109 3.9
Bs → ηcφ 0.108 3.9

Combined sensitivity for pure CP eigenstates 0.060 12.7
Bs → J/Ψφ 0.023 87.3

Combined sensitivity for all CP eigenstates 0.022 100.0

Table 2.3: Expected sensibility to φs measurement for di�erent decay channel
in LHCb.

2.5.6 Bs → J/Ψφ, Bs → J/Ψη,Bs → ηcφ and Bs → DsD̄s for
2χ

Both Bs Bs can decay to the same �nal state J/Ψφ. Due to the Bs mixing,
this process follows two di�erent quantum paths. Their interference, originates
a time dependent CP asymmetry, which can point out the phase di�erence
between the Bs/Bs oscillation amplitude. The phase di�erence φs, within the
SM, is estimated as

φs = −2χ = 2arg
(
V ∗csVcb

V ∗tsVtb

)
(2.75)

with a little approximation4 already used in the golden plated decay channel
Bd → J/ΨKs.

The Wolfenstein parametrization ensures that the phase of the decay am-
plitude is zero, so the observed phase can be wholly ascribed to the Bs/Bs

oscillation amplitude. Also the SM foresees a small value for the phase φs
5and

thus, if there is new physics in the b→ s transitions, it will be clearly visible in
the CP asymmetry, since

Amix = sinφs (2.76)

Despite the Bd → J/ΨKs channel, the analysis of the Bs → J/Ψφ is more
challenging since both particles J/Ψ and φ are vectors and the decay proceeds
with three di�erent interfering amplitudes, 2 CP even and 1 CP odd. So a
completely angular analysis is required (for details see the par. 2.5.8.1). At
last the observable time asymmetry is dependent on the ∆Γs and ∆msvalues,
therefore a great proper time resolution is required.

In case of the Bs → J/Ψη channel only one CP eigenstate contributes, so the
analysis is simpler but the statistics will be about a factor 10 less. Some other
minor channels can contribute to the φs measurement. In tab. 2.3 are sum-
marized the expected performances in one year of data taking, for the di�erent
measurements that LHCb will study.

4In a similar way as in the Bd → J/ΨKs there are some penguin contributions, but the
leading penguin term has the same phase as the tree diagram. So they can be neglected.

52χ = 2ηλ2 = O(0.04)

64



2.5.7 Bd → π+π−π0 and B → ρρ with Dalitz analysis for α
extraction

The time dependent analysis of the B → π0π+π− Dalitz space provides enough
observables to �t the di�erent tree and Penguin graph contributions, and hence
determine the unitarity triangle angle α with precision of σ(α) < 10 degrees in
one year of data taking.

The extraction of α from the CP asymmetry in B → ρ+ρ− is directly
analogous to the method �rst investigated in the π+π− system. In contrast
to π+π−, however, the isospin analysis proposed by Gronau and London here
provides signi�cant constraints on α because of the small branching ratio for
B → ρ0ρ0. The main contribution of LHCb to the B → ρρ analysis could be
the B → ρ0ρ0 measurement since the annual yield of the LHCb will be not
competitive with the present production of the other B experiments.6

In general the �nal state is composed by two vectors and then an angular
analysis is required. Furthermore, any complications brought about by the
vector-vector �nal state are minor, since the longitudinal polarization is found
to be almost maximal.

2.5.8 Looking for New Physics: Rare Decays

Beside the study of B decay asymmetries and rates, to measure the unitarity
triangle angles, thanks to the high statistics and precision, LHCb will be able to
measure several rare decays. Some of these processes are particularly important
to test new physics contributions.

2.5.8.1 Bs → φφ for new Physics

This decay is a FCNC (�avour changing neutral current) process, that is medi-
ated by loop diagrams as is shown in �g.2.7. For this reason the process is a rare
decay. New physics contributions, due to supersymmetric particle exchange in
the loop, can contribute signi�cantly to the asymmetry. Within the SM the CP
asymmetry is expected < 1% since

λSM
φφ =

q

p

Aφφ

Aφφ
=
VtbV

∗
ts

V ∗tbVts
· V

∗
tbVts

VtbV ∗ts
= 1 (2.77)

So a large asymmetry will be a clear sign of new physics.
The �nal state is composed by two vectors so an angular analysis is required

in order to extract the CP asymmetries. The helicity amplitudes are exploited
to calculate the di�erential decay distributions

dΓ(t)
d cos θ1d cos θ2dφ2dφ1

∝

∣∣∣∣∣∣
∑

λ=0,±1

Hλ(t)D1∗
λ,0(φ1, θ1, 0)D1∗

λ,0(φ2, θ2, 0)

∣∣∣∣∣∣
2

(2.78)

6Expected annual yields in LHCb (2fb−1) : B± → ρ±ρ0 9000 events (B/S∼ 1); B → ρ−ρ+

2000 events (B/S< 5@ 90%C.L.).
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Figure 2.7: FCNC processes govern the Bs → φφ decay.

where

H0(t) = A0(t) H+1(t) =
(
A‖ +A⊥

)
/
√

2 H−1(t) =
(
A‖ −A⊥

)
/
√

2

with A0 A‖ CP even states and A⊥ the odd one. So the time dependent
di�erential description is

dΓ(t)
d cos θ1d cos θ2dφ2dφ1

∝ |A0(t)|2f1(θ1, θ2, χ) + |A‖(t)|2f2(θ1, θ2, χ)+

+|A⊥(t)|2f13(θ1, θ2, χ) + Im(A∗‖(t)A⊥(t))f4(θ1, θ2, χ)+

+Re(A∗‖(t)A0(t))f5(θ1, θ2, χ) + Im(A∗0(t)A⊥(t))f6(θ1, θ2, χ) (2.79)

where fi(θ1, θ2, χ) are six symmetric angular functions under φ meson inter-
change. Assuming the branching fraction determined by the CDF collaboration
(∼ 10−5), in the LHCb detector will detect about 4000 events for one year of
data taking and reach sensitivity of new physics phase σ(φNP ) = 0.10.

2.5.8.2 A rare decay: Bs → µµ

The Bs → µµ is a very suppressed decay in the SM (BR(Bs → µµ) of about
3.8 ·10−9). There are various extensions to the SM that foresee an enhancement
of this branching ratio by 1 to 3 orders of magnitude. In details within the SUSY
theory, the branching ratio is enhanced by a tan6 β factor. For this reason, the
branching ratio measurements of the decay Bs → µµ can be a powerful tool
to probe for physics beyond the SM. Thank to the great number of bb events
produced and the LHCb performances, in a year of data taking, a 3 sigmas
measurement of the SM value will be possible (�g.2.9). At present the CDF
limit is: BR( Bs → µµ ) < 2.0x10-7 @95% CL.
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Figure 2.8: Current best limits on the branching ratio Bs → µµ from CDF and
D0 data.

Figure 2.9: Branching ratios limits for Bs → µµ explored by LHCb experiment.
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Figure 2.10: After 1 year of data taking, LHCb will collect about 2fb−1.

2.5.9 LHCb impact on the CKM �ts

In next years, LHCb will collect a great amount of data, about 2 fb−1/year.
The �g. 2.10. shows how our knowledge about the unitarity triangle will be
improved due to the increased precision on the measurement of β and γ, and
maybe to a less extent of α. The present precisions relate to the triangle apex
are σ(ρ)/ρ = 17% and σ(η)/η = 4.7%. After one year of data taking this limit
will be shift in order to reach a precision of σ(ρ)/ρ = 7.1% and σ(η)/η = 3.9%.
As shown in �g. 2.10, the CKM triangle is well constrained and it is compatible
to the SM forecasts, will be very small. For this reason, in order to distinguish
new physics, it will become absolutely important an auspicious improvement in
the precision of the theoretical model and in the experimental analysis skill.
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Chapter 3

Experimental method for

proper time calibration

3.1 Introduction

One of the main features of the LHCb experiment is the possibility to measure
the B proper time very accurately (στ ≈ 40fs) which is one of the necessary
requirements to measure the fast Bs/B̄s oscillations and to study precisely the
time dependent CP asymmetries.
For this reason the correct measurement of B proper time and the evaluation of
its resolution are key points in LHCb physics analyses.
B lifetime can be calculated knowing its distance of �ight (from the production
vertex, PV to the decay vertex, SV) and its momentum (~p):

τB =
MB · (PV − SV)

‖p‖
(3.1)

Figure 3.1: Schematic representation of decay channel Bd → ππ: in black are
indicated measurable quantities (PV and track parameters), while in red are
the unmeasured ones (secondary vertex PV and Bd parameters).
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PV is indirectly measured with a common vertex �t of all track segments in
the Vertex Locator (VELO), while SV and B momentum are determined by a
common vertex �t of the stable B decay products.
In general we can say that the proper time is a function of measured quantities
τB(m1,m2, · · ·mN ) and its error can be obtained merely by error propagation
in case mi are gaussian distributed:

σ2
τ = Jτ · cov(~m) · Jτ

T (3.2)

where ~J = ( ∂τB

∂m1
, ∂τB

∂m2
, ..., ∂τB

∂mn
) is the Jacobian and cov(~m) is the covariance

matrix associated to the measurements.
Within the validity limits of the equations above, for each event we can calculate
B proper time and its error, which estimates the resolution event by event.
From Monte Carlo data it is quite easy to check the correctness of the proper
time: by comparing the reconstructed value with the true B decay (τ̂B) we can
calculate the statistical quantity:

MCPull(τB) =
τB − τ̂B
στ

(3.3)

which is distributed as a normal gaussian if the measurement and the error are
correct.
On real data we cannot apply this statistical test, since the true B decay is
unknown. For this reason it is very important to develop some experimental
tools which, at least indirectly, test or study the reliability of measurements and
resolutions.
The LHCb collaboration studied di�erent strategies to retrieve proper time res-
olution from real data, for example by studying the proper time distribution
of J/ψ → µ+µ− produced directly in pp collisions [33, 34] . The aim of these
studies is to �nd a parametrization of the resolution as a function of kinematical
observables.
In this chapter we discuss the possibility to use a kinematical/vertex �tter as
a tool to test the input measurements and, at least indirectly, the reliability of
proper time measurements. Running such tool on experimental data, would be
a fundamental starting point for LHCb analyses, devoted to measure precise
time dependent CP violation e�ects in Bd/s decays. This work summarizes sev-
eral contributions given to the Proper Time & Mixing working group meetings
that are quoted in references [35].

3.2 Constrained kinematical and geometrical �t

Constrained �ts are widely used in high energy physics experiments to get the
best estimates of some relevant information from a set of measurements, or for
testing the compatibility of data with a given hypothesis. They can be used for
track reconstruction, vertex reconstruction or physics analyses, where one needs
to select events of a given decay. Depending on the speci�c application, the in-
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put measurements and the constraints applied can be very di�erent. Despite
the di�erences, from a statistical/mathematical point of view all the constrained
�ts can be solved by looking for the set of unknown parameters which minimize
the χ2 according to the measurements and to the given constraints. The math-
ematical/statistical formalism used is based on the least squares (maximum
likelihood) and the Lagrange multiplier method, which will be brie�y summa-
rized in the next section.
Beyond the above functionalities, in some cases constrained �ts can also be
useful to test the correctness of the measurements. If the error distributions
are gaussian and the constraint equations are �quasi-linear� within the errors,
the distribution normalized residuals (namely FITPull) are normal gaussians
(mean=0, sigma=1). Any deviation from the expected shape can be ascribed
to a wrong input measurement: i. e. a BIASed value or a scale factor (SF)
multiplying the covariance matrix. In this context constrained �ts can also be
useful in data and resolution calibration.

3.2.1 A statistics reminder: Least squares and Lagrange
multipliers method.

Let us consider a set of N measurements mi of a given observable. Due to
the �nite experimental accuracy the measured values deviate from the �true�
ones, y, by a random amount which is measured by its error σi. If the error
distribution Ei = mi− y is gaussian with sigma σi the best estimate of the true
value ŷ can be found by maximizing the likelihood as a function of y:

L(y) =
N∏

i=1

1√
2πσi

exp(− (mi − y)2

2σ2
i

) (3.4)

or, equivalently, by minimizing the weighted sum of the distance squared (least
squares):

S(y) =
N∑

i=1

(mi − y)2

σ2
i

(3.5)

In a more general approach we can consider several measurements of di�erent
observables that are related by functional relationships. In this case each mea-
surement mi corresponds to a true value yi that satis�es a set of constraint
equations fc. A dependence on additional parameters aj , for which no direct
measurement exists, can also be present:

fc(y1, · · · , yN , a1, · · · , ap) = 0 c = 1, · · · , k (3.6)

The chisquare in equation (3.5) in this case transforms to the more generic
expression:

S(y) = (m− y)T W(m− y) = ∆yT W∆y yT = (y1, · · · , yN ) (3.7)
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where W is the inverse covariance matrix associated to the measurements mT =
(m1, · · ·mN ) (W = cov−1(m) ).

A simple way to include the equation constraints (3.6) in the least square
search is the Lagrange multiplier method: introducing a new unknown scalar
variable, the Lagrange multiplier λc, for each constraint, the method looks for
the minimum of a linear combination of S(~y) and ~f(~y, ~a) involving the multi-
pliers as coe�cients.

min
(
(S(y)− 2~λT f(y,a)

)
~λT = (λ1, · · · , λk) (3.8)

∂
(
S(y)−2~λT f(y,a)

)
∂yi

= 0 i = 1, · · · , N
∂
(
S(y)−2~λT f(y,a)

)
∂aj

= 0 j = 1, · · · , p
∂
(
S(y)−2~λT f(y,a)

)
∂λc

= 0 c = 1, · · · , k

(3.9)

If the constraint equations have a linear dependence on the parameters they
can be rewritten in the matrix form:

f(y,a) = By + Aa = ~0 (3.10)

where B and A are k × N and k × p matrices respectively. In this case the
solution of the constrained least square can be found in one step by solving the
linear system: 

W∆y + BT~λ = ~0
AT~λ = ~0

By + Aa = ~0
(3.11)

In the case of non linear constraints they can be linearized by using a Taylor
expansion close to a �good enough� solution (~y0, ~a0) and the problem can be
solved iteratively. In this case the matrices B and A assume respectively the
meaning of �rst derivative with respect to ~y and ~a:

f(y,a) ≈ f(y0,a0)+


∂f0

1
∂y1

· · · ∂f0
1

∂yN

· · · · · · · · ·
∂f0

k

∂y1
· · · ∂f0

k

∂yN


 ∆y1
· · ·

∆yN

+


∂f0

1
∂a1

· · · ∂f0
1

∂ap

· · · · · · · · ·
∂f0

k

∂a1
· · · ∂f0

k

∂ap


 ∆a1

· · ·
∆ap

+· · ·

(3.12)
If we are close enough to the solution, at each iteration cycle α we can linearise
the equations around the values found at the previous step:

f(yα,aα) + Bα(∆yα −∆yα−1) + Aα(∆aα −∆aα−1) ≈ 0
Bα∆yα + Aα∆aα = c
c = Bα∆yα−1 + Aα∆aα−1 − f(yα,aα)

(3.13)

where ~c is a �residual� value which stops the iteration when the desired accuracy
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is reached. In this case the best estimates of the parameters are found by solving
the linear system:  W∆y + BT~λ = 0

AT~λ = 0
B∆y + A∆a = c

(3.14)

The solution of this system is searched by iterating the calculation: ∆y
∆a
~λ

 =

 W 0 BT

0 0 AT

B A 0

−1  0
0
c

 =

 C11 C21
T C31

T

C21 C22 C32
T

C31 C32 C33

  0
0
c

(3.15)
When the desired accuracy is reached (|ci| ≤ ε) we get the best estimate of the
parameters ŷ = ∆y + y0 = ∆y + m and â = ∆a + a0.

3.2.2 De�nition of Pull quantities.

Once the solution of the least square minimization is found, it is possible to
calculate also the covariance matrix of the parameters by propagating the errors
according to the Jacobian (see Appendix for details)[36].
The covariance matrix has the form :

V

 ŷ
â
~̂λ

 =

 C11 C21
T 0

C21 C22 0
0 0 −C33

 (3.16)

In particular we are interested in the covariance matrix of the parameters ~y:

V(ŷ) = W−1−W−1 B
T

WB BW−1 +W−1BT WB AWA
−1 AT WB BW−1

(3.17)
and in the covariance matrix of ∆y which turns out to be:

V(∆y) = W−1 −V(ŷ) (3.18)

At this point we can de�ne the normalized �stretch values� or �FITPulls� as:

FITPulls(yi) =
∆yi√

covii −V(ŷ)ii

(3.19)

If the measured data are gaussian distributed and the linearization of the equa-
tion constraint is a good approximation within the range spread by the mea-
surements, FITPulls turn out to be distributed as normal gaussians (µ = 0,
σ = 1). Likewise, it is reasonable to expect that if one of the conditions above
is not satis�ed a deviation from normality of their shape should appear. This
feature represents the key point of the calibration method we are proposing in
this note.
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3.3 Some useful cases in LHCb analyses and the

GlobalFitter Tool

We have shown that constrained least squares provide not only the best esti-
mates of some parameters and the χ2 value but they also allow the calculation
of the normalized FITPull quantities which, under precise conditions, have a
well known distribution.
We want to use the FITPull distributions to check if the measurements (m)
and their corresponding errors (cov) are correctly determined. Of course the
method has to be �rst validated on speci�c useful cases which LHCb will work
on. In particular we have to understand if the hypothesis about the linearization
of the constraint equations or the gaussian distribution of the measurements are
valid assumptions.
The LHCb collaboration developed several kinematical/geometrical �tters which
implement in di�erent ways the constraint equations. In this note we will con-
sider the Global Fitter Tool which was developed by V.Vagnoni, A.Carbone,
G. Balbi and S.Vecchi since it was the only tool suitable to calculate the FIT-
Pulls and the proper time error by correctly considering the correlations given
by the constraints and the full covariance matrices of the input measurements.

3.3.1 The GlobalFitter Tool

The GlobalFitter is a general purpose �t tool which aims at �tting in one call
a complete multi vertex decay tree. This approach leads to similar results of the
other tools, which �t the decay tree step by step in cascade. The main di�er-
ence to the other �tters is that the GlobalFitter retrieves all the kinematical
parameters, adjusted after the �tting procedure. Depending on the complexity
of the decay tree, the constraint equations may change.

During the �rst draft of this thesis, in LHCb a particle was de�ned by 5
track parameters1 (x, y coordinates at a given reference plane z = z̃, slopes
tx, ty in (x, z ) and (y, z ) planes and the momenta p ). From these de�nition it
is easy to obtain px, py, pz components and the energy E.

px = p tx√
1+t2x+t2y

py = p
ty√

1+t2x+t2y
pz = p 1√

1+t2x+t2y
E =

√
m2 + p2

(3.20)
Any B decay can be described by a nested tree of decays, each one de�ned by a
vertex and two or more decaying particles. Vertices and particles may or may
not be measured and the particles can decay themselves to other particles. For

1Now in the experiment we use a parametrization with 7 quantities.
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each decay the equations are:

xi − xV − tix(z̃ − zV ) = 0
yi − yV − tiy(z̃ − zV ) = 0
~pX −

∑
~p i = 0

M2
X − (

∑
iE

i)2 + |
∑

i ~p
i|2 = 0

(3.21)

where the �rst two equations request the particle i to originate from (or de-
cay to) the vertex V , the third apply momentum conservation and the last one
constraint the origin particle massMX . Of course momentum and mass conser-
vation are applied only if the considered decay-unit request the constraint (in
case of inclusive decays or large resonance decays this doesn't happen).
We can immediately note that constraint equations couple quasi independent
groups of parameters:

• 1) vertex constraints couple track parameters xi, tix (yi, tiy ) with vertex
ones xV , zV (yV , zV )

• 2) mass and momentum conservation constraints couple only slopes tix, t
i
y

and momentum pi of the particles involved in the decay .

• 3) constraint equations are not linear. A Taylor linear expansion is per-
formed close to a �rst estimate of the solution which is calculated from
the measured values.

This feature will be shown up and discussed later on during the examples ex-
planation.
The number of degrees of freedom of the �t depends on the complexity of the
decay tree, which is de�ned by the number of constraints C and by the number
of unmeasured parameters U and is given by Ndof = C − U .
In the following to validate the FITPull method we will consider in detail the
channel B0

d → π+π−, which is rather simple to reconstruct, since it originates
two high pT pions detached from the interaction vertex. The decay diagram is
represented in �gure .... where in black are the measured quantities and in red
the unmeasured ones. In this decay topology we apply 12 constraints (π+π−

common vertex SV, B originating in PV and decaying in SV, and mass and
momentum conservation) and we have 8 unknown parameters (SV and B track
parameters), so the �t has 4 degrees of freedom.
During the FITPull method test we also considered the channelB0

s → Ds(KKπ)π
. In this is a case the complexity of the decay tree is higher, the number of con-
straints is 24 (KKπ common vertex DV, Dsπ common vertex BV, B originating
in PV and decaying in BV, and mass and momentum conservation in each decay)
and we have 16 unknown parameters (DV, BV and B and D track parameters),
so the �t has 8 degrees of freedom. Since the results obtained are very similar
to the B0

d → π+π−, for shortness we only report the simple case ones.
Starting from the measured values by satisfying the constraint equations,

it is possible to determine the unknowns; this �tting procedure also achieves
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the improvements of the measured input track parameters. The GlobalFitter
employs an iterative procedure to �nd out the solution.

3.3.2 Inside the GlobalFitter. The B → ππ case

As we have seen in the previous paragraph, the starting step for the GlobalFitter
Tool is the logical decay tree de�nition, where the B decay is described by a
nested tree of decays, each one de�ned by a vertex object with two or more
decaying particles objects.

In the �g.3.1 a Bd → ππ event has been depicted and it can help us to
understand how the GlobalFitter works.

The tree construction, in this speci�c case, can be summarized in these
following actions:

• take the two pions (measured values)

• create a new initialized vertex object, that we call decay vertex SV

• attach the pions to SV

• create a new particle object that is the B particle. It is completely un-
known.

• attach the SV to the B particle as its decay vertex

• attach the production vertex PV to the B particle

After this process we obtain a complete logical decay tree where there are mea-
sured (values and their errors) and unmeasured quantities. In this tree object
there are implicitly declared some kinematical constraints.
The GlobalFitter, for the �tting procedure, searches for a solution which min-
imize the eq.3.7. To ful�ll this minimization, the program applies the theory of
the Lagrange multipliers method with constraints.

If the conditions are linear, the solution is determined in one step with a
simple matrix inversion, whereas in case of nonlinear constraints the solution is
reduced to a sequence of linear problems by the linearization of the conditions.
Coming back to our example, in case of a �t with a mass constraint in the
secondary vertex, (SV in �g.3.1) the geometrical conditions are represented by:

x0 − t+x (z − z0)− x+ = 0
x0 − t−x (z − z0)− x− = 0
y0 − t+y (z − z0)− y+ = 0
y0 − t−y (z − z0)− y− = 0

(3.22)

These 4 lines are the conditions for the trajectories of the two outgoing particles
to pass through the SV, while the mass constraint and the conservation of the
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momentum, applied to the decay vertex:

pB = p+ + p−

(E+ + E−)2 − (p+ + p−)2 −M2
B = 0

(3.23)

In this example the measured quantities are the input track parameters of the

two trajectories (x+, y+, p+, t+x , t
+
y and x−, y−, p−, t−x , t

−
y ) , while the unmea-

sured ones are the secondary vertex coordinates. The incidental knowledge of
the primary vertex achieves the employment of new four equations:

xPV − tBx (z − zPV )− xB = 0
yPV − tBy (z − zPV )− yB = 0
x0 − tBx (z − z0)− xB = 0
y0 − tBy (z − z0)− yB = 0

(3.24)

Adding these new constraints, we have to face �ve new unknowns, i.e. the
B track parameters.

The twelve equations point out the necessity to linearize the constraints.
Linearization technique requires starting values for the variables. For the

measured variables, the measurement itself is taken as starting approximation.
For unmeasured parameters starting values have to be determined in a way de-
pending on the speci�c kind of problem. The starting values for the parameters
are denoted by a. Moreover the linearization is expressed in each iteration in
terms of corrections ∆y and ∆a to the starting values y and a. The corrections
∆y, ∆a and λ are obtained by the multiplication:

∆y = CT
31 c =

(
W−1 BT WB −W−1 BT WB AW−1

A AT WB

)
c

∆a = CT
32 c = W−1

A AT WB c
~λ = C33 c =

(
−WB + WB AW−1

A AT WB

)
c

(3.25)

whereas the new covariance matrix for the combined vector ŷ, â, λ̂ is de�ned

in eq.3.16.
At the end of each iteration, the GlobalFitter retrieves the vectors of cor-

rections for measured and unmeasured quantities, to be applied to the initial
values. After several iterations the convergence is reached and then the pro-
gram retrieves a vector which contains the the estimated parameters (unknown
measurements) and the corrected measured quantities.
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3.4 Validation of the FITPull method with input

gaussian distributions.

In order to prove that the FITPull can be a valid tool to calibrate tracks and
vertices in LHCb we �rst have to show that in controlled situations they are
distributed as normal gaussians. For this reason we need to work with perfectly
gaussian distributed measurements and pure signal events, so we can avoid the
problem of background contamination, or non gaussian dependence.

3.4.1 Fake measurement generation

For each test we consider a sample of ≈ 40000 Monte Carlo events generated by
the LHCb collaboration during DC04 data production. For each event with a
single pp collision we generate fake measurements by smearing the particle and
vertex true information corresponding to the speci�c signal channel considered
(B → π+π−) according to a gaussian resolution model. Correlation between
di�erent measurement can also be described. Then we apply the GlobalFitter
vertex tool con�gured to test the speci�c decay tree. For each measurement
we compute the FITPull, which is plotted on a histogram to study its statisti-
cal distribution. Since we only process signal events whose errors are perfectly
gaussian distributed, we apply a loose χ2 cut (χ2 < 1000) to select events.
The use of fake measurement generation o�ers the advantage to test the FITPull
method also in di�erent situations, for example in the presence of systematic
errors, knowing exactly the input variable distribution.
In case we want gaussian distributed �fake measurements� , each mea-
surement mi is obtained by smearing the Monte Carlo true value ti with the
following equation:

mi = ti + σi ·Gσ=1
µ=0

covij = ρij · σi · σj
(3.26)

where Gσ=1
µ=0 is the normal gaussian random generator and cov is the covariance

matrix. Its elements are set to realistic values or parametric functions, which
were obtained by Monte Carlo studies on reconstructed particles and vertices:

σx = σy = σIP√
2

= C0+C1/pt√
2

C0 = 0.014 mm C1 = 0.035mm GeV
σtx

= σty
= C2 C2 = 0.0004 mrad

σp = C3|p| C3 = 0.004
σVx = σVy = C4 C4 = 0.010 mm
σVz

= C5 C5 = 0.040mm
(3.27)

If needed the generation of correlated measurements is done with a simple linear
transformation of independent measurements.
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Figure 3.2: Fake measurement generation in case of single gaussian (a) or double
gaussian distributions (b) (w = 0.9 in red, w = 0.8 in blue), for uncorrelated
(c) or correlated measurements (d).

3.4.1.1 Adding a scale factor to the covariance matrix or a bias to a
measurement.

In case we want to simulate the e�ect of a BIASED measurementmi or a scaling
factor (SF) to the covariance matrix, equations (3.26) transform to:

mi = ti + σi · (Gσ=1
µ=0 +BIASi)

covij = ρij · σi · σj/(SFi · SFj)
(3.28)

In some of the tests performed, a linear dependence of BIAS or SF of particles
measurements on p is also introduced and a charge dependence on the BIAS
included (BIASi and/or SFi =q(a + b p)). SFi > 1 simulates underestimated
covariance matrix element.
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3.4.1.2 Non gaussian distributions.

In our studies we want to identify the validity limits of the method if input
measurements are not perfect gaussians. In particular we consider the case of a
generation of fake measurements according a double gaussian distribution:

mi = ti + σi · (w ·Gσ=1
µ=0 + (1− w) ·Gσ=3

µ=0 +BIASi)
covij = ρij · σi · σj/(SFi · SFj)

(3.29)

which simulates the e�ect of tails in the measurement distribution (see �gure).

3.4.2 Results

In this section we test the FITPull method in a variety of input conditions in
order to study the validity of the tool and characterize its performances. We
start with very simple tests and then we add complexity.

3.4.2.1 Correct input data.

By generating fake measurements according to equations 3.26 with SF=1 and
BIAS=0 we test the �t performances in the ideal case. In this case, if the method
is valid, we expect that the FITPulls follow a normal gaussian distribution. In
�gure for each input measurement (pion track parameters x, y, tx, ty, p and PV
coordinates Vx, Vy and Vz) the mean (left) and sigma (right) values that �t the
corresponding FITPull distributions are represented. The results are in good
agreement with zero mean and unit sigma, proving the validity of the method
we are proposing. In this situation the B proper time and error are correctly
determined, as can be inferred by a comparison with the MC true information.
Figure 3.3, also reports the mean and sigma values of the MCPull on proper
time, which are in perfect agreement with the values µ =0 and σ =1.
This �rst test allows us to conclude that if input measurements and errors are
correct FITPulls are canonically distributed (normalized gaussian) and proper
time value and error are correctly calculated. This result is achieved both in
the case we consider correlation betweeen the measurements or not.

3.4.2.2 Biased input data.

If a vertex or a particle measurement is BIASed we would be able to identify it
in the real data only if the FITPull associated to the corrupted measurement
deviates from the canonical distribution. Following equation (??) we �rst test
the e�ect of a single BIASed measurement to the FITPull distributions. In �g-
ure are shown the results of di�erent tests where a BIAS on the particle x (top),
tx (middle) and p (bottom) are considered. As one can see, in case of a single
biased measurement without correlations, FITPulls easily show the corrupted
variable (mean value 6= 0). The sign of the mean is correctly found, but the
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Figure 3.3: Graphical representation of the FITPull parameters: mean values
(left) and sigma (right) of the FITPulls associated to each measurement asso-
ciated to track (x, y, tx, ty, p) and PV (Vx, Vy, Vz), obtained by a gaussian �t
to the distributions. In case of track measurements red and black points corre-
spond to positive and negative pions. On yellow background are MCPull values
of the B proper time calculated with the �tted values. Input fake measurements
are independently generated according to BIAS=0 and SF=1.

value is not equal to the BIAS one: it depends on which measurement is cor-
rupted, being 0.6, 0.4 and 1.2 in case of x, tx or p BIAS. The input BIAS a�ects
also FITPull variances, some of these now deviate signi�cantly from unity, even
if the input SF is 1. We have to keep in mind this e�ect in order to correctly
interpret the FITPull outputs. Later on we will discuss this problem in more
detail.
A bias on y (ty) gives results equal to the x (tx) case, since the constraint equa-
tions are exactly symmetric.
From these tests it is also evident that B proper time is not BIASed but, es-
pecially in the case of the x BIAS, the calculated error shows a SF6=1. These
results remark the importance of a calibration method based on real data only,
able to spot any incorrect measurement.
If correlations between x − tx and y − ty in track parameters are considered2

the FITPull output changes (see �gure 3.5 ). Although the BIAS is only on x
(correlated measurements don't necessarily mean correlated BIASes), FITPull
distributions present a mean 6= 0 on both x and tx with reversed signs. The
same thing happens in case of a biased tx. The reason for this behavior is the
almost 100% correlation between the two measurements3, which makes the �t

2On Monte Carlo data, by studying MCPull correlations corresponding to di�erent track
measurements at point on track reference position, we get ρx,tx = ρy,ty = −0.95. (*****)

3The correlation between x and tx is introduced by the transport mechanism in the tracking
software, which takes their two initially independent measurements and it projects them to
the minimal distance point close to the 2 tracks following the relation

xtransp − t+x (ztransp − z0)− x+ = 0
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Figure 3.4: Graphical representation of the FITPull parameters (same graphical
convention as �gure . Input fake measurement are independently generated with
SF=1 and BIAS=±1 on x (top), BIAS=±1 on tx (middle) and BIAS=1 on p
(bottom). The sign is given by the charge of the particle.

82



mean values correlated even if the input ones are not. In fact we have to re-
member that in this way we are testing the constrained least square method
in an unconventional way, since one of the hypothesis is not ful�lled being the
input measurements gaussian distributed around the true value, . Even in this
case proper time error show a SF.

The e�ects of a BIAS on PV measurements are plotted in �gure 3.6. A
BIAS on Vx also modi�es FITPulls x and tx, while in case of a BIAS on Vz only
FITPull Vz is a�ected. This is due to the coupling introduced by the vertex
constraint equations which, as we noticed above, strictly group x and tx to Vx.
As a result B proper time is biased if Vz is BIASed.
From the tests performed so far we can conclude that a BIAS on a measurement
will make FITPulls appear not canonical. In some cases the corrupted FITPull
identi�es the corrupted measurement, but, due to the couplings between vari-
ables, this statement is not valid in general. In some cases, as expected, a BIAS
on a measurement a�ects also the B proper time in a relevant way.

3.4.2.3 Scale Factor in the covariance matrix.

In order to simulate an incorrect resolution we introduce a SF = 2 to the
covariance matrix elements (see eq.) of x, tx, p, Vx and Vz separately. FITPull
distributions are sensitive to SF: in this case their sigma deviates from 1 as it
is shown in �gure , especially in the cases of SF on x, p and Vz. It should
be noticed that the mean values are still compatible with 0. The one-to-one
correspondence between the wrong FITPull and the corrupted measurement is
possible only in some cases, and in general any observed deviation from canonical
FITPull distributions can be ascribed to a wrong measurement error.
Figure also shows the e�ect on B proper time resolution, which in the cases of
SF on x, p and Vz, turns out to be a�ected signi�cantly.

3.4.2.4 Double Gaussian error distribution.

Usually the distribution of real measurements are only approximately gaussian,
since tails commonly show up. To be able to use the FITPull method on real
data, we have to prove that tails do not modify the output distributions too
much, or if they do, we need to establish the validity limits of our proposal.
In this case fake measurements were generated by smearing Monte Carlo truth
informations according to double gaussian distributions (see equation 3.29),
where a fraction w of events have correct measurements, while the remaining
ones have under-estimated errors (by a factor 3). In this test all track parame-
ters are modi�ed simultaneously. In previous tests we have seen that SFs in the
covariance matrix a�ect FITPull variances, so we expect that FITPull distribu-
tions are deviated by an amount which depends on the tail contribution. Indeed
in cases of w 6= 1 FITPulls show a double gaussian shape. The important result
is that their main components are still canonical if the tail contribution does not
exceed 10 − 15% , while they start to deviate signi�cantly for larger amounts
(see �gure ). So we can state that the method is still a good tool provided that
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Figure 3.5: Graphical representation of the FITPull parameters (same graphical
convention as �gure). Input fake measurements are generated with SF and
BIAS on(top), BIAS=±1 on tx (middle) and BIAS= 1 on p (bottom) in case of
correlated x− tx and y − ty track parameters.
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Figure 3.6: Graphical representation of the FITPull parameters (same graphical
convention as �gure ). Input fake measurements are generated with SF=1 and
BIAS=1 on Vx (top) and Vz (bottom) in case of correlated x − tx and y − ty
track parameters.
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Figure 3.7: Graphical representation of the FITPull parameters (same graphical
convention as �gure ). From top to bottom rows: input fake measurements
generated with SF=2 and BIAS=0 on x, tx, p, Vx and Vz in case of correlated
x− tx and y − ty track parameters.
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the tail contributions are less than ≈ 10%. Concerning the B proper time, �gure
summarizes the dependence of its main and second gaussian contribution as a
function of w. Also in this case for w ≤ 10% most of the events have correct
proper time and error.
We have to underline that the second gaussian contribution to the FITPull or
to the B proper time MCPull distributions are ascribed to the presence of in-
correct measured data (i.e. with under estimated errors). The FITPull method,
being a "statistical" method, can only control a sample of several measurements
and indicate whether most of the events are well measured. Nothing can be done
to eliminate or correct data populating the second gaussian. A cut on the �t
χ2 can only eliminate part of these events (the one populating the tails that
contribute to larger χ2).

3.5 Validation of the FITPull method with re-

constructed tracks.

In the previous sections we have shown that the FITPull method is a valid mon-
itor of the input measured quantities. Real tracks will be a much less controlled
environment to work with: phase space dependence, non gaussianity, correla-
tion and background are some possible �complications� that can invalidate the
FITPull method capability to test measurements.
For this reason in this section we test the FITPull method in a more realistic
scenario, by using reconstructed Monte-Carlo tracks. The plot in �gure 3.10
shows the MCPull mean and variances as a function of the reconstructed mo-
menta, for the pions produced in B0

d → π+π− decays4. Indeed in DC04 data, for
a simulation accident [37], tracks were unproperly reconstructed (****), even
if track �tting pulls gave satisfactory results. In particular x, tx and p show
momentum and charge dependent BIASes. A slight SF is also a�ecting recon-
structed momentum. We can take advantage of this error to see if the FITPull
method monitor is able to put in evidence this e�ect. From a sample of 100000
(***) B0

d → π+π− Monte Carlo data we combine all reconstructed π+π− pairs
and perform a �t with the hypothesis of B0

d → π+π− with the Bd originated
from the primary vertex5. The combinatorial background is the only source of
background we considered. Most of of it is suppressed by choosing χ2 < 10, but
still a fraction B/(S +B) ≈ 0.067 is present. For simplicity we consider events
with only one pp collision with the PV coordinates generated randomly around
the true values, like in the previous section.
The FITPulls corresponding to each measurement were �tted with a double
gaussian shape in momentum slices and the parameters of the main gaussian
are represented in �gure. As we hoped the BIAS on x, tx and p shows up mod-
ifying FITPull mean values. Both x and p BIASes are found with the correct
sign, while in the case of tx it appears with opposite sign. The reason for this

4in this case the cheated selection is necessary in order to evaluate MCPulls correctly
5In this case no cheated selection is performed, as it will be with real data analysis

87



Figure 3.8: FITPull double gaussian �t parameters corresponding to the main
gaussian contribution. The same notation of the previous �gures is chosen.
Input data were generated with increasing tail contribution in all track mea-
surements: from top to bottom 5%, 10%, 15%, 30% and 40%.
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Figure 3.9: Dependence on the track tail input contribution of the proper time
MCPull �tted parameters. Left: tail (second gaussian) contribution 1 − w;
center: mean values of the main (black) and second (red) gaussian; right: sigma
values of the main (black) and second (red) gaussian.

can be addressed to the x − tx correlation and the dominance of the x BIAS
with respect to the tx one. In fact simple tests with fake measurements have
shown that a bias on x modi�es x and tx FITPull mean values by almost the
same quantity with opposite sign (see �g.). The same thing happens in the case
of a BIAS on tx. Quantitatively the absolute FITPull shift is smaller, so we
can expect that the overall e�ect is dominated by the x BIAS and correlation.
The SF 6= 1 present in the FITPulls can also be explained as due to the input
BIAS. In fact tests of section 4.2.2 have shown that input BIASes modi�ed also
FITPull variances.
Therefore we can conclude that also in this case the FITPull method succeeds in
discovering some measurement errors. In this case also the B proper time would
be incorrectly reconstructed: in �gure 3.12, the left pad shows the MCPull
distribution of the reconstructed proper time. It can be �tted with a double
gaussian distribution (w ·G1+(1−w) ·G2), where the G2 component is mostly
due to combinatorial background. The main component G1 shows an overall
SF ≈ 1.27 (parameter p3) which suggests that proper time error is underesti-
mated, while the BIAS is negligible 0.04σPT ≈ 1.6fs (parameter p2). In the
left plot it is evident that the SF indeed depends on the pion momenta, like
input measurement BIASes.

3.6 Recovery potential of the measurement.

All the tests done so far demonstrated that the FITPull method can be used
on real data to test the correctness of measurement values and errors down to
fraction of resolution scale. Therefore it is a rather sensitive monitor of the
measurement reliability. With some limits, FITPulls can also indicate which
kind of problem (BIAS or SF) the measurements have. If the problem concerns
track parameters we can hope that a further optimization of track �tting will
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Figure 3.10: MCPull mean values (left) and sigma (right) associated to recon-
structed track (x, y, tx, ty, p) measurements, obtained by a double gaussian �t
to the distributions: red and black data correspond to main gaussian contribu-
tion for π+ and π− respectively.
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Figure 3.11: FITPull mean values (left) and sigma (right) associated to recon-
structed track (x, y, tx, ty, p) measurements, obtained by a double gaussian �t
to the distributions: red and black data correspond to main gaussian contribu-
tion for π+ and π− respectively.
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Figure 3.12: B proper time MCPull distribution (left) of Bd → π+π−events
selected with a χ2 < 10. Center and right pads show the mean and sigma
MCPull parameters of the main gaussian as a function of the pion momenta.

recover it. But if this does not happen, we can investigate the possibility to use
the FITPull method to recover the wrong measurements.
Given the correlation between the FITPull output we observed, and the fact
that quantitatively the FITPulls do not represent the input BIAS or SF, we
choose to apply iteratively correction cycles in which, at each step, an input
measurement is corrected by the FITPull parameters:

mk
i = mk−1

i + Bk−1
i

√
covk−1

ii

covk
ij = Sk−1

i Sk−1
j covk−1

ij

(3.30)

where Bk−1
i and Sk−1

i indicate the FITPull BIAS and corresponding SF mea-
sured at iteration cycle k − 1 for measurement i. During iterations BIASes
cumulate by adding up, while SFs are multiplied.
Driven by the experience matured with tests on fake measurements, we decide
to apply �rst corrections to �x the BIASes, then to recover the SFs. Moreover,
given the self correlations between track measurements, we choose to correct x
�rst, then tx and p. With these criteria, we consider the case of reconstructed
tracks of the previous section. The BIASes shown in �gure 3.11 are linearly �tted
and the best parameters fed to the correction cycles. During BIAS correction we
also observe an improvement of the sigmas. After a few (≈ 10) correction cycles
the FITPull parameters are reasonably compatible with BIAS=0 and SF=1. In
this situation, we can judge if the correction worked by looking at the MCPull
distributions: �gure summarizes all the track measurements. We can see that,
except tx bias, which is still slightly biased, all the other measurements recov-
ered almost completely. In this situation also B proper time value and error are
better calculated, as is shown in �gure 3.14 .
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Figure 3.13: MCPull mean values (left) and sigma (right) associated to re-
constructed tracks measurements after the correction cycles based on FITPull
distributions. Values are obtained by a double gaussian �t to the distributions:
red and black data correspond to main gaussian contribution for π+ and π−

respectively.
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Figure 3.14: B proper time MCPull distribution and parameters after correction.

3.7 The J/Ψ → µµ channel for FITPull calibra-

tion and generalization

The FITPull method, as seen in the previous sections, is quite promising, spe-
cially with simple decay topology. Up to now we have discussed about the
FITPull method applied to the Bd → π+π− decay, but the facts are much more
complicated. If the FITPull reasoning is correct, the method shouldn't depend
on the decay considered.

In our studies we explore in details a possible control channel in order to
tune the FITPull capabilities of recovery and detection, since making a calibra-
tion for the FITPulls with only a sample of signal should generate a correction
method too much �greedy� and focused only on the sample under study. Also a
precise determination of the FITPull parameters requires large statistics (espe-
cially if one wants to study their phase space dependence) and low background
contamination but in LHCb experiment, signals as B → ππ, will not own a
large statistics. For all these reasons the use of the FITPull method to monitor
or to recover BIASed/SF measurements cannot be performed on the signal de-
cay itself. Thus we have thought to use a control channel that allows FITPull
method to become independent from the signal. This approach has the advan-
tage that a high statistic and low background sample can be processed. In case
the control sample analysis puts in evidence tracks or vertices BIASes or SFs,
the correction found can be exported to the physics channel case.

Therefore our idea is to look for a FITPull parameters (mean, variance)
dependence on the input track parameters as a function of the input particle
phase space. In this way we can think a correction strategy, built on an clean
channel, but exportable to others channels.

We chose the J/Ψ → µ+µ−channel since the prompt J/Ψ will be a strong
signal in dimuon triggered events (~170Hz@LHCb) with a low background
level (B/S~24%). The only kinematical di�erence between J/ψ → µµ and
B → ππ is that the J/ψ is generated in the primary vertex. So we �t prompt
J/Ψ→ µ+µ−with common vertex and mass constraint to extract a careful map-
ping to the corrections of the track parameters as a function of momentum of
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the particle. We have prepared an iterative method to extract, starting from the
FITPull distributions, a map of the adjustments of the input track parameters
as a momentum function in the decay J/Ψ→ µ+µ−.
Applying this iterative procedure, with a shell script, we obtain 10 maps (or
histograms) of corrections for the input track parameters. At �rst itera-
tion the program takes the muons form the DSTs and performs, by means of
GlobalFitter, the vertex �t for each muon couple and the FITPulls for each
input parameter. All the �t informations are stored in a big root �le. At the
next iteration, the DST data is adjusted, before the GlobalFitter, taking into
account the correction coming from the foregoing iteration. The work sequence
of the script is structured in wise to recovery �rstly the BIASes and then the
SFs.

This loop is iterated until the FITPulls are all corrected6. With our sample
of 200000 events J/Ψ→ µ+µ− we reach the desired convergence7 after 33 itera-
tions. The �nal product of this procedure is a set of histograms8 which contains
all the corrective factors to be applied to the DST data in order to obtain gaus-
sian FITPulls from the GlobalFitter. The following step was applying the
correction histograms, obtained from the 33rd iteration on the J/ψ sample, to
two di�erent samples: Bd → π+π−(200.000 events) and the Bs → Dsπ(300.000
events) and evaluating the e�ects. The �gure 3.18 demonstrates that it is pos-
sible to export the correction found out with the J/ψ sample to other channels.
The validity of this method can be stated observing the consequences on the
MCPulls for the propertime before and after the corrections.

3.8 B proper time resolution and calibration

So far we have shown that FITPulls can test the correctness of the measurements
in a given decay channel. If they are canonically distributed they guarantee that
input measurements are correct and, indirectly, that the B proper time measure-
ment is reliable. On the other hand, if FITPulls are not canonical it means that
some input measurements have a problem, which probably also a�ect proper
time measurement. In this section we want to give some more quantitative
study on the dependence of proper time calculation on the input measurement
BIAS or SF. For this reason, taking advantage of the fake measurement gen-
eration, we vary the SF and the BIAS of the most relevant measurements and
we plot the proper time MCPull parameters mean and sigma. The plots on the
left column in �gure 3.19 summarize the proper time dependence on the input
BIAS (ranging from −2.0 to 2.0) of single measurements Vz, x, tx and p. Like
before, in case of x and tx the bias is charge dependent. Correspondingly in the

6The conditions of convergence have to be de�ned in relation to physical requirements.
Thus the next chapter can help us.

7For the J/ψ → µµ we chose to stop the script just as soon as all the track parameters
x, y, tx, ty , p have been recovered.

8Instead of the histograms, we could generate a mathematical function for each parameter,
which contains the dependence of the BIAS or the SF from the momentum of the decaying
particles.
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Figure 3.15: J/Ψ→ µµ FITPulls before and after the 32nd correction.
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Figure 3.16: FaccioTuttoio.csh The procedure to determine the correction his-
tograms.
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Figure 3.17: One of the ten correction histograms. In this image, the correction
to be applied on the X bias is depicted as a function of the momentum (1-100
GeV/c).

right column are plotted the results of SF dependence (with values 0.2, 0.5, 1.0,
2.0 and 5.0).
As we already noticed in section 4 proper time has a di�erent response to di�er-
ent variables BIAS or SF. If one decides that a BIAS < 0.1 and SF − 1 < 0.1
correspond to a good proper time measurement, these plots can help us to to �x
some limits to the input BIAS or SF which then can be translated to require-
ments on the FITPulls parameters.

3.9 Some considerations about the FITPulls

In this note we have described the possibility to use kinematical/geometrical �ts
and their output FITPull distributions to check the correctness of input mea-
surements and errors on real data. In fact the FITPulls are normal gaussians
if the input measurements and errors are correctly de�ned, while they deviate
from being normal gaussians in presence of BIASes or Scale Factors in the input
measurements or errors. Unfortunately the determination of the a�ected mea-
surement is not always unique due to the correlations between measurements
and the �t constraints.
The validity of this method has been proved in several tests performed with
Monte Carlo data corresponding to the decay channel B0

d → π+π−. The stud-
ies made on data generated according a well known distribution (fake measure-
ments) allowed us to understand the features and the limits of the method in
a simple way. The test on reconstructed Monte Carlo data have demonstrated
that also in a more realistic case the FITPull monitor can be useful to discover
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Figure 3.18: MCPulls for the proper time for the Bd → ππ and Bs → Dsπ,
before and after the correction coming from the J/Ψ→ µµ analysis.
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Figure 3.19: B proper time MCPull parameters mean and sigma as a function
of input BIASes (left plots) and SFs (right plots) on track measurement x, tx, p
and on vertex. The simulated events correspond to Bd → π+π− channel and
the measurements are obtained by a gaussian smearing of the Monte Carlo truth
informations (Fake measurements).
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incorrect measurements. In this case we have also shown that an almost total
recovery of the corrupted measurements can be obtained by means of an iter-
ative correction procedure obtained from an independent J/ψ → µ+µ− analysis.

101



Chapter 4

B proper time importance for

time dependent analysis

4.1 Time dependent CP asymmetries and decay

rates: from theory to experiment

The most general formula for the time dependent CP asymmetry in a generic
B → g decay, where g is the a generic �nal state, is given by:

ACP (t) =
Γ (B(t)→ g)− Γ

(
B̄(t)→ ḡ

)
Γ (B(t)→ g) + Γ

(
B̄(t)→ ḡ

)
From an experimental point of view the asymmetry can be measured as:

Aexp
CP (t) =

NB(t)−NB̄(t)
NB(t) +NB̄(t)

(4.1)

where NB and NB̄ are the number of tagged B (B̄) events that decay at the time
t. Three factors �x the experimental capability to evaluate this asymmetry:

1. the B �avour tagging;

2. the statistics of the observed events (signal + background);

3. the B decay proper time resolution .

The knowledge of the initial �avour of the reconstructed B meson is necessary
and this task is performed by means of the tagging procedure described in par.
1.3.2.

The sensitivity to the ACP measurements is determined undoubtedly, by the
statistics and the ratio B/S as reported in [25].

Finally there is another element which plays an important role in this general
description: the proper time resolution. In the next paragraph we will see how
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the proper time determines a reduction of the asymmetry and a phase shift of
the ACP trigonometric components.

4.2 Time dependent analyses of decay rates or

CP asymmetries

In this section I give an analytical description of all the detector contributions
which contribute to the B decay rates and hence in the ACP calculuses. Gen-
erally, given a B decay channel, considering the decay and the mixing e�ects,
we can study 4 di�erent decay transitions1:

Γtrue(B(t)→ g)

Γtrue(B̄(t)→ ḡ)

Γtrue(B(t)→ ḡ)

Γtrue(B̄(t)→ g)

In order to obtain the observed decay rates as a function of the measured proper
time (τ), the true rates are convolved for the proper time resolution. If we as-
sume a gaussian resolution model G(t− τ, στ ), the equations become :

Γ
′

obs(B(τ)→ g) = G(t− τ ;στ )⊗ [Γtrue(B(t)→ g)] (4.2)

Γ
′

obs(B̄(τ)→ ḡ) = G(t− τ ;στ )⊗
[
Γtrue(B̄(t)→ ḡ)

]
(4.3)

Γ
′

obs(B(τ)→ ḡ) = G(t− τ ;στ )⊗ [Γtrue(B(t)→ ḡ)] (4.4)

Γ
′

obs(B̄(τ)→ g) = G(t− τ ;στ )⊗
[
Γtrue(B̄(t)→ g)

]
(4.5)

Moreover Γ
′

obs are multiplied by the ε(τ), in order to take into account the
experimental acceptance, that, due to the trigger system, shows a dependence
on the proper time.

As seen in par.1.3.2, the B �avour tagging is characterized by an e�ciency
εtag and a mistag probability ωtag. For the tagged events, the four foregoing
equations are mixed giving the four observed rates:

Γobs(tagged B(τ)→ g) = ε(τ)·εtag

[
(1− ωtag)Γ

′

obs(B(τ)→ g) + ωtagΓ
′

obs(B̄(τ)→ g)
]

(4.6)

1The subscript �true� refers to values without experimental uncertainties, while the sub-
script �obs� refers to observed values.
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Γobs(tagged B̄(τ)→ ḡ) = ε(τ)·εtag

[
(1− ωtag)Γ

′

obs(B̄(τ)→ ḡ) + ωtagΓ
′

obs(B(τ)→ ḡ)
]

(4.7)

Γobs(tagged B(τ)→ ḡ) = ε(τ)·εtag

[
(1− ωtag)Γ

′

obs(B(τ)→ ḡ) + ωtagΓ
′

obs(B̄(τ)→ ḡ)
]

(4.8)

Γobs(tagged B̄(τ)→ g) = ε(τ)·εtag

[
(1− ωtag)Γ

′

obs(B̄(τ)→ g) + ωtagΓ
′

obs(B(τ)→ g)
]

(4.9)

while the untagged events follow the formulas:

Γobs(untaggedB/B̄(τ) → g) = ε(τ)·(1−εtag)
[
Γ
′

obs(B(τ)→ g) + Γ
′

obs(B̄(τ)→ g)
]

(4.10)

Γobs(untaggedB/B̄(τ) → ḡ) = ε(τ)·(1−εtag)
[
Γ
′

obs(B̄(τ)→ ḡ) + Γ
′

obs(B(τ)→ ḡ)
]

(4.11)

Therefore with the foregoing equations we have shown the actual rates that
we will observe experimentally. With a set of this information, we can turn our
attention to two di�erent applications. We will study how the decay rates are
modi�ed in virtue of the physical properties of the two di�erent cases.

4.2.1 Flavour speci�c decay: Bs → Dsπ

In a �avour speci�c process, like B0
s → D−

s π
+ and B

0

s → D+
s π

−, only B0 → g
and B̄0 → ḡ are allowed, whereas the B̄0 → g and B0 → ḡ events are forbidden.
These features involve some simpli�cations in the Γtrue expressions. Reminding
the par. 2.3.1 we can set

λf = λ̄f̄ = 0 (4.12)

and the equations 2.33, 2.32, 2.35, 2.34 can be simpli�ed:

I+(t) = Ī+(t) = cosh
∆Γ
2
t (4.13)

I−(t) = Ī−(t) = cos ∆mt (4.14)

Thus the time dependence of the tagged B decay rate is given by:
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Γobs (taggedB(τ)→ g) ∝ e−Γt

[
cosh

(
∆Γ
2
t

)
+ (1− 2ωtag) cos ∆mt

]
⊗G(t−τ ;στ )

and similarly for the tagged B̄ rate.
In this formula we can notice three main elements:

1. A damping factor e−Γt , given by the B decay, with mean lifetime 1/Γ.

2. A hyperbolic cosine term that takes into account of the width di�erences
∆Γ between B and B̄.

3. An oscillatory term cos ∆mt that modulates the shape of the decay expo-
nential due to the mixing B/B̄. The oscillation amplitude is determined
by the experimental factor ωtag(namely ω in the following).

The proper time resolution e�ects are accounted by the convolution with the
function G, that transforms the true proper lifetime t into the observed one τ ,

1√
2πστ

e
− (τ−t)2

2σ2
τ (4.15)

Developing the integration, the decay rate of B → g becomes2:

Γobs (taggedB(τ)→ g) ∝
∫ ∞

−∞
e−Γt

[
cosh

(
∆Γ
2
t

)
+ (1− 2ω) cos ∆mt

]
· 1√

2πστ

e
− (τ−t)2

2σ2
τ dt =

=
√

2 · e−Γτ

{
e+

Γ2σ2
τ

2 +
∆Γ2σ2

τ
8 cosh

(
∆Γ
2
· τ − ∆Γ

2
· Γ · σ2

τ

)
+

+(1− 2ω) · e
σ2

τ Γ2

2 · e−
σ2

τ ∆m2

2 cos
(
τ∆m− Γ∆mσ2

τ

)}
(4.16)

where the rate is a function of Γ, ∆Γ, ∆m, ω, στ . Comparing this formula with
the one without the convolution, we can notice that the resolution adds phases
in the cos and cosh terms and it also adds two corresponding dilution factors:

e−
σ2

τ ∆m2

2 and e+
σ2

τ ∆Γ
8

2
3 . We will see its importance in the CP asymmetry

computation.

If the measured B decay proper time is a�ected by a bias b

b = στ · Σ
2For details see in Appendix

3The factor e
σ2

τ Γ2

2 is negligible since it is very close to 1.
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The equation above is modi�ed as following:

Γobs (B(τ)→ g) ∝
√

2 · e−Γτ · e
σ2

τ Γ2

2 − τΣτ
στ

+ΓστΣ ·
{
e+

σ2
τ ∆Γ
8

2

cosh
(

∆Γτ
2
− ∆Γ

2
· Γ · σ2

τ −
∆ΓστΣ

2
− τΣ
στ

)
+

+(1− 2ω) · e−
σ2

τ ∆m2

2 · cos
(
τ∆m− Γ∆mσ2

τ −∆mστΣ
)}

(4.17)

that is very similar to eq. 4.16. In this case the rate is a function of Γ, ∆Γ, ∆m, ω, στ

and also of Σ. So the bias introduces a further phase in the cosine arguments

and a further common damping factor e−
τΣτ
στ

+ΓστΣ.
With this knowledge, the time dependent CP asymmetry, for this channel,

has been transformed from the theoretical expression

Ath
CP (t) =

cos(∆mt)
cosh(∆Γ · t/2)

to the experimental form:

ACP (τ) = e−
σ2

τ ∆m2

2 · e−
σ2

τ ∆Γ
8

2

·
(1− 2ω) · cos

(
τ∆m− Γ∆mσ2

τ −∆mστΣ
)

cosh
(

∆Γτ
2 − ∆Γ

2 · Γ · σ2
τ − ∆ΓστΣ

2 − τΣ
στ

)
(4.18)

4.2.2 B decays in CP eigenstates

In this section we consider the general neutral B decay into a �nal CP eigen-
state |f〉, satisfying the condition

CP |f〉 = η |f〉 (4.19)

The quantity under study, independent on any phase conventions and full of
physical meaning, is λf as reported in eq. 2.36. If CP is violated if λf 6= ±1,
even if |λf | = 1.

For the B neutral system, CP violation in the interference between decays
with and without mixing can be observed by comparing decays into �nal CP
eigenstates of a time-evolving neutral state that begins B0 at time zero as to
those of the state that begins as a B

0
(see [15]):

Γtrue(B(t)→ f) ∝ e−Γt|Af |2
((

1 + |λf |2
)

cosh
∆Γ
2
t+

(
1− |λf |2

)
cos ∆mt+
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−2Re(λ) sinh
∆Γ
2
t− 2Im(λf ) sin∆mt

)

Γtrue(B(t)→ f) ∝ e−Γt|Af |2
∣∣∣∣pq

∣∣∣∣2 ((
1 + |λf |2

)
cosh

∆Γ
2
t−

(
1− |λf |2

)
cos ∆mt+

−2Re(λ) sinh
∆Γ
2
t+ 2Im(λf ) sin∆mt

)
Assuming the simpli�cation |p/q| = 1, we can introduce the contribution due to
the proper time resolution and the mistag e�ects ω:

Γobs (taggedB(τ) → f) ∝ e−Γt

((
1 +

∣∣λf

∣∣2)
cosh

∆Γ

2
t+ (1− 2ω)

(
1−

∣∣λf

∣∣2)
cos ∆mt+

−2Re(λ) sinh
∆Γ

2
t− (1− 2ω) 2Im(λf ) sin∆mt

)
⊗

1
√

2πστ

e
− (τ−t)2

2σ2
τ =

= e
σ2

τ ∆Γ2

8 +
σ2

τ Γ2

2 −Γτ ·
((

1 +
∣∣λf

∣∣2)
cosh

(
∆Γ

2
τ −

∆Γ

2
Γσ2

τ

)
− 2Re(λf ) sinh

(
∆Γ

2
τ −

∆Γ

2
Γσ2

τ

))
+

+ (1− 2ω) e
Γ2σ2

τ
2 −σ2

τ ∆m2

2 −Γτ
((

1−
∣∣λf

∣∣2)
cos

(
∆mτ −∆mΓσ2

τ

)
− 2Im(λf ) sin

(
∆mτ −∆mΓσ2

τ

))
(4.20)

Γobs

(
taggedB → f

)
∝ e−Γt

((
1 +

∣∣λf

∣∣2)
cosh

∆Γ

2
t− (1− 2ω)

(
1−

∣∣λf

∣∣2)
cos ∆mt+

−2Re(λ) sinh
∆Γ

2
t+ (1− 2ω) 2Im(λf ) sin∆mt

)
⊗

1
√

2πστ

e
− (τ−t)2

2σ2
τ =

Γobs

(
taggedB → f

)
∝ e

σ2
τ ∆Γ2

8 +
σ2

τ Γ2

2 −Γτ ·
((

1 +
∣∣λf

∣∣2)
cosh

(
∆Γ

2
τ −

∆Γ

2
Γσ2

τ

)
− 2Re(λf ) sinh

(
∆Γ

2
τ −

∆Γ

2
Γσ2

τ

))
+

− (1− 2ω) e
Γ2σ2

τ
2 −σ2

τ ∆m2

2 −Γτ
((

1−
∣∣λf

∣∣2)
cos

(
∆mτ −∆mΓσ2

τ

)
− 2Im(λf ) sin

(
∆mτ −∆mΓσ2

τ

))
(4.21)

The time dependent CP asymmetry, for this channel, has been transformed
from the theoretical expression

Ath
CP (t) =

Γtrue(B0(t)→ f)− Γtrue(B
0
(t)→ f)

Γtrue(B0(t)→ f) + Γtrue(B
0
(t)→ f)

=
Adir

CP cos(∆mt) +Amix
CP sin(∆mt)

cosh(∆Γ · t/2)−A∆
CP sinh(∆Γ · t/2)

where
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Adir
CP =

1− |λf |2

1 + |λf |2
Amix

CP =
2Im(λf )
1 + |λf |2

A∆
CP =

2Re(λf )
1 + |λf |2

to the experimental form:

Aexp
CP (τ) = (1− 2ω) e−

σ2
τ ∆m2

2 −σ2
τ ∆Γ2

8 ·
Adir

CP · cos
(
∆mτ −∆mΓσ2

τ

)
+Amix

CP sin
(
∆mτ −∆mΓσ2

τ

)
cosh

(
∆Γ
2 τ − ∆Γ

2 Γσ2
τ

)
−A∆

CP sinh
(

∆Γ
2 τ − ∆Γ

2 Γσ2
τ

)
We can conclude observing that, in the case of a bias in the proper time distri-
bution, Aexp

CP is modi�ed as:

Aexp
CP (τ) = (1− 2ω) e−

σ2
τ ∆m2

2 −σ2
τ ∆Γ2

8 ·
Adir

CP · cos
(
∆mτ −∆mΓσ2

τ + ∆m Σ
στ

)
+Amix

CP sin
(
∆mτ −∆mΓσ2

τ + ∆m Σ
στ

)
cosh

(
∆Γ
2
τ − ∆Γ

2
Γσ2

τ + ∆Γ
2

Σστ

)
−A∆

CP sinh
(

∆Γ
2
τ − ∆Γ

2
Γσ2

τ + ∆Γ
2

Σστ

)
(4.22)

4.2.3 Considerations

Summing up brie�y the results from the foregoing paragraphs, we can notice how
the proper time resolution a�ects the Aexp

CP (τ) measurements in both the �avour
speci�c decay (Bs → Dsπ) and CP eigenstates (for example Bs → K+K− or
Bd → ππ decays).

The experimental e�ects of mistag fraction ω and B proper time resolution
determine the equations 4.18 and 4.22. Both the equations contain a common
dilution factor D which represents how much the oscillations amplitudes, and
thus the observed CP, are reduced due to experimental e�ects.

D = e−
σ2

τ ∆m2

2 −σ2
τ ∆Γ2

8 · (1− 2ω) (4.23)

Also the proper time resolution put in new phases in the sin, sinh, cos, and cosh
terms.

The damping factor expression is valid for the ACP asymmetry of Bs and
Bd. Given that LHCb will measure B proper time with a typical resolution of

40 fs, in case of the Bd, due to the small value for ∆md, the factor e−
σ2∆m2

2 is
negligible. In case of the Bs system it amounts to ∼ 0.8. Moreover ∆Γd and

∆Γs are small so the factor e−
σ2∆Γ2

8 can be neglected.
In �gure 4.1 is shown the στ dependence of the damping factor in case of

Bs. This picture can help understanding how the damping factor changes if
the proper time resolution is distributed over a range. Up to now we have
not advanced any hypothesis about the behavior of the proper time resolution
στ . In par. 3.1 we have shown that the resolution στ can be measured by the
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Figure 4.1: The damping factor e−
σ2

τ ∆m2

2 as function of the proper time error σ.
The time resolution can reduce signi�cantly the ACP amplitude. The present
mean value for the proper time error in LHCb is estimated about ∼ 40 fs and
for this reason the damping factor is still quite close to 0.8. Otherwise an error
value near ∼ 100 fs will reduce outrageously the ACP amplitude.

proper time error that can be calculated event by event. Indeed depending on
the event considered, the resolution can vary considerably. For example, from
the Bs → Dsπ decay, I pull the B meson proper time error out (�g.4.2) where
it can be noticed that the values range from 10 and 60 fs. .

The time dependent analyses can take advantage of this additional observ-
able to improve the parameters determination. In fact, this information can
be used to re-weight the events according to the errors, in a similar way we
calculate mean or weighted mean.

4.3 RooFit studies: impact of B decay proper

time measurement in time-dependent anal-

yses

Up to now we have met the meaningful physical values CP asymmetries ACP (τ),
which are time dependent quantities. Moreover the equations 4.22, 4.18 show
clearly how the proper time resolution can in�uence the measurements. LHCb
will measure the B meson proper time with an excellent mean resolution of ∼ 40
fs [15]. Nevertheless this error is a mean value of a distribution which can be
calculated experimentally. In this section we study how this information can
improve the �t results.

In order to evaluate the advantages of using the B meson proper time mea-
surements in time dependent analyses, we have prepared a set of trials with
the RooFit package [23]. RooFit allows to simulate entirely the life of the B
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Figure 4.2: The picture represents the B proper time error distribution in the
B → ππ decay channel. It can be noticed that the values range from 10 and 60
fs.

110



mesons, paying attention to taggers, proper time resolution and statistics. With
these studies we can also evaluate the limits on biases and on scaling factors in
proper time measurements to achieve good physics results.

We studied in depth the usage of the event by event proper time error and
also the utilization of a �xed resolution, understanding the incidental improve-
ments in the physical measurements with these two di�erent approaches.

The time resolution is a measurable value which can be correctly evaluated
by error propagation (see par. 3.1) provided that the input measurements own
normally distributed FITPull distributions. By applying the event by event
proper time resolution could we improve the goodness of the physical parame-
ters?

4.3.1 Signal and background, probability density functions
(Pdf) de�nition

The package RooFit allows to study any B decay analysis by means of a Monte
Carlo simulation. It allows to generate samples of signal and background events
with realistic proportions, each one following a speci�c model that represents the
data. The model is based on the physical decay process (time dependent rate)
and it takes into account several experimental e�ects(resolutions, tag e�ciency
and acceptance).

The generated data can be analyzed by the same program, with a �t pro-
cedure, in order to retrieve all the useful information. The advantage of this
approach is the possibility to study the analysis potentialities as a function of
the input parameters.

The necessary model to generate or �t the data is based on a probability den-
sity function which depends on several observables. In the case of CP analysis
the observables are

• the invariant mass m of the B candidate

• the �avour tag response tag

• the reconstructed B proper time τ and corresponding error στ

• in case of �avour speci�c decays, the �nal state rec

The most general Pdf , for signal and background events, can be expressed by

Pdf(m, τ, στ , tag, rec) = PdfSignal(m, τ, στ , tag, rec)+PdfBack(m, τ, στ , tag, rec)

The probability density function PdfSignal that describes the observed signal
events, depends on the theoretical rate Γtrue(t) (see equation 2.28, 2.29, 2.30,
2.31) and on the mass distribution: 4

4Inn case of Bs → Dsπ we have tag 0=untagged, tag ±1 = tagged and for the reconstructed
channel (rec=1 (K+K−π+)π− or rec=-1 (K+K−π−)π+)
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PdfSignal(m, τ, στ , tag, rec) =

ε(τ)
∫
dt (Γ(t, tag, rec)⊗Gauss(t− τ ;στ )) PdfSignal(στ )PdfSignal(m) (4.24)

where ε(τ) is an e�ective function due to the detector e�ciency. Its parametriza-
tion is studied on Monte Carlo data and it is given by:

ε(τ) =
(αt)5

1 + (αt)5

The term Gauss(t− τ ;στ ) represents the resolution model that transforms the
true proper lifetime t into the observed one τ , given the resolution στ .

For the PdfSignal(m) we consider a gaussian distribution centered at the B
mass with resolution σm.

PdfSignal(m) =
e
− (m−mB)2

2σ2
m

√
2πσm

If the στ is an observable, Pdf(στ ) represents the probability density function
of the proper time error drawn from real data5 . While, in case we assume a
�xed value for proper time resolution, we have to omit completely the Pdf(στ ) .

PdfSignal(m, τ, tag, rec) = ε(τ)
∫
dt (Γtrue(t, tag, rec)⊗Gauss(t− τ ;στ )) PdfSignal(m)

and στbecomes a parameter.

Concerning the background, since the time and mass evolution has di�erent
origin, it is described by di�erent functions:

PdfBack(m, τ, στ , tag, rec) = ΓBack(τ, tag, rec)PdfBack(m)PdfBack(στ )

The ΓBack(τ) is an e�ective function describing the proper time dependence of
the background rate. Its functional form can be extracted from data by studying
the proper time distribution in the side bands mass spectrum. In our studies
we consider the following form for every tag and rec combinations:

ΓBack(τ) = η(τ) · e−αBackτ (4.25)

while the mass distribution assume the form:

PdfBack(m) = e−βBackm (4.26)

Similarly to the signal case, the PdfBack(στ ) represents the probability den-

5In this case we obtained the error distributions from Monte Carlo, as reported in �g. 4.2.
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sity function of the time error that can be extracted by the side bands mass
distribution.

As shown the Pdf depends on several parameters (physical or experimental
quantities) that they can be freed during the �t optimization.

4.3.2 Proper time error distribution vs �xed value

In this section we want to give a direct estimate of how much the time dependent
analyses can bene�t by using the proper time error as an observable respect the
case in which a �xed resolution is assumed. We start considering the simpli�ed
case of a pure signal time dependent amplitude like:

Γ(τ ;∆mB ,ΓB , A) = e−ΓB τ ·
(
1. + A · cos(∆mB · τ)

)
(4.27)

where ∆mB ,ΓB are the B mass di�erence and decay width and A is the ampli-
tude.
With the RooFit package we generate 50.000 events according the Pdf distri-
bution 4.24 (for the moment we assume the acceptance function is ε(τ) = 1,
with the input parameters ΓB = 1/1.5, ∆mB = 17.8 ps−1, A = 1 and di�erent
proper time resolutions) de�ning a sample of τ i and σi

τ measurements. RooFit
exploits, for the data generation, a library function that implements the equa-
tions 4.2, 4.3, 4.4, 4.5, by including also the gaussian resolution model chosen.

To make the comparison, we �t the data generated according two di�erent
approaches:

1. two observables (τ i and σi
τ ) and the Pdf depending on τ and στ ;

2. we neglect the information on σi
τ and �t with a time dependent Pdf with

a �xed resolution value given by the mean value of the proper time error.

The comparison will indicate the improvement obtained considering the error in
the time dependent analysis. This comparison is made in four cases correspond-
ing to di�erent Pdf(στ ) (gaussian or Landau) and parameters. The �t results
are represented in �gure 4.3, and the corresponding values are reported in table
4.1. In case of good resolutions (σ̄τ = 40 fs) there is not too much improvement
in �tting with time and error per event: the two �t strategies give similar values
and errors for amplitude in agreement to the input value A = 1. Otherwise, in
case of "unprecise" measurements (σ̄τ = 100 fs), by �xing the resolution to the
mean error leads to an incorrect amplitude value.
The same behavior is present in case we consider a Landau error distribution.
Within the limits of this speculations, we can say that in case of "precise" res-
olution, the linearity of the problem and the limit central theorem allows to
simplify the time dependent analysis by considering the mean error.
Of course the conclusions may change dramatically if background is considered.
In fact if the error time distribution of the background di�ers from the signal
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input values Fit time and error Fit time
Fit parameters µτerr στerr A B/S A B/S

(fs) (fs)
Signal data sample

Gauss narrow 40 8 1.001± 0.007 1.002± 0.007
Gauss wide 100 25 1.01± 0.02 1.15± 0.03

Landau narrow 40 8 1.002± 0.007 1.002± 0.009
Landau wide 100 25 0.99± 0.02 1.69± 0.09

Signal + Background data sample
Gauss 40 8 1.00± 0.01 0.25 1.09± 0.01 0.37

60 10
Landau 40 8 1.01± 0.01 0.28 1.07± 0.01 0.25

60 10

Table 4.1: The generation parameters of the Pdf(στ ) are reported in the
�rst column. In case of gaussian(Landau) generation, they represent the
mean(maximum) and sigma of the distribution. The �rst four rows gather
the �t output in case of pure signal, whereas the last lines refer to the signal
and background case. The comparison indicates the improvement obtained con-
sidering the time dependent analysis with (second column) and without (last
column) the event by event resolution description. In case of signal+background
data sample both PdfSignal/Back(στ ) parameters are quoted.

one, the analysis of τ and στ observables gives better results. This fact is shown
in �g. 4.4. In these cases the data are generated with a fraction B/S = 0.25
of background events whose time error distributions are given by a Gaussian
(µστ

= 60fs, µστ
= 10fs, top plots) or a Landau (maxστ

= 60fs, µσtau
= 10fs,

bottom plots). The corresponding �t parameters are compared in table 4.1.

4.4 Examples

In this section we give a description of two time dependent analyses that LHCb
will perform giving emphasis to the proper time measurements.

4.4.1 ∆ms measurement: the channel Bs(B̄s)→ D∓
s (K+K−π±)π∓.

This channel is a self-tagged process, since the charge of the pion in Ds decay
de�nes uniquely the �avour of the B particle. For this reason this channel will
be used to determine not only the mixing frequency ∆ms of B̄0

s/B
0
s , but also

the wrong tag fraction ωtag. The sample of untagged events can also be useful
to determine the with di�erence ∆Γs.

The theoretical amplitude of the decay process are reported in eq. 4.6, 4.7,
4.8, 4.9 where the �rst two (second two) equations have the same amplitudes
and correspond to the unmixed (mixed) decay amplitudes. For the untagged
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Figure 4.3: Comparison between the �t results of 50.000 events generated ac-
cording to the amplitude 4.24, a gaussian time resolution model and di�erent
proper time error distributions. The second column represent the �t using time
and error( event by event) , while the third column shows the �t results em-
ploying only the time observable. From top to bottom: a narrow gaussian, a
wide gaussian, a narrow landau and a wide landau distributions.
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Figure 4.4: Comparison between the results of a �t of time and error per event
(second column) and only time (third column) of 50.000 events with B/S = 0.25,
a gaussian time resolution model and di�erent proper time error distributions:
top, a narrow gaussian; bottom a narrow Landau distributions.
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events (tag=0), depending on the reconstructed channel (rec=1 (K+K−π+)π−

or rec=−1 (K+K−π−)π+), the observed amplitudes are reported in equations
4.10 and 4.11 . These amplitudes are the bases for the signal Pdf, whereas for
the background we follow the indications given in the par.4.3.1.

LHCb will be able to collect about 110.000 Bs → Dsπ signal events in one
year of data taking (2fb−1) with an estimated background contamination of
B/S = 0.83(±0.09) and a tagging performances of εtag = (60.22 ± 0.18)% and
ωtag = (30.26 ± 0.23)%. As already mentioned, besides the measurement of
∆ms the analysis of this channel will provide an experimental determination
of the ωtag, provided that the proper time resolution is known. In fact in
eq. 4.23 we have shown that the e�ects of proper time resolution and wrong
tag are indistinguishable since they are factorized. Nevertheless if the proper
time error is distributed over a su�ciently large range independently from the
tagging performances, the analysis of time and proper time error will allow
to disentangle the two contributions. Of course in this case it is extremely
important that proper time error is well calibrated, for example by means of
the FITPull method.

4.4.1.1 Proper time resolution dependence of ∆ms and ωtag measure-
ments

In this section we study how the measurements of ∆ms and ωtag depend on the
proper time resolution. Exploiting the RooFit capabilities, we generate several
data samples corresponding to one year of data taking at LHCb. Each sample
corresponds to di�erent values of the parameters that de�ne the proper time
error distribution for the signal and the background events (quoted in tab. 4.2
). Two di�erent �ts are performed:

1. Pdf1- �t to all observables (m, tag, rec, τ, στ ): in this case the proper time
error calculated event by event is included and has a di�erent distribution
for signal or background events;

2. Pdf2- �t to the (m, tag, rec, τ) observables: in this case we neglect the
proper time error σerr and we assume a �xed resolution value for all the
events, which is extracted from the data.

In table 4.2 are reported the values of ∆ms and ωtag found with the two �t
approaches: independently on the Pdf(στ ), the �t approach using Pdf1 �nds
the ωtag and ∆ms values in agreement with the input ones(ωtag = 30.3% and
∆ms = 17.77 ps−1). The approach based on Pdf2 �nds the right ωtag value
only for small resolution values (µστ

< 60 fs), while it fails for worse resolutions.
Concerning the ∆ms the values found are in agreement with the input.
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Figure 4.5: Graphical representation of the �t output for the ωtag and ∆ms as
a function of the input mean proper time resolution. Black (green) corresponds
to Pdf1 �ts to data generated with a στ gaussian(Landau) distribution. Red
(blue) corresponds to Pdf2 �ts to data generated with a στ gaussian(Landau)
distribution. The dashed blue line represents the input generation value.

4.4.1.2 BIAS dependence of ∆ms and ωtag measurements

In this section we study the dependence on the proper time bias of the ∆ms

and ωtag parameters. We generate several data samples with a resolution model
modi�ed by the following equation

G(t− τ + bστ ;στ ) =
e
− (t−τ+bστ )2

2σ2
τ

√
2πστ

In table 4.3 and �gure 4.6 are reported the �tter results . The bias a�ects
both ∆ms and ωtag , in particular ∆ms measurements show a strong linear
dependence on the bias. This fact demonstrates the importance of a good
proper time calibration for a correct and precise measurements.

4.4.1.3 Scaling Factor dependence of ∆ms and ωtag measurements

In this section we study the e�ect of a scale factor to the proper time error on
the ∆ms and ωtag parameters. This fact allows us to simulate the cases where
the errors are over/under estimated. We generate several data samples with a
resolution model modi�ed by the following equation

G(t− τ ;στ × SF ) =
e
− (t−τ)2

2(στ×SF )2

√
2π (στ × SF )
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Figure 4.6: Graphical representation of the �t output for the ωtag and ∆ms

as a function of the input bias to the proper time. Black (green) corresponds
to Pdf1 �ts to data generated with a στ gaussian(Landau) distribution. Red
(blue) corresponds to Pdf2 �ts to data generated with a στ gaussian(Landau)
distribution. The dashed blue line represents the input generation value.

and the Pdf (στ ) that does not include the scale factor SF. In table 4.4 and
�gure 4.7 are reported the �tter results. As expected, ωtag strongly depends on
SF, while ∆msis independent. This fact demonstrates the importance of a good
proper time error calibration for correct ωtag measurement.

4.4.2 A CP asymmetry measurement: the channel Bd/s →
h+h−

As seen in the second chapter, provided that the hypothesis of the U spin sym-
metry is valid, the physical interpretation of the analyses of the decay channels
Bd → π+π− and Bs → K+K−, allows an independent measurement of the γ
angle.

LHCb put the simultaneous analyses of the Bd/s → h+h− channels forward,
in guise to earn in a single step all the CP parameters involved. This approach
shows the advantage in evaluating, with the most suitable way, the signals
Bd/s → Kπ e Bd → ππ , that, due to the incidental particles mis-identi�cation,
can contribute to the overall background. For a detailed description see reference
(A.Sarti B2hh note in preparation).

In the next subsection we will limit the discussion of the proper time error
incidence on the Adir

CP and Amix
CP parameters and in presence of biases or scaling

factors as well.

The physical relevant parameters to determine from these channels are the
CP asymmetries Amix

CP in the mixing , Adir
CP in the decay and the charge asym-
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Figure 4.7: Graphical representation of the �t output for the ωtag and ∆ms

as a function of the input scaling factor SF of the proper time. Black corre-
sponds to Pdf1 �ts to data generated with a στ gaussian(Landau) distribution.
Red corresponds to Pdf2 �ts to data generated with a στ gaussian(Landau)
distribution.

metry AKπ of Bd/s → πK respect to B̄d/s → πK decays (the parameter ∆ms

is supposed �xed by the dedicated measurement described above). The experi-
mental asymmetries depend also on the tagging power ωtag and on the proper
time resolution.

Some useful considerations can be made:

1. as already mentioned the dilution e�ects given by proper time resolution
are more important for the fast oscillating Bs channels, while they can be
neglected in case of Bd channels.

2. all the Bd/s → h+h− channels share the same decay topology and trigger.
For this reason, in the limit of the opposite side tagging, we can assume
that the ωtag is the same in all the channels. The same side tagging, on
the other side is di�erent for Bs and Bd decays.

3. The Bd/s → Kπ are self-tagging decays, so their oscillation amplitude
depends only on the ωtag and the proper time resolution.

These features can help us de�ning the �t strategy. A separated �t of Bd decays
assuming a �xed resolution model will measure Amix

CP , Adir
CP and AKπ in the Bd

sector. The control channels Bd → Kπ also provide a direct measurement of
the ωtag value. If this is done on the events selected by opposite side tagging,
the �t result on ωtag can be used to �t the Bs channels. In this case proper
time resolution play an important rule, so a per event resolution model is rec-
ommended. In this case the control channels Bs → Kπ can be useful to �nd any
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Figure 4.8: Graphical representation of the �t output for the Adir
CP and Amix

CP as
a function of the input mean proper time resolution. Black (green) corresponds
to Pdf1 �ts to data generated with a στ gaussian(Landau) distribution. Red
(blue) corresponds to Pdf2 �ts to data generated with a στ gaussian(Landau)
distribution.

possible adjustments to the experimental proper time resolution, in particular
any Scale Factors.

Given this analysis framework I will discuss the analysis of the onlyBschannels
given that we are considering the only opposite tagged events, the ωtag is known
from a �t to the Bd → h+h− channels and ∆ms is measured.

Studies on DC04 Monte-Carlo have allowed to give an estimate of the event
yield, the background contamination B/S and the tagging performances of the
channels. In table are reported the values corresponding to one year of data
taking.

4.4.2.1 Proper time resolution dependence of Adir
CP and Amix

CP mea-
surements

In this section we want to study the precision of the physical parameters Amix
CP

and Adir
CP as a function of the proper time resolution and �t strategy. As

par.4.4.1.1 we consider the two �t strategies based on Pdf1 and Pdf2.
In table 4.6 are reported the values of Amix

CP and Adir
CP found with the two

�t approaches: independently on the Pdf(στ ), and the �t approach, the �tted
values are in agreement with the input ones(Amix

CP = 0.347 and Adir
CP = −0.123).

We can notice that the precision of these parameters worsens for decreasing
resolution values.
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Figure 4.9: Graphical representation of the �t output for the Adir
CP and Amix

CP

as a function of the input bias to the proper time. Black (green) corresponds
to Pdf1 �ts to data generated with a στ gaussian(Landau) distribution. Red
(blue) corresponds to Pdf2 �ts to data generated with a στ gaussian(Landau)
distribution. The dashed blue line represents the input generation value.

4.4.2.2 BIAS dependence of Adir
CP and Amix

CP measurements

In this section we study the dependence on the proper time bias of theAdir
CP and

Amix
CP parameters. We generate several data samples in the same way as reported

in par.4.4.1.2.
In table 4.7 and �gure 4.9 are reported the �tter results . Adir

CP measurement
shows a signi�cant dependence on the bias, while the Amix

CP does not exhibit a
clear one. Anyways both �ts approaches give similar results.

4.4.2.3 Scaling Factor dependence of Adir
CP and Amix

CP measurements

In this section we study the e�ect of a scale factor to the proper time error on
the Adir

CP and Amix
CP parameters. This fact allows us to simulate the cases where

the errors are over/under estimated. We generate several data samples with a
resolution model modi�ed as described in par. 4.4.1.3.

In table 4.8 and �gure 4.10 are reported the �tter results. Adir
CP seems to

be only slightly a�ected by scaling factor for SF < 2 , while for bigger scaling
factors the �tted values are incompatible with the generated one. Concerning
the Amix

CP parameter, the dependence is more evident. Both �ts approaches,
anyways, give similar results.
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Figure 4.10: Graphical representation of the �t output for the Adir
CP and Amix

CP

as a function of the input scaling factor SF of the proper time. Black corre-
sponds to Pdf1 �ts to data generated with a στ gaussian(Landau) distribution.
Red corresponds to Pdf2 �ts to data generated with a στ gaussian(Landau)
distribution.

Conclusions

The time dependent analyses of B decays play a key role in the study of the CP
violation. LHCb will contribute with high statistics data in di�erent channels
to a better comprehension of the Standard Model. Moreover high precision
analyses will allow to put in evidence new physics e�ects or set limits to new
physics parameters or models.

In my thesis I focused the attention on the measurements of B proper time,
which is a decisive element in time dependent CP analyses.
One of the main features of the LHCb experiment is the possibility to measure
the B proper time very accurately (στ ≈ 40fs) which is one of the necessary
requirements to measure the fast Bs/B̄s oscillations and to study precisely the
time dependent CP asymmetries.
The correct measurement of B proper time and the evaluation of its resolution
are key points in LHCb physics analyses.
Blifetime can be calculated knowing its distance of �ight (from the production
vertex, PV to the decay vertex, SV) and its momentum p:

τB =
MB · (PV − SV)

‖p‖
(4.28)

PV is indirectly measured with a common vertex �t of all track segments in
the Vertex Locator (VELO), while SV and B momentum are determined by a
common vertex �t of the stable B decay products.
In general we can say that the proper time is a function of measured quantities
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τB(m1,m2, · · ·mN ) and its error can be obtained merely by error propagation
in case mi are gaussian distributed:

σ2
τ = Jτ · cov(~m) · Jτ

T (4.29)

where ~J = ( ∂τB

∂m1
, ∂τB

∂m2
, ..., ∂τB

∂mn
) is the Jacobian and cov(~m) is the covariance

matrix associated to the measurements.
It has been pointed out that for a generic measurement yi, adjusted by a �t

procedure, we can de�ne the normalized �stretch values� or �FITPulls�, given
by:

FITPulls(yi) =
∆yi√

covii −V(ŷ)ii

(4.30)

where ∆yi represents the di�erence between value of the measurement before
and after the �t process, whereas at the denominator we put in the di�erence
of the two variances, the �tted and the original ones. If the measured data are
gaussian distributed and the linearization of the equations constraints exploited
in the �t is a good approximation within the range spread by the measurements,
FITPulls turn out to be distributed as normal gaussians (µ = 0, σ = 1). It
is reasonable to expect that if one of the conditions above is not satis�ed a
deviation from normality of their shape should appear.

Thus this statistical quantity can represent an original method to calibrate
and monitor the proper time on real data and then it has been developed and
proposed to the LHCb collaboration in order to constitute a valid tool to mon-
itor the quality of tracking algorithm.

On real data, the method can be also used on the control channel J/Ψ→ µµ,
� chosen since the prompt J/Ψ will be a strong signal in dimuon triggered
events (~170Hz@LHCb) with a low background level (B/S~24%) � as a gen-
eral monitor for the charged tracks calibration and to recover the systematic
e�ects that can compromise the B proper time measurement. Thus I have pre-
pared an iterative method to extract, starting from the FITPull distributions, a
map of the corrections, obtained from analysis of the J/Ψ channel, as function
of the momentum of the input charged tracks. Therefore the idea is to look for
a FITPull parameters (mean, variance) dependence on the input track parame-
ters as a function of the input particle phase space. In this way we can think a
correction strategy, built on an clean channel, but exportable to others physical
decays.

In order to perform these tasks, I developed a general software tool, the
GlobalFitter, a kinematical �tter, that has been released to the LHCb collab-
oration last year. The GlobalFitter has been projected explicitly to compute
the FITPulls and the proper time error by correctly considering the correlations
given by the constraints and the full covariance matrices of the input measure-
ments.
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Finally, by using the RooFit package, I have performed some studies in order
to understand the e�ects of the knowledge of the proper time resolution on
some relevant CP violation parameters. I have generated several data samples
of B decays and I have �tted them in order to retrieve the physical parameters
used during the generation. I have considered and studied two di�erent cases,
Bs → Dsπ and B → h+h− and I have observed how biasies or a scale factors6,
applied to the proper time error distribution, can a�ect the �t output values.
The former channel has been used to �t the ∆ms and the ωtag

7 parameters,
whereas the second one has been exploited for the CP violation measurement,
by observing the Adir

CP and the Amix
CP

8quantities. Also with these trials, I have
given a direct estimate of how much the time dependent analyses can bene�t by
using the proper time error as an observable respect the case in which a �xed
resolution is assumed.

In particular a ωtag strong dependence on scale factor has been shown. This
fact demonstrates the importance of a good proper time error in order to obtain
a correct ωtag measurement. Similarly a great dependence on bias has been
demonstrated for the ∆ms measurement.

By observing the �t results for the B → hh, we can notice that the relevant
physical asymmetry Adir

CP seems to be only slightly a�ected by scaling factor
for SF < 2, while for bigger values the �tted values are not compatible to
the generated ones. Concerning the Amix

CP parameter, the dependence is more
evident.

From these studies we can conclude that it will be very important to provide
correct proper time measurements and thus it will be absolutely necessary a
reliable calibration technique running on experimental data. For this reason I
propose the FITPull method to the LHCb collaboration.

6For scale factors, SF, I mean the case when the error on the proper time is under/over-
estimated.

7ωtag is the mistag fraction and it is a distinguish mark of the �avour tagging procedure;
whereas the ∆ms is the parameter responsible of the Bs/B̄s oscillation.

8Adir
CP is the direct CP asymmetry, present when a generic decay amplitude Af di�ers from

Āf .
Amix

CP is the CP asymmetry induced by the mixing and it occurs when the oscillation rate
B → B̄ di�ers from the B̄ → B one.
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1110011 1101001 1101110 1100111 1101101 1111001 1101001 1101110 1110100 1100101 1110010

1100101 1110011 1110100 1010 1101001 1101110 1010 1110000 1100001 1110010 1110100

1101001 1100011 1101100 1100101 1110000 1101000 1111001 1110011 1101001 1100011 1110011

1100001 1101110 1100100 1110000 1100001 1110100 1101001 1100101 1101110 1110100 1101100

1111001 1100001 1101110 1110011 1110111 1100101 1110010 1101001 1101110 1100111 1100001

1101100 1101100 1101101 1111001 1110001 1110101 1100101 1110011 1110100 1101001 1101111

1101110 1110011 101110 1010011 1101000 1100101 1101001 1101110 1110011 1110000 1101001

1110010 1100101 1100100 1010 1101101 1100101 1010 1101001 1101110 1101101 1111001

1110010 1100101 1110011 1100101 1100001 1110010 1100011 1101000 1110100 1101111 1110000

1101001 1100011 1110011 1100110 1101111 1110010 1110100 1101000 1100101 1110100 1101000

1100101 1110011 1101001 1110011 101110 1010111 1101001 1110100 1101000 1101111 1110101

1110100 1111001 1101111 1110101 1110010 1101000 1100101 1101100 1110000 101100 1110000

1110010 1101111 1100010 1100001 1100010 1101100 1111001 101100 1001001 100111 1101100

1101100 1010 1101110 1100101 1110110 1100101 1110010 1100011 1101111 1101110 1100011

1101100 1110101 1100100 1100101 1101101 1111001 1110100 1101000 1100101 1110011 1101001

1110011 101110 1001001 1101111 1110111 1100101 1101101 1110101 1100011 1101000 1110100

1101111 1111001 1101111 1110101 1110010 1100111 1110101 1101001 1100100 1100001 1101110

1100011 1100101 101110 1010 1000001 1101100 1110011 1101111 1101101 1100001 1101110

1111001 1110100 1101000 1100001 1101110 1101011 1110011 1110100 1101111 1101101 1111001

1110011 1110101 1110000 1100101 1110010 1110110 1101001 1110011 1101111 1110010 1010000

1110010 1101111 1100110 1100101 1110011 1110011 1101111 1110010 1000100 1101111 1101101

1100101 1101110 1101001 1100011 1101111 1000111 1100001 1101100 1101100 1101001 1110111

1101000 1101111 1100001 1101100 1101100 1101111 1110111 1100101 1100100 1010 1101101

1100101 1010 1110100 1101111 1101010 1101111 1101001 1101110 1110100 1101000 1100101

1001100 1001000 1000011 1100010 1100111 1110010 1101111 1110101 1110000 101110 1001001

1101000 1100001 1110110 1100101 1110100 1101111 1110100 1101000 1100001 1101110 1101011

1100001 1101100 1110011 1101111 1010101 1101101 1100010 1100101 1110010 1110100 1101111

1001101 1100001 1110010 1100011 1101111 1101110 1101001 101000 1100001 1100111 1110010

1100101 1100001 1110100 1010 1110101 1101110 1100101 1111000 1110000 1110010 1100101

1110011 1110011 1100101 1100100 1100111 1110101 1101001 1110100 1100001 1110010 1101001

1110011 1110100 101001 1100110 1101111 1110010 1101000 1101001 1110011 1110000 1101000

1101001 1101100 1101111 1110011 1101111 1110000 1101000 1101001 1100011 1100001 1101100

1100001 1110010 1100111 1110101 1101101 1100101 1101110 1110100 1110011 1100001 1100010

1101111 1110101 1110100 1110100 1101000 1100101 1101100 1101001 1100110 1100101 1010

1100001 1101110 1100100 1010 1110100 1101000 1100101 1001100 1001000 1000011 1100010

1100101 1111000 1110000 1100101 1110010 1101001 1101101 1100101 1101110 1110100 101110

1010 1010100 1101111 1101101 1111001 1100110 1110010 1101001 1100101 1101110 1100100

1010110 1101001 1101110 1100011 1100101 1101110 1111010 1101111 1010110 1100001 1100111

1101110 1101111 1101110 1101001 1001001 1110111 1100001 1101110 1110100 1110100 1101111

1110011 1100101 1101110 1100100 1101101 1111001 1100100 1100101 1100101 1110000 1100101

1110011 1110100 1110100 1101000 1100001 1101110 1101011 1110011 1100110 1101111 1110010

1101000 1101001 1110011 1010 1110011 1110101 1100111 1100111 1100101 1110011 1110100

1101001 1101111 1101110 1110011 1100001 1101110 1100100 1100011 1101111 1110010 1110010

1100101 1100011 1110100 1101001 1101111 1101110 1110011 101100 1111001 1101111 1110101

1110010 1100010 1100101 1101000 1100001 1110110 1101001 1101111 1110101 1110010 1101000

1100001 1110011 1100010 1100101 1100101 1101110 1100001 1101100 1110111 1100001 1111001

1110011 1100001 1101110 1100101 1111000 1100001 1101101 1110000 1101100 1100101 1010

1101111 1100110 1010 1100100 1100101 1110110 1101111 1110100 1101001 1101111 1101110

1110100 1101111 1110111 1101111 1110010 1101011 1100110 1101111 1110010 1101101 1100101

101110 1010 1000001 1110100 1101100 1100001 1110011 1110100 1001001 1110111 1101111

1110101 1101100 1100100 1101100 1101001 1101011 1100101 1110100 1101111 1110100 1101000

1100001 1101110 1101011 1110100 1101000 1100101 1101111 1110100 1101000 1100101 1110010

1101101 1100101 1101101 1100010 1100101 1110010 1110011 1101111 1100110 1001100 1001000
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1000011 1100010 1000010 1101111 1101100 1101111 1100111 1101110 1100001 1000111 1110010

1101111 1110101 1110000 111010 1010 1000001 1101110 1100111 1100101 1101100 1101111

101100 1000100 1100001 1101110 1101001 1100101 1101100 1100001 101100 1000100 1100001

1101110 1101001 1100101 1101100 1100101 101100 1000111 1101001 1100001 1101110 1101100

1110101 1100011 1100001 1100001 1101110 1100100 1000110 1100101 1100100 1100101 1110010

1101001 1100011 1101111 101110 1010100 1101000 1100001 1101110 1101011 1111001 1101111

1110101 1110110 1100101 1110010 1111001 1101101 1110101 1100011 1101000 101100 1010

1100100 1100101 1100001 1110010 1010 1100110 1110010 1101001 1100101 1101110 1100100

1110011 101110 1010 1001000 1101111 1110111 1100101 1110110 1100101 1110010 1101001

1110100 100111 1110011 1101101 1100001 1101110 1100100 1100001 1110100 1101111 1110010

1111001 1110100 1101111 1110100 1101000 1100001 1101110 1101011 1100001 1101100 1101100

1101101 1111001 1110010 1100101 1101100 1100001 1110100 1101001 1110110 1100101 1110011

101100 1100110 1110010 1101001 1100101 1101110 1100100 1110011 1100001 1101110 1100100

1010 1100010 1100101 1101110 1100101 1100110 1100001 1100011 1110100 1101111 1110010

1110011 111010 1010 1001100 1110101 1101001 1110011 101000 1000001 1001011 1000001

1001101 1100001 1110100 1101001 1111010 101001 101100 1000011 1101111 1100011 1101001

1110011 1101001 1101111 101000 1100101 1101110 1100111 1101001 1101110 1100101 1100101

1110010 1100100 1101111 1100111 101001 101100 1001101 1101001 1110101 100111 101000

1100010 1100101 1110100 1110100 1100101 1110010 1100100 1100001 1101101 1100001 1100111

1100101 1100100 1110100 1101000 1100001 1101110 1010 1110100 1101111 1100111 1100101

1110100 1101000 1100101 1110010 101001 101100 1010000 1101001 1110000 1110000 1101111

101000 1110111 1100101 1101000 1100001 1110110 1100101 1100110 1110010 1100001 1100111

1100111 1100101 1100100 1000101 1101100 1101001 1100001 101110 101110 101110 101001

101100 1001101 1100001 1101110 1110101 101000 1110111 1101000 1101001 1100011 1101000

1010000 1101001 1111010 1111010 1100001 1100100 1101111 1111001 1101111 1110101 1010

1110111 1100001 1101110 1110100 111111 101001 101100 1010010 1101111 101000 1000111

1100001 1101101 1100010 1100101 1110010 1101001 1101110 1101001 101100 1110011 1110100

1101111 1110000 1101001 1110100 100001 100001 100001 101001 101100 1000111 1101001

1101111 1100111 1100111 1101001 1100001 101000 1000100 1101000 1100001 1110010 1101101

1100001 101001 101100 1000011 1101001 1100001 1101011 1101001 101000 1101111 1101110

1100101 1100111 1101001 1101110 1100111 1100101 1110010 1010 1100001 1101100 1100101

1010 1110000 1101100 1100101 1100001 1110011 1100101 101001 101100 1000101 1101100

1101001 1100001 101000 1001000 1100001 1110110 1100101 1001001 1100010 1100101 1100101

1101110 1100110 1110010 1100001 1100111 1100111 1100101 1100100 101001 101100 1001010

1100101 1110010 1110010 1111001 101000 1100001 1110101 1111010 101001 101100 1000111

1100001 1101101 1100010 1100101 1110010 1101111 101000 1100010 1110101 1110100 1101000

1101111 1110111 1100011 1100001 1101110 1001001 1010 1100100 1101111 1010 1101001

1110100 111111 111111 111111 101001 101100 1001100 1100001 1110101 1110010 1100001

101000 101011 110001 101001 101100 1001000 1100101 1101100 1100101 1101110 1101001

1100001 101000 101011 110001 101001 101100 1000001 1101100 1101001 1110110 1100101

101000 1110011 1110100 1101001 1101100 1101100 101001 101100 1001101 1100001 1111000

101000 1001001 100111 1101100 1101100 1101110 1100101 1110110 1100101 1110010 1110010

1101001 1100100 1100101 1010 1100010 1101001 1100011 1111001 1100011 1101100 1100101

1010 1100110 1101111 1110010 1110100 1101000 1100101 1000011 1101111 1110000 1101001

1100001 1000011 1110010 1101111 1101110 1101111 101001 101100 1000010 1101001 1100001

1100111 1101001 1101111 1101110 1100101 101000 1110111 1101000 1100101 1110010 1100101

1101001 1110011 1001110 1100001 1101110 1101111 111111 101001 101100 1000011 1101100

1100001 1110010 1101111 1101110 1100001 101000 1110100 1101000 1100101 1110000 1110101

1100010 101100 1110000 1100001 1110010 1110100 1010 1000001 101001 101100 1010 1010011

1100001 1100010 1101001 1101111 1101110 1100001 101000 1110100 1101000 1100101 1110000

1110101 1100010 101100 1110000 1100001 1110010 1110100 1000010 101001 101100 1001101

1100001 1110010 1101001 1101111 101000 1100111 1110010 1100101 1100001 1110100 1110011

1101111 1110101 1101100 101001 101100 1010110 1101001 1110010 1100111 1101001 101000

1110111 1101000 1100001 1110100 100111 1110011 1110100 1101000 1100101 1110111 1100101

1100001 1110100 1101000 1100101 1110010 1010 1101100 1101001 1101011 1100101 101100

1101110 1101111 1110111 111111 101001 101100 1010011 1100101 1101101 101000 1001101

1110010 101110 1010000 1110010 1100101 1110011 1101001 1100100 1100101 1101110 1110100

101001 101100 1011010 1100001 1101110 1111010 1101111 100111 101000 1101110 1101111

101100 1110111 1101000 1111001 111111 101001 101110 1010111 1101001 1110100 1101000

1101111 1110101 1110100 1111001 1101111 1110101 1110010 1010 1110000 1110010 1100101

1110011 1100101 1101110 1100011 1100101 1010 1101101 1111001 1101100 1101001 1100110

1100101 1110111 1101111 1110101 1101100 1100100 1100010 1100101 1110011 1110101 1110010

1100101 1101100 1111001 1101101 1101111 1110010 1100101 1110100 1100101 1100100 1101001

1101111 1110101 1110011 101110 1011001 1101111 1110101 1101000 1100001 1110110 1100101

1100001 1101100 1110111 1100001 1111001 1110011 1110000 1110010 1101111 1110110 1101001

1100100 1100101 1100100 1100011 1101111 1101110 1110100 1101001 1101110 1110101 1100101

1100100 1010 1100111 1110010 1100101 1100001 1110100 1110011 1110101 1110000 1110000

1101111 1110010 1110100 1100001 1101110 1100100 1110011 1110100 1101001 1101101 1110101

136



1101100 1110101 1110011 101110 1010 1001001 100111 1101101 1110110 1100101 1110010

1111001 1101100 1110101 1100011 1101011 1111001 1110100 1101111 1101000 1100001 1110110

1100101 1110011 1101111 1101101 1100001 1101110 1111001 1100110 1110010 1101001 1100101

1101110 1100100 1110011 101100 1110011 1101111 1001001 1110111 1100001 1101110 1110100

1110100 1101111 1100100 1100101 1100100 1101001 1100011 1100001 1110100 1100101 1101101

1111001 1110111 1101111 1110010 1101011 1110100 1101111 1010 1111001 1101111 1110101

101110 1000001 1101000 1100101 1100001 1110010 1110100 1100110 1100101 1101100 1110100

1110100 1101000 1100001 1101110 1101011 1111001 1101111 1110101 1110100 1101111 1100101

1110110 1100101 1110010 1111001 1101111 1101110 1100101 101110 1010 1000010 1100101

1101000 1100001 1100100 1100101 1110011 1100001 1110110 1110011 1100001 1101100 1110101

1110100 100001 1000001 1110110 1100101 1100111 1101000 1100001 1100110 1100101 1101101

1110101 1101110 1111010 1101001 1110010 1101001 1101110 1100010 1101001 1100011 1101001

1100011 1101100 1100101 1110100 1100001 101110 101110 101110 1100001 1110011 1100001

1110110 1100100 1100101 100111 100001 1010 1000111 1100001 1110010 1101110 1100001

1110010 1101111 1101100 101100 1000001 101110 1000100 101110 110010 110000 110000

110111 101100 1101101 1100101 1110011 1001100 1101111 1101001 101100 1100100 1100101

1110100 1110010 1101001 1010 1000100 1110010 101110 1010000 1100101 1110011 1110011

1100101 1010
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Appendix A

The Least Squares Principle

Least squares is a mathematical optimization technique which, when given a
series of measured data, attempts to �nd a function which closely approximates
the data (a "best �t"). It attempts to minimize the sum of the squares of the
ordinate di�erences (called residuals) between points generated by the function
and corresponding points in the data.

Given a random variable with an expectation value de�ned as:

y(x) = f(x, a) (4.31)

where the function f depends linearly on parameters aj=1,...p.

f(xi, a) = a1f1(xi) + a2f2(xi) + ...+ apfp(xi)

Taken a set of measurements yi=1,..n we have an expectation value for each
measurement that is according to eq.4.31

E[yi] = f(xi, a)

where a represents the true values of the parameters.
We establish the term �residual � the di�erence between the true value and

the measured one:
ri = f(xi, a)− yi (4.32)

that has an expectation value
E[ri] = 0 (4.33)

Then, the principle of least squares requires a minimization of the sum of the
residuals above shown

S =
n∑

i=1

r2i = min =
n∑

i=1

(f(xi, a)− yi)
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The essential property for the minimization of S is that the derivatives vanish:

∂S
∂a1

= 2
∑n

i=1 f1(xi) (a1f1(xi) + a2f2(xi) + ...+ apfp(xi)− yi)
2

∂S
∂a2

= 2
∑n

i=1 f2(xi) (a1f2(xi) + a2f2(xi) + ...+ apfp(xi)− yi)
2

...
∂S
∂ap

= 2
∑n

i=1 fp(xi) (a1fp(xi) + a2fp(xi) + ...+ apfp(xi)− yi)
2

In a matricial form we can write

A =


f1(x1) f2(x1) ... fp(x1)
f2(x1) f2(x2) ... fp(x2)
...

f1(xn) f2(xn) ... fp(xn)

 a =


a1

a2

a3

a4


and

r = Aa− y

hence
S = rT r

= (Aa− y)T (Aa− y)
= yT y − 2aTAT y + aTATAa

(4.34)

The minimization is ful�lled by

−2AT y + 2ATAa = 0 ⇒ â = (ATA)−1AT y (4.35)

Then inserting the eq.4.35 in eq.??

Ŝ = yT y − 2âTAT y + âTATA(ATA)−1AT y = yT y − âTAT y = yT y − yTAâ
(4.36)

To calculate the expectation value we have to express the above expression in
terms of a (true vector of parameters) instead â (estimated parameters). The
least squares â = (ATA)−1AT y are unbiased estimates of a:

E[â] = (ATA)−1ATE[y] = (ATA)−1ATAa = a

since the expectation value for the quantity Aa− y is:

E[Aa− y] = 0 ⇒ E[y] = Aa

Hence
Ŝ = (Aa− y)T (

In −AC−1AT
)
(Aa− y) ≡ zTUz (4.37)

Also we can notice that

E[z] = E[Aa− y] = 0
V [z] = V [Aa− y] = σ2In

(4.38)
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so we can observe that

V [zi] = E[z2
i ] = σ2 E[zizj ] = 0

Then the expectation value of Ŝ is given by:

E[Ŝ] =
∑

i

UiiE[z2
i ] = σ2Trace(U)

The trace of a square matrix is the sum of its diagonal elements that in this
case is

Trace(U) = n− p

and therefore
E[Ŝ] = σ2(n− p) (4.39)
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Appendix B

MCPull and FITPull theory

Given a decay to be reconstructed, the GlobalFitter provides the measured
quantities corrected and the estimated unknown parameters. with their errors.
The reliability of the results are guaranteed by some new mathematical quanti-
ties.

Working with Monte Carlo data, it achieves to verify if the solutions found
are consistent with Monte Carlo truth. We introduce the concept of �stretch
function�:

MCPulli =
ti −mi

σmi

(4.40)

where ti stands for the Monte Carlo truth, whereas themi and are the measured
(or �tted) quantities and their errors. For example the proper time value is
returned with its error, so the stretch function is

MCPullτ̂ =
tτ − τ̂
στ̂

(4.41)

If the propertime and the proper time error are correct, the stretch function
MCPull follows a normal distribution with µ = 0 and σ = 1 for the central
limit theorem [22]. This stretch function has only one problem. It stresses the
Monte Carlo information which, in the real world, it doesn't exist. We need a
mathematical tool, which has to be independent of the Monte Carlo information.
We propose the FITPull function:

FITPulli =
mi − ŷi√
σ2

mi
− σ2

ŷi

(4.42)

where mi and σmi are the measurement and its error, and ŷi and σŷi are the
same quantities but calculated after the �tting procedure. How is distributed
this mathematical value? We can write

ŷ = m−∆y cov(ŷ) = JT
y · cov(m) · Jy (4.43)

.
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The conditions for the linearization are expressed as:

gk(a∗, y∗) +
∑

j

∂gk

∂aj
(∆aj −∆a∗) +

∑
j

∂gk

∂yj
(∆yj −∆y∗) ≈ 0 (4.44)

where the functions and the derivatives are computed in a∗ = a+ ∆a∗ and

y∗ = y + ∆y∗. In a matricial form we can summarize:

g +A (∆a−∆a∗) +B (∆y −∆y∗) = 0⇒

A ·∆a+B ·∆y = c c = A ·∆a∗ +B ·∆y∗ − g

and

A =


∂g1
∂a1

∂g1
∂a2

... ∂g1
∂ap

... ... ... ...

... ... ... ...
∂gm

∂a1

∂gm

∂a2
... ∂gm

∂ap



B =


∂g1
∂y1

∂g1
∂y2

... ∂g1
∂yn

... ... ... ...

... ... ... ...
∂gm

∂y1

∂gm

∂y2
... ∂gm

∂ayn
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g =


g1(a

∗, y∗)
g2(a

∗, y∗)
...

gm(a∗, y∗)


So the new function to be minimized can be written as

Λ = ∆yT W ∆y + 2λT (A ·∆a+B ·∆y − c) (4.45)

∂Λ
∂ (∆y, λ,∆a)

= 0 ⇒

W∆y +BTλ = 0
ATλ = 0
B∆y +A∆a = c

=

 W 0 BT

0 0 AT

B A 0

 ·
 ∆y

∆a
λ

 =

 0
0
c

 (4.46)

This linear system can be solved through the standard numerical methods by

the inversion

G−1 =

 W 0 BT

0 0 AT

B A 0

−1

=

 C11 CT
21 CT

31

C21 C22 CT
32

C31 C32 C33


Introducing the abbreviations

WB =
(
BW−1BT

)−1
(4.47)
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W−1
A =

(
ATWBA

)−1
(4.48)

We can solve the inversion ( for more details [19], [20]) and if we realize that

the matrix G is a sparse matrix. Applying the

C11 = W−1 −W−1B
T

WB BW
−1 +W−1BT WB AW

−1
A AT WB BW

−1

C21 = −W−1
A AT WB BW

−1

C22 = W−1
A

C31 = WB BW
−1 −WBAW

−1
A ATWBBW

−1

C32 = WBAW
−1
A

C33 = −WB +WBAW
−1
A ATWB

(4.49)

From the eq.4.46

W−1(W∆y +BTλ) = 0 ⇒ ∆y = −W−1BTλ (4.50)

hence

−BW−1BTλ+A∆a = c ⇒ λ = (BW−1BT )−1(A∆a− c)

ATλ = 0 = AT ((BW−1BT )−1(A∆a−c)) ⇒ AT (BW−1BT )−1A∆a = AT (BW−1BT )−1c

WA∆a = ATWBc⇒ ∆a = W−1
A ATWBc

∆y = −W−1BT (BW−1BT )−1(AW−1
A ATWB−1)c = W−1BTWBc−W−1BTWBAW

−1
A ATWBc

Ergo

∂(∆y)
∂y

= −W−1BTWBB +W−1BTWBAW
−1
A ATWBB ⇒
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V (∆y) =
(
−W−1BTWBB +W−1BTWBAW

−1
A ATWBB

)
V (y)·

·
(
−W−1BTWBB +W−1BTWBAW

−1
A ATWBB

)T

=
(
−W−1BTWBB +W−1BTWBAW

−1
A ATWBB

)
V (y)·

·
(
−BTWBBW

−1 +BTWBAW
−1
A ATWBBW

−1
)

=

= W−1BTWBW
−1
B WBBW

−1 −W−1BTWBAW
−1
A ATWBW

−1
B WBBW

−1+

−W−1BTWBAW
−1
A ATWBW

−1
B WBBW

−1+W−1BTWBAW
−1
A ATWBW

−1
B WBAW

−1
A ATWBBW

−1 =

= W−1BTWBBW
−1 −W−1BTWBAW

−1
A ATWBBW

−1 (4.51)

−W−1BTWBAW
−1
A ATWBBW

−1+W−1BTWBAW
−1
A WAW

−1
A ATWBBW

−1 =

= W−1BTWBBW
−1 −W−1BTWBAW

−1
A ATWBBW

−1 (4.52)

So the covariance of ∆y is just the di�erence between V (y) and V (ŷ):

V (∆y) = V (y)− V (ŷ) (4.53)

thus the normalized stretch function is

FITPulli =
∆yi√

(V (y)ii − V (ŷ)ii)
=

yi − ŷi√
(V (y)ii − V (ŷ)ii)

(4.54)

where yi is the measurement and the ŷi is the same measurement but after
the �tting procedure. This is the equation 4.42. If the measured data are
normally distributed and the condition are linear, the FITPulls should
follows the standardized Gaussian distribution (mean=0, sigma=1) [19].
In fact we can consider the ∆y as the deviation from the zero, i.e. we are
substituting the �truth� with �0� and the measurements with ∆y in the eq.
4.40.
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Appendix C

The GlobalFitter Tool

In this section I report summarily the LagrangeGlobalFitter class de�nition
with its most important methods. The GlobalFitter can be invoked by means
of three overloaded public methods, StatusCode fit(....). Depending on the
passed arguments, a di�erent output can be chosen. Nevertheless all the three
methods are based on the common function fitFromEverything(....) which
implements the matrix inversion as described in par. 3.3.1.

class LagrangeGlobalFitter : public GaudiTool, virtual public IGlobalFitter {

public:

///Standard constructor

LagrangeGlobalFitter( const std::string& type, const std::string& name,

const IInterface* parent);

///Destructor

~LagrangeGlobalFitter() {

MParStore.clear();

UNParStore.clear();

MVtxStore.clear();

UNVtxStore.clear();

SelectParticle.clear();

ProductionVertex.clear();

DecayVertex.clear();

}

StatusCode initialize();

StatusCode finalize();

StatusCode fit(Vertex &WorkingVertex); ///< Fit from a Vertex
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///Fit from a Vertex and retrieve the proper time and its error

//of the particle/particles selected

StatusCode fit(Vertex &WorkingVertex, std::vector < double >&,

std::vector < double >&);

StatusCode fit(Particle &WorkingParticle); ///< Fit from a Particle

//Retrieve Pulls

///Retrieve the function FitPULL for measured particle computed

//with all the track parameters transported in the z

StatusCode getFitPull(Particle &previousP, Particle &afterP, HepVector &pull);

/// Retrieve the function FitPULL for a measured particle

StatusCode getFitPull(Vertex &previousV, Vertex &afterP, HepVector &pull);

///Set which particle to compute the lifetime

void setWhichParticleLifetime(Particle *);

.........

}

StatusCode LagrangeGlobalFitter::fit(Vertex &inVertex) {

//Fit From Vertex

HepMatrix Minv;

int nm;

Particle dummy;

StatusCode sc=fitFromEverything(inVertex, dummy, true, Minv, nm);

if (sc.isFailure()) return StatusCode::FAILURE;

return StatusCode::SUCCESS;

}

StatusCode LagrangeGlobalFitter::fit(Vertex &inVertex, std::vector

< double > &lifeTime, std::vector <double > &lifeTimeErr)

{

//Fit from Vertex and retrieve lifetime and its error

double lfTime, lfTimeErr;

HepMatrix Minv;

int nm;

Particle dummy;
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StatusCode sc=fitFromEverything(inVertex, dummy, true, Minv, nm);

if (sc.isFailure()) return StatusCode::FAILURE;

for (unsigned int i=0; i< SelectParticle.size(); i++)

{

lifeTimeCalculator(inVertex, Minv, i, nm, lfTime, lfTimeErr);

lifeTime.push_back(lfTime);

lifeTimeErr.push_back(lfTimeErr);

}

resetVars();

return StatusCode::SUCCESS;

}

StatusCode LagrangeGlobalFitter::fit(Particle &inParticle) {

debug() << "fit from Particle..." << endmsg;

HepMatrix Minv;

int nm;

Vertex dummy;

return fitFromEverything(dummy, inParticle, false, Minv, nm);

}

StatusCode LagrangeGlobalFitter::fitFromEverything(Vertex &inVertex,

Particle &inParticle, bool isFromVertex,HepMatrix &V, int& num_m) {

info() << "Starting global fit ...." << endmsg;

StatusCode sc;

Vertex *workingVertex=&inVertex;

Particle *workingParticle=&inParticle;

debug() << "Compute NdF" << endmsg;

// then compute number of measurements, of unmeasurements, of contraints;

int nm, nu, nc;

if(isFromVertex) {

sc = computeDoF(*workingVertex, nm, nu, nc);

} else {

sc = computeDoF(*workingParticle, nm, nu, nc);

}

if(sc.isFailure()) {

error() << "cannot compute DoF" << endmsg;
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resetVars();

return StatusCode::FAILURE;

}

debug() << "Number of measured variables " << nm << endmsg;

debug() << "Number of unmeasured variables " << nu << endmsg;

debug() << "Number of constraints " << nc << endmsg;

debug() << "Number of degrees of freedom " << nc-nu << endmsg;

num_m=nm;

// Second get initial estimate of unmeasured variables and transport measurements

//to approximate vertices

// (in the meanwhile fill vector of measurements, its

//covariance and vector of unmeasured

HepSymMatrix Ce(nm, 0);

HepVector e(nm,0);

HepVector u(nu,0);

if(isFromVertex) {

sc = estimateAndTransport(Ce, e, u, *workingVertex);

} else {

sc = estimateAndTransport(Ce, e, u, *workingParticle);

}

if(sc.isFailure()) {

error() << "cannot get initial estimates" << endmsg;

resetVars();

return StatusCode::FAILURE;

}

sc = checkCovariance(Ce, nm);

if (sc.isFailure() ) {

error() << "covariance matrix after transport check

failed... something fishy"

<< endmsg;

resetVars();

return StatusCode::FAILURE;

}

debug()<< "e " << e << endmsg;

debug()<< "u " << u << endmsg;

// copy parameter vector to save initial values (later used to compute chi2)
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HepVector e0(e);

// save covariance matrix to be used for chi2 calculation

HepSymMatrix Ce0(Ce);

HepMatrix B_m(nc, nm, 0);

HepMatrix C_m(nc, nu, 0);

HepMatrix Minv_m(nm+nu+nc, nm+nu+nc, 0);

// now start loop of linearized constraints

bool final = false; // convergence flag

int icount= 0; // number of iterations counter

// iterate with linearized constraints until convergence

//---------------------------------------------- iterate over icount

while (icount < m_maxIterations) {

// get constraint unmbalance and check them

HepVector constraint(nc,0); // vector of non linear constraints

if(isFromVertex) {

final=computeConstraint(e, u, *workingVertex, constraint);

} else {

final=computeConstraint(e, u, *workingParticle, constraint);

}

// check that momenta are physical

if(isFromVertex) {

sc = checkMomenta(*workingVertex, e, u);

} else {

sc = checkMomenta(*workingParticle, e, u);

}

if ( sc.isFailure() )

{

error() << "momenta out of range " << endmsg;

resetVars();

return StatusCode::FAILURE;

}

// converged !!

if(final) break;

// update variables e and u with linearized constraints

HepMatrix B(nc, nm, 0);

HepMatrix C(nc, nu, 0);

HepMatrix Minv(nm+nu+nc, nm+nu+nc, 0);
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if(isFromVertex) {

sc = iterateWithLinearConstraint

(Ce, e, u, nm, nu, nc, *workingVertex, constraint, B, C, Minv);

} else {

sc = iterateWithLinearConstraint

(Ce, e, u, nm, nu, nc, *workingParticle, constraint, B, C, Minv);

}

if ( sc.isFailure() ) {

error() << "iteration " << icount+1 << " failed" << endmsg;

resetVars();

return StatusCode::FAILURE;

}

// save maxtrices for subsequent usage

B_m=B;

C_m=C;

Minv_m=Minv;

icount = icount + 1;

debug()<< "Treasure Map" << endmsg;

debug()<< "Measured Particles " << endmsg;

for (std::map<Particle*,int>::iterator i=MParStore.begin();i!=MParStore.end();i++)

debug() << i->second << " " << " " << i->first << endmsg;

debug()<< "UnMeasured Particles " << endmsg;

for (std::map<Particle*,int>::iterator i=UNParStore.begin();i!=UNParStore.end();i++)

debug() << i->second << " " << " " << i->first << endmsg;

debug()<< "Measured Vertexes " << endmsg;

for (std::map<Vertex*,int>::iterator i=MVtxStore.begin();i!=MVtxStore.end();i++)

debug() << i->second << " " << " " << i->first << endmsg;

debug()<< "UnMeasured Vertexes " << endmsg;

for (std::map<Vertex*,int>::iterator i=UNVtxStore.begin();i!=UNVtxStore.end();i++)

debug() << i->second << " " << " " << i->first << endmsg;

}

// if not converged, return

if(!final) {
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error() << "Sorry, no convergence" << endmsg;

error()<< "Reached maximum number of iterations = "<< icount << endmsg;

error() <<"If you think this event

should be reconstructed and if you have a huge number of constraints,";

error() << "try to increase maxIterations in job options" << endmsg;

error() << "If it doesn't help, please contact experts" << endmsg;

return StatusCode::FAILURE;

} else {

info() << "GlobalFitter converged after " << icount << " iterations!" << endmsg;

}

// update the covariance matrix

HepSymMatrix Cu(nu,0);

updateCovariance(Ce, Cu, Minv_m, nm, nu);

// check the covariance matrix

sc = checkCovariance(Ce, Cu, nm, nu);

if (sc.isFailure() ) {

error() << "covariance matrix check failed... something fishy" << endmsg;

resetVars();

return StatusCode::FAILURE;

}

// build up output graph

if(isFromVertex) {

////SV

for(SmartRefVector<Particle>::iterator it=workingVertex->products().begin();

it!=workingVertex->products().end();

it++) {

debug() << " z Particle" << (*it)->pointOnTrack().z()<<" zo "<< u(3) <<endmsg;

}

sc=fillDecayGraph(Ce0, e0, Ce, e, Cu, u, *workingVertex, nc-nu);

if(sc.isFailure())

{

resetVars();

return StatusCode::FAILURE;

}

} else {

sc=fillDecayGraph(Ce0, e0, Ce, e, Cu, u, *workingParticle, nc-nu);
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if(sc.isFailure())

{

resetVars();

return StatusCode::FAILURE;

}

}

V=Minv_m;

// exit with deserved success!

return StatusCode::SUCCESS;

}
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Appendix D

A little algebra for ACP asymmetries

We have seen that, for a �avour speci�c process, the decay ratio of a neutral B
meson in its �nal state f̄ is calculated as indicated in these lines:

R
(
B → f̄

)
= e−Γt

[
cosh

(
∆Γ
2
t

)
+ (1− 2ω) cos ∆mst

]
⊗ 1√

2πσ
e−

(τ−t)2

2σ2

(4.55)

=
∫ ∞

−∞
e−Γt

[
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(
∆Γ
2
t

)
+ (1− 2ω) cos ∆mst

]
· 1√

2πσ
e−

(τ−t)2

2σ2 dt =

Really the convolution should be computed between 0 and +∞ because the time
is not de�ned for negative values. Notwithstanding this reasoning, we chose to
compute the integral, for mathematical simplicity, from −∞. The result should
not be so much modi�ed since due to the acceptance function, that cancels the
integral for values near zero.
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Figure 4.11: On the left there are the true proper lifetime distributions for
Bs → D−

s π
+ and Bs → D+

s π
− . On the right column there arethe same

distributions after the acceptance, resolution and mistag e�ects were applied.
The last line, picture (e) and (f), contains the untagged distributions before and
after.
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In case of bias in our model, we have to substitute the term τ with the τ − b ,

where b is the bias expressed in σ units:
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√
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(Γ∓∆Γ
2 − τ

σ2 + σΣ
σ2 )2 σ2

2

√
2

=

= e−
τ2

2σ2 · e−
Σ2σ2

2σ2 · e− τΣ
σ · e

(∓∆Γ
2 +Γ−τ+σΣ

σ2 )2 σ2
2

√
2

= (4.63)

I1+I2 = e−
τ2

2σ2 ·e−
Σ2σ2

2σ2 ·e− τΣ
σ ·

e(Γ−
∆Γ
2 − τ

σ2 + σΣ
σ2 )2 σ2

2

√
2

+
e(Γ+∆Γ

2 − τ
σ2 + σΣ

σ2 )2 σ2
2

√
2

 =

=
e−

τ2

2σ2 · e−
Σ2σ2

2σ2 · e− τΣ
σ

√
2

·
[
e+(Γ+∆Γ

2 − τ
σ2 + σΣ

σ2 )2 σ2
2 + e+(Γ−∆Γ

2 − τ
σ2 + σΣ

σ2 )σ2
2

]
=

e−
τ2

2σ2 · e−
Σ2σ2

2σ2 · e− τΣ
σ

√
2

·

{
e
+

[
Γ2+(∆Γ

2 )2
+

(
τ

σ2

)2
+(σΣ

σ2 )2
+Γ·∆Γ−2Γ· τ

σ2−∆Γ· τ
σ2 + 2ΓσΣ

σ2 +∆ΓσΣ
σ2 − 2τσΣ

σ4

]
σ2
2

+ e
+

[
Γ2+(∆Γ

2 )2
+

(
τ

σ2

)2
+(σΣ

σ2 )2−Γ·∆Γ−2Γ· τ
σ2 +∆Γ· τ

σ2 + 2ΓσΣ
σ2 −∆ΓσΣ

σ2 − 2τσΣ
σ4

]
σ2
2

}
=

162



e−
τ2

2σ2 · e−
Σ2σ2

2σ2 · e− τΣ
σ · e

+

[
Γ2+(∆Γ

2 )2
+

(
τ

σ2

)2
+(σΣ

σ2 )2−2Γ· τ
σ2 + 2ΓσΣ

σ2

]
σ2
2

√
2

·

·
[
e

∆Γ
2 · τ

σ2 ·σ
2−∆Γ

2 ·Γ·σ2−∆ΓσΣ
σ2

σ2
2 −

2τσΣ
σ4

σ2
2 + e−

∆Γ
2 · τ

σ2 ·σ
2+∆Γ

2 ·Γ·σ2+∆ΓσΣ
σ2

σ2
2 + 2τσΣ

σ4
σ2
2

]
=

e−
τ2

2σ2 · e−
Σ2σ2

2σ2 · e− τΣ
σ · e+

Γ2σ2
2 + σ2∆Γ

8

2
+ τ

2σ2
2+ Σ

σ2
2 σ2

2 −Γτ+ΓσΣ

√
2

·

·2 cosh
(

∆Γτ
2
− ∆Γ

2
· Γ · σ2 − ∆ΓσΣ

2
− τΣ

σ

)
=

=
√

2e−
τΣ
σ · e+Γ2σ2

2 + σ2∆Γ
8

2
−Γτ+ΓσΣ cosh

(
∆Γτ

2
− ∆Γ

2
· Γ · σ2 − ∆ΓσΣ

2
− τΣ

σ

)

I3,4 =
(1− 2ω)
2
√

2πσ

∫ ∞

−∞
e−Γt·e±i∆mst·e−

(τ−σΣ−t)2

2σ2 dt =
(1− 2ω) · e−

τ2

2σ2 · e−Σ2
2

2
√

2πσ

∫ ∞

−∞
e−t(Γ∓i∆ms− τ

σ2 + σΣ
σ2 )·e−

t2

2σ2 dt =

g ≡
(

Γ∓ i∆ms −
τ

σ2
+
σΣ
σ2

)

I3,4 =
(1− 2ω) e−

τ2

2σ2 · e−Σ2
2

2
√

2πσ

∫ ∞

−∞
e−gt · e−

t2

2σ2 dt =

=
(1− 2ω) · e−

τ2

2σ2 · e−Σ2
2

2
√

2πσ

∫ ∞

−∞
e
−

(
t√
2σ

+ g√
2
σ

)2

· e+
g2σ2

2 dt =

163



=
(1− 2ω) e−

τ2

2σ2 · e−Σ2
2 · e

g2σ2

2

2
√

2πσ

∫ ∞

−∞
e−z2

dz =
(1− 2ω) · e−

τ2

2σ2 · e−Σ2
2 · e

g2σ2

2

2
√

2πσ
·
√

2σ·
√

2π =

=
(1− 2ω) · e−

τ2

2σ2 · e−Σ2
2 · e

g2σ2

2

√
2

=
(1− 2ω) · e−

τ2

2σ2 · e−Σ2
2 ·√

2
e

σ2
2 (Γ∓i∆ms− τ

σ2 + σΣ
σ2 )2

=

=
(1− 2ω) · e−

τ2

2σ2 · e−Σ2
2 ·√

2
e

σ2
2

(
Γ2−∆m2

s+ τ2

σ4 + σ2Σ2

σ4 ∓2iΓ∆ms−2Γ τ
σ2±2i τ∆ms

σ2 +2ΓσΣ
σ2 ∓2i∆ms

σΣ
σ2 −2 τσΣ

σ4

)
=

=
(1− 2ω) · e−

τ2

2σ2 · e−Σ2
2 · eσ2Γ2

2 · e−
σ2∆m2

s
2 · e+

τ2

2σ2 · e+Σ2
2

√
2

e
σ2
2 (∓2iΓ∆ms−2Γ τ

σ2±2i τ∆ms
σ2 +2ΓσΣ

σ2 ∓2i∆ms
σΣ
σ2 −2 τσΣ

σ4 )=

=
(1− 2ω) · eσ2Γ2

2 · e−
σ2∆m2

s
2 · e−Γτ · eΓσΣ · e− τΣ

σ

√
2

e
σ2
2 (∓2iΓ∆ms±2i τ∆ms

σ2 ∓2i∆ms
σΣ
σ2 )=

=
√

2
2

(1− 2ω)·eσ2Γ2
2 ·e−

σ2∆m2
s

2 ·e−Γτ ·eΓσΣ·e− τΣ
σ e

(
±2i τ∆ms

σ2
σ2
2 ∓2iΓ∆ms

σ2
2 ∓2i∆ms

σΣ
σ2

σ2
2

)
=

=
√

2
2

(1− 2ω) · eσ2Γ2
2 · e−

σ2∆m2
s

2 · e−Γτ · eΓσΣ · e− τΣ
σ e(±iτ∆ms∓iΓ∆msσ2∓i∆msσΣ)

I3 + I4 =
√

2 (1− 2ω)·eσ2Γ2
2 ·e−

σ2∆m2
s

2 ·e−Γτ ·eΓσΣ·e− τΣ
σ ·cos

(
τ∆ms − Γ∆msσ

2 −∆msσΣ
)

164
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(4.64)

So the relative CP asymmetry is obtained by the ratio:

ACP (t) =
Γ(B0 → f)− Γ(B

0 → f)

Γ(B0 → f) + Γ(B
0 → f)

=

= e−
σ2∆m2
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σ

)
Now I want to apply the same technique to the B decay to CP eigenstates

case. In spite of the �avour speci�c decay, in this case there are only two decay
mode:

Γ(B → f) ∝ e−Γt|Af |2
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1 + |λf |2
)
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2
t +
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)

By applying the convolution theory and the mistag e�ects, and assuming |p/q| =
1, we can introduce the dependence to the distribution of the proper time reso-
lution:
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−Γt

((
1 + |λf |2

)
cosh

∆Γ

2
t + (1− 2ω)

(
1− |λf |2

)
cos ∆m t− 2Re(λ) sinh

∆Γ

2
t− (1− 2ω) 2Im(λf ) sin ∆m t

)

⊗ 1√
2πσ

e
− (τ−t)2

2σ2 (4.65)
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Hence
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So the CP asymmetry can be computed
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(4.72)
analogously for a bias b = Σσ on the time resolution distribution
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σ2∆m2

2 −σ2∆Γ2
8 ·

Adir
CP · cos

(
∆mτ −∆mΓσ2 + ∆mΣ

σ

)
+Amix

CP sin
(
∆mτ −∆mΓσ2 + ∆mΣ

σ

)
cosh

(
∆Γ
2
τ − ∆Γ

2
Γσ2 + ∆Γ

2
Σσ

)
−A∆

CP sinh
(

∆Γ
2
τ − ∆Γ

2
Γσ2 + ∆Γ

2
Σσ

)
(4.73)
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Appendix D

Mass Di�erence

Mixing occurs when eigenstates of one observable-�avour, are not pure mass
eigenstates but formed by superposition of mass eigenstates. The �avour states
will alter over time in two distinct ways. First the amplitudes of the di�erent
mass eigenstate components will decay at di�erent rates, given by the width
di�erence.

Second the phases of the components will vary at di�erent frequencies ac-
cording to their mass eigenvalues. This evolution of relative phase drives �avour
oscillation at the beat frequency.

Starting from the eq.2.17 we can see that

q

p
= − M∗

12

|M12|

[
1− 1

2
Im

(
Γ12

M12

)]
(4.74)

Since in the Bs mesons |M12| � |Γ12|, the approximation

q

p
= − M∗

12

|M12|

is quite good. Also we can take in account that, within the standard model,

M12 ∝ (V ∗tsVtb)2 ∝ (V ∗ts)
2 (4.75)

Therefore the

q

p
=

V 2
ts

VtsV ∗ts
= e2iδγ →

∣∣∣∣qp
∣∣∣∣ = 1 (4.76)

can be assumed to within O(10−3). The measurements of the mass di�erence

in the Bs system achieve an improvement about the knowledge of the VCKM

element Vts. Actually the |M12| � |Γ12|, then
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∆ms ≈ 2|M12| (4.77)

therefore we can extract the value of Vts through the eq.4.75.

Another way to measure the validity of the CKM matrix is estimating the
ratio:

∆ms

∆md
=

∣∣∣∣Vts

Vtd

∣∣∣∣ ·Rsd (4.78)

where the Rsd contains a set of parameter almost valued.

Present situation on ∆ms

The �rst attempts to measure the ∆ms have yielded a lower limit ∆ms >
14.5 ps−1 with a con�dence level of 95%. Recently D0 collaboration reported
the interval 17 ps−1 < ∆ms < 21 ps−1at 90% C.L. using a large sample of Bs

semileptonic decays.
However the most recently result comes from the CDF experiment which

has published [17] [18] these results:

∆ms = 17.77 ± 0.10(stat) ± 0.07 (sys) (4.79)∣∣∣∣Vtd

Vts

∣∣∣∣ = 0.2060+0.001
−0.002 ± 0.0007(exp)+0.081

−0.060(theor) (4.80)

To reach these value the CDF Collaboration has employed 1 fb−1 of data from
p̄p collisions at

√
s = 1.96TeV collected with the CDF II detector at the Fermi-

lab Tevatron. The sample contains signals of 5600 fully reconstructed hadronic
Bs decays. 3100 partially reconstructed hadronic Bs decays, and 61500 par-
tially reconstructed semileptonic Bs decays. The probability was measured as
a function of proper decay time that the Bs decays with the same, or opposite,
�avour as the �avour at production. To ful�ll the measurements of the value of
the ∆ms has been employed the amplitude scan technique.

The amplitude scan

This methods exploits the likelihood technique. In fact the likelihood term
describing the tagged proper decay time of a B0

d,s meson is modi�ed by including
an additional parameter multiplying the cosine term. This parameter is called
the amplitude A

L ∝ 1±A ·D · cos(∆m · t) (4.81)

where the A parameter is left free during the �t, while D is �xed and known in
the scan procedure. In this wise we calculate an A value for each ∆m. In case
of in�nite statistics, optimal resolution and perfect tagging, one would expect
A to be unity for the true ∆ms value. In practice a set of �tted values (A, σA)
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Figure 4.12: (Upper) The measured amplitude values and uncertainties versus
BsB̄soscillation frequency ∆ms. At 17.77 ps−1the amplitude is consistent with
one and inconsistent with zero at 3.7 σ. (Lower) The logarithm of the ratio
of likelihoods for amplitude equal to zero and amplitude equal to one, Λ =
log

[
LA=0/LA=1(∆ms)

]
, versus the oscillation frequency. The dashed horizontal

line indicates the value of Λ that corresponds to a probability of 1% in the case
of randomly tagged data.
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Figure 4.13: The amplitude scan for the Bd system at CDF II.
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for each ∆ms hypothesis is obtained. A ∆ms hypothesis is excluded to a 95%
con�dence level in case the following relation is observed

A+ 1.645σA < 1

The sensitivity of a mixing measurement is de�ned as the ∆m value for which
1.645σA = 1. The �gure 4.13 shows the result of the amplitude scan to Bd

mesons at CDF II.

LHCb technique

Another approach to extract directly the ∆ms value is to zero in on the shape of
the CP asymmetry generated by the proper time distributions of the events that
have been �avour-tagged as having oscillated. In LHCb the decay Bs → D−

s π
+

will be used to determine the oscillation frequency ∆ms.
The decay channel Bs/Bs → D∓

s π
± is self tagging, i.e. the charge of D∓

s

identi�es univocal the �avour of the B meson at the decay instant. This decay
is very important in the delta mass determination. Thus Af = Āf ⇒ λ = λ̄ = 0

and with
∣∣∣p
q

∣∣∣ = 1 the �avour asymmetry can be de�ned as

Aflav =
ΓB̄→f(t) − ΓB→f(t)

ΓB̄→f(t) + ΓB→f(t)
= −D · cos(∆mst)

cosh(∆Γst)
(4.82)

where D is a dilution factor that comes under the wrong tag fraction ω with

the equality D = (1− 2ω). This observable provides also information about the
∆Γ.

The D∓
s doesn't have a favoured decay channel. The highest rate, (10.8 ±

3.1)%, decay channel is D−
s → η0(π+π−π0)ρ−(π−π0). It is easy to understand

that the reconstruction of this channel quite di�cult, since the neutral particles
among the �nal states that increase the γγ combinatorial background.

Also D∓
s can decay into the K+K−π∓ �nal state with a branching fraction

of (4.4± 1.2)% and thus this decay mode is more convenient since there are less
�nal states and no neutral particles and it is a resonant decay mode.

The observed distribution proper time is quite di�erent from the true distri-
bution due the acceptance and the time resolution. The selection of the events
requires that a Bs travels at least 2.5 mm downstream. This condition, not
only suppresses the background level, but also it cuts all the signal events which
have a true lifetime smaller than 2ps. With Monte Carlo studies, we obtain a
�tted function, in term of τ , of the form:

ε(τ) = N
(aτ)5

1 + (aτ)5
(4.83)

where N and a are the �tted parameters. N is the asymptotically acceptance

reached for great values of proper time.
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Another pejorative term is the time resolution. The proper lifetime of a Bs

meson is calculated from its momentum and the separation of the primary and
secondary vertexes as shown in eq. 3.1. The uncertainty in the secondary vertex
dominates the accuracy of the measurement.
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